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Abstract

The work discusses single-domain ferromagnetic particles with uniaxial an-
isotropy in time dependent magnetic fields (rotating, precessing and crossed
AC/DC). Particle motion regimes and their stability in dependence on the
magnetic field strength and frequency are analytically obtained. The ana-
lytic expressions is experimentally verified. Thermal dissipation generated
by viscous drag and magnetic moment jumps inside particle is calculated. It
is shown how superparamagnetic rods can be used as a tool for microrheol-
ogy. In addition, colloidal particle thermal relaxation in external magnetic
field in viscoelastic fluid is simulated numerically, leading to nuclear mag-
netic resonance relaxation times in viscoelastic fluid.

Keywords: Single-domain particle, Magnetic anisotropy, Viscoelasticity,
Microrheology, Thermal relaxation
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Anotācija

Darbā tiek aplūkotas viendomēna feromagnētiskas daļiņas ar vienas ass ani-
zotropiju main̄ıgā magnētiskajā laukā (rotējošā, precesējošā un krustotos
AC/DC). Anal̄ıtiski tiek iegūti daļiņas kust̄ıbas rež̄ımu un to stabilitātes
atkar̄ıba no magnētiskā lauka stipruma un frekvences. Iegūtās anal̄ıtiskās
izteiksmes tiek eksperimentāli verificētas. Tiek aprēķināta termiskā disipācija,
ko rada viskozā berze un magnētiskā momenta lēcieni daļiņas iekšienē. Tiek
demonstrēts, kā superparamagnētisks stien̄ıtis var tikt izmatots mikrore-
oloǧiskajos pēt̄ıjumos. Papildus tam skaitliski tiek aplūkota koloidālu daļiņu
termiskā relaksācija ārējā magnētiskajā laukā viskoelast̄ıgā šķidrumā, kas
dod iespēju iegūt kodolmagnētiskās rezonanses relaksācijas laikus viskoe-
last̄ıgā šķidrumā.

Atslēgas vārdi: Viendomēna daļiņa, Magnētiskā anizotropija, Viskoe-
last̄ıba, Mikroreoloǧija, Termiskā relaksācija
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Chapter 1

Introduction

1.1 CGS and SI system of units

Historically cgs-emu (centimeter-gram-second electromagnetic units) system
is used in theory of magnetism. Whereas SI (International System) or mks
(meter-kilogram-second) is currently taught in all physics courses and is
standard for scientific work throughout the world. It has not, however, been
enthusiastically accepted by workers of magnetism. ”Although both systems
describe the same physical reality, they start from somewhat different ways
of visualizing that reality” [32]. Brown, who spent long time developing
magnetism theory, says that we should ”bear in mind two principles: first,
dimensions are the invention of man , and man is at liberty to assign them in
any way he pleases, as long as he is consistent throughout any on interrelated
set of calculations. Second, international committees arrive at their decisions
by the same irrational procedures as do various IEEE committees that you
have served on.” [19].

The only ”natural” system of units is the system, where speed of light
c = 1 and Planck constant ~ = 1 [74], but this system gives inappropriate
(large or small) numbers for everyday use. In order not to mess with powers
of ten, the SI system of units is used widely in physics. But ”the designers
of SI system left open the possibility of expressing some magnetic quantities
in more than one way, which has not helping in speeding its adoption” [32].
Sivukhin [77] says that two units of magnetic (or electric) field: ~H and ~B,
is unnecessary and makes it harder to understand essence of the physical
phenomena.

The SI system has a clear advantage to cgs when both electrical and
magnetic behavior must be considered together, where cgs units gets messy.
But in this work only magnetic behavior is examined and historically pre-
ferred cgs-emu system of units will be used through the work.
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CHAPTER 1. INTRODUCTION 8

1.2 Single-domain grain

This work deals with a single-domain ferromagnetic grain, which can be-
have as rigid magnetic dipole or superparamagnetic particle or something in
between. Difference between rigid magnetic dipole and superparamagnetic
particle will be explained in sections 1.4 and 1.5. In this section the size of
particle to be single-domain is discussed.

Differences in behaviour for magnetic particles of different sizes is ex-
plained by domain structure [17]: ”whereas a ferromagnetic material in bulk
(in zero applied field) possesses a domain structure so, that the specimen
as whole has a magnetic moment considerably smaller than the saturation
value, the same material in the form of a sufficiently fine particle is uniformly
magnetized to (very near) the saturation value, or in other words consists
of a single domain”. Experimentally it is tested by Kittel et al.[50].

Brown [17] found lower bound (radius) for spherical particles to be in
single domain phase:

Rc0 =
1.017

√
C

Ms
, (1.1)

and two upper bounds (radii):

Rc1 =

1.278
√
C

Ms√
1− 0.4468

|K1|
M2
s

(1.2)

Rc2 =
3.1584π

√
C(|K1|+ 19.739M2

s

M2
s

(1.3)

where Ms is saturation magnetization, K1 is first-order magnetocrystalline
anisotropy constant and C is the exchange constant. The exchange constant
is effect of electron spin interaction and describes the effect of aligning of
individual spins in magnetic material. More about exchange interaction can
be found in [40].

The lower bound is the radius of the particle below which the lowest
energy for the magnetic moment in the particle is in the single-domain state.
The upper bound is the radius of the particle above which the lowest energy
of magnetic state is multi-domain. Two types of multi-domain configuration
has been used by Brown, so he got two different upper bounds. As upper
bound we use the lowest of two min(Rc1 , Rc2). The border between multi-
domain and single-domain state should lie somewhere between lower and
upper bounds.

It should be noted that the existence of a low-energy state does not
guaranty that the state can be reached. Because of the hysteresis involved,
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a real ferromagnet may sometimes be stuck in a high-energy state, without
being able to switch into the low-energy one.

For example in the case of Fe particle the critical radius is between 8.46
and 11.0 nm [6]. Brown for the same material calculated lower bound at 16.7
nm [17]. The difference is because exchange constant C is not accurately
known for any ferromagnet. Whereas pure nickel lower bound is 38.3 nm
[17] and critical radius for Ni-Co alloy is between 20 and 25 nm [6]. It should
be mentioned that these values is applicable only for spherical particles.

As stated by Aharoni [6] “the situation is different for two cases, for
which the upper and the lower bounds are very far from each other, making
them useless for estimating the actual critical size. One is hard ferromagnetic
material, and the other is a collection of many adjacent, interacting particles
of a soft material.” Then he slightly modifies upper bound Rc1 (1.2), in order
to reduce interval between lower and upper bound [6]. Generalization of the
Brown’s theory for ellipsoidal particle can be found in [34].

The largest single-domain particles can be found in magnetotactic bac-
teria. Each bacterium contains chain of single-domain particles inside itself.
Particles mainly consists of magnetite, Fe3O4, or greigite, Fe3S4. These par-
ticles with their organic coating are called magnetosomes. The particle sizes
range between 40 and 100 nm and always are within single-domain range
[49]. The fact that particles are single-domain maximizes magnetic moment
in defined volume. More about magnetotactic bacteria and magnetosomes
can be found in [11].

1.3 Magnetic anisotropy

Some ferromagnetic materials form permanent magnets. These materials
are magnetized even in zero applied field. That means that some direc-
tion in the space for the magnetic moment is more favourable than others.
Therefore material is anisotropic. Favourable direction is called the easy
axis of magnetic anisotropy. And not favourable directions are called the
hard axes of magnetic anisotropy.

In this section energy density w =
E

V
, which is energy per unit vol-

ume, will be used. The most common anisotropy type is crystallographic
anisotropy.

1.3.1 Crystallographic anisotropy

According to [7]: ”The magnetocrystalline anisotropy energy is usually small
compared with the exchange energy. The magnitude of magnetic moment
is determined almost only by the exchange and the contribution of the
anisotropy is negligible for almost all the known ferromagnetic materials.
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But the direction of the magnetization is determined only by this anisotropy,
because the exchange is indifferent to the direction in space”

Quantitative evaluation of the spin-orbit interaction from basic princi-
ples is possible [65], but the accuracy is inadequate. Therefore, anisotropy
energies are always written as phenomenological expressions with power se-
ries, taking into account the crystal symmetry.

Uniaxial anisotropy

Uniaxial anisotropy means that anisotropy energy is function of only one
parameter: the angle θ between anisotropy axis ~n and magnetic moment ~m.
Magnetic anisotropy axis ~n define direction to precision of sign so both direc-
tions ~n and −~n are equally favourable. That means that Taylor expansion
of anisotropy energy has only even powers of cos θ:

Eu = −
∞∑
i=1

KiV cos2i θ = −
∞∑
i=1

KiV (~n · ~e)2i , where (1.4)

~e =
~m

|~m|
.

Usually higher terms in anisotropy are negligible comparing to the first
and uniaxial anisotropy energy can be written in simple form:

Eu = −KuV

2
(~n · ~e)2 , where Ku = 2K1 (1.5)

From crystallographic symmetry hexagonal and tetrahedral crystals have
uniaxial magnetocrystalline anisotropy.

Usually Ku is positive for uniaxial crystallographic anisotropy, what
means that anisotropy energy is minimal if magnetic moment is in the di-
rection of the crystallographic anisotropy axis. The anisotropy axis than
is called the easy axis. Without external magnetic field magnetic moment
aligns along the easy axis. There are, however, materials with negative Ku

and for them crystallographic anisotropy axis is hard axis. In these mate-
rials, without external magnetic field, magnetic moment stays somewhere
in the plane orthogonal to anisotropy axis. In this situation the direction
of magnetic moment is determined by anisotropy terms in the plane, which
does not satisfy uniaxial symmetry (1.4).

Cubic anisotropy

For cubic crystals there are 3 equivalent orthogonal directions. They are
along crystallographic axis and will be called x, y and z with unit vectors
~nx, ~ny and ~nz. As in the uniaxial case, the direction is defined to precision
of sign, so odd powers are ruled out and lowest-order combination which fits
is (~e · ~nx)2 + (~e · ~ny)2 + (~e · ~nz)2 = ~e2 = 1, which is constant. Therefore, the
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expansion starts with the fourth order. As in the uniaxial case higher terms
are omitted and only one term in the expansion of cubic anisotropy energy
is written

Ec =
KcV

2

[
(~e · ~nx)2(~e · ~ny)2 + (~e · ~ny)2(~e · ~nz)2 + (~e · ~nx)2(~e · ~nz)2

]
(1.6)

For example for iron (Fe) (Kc > 0) there are 3 easy axis along crystallo-
graphic axis (100, 010, 001), while for nickel (Ni) (Kc < 0) there are 4 easy
axis along crystallographic diagonals (111, 11-1,1-11,-111).

Magnetostriction

Ferromagnetic material can shrink or expand in the direction of the magneti-
zation, when it is magnetized. This effect is called magnetostriction. Math-
ematically magnetostriction is extremely complicated [16] and have never
been fully developed; not even for the case when the sample is magneti-
cally saturated [60]. Large part of magnetostriction mathematically can be
expressed in the same mathematical form as uniaxial or cubic magnetocrys-
talline anisotropy. That means when the anisotropy constants is measured,
the magnetostriction is already included therefore no additional terms in
anisotropy energy (1.5) and (1.6) should be added. It is therefore assumed
in this work that all bodies are rigid and magnetoelastic effect will be ig-
nored.

1.3.2 Shape anisotropy

Generally, the field inside a uniformly magnetized ferromagnetic body is not
uniform. However, if and only if the surface of the body is of the second
degree (in a Cartesian coordinate system satisfy an algebraic equation of
degree two) [62], the internal field is uniform. The internal field is not
necessarily in the same direction as external field. The ellipsoid is the only
finite second degree surface, all other surfaces extend to infinity and cannot
be realized in practice. So ellipsoidal particles are frequently used in precise
investigations of magnetic materials.

