
UNIVERSITY OF LATVIA

VALDIS VITOLINS

BUSINESS PROCESS MODELING USING
A METAMODELING APPROACH

Summary of Doctoral Thesis

Advisor:
Professor, Dr. habil. sc. comp.

AUDRIS KALNIŅŠ

Riga 2007

The thesis was elaborated with support of ESF
(European Social Fund)

Advisor:
 Professor, Dr. habil. sc. comp. Audris Kalnins

University of Latvia

Referees:
Professor, Dr. habil. sc. comp. Janis Barzdins
University of Latvia

Assoc. Professor, Dr. sc. ing. Marite Kirikova
Riga Technical University

Professor, Ph. D. Olegas Vasilecas
Vilnius Gediminas Technical University

The defense of the thesis will take place in an open session of the Council for Promotion
in Computer Science, the University of Latvia, in the Institute of Mathematics and
Computer Science, the University of Latvia (Room 413, Raiņa bulv. 29, Rīga), on 11.
September 2007.

The thesis (collection of works) and its summary are available at the Library of the

University (Kalpaka bulv. 4, Rīga) .

Head of the Council Janis Barzdins

Kopsavilkums_eng.doc 2

Table of Contents

 Relevance of the Thesis and Achieved Results ... 4
 General Description of the Thesis .. 6
1 Modeling Business ... 8

1.1 Business Metamodels ... 8
1.2 Main Business Concepts and their Relationships ... 8
1.3 Concept Mapping in Different Notations ... 10

2 Business Process Measures ... 13
2.1 Business Process Model ... 13
2.2 Measure Aggregation Sample Model ... 15
2.3 Business Process Metamodel ... 16
2.4 Business Measure Metametamodel .. 17

3 Semantics of UML 2.0 Activity Diagram for Business Modeling by Means of
Virtual Machine .. 19

3.1 Subset of the UML 2.0 Activity Diagram and UML Limitations 19
3.2 General Description of the UML 2.0 Activity Diagram and Proposed Virtual
Machine .. 20

3.2.1 Standard Semantics of Activity Diagrams .. 20
3.2.2 General Principles of the Developed ADVM .. 21
3.2.3 Metamodel Extensions and Model Mapping ... 22

4 Use of UML and Model Transformations for Workflow Process Definitions ... 24
4.1 Languages for Workflow Design and their Role .. 24
4.2 Adjusting UML Activity Diagrams for Workflow Definition 25
4.3 BPMN Diagrams as Another Notation ... 27
4.4 AD to BPMN Transformation .. 28

5 Conclusion .. 30
6 References .. 31

6.1 Referenced Papers by the Author ... 31
6.2 Other Publications by the Author ... 31
6.3 Other Sources ... 31

1 Annex .. 35
1.1 Author’s Reports on Thesis Results at International Scientific Conferences and
Seminars ... 35
1.2 Publications Included in This Thesis and Personal Contribution to the
Publications by the Thesis Author .. 35

Kopsavilkums_eng.doc 3

Relevance of the Thesis and Achieved Results
Relevance of the thesis. The thesis discusses topics related to the development of
business process management systems. Business process management systems have
evolved on the basis of workflow management systems through incremental inclusion
of standard information system functions, for example, resource and client
management.
The application of model driven development is required to deal with the complexity
of business management systems and to increase development efficiency. In contrast
to conventional information systems, the behavior of business management systems is
strongly affected by the business models that they execute. Thus, business process
models also can be used for designing and developing business management systems
using sequentially applied model transformations that adapt models to a specific
execution platform.
As business management system functionality expands and business models are used
for systems development, new requirements emerged for both business models and
process modeling languages. Currently, there is no agreement on a single best
business process modeling language; therefore, different aspects of business
management systems in different development phases are described using different
modeling languages.
For example, the de facto standard in software development, the Unified Modeling
Language (UML), is not detailed enough to use in workflow modeling. The Business
Process Modeling Notation (BPMN) is not explicit enough to use for software
development. The execution semantics of existing languages is not detailed enough
for process execution in distributed business management systems. This makes it
difficult to use models in the development of business process management systems,
and currently model driven development can be applied only to specific business
management branches and only in specific development stages.
Therefore, it is necessary to develop an approach that supports the description of
different business management aspects in different modeling languages, and which
supports the transition from one language to another, both to apply a business model
to a specific execution platform, and to move to an alternative modeling language.
This approach could support a unified tool platform that would cover all required
business process management system aspects, and information gathered in different
development stages could be effectively reused.
This thesis proposes that business process modeling problems can be solved using a
metamodeling approach. Metamodeling allows analysis of different modeling aspects
in a unified and comprehensive way, while retaining the exact semantics of concepts.
In this thesis, a methodology is developed that allows analyzing different modeling
languages and comparing their concepts in detail. The thesis also describes model
execution and the development of run-time measurement techniques using a
metamodeling approach. Based on the developed methodology, a framework with
editors for different modeling languages and for model transformations that transform
concrete business models for a specific execution platform is developed.

The main results of the research.

 A notation independent business process metamodel is developed, which
shows business process concepts and their relationships. This metamodel is

Kopsavilkums_eng.doc 4

used as a canonical form of business process modeling languages in all further
research.

 A new approach is developed for mapping business concepts from one
common domain to different modeling languages using similar concepts
("semantically similar" languages). This approach is used as the basis for
building model transformations.

 Exact execution semantics for the UML activity diagram (AD) is developed
using a virtual machine. A methodology based on metamodels is developed. It
allows defining model parameters in design-time and measuring them in
model run-time. This virtual machine can be used as the basis for developing a
process simulation or business process management system.

 Functionally equivalent metamodels of the most popular business modeling
languages, a profile of the UML AD subset and a BPMN subset, are
developed. On the basis of these metamodels, editors for these languages are
developed. Model transformations are developed in the MOdeling LAnguage
(MOLA) to perform transformations from AD to BPMN. Such
transformations are one step in the model driven development of business
management systems. By using a similar approach to transform models further
into the Business Process Execution Language (BPEL), the models can be
executed in real business process management systems.

Kopsavilkums_eng.doc 5

General Description of the Thesis
Research on the thesis "Business Process Modeling Using a Metamodeling
Approach" was done from 2002 to 2007 in the Department of Physics and
Mathematics of the University of Latvia and in the Institute of Mathematics and
Computer Science (IMCS) under the direction of Professor Audris Kalnins. This
research is a continuation of the business modeling traditions established in the IMCS
since 1986.
The main results of the research are published in four papers [1-4] and are presented
at four international conferences. The thesis is organized as the set of these four
papers, summarizing the author’s research results in different aspects of business
modeling.

The subject of the research: business models, comparison of different models and
modeling techniques, and analysis of model execution using the metamodeling
approach.

The goals of the research: to develop a comprehensive and exact approach to using
different business process modeling aspects, process execution, measurement and
transformations, using the metamodeling approach.

Research stages: research was done in several stages, starting with a general analysis
of different business modeling aspects, and continuing with exact semantics of
modeling languages and their execution semantics. Using exact semantics of
concepts, transformations were developed to translate business models to a language
executable in business process management systems. In the subsequent sections of
this summary, the main problem statements are briefly described. These are described
in detail in the referenced publications.

 In the first chapter, "Modeling Business," business process concepts and their
relationships are analyzed using a metamodeling approach. This chapter
describes existing business modeling languages and frameworks. The research
analyzes business process execution and the business process environment,
and presents information required to understand business processes and quality
measures. Furthermore, a new comprehensive business process metamodel is
developed. Using the developed business process metamodel, a new
methodology is developed in which business modeling languages using similar
concepts can be shown as views of a notation independent metamodel. The
developed business process metamodel is used as a canonical form of business
process concepts in all further investigations.

 In the second chapter, "Business Process Measures," existing business
measurement approaches are reviewed, and a new approach to business
process measurements is introduced. The new approach allows defining
business measures in an integrated way together with process definition. In
addition, a new methodology for process element measure definition and
measure aggregation in process execution time is developed. For measure
definition, a new UML Activity Diagram (AD) profile is developed, and
measure algorithms are processed using an extended UML metametamodel.

Kopsavilkums_eng.doc 6

 In the third chapter, "Semantics of the UML 2.0 Activity Diagram for
Business Modeling Using a Virtual Machine," a detailed description of
UML 2.0 AD semantics is provided with a new approach using a virtual
machine. AD elements required for business process modeling are introduced,
and diagram execution in business processes is clarified. Furthermore, a new
and simplified AD execution algorithm is developed, which, however, does
not lose the original execution semantics. This is done using "push" and "pull"
engines, which move tokens along activity execution paths. The proposed
algorithm is useful for developing AD simulation and workflow execution
engines.

 In the fourth chapter, "Use of UML and Model Transformations for
Workflow Process Definitions," a new development approach to business
management systems based on model transformations is introduced. The two
most popular business modeling notations, UML ADs and BPMN, are
analyzed. Required aspects of workflows are briefly discussed, and, on this
basis, a natural AD profile and functionally equivalent to the BPMN subset are
proposed. The semantics of both languages in the context of process execution
(namely, mapping to BPEL) is also analyzed. By comparing AD and BPMN
metamodels, it is shown that an exact translation from AD to BPMN is not
trivial; thus, model transformations are proposed as the most effective
approach for model mapping and translation. Model transformations are
executed in the model transformation language MOLA, using the MOLA
transformation tool.

 In the Conclusion, research results are analyzed in the context of the latest
business modeling events, and a practical approach to business process
modeling is described.

The theoretical and practical significance of the research.
This thesis describes the theoretical principles for using the metamodels of modeling
languages to describe and compare these languages. It also describes how the models
written in these languages can be transformed and executed. The developed business
process metamodel and mapping approach are available for exact model
transformations in semantically similar languages, but model transformations make it
possible to obtain model equivalents even for cases with extremely complicated
relations. A metamodel-based virtual machine can be used to develop model
simulation or business process management systems that execute models in different
modeling languages, and the machine allows performing model measurements in run-
time. The developed metamodeling approaches and ideas are used to develop a
modeling tool framework and different modeling language editors. This proves the
effectiveness of the metamodeling approach.
Research results are used in development of business process editors in the Generic
Modeling Framework (GMF, [6.3]). The GMF tool is used to develop new editors for
the UML AD and BPMN modeling languages. Models created in these editors can be
transformed from one to another using the MOLA transformation tool.