The magnetostatic self-energy, which can be interpreted as anisotropy
energy, of a uniformly magnetized ellipsoid is [78]

EM =
1

2
VM2

S

(
Nx(~e · ~nx)2 +Ny(~e · ~ny)2 +Nz(~e · ~nz)2

)
, (1.7)

where V = 4π
3 abc is volume of the ellipsoidal particle with semi-axis of

lengths a, b and c, MS is saturation magnetization and ~nx, ~ny and ~nz are unit
vectors in directions of ellipsoid principal axis a, b and c, and Nx, Ny and Nz

are demagnetizing factors in directions ~nx, ~ny and ~nz. These demagnetizing

factors in general depend on
a

c
and

b

c
and can be calculated numerically [68,
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78]. But there are analytic expression for ellipsoids of revolution (spheroids)
[62, 68, 78]:

• For prolate spheroid (a > b = c):

N‖ = Nx =
4π(1− ε2)

ε2

[
1

2ε
ln

(
1 + ε

1− ε

)
− 1

]
, (1.8)

where ε =

√
1− b2

a2
is eccentricity of ellipse, which generated given

spheroid.

• For oblate spheroid (a < b = c):

N‖ = Nx =
4π

ε2

[
1−
√

1− ε2

ε
arcsin ε

]
, (1.9)

where ε =

√
1− a2

b2

For prolate and oblate spheroids:

N⊥ = Ny = Nz =
4π −N‖

2
(1.10)

To express (1.7) in the form (1.5), the shape anisotropy constant for
prolate and oblate spheroids can be introduced:

Ks =
(
N⊥ −N‖

)
M2
S =

(
2π − 3

2
N‖

)
M2
S

For rod like particles (a� b ≈ c)

N‖ = 0 N⊥ = 2π Ks = 2πM2
S (1.11)

For plate like particles (a� b ≈ c)

N‖ = 4π N⊥ = 0 Ks = −4πM2
S (1.12)

1.3.3 Paramagnetic particle

Larger particle which consists of magnetic nanoparticles behave as param-
agnetic particle. Estimate of susceptibility of such particles can be found in
[12].

Susceptibility of small paramagnetic particles differ from bulk materials.
For anisotropic particles susceptibility is direction dependent. If the material
either is isotropic or has its principal axes of magnetic anisotropy along the
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principal axes of the ellipsoid, then magnetic moment of the particle can be
calculated as [68]:

mi =
χiHi

1 +Niχi
V , (1.13)

where mi, Hi are magnetic moment ~m and magnetic field ~H components in
the direction of the ellipsoid principal axes i (where i ∈ {a, b, c}) and χi, Ni

are susceptibility and demagnetization factor in the direction i.
If the particle is spheroidal type (b=c), then we can introduce direction

of anisotropy as ~n = ~nx and magnetic field ~H can be divided in parallel
to anisotropy field ~H‖ = ( ~H · ~n)~n and perpendicular to anisotropy field
~H⊥ = ~H− ~H‖. Magnetic moment ~m can also divided in parallel to anisotropy
magnetic moment ~m‖ = (~m · ~n)~n and perpendicular ~m⊥ = ~m − ~m‖. If the
spheroidal particle is isotropic (χi = χ), then

m‖ =
V χH‖

1 +N‖χ
m⊥ =

V χH⊥
1 +N⊥χ

In the vector form magnetic moment can be written as:

~m = χ⊥V ~H + ∆χV ( ~H · ~n)~n , (1.14)

where
χ⊥ =

χ

1 +N⊥χ
χ‖ =

χ

1 +N‖χ
∆χ = χ‖ − χ⊥

and N‖ and N⊥ is given by (1.8), (1.9) and (1.10).
The same equation (1.14) can be obtained for spherical particle with

anisotropic susceptibility if anisotropy is uniaxial. But in this case

χ⊥ =
3χz

3 + 4πχz
χ‖ =

3χx
3 + 4πχx ,

where χx is susceptibility in the direction ~n and χz is susceptibility orthog-
onal to ~n

For long (a� b ≈ c) isotropic (χi = χ) particle (1.13) can be rewritten
in form:

m‖ = V χH‖ m⊥ =
V χH⊥
1 + 2πχ

In the vector form (1.14) this can be written as:

~m =
V χ

1 + 2πχ
~H +

2πχ2V

1 + 2πχ
( ~H · ~n)~n (1.15)

Similar for flat (a � b ≈ c) isotropic particle (1.13) can be rewritten in
form:

m‖ =
V χH‖

1 + 4πχ
m⊥ = V χH⊥

In vector form (1.14) this can be written as:

~m = V χ ~H − 4πχ2V

1 + 4πχ
( ~H · ~n)~n (1.16)
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1.4 Superparamagnetic particles

An uniaxial anisotropic magnetic particle with magnetic moment ~m = m~e
has anisotropy energy (1.5)

Eu = −KuV

2
(~n · ~e)2 ,

which has two minimums Emin = −KuV
2 at ~n · ~e = 1 and ~n · ~e = −1 and

maximum Emax = 0 at ~n · ~e = 0 (Ku > 0). If the particle is large enough in
the thermal equilibrium magnetic moment will tend to be in the vicinity of
one of these minimums, that is in the direction of anisotropy axis or opposite
to it.

If particle is small then energy barrier ∆E = Emax − Emin becomes
comparable to thermal energy ET = kBT , where kB = 1.3806 · 10−16 erg

K
is Boltzmann constant and T is temperature. Roughly it can be assumed
that magnetic moment spends all its time in one of the directions of energy
minimums which are separated by energy barrier ∆E, and no time at all
other directions. In that case average time it takes magnetic moment to
jump from one minimum to the other is function only of the height of the
energy barrier ∆E. This time is called relaxation time τ and is proportional
to inverse of probability of spontaneous magnetic moment jumps per unit
time which can be calculated using Boltzmann distribution.

τ = τ0 exp

(
∆E

kBT

)
, (1.17)

where τ0 is a constant that has dimension of time. Neel [67] estimated this
constant τ0 ≈ 10−9s. Of course, this constant is not necessarily the same
for different ferromagnetic material.

The material is called superparamagnetic if in the characteristic time
of the experiment magnetic moment jumps many times from one minimum
to other. Therefore observable mean magnetic moment of the particle is
zero. In the external magnetic field relaxation times τ can be different for
different directions, which give observable magnetization of the particle. The
magnetization dependence is similar to paramagnetic materials discussed in
section 1.3.3, but with higher susceptibilities.

For typical ferromagnetic materials Ku ≈ 105 erg
cm3 , therefore typical fer-

romagnetic particles becomes superparamagnetic if their size is less than
11nm (for experimental times larger than τ = 1ms). This size is close
to single-domain grain size discussed in section 1.2, therefore there is nar-
row size range of particles in single-domain state with frozen in magnetic
moment (rigid dipole).

There was made assumption that energy minimums are narrow and mag-
netization is always in one of the two minimums and spend no time at any
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other direction. In any realistic case, there is a finite probability of spending
some of the time in the vicinity of either minimum, in which case coefficient
τ0 is function of temperature. Brown [15] tried to solve the problem with
real-sized minimums. He showed that this is random walk problem and
wrote a differential equation to describe it. He did not solve his differential
equation, just found some asymptotic expression. Later [18] he improved it
and concluded that for a uniaxial anisotropy the exact solution would not
be drastically different from (1.17) with constant coefficient τ0 in the range
of values of the physical parameters for which this theory is usually applied.
Numerically it is proved in zero [2] and non-zero [3] applied field. For more
precise result several easy-to-use approximations can be used [27].

Situation with combination of crystalographic and shape anisotropy is
explained in [5].

For cubic anisotropy in zero field situation is very similar to (1.17), with
the only difference that Ku is replaced by Kc

4 . However, in this case τ0 it
is not constant, because there are more minimums and subsequently more
possibilities of wiggling around before jumping to other minimum. Numeri-
cally it is studied in [4, 8]. More about cubic anisotropy effects can be found
in [54, 32]

1.5 Dynamic equations of magnetic particle

1.5.1 Magnetic relaxation

Usually torque ~M on magnetic moment ~m = m~e in effective magnetic field
~Heff are written as [44]

~M = [~m× ~Heff ] .

Using gyromagnetic ratio γ, in static particle this equation can be rewritten

d~e

dt
= γ[~e× ~Heff ] .

This equation gives infinity long precession of magnetic moment around
magnetic field ~Heff with Larmor (angular) frequency ωL = γ| ~Heff |. It is
known from experiments, that magnetic moment approaches direction of ef-
fective field, so additional damping should be included. This damping first
was introduced by Landau and Lifshitz [53] and then written in mathemat-
ically equivalent form by Gilbert [39]. The Gilbert form of Landau-Lifshitz
equation is called Landau-Lifshitz-Gilbert equation:

d~e

dt
= −~e×

(
γ ~Heff − αmag

d~e

dt

)
, (1.18)

where αmag is phenomenological damping parameter. Landau-Lifshitz-Gilbert
equation instead of Landau-Lifshitz is used because it gives physically ac-
ceptable result , when damping is infinitely large [58, 48].
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Effective field can be calculated from magnetic energy ~Heff = −∂E
∂ ~m

,

where magnetic energy is sum of anisotropy energy (1.5) and energy of
magnetic moment in the field ~H:

E = −mH~e · ~h− KV

2
(~e · ~n)2 . (1.19)

Then ~Heff = ~H + ~Ha, where ~Ha =
KV

m
(~e · ~n)~n is anisotropy field.

After some calculations the Landau-Lifshitz-Gilbert equation (1.18) can
be written in form:

d~e

dt
= ~ω~e × ~e = (~ωL + ~ωR)× ~e

~ωL =
γ

1 + α2
mag

~Heff

~ωR = αmag~e× ~ωL

, (1.20)

where ~ωL is Larmor frequency and ~ωR is relaxation frequency. Using effective

field and rotation operator ~J~e = ~e× ∂

∂~e
it can be written:

−ξmag~ωR = ~J~eE , (1.21)

where ξmag =
m(1 + α2

mag)

γαmag
. Landau-Lifshitz-Gilbert equation is written

for stationary particle. To calculate dynamic of particle the egg-yolk model
[76, 75] should be used, where (1.21) is rewritten:

−ξmag(~ωR − ~ω~n) = ~J~eE , (1.22)

where ~ω~n is angular frequency of magnetic particle. Using balance of viscous
torque inside and outside of the magnetic particle equation of the motion of
the particle can be written in non-rotating fluid [76]:

ξ~ω~n + ~J~eE + ~J~nE = 0 , (1.23)

where ξ is rotational drag coefficient.
In this work spheroidal particles will be examined. Rotational drag co-

efficient ξ for spheroidal particles is derived in [70, 71, 52]. In general there
are two rotational drag coefficients for a general spheroid, one for a rotation
about the axial semiaxis (hydrodynamic anisotropy axis) and other for a ro-
tation about one of the equatorial semiaxes. We will use that hydrodynamic
anisotropy axis coincide with magnetic anisotropy axis, therefore magnetic
torque is applied perpendicular to hydrodynamic anisotropy axis and only
rotational drag coefficient for rotation about the equatorial semiaxes should
be used.
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Here will be used form of ξ (for rotation about the equatorial semiaxes)
given in [82]

ξ = 8πηV Γ , (1.24)

where η is dynamic viscosity of the particle surrounding fluid, V is volume of
the particle and Γ is geometric factor which depends on spheroid semi-axis
a and b:

Γ =
a2 + b2

a2N‖ + b2N⊥
, (1.25)

where N‖ and N⊥ are demagnetization factors (1.8), (1.9), (1.10). For rod-
like particles (a� b)

Γ =
a2

b2
[
4π ln

(
2ab
)
− 2π

]
and for plate like particles (a� b)

Γ =
b

aπ2

Here more terms in expansion of N‖ (1.8), (1.9) were used.
Before we proceed some assumptions about relaxation times should be

made. The gyromagnetic ratio can be expressed as γ =
g|e|

2mec
=
gµB
~

, where

g is ’Landé g-factor’ (for electron g ≈ 2), e is electron charge, me is electron
mass, c is speed of light, ~ is Planck constant and µB is Bohr magnetron.

Typical magnetic relaxation time is of order τmag =
ξmag
mH

≤
1 + α2

mag

Haγαmag
.

Smallest possible effective magnetic field is anisotropy field Ha =
KV

m
. For

single domain particles magnetic moment can be calculated using satura-

tion magnetization MS (m = MSV ). So Ha =
K

MS
. Magnetocrystalline

anisotropy is of order K ≈ 105 erg
cm3 [32], saturation magnetization is of order

MS ≈ 103 G
cm3 [32] and gyromagnetic ratio is of order γ ≈ 107 1

s·G . If it will

be assumed that
1 + α2

mag

αmag
< 1000, than magnetic relaxation time would be

τmag < 10−6s which is approximately equal to smallest particle relaxation

time τp =
ξ

KV
=

8πηΓ

K
≈ 10−6s for sphere (Γ = 3

4π ), where Γ ≥ 3
4π is

form-factor (1.25) and η is viscosity (for water η ≈ 10−2 erg·s
cm3 ). In the mag-

netic field τmag would decrease. And if the particle is not spherical then τp
would increase. If the magnetic particle is coated to prevent agglutination of
the particles, than magnetic volume is smaller than hydrodynamic volume
which again increase τp. In most physically observed cases τp � τmag

Further it will be assumed that magnetic moment relaxation is much
faster than particle movement (ξ � ξmag). Therefore magnetic moment
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movement can be separated from particle movement, and magnetic moment
relaxation can be assumed infinitely fast. So magnetic moment always is
aligned with effective magnetic field

~Heff × ~e = ~J~eE = 0 (1.26)

Then equation of particle motion (1.23) can be rewritten in form:

ξ~ω~n + ~J~nE = 0 (1.27)

1.5.2 Stoner-Wohlfarth model

The magnetic moment movement in particle with uniaxial anisotropy, which
is small enough to be single domain and which is large enough that all time-
effects described in section 1.4 are negligible, is known as Stoner-Wohlfarth
model [79].

To find the direction of magnetic moment the minimums of energy (1.19)
should be found. Minimums can be found by equation (1.26) or using angles
in equation(1.19):

E = −KV
2

cos2 θ −mH cos(φ− θ) , (1.28)

where φ is angle between magnetic field and particle anisotropy axis and θ is
angle between magnetic moment and particle anisotropy axis (angles shown
in figure 1.1). Further will be used technique from [54].

H

e

θϕ

n

Figure 1.1: Scheme of used angles in equation (1.28)

The extremes of energy (1.28) are given by equilibrium condition
∂E

∂θ
=

0, whence
Ha

H
sin θ cos θ = sin(φ− θ) . (1.29)

This equation can be written as fourth degree equation for x = cos θ:(
Ha

H
x+ cosφ

)2

(1− x2) = x2 sin2 φ . (1.30)
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This equation has either two or four real roots (all less than unity). Since
all four roots correspond to extrema of energy, it is clear that, energy (1.28)
has one minimum and one maximum (when 2 roots) or two minimums and
two maximums (when 4 roots). In other words , the number of possible
directions of magnetization ~e for given field ~H depends on its angle with
particle anisotropy axis.

The number of extremes change when maximum annihilates with min-

imum and at that point also is inflection point
∂2E

∂θ2
= 0. It can be found

that graph separating regions with one and two minimums (two and four
extremes) is (fig. 1.2)(

H

Ha
cosφ

) 2
3

+

(
H

Ha
sinφ

) 2
3

= 1 . (1.31)

Hsinϕ

Hcosϕ

Hɑ

Hɑ

-Hɑ

-Hɑ

Figure 1.2: The graph separating inner region with two minimum (four
extremes) from outer region with one minimums (two extremes)

In the inner region of fig. 1.2, where | ~H| is small, E has two minimums
and outside of this region, where | ~H| is large, E has only one minimum.
In which of the two minimums will ”sit” the magnetic moment depends on
the history. A solution which starts from a particular branch cannot be
allowed to jump into another branch spontaneously. The jump must be at
a field value at which there is no energy barrier between these branches.
This feature is the basis of the hysteresis. Further analysis can be found in
chapter 2.

The case of a cubic, instead of a uniaxial, anisotropy has also been worked
out [56] in detail. In this case there are more branches than in the uniaxial
case, which makes it sometimes more difficult to decide into which branch
to jump.
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1.6 Viscoelastic fluid models

We will use linear viscoelasticity, which satisfies Boltzmann superposition,
which can be stated as: ”The creep in a specimen is a function of entire load-
ing history and each increment of load makes an independent and additive
contribution to the total deformation” [83]. This gives that:

εij(t) =

∞∫
0

σkl(t− s) dJijkl(s) ,

where εij is strain tensor component, σij is stress tensor component and the
integration function comprise a forth order tensor Jijkl(t). Similar expression
should hold for inverse statement:

σij(t) =

∞∫
0

εkl(t− s) dGijkl(s) ,

where Gijkl is another forth order tensor. After partial integration and
change of variables this can be written in form:

σij(t) =

t∫
−∞

Gijkl(t− τ)
dεkl(τ)

dτ
dτ , (1.32)

where it is assumed that infinity long ago material had no strain εlk(−∞) = 0
and material deformation is continuous Gijkl(0) = 0.

In isotropic case Gijkl has only two independent components and can be
written in form [25]:

Gijkl(t) =
1

3
[G2(t)−G1(t)]δijδkl +

1

2
G1(t)[δikδjl + δilδjk] ,

where G1(t) and G2(t) are independent relaxation functions and δij is the
Kronecker delta symbol. For the isotropic, incompressible (dεiidt = 0) fluid,
using symmetry of σij or εij , equation (1.32) can be written in form:

σij(t) =

t∫
−∞

G(t− τ)
dεij(τ)

dτ
dτ , (1.33)

where G(t) = G1(t) will be called memory kernel.
Since G(t) is independent of coordinate, then rotational drag in low

Reynolds in viscoelastic fluid should be calculated similar to viscous fluid
giving:

~Mdrag(t) = −
t∫

−∞

ξ′(t− τ)~ω(τ) dτ , (1.34)
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where ξ′(t) = 8πG(t)V Γ and Γ is defined in (1.25).
In viscous fluid ~Mdrag(t) = −ξ~ω(t) and equation (1.34) is kept right if

ξ′(t) = ξδ(t), therefore G(t) = ηδ(t). Further some simple linear viscoelastic
fluid models will be shown.

1.6.1 Maxwell model

Probably the simplest way of expressing mechanic model of viscoelastic fluid
is using springs (elastic elements) and dashpots (viscous elements). For
spring σi = Ejεi and for dashpot σi = ηj

dεi
dt .

E
MM

Figure 1.3: Simple spring-dashpot model of the Maxwell fluid

Maxwell model consists of one spring and one dashpot connected in series
(fig. 1.3). Then total stress at the point of fluid is equal to the stresses on
each of the element σ = σ1 = σ2 and total strain at the point of fluid is sum
of the both strains ε = ε1 + ε2. From these conditions equation for Maxwell
fluid can be derived [83]:

1

EM

dσ

dt
+

σ

ηM
=
dε

dt
, (1.35)

where EM is Young’s modulus of the spring and ηM is viscosity of the
dashpot. Sudden strain (ε(t < 0) = 0 and ε(t > 0) = ε0) gives stress
relaxation of the Maxwell fluid as:

σ(t) = σ0 exp

(
− t

τM

)
for t > 0, where τM = ηM

EM
and σ0 = EM ε0. Comparing it with (1.33) gives

that G(t) = EM exp
(
− t
τM

)
for Maxwell model.

Sudden stress (σ(t < 0) = 0 and σ(t > 0) = σ0) gives change of strain
as:

ε(t) =
σ0

ηM
t+

σ0

EM
,

where second term of the right hand side comes from spring element, but
first term from dashpot. The jump in strain is undesirable for modeling
viscoelastic materials in thermal movement, therefore other models are in-
troduced. The problems with Brownian motion in frame of Maxwell model
are discussed also in [73]. Simple situation, where the Maxwell model gives
unphysical result, is shown in appendix A.1.
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E

V

V

Figure 1.4: Simple spring-dashpot model of the Voigt-Kelvin fluid

1.6.2 Voigt-Kelvin model

Another model consisting of only one dashpot and one spring is Voigt-Kelvin
model, where these elements are connected parallel to each other (fig. 1.4).
In this case total stress is sum of stresses of each element σ = σ1 + σ2 and
total strain is equal to the strain of each element ε = ε1 = ε2, what gives
equation of Voigt-Kelvin model:

σ = EV ε+ ηV
dε

dt
(1.36)

Sudden strain (ε(t < 0) = 0 and ε(t > 0) = ε0) gives equation for stress:

σ(t) = EV ε0

for t > 0. This gives that, when the stress is kept constant, strain also stays
unchanged, what is more suitable for plastic solids than for fluids. therefore
more complicated spring-dashpot model should be chosen.

1.6.3 Jeffreys model

E
M

V

Figure 1.5: Simple spring-dashpot model of the Jeffrey fluid

The next simplest spring-dashpot fluid model is the Jeffrey model [72]
shown in fig. 1.5, which is called also Oldroid-B model [38]. Jeffrey model is
similar to standard linear solid model [63], which is the simplest model giving
adequate description of the behaviour of some Earth materials. And Jeffrey
model is the simplest model for adequate description of fluid with elastic
behaviour. Jeffrey model consists of Maxwell element connected parallel to
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dashpot (fig. 1.5). Similar model can be obtained connecting dashpot with
Voigt-Kelvin element in series [72], what gives the same physical equation
of motion just with different unknown parameters.

In Jeffrey model total strain is equal to the strain of Maxwell element
and single dashpot ε = εV = εM , but total stress is sum of both stresses
σ = σM + σV . This gives equation of Jeffrey fluid:

dσ

dt
+

σ

τM
=
ηV + ηM
τM

dε

dt
+ ηV

d2ε

dt2
, (1.37)

where τM = ηM
E . Sudden strain (ε(t < 0) = 0 and ε(t > 0) = ε0) gives stress

relaxation in Jeffrey fluid:

σ(t) = σ0 exp

(
− t

τM

)
for t > 0, where σ0 = ηV +ηM

τM
ε0. The difference in G(t) from Maxwell

fluid is addition of Dirac delta function for Jeffrey fluid G(t) = ηV δ(t) +

E exp
(
− t
τM

)
, where first term comes from single dashpot element and sec-

ond term comes from Maxwell element.
Sudden stress (σ(t < 0) = 0 and σ(t > 0) = σ0) gives strain change

without jump:

ε(t) =
σ0

ηM + ηV
t+

σ0ηMτM
(ηV + ηM )2

[
1− exp

(
− t

τJ

)]
(1.38)

for t > 0, where τJ = τMηV
ηV +ηM

is Jeffrey relaxation time.