Kopsavilkums_eng.doc 7

1 Modeling Business

1.1 Business Metamodels
Business process modeling (BPM) began as part of the business process reengineering
movement in the 1990s. Initially, business models were conceptual and were used in
place of software specifications where the diagrams were clearer than text. To ensure
unambiguous understanding of models, the first modeling languages were introduced,
and modeling tools were developed. One of the first modeling languages was defined
in the Zachman framework [6.3], which was implemented in the Popkin Software
System Architect tool. Other modeling languages also were implemented in tools, for
example, GRAPES BM in the GRADE tool [6.3], ARIS in the ARIS tool [6.3], and
other languages, such as IDEF 3 and UML 1.0 activity graphs.
As modeling languages became more concrete, tools allowed validation and
simulation (e.g., ARIS, System Architect [6.3], GRADE), and specific modeling
languages for workflow systems appeared (FileNet, MQ Workflow). Thus, models
shifted from software specification to executable programs, and execution semantics
of modeling languages became an important issue.
In 2002, when this research was started, business modeling was a broad field. The
term BPM (business process management) was used to emphasize both the process
analysis and execution aspects. The necessity to execute process models required
strict requirements for modeling language semantics. Many process modeling
languages and modeling frameworks explained business modeling in their own way;
therefore, for integrated processing of business processes, a common approach was
necessary.
The goal of this research was development of a unified modeling methodology based
on a new approach using metamodeling as in UML [6.3]. As the most popular
frameworks were developed before the appearance of UML (e.g., Zachman, ARIS),
they were not developed as metamodels. Therefore, analysis of existing frameworks
and development of a new, harmonized and comprehensive metamodel was
necessary. Using a common metamodel, modeling languages using similar concepts
("conceptually similar" languages) can be shown as specific views of a harmonized
metamodel.

1.2 Main Business Concepts and their Relationships
To describe a business process, two views are required. One view describes the
business process itself: what actions under what circumstances are executed by
performers in what order. Another view is required for process explanation: what is
important for process integration in one or several enterprises. It shows the process
environment: inputs (suppliers) and outputs (goods and services for customers),
process relationships with other processes, as well as the meaning goals of processes,
and quality measures.
An investigation of existing frameworks based on metamodels and other approaches
[6.3,6.3,6.3,6.3] revealed that they were incomplete; none is sufficiently general and
comprehensive. Therefore, the author offers a new business process metamodel, in
which the most popular frameworks are combined. The concepts coming from
different approaches are harmonized into a single metamodel to show only the
essential concepts that are common in all analyzed business management
methodologies.

Kopsavilkums_eng.doc 8

Fig. 1 shows the business process environment metamodel developed by the author. It
conforms to several of the world’s leading business process management standards
(e.g., the value added chain and the ISO quality standard [6.3]). The metamodel is
similar to the Business Motivation Model developed by OMG [6.3]. The Business
Rules Group started development of this standard in 2000, but the metamodel was
developed in 2005, when it was adopted by OMG, and is still in draft form. It should
be noted that, for business process resources, the input and output in the author's
research is even more detailed than is required by the OMG standard. In 2006, a
similar model was created as a business ontology at the University of Lausanne [6.3].

Business Goal
Resource

Customer

Intangible

StrategyPeopleEquipment
(Instruments, cash)

Processed Material

Knowledge
(Know How)

Raw Material

Requirement

Business Process
(All activites flowed in
enterprise)

Internal

Material
(Means of production)

Task
(Atomic activity)

Conformity Level

Service
(Public Interface)

Supplier

Index Value
(Measure)

Tangible

Performer
(Reference)

OutputInput

Notation Independent
Business Concepts

Not all

Enterprise
(Organization)

 1..*

1..*

 1..*

 1..* 1..*

 0..*1..*

1..*

 1..*

 1..*

 1..*Performer 1..*

 1..*

support 1..*

 1..*

 1..*

 1..*

 1..*

objective

quality

satisfaction determination

 1..*

 1..*
nomination

 1..*

 1..*
consumption

 1..*

 0..*
supplement

 1..*

 1..*
utilization

1..*

1..*

actor

0..*

0..*

best practice

subgoal0..*

subsidiary0..*

refinement

1..*

1..* realization

measurement

sub
process

1..* 1..*

measurement

0..*

 1..*
 1..*production

Fig. 1 Business process environment metamodel

Fig. 2 shows the business process elements required for process definition and
execution. The main concept for all process modeling languages in the Process is the
Task, which represents one atomic function. In different modeling languages it is
named differently: in GRAPES BM and BPMN, it is named Task, in UML 1, Action
State, in UML 2, Action, in IDEF 3, Unit of Behavior. A Task is performed by a
Performer. A Transition determines the sequence in which several Tasks are
executed. Task and Transition are the main concepts in all business modeling
languages.
Most languages also have ControlElements, which determine process branching. A
Decision represents the start of branching; a Fork, the start of parallel flows; a Merge,
the unification of branches; a Join, the unification of concurrent threads. Explicit
Start and End points also can be shown. However, control elements and transition
connections to the control elements may differ considerably in different modeling
languages. Therefore, to unambiguously map specific control elements in the
analyzed UML 2.0 AD and GRAPES BM languages, additional transition subclasses
are introduced: SimpleTransition, Incoming transition and Outgoing transition. Usage
of these subclasses for explicit concept mapping is described in Section 1.3.

Kopsavilkums_eng.doc 9

Join

Fork Merge

Start

End

Decision

Business Process

Incoming

Notation
Independent

Business
Process

Decomposition

XOR

OutgoingResource
(HW, SW, etc.)

Qualification
(Implicit reference
through requirements)

Role
(Business role, or
privileges)

Performer
(Reference)

SimpleTransition
Task

(Smallest unit of
executable function)

Transition

ControlElement

Organizational
Unit

 1..*

 1..*
 1..*

 1
 *

 1..*
 1..*

 1
 *

 *

 *

 1 0..1

 1 0..1

 1..*

 1actor

subprocess *

0.. 2 1..*

0..2
 1..* 1..*

Fig. 2 Business process metamodel containing classes

This business process metamodel with classes is similar to that of the OMG process
definition metamodel standard draft, which was developed later [6.3]. It should be
noted that part of the metamodel for task performers in the author's metamodel is
more detailed than in the standard draft proposed by OMG.
A harmonized or "notation independent" metamodel of the business process
environment and its elements (Fig. 1, Fig. 2) is used as a "canonical form" of the
business process metamodel in all further research (Chapters 2, 3 and 4). Though the
developed metamodel is small, it is widely applicable because it shows the main
business concepts of any enterprise. Therefore, it conforms well to standards that were
developed later.

1.3 Concept Mapping in Different Notations
Using a "notation independent" metamodel, the author has developed a method by
which "semantically similar" modeling languages can be defined as specific views of
the metamodel. The languages used for this example are UML 2.0 AD (which was
only a draft of the standard version at that time) and GRAPES BM. In Fig. 3, the same
business process is shown in these two notations, at the same time showing the
differences between these languages, e.g., guard nodes in the GRAPES BM [6.3]
language are shown as guard conditions for edges in the UML AD [6.3] language:

Kopsavilkums_eng.doc 10

b

g

h

a

Integration
Integrator

Is Not
Motivated

Review
Coordinator

Is
Motivated

Development
OR
Developer

Testing
AND
Tester

Is Fixed
Is Not
Fixed Close

OR
CoordinatorOR
Tester

New problem
appears

Fig. 3 A business process as GRADE BM and UML AD

The general concept mapping schema is shown in Fig. 4. The top part of the figure
shows concepts necessary for business modeling (Domain concepts). Concepts in
Notation A are mapped to concepts in Notation B using Notation independent
concepts as mediators. In many cases, relations between language concepts are many-
to-many, and are thus not sufficiently clear and traceable. To "normalize" such
mappings and make them unambiguous, "intermediate concepts" are introduced,
which decouple many-to-many relations between language concepts as a pair of one-
to-many relations between language and intermediate concepts.
When mapping is explicitly defined using intermediate concepts, concept instances
from one notation are converted to instances in another notation, as shown at the
bottom of the figure. Dependency lines show <<instance of>> relations between
classes and their instances. Even though, in general, case instance relations are many-
to-many, for particular instances this relation is usually one-to-many, as shown in Fig.
5.

Domain
Instances

Domain
Concepts

"Notation independent" concepts Notation BNotation A

Notation Independent BP
Domain

Notation Dependent
BP Domain A

Notation Dependent
BP Domain B

Notation Independent
Concept Concept BConcept A

Depends on concept mapping

:ConceptA :ConceptB

 1..*

Is view of

1..*

 1..*

 1..*Concept B mapping
 1..*

Is view of

 1..*
 1..*Concept A mapping

Actual mapping way

0..* 0..*
instance mapping

Fig. 4 The general scheme of metamodel mapping

Fig. 5 shows a fragment of the defined mapping between the GRADE BM and UML
AD languages. The top part of the figure shows the domain concepts layer with
GRADE metamodel classes (top left area), the UML AD metamodel (top right)
classes, and the independent domain (top middle) classes. General many-to-many
relations between GRAPES BM and UML AD for guard nodes and edges are
decoupled using several one-to-many mappings between language concepts and

Kopsavilkums_eng.doc 11

intermediate concepts (Transition subclasses: Incoming, Outgoing and
SimpleTransition). The bottom section of Fig. 5 shows specific instances of these
classes based on the business process example shown in Fig. 3. As shown in Fig. 5, a
relation for a particular instance for both languages appears as one-to-many, so they
are easily traceable.

UML 2.0 Activity Diagram
domain

Grade BP domain Notation independent
domain

Task Action

Testing:Action

Is Not Fixed:Guard

d:Activity Edge

e:Activity Edge

Activity Edge

XORXOR

Guard-In-Path

Guard-Out-Path

Path

G:Guard-In-Path

h:Guard-Out-Path

Outgoing

Incoming

G:Activity Edge
Condition = "Is Not Fixed"

SimpleTransition

Testing:Task

GuardNode

Task

Domain Instances

Domain
concepts

Fig. 5 Fragment of a mapping definition and class instances

As users are actually interested in a graphical representation of these two notations,
the last step is creation of corresponding graphical elements (boxes and lines) in the
diagram. Because domain elements are usually linked to a graphical representation as
one-to-one, it is a simple task. As shown in the Fig. 5 mapping fragment, even for
"semantically similar" languages technical elements can differ considerably, and this
complicates concept mapping.
At the moment, a concept mapping technique is used by the OMG Domain task force
group for merging the UML 2.0 AD and BPMN 1.0 languages [6.3]. Because UML
AD and BPMN have even more differences than UML and GRAPES BM (e.g., AD
does not have a business process equivalent to that of BPMN, which contains several
processes, but BPMN does not have an equivalent to AD object flows), concept
mapping either cannot be shown unambiguously, or many intermediate concepts must
be introduced. However, for cases when "semantically similar" languages are also
"technically similar," concept mapping is good shorthand. Recently, this approach has
shown some success, e.g., for mappings between the BPMN, BPEL, XLANG and
WSFL languages [6.3].
Subsequent research (described in Chapter 4) showed that complicated mappings can
be effectively resolved using model transformations. In this case, mapping
associations are doubly useful: in definition, they demonstrate the general mapping
schema (though ambiguous), but for specific instances, they show the transformation
result, pointing to the source instance for each target instance. This is necessary for
model transformation traceability.