1.7 Thermal fluctuation effects

If the particle is so small that magnetic energy becomes comparable to ther-
mal energy, the particle thermal fluctuations becomes significant. Single-
domain grain above superparamagnetic limit has magnetic moment m =
MSV and its magnetic energy is of order mH, where H is external mag-
netic field strength. In room temperature thermal energy is around kBT =
4 · 10−14 erg. In the magnetic resonance imaging typical field is 1.5 · 104Oe
[84], what gives that thermal energy becomes comparable to magnetic en-
ergy of the magnetic grain with saturation magnetization Ms ≈ 103 G

cm3 [32]
if grain size is less than 70nm. This value is above single-domain particle
size limit discussed in section 1.2, therefore single thermal fluctuations of
the particle gives significant influence.

In this work special interest is about particle rotation in viscous and
viscoelastic fluid, therefore thermal effects of particle rotation in these fluids
will be discussed.
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Equipartition theorem states that translation degrees of freedom is equal
to rotation degrees of freedom, therefore similar equation can be used for
rotation as is used for translation motion. From fluctuation-dissipation the-
orem is known that fluctuation is connected with dissipative element (dash-
pot), where for viscous fluid [22]:

ξω = ζ(t) ,

where ζ(t) is white noise therm with 〈ζ(t)〉 = 0 and 〈ζ(t)ζ(t′)〉 = 2ξkBTδ(t−
t′), where ξ is drag of the particle (1.24) and averaging 〈〉 is over large
ensemble of particle which is equal to average of one particle over infinity
long time interval. In the viscoelastic fluid we get similar equation, but,
because more than one damping element is possible, the noise is coloured
with corresponding memory kernel [36]:

t∫
−∞

ξ′(t− τ)~ω(τ) dτ = ~ζ(t) , (1.39)

where for each component of noise vector ~ζ the mean value is 〈ζi(t)〉 = 0
and components is identical and independent with variance 〈ζi(t)ζk(t′)〉 =
2δikξ

′(t− t′)kBT , where ξ′(t) defines appropriate viscoelastic model, e.g. for
Jeffrey model:

ξ′(t) = 8πV ΓG(t) = 8πV Γ

[
ηV δ(t) + E exp

(
− t

τM

)]
(1.40)

In the numerical experiments it is more convenient to use white (not
coloured) noise. The coloured noise in viscoelastic fluid is obtained from
spring-dashpot model with white noise, where white noise comes from dash-
pots [28]. Equation with white noise for Jeffrey fluid will be found in chapter
5.

1.8 Objective of the work

Since magnetic particles are used in different applications and many features
of their behaviour are not well understood the objective of the present work is
to develop the understanding of their behaviour in time dependent magnetic
fields. To achieve the objective the following problems will be solved:

• Find all possible stable regimes of uniaxial single-domain particle in
rotating magnetic field and calculate corresponding phase diagram.

• Compare dissipation due to viscous drag with dissipation of magnetic
moment movement inside particle for uniaxial single-domain particle
in rotating magnetic field
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• Calculate stability of synchronous with the precessing magnetic field
regime of the superparamagnetic particle and draw corresponding phase
diagram.

• Find mean angular velocity of the superparamagnetic particle which
moves asynchronously with the precessing field.

• Derive algorithm for measuring form-factor of the superparamagnetic
particle using crossed alternating and constant fields.

• Find the way to use the superparamagnetic particle to measure vis-
coelastic properties of the fluid.

• Compare nuclear magnetic resonance relaxation times in viscous and
viscoelastic fluids.



Chapter 2

Dynamics of single-domain
particle with uniaxial
anisotropy in rotating
magnetic field

2.1 Motivation and contents

In paper [33] is mentioned that magnetotactic bacterium in rotating mag-
netic field should escape form the plane of rotating magnetic field for high
field frequencies. In [33] is calculated some trajectories of the bacterium,
but full analysis about stability of the possible regimes is not made.

Available work of C. Caroli and P. Pincus [21] tries to find possible
regimes of magnetic grain in rotating magnetic field and gives some insight
in stability of the regimes. But C. Caroli and P. Pincus work [21] does not
solve stability problem in general case and, as will be shown in this work,
they did not found all possible regimes. Asynchronous rotation was not
mentioned in [21].

In hypothermia description usually energy dissipation due to magnetic
moment movement is considered [43, 46]. In rotating field some energy is
dissipated due to viscous drag, which is not taken into account. In this work
dissipated energy in stable regimes will be calculated. It will be checked for
what parameters the assumption that viscous dissipation can be neglected
is valid.

In this chapter possible stable regimes of a magnetic particle with finite
energy of magnetic anisotropy in a rotating magnetic field will be found. The
stability of these regimes will be examined and stable regimes in dependence
of magnetic field strength and frequency will be shown. Dissipated energy
in each stable regime will be calculated. The dissipation due to viscous drag
will be compared to dissipation of magnetic moment movement.

26
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2.2 Model

The dynamics of the single-domain particle with uniaxial anisotropy in ro-
tating magnetic field will be examined using equations (1.26) and (1.27)
where energy is given by (1.19). As stated by (1.26) magnetic moment is in
the direction of effective magnetic field

~Heff = − ∂E

m∂~e
= H~h+

KV

m
(~n · ~e)~n

Equation for anisotropy axis is found from (1.27) with assumption (1.26):

ξ~ω~n = KV (~e · ~n)[~n× ~e] = mH~e× ~h (2.1)

Where ~ω~n is angular velocity of anisotropy axis and

d~n

dt
= ~ω~n × ~n (2.2)

Introducing anisotropy frequency ωa =
KV

ξ
and anisotropy field Ha =

KV

m
the equation of magnetic moment can be written in form:

~e =
~Heff

Heff
=
H~h+Ha(~e · ~n)~n

Heff
, (2.3)

where Heff = | ~Heff | = H(~h · ~e) +Ha(~e · ~n)2.

Using thatHeff can be expressed asHeff =
~Heff · ~n
~e · ~n

and equations (2.1)

and (2.3) the equation of anisotropy axis movement (2.2) can be written in
form

d~n

dt
= ωaf

(
~n · ~h, Ha

H

)
[~h− ~n(~n · ~h)] , (2.4)

where the function

f

(
~n · ~h, Ha

H

)
=

(~e · ~n)2

~n · ~h+ Ha
H (~e · ~n)

=
H(~e · ~n)

Heff
(2.5)

in general depends on the history of (~e·~n). f is two argument function, where
third argument (~e·~n) can be found as energy minimum of equation (1.19). In
the region, where two different values of ~e are possible, the closest to previous
in time value of ~e should be chosen, therefore it is history dependent.
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2.3 Synchronous with field regimes

Magnetic field H~h rotates with angular velocity ~ωH = ωH~eH , where ~eH
is unit vector in the direction of ~ωH . Magnetic field is called rotating if
~h ⊥ ~ωH . Rotation of particle is called synchronous with the field (stationary)
if angles between introduced unit vector ~h, ~n, ~e and ~eH does not change and
all of them rotates as one with angular velocity ~ωH . Than it can be written

that
d(~eH · ~n)

dt
= ~eH ·

d~n

dt
= 0. Using equation (2.4) it transforms in

(~eH · ~n)(~n · ~h)(~e · ~n)2

~n · ~h+ Ha
H (~e · ~n)

= 0 (2.6)

From (2.6) three synchronous with the field regimes can be found. They will
be called:

• Planar regime, when particle (anisotropy axis) rotates in the same
plane as magnetic field. Than ~n ⊥ ~eH and ~eH · ~n = 0

• Precession regime, when particle (anisotropy axis) rotates around
cone. In this regime ~n · ~h = 0 so ~n ⊥ ~h.

• Stationary regime, when particle (anisotropy axis) stays in the di-
rection of rotation ~eH and rotates only magnetic moment inside the
particle ~e. In this regime ~e ⊥ ~n and ~n · ~e = 0.

Further we look closer to all three regimes.

2.3.1 Planar regime

In the synchronous planar regime it can be written that ~ω~n = ~ωH . From
(2.1) it follows that:

~eH =
ωa
ωH

(~e · ~n)[~n× ~e] =
ωa
ωH

H

Ha
~e× ~h (2.7)

Using angles introduced in section 1.5.2 it can be written that ~e · ~n = cos θ,
~n× ~e = sin θ ~eH and ~e× ~h = sin(φ− θ)~eH and equation (2.7) change into:

sin(2θ) = 2
ωH
ωa

& sin(φ− θ) =
ωH
ωa

Ha

H
(2.8)

Since sin function is bounded by 1 it can be found that planar regime exists
in region: 

ωH < ωa
H

Ha
if H <

Ha

2

ωH <
ωa
2

if H >
Ha

2

(2.9)
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γ

hα

Figure 2.1: Definition of the angles α and γ.

Existence of regime does not ensure physical appearance of the regime.
Only stable regimes physically remains after some time, so stability of the
regimes should be examined.

Planar regime in angle representation (shown in fig. 2.1) can be ex-
pressed as γ = π

2 or cos γ = 0 and sin γ = 1. In planar regime we can write

that α = φ and ~n·~h = cosα. Planar regime would be stable if small variance
from γ namely γ′ would decrease with time.

For small variance γ′ (2.18) is written as:

γ̇′ = −ωaf
(

cosα,
Ha

H

)
cosα sin γ γ′

And we see that regime is stable if cosα > 0. So stability changes at
cosα = cosφ = 0. From equations (2.8) it can be found that stability

changes at cos θ =
ωH
ωa

Ha

H
and sin θ =

H

Ha
. By eliminating θ it is found that

stability of regime changes on line

ωH = ωa
H

Ha

√
1−

(
H

Ha

)2

(2.10)

In figure 2.2 is shown boundary of existence of stationary planar regime and
boundary at which stability of regime changes. Neutral curve of stability
divides existence region in three disjoint regions I, II and III. Point where

both curves (existence and stability) touch is
H

Ha
=

√
2

2
and

ωH
ωa

=
1

2
.

In each region stability of the regime does not change so it is sufficient to
calculate stability only at one point at each region in order to define stability
of all region. To find stability (2.8) and stability criterion cosα = cosφ > 0
will be used.

• In region I we will choose point
H

Ha
=

1

2
and

ωH
ωa

=
1

2
. And we

obtain that θ =
π

4
and cosα = cos

3π

4
= −
√

2

2
< 0 what means that

synchronous planar regime is unstable in fig. 2.2 region I.
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Figure 2.2: Existence region of synchronous planar regime divided by neutral
curve of stability into disjoint regions I, II and III. The solid line is the
boundary of existence of synchronous planar regime defined in (2.9); the
dashed line is the neutral curve of stability of synchronous planar regime
defined in (2.10). Synchronous planar regime is stable in region II∪ III and
unstable in region I.

• In regions II and III we will choose point
H

Ha
=

√
3

2
and

ωH
ωa

=

√
3

4
which is on the boundary of both regions. And we obtain that θ = π

6
and cosα = cos π3 = 1

2 or θ = π
3 and cosα = cos π2 = 0. There is

possible more values of α, but α = π and α = 7π
6 corresponds to

maximums not minimums of the energy (1.28), and other values of θ
corresponds to reversed particle. It can be seen that in both regions
there is at least one stable state (at chosen point it is state where
cosα = 1

2) and the other state changes its stability. So we can say
that there exist stable synchronous planar regime in both fig. 2.2
regions II and III.

From numerical calculations it is found that in region II fig. 2.2 there
are one stable and one unstable point in the frame rotating with angular
velocity ωH , in region I - one stable and one saddle point, and in region III
- one unstable and one saddle point. Saddle point emerges from pitchfork
bifurcation, where node is divided in saddle point and two nodes. These two
new nodes correspond to precession regime.
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2.3.2 Precession regime

In order to find existence region of precession regime equation (1.30) will be
used, which in limit φ = π

2 (which is equal to limit ~h · ~n = 0) gives:

(~e · ~n)2 = cos2 θ = 1−
(
H

Ha

)2

, (2.11)

which implies that precession regime is possible if H < Ha. With condition

~h · ~n = 0 (2.5) transform into f

(
0,
Ha

H

)
=

H

Ha
(~n · ~e), what gives that

equation of motion of particle (2.4) is written as:

~ωH × ~n = ωa
H

Ha
(~n · ~e)~h

Square of this equation gives

sin2 γ =

(
ωa
ωH

)2( H

Ha

)2
[

1−
(
H

Ha

)2
]

, (2.12)

where γ is angle between anisotropy axis ~n and direction of rotation ~eH .
Since cos γ 6= 0 particle precesses around direction ~eH with precession an-
gle γ shown in fig. 2.1. Equations (2.11) and (2.12) give two existence
conditions:

ωH > ωa
H

Ha

√
1−

(
H

Ha

)2

& H < Ha (2.13)

In order to find stability of precession regime small perturbation to ~n in
(2.4) should be added which gives in situation where ~n · ~h = 0:

d~n′

dt
= ωaf

′~h− ωaf(~n · ~h)′~n , (2.14)

where f = f
(
0, Ha

H

)
= H

Ha
(~e · ~n) and

f ′ =
H

Ha
(~e · ~n)′ −

(
H

Ha

)2

(~n · ~h)′ (2.15)

And (~e · ~n)′ in dependence on (~n · ~h)′ is calculated according to equation
(1.30), which using conditions (2.11) and ~n · ~h = 0 gives:

(~e · ~n)′ = − H

Ha

1[
1−

(
Ha
H

)2](~n · ~h)′
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so (2.15) can be written

f ′ =
1− 2

(
H
Ha

)2

1−
(
Ha
H

)2 (~n · ~h)′

and as a result

d~n′

dt
= ωa(~n · ~h)′

1− 2
(
H
Ha

)2

1−
(
Ha
H

)2 ~h− H

Ha

√
1−

(
H

Ha

)2

~n

 . (2.16)

Since length of ~n does not change, stability is determined by ~n′ change
in direction ~h as can be seen in (2.16) and precession regime is stable if ~n′

decreases which is ensured by condition

1− 2
(
H
Ha

)2

1−
(
Ha
H

)2 < 0

which gives

H <
Ha√

2
or H > Ha ,

but H > Ha is outside existence region (2.13) of precession regime. That
leaves us with only one stability condition:

H <
Ha√

2
(2.17)

Visualization of found results can be found in figure 2.3, where in region
I regime is unstable and in region II regime is stable.

2.3.3 Stationary regime

If particle stands perpendicular to the plane, where magnetic field rotates,
than this regime will be called stationary (~n‖~eH and ~n ⊥ ~h). This regime
will be stationary (d~ndt = 0) only if f(0, HHa

) = 0, because (~n · ~h) = 0 in
(2.4). Equation (2.5) shows that this is possible only if ~e ⊥ ~n. Energy
minimum therefore is when ~e = ~h. In the case ~n · ~h = 0 energy (1.28) has
minimum at ~e ⊥ ~n only if (1.28) has two minimums, which is found from

(1.31). Therefore stationary regime can exist only if
H

Ha
> 1.

To find stability of this regime small perturbation ~n′ of the vector ~n is
introduced. Equation (1.29) in the limit (~n · ~e) ≈ (~h · ~n)→ 0 gives:

(~n · ~h) =

(
1− Ha

H

)
(~e · ~n) ⇒ (~n · ~h)′ =

(
1− Ha

H

)
(~e · ~n)′ ,
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Figure 2.3: Existence region of synchronous precession regime divided by
neutral curve of stability into disjoint regions I and II. The solid lines are
the boundary of existence of precession regime defined in (2.13); the dashed
line is the neutral curve of stability of precession regime, where stable regime
is defined in (2.17). Precession regime is stable in region II and unstable in
region I.

It can be calculated that Heff = H and

f ′ = (~n · ~e)′ − (~n · ~h)′ +
(~n · ~h)

(~n · ~e)
(~n · ~e)′ = (~n · ~h)′

1− Ha
H

and
d~n′

dt
= ωaf

′~h =
ωa(~n · ~h)′

1− Ha
H

~h

which gives that ~n′ increases for all values of H > Ha. It follows that
stationary regime is unstable in all values H from the region of existence of
the regime.

2.4 Asynchronous planar regime

In the region H >
Ha√

2
and ωH >

ωa
2

should be some asynchronous regime,

because none of the synchronous regimes is stable in this region. From nu-
merical calculations it is found that in selected region stable is asynchronous
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planar regime (~n ⊥ ~eH). The existence region of asynchronous planar regime
is all region of parameters where synchronous planar regime can not exist.

γ

hα

Figure 2.4: Definition of the angles α and γ used in (2.18)

To find stability of this regime the angle representation will be used with
angles α ∈ [0, 2π) and γ ∈ [0, π]. In angle representation
~h = (cosωHt, sinωHt, 0) and ~n = (cos[ωHt−α] sin γ, sin[ωHt−α] sin γ, cos γ).
The defined angles is shown in figure 2.4. In angle representation ~n · ~h =
cosα sin γ. Using angles equation (2.4) can be written as:

α̇ = ωH − ωaf
(
~n · ~h, Ha

H

)
sinα

sin γ

γ̇ = ωaf

(
~n · ~h, Ha

H

)
cosα cos γ

(2.18)

We should bear in mind that f

(
~n · ~h, Ha

H

)
is history dependent and for

some values it can have two values, where the value which will be chosen

depends on the history of value of f

(
~n · ~h, Ha

H

)
.

In planar regime γ = π
2 and γ̇ = 0. From equation of α̇ it can be found

that

dt =
dα

ωa

[
ωH
ωa
− f(cosα, Ha

H ) sinα
] (2.19)

Considering small perturbation γ′ of the angle γ around value γ = π
2 gives

γ̇′ = −ωaf
(

cosα,
Ha

H

)
cosαγ′

In order to find average dynamics of γ′ the Floquet multiplier λF will be
used, where α′(t+T ) = λFα

′(t) and T is the period. Floquet multiplier can
be calculated as

λF = exp

− t+T∫
t

ωaf

(
cosα,

Ha

H

)
cosαdt
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It can be seen that stability of the asynchronous planar regime is determined
by the sign of the integral

I0

(
ωH
ωa

,
H

Ha

)
=

t+T∫
t

ωaf

(
cosα,

Ha

H

)
cosαdt

Using equation (2.19) it can be rewritten as

I0

(
ωH
ωa

,
H

Ha

)
=

α0+2π∫
α0

f
(
cosα, Ha

H

)
cosαdα

ωH
ωa
− f(cosα, Ha

H ) sinα
(2.20)

From equation (1.31) it can be found that in the region H < Ha
2 direc-

tion of magnetic moment ”stuck” around one of the directions of magnetic
anisotropy therefore f(− cosα, Ha

H ) 6= −f(cosα, Ha
H ) and I0 should be cal-

culated according to (2.20). In the region H > Ha
2 magnetic moment ~e

spend some time near both directions −~n and ~n when ~n · ~h continuously
changes. Since both directions coaxial with anisotropy axis is equal the in-
tegral can be divided into two equal integrals about half period, because
f(− cosα, Ha

H ) = −f(cosα, Ha
H ). In this case:

I0

(
ωH
ωa

,
H

Ha

)
= 2

α0+π∫
α0

f
(
cosα, Ha

H

)
cosαdα

ωH
ωa
− f(cosα, Ha

H ) sinα
(2.21)

From equation (1.31) it can be found that in the region Ha
2 < H < Ha

irreversible jumps can take place if angle α = φ between ~n and ~h changes.
Because integral I0 is independent of α0 it is better to take α0 so that
invertible ”jumps” are on the boundary of the integral and integration is
made over continuous function, because numerical integration can fail on
discontinuities. α0 is found from (1.31).

I0

(
ωH
ωa
, HHa

)
in dependence of ωH

ωa
for some values of H

Ha
is shown in fig.

2.5.
In the limit H → Ha

2 it is possible to have two noticeably different

regimes. Limit from the top H > Ha
2 gives situation where the ”jumps” of

magnetic moment is possible, but limit form bottom H < Ha
2 gives situation

where magnetic moment ”stuck” near direction of anisotropy axis ~n (or

opposite to it). lim
H→Ha

2
+0
I0

(
ωH
ωa
, HHa

)
is shown in fig.2.5 by long dashed line

and lim
H→Ha

2
−0
I0

(
ωH
ωa
, HHa

)
by solid line.

In section 2.3.1 we found that synchronous planar regime stability changes

when f
(

cosα, HHa

)
cosα changes sign. Same is valid for asynchronous pla-

nar regime near boundary between synchronous and asynchronous planar
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Figure 2.5: Power of Floquet multiplier I0 as function of rotating field fre-
quency ωH for magnetic field strength H

Ha
= 0.5-0 (without jumps); 0.5+0

(with jumps); 0.65; 0.8. Field is increasing in upwards direction.

regimes, because near this boundary I0

(
ωH
ωa
, HHa

)
is dominated by value of

numerator f
(

cosα, HHa

)
cosα where denominator ωH

ωa
−f(cosα, Ha

H ) sinα→
+0 (2.21). Therefore at the boundary dividing existence regions of planar
synchronous and asynchronous regimes stability of planar regime does not
change.

On the other hand at ωH � ωa it can be seen that (2.20) transforms
into

I0

(
ωH
ωa

,
H

Ha

)
=

ωa
ωH

α0+2π∫
α0

f

(
cosα,

Ha

H

)
cosαdα

The values of I0 at large frequency ωH in the dependence of magnetic field
H is shown in fig. 2.6.

From numerical calculations it can be found that in the region H < Ha
2 ,

where magnetic moment always has two possible stable positions and no
”jumps” of magnetic moment occur, I0 < 0 for all possible values of ωH

ωa
and

asynchronous planar regime is unstable. If the field is large enough H > Ha√
2

, than I0 > 0 for all possible value of ωH
ωa

and asynchronous planar regime

is stable. In region in between Ha
2 < H < Ha√

2
, stability of the asynchronous
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Figure 2.6: Power of Floquet multiplier I0 at large field frequency ωH � ωa
in dependence of magnetic field strength H

planar regime change at some ωH value, because in this region I0 < 0, when
ωH → ωa

2 , and I0 > 0, when ωH → ∞. The Octave code for calculation of
zero stability line (I0 = 0) is shown in appendix C.1.

Visualization of stability region of asynchronous planar regime can be
found in fig. 2.7, where regime is stable in region I and unstable in region

II. Solving equation I0

(
ωH
ωa
, HHa

)
= 0 for minimal possible value of H = Ha

2

in the region with magnetic moment ”jumps”, it can be found that for
ωH > 0.63881ωa stability changes at line H = Ha

2 .
Before we go further we should summarize results obtained in sections

2.3.1, 2.3.2, 2.3.3 and 2.4 and draw phase diagram showing only stable
regimes. All possible stable regimes is illustrated in fig. 2.8. In regions
I, II and III only one of the regimes is stable, but is region IV fig. 2.8 both
synchronous precession and asynchronous planar regime are stable. There-
fore in region IV both regimes can coexist and which of the regimes will
particle approach depends on initial conditions. The dependence on initial
condition is shown in fig, 2.9.
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Figure 2.7: Existence region of asynchronous planar regime divided by neu-
tral curve of stability into disjoint regions I and II. The solid line is the
boundary of existence of asynchronous planar regime defined; the dashed
line is the neutral curve of stability of precession regime defined by sign of
I0 (2.20). Asynchronous planar regime is stable in region II and unstable in
region I.