Kopsavilkums_eng.doc 12

2 Business Process Measures
As the business world becomes more global and competitive, business processes are
becoming more geographically distributed. To estimate overall process efficiency, it
is essential to recognize costs, time and other parameters of each business process
step. Business process efficiency measures are crucial to determine total costs of
ownership and forecast the return on investments. Monitoring and measures are a
ubiquitous element in workflow systems [6.3].
Many quality and business process management methodologies use numeric methods
to measure the weaknesses and strengths of a business [6.3,6.3,6.3,6.3,6.3]. These
methodologies are supported by several tools [6.3,6.3,6.3,6.3]; however, they provide
the "best of the breed" methodology only for narrow areas, and cannot support several
methodologies simultaneously. Measure definition and value calculation, especially
for aggregations (e.g., sums, averages, minimums and maximums) are not trivial tasks
using existing simulation tools and workflow systems. Advanced technical skills are
required.
The goal of the research was to develop a business process measure framework that
uses algorithms and constraints to measure business process elements and their
aggregations in a way that provides practical data. This framework should support
business measures that are defined in the business model itself. It would allow
business analysts to work with measures using familiar business terminology and
avoid having to deal with technical issues.
This research shows that such a framework can be developed using a metamodeling
approach. The process measurement language is developed using a profile from the
UML AD [6.3], but a measurement processing framework is provided through
heavyweight extension of the UML metametamodel [6.3].
The approach is described by presenting a business process measures example, and
then providing an abstract measure definition framework.

2.1 Business Process Model
To demonstrate the principles of measure calculations, a simple business process
example is used. It is defined using a UML AD [6.3]. Fig. 6 shows the business
process for a shop that delivers pizzas to residential customers. The Sell Pizzas
business process (activity in the AD) contains actions (rounded rectangles). The
organizational structure is not shown separately; it can be assumed from the process
description. Organizational units are shown in swimlanes, and their performers
(positions/roles and resources) are shown in action compartments with parentheses.
Performers pointing to positions/roles (People) are active: they perform manual
operations. Resources are passive. They are necessary to perform an action and can be
busy or spent in operation. The object flow is shown using flow nodes (rectangles)
and data stores as parallelograms. Process measures are shown in notes (rectangles
with bent corners), which are attached with dashed lines to measurable objects.
According to MOF [6.3], this business process model is an abstraction of all execution
instances of the real business process; therefore, it conforms to the M1 layer.

Kopsavilkums_eng.doc 13

Sell Pizzas

Production

Order
ID
Quantity
Address

Cost,EUR
ProcessingTime,min
TotalTime,min

Start

Finish

Profit,EUR

Sales
(Clerk)

Make Order

(Packer)
Pack Pizza

(Expeditor)
Encash

Amount,items

Pizza
Cost,EUR
Amount,items

Box Cost,EUR
Amount,items

Packed Pizza
ID

Cost,EUR
Amount,items

Transport
(Driver, Expeditor,Car)

Deliver

Accounting
Cash

Cost,EUR
TotalTime,hour

Fig. 6 Sell Pizzas business process as an Activity Diagram (M1)

The Make Order action invokes a subprocess (activity), which is shown in Fig. 7.

Sales

Customer

Make Order

Finish

Start Start Time, datetime

Need Correction

Order
ID
Quantity
Size
Address

End Time, datetime

(Clerk)
Check Order

(Clerk)
Send to Production

Cost = 0.1, EUR
Processing Time, min

Fill Order Make Corrections

Cost=2*hour, EUR
Processing Time, EUR
Processing Time, min Yes

No

Fig. 7 Make Order business process (M1)

To support business measures, the UML AD is extended according to the UML
standard with a measure definition profile. Process measures actually are attributes of
the metaclass stereotype, which according to UML can be shown as notes. To
improve readability, several object measures are joined in one note. Each measure
declaration has the following syntax: Name[=declaration],Unit (e.g., Cost=2*hour,
EUR). A measure linked to a process element means that the given measure must be
evaluated during process simulation or execution.

Kopsavilkums_eng.doc 14

This example shows that for process measure definition (measure specification), it is
possible to use a UML AD extended with class stereotypes for measures, similar to
existing simulation systems (e.g., ARIS [6.3]).

2.2 Measure Aggregation Sample Model
Although it is possible to use a UML profile for an AD to define business process
measures, that is not sufficient. To show exactly how numeric values of measures are
processed in process execution time and how default operations are performed,
additional classes and associations are necessary. Therefore, the UML AD is only an
external specification or interface of the framework, but its implementation is much
more complicated. Within the framework, the AD should be transformed to a specific
"internal model," in which, in addition to the UML AD measure profile, the diagram
is extended with new classes and associations (a heavyweight extension). Because the
MOLA modeling language [6.3] was not developed at that time, the author has shown
the AD transformations using the possibilities supported by UML class diagrams
using specific syntax.
The diagram in Fig. 8 shows part of the processes defined in Fig. 6 and Fig. 7 as an
internal model of a business process measure calculation framework. This model is
"execution independent" because, regardless of the implementation, it shows which
elements, associations and calculations are required to calculate values of the defined
measures. Formally, such a model should be shown using two diagrams: a class
diagram in which classes describe all instances appearing in process simulation or
execution (M0), and an instance diagram of the framework metamodel described later
(M2, Fig. 9). Because both diagrams should show dual properties of the same object,
for presentation economy they are joined in one class diagram, in which dual
"instance classes" are shown with a specific syntax. To show that a class in M1 is also
an instance of a more abstract class in M2, this "instance class" is shown using
stereotypes, that is, the name of the more abstract class (M2) is shown as a stereotype
for a specific abstraction level (M1) "instances class."

Fill Order
<<Task>>

Order
<<Store>>

Make Corrections
<<Task>>

Finish
<<End>>

Clerk
<<People>> Need Correction

<<Decision>>

Customer
<<Org Unit>>

Check Order
<<Task>>

CO ProcTime
*Unit=min

<<Processing Time>>

SP ProcTime
*Unit=min

<<Processing Time>> CO Cost
*Unit=EUR
*Declaration=CO ProcTime*2 EUR/hour

<<Cost>>

SP Cost
*Unit=EUR
*Declaration=0.1

<<Cost>>

MO Cost
*Unit=EUR
Declaration=Sum(SP Cost, CO Cost)

<<Cost>>

Send to Production
<<Task>>

MO Finish
*Unit=datetime

<<End Time>>

MO Start
*Unit=datetime

<<Start Time>>

Start
<<Start>>

MO Total Time
*Unit=min
Declaration=Minus(MO Finish, MO Start)

<<Total Time>>

Not All

Sales
<<Org Unit>>

Not All

Pizzeria
<<Enterprise>>

MO Processing Time
*Unit=min
Declaration=Sum(CO ProcTime, SP ProcTime)

<<Processing Time>>

Clerk
<<Performer>>

Make Order
<<Business Process>>

arg

arg

arg1

arg

 primitive
 measure primitive

 measure

arg

 primitive

 measure

 measure
 container

arg2

 primitive

 measure

arg

 primitive

 measure

 primitive measure

 container

 measure

 container

 measure

Fig. 8 Measure aggregation model example (M1)

Kopsavilkums_eng.doc 15

Light classes are basically stereotypes of the UML AD. As a result of the metamodel
heavyweight extension, the AD has additional aggregation associations (e.g., the
Sales aggregation). Process measures (different shades represent different measure
types) linked to process elements with primitive/container-measure associations are
AD stereotype attributes, which are shown as "instance classes." For model
readability, the measures are assigned names consisting of the first characters of the
linked element name and the measurement type. (The name is not required for
processing). If a measure uses another measure, the appropriate association has the
role name arg.
The measures composition derived from the M2 layer in the M1 layer is shown
according to MOF traditions, using class compartments (e.g., unit=EUR,
declaration= Minus(MO_Finish,_MO_Start)). Compartments defined explicitly in the
business process model in Fig. 6 are shown with an asterisk. Other compartments and
appropriate measure associations are derived implicitly, by creating instances of the
process definition metamodel. E.g., the MakeOrder business process measurement
MOTotalTime declaration is determined automatically as the difference between the
process start, MOStart, and end, MOEnd, values with appropriate associations.
For model readability, other M2 level class composition instances also in the M1 level
are shown as a composition. E.g., Business Process and Enterprise M2 composition
instances are shown as an M1 composition with appropriate classes and their
stereotypes.

2.3 Business Process Metamodel
To define rules for process element measures definition and aggregation, a specific
metamodel (M2) is required to serve as a framework for all metamodel instances or
process definition models (M1).
The developed business process measure metamodel is shown in Fig. 9. The figure
shows how measurements are linked to each together, and how they are linked to
business process elements. In this figure two diagrams are merged also: class diagram
of all possible models (M1, Fig. 8) and a specific instance diagram of a more abstract
metametamodel (M3, Fig. 10). This business process measure metamodel basically
conforms to the business process metamodel (Chapter 1) with the following
differences:

 All classes are instances of the extended metametamodel (M3).
 Although light classes conform to UML AD profile stereotypes (e.g.,

BusinessProcess as a stereotype for Activity), in addition to the associations
defined in UML, by using an extended metametamodel (M3), additional
associations are possible.

Associations defined in the UML and additional ones are used to determine which
elements are eligible for measure aggregation. For this reason, a completely new
binary association could be used. Though using existing UML associations, the
number of additional associations is reduced and the metamodel is more readable.
Aggregation (composition) associations show that for an appropriate "host" element,
instance aggregation of the same type of measures is possible (e.g., sum, average,
minimum, maximum) for all child instances.