2.5 Special cases

2.5.1 Rigid dipole

If the magnetic field strength is small H � Ha then magnetic moment
is ”frozen” in magnetic particle and rotates with it. Behaviour of such
particle can be described by rigid dipole approximation [33]. In the dipole
approximation ~e‖~n and

d~n

dt
= ωa

H

Ha
[~h− ~n(~n · ~h)]

These particles have two stable regimes: synchronous planar regime for
the slow rotation of magnetic field ωH < ωa

H
Ha

= mH
ξ and synchronous pre-

cession regime for the fast rotation of magnetic field ωH > ωa
H
Ha

. For small
field strength H � Ha stability of precession regime is weak (~n′ decreases

with speed ∝
(
H
Ha

)2
, when other variables change with speed ∝ H

Ha
), which

means that it takes long time for the particle to get to the stable state.
For rigid dipole in section 2.3.2 found stable solution is center, which

means that it is not attractive and not repulsive, but our calculations show
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Figure 2.8: Phase diagram. In region I only synchronous planar regime
is stable (section 2.3.1), in region II the only stable regime is synchronous
precession regime (section 2.3.2), in region III only asynchronous planar
regime is stable (section 2.4) and in region IV both synchronous precession
and asynchronous planar regime are stable.

(a) (~n · ~h) = 0.939 and solu-
tion approaches the precession
regime.

(b) (~n · ~h) = 0.943 and solution
approaches the asynchronous pla-
nar regime

Figure 2.9: Trajectory of anisotropy axis ~n at ωH = 0.58ωa and H = 0.52Ha

with starting conditions ~n× ~h ⊥ ~eH and two different (~n · ~h) values.

that, if the anisotropy constant is finite (but not infinite as in rigid dipole
model), then center becomes (weakly) attractive.
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2.5.2 Superparamagnetic particle

Superparamagnetic particle dynamics is similar to anisotropic particle in
the case where H � Ha. To fit superparamagnetic particle with uniaxial
symmetry in our model of single-domain uniaxial anisotropic particle we
should use (1.14), from which we can find that torque on magnetic particle
is:

~Mm = ~m× ~H = V∆χ( ~H · ~n)[~n× ~H] (2.22)

It is similar to (2.1) with ~e ≈ ~h and K = ∆χH2 (In (2.1) mH[~e × ~h] gives
uncertainty ∞ · 0, therefore only first part of the equation should be taken
into account). If the dynamic equations are equal then all conclusions made
for particle with finite anisotropy energy in high field strength H � Ha are
applicable for superparamagnetic particle despite that magnetic moments
differ.

Superparamagnetic particles have two planar regimes: synchronous with

the field if the field frequency is small ωH <
ωa
2

=
∆χV H2

2ξ
, where ∆χ =

2πχ2

1 + 2πχ
, and asynchronous with the field if the field frequency is large

ωH >
ωa
2

.

More about superparamagnetic particles can be found in chapter 3.

2.6 Energy dissipation

The calculated dynamics of the regimes gives us possibility to calculate
dissipated energy and torque on the suspension of ferromagnetic particles
in rotating field due to the viscous friction and irreversible ”jumps” of the
magnetic moment. The energy (1.19) change in time can be calculated as:

dE

dt
= −mHd~e

dt
· ~h−mHd~h

dt
· ~e−KV (~e · ~n)

d~e

dt
· ~n−KV (~e · ~n)

d~n

dt
· ~e

Using equations (2.1) and (2.2) this equation transforms into

dE

dt
= −mHd~e

dt
·
(
~h+

Ha

H
(~e · ~n)~n

)
−mHd~h

dt
· ~e− ξ~ω2

~n (2.23)

The first term on the right hand side is energy dissipated due to movement
of magnetic moment. Why this is called energy dissipation due magnetic
moment movement is explained in appendix A.3. The first term of (2.23) is
zero for quasi- static d~e

dt = 0 movement of the magnetic moment in the par-
ticle, and gives finite contribution for its irreversible ”jumps”. The second
term of (2.23) is energy supplied by the field to the system and the third
term is energy dissipated due to viscous drag. The mean dissipated energy
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per unit time can be calculated by averaging over period T (after period
system goes to its initial position therefore

〈
dE
dt

〉
= 0) [54]:

Q =

〈
−mHd~h

dt
· ~e

〉
= ξ〈~ω2

~n〉+
n∆E

T
, (2.24)

where n is the number of irreversible ”jumps” per period (0 or 2) and ∆E > 0
is energy dissipated in the irreversible ”jump” of magnetic moment in the
particle. ∆E = E1 − E2, where E1 is energy before ”jump” and E2 is
energy after ”jump”. Brackets 〈〉 defines averaging over period 〈x(t)〉 =

1

T

t+T∫
t

x(s)ds. Here average dissipated energy per unit time Q is introduced.

2.6.1 Synchronous regimes

For the synchronous with the field regimes d~h
dt ·~e and ~ω2

~n are constants and no
magnetic moment jumps occur therefore averaging in (2.24) can be omitted
and

Q = −mHωH(~eH · [~h× ~e]) = ξ~ω2
~n

For synchronous planar regime (~ω~n = ~ωH)

Q = ξω2
H (2.25)

Using equations (2.1) and (2.11) can be found expression for precession
regime:

Q = ξω2
a

(
H

Ha

)2
[

1−
(
H

Ha

)2
]

(2.26)

2.6.2 Asynchronous regime

From (2.1) in the planar asynchronous case we get

ωH −
dα

dt
=
mH

ξ
(~e · [~h× ~eH ]) ,

where particle does not rotate with field frequency ωH but lags a bit in
asynchronous regime. From this the mean dissipated energy (2.24) is

Q =
〈
−mH(~ωH · [~h× ~e])

〉
= ξω2

H

(
1− 2π

ωHT

)
, (2.27)

where period T is time in which particle lags behind magnetic field ~h one full
cycle (α(t + T ) = α(t) + 2π) therefore 〈dαdt 〉 = 2π

T . The period is calculated
numerically integrating equation (2.19):

T = 2

α0+π∫
α0

dα

ωa

[
ωH
ωa
− f(cosα, Ha

H ) sinα
] ,
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where integral is taken only on the half period, because substitution α →
α + π does not change function under integral sign in the region H > Ha

2 .
Similar to (2.21) it is better to take α0 so that invertible ”jumps” of the
magnetic moment are on the boundary of the integral and integration is
made over continuous function, because numerical integration can fail on
discontinuities.

In the region H > Ha, where no magnetic moment ”jumps” occur, pe-
riod T can be calculated similar to rotational period of superparamagnetic
particle [47], [13]:

T =
2π√

ω2
H −

(
ωa
2

)2 (2.28)

therefore

Q = ξω2
H

1−

√
1−

(
ωa

2ωH

)2
 (2.29)

In the region Ha
2 < H < Ha, where magnetic moment ”jumps” in the

particle occur, dissipated energy can be analytically calculated [47] but the
result is hard to interpret so in this work period T is found numerically. But
in this region dissipated energy can be divided into two parts: Q = Qv+Qm,
where

Qv = ξ
〈
~ω2
~n

〉
is energy dissipated by viscous drag and

Qm =
2∆E

T
(2.30)

is energy dissipated by magnetic moment ”jumps”.

2.6.3 Numerical results and asymptotes

To express Qv in form for numerical calculations we use (2.18), where |~ω~n| =
ωH−α̇ and in planar regime it can be calculated as |~ω~n| = ωaf(cosα, Ha

H ) sinα
therefore:

Qv =
2ξω2

a

T

α0+π∫
α0

f2
(
cosα, Ha

H

)
sin2 α

1− f
(
cosα, Ha

H

)
sinα

dα =

= ξω2
a

1− 2π

T
+

2

T

α0+π∫
α0

f

(
cosα,

Ha

H

)
sinαdα

 , (2.31)

where the last term on the right hand side is not zero only in the region where
magnetic moment ”jumps” occur (Ha

2 < H < Ha). Period T is calculated
from (2.28).
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Figure 2.10: Average dissipated energy in synchronous and asynchronous
planar regime per unit time in dependence of field frequency for field strength
H

Ha
0.55; 0.65; 0.75; 0.85; 1. Field strength is increasing in downward

direction. Solid line is dissipated energy in asynchronous planar regime and
dashed line - in synchronous planar regime.

According to [13] in the region Ha
2 < H < Ha, where magnetic moment

”jumps” occur, at the limit ωH � ωa the rotational period can be calculated
as:

T =
2π

ωH
+

2∆E

ξω2
H

Putting this in (2.27) gives:

Q =
ωH∆E

π
=

2∆E

TH
(2.32)

which means that main dissipation in limit ωH � ωa is due to magnetic
moment ”jumps”. Here TH is period of rotating magnetic field and ∆E is
dissipated energy in one magnetic moment ”jump”. This result can be seen
in figure 2.10, where graphs look linear for high ωH

ωa
.

In the asynchronous planar region without magnetic moment ”jumps”
(H > Ha) in the limit ωH � ωa equation (2.29) changes into

Q =
ξω2

a

8
(2.33)

which also can be seen in figure 2.10 for H = Ha. This dissipation is due to
viscous drag, because no magnetic moment ”jumps” occur in region H > Ha
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and no other dissipation is available. It should be reminded that we assumed
that drag on magnetic moment inside particle is negligible, which makes it
possible to separate magnetic moment movement from particle movement. If
the rotational frequency becomes too large, relaxation of magnetic moment
inside particle becomes comparable to particle speed therefore our model is
not usable for very high frequencies.

If H is less but close to Ha as seen from fig. 2.10 dissipated energy is
close to (2.29), where H > Ha and all dissipated energy is due to viscous
drag. This is because in limit H → Ha− 0 energy difference ∆E before and
after magnetic moment ”jump” becomes small. If H = Ha energy difference
∆E = 0 and no magnetic moment ”jumps” occur. For H > Ha dissipated
energy does not depend on magnetic field (2.29).
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Figure 2.11: Comparison of average dissipated energy in asynchronous pla-
nar regime per unit time in dependence of field frequency for field strength
H

Ha
0.55; 0.65; 0.75; 0.85; 0.95. Solid line is dissipated energy by viscous

drag (2.31) and field strength is increasing in upward direction. Dashed line
is dissipated energy in magnetic moment ”jumps” inside the particle (2.30)
and magnetic field strength is increasing in downward direction.

In synchronous regimes all dissipated energy is due to viscous drag, but
in asynchronous regime if the field strength is in range Ha

2 < H < Ha, part of
the energy is dissipated inside the particle due to magnetic moment ”jumps”.
As can be seen in fig. 2.11 average dissipated energy by viscous drag in
asynchronous planar regime does not change a lot in dependence of magnetic
field, just increase a bit if the field strength increases. This is because
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magnetic moment jumps only slightly effects particle movement. Whereas
dissipated energy by magnetic moment ”jumps” dramatically decrease with
increase of magnetic field strength. This is because of decrease of energy
”barrier” with increase of magnetic field. On the one hand if the magnetic
field strength is higher than anisotropy field Ha the ”barrier” disappears
and no magnetic moment ”jumps” are possible. On the other hand if the
magnetic field strength is below limit Ha

2 the energy ”barrier” is so high
that magnetic moment stays in one of the minimums and magnetic field can
not decrease it low enough to make magnetic moment to ”jump” to second
minimum.
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Figure 2.12: Average dissipated energy in synchronous planar and precession
regime per unit time in dependence of field frequency for field strength
H

Ha
0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7. Field strength is increasing in upward

direction. Solid line is dissipated energy in synchronous precession regime
and dashed line - in synchronous planar regime.

If H < Ha√
2

besides asynchronous planar regime synchronous precession

regime is possible. It can be seen in fig. 2.12 and from (2.26) that dissipa-
tion per unit time in precession regime does not depend on frequency, but
depends only on magnetic field strength H.

Overview of possible dissipation graphs in dependence of field frequency
is shown in fig. 2.13. If the field strength H < Ha

2 only synchronous planar

and precession regime is stable. If the field strength H > Ha√
2

only syn-

chronous and asynchronous planar regimes are stable, where in the region
Ha√

2
< H < Ha magnetic moment ”jumps” are possible and dissipated energy
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Figure 2.13: Average dissipated energy per unit time for stable states in
the dependence of field frequency for some field strengths. Solid line - field
strength H = 0.3Ha; short dashed line -field strength H ≥ Ha; long dashed
line - field strength H = 0.55Ha. In the range ωH

ωa
> 0.52 two long dashed

lines is depicted because there precession and asynchronous planar regimes
coexist.

increases with the field frequency (for large frequencies), but if H ≥ Ha only
short dashed graph of fig. 2.13 is possible and dissipated energy is indepen-
dent of magnetic field strength.

In the region Ha
2 < H < Ha√

2
all three stable regimes in dependence of

the frequency are possible (long dashed line in fig. 2.13). For small fre-
quencies synchronous planar regime. When synchronous planar regime be-
comes unstable, precession regime becomes stable and for higher frequencies
ωH > ω∗H , where ω∗H is given by neutral curve of stability of asynchronous
planar regime, asynchronous planar regime becomes stable without destroy-
ing stability of precession regime. That is why two long dashed lines are
shown in fig. 2.13.

Similar graphs for field strength H is shown in fig. 2.14. In region
ω∗H < ωH < ωa√

2
asynchronous planar and precession regimes coexist and

dissipated energies differ in both regimes (ω∗H is given by line I0

(
ωH
ωa
, HHa

)
=

0 (2.21)). Which of the regimes will be obtained mainly depends on the
particle position in the moment, when given parameter combination is set.
If the magnetic field strength increases keeping field frequency constant,
then particle will stay in precession regime while ωH < ωa√

2
. Sometimes we
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Figure 2.14: Average dissipated energy per unit time for stable states in
the dependence of field strength for two different frequencies. Solid line
is dissipated energy in precession regime (independent of frequency); long
dashed line is dissipated energy in asynchronous planar regime for ωH =
2ωa; short dashed line is dissipated energy in synchronous planar regime for
ωH = 0.4ωa.

want to increase dissipation. This can be achieved by getting particle to
asynchronous planar regime and then to the region with magnetic moment
”jumps” (Ha

2 < H < Ha). The calculation of time, how long particle will
stay in the regime with higher dissipation, depends on thermal fluctuations
and is outside the scope of this work.

2.6.4 Comparison with experiment

In experiments dissipated energy and the rotational hysteresis usually are
studied by measurements of the torque on a suspension as a function of
the rotating field strength [45]. Average torque 〈τ〉 is related to average
dissipated energy per unit time Q by relation:

Q = 〈τ〉ωH

In fig. 2.15 is shown comparison of theoretical results shown in fig.
2.14 with experimental results of 0.1µm γ−Fe2O3 particles found in [41,
42]. In fig. 2.15 it can be seen that torque curve for small fields in [41,
42] can be very well fitted by the dissipated energy in precession regime.
While high field strength limit fits badly to the experiment. This could
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Figure 2.15: Average torque of suspension of 0.1µm size γ−Fe2O3 particles
dependence on magnetic field strength at field frequency ωH = 26.2 rads .
Particle volume concentration is 10%. Experimental results shown as open
circles [60] and full circles [61]. Solid line - torque on particles in precession
regime (2.26).

be because all particles is not identical therefore not all particles are single
domain. As shown by Butler and Banerjee [20] the size limit of single-domain
state is narrow for cubic particles and becomes larger only for elongated
particles. Therefore it is possible that in [41, 42] one part of the particles is
multi domain, one part is superparamagnetic and one part is single-domain
particles. In this work only single-domain and superparamagnetic particles
are studied. The behaviour of multi domain particle is outside the scope of
this work.

Approximating experimental data with dissipated energy in precession
regime (2.26) gives that maximum is at H ≈ 0.7Ha, what gives Ha ≈
1.1 kOe for [42] and Ha ≈ 0.9 kOe for [41]. From [32] we get MS = 390 G

cm3

and, if particle is rod like, then Ha = K
MS

= 2πMS = 2.4 kOe, where K
is taken from (1.11). Theoretical result is more than 2 times larger than
experimentally observed what means that some effects related to experiment
are not accounted for theoretical model.

In experiments [41, 42] the maximum of torque curve of liquid suspension
is found at approximately the same value of magnetic field strength as for
the solidified suspension what gives evidence that the maximum is due to
the magnetic moment ”jumps” inside the particle. Maximum of the torque
curve due to magnetic moment ”jumps” from theory is at H = 0.5Ha, what
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gives Ha ≈ 1.5 kOe for [42] and Ha ≈ 1.3 kOe for [41]. These values is closer
to theoretical Ha = 2.4 kOe but still smaller.



Chapter 3

Dynamics of
superparamagnetic particle
in precessing magnetic field

3.1 Motivation and contents

Recent advances in anisotropic magnetic particle colloids [81] shows that
superparamagnetic particles are widely used and their dynamics in different
magnetic field configurations have interest by scientists. Mainly theoretical
dynamics of the superparamagnetic particle in precessing field are calculated
numerically [85] and only in few papers analytic calculations of the dynamics
of superparamagnetic particle in precessing field can be found [82, 29]. But
analytic results found in [82] and [29] can be noticeably improved.

In this chapter stability of synchronous with the precessing magnetic
field regimes of the superparamagnetic particle will be calculated. It will
be shown what is common and what is different for prolate and oblate
spheroidal superparamagnetic particles. Analytic equation of the mean an-
gular velocity of the particle in asynchronous regime will be shown, which
includes solutions of cubic equation. The visible length of the particle in
synchronous regime will be calculated. Experimentally observable results
will be compared to theoretical and form-factor of the particles will be cal-
culated.

3.2 Model

Superparamagnetic particle with uniaxial symmetry has magnetic moment
(1.14) ~m = V χ⊥ ~H+V∆χ( ~H ·~n)~n in external magnetic field ~H = H~h. Then
magnetic torque which works on superparamagnetic particle is

~τM = ~m× ~H = V H2∆χ(~n · ~h)~n× ~h

50
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In the inertialess limit magnetic torque should be compensated by viscous
drag ~τv = −ξω~n. Using relation ~̇n = ω~n × ~n the equation of motion can be
written as:

d~n

dt
= ωa(~n · ~h)

[
~h− (~n · ~h)~n

]
, (3.1)

where ωa =
V∆χH2

ξ
same as in section 2.5.2. Equation (3.1) is equivalent

to (2.4) in high field limit H � Ha as mentioned in section 2.5.2.
The sign of ωa is determined by the sign of ∆χ = χ‖ − χ⊥. For prolate

particles ∆χ > 0 (1.15) and ωa > 0 but for oblate particles ∆χ < 0 (1.16)
and ωa < 0. The equations does not change with the change of the sign
of ωa, but some conclusions will differ between prolate and oblate particles
and will be mentioned further.

In this chapter ~h precesses around direction ~eH with angular velocity

ωH (~̇h = ωH~eH × ~h) and precessing angle is ϑ (~eH · ~h = cosϑ). In pre-
cessing magnetic field superparamagnetic particle can move synchronously
and asynchronously with the field in the dependence of field frequency ωH

ωa

and precessing angle ϑ. Further the parameters and stability of synchronous
regime will be found.

3.3 Synchronous with the field regime

Particle will rotate synchronously with the field if it has the same angular
frequency ~̇n = ωH~eH × ~n. Therefore synchronous regime should satisfy:

ωH [~eH × ~n] = ωa(~n · ~h)[~h− (~n · ~h)~n] (3.2)

Scalar multiplication of (3.2) by ~eH , ~h and [~eH × ~n] gives consequently:

~h · ~eH = (~n · ~h)(~n · ~eH) (3.3)

~eH · [~n× ~h] =
ωa
ωH

(~n · ~h)
[
1− (~n · ~h)2

]
(3.4)

1− (~n · ~eH)2 =
ωa
ωH

(~n · ~h)(~eH · [~n× ~h]) . (3.5)

By eliminating (~eH · [~n × ~h]) and ~n · ~eH from (3.3), (3.4) and (3.5) we get
bi-cubic equation for ~n · ~h:

(~n · ~h)6 − (~n · ~h)4 +
ω2
H

ω2
a

(~n · ~h)2 −
ω2
H

ω2
a

(~h · ~eH)2 = 0 (3.6)

For simplicity parameters y = (~n · ~h)2, ω =
ωH
ωa

and σ = ~h · ~eH are

introduced. Further the cubic equation

f(y) = y3 − y2 + ω2y − ω2σ2 = 0 (3.7)
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will be examined.
The last term of left hand side of (3.7) is negative, what means that

product of all roots is positive [1], therefore at least one root is positive (if
the other two roots is complex then they are complex conjugate to each
other and their product is positive). Therefore bi-cubic equation (3.6) has
solution for all ωH and ϑ.

Equation (3.6) does not change if the sign of the ωa is changed, what
gives that equal synchronous with the field states exist for prolate (ωa > 0)
and oblate (ωa < 0) particles. The only difference is stability of these states,
which should depend on ωa.

3.4 Stability of the synchronous regime

In order to investigate stability of synchronous regime we introduce small
perturbation ~ε from the synchronous state ~n. Since ~n is unit vector and its
length can not change ~ε should be perpendicular to ~n and can be written in
form:

~ε = ε1[~n× ~h] + ε2[~eH × ~n] , (3.8)

where ε1 and ε2 are small perturbations in two non-collinear directions.
After some arithmetical manipulations shown in appendix A.4 we can

find time dependence of ~ε (A.10)
dε1

dt
= −ωa(~n · ~h)2ε1 − ωa(~eH · ~n)(~n · ~h)ε2

dε2

dt
=
ω2
H

ωa

(~eH · ~n)

(~n · ~h)
ε1 + ωa

(
2− (~n · ~h)2

)
ε2

(3.9)

The stability of the regime is determined by eigenvalues of Jacobi matrix
J [80], where J is found in (3.9)(

ε̇1

ε̇2

)
= J

(
ε1

ε2

)
The eigenvalues of Jacobi matrix are:

λ1,2 = ωa
τ ±
√
τ2 − 4∆

2
, (3.10)

where
τ = 1− 3(~n · ~h)2 (3.11)

is trace of J divided by ωa and

∆ =

(
ωH
ωa

)2

− 2(~n · ~h)2 + 3(~n · ~h)4 (3.12)
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is determinant of J divided by ω2
a, where (~eH ·~n) is excluded using (3.4) and

(3.5).
It can be seen from (3.10) that stability of stationary nodes changes as

changes the sign of ωa. Therefore if the state is stable for prolate particle
(ωa > 0) then it is unstable for oblate particle (ωa < 0) and if the state is
stable for oblate particle then it is unstable for prolate particle. The opposite
is not always true, because (unstable) saddle points stay saddle points when
sign of ωa is changed.

Figure 3.1: Stability of prolate particle in dependence of τ and ∆. Depicted
from [67].

Before we continue we will compare found values of τ (3.11) and ∆ (3.12)
with properties of cubic equation.