Kopsavilkums_eng.doc 16

Processing Time
<<Measure>>

Minus
<<Declaration>>

Cost
<<Measure>>

Sum
<<Declaration>>

Time*Rate
<<Declaration>>

Start Time
<<Measure>>

End Time
<<Measure>>

Time Range Unit
<<Measure Unit>>

Declared Cost
<<Declared Value>>

Declared Cost Rate
<<Declared Value>>

min
<<Measure Unit>>

hour
<<Measure Unit>>

datetime
<<Measure Unit>>

Sum
<<Declaration>>

XOR
End

<<Primitive>>

XOR EUR
<<Measure Unit>>

Start
<<Primitive>>

Decision
<<Primitive>>

Total Time
<<Measure>>

Business Process
<<Container>>

XOR

Performer
<<Container>>

Task
<<Primitive>>

People
<<Primitive>>

Not all

Enterprise
<<Container>>

Not all Organizational Unit
<<Container>>

arg1

1

 1

 1..*

 unit
 1..*

 1
arg1

1

rate 11 unit 1 1 unit
 1

 1

arg
 1..*

 1

 measure

 primitive *

 *

decl 0..1

 measure

 primitive

 1

 1 1..*

 primitive

 measure

 1

 0..1

 unit

 1

 1..*

 primitive

 measure

 1
 0..1

arg2

 1

 1

 *

 unit

 1

 1..*

 1..* 1

arg *

 1decl
 0..1

 *

decl
 0..1

decl
 0..1

decl
 0..1

 *

 *
 *

subprocess * 1..*

 1..*

 container

 measure

 1

 0..1

 measure

 container

 0..1

 1

 container

 measure

 1

 *

Fig. 9 Fragment of the measure declaration metamodel (M2)

<<Measure>> classes (different shades represent different kinds of measures) are
class metaattributes (formally, UML 2.0 properties), which are carried out as separate
classes and associations. This diagram also serves two purposes: as a class diagram
for the M1 metalayer, and as an instance diagram for the M3 metalayer. Therefore, in
accordance with the dual notation, metaattributes appear as classes. These
metaattributes show the measures that can be defined for each process element (light
classes).
Associations between stereotypes and metaattributes inherit specific role names:
primitive/container-measure. If a measure declaration has an expression (which can
be derived implicitly from the metamodel, or set explicitly in the model), then it is
shown as a function argument set with the <<Declaration>> stereotype.
Fig. 9 shows possible business process measures. E.g., for a Business Process or
Task, the cost can be determined as specified value (Declared Cost), amount of
processing time multiplied by the cost rate per time unit (Processing Time, Declared
Cost Rate) or sum of several costs.
The main value of this metamodel is that it shows in a demonstrative way with classes
and associations the possible measures of business process elements and how
measures can be declared and aggregated in a way that has practical meaning. By
creating models on the basis of this metamodel, defined classes show which measure
instances can be added to the model element instances, and associations show the
links between measures and methods for automated processing.

2.4 Business Measure Metametamodel
In accordance with MOF traditions, the metametamodel (M3) is kept simple, and all
the complexity of a specific domain is represented in metamodels (M2). However,

Kopsavilkums_eng.doc 17

when using a general metametamodel to show specifics and the meaning of the
metamodel (M2), it is necessary to use many OCL constraints. Therefore, the author
uses another approach (which is in line with MOF standards). The UML
metametamodel is extended with specialized classes and associations, which clearly
show business process measures and their relations.
The developed metametamodel is shown in Fig. 10. The main distinction is that it
includes new BusinessObject and Measure metaclasses as specializations of Class
from the UML InfrastructureLibrary::Constructs. This specialized metametamodel
makes it easier to create a metamodel because, as shown in Fig. 9, even a small M2
fragment with a specialized M3 is complicated. Creating an M2 with standard UML
MOF and OCL [6.3] constraints would be much more difficult, and the metamodel
would be considerably larger.

Business
Object

Declared
 Value

Class Property

Measure

Declaration

Operation

Primitive

Containing
measures

Aggregation
 Function

Math
Function

Measure
 Unit

Container

object
 measure 1 *

ownedAttribute
 *

ownedOperation *

 child *
 0..1

arg
 *

 1

 1

 1..*
arg *

 1

arg
 * 1

arg
 1 *

Fig. 10 Business process measure metametamodel (M3)

In developing the business process measure framework, it is shown how effectively
two types of UML extensions can be used. For business process measure definition, a
UML AD can be used, extended with a business process measure profile. Profiles are
shown as stereotype attributes. In this way, process measure definition compatibility
with UML is provided. On the other hand, a measure processing framework can be
provided in a clear and effective way, through heavyweight extension of the UML
metametamodel. In this way, it is assured that measure constraints and aggregation
logic are defined as demonstrative classes and associations between measures, and
between measures and measurable elements in the business process metamodel.
Measures are only declarations or definitions of how business objects will be
measured. Actual values are obtained only at system run-time. For process definition
execution, the possibility of exact semantics dependent only on measure declarations
should also be analyzed. In this paper, run-time aspects are discussed only briefly.
System run-time aspects (not detailed for measures) are analyzed in further research
as shown in Chapter 3.

Kopsavilkums_eng.doc 18

3 Semantics of UML 2.0 Activity Diagram for
Business Modeling by Means of Virtual Machine

In 2004, the UML 2.0 standard [6.3] was in the final adoption stage, and its AD was
suggested for use in business process modeling. Therefore, exact execution semantics
of AD was a topical issue.
The main goal of this research was to make the UML AD usable for modeling exact
(i.e., executable) business processes. To achieve this, it was necessary to determine
the exact execution semantics of ADs and select an appropriate subset of its elements,
which was sufficient for business process modeling model validation and simulation.
In the research, it was shown that original UML AD semantics defined for executable
models is complicated and not described clearly enough. Therefore, the author
proposes a new approach, describing existing AD semantics with an activity diagram
virtual machine (ADVM). To describe the semantics, a minimal subset of AD
elements was chosen as required for business process definition. It is shown how a
formal UML AD definition model can be translated to a simpler and more convenient
execution model, which at the same time conforms to the original execution semantics
for the selected subset of AD elements.
Such an approach, which relies on the original AD notation as much as possible in
defining semantics, in contrast to absolutely formal algebraic methods (e.g., Petri nets
[6.3]), is more suited for exact analysis of diagram behavior, even if it does not
support formal mathematical analysis. In addition, the developed VM can be used as a
basis for practical implementation of a simulation tool or workflow management
system engine.

3.1 Subset of the UML 2.0 Activity Diagram and UML Limitations
Because a number of UML 2.0 AD concepts are actually optimized for development
of embedded systems, the author has chosen only those elements that are necessary
for business modeling. AD model behavior is determined by tokens, which flow from
node to node through edges starting at an activity initial point and ending at the final
point. Different tokens can be used for data transfer from one action in the activity to
another. Therefore, when determining required elements, only those are chosen that
have a direct influence on token movement. In practice, these are actions and control
nodes, as well as edges with guards connecting them.
There are few works analyzing the execution semantics of AD control flows alone
[6.3,6.3,6.3]. An analysis of the AD data flow separately from the control flow in
[6.3] concludes that AD is not "workflow complete." However, in the author's
research analyzing data and control flows in an integrated approach, it is shown that
ADs are usable for formal and exact definitions of business processes.
Fig. 11 shows two activity diagrams, which illustrate all chosen elements. The main
AD Process Order invokes another one: Make Payment. The main process starts with
the initial node, then the process flows through decision, fork, join and merge nodes
and finishes in the activity final node. The Make Payment action invokes the
subordinated activity, which starts and finishes with activity parameter nodes. All
flows (control and object) have pins at their action ends (and also at the initial and
final nodes), as required by the selected subset. The advantage for semantics
definition of using these explicit pins is that tokens always have a place to "live,"
much in the same way as places are used in Petri nets.

Kopsavilkums_eng.doc 19

Make PaymentFill Order

Payment

Send Invoice

Accept
Payment

Payment

Order

Ship Order
Order

Order

Order

Order

Order

Close Order

Invoice

InvoiceMake Payment

Receive Order

Order

Payment

Order

Process Order

[Order Accepted]

[Order
Rejected]

Fig. 11 Sample activity diagram "Process Order," which invokes "Make Payment"

Because branching in diagrams is shown explicitly with decision and fork nodes, only
one edge can extend from the pin. Guards for edges outgoing from decisions are
mutually exclusive and do not change over time. In addition, the following
nonstandard connections are disabled:

 The outgoing edge of a ControlNode cannot be an incoming edge for the same
ControlNode. This prevents deadlocks between control nodes waiting for
input.

 No paths are allowed between CallBehaviorActions, InitialNodes, FinalNodes
or ActivityParameterNodes containing both ForkNodes and JoinNodes. This is
reasonable from the practical point of view, because there is no need to create
parallel branches if they are simply joined back without any operation in these
branches (i.e., there is no CallBehaviorAction between them).

These restrictions in general do not limit the development of natural business
processes, but eliminate the "race for tokens" and the undetermined execution of
diagrams. Thus, token movement rules are significantly simplified.

3.2 General Description of the UML 2.0 Activity Diagram and
Proposed Virtual Machine

3.2.1 Standard Semantics of Activity Diagrams

In the UML standard, AM semantics is described in a highly distributed manner,
where each AD element has its role in AD execution [6.3,6.3,6.3]. Each fork,
decision, merge and join node processes the token flow in its own way by "offering"
tokens to actions. The "offering" of a token simply means that control nodes make
tokens "visible" to actions, and an action is executed "when all of the input pins are
offered tokens and accept them all at once, precluding them from being consumed by
any other actions" [6.3]. This means that actions use pull semantics for token
processing, and the only active elements in a diagram are the "action engines," which
try to fill up their input pins with a fresh sets of tokens to be consumed by these
actions.

Kopsavilkums_eng.doc 20

A "standard ADVM" could be defined with "action engines" as the only active
elements and control nodes as "token visibility switches," but it would be highly
complicated because visibility rules are obviously non-local (distributed) operations
with many more operating and dependent elements.

3.2.2 General Principles of the Developed ADVM

The author proposes a different version of the ADVM, in which control nodes
("unstable places," where tokens cannot be located) and edges are "truncated" in
paths. As a result, paths connect nodes where tokens can be located ("stable places"),
which are usually input and output pins (for actions, initial and final nodes), as well as
activity parameter nodes (for activities). Each path has a condition: the guards of its
edges are "anded" together. The abovementioned diagram constraints ensure that
paths are mutually exclusive. Even if a pin is a start point for several paths, for a
particular token only one path is allowed.

cb d

e

k

g

j

a

i

h

Push

Pull

f

Pull

Pull

Push

[a]

[b]

[c]

[b]

[a]

Fig. 12 Creation of push and pull paths for different connections

"Stable places" are served by active elements: token engines. Two types of engines
are introduced, push and pull engines, as well as push and pull paths. Push paths are
those containing only decision, merge and fork nodes, or no control nodes at all. A
push path is "serviced" by a push engine in its start node, the corresponding output
pin. In the proposed subset, tokens from an output pin can be pushed via push paths
independently from each other directly to their destinations, input pins, whenever path
conditions permit it. Thus, token movement is very transparent in the push case.
Pull paths are those containing at least one join node, and decisions and merges. Pull
paths are serviced by a pull engine at their destination, an input pin. According to AD
semantics, the movement of tokens along pull paths having a common destination
must be coordinated; only an adequate set of tokens can jointly pass a join node.
The action engine is much simpler than its counterpart in the original standard
semantics. Its sole task is to seize one token from each input pin (or an entire group, if
this is a pull pin), when a complete set is present and to "consume" this set, and
provide output pins.
The main semantic difference between the proposed and the standard action engine is
that for the proposed engine, tokens or groups are moved by token engines
independently of each input pin, while the standard engine pulls them from output
pins "all at once." However, this cannot lead to serious differences in behavior, since
real "races for tokens" by several actions are impossible in the proposed subset.

Kopsavilkums_eng.doc 21

3.2.3 Metamodel Extensions and Model Mapping

To formally define an ADVM, a specific AD execution metamodel must be created
with all required classes and operations. For each AD, a diagram execution model is
created using model transformation.
Fig. 13 shows the original AD and its run-time metamodels (virtual machine)
combined; the original classes are light and the new ones are dark. Whenever
possible, the corresponding classes in both metamodels are linked by special
bidirectional associations (so-called mapping associations, introduced in Chapter 1.3,
dashed lines).

Activity
isSingleExecution: Boolean = False CallBehaviorAction

ActivityParameterNode

ObjectFlow

Constraint
Input Pin Output Pin

Type

ValueSpecification JoinNode

FlowFinalNode

ActivityFinalNode

InitialNode

DecisionNode

ForkNode

MergeNode

Behavior

ActivityNode

ActivityEdge

ObjectNode

ControlNode
FinalNode

Parameter

OpaqueBehavior

Queue

IntermediateNode

TokenEngine

Final

ParameterR

ActionBody

Condition

Edge

OutputQueue

Token
tokenID: long
value

Type

Merge

Fork

Decision

Initial

ActivityFinal

FlowFinal

Join

StableNode

Path

ActivityR Action

InputQueue

output
 *

 1..*

input *

 parameter 1

 1..*
 0..1

outgoing

input

 *

0..1

 parameter *

incoming

output

 *

 0..1returnResult
 *

node *

joinSpec
 1

 type*
1target

incoming
 1

 *

source
outgoing

 1
 *

 parameter
{ordered} * *

incoming

target

 1

 0..1

 1..*

 locus

 token

 0..1

 1..*

outgoing

source

 1

 0..1

incoming
sourceNode

 *
 0..1

outgoing
targetNode

 *

 0..1

 behavior 0..1

incomingPath

finish

 *

 1

 behavior *

1

formalParameter *

 edge
 *

guard 1
0..1

outgoingPath

start

 *

 1

Fig. 13 Subset of the UML AD and relations to run-time classes

When an activity is invoked, corresponding run-time class instances are created for
the activity instance and all its components. These instances act as the virtual machine
executing the given activity. Fig. 13 represents a "general transformation schema,"
where the mapping associations have a formal semantics in this transformation. In the
direction from a definition class to run-time class it means that in the transformation
process for each instance of the definition class, one instance of the run-time class
should be created. In the opposite direction it shows from which definition instance
the run-time instance is created. This information is used when new instances must be
created with specific properties that can be retrieved only from the source (definition)
model.
Fig. 14 shows the metamodel of the proposed ADVM. This diagram is another view
of the metamodel shown in Fig. 13, but with more detailed run-time classes. It shows
the complete set of classes, associations and operations required for execution of the
proposed VM.

Kopsavilkums_eng.doc 22

Initial

OutputQueue

TokenGroup

ActionBody
Body: String

Condition
expression: String
evaluate(Token[*]): Bool

PushPath
hasJ oin: Bool = False

PullEngine
checkTokens(): Token[*]
canJoin(Token[*]): Bool

Path
hasJoin: Bool
canPass(Token): Bool

FlowFinal

ActivityFinal

Final
process(): Bool

ParameterR
direction: ParameterDirectionKind
value

Queue

IntermediateNode Edge

StableNode

TokenEngine
process(): Bool
putToken(InputQueue, Token)
delToken(OutputQueue, Token)
moveToken(Queue, Token)

Action
isSynchronous : Boolean = True
process(): Bool
delToken(InputQueue,Token)
execute(Object[*]): Bool
putToken(OutputQueue, Token)

InputQueue

{ordered}

PushEngineType

{subsets queue}

{subsets queue}

{subsets queue}

PullPath
hasJ oin: Bool = True

ActivityR
activityID: long
isSingleExecution: Boolean = True
isActive: Bool
isFinal: Bool = True
activate()
process(): Bool
terminate()
invoke(Oject[*])
getParams()
setParams()

{subsets iNode}
JoinDecision

Merge

Fork

{subsets iNode}

{ordered}
Token

tokenID: long
value
delete()

{subsets queue}

 engine 1..*

initialNode *

 type

 *

 1

 action

 node

joinSpec
 1

 stableNode
 1..*

 queue
{ordered}

 1..*

 path

 1

 1..* actionBody 0..1

input
end

 *
 1

 type 1

 *

edge
{ordered}

 1..*
 edge

 *

guard 1

behavior
 0..1

 action
*

 tokenGroup
{ordered}

 1

 *

outputParameter *

 pullEngine

 inputQueue

 0..1

 1

input*

inputParameter *

 parameter

 *

output

 start

 *

 1 parameter0..1

 type 1

 passRule 1

joinCriteria
 1

input 1

 parameter
0..1

output*

 passedToken
{subsets token}

 *

iNode
{ordered}

 * iNode *

activity

 pullPath
 1..*

1

 join 1..*

 parameter *
 fork *

selectedToken
{subsets token}

 *

 token

 tokenGroup
 0..1

 * token

locus

*

0..1

outgoing

source

 1

0..1

incoming

target

 1

0..1

finalNode

 *

 pushPath
 1..*

 1
output 1

 pushEngine
 outputQueue

 0..1
 1

targetNode incoming 0..1 *
sourceNode outgoing 0..1 *

Fig. 14 Metamodel of the ADVM

The creation (transformation) of each execution element and its behavior is
completely described in the publication. Java pseudocode is used where a procedural
approach is better, but OCL constraints are used when a declarative approach is
appropriate. As shown in Chapter 4, such a transformation also can be defined with a
specialized model transformation language, e.g., MOLA.
Because the proposed VM works differently than the original one on the token
movement level, it must be proven that both work the same on an action execution
level. Therefore, this research proves that, in the proposed VM, even if movement
times for particular tokens differ, the token paths and action execution start and end
times fired by tokens in the selected subset are the same.
This proof is based on the following:

 The fact that, in the selected subset of AD elements, both original and
proposed VMs work in a determined way.

 Even if, in the proposed VM, a token can arrive at its destination "stable
place" earlier than in the original machine, the last token always arrives at its
destination at the same time, when the original machine takes all its tokens "at
once."

It can be concluded that, on the level of action execution, the proposed VM works the
same as the original one, but the proposed machine is much simpler. (In the
publication, an entire chapter is devoted to proving this.)
Pseudocode and OCL constraints also demonstrate machine behavior (token
movement) graphically and precisely. A machine built in such way is actually the
design of a validation or simulation engine. The proposed approach can be used as a
basis for developing a workflow management system engine.

Kopsavilkums_eng.doc 23

4 Use of UML and Model Transformations for
Workflow Process Definitions

Model driven architecture (MDA) using model driven development (MDD) is taking
on an increasingly significant role in the development of business management
systems. In turn, model transformations substantially facilitate the development
process in MDD style for different system development steps of the system lifecycle.
When using a model-based approach to develop business systems, an exact business
modeling language is necessary. As there is no single "killer notation" for workflow
modeling, quite often, quick transformation from one modeling language to another is
necessary.
The goal of the research was to prove it is possible to define exact and automatically
executable model transformations, which allow changing business models from one
notation to another without losing model semantics.
The approach is illustrated using two of the most popular modeling languages: UML
AD [6.3] and BPMN [6.3] (both are currently supported by OMG). Transformations
are executed using the MOLA model transformation language. However, the
approach is not limited to this specific choice of target notation; a reverse
transformation or a completely different transformation using other modeling
languages could be treated in a similar way.
The research briefly discusses the workflow aspects that are required in practice, and
on this basis, a natural AD profile and appropriate subset of BPMN are proposed. The
selection of the proposed AD profile and the subset of BPMN are based on findings
performed in previous research (Chapters 1, 2 and 3), with added functionality for
business-to-business (B2B) features. The semantics of both languages is analyzed by
focusing on distributed business processes, process performers and model execution.
As mentioned in Chapter 1.3, at the moment, the OMG Domain Task Force is
working on merging the AD and BPMN languages [6.3] by relating concepts in these
languages using a mapping approach [6.3]. However, considering the complicated
nature of concept relation in these languages, the author shows how this relation can
be shown in a more exact and effective way using model transformations.

4.1 Languages for Workflow Design and their Role
Obviously, workflow definition requires an easy readable graphical language with
clear execution semantics [6.3,6.3]. Two modeling languages, UML AD and BPMN,
were selected from several reviewed modeling languages to demonstrate the
approach. UML AD and BPMN were selected because they best satisfy all workflow
definition requirements. Further, execution semantics of the chosen languages is
analyzed in this paper, with emphasis on business process specifics and how language
graphical aids can represent them.
Because UML ADs are clarified in such way that their elements are more appropriate
for embedded systems, some AD tailoring is necessary before it can be used for
business process modeling. In other words, a DSL (domain specific language) as a
profile of the UML is necessary, where introduced stereotypes hide the found AD
deficiencies for practical workflow definition. As the transformation target, the
BPMN language is chosen. It is partially supported by tools [6.3]. But this language
has its own set of deficiencies, especially the informal semantics and lack of adequate
features for data definition. The usability of BPMN for workflow definition is briefly
analyzed in order to identify a relevant subset.

Kopsavilkums_eng.doc 24

To determine clear execution semantics of both languages in business processes, they
are mapped to the sole practically executable process modeling language at the
present time: BPEL [6.3]. In cases where the means of expression defined in the
standard are not satisfactory, BPEL is extended using de facto industry standard
means used by vendors implementing this language.

4.2 Adjusting UML Activity Diagrams for Workflow Definition
Several AD profiles for defining workflows have been proposed [6.3,6.3,6.3], but
none covers all the required business modeling features: cooperation of distributed
processes with messages, data processing, the description of manual task performers
and the ability to execute a process model. Therefore, the proposed AD is specially
tailored. A list of recommended AD features for workflow definition is selected,
retaining the original semantics of AD elements, and including some stereotypes that
add missing properties and constraints required for distributed workflows.
Fig. 15 shows a workflow example with two activities illustrating the chosen
elements. (This and all further diagrams are modeled by using the GMF (EBM) tool
[6.3], where additional editors for UML AD profile and BPMN languages were
developed.) These diagrams show practically all elements chosen for workflow
modeling. Most of the elements are chosen from previous research (Chapters 1, 2 and
3). Elements typical for B2B cooperation are also added.

Customer Process

SendOrder

Order.id=order.id

Invoice

(Sales)

ReviewInvoice

Invoice.orderId=
order.id

SendPayment

Order

:=order

order:=Order
(Sales)

MakeOrder

order : Order

Prepare PaymentSendCancelRequest

 Payment
 Payment

 Order

 Invoice
 Invoice

 Order

 Order

 Order

[Order.s tatus=Accepted]

 Order

 Order
[Order.s tatus=Cancelled]

 Order

 Order

Supplier Process

:=order(Accountant)

Close Order

:=order

order:=OrderOrder

order : Order

Payment.orderId=
order.id

ReceiveOrder

SendOrder

order:=CancelRequest

PrepareInvoice

Payment

CancelReques t

SendInvoice

Process Order

CancelReques t.orderId=
order.id

 Order

 Order
 Order

 Order

 Order
 Order

 Order

 CancelRequest

 CancelRequest

 Order

[Order.s tatus=Accepted]

 Order

 Order

 Payment

 Invoice

 Invoice

[Order.s tatus=Rejected]

 Order

 Order

Fig. 15 Example of a process using UML ADs

New elements are SendSignal and AcceptEvent actions (convex and concave flags,
respectively), and stereotypes for different kinds of actions. The element order :
Order is a variable definition of type Order, with the scope of activity Supplier
Process. Write variable actions are presented as normal assignments to the variable,
and simple OCL syntax is used for expressions.

Kopsavilkums_eng.doc 25

AcceptEvent actions with data based guard conditions for the outgoing object flow are
specific patterns for locating the relevant process instance at message reception,
which is equivalent to the use of explicit correlation sets in BPEL.
Using stereotypes, the semantics of some AD elements is adjusted to meet the
requirements of distributed workflow modeling. The metamodel in Fig. 16 illustrates
the introduced AD stereotypes:

 MainProcess (stereotype for Activity) is a separate workflow process
(executed by an individual workflow engine). Graphically, it is shown as a
shadowed activity.

 Performer (stereotype for Partition) represents a performer of a manual or user
action. Its represents association must reference a class with the Position
or OrgUnit stereotype. It is shown as a compartment of the action.

 WebService (stereotype for Component) is used to describe web service
attributes. CallServiceTask actions, which invoke operations within this
service, get their technical parameters from WebService.

 IntermSSAction means sending a specified signal to a web service (it is shown
as a simple convex flag). EndSSAction (shown as a convex flag with a bold
border) means sending a signal as the final action of the activity.

 ForEach is a stereotype for LoopNode. It has an additional
ForEach.collection association that references the ValuePin. It is
introduced for iterators (the requirement for iterators in business modeling
languages also mentioned in [6.3]). It is the only place where heavyweight
extension is used, to preserve metamodel compatibility.

ObjectNode

Operation

Activi tyGroup

Activi tyNode

Component

UserTask

OrgUnit

Position

ForEach

ManualTask ScriptTask

MainProcess
partnerName : String

ServiceOperation
operation : String

ClassifierElement

InputPin

VariableAction

ReadVariableAction

Activi tyEdge

OutputPin
ActivityPartition
name : String

InterruptibleActivityRegion

Interface

CallOperationAction

IntermAEAction
uri : String
partnerLink : String
operation : String

StartAEAction

CallManualTask

CallScriptTask

CallUserTask

IntermSSAction

CallServiceTask

ValueSpecification
expression : String

CallBehaviorAction

WriteVariableAction

AcceptEventAction
ValuePin

LoopNode

Variable

Performer

Action

OpaqueBehavior
body : String
language : String

Activity
name : String

Behavior

Class

WebService
uri : String
parnerLink : String

EndSSAction

context0..1 ow nedBehavior*

node *

base$OpaqueBehavior

extension$UserTask extension$ScriptTaskextension$ManualTask

edge
*

activity

class0..1
nestedClassifier

*

input

*

bodyPart1

outgoing*source1

0..1

result1

output*
result1

0..1

value1

test0..1

setupPart0..1

interface 0..1 ow nedOperation

*

class0..1

ow nedOperation *

extension$UserTask
extension$ScriptTask

base$CallBehaviorAction

extension$ManualTask

extension$IntermSSAction

base$CallOperationAction

extension$ServiceTask

extension$EndSSAction

containedNode*
inGroup
0..1

*

represents
0..1

activityScope
0..1

variable *

incoming*target 1

containedEdge

*

interrupts 0..1

interruptingEdge
*

operation1

*

1 collection
*

extension$IntermAEAction

base$AcceptEventAction

scope0..1

variable* variable
1

scope
*

base$Component
extension$WebService

provided
*

0..1
value 1

base$ActivityPartition

extension$Performer

base$LoopNode

extension$ForEach

activityGroup
*

subGroup*

superGroup
0..1

extension$Position

base$Class

extension$OrgUnit

guard1

behavior0..1

*

base$Operation

extension$ServiceOperation

base$Activity

extension$MainProcess

Fig. 16 Fragment of the AD metamodel (source of model transformation)

Kopsavilkums_eng.doc 26

Fig. 16 shows a UML AD metamodel fragment that is "flattened" because redundant
abstract superclasses are eliminated, and it has "applied" the proposed workflow
modeling profile. According to the MOF standard, profiled classes are linked to main
classes with specific associations (e.g., extension$Position <->
base$Class). Instances of this metamodel are the source for transformations
described in Section 4.4.

4.3 BPMN Diagrams as Another Notation
As noted at the start of Chapter 4, BPMN is also a widely used language for workflow
definition. As BPMN also has redundancy and some deficiencies, a BPMN subset is
proposed in this paper. All kinds of Gateways (diamonds), all types of Tasks and
Subprocesses (rounded rectangles), Start and End events, and IntermediateEvents
(circles) attached to the boundary of an Activity ("interrupt construct") are chosen
because they all have a natural semantics and mapping to BPEL.
Fig. 17 shows a process example in the chosen subset of a BPMN notation. Both
processes shown here are precise analogues of processes shown in Fig. 15, which are
obtained by applying practical MOLA language transformations in the GMF tool, and
using the tool’s automatic layout possibilities.

Cus tomer Process

sorder.id=order.id

order := Order

order.id=invoice.orderId

Invoice

CancelReques t

Order

Payment

Prepare Payment

ReviewInvoice

performers: Sales

MakeOrder

performers: Sales

order : Order

Order

order.status=Cancelled

order.status=Accepted

Supplier Process

Close Order

order := Order

Payment.orderId=
order.id

Receive Order

Payment

Prepare Invoice

Process Order
Invoice

order := CancelRequest

order : Order

order.status=Rejected

order.status=Accepted

Fig. 17 Process example in BPMN

For receiving messages in non-interrupt situations, ReceiveTasks are preferred. For
sending messages in non-interrupt situations, SendTasks are preferred. In both cases,
the tasks are represented by rounded rectangles with concave and convex flags inside.
While the implicit BPMN metamodel is quite acceptable, the BPMN graphical
notation lacks some important elements. Therefore, a notation for following elements
is introduced:

 A stereotyped (with icons) notation for task types and an explicit compartment
for task performers are used.

 Properties are represented as rectangles containing name:type.

Kopsavilkums_eng.doc 27

 To make the data aspect visible, assignments are represented as large arrows
containing textual assignment statements.

Similarly to UML ADs, Fig. 18 shows a fragment of the proposed BPMN subset. The
instances of these elements appear as the transformation result.

Process
name : String
processType :
isAdHoc : Boolean

Property
name : String
type : String

SequenceFlow
conditionType : ConditionType
conditionExpr : String

SupportElement
name : String

PropertyMap
expression : String

Message

Assignment
expression : String
assignTime : String

f

Participant

y

ScriptTask
implementation : String

Activi ty
loopType : LoopType
loopCondition : String
loopMaximum : Integer

BusinessProcess
name : StringObject

Pool

SendTask
implementation : String

Role

Entity
Task

ManualTask

UserTask
implementation : String

IndependentSubprocess
isTransaction : Boolean

FlowObject
name : String

Event

GateGatewayStartEvent

MessageStartEvent

MessageEndEvent

MessageIntermedEvent

TerminateEndEvent

ServiceTask
implementation : String

EmbeddedSubprocess
isTransaction : Boolean
isAdHoc : Boolean
isCompensation : Boolean

ReceiveTask
instantiate : Boolean
implementation : String

assign *toProperty1

diagram
1
connections *

role1

objects

*
pool1

* assignments

activity 0..1

properties

*

diagram

1

containedProcesses*

0..1

assignments*

process0..1

properties*

1

graphicalElements
*

out*

source1

in*

target1

pool
0..1

process
0..1

entity
1

0..1inMessage

0..10..1

outMessage 0..1

*

performers
1..*

*

performers
1..*

subProc
1

inputMaps*

subProc
1

outputMaps* to
1

from
1

message0..1

properties*

map

mappedProperty

caller
*

diagramRef
1

0..1

assignments*

1
gates

*

pools *

participant
1

1

pools 1..*

Fig. 18 Fragment of the BPMN metamodel (target for transformation)

4.4 AD to BPMN Transformation
Although there are several research papers that mention formal process
transformations [6.3,6.3], no existing formalized transformations from UML ADs to
BPMN supporting all workflow related aspects were found. Therefore, the author uses
existing AD-to-BPMN mappings [6.3,6.3,6.3,6.3,6.3,6.3] and extends them for data
flows, variables, assignments and task performers.
To refine the mapping, in this paper an illustrative fragment of the formal
transformation generating a BPMN model from an AD model is provided. The
transformation is written in the MOLA language [6.3]. Fig. 16 and Fig. 18 represent
the source and target metamodels of the transformation, respectively, but Fig. 19
illustrates the main program of the transformation, which transforms each Activity to a
new BPMN Process and Pool, and invokes subprograms transforming all other
elements for this Activity.

Fig. 19 Main transformation program of AD to BPMN

Kopsavilkums_eng.doc 28

The MOLA program formally and completely describes the concept mapping between
these two notations. As shown in Fig. 19, several classes and associations with
context are required, which is quite complicated, and cannot be clearly described
simply by using mapping associations. Model transformation is the best method for
defining a complicated mapping between two notations, while preserving the
semantics.
Transformation is performed using the GMF (EBM) tool, using the MOLA language
editor and with developed editors for the AD and BMPN languages. The
implementation shows the efficiency of the approach: small models with several tens
of classes were transformed in a few seconds on a standard personal computer. On the
basis of this research, a new model transformation framework is under development.
It uses an in-memory repository for model transformations, and this allows executing
model transformations for industrial needs.

Kopsavilkums_eng.doc 29

5 Conclusion
The goal of the thesis is to analyze and use a metamodeling approach to define exact
(i.e., executable) business processes. Some of the business process metamodeling
ideas developed by the author are already implemented in existing modeling tools, but
others can be used for the development of new tools. The following is a list of the
author’s ideas concerning the latest business process modeling events:

 The "notation independent" business metamodel proposed at the start of the
research shows business concepts and their relations, and it served as the basis
for all further investigations. The proposed ideas have some similarity to the
OMG Business motivation model [6.3] and Process definition model [6.3]
standard drafts, which were proposed later. However, in the author's
metamodel, the part used for process inputs, outputs and task performers is
more detailed than in the standard drafts. On the basis of the slightly modified
metamodel, the author has developed editors for the UML AD and BPMN
languages in the GMF (EBM) tool [6.3].

 The author's proposal for concept mapping from one domain to several
presentations is used in the GMF tool, where the same business model can be
shown in several similar modeling languages. The idea of representing similar
languages as different views of a "canonical form" has recently been reflected
in the OMG initiative, which attempts to join the UML AD and BPMN
modeling languages in a single domain [6.3].

 The transformation examples of the MOLA [6.3] language executed during the
research represent a considerable contribution toward the validation, testing
and demonstration of the MOLA tool. The idea of business model
transformations from one language to other is realized in the MOLA tool,
allowing several users to use the most convenient modeling language in
different stages of developing business management systems.

 At this time, the University of Latvia IMCS has started developing a new
generation modeling tool platform based on model transformations (TTF
[6.3]), where model transformations are realized in the MOLA language.
Development of specialized modeling tools for domain-specific languages
(DSL) will be one of the possible usages of this new generation tool platform.
For example, it will be possible to build different business modeling tools on
the platform. The author's developed UML AD profile and subset of the
BPMN language can be used as a basis for developing process modeling
editors on this platform. In turn, the author's developed ADVM and business
measure framework can be used to develop a process simulation engine. In
this way, all necessary functionality for business process modeling and
simulation will be provided.

Kopsavilkums_eng.doc 30

6 References

6.1 Referenced Papers by the Author
1. Vitolins Valdis, Audris Kalnins. Modeling Business. Modeling and Simulation of Business

Systems, Kaunas University of Technology Press, Vilnius, May 13-14, 2003, pp. 215.-220.
2. Vitolins Valdis, Business Process Measures. Computer Science and Information

Technologies, Databases and Information Systems Doctoral Consortium, University of Latvia
Scientific Papers Vol. 673, University of Latvia, 2004, pp. 186.-197.

3. Valdis Vitolins, Audris Kalnins, Semantics of UML 2.0 Activity Diagram for Business
Modeling by Means of Virtual Machine, Proceedings of the Ninth IEEE International EDOC
Enterprise Computing Conference, IEEE, 2005, pp. 181.-192.

4. Audris Kalnins, Valdis Vitolins, Use of UML and Model Transformations for Workflow
Process Definitions, Databases and Information Systems, BalticDB&IS'2006, edited by
Olegas Vasilecas, Johann Eder, Albertas Caplinskas, Vilnius, Technika, 2006, pp. 3.-15.

6.2 Other Publications by the Author
5. Vitoliņš Valdis, Darba plūsmas pārvaldība, e-pasaule (2001), Nr. 5, 6
6. Vītoliņš Valdis, Microsoft dokumentu pārvaldības rīks SharePoint, e-pasaule (2001), Nr. 7
7. Vītoliņš Valdis, IT projektu pārvaldība, e-pasaule (2001), Nr. 9
8. Vītoliņš Valdis, Zināšanu pārvaldības sistēmas, e-pasaule (2002), Nr. 9
9. Vītoliņš Valdis, Organizācijas modelis biznesa procesu automatizācijā, e-pasaule (2002), Nr.

10
10. Vītoliņš Valdis, Biznesa modelēšanas rīki, e-pasaule, (2003), Nr. 9

6.3 Other Sources
11. Unified Modeling Language: Superstructure version 2.0, OMG, 2005,

http://www.omg.org/cgi-bin/doc?formal/05-07-04
12. Unified Modeling Language (UML) Specification: Infrastructure, Version 2.0, OMG, 2005,

http://www.omg.org/cgi-bin/doc?formal/05-07-05
13. OCL 2.0 Specification, Version 2.0, OMG, 2005, http://www.omg.org/cgi-bin/doc?ptc/05-06-

06
14. MOF2 Versioning Final Adopted Specification, OMG, 2006, http://www.omg.org/cgi-

bin/doc?formal/2006-01-01
15. Business Process Modeling Notation (BPMN), Final Adopted Specification, OMG, 2006,

http://www.omg.org/cgi-bin/doc?dtc/2006-02-01
16. Business Process Execution Language for Web Services, Version 1.0, IBM, 31 July 2002,

ftp://www6.software.ibm.com/software/developer/library/ws-bpel1.pdf
17. Grady Booch, James Rumbaugh, The Unified Modeling Language User Guide, Addison-

Wesley Longman, 1999
18. Business Process Specification Schema v1.01, Business Process Team, 11 May 2001
19. Osterwalder, S. Ben Lagha, Y. Pigneur, An Ontology for Developing e-Business Models,

INFORGE, Encole des HEC, 2002
20. ESPRIT project ADDE, http://www.fast.de/ADDE
21. The Zachman Institute for Framework Advancement (ZIFA), http://www.zifa.com
22. System Architect, Tutorial, 2001, Popkin Software,

http://www.popkin.com/products/product_overview.htm
23. Andreas Dietzsch. Adapting the UML to Business Modelling's Needs - Experiences in

Situational Method Engineering, UML 2002. LNCS 2460, pp. 73-83
24. International Standard, ISO/DIS 9001 Quality management systems — Requirements,

International Organization for Standardization, http://www.iso.com
25. Sandy Tyndale-Biscoe. Business Modelling for Component Systems with UML. Proceedings

of the Sixth EDOC Conference (2002)
26. Osterwalder, An e-Business Model Ontology for the Creation of New Management Software

Tools and IS Requirement Engineering, Ecole des Hec, Université de Lausanne, 2002

Kopsavilkums_eng.doc 31

http://www.iso.com/
http://www.popkin.com/products/product_overview.htm
http://www.zifa.com/
http://www.fast.de/ADDE
ftp://www6.software.ibm.com/software/developer/library/ws-bpel1.pdf
http://www.omg.org/cgi-bin/doc?dtc/2006-02-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?ptc/05-06-06
http://www.omg.org/cgi-bin/doc?ptc/05-06-06
http://www.omg.org/cgi-bin/doc?formal/05-07-05
http://www.omg.org/cgi-bin/doc?formal/05-07-04

27. Business Process Modeling Notation. Working Draft (0.9) November 13, 2002, Business
Process Management Initiative (BPMI), http://www.bpmi.org

28. Mark C. Paulk, et al., The Capability Maturity Model: Guidelines for Improving the Software
Process, Addison Wesley Professional, 1995

29. Douglas T. Hicks, Activity-Based Costing: Making It Work for Small and Mid-Sized
Companies, 2nd Edition, John Wiley & Sons, 2002

30. Robert S. Kaplan, David P. Norton, The Strategy-Focused Organization: How Balanced
Scorecard Companies Thrive in the New Business Environment, Harvard Business School
Press, 2000

31. Farok J. Contractor, Valuation of Intangible Assets in Global Operations, Quorum Books,
2001

32. ARIS 6 – Collaborative Suite, System White Paper, IDS Scheer, 2003, http://www.ids-
scheer.com/sixcms/media.php/1186/ARIS+6-2+SWP+en+2003-07.pdf

33. System Architect, Tutorial, 2001, Popkin Software,
http://www.popkin.com/products/product_overview.htm

34. QPR Process Guide White Paper, QPR ScoreCard White Paper, 2002, QPR Software Plc,
http://www.qpr.com/protected/whitepapers/QPR_ScoreCard_WhitePaper.pdf

35. Casewise Corporate Modeler Product Info, Casewise,
http://www.casewise.com/products/corporate-modeler/corporate-modeler.php

36. Stephen A. White, Process Modeling Notations and Workflow Patterns, March 2004,
http://www.omg.org/bp-corner/pmn.htm

37. R. Eshuis, R. Wieringa, Comparing Petri Net and Activity Diagram Variants for Workflow
Modelling - A Quest for Reactive Petri Nets, Lecture Notes in Computer Science: Petri Net
Technology for Communication-Based Systems: Advances in Petri Nets, Volume 2472, 2003,
Heidelberg, Germany: Springer-Verlag, pp. 321 - 351.

38. Harald Störrle, Jan Hendrik Hausmann, Towards a Formal Semantics of UML 2.0 Activities,
2004, http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/AD-11-Limits.pdf

39. Harald Störrle, Semantics and Verification of Data Flow in UML 2.0 Activities, 2004,
http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/AD2b-DataFlow.pdf

40. Rational Software Architect, http://www-
306.ibm.com/software/awdtools/architect/swarchitect/

41. Conrad Bock, "UML 2 Activity and Action Models Part 4: Object Nodes," in Journal of
Object Technology, vol. 3, no. 1, pp. 27-41, http://www.jot.fm/issues/issue_2004_01/column3

42. Conrad Bock, "UML 2 Activity and Action Models Part 2: Actions," in Journal of Object
Technology, vol. 2, no. 5, pp. 41-56, http://www.jot.fm/issues/issue_2003_09/column4

43. Tom Baeyens, The State of Workflow, May 2004,
http://www.theserverside.com/articles/content/Workflow/article.html

44. Derek Miers, Paul Harmon, The 2005 BPM Suites Report, Version 1.0, March 15, 2005,
http://www.bptrends.com/reports_toc_01.cfm

45. Curtis Hall, Paul Harmon, The 2005 Enterprise Architecture, Process Modeling & Simulation
Tools Report, Version 1.0, April 28, 2005, http://www.bptrends.com/reports_toc_02.cfm

46. Petia Wohed, et al., Pattern-based Analysis of UML Activity Diagrams, 2004,
http://is.tm.tue.nl/research/patterns/download/uml2patterns BETA TR.pdf

47. WebSphere Business Integration Modeler, IBM, http://www-
306.ibm.com/software/integration/wbimodeler/

48. Business Process Definition Metamodel, Revised Submission, Object Management Group,
2004, http://www.omg.org/docs/bei/04-01-02.pdf

49. Business Motivation Model (BMM) Specification, Adopted Specification, Object
Management Group, 2004, http://www.omg.org/docs/dtc/06-08-03.pdf

50. Behzad Bordbar, Athanasios Staikopoulos, On behavioural model transformation in Web
services, 5th International Workshop on Conceptual Modeling Approaches for e-Business
eCOMO'2004, November 8-12, 2004

51. Jean Bezivin, et al., Applying MDA Approach to B2B Applications: A Road Map, Work-shop
on Model Driven Development (WMDD 2004) at ECOOP 2004, Springer-Verlag, LNCS, vol.
3344, June 2004

52. Tracy Gardner, UML Modelling of Automated Business Processes with a Mapping to
BPEL4WS, IBM, 2004, http://www-128.ibm.com/developerworks/rational/library/4593.html

53. Stephen A. White, Using BPMN to Model a BPEL Process, BPTrends, March 2005

Kopsavilkums_eng.doc 32

http://www-128.ibm.com/developerworks/rational/library/4593.html
http://www.omg.org/docs/dtc/06-08-03.pdf
http://www.omg.org/docs/bei/04-01-02.pdf
http://www-306.ibm.com/software/integration/wbimodeler/
http://www-306.ibm.com/software/integration/wbimodeler/
http://is.tm.tue.nl/research/patterns/download/uml2patterns%20BETA%20TR.pdf
http://www.bptrends.com/reports_toc_02.cfm
http://www.bptrends.com/reports_toc_01.cfm
http://www.theserverside.com/articles/content/Workflow/article.html
http://www.jot.fm/issues/issue_2003_09/column4
http://www.jot.fm/issues/issue_2004_01/column3
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/AD2b-DataFlow.pdf
http://www.pst.informatik.uni-muenchen.de/~stoerrle/V/AD-11-Limits.pdf
http://www.omg.org/bp-corner/pmn.htm
http://www.casewise.com/products/corporate-modeler/corporate-modeler.php
http://www.qpr.com/protected/whitepapers/QPR_ScoreCard_WhitePaper.pdf
http://www.popkin.com/products/product_overview.htm
http://www.ids-scheer.com/sixcms/media.php/1186/ARIS+6-2+SWP+en+2003-07.pdf
http://www.ids-scheer.com/sixcms/media.php/1186/ARIS+6-2+SWP+en+2003-07.pdf
http://www.bpmi.org/

54. A. Osterwalder, An e-Business Model Ontology for the Creation of New Management
Software Tools and IS Requirement Engineering, Ecole des Hec, Université de Lausanne

55. Andrew Watson, OMG’s new modeling specifications, ECMDA-FA 2005, Nuremberg,
Germany, November 7-10, 2005, keynote speech

56. Armin Haller, Eyal Oren, Paavo Kotinurmi, An Ontology for Internal and External Business
Processes, WWW 2006, May 23–26, 2006, Edinburgh, Scotland

57. Web Services Business Process Execution Language Version 2.0, Primer Initial Draft, 13th
September, 2006

58. BPELJ: BPEL for Java technology, IBM Developerworks, 2004, http://www-
128.ibm.com/developerworks/library/specification/ws-bpelj/

59. Oracle BPEL Process Manager,
http://www.oracle.com/technology/products/ias/bpel/index.html

60. Draft UML 1.4 Profile for Automated Business Processes with a Mapping to BPEL 1.0, IBM,
2004, http://www-128.ibm.com/developerworks/rational/library/4593.html

61. The Emerging Technologies Toolkit (ETTK) http://www.alphaworks.ibm.com/tech/ettk
62. MagicDraw UML 10.5, http://www.magicdraw.com/
63. BPMI, Current Implementations of BPMN,

http://www.bpmn.org/BPMN_Supporters.htm#current
64. Mike Havey, Essential Business Process Modeling, O'Reilly, 2005, ISBN: 0-596-00843-0
65. Ken Beck, Joshy Joseph, Germán Goldszmidt, Learn business process modeling basics for the

analyst, IBM Developerworks, 2005, http://www-128.ibm.com/developerworks/library/ws-
bpm4analyst/

66. Alexandre Alves, BPEL4WS 1.1 To WS-BPEL 2.0 - An SOA Migration Path, 2005,
http://webservices.sys-con.com/read/155617_1.htm

67. Wil van der Aalst, Workflow Patterns, http://is.tm.tue.nl/research/patterns/
68. Petia Wohed, et al., Pattern-based Analysis of UML Activity Diagrams, BETA Working Paper

Series, WP 129, Eindhoven University of Technology, Eindhoven, 2004
69. Petia Wohed, et al., Pattern-based Analysis of BPMN - an extensive evaluation of the Control-

flow, the Data and the Resource Perspectives, BPM Center Report BPM-05-26,
BPMcenter.org, 2005

70. Business Modeling & Integration Domain Task Force, http://bmi.omg.org/
71. Bill Moore, et al., Using BPEL Processes in WebSphere Business Integration Server

Foundation Business Process Integration and Supply Chain Solutions, IBM, 2004
72. Martin Keen, et al., BPEL4WS Business Processes with WebSphere Business Integration:

Understanding, Modeling, Migrating, IBM, 2004
73. Peter Swithinbank, et al., Patterns: Model-Driven Development Using IBM Rational Software

Architect, IBM, 2005
74. David Skogan, Roy Grønmo, Ida Solheim, Web Service Composition in UML, The 8th

International IEEE Enterprise Distributed Object Computing Conference (EDOC), Monterey,
Ca., Sept 2004

75. Roy Grønmo, Michael C. Jaeger, Model-Driven Semantic Web Service Composition, 12th
Asia-Pacific Software Engineering Conference (APSEC), Taipei, Taiwan, December 2005

76. Chun Ouyang, et al., Translating Standard Process Models to BPEL, BPM Center Report
BPM-05-27, BPM, 2005

77. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification, OMG, 2005,
http://www.omg.org/docs/ptc/05-11-01.pdf

78. J. Bārzdiņš, J. Tenteris, Ē. Viļums, Biznesa modelēšanas valoda GRAPES-BM 4.0 un tās
lietošana, Rīga, 1998

79. Celms E., A. Kalnins, L. Lace. Diagram definition facilities based on metamodel mappings.
OOPSLA’2003 (Workshop on Domain-Specific Modeling), Anaheim, California, USA,
October 2003, pp. 23-32.

80. MOLA Modeling language, Institute of Mathematics and Computer Science, University of
Latvia, http://mola.mii.lu.lv/

81. A. Kalnins, J. Barzdins, E. Celms. Efficiency Problems in MOLA Implementation. 19th
International Conference, OOPSLA’2004, Vancouver, Canada, October 2004

82. A. Kalnins, J. Barzdins, E. Celms. "Model Transformation Language MOLA," Proceedings of
MDAFA 2004 (Model-Driven Architecture: Foundations and Applications 2004), Linkoeping,
Sweden, June 10-11, 2004, pp. 14-28.

83. ProGuide, http://www.proformacorp.com/

Kopsavilkums_eng.doc 33

http://www.proformacorp.com/
http://mola.mii.lu.lv/
http://www.omg.org/docs/ptc/05-11-01.pdf
http://bmi.omg.org/
http://is.tm.tue.nl/research/patterns/
http://webservices.sys-con.com/read/155617_1.htm
http://www-128.ibm.com/developerworks/library/ws-bpm4analyst/
http://www-128.ibm.com/developerworks/library/ws-bpm4analyst/
http://www.bpmn.org/BPMN_Supporters.htm#current
http://www.magicdraw.com/
http://www.alphaworks.ibm.com/tech/ettk
http://www-128.ibm.com/developerworks/rational/library/4593.html
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www-128.ibm.com/developerworks/library/specification/ws-bpelj/
http://www-128.ibm.com/developerworks/library/specification/ws-bpelj/

84. xBML, http://www.xbmlinnovations.com/
85. Satish Thatte, XLANG Web Services for Business Process Design, Microsoft Corporation,

2001
86. A. Ledeczi, et al., The Generic Modeling Environment, Workshop on Intelligent Signal

Processing, Budapest, Hungary, May 17, 2001
87. L. Lace, E. Celms, A. Kalnins. Diagram definition facilities in a generic modeling tool, 2003,

Proceedings of International Conference on Modelling and Simulation of Business Systems,
Vilnius, 2003, pp. 220-224.

88. A. Kalnins, J. Barzdins. MDA Support by Transformation Based Tool. Proceedings of First
International Workshop MoRSe 2006, Warsaw, Poland, October 2006, pp. 21-24.

Kopsavilkums_eng.doc 34

http://www.xbmlinnovations.com/

1 Annex

1.1 Author’s Reports on Thesis Results at International Scientific
Conferences and Seminars

1. Vitolins Valdis, Audris Kalnins. Modeling Business, Modeling and simulation of business
systems, May 13-14, 2003, Vilnius, Lithuania.

2. Vitolins Valdis, Business Process Measures, 6th International Baltic Conference on Databases and
Information Systems 2004, June 6-9, 2004, Riga, Latvia.

3. Valdis Vitolins, Audris Kalnins, Semantics of UML 2.0 Activity Diagram for Business Modeling
by Means of Virtual Machine, Proceedings of the Ninth IEEE International EDOC Enterprise
Computing Conference, 19-23 September 2005, Enschede, The Netherlands.

4. Audris Kalnins, Valdis Vitolins, Use of UML and Model Transformations for Workflow Process
Definitions, Databases and Information Systems, BalticDB&IS'2006, 7th International Baltic
Conference on Databases and Information Systems, July 3-6, 2006, Vilnius, Lithuania.

1.2 Publications Included in This Thesis and Personal
Contribution to the Publications by the Thesis Author

Author Publication Contri-
bution
in %

Description of contribution by the thesis
author

Valdis Vītoliņš
Audris Kalninš

Modeling Business 90  analysis and summary of existing
business modeling languages

 development of a comprehensive
business process metamodel

 development of a concept mapping
idea

Valdis Vītoliņš Business Process
Measures

100  analysis of existing business process
measurement approaches

 development of a measurement
approach based on a metamodel

 development of a measure metamodel
and metametamodel

Valdis Vītoliņš
Audris Kalninš

Semantics of UML
2.0 Activity
Diagram for
Business Modeling
by Means of Virtual
Machine

90  development of a UML AD virtual
machine

 development of a simplified UML
virtual machine

Valdis Vītoliņš
Audris Kalninš

Use of UML and
Model
Transformations for
Workflow Process
Definitions

90  analysis of the UML AD and BPMN
languages, development of a BPMN
metamodel, development of concept
mapping

 development of editors for the UML
AD and BPMN languages

 development of a MOLA
transformation to transform AD
models to BPMN models

Kopsavilkums_eng.doc 35

Kopsavilkums_eng.doc 36

	Relevance of the Thesis and Achieved Results
	General Description of the Thesis
	1 Modeling Business
	1.1 Business Metamodels
	1.2 Main Business Concepts and their Relationships
	1.3 Concept Mapping in Different Notations

	2 Business Process Measures
	2.1 Business Process Model
	2.2 Measure Aggregation Sample Model
	2.3 Business Process Metamodel
	2.4 Business Measure Metametamodel

	3 Semantics of UML 2.0 Activity Diagram for Business Modeling by Means of Virtual Machine
	3.1 Subset of the UML 2.0 Activity Diagram and UML Limitations
	3.2 General Description of the UML 2.0 Activity Diagram and Proposed Virtual Machine
	3.2.1 Standard Semantics of Activity Diagrams
	3.2.2 General Principles of the Developed ADVM
	3.2.3 Metamodel Extensions and Model Mapping

	4 Use of UML and Model Transformations for Workflow Process Definitions
	4.1 Languages for Workflow Design and their Role
	4.2 Adjusting UML Activity Diagrams for Workflow Definition
	4.3 BPMN Diagrams as Another Notation
	4.4 AD to BPMN Transformation

	5 Conclusion
	6 References
	6.1 Referenced Papers by the Author
	6.2 Other Publications by the Author
	6.3 Other Sources

	1 Annex
	1.1 Author’s Reports on Thesis Results at International Scientific Conferences and Seminars
	1.2 Publications Included in This Thesis and Personal Contribution to the Publications by the Thesis Author