The derivative of f(y) (3.7) looks equal to ∆ (3.12):

df(y)

dy
= ω2 − 2y + 3y2 = ∆

Similarly can be found that τ (3.11) is equal to second derivative of f(y)
(3.7) with precision to constant:

τ = 1− 3y = −1

2

d2f(y)

dy2

therefore it is sufficient to look at first and second derivative of function f(y)
(3.7) at its roots f(y) = 0 to examine the stability of synchronous state and
synchronous regime (which consists of all possible states). The possibilities
of τ and ∆ and consequences of the state f(y) = 0 are following:
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• If τ < 0 (
d2f

dy2
> 0) and ∆ > 0 (

df

dy
> 0), then

λ1

ωa
< 0 and

λ2

ωa
< 0

(3.10), therefore prolate particle (ωa > 0) is stable in this state, but
oblate particle (ωa < 0) is unstable in this state.

• If τ > 0 (
d2f

dy2
< 0) and ∆ > 0 (

df

dy
> 0), then

λ1

ωa
> 0 and

λ2

ωa
> 0

(3.10), therefore prolate particle (ωa > 0) is unstable in this state, but
oblate particle (ωa < 0) is stable in this state.

• If ∆ < 0 (
df

dy
< 0), then

λ1

ωa
> 0 and

λ2

ωa
< 0 (3.10) and it is saddle

point, therefore both prolate particle (ωa > 0) and oblate particle
(ωa < 0) are unstable in this state.

These results can be summarized in fig. 3.1 for prolate particle. For oblate
particle the sign of τ changes, because ωa is taken out from τ in (3.10).

The coefficient at y3 term (3.7) is positive, therefore f(y) is mainly in-

creasing and if there is only one root of f(y) = 0, then
df

dy
> 0 at this

root. Then the stability of the only root is determined by
d2f

dy2
and stability

changes at
d2f

dy2
= 0, which gives y = (~n · ~h)2 = 1

3 . Putting this in f(y) = 0

(3.7) gives condition of neutral stability curve:

ω2 =

(
ωH
ωa

)2

=
2

9
(

1− 3(~h · ~eH)2
) (3.13)

It can be seen that (3.13) has solution only if ~h · ~eH = σ < 1√
3
. If σ > 1√

3

then f(y) = 0 (3.7) has one root with
d2f

dy2
> 0, what means that prolate

particle (ωa > 0) is stable and oblate particle (ωa < 0) is unstable.
If the equation f(y) = 0 has 3 roots, then between these 3 real roots one

must have
df

dy
> 0 and

d2f

dy2
< 0, one must have

df

dy
> 0 and

d2f

dy2
> 0 and

one must have
df

dy
< 0, which are between first two. therefore both particles

prolate ωa > 0 and oblate ωa < 0 have one stable state if f(y) = 0 has 3
real roots. The equation (3.7) has 3 real solution if [1]:

18ω4σ2 − 4ω2σ2 + ω4 − 4ω6 − 27ω4σ4 > 0

Which gives quadratic inequality for ω2 (because ω2 > 0):

4ω4 − ω2(1 + 18σ2 − 27σ4) + 4σ2 < 0 (3.14)
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This inequality has solution only if

(1 + 18σ2 − 27σ4)2 − 64σ2 = (1− 9σ2)3(1− σ2) > 0

or simply

cosϑ = (~h · ~eH) = σ <
1

3
, (3.15)

because σ < 1 and (σ2−1) < 0. If 0 < σ2 < 1
9 we can check that 1 + 18σ2−

27σ4 > 0 (3.14) has two positive roots. Therefore (3.7) has three solutions
if 0 < σ < 1

3 and ω1(σ) < ω < ω2(σ), where

ω1,2(σ) =

√
1 + 18σ2 − 27σ4 ±

√
(1− 9σ2)3(1− σ2)

8
, (3.16)

where ω1 has minus sign and ω2 has plus sign in ± (3.16).

3.5 Phase diagram
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Figure 3.2: Phase diagram. The prolate particle has a stable synchronous
regime in region II

⋃
III, and the oblate particle in region I

⋃
III. The

regions is divided by the neutral stability (solid) line. Long dashed line is

asymptote at
ωH
ωa
→ ∞ and short dashed line is extension of line (3.13) in

the region where equation f(y) = 0 has three real roots. The point shows a
codimension-2 bifurcation point.

To summarize obtained results the phase diagram is drawn in fig. 3.2.
In the region II prolate particle has stable synchronous with the field state
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and oblate particle does not, therefore oblate particle moves asynchronously
in this region. In region I oblate particle moves synchronously and prolate
particle moves asynchronously. In the region III both particles has stable
synchronous states, therefore both particles moves synchronously with the
field. The region II is extended above long dashed line fig. 3.2 till ϑ = 0.

Long dashed line in fig. 3.2 is asymptote ϑ = arccos 1√
3
≈ 54.7o above

which prolate particle has synchronous regime for all values of ωH and oblate
particle moves asynchronously for all values of ωH .

Short dashed line in fig. 3.2 is extension of line (3.13) in the region
where equation f(y) = 0 has three roots. As can be seen this line is close to
prolate particle neutral stability line. If too high accuracy is not necessary
it is sufficient to use (3.13) for prolate particle for all ϑ range (at cosϑ = 0

(3.13) gives neutral point at ωH
ωa

=
√

2
3 , which is close to true value ωH

ωa
= 0.5

(3.16)).

The dark point in fig. 3.2 is point where f(y) = 0,
df

dy
= 0 and

d2f

dy2
= 0.

Its coordinates are ωH
ωa

= 1√
3
≈ 0.58 and ϑ = arccos 1

3 ≈ 70.5o. In stability

analysis it is called codimension-2 bifurcation [80] because at this point the
only node with neutral stability splits into one saddle point and two nodes
with different stability.

The phase diagram (fig. 3.2) can also be found in authors article [26],
where the neutral stability lines and codimension-2 bifurcation point are
calculated numerically.

In experiments instead of changing angle ϑ it is easier to fix the rotating
part of the field strength Hr and change only the non rotating part Hω =
~H · ~eH . Here H2 = H2

r +H2
ω. Then the total field strength H changes and

a new constant parameter ωc = ωa
H2
r

H2
should be introduced. Then neutral

line of stability at 1
2
√

2
< Hω

Hr
< 1√

2
(1

3 < σ < 1√
3
) (3.13) changes into:

ωH
ωc

=

√√√√√√√√
2

(
1 +

H2
ω

H2
r

)3

9

(
1− 2

H2
ω

H2
r

) (3.17)

and for 0 < Hω
Hr

< 1
2
√

2
(0 < σ < 1

3)we have neutral stability lines (3.16) at

ωH
ωc

=

√√√√√√√1 + 20

(
Hω

Hr

)2

− 8

(
Hω

Hr

)4

±

√√√√[1− 8

(
Hω

Hr

)2
]3

8
, (3.18)

where plus sign is for prolate particle and minus sign is for oblate particle.
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Figure 3.3: Phase diagram. The prolate particle has a stable synchronous
regime in region II

⋃
III, and the oblate particle in region I

⋃
III. The

regions is divided by the neutral stability (solid) line. Long dashed line is

asymptote at
ωH
ωa
→ ∞ and short dashed line is extension of line (3.17) in

the region where equation f(y) = 0 has three real roots. The point shows a
codimension-2 bifurcation point.

The results of (3.17) and (3.18) is summarized in fig. 3.3. Fig. 3.2
and fig. 3.3 differs only by labels on the axis. In the new parameters the

codimension-2 bifurcation point is at Hω
Hr

=
√

2
4 ≈ 0.35 and ωH

ωc
= 3

√
3

8 ≈ 0.65.

3.6 Dipolar interaction

Here we want to calculate mean interaction energy between two identical
particles rotating synchronously with the field. The interaction energy be-
tween two magnetic dipoles with magnetic moments ~m1 and ~m2 separated
by the distance ~r is:

E =
~m1 · ~m2

r3
− 3

(~m1 · ~r)(~m2 · ~r)
r5

(3.19)

If the particles are equally orientated then equation (3.19) can be written in
form:

E =
m2

r3
(1− 3 cos2 βmr) , (3.20)

where βmr is angle between ~m and ~r. It is more convenient to use angles
for ~m = (sinβ cosωHt, sinβ sinωHt, cosβ) and ~r = (sinψ, 0, cosψ), where
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vertical direction is chosen to be ~eH . Equation (3.19) can be written in
these angles as

E =
m2

r3

[
1− (sinψ sinβ cosωHt+ cosψ cosβ)2

]
Averaging it over the period gives mean energy of interaction

Emean =
m2

r3
(1− 3 cos2 β)

(
1− 3

2
sin2 ψ

)
. (3.21)

For rod like particles (χ‖ � χ⊥) m2 = V 2χ2
‖H

2(~n ·~h) and cosβ = (~n ·~h)(~n ·
~eH) = σ, but for plate like particles (χ⊥ � χ‖) m

2 = V 2χ2
⊥[1− (~n ·~h)2] and

cosβ = 0.
The mean energy (3.21) has minimum at ψ = π

2 for plate like particles,
what makes it more favourable for this type of particle to form sheets if they
are in synchronous regime. The formation of sheets and other structures of
magnetic Janus particles in precessing magnetic field can be found in [85].

The mean energy (3.21) for rod like particles has a minimum at ψ = 0,
what makes it more favourable to form chains if rods are in synchronous
regime.

3.7 Angular velocity and trajectory of the particle

In the experiment in addition to fact that particle is in synchronous or
asynchronous regime, the dynamics of particle motion can be measured.
The main parameters which can be calculated from the experiment are mean
angular velocity in asynchronous regime and precession angle in synchronous
regime. In this part the theoretical expressions for these parameters for the
rod like particle will be obtained.

3.7.1 Synchronous regime

The precession angle of the rod in synchronous regime can be found from
solution of equation f(y) = 0 (3.7). Then precession angle of the rod ϑ~n is
calculated as

ϑ~n = arccos

(
σ
√
y

)
,

where y is solution of equation f(y) = 0 (3.7) and σ = ~eH · ~h.
In experiment the change of the observable length of the rod can be

measured, which is equal to L = L0

√
1− (~eH · ~n)2, where L0 is true length

of the rod and ~eH is perpendicular to the plane of observation.
Theoretically calculated values of L

L0
are shown in fig. 3.4. The the-

oretical values are found from solution of cubic equation f(y) = 0 (3.7)
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Figure 3.4: Observable length of the rod L in dependence of magnetic field
strength ratio Hω

Hr
for field frequencies ωH

ωc
form 0.4 till 1.5 with step 0.1 (solid

lines). Field frequency is increasing in downward direction. Long dashed
line is situation if rod is orientated in the direction of the magnetic field.
Below short dashed line synchronous regime becomes unstable.

with σ =
Hω
Hr√

1 +
(
Hω
Hr

)2
and ω =

ωH
ωc

1

1 +
(
Hω
Hr

)2 . When y is found then

L
L0

=
√

1− σ2

y .

In fig. 3.4 can be seen that for slow fields ωH � ωc the rod aligns with the
external magnetic field (long dashed line). If the field frequency is increased,
the rod stands steeper then the magnetic field is, therefore reducing velocity
of the tip of the rod and dissipation due to viscous drag. The steeper the
rod is the smaller it will look. The depart from magnetic field direction is
connected with the lag of the rod from the magnetic field. And at some
point the depart and therefore the lag becomes large enough and rod goes
into asynchronous regime (short dashed line). The short dashed line has a

deflection at Hω
Hr

=
√

2
4 , because at this point changes condition of neutral

stability.
In the synchronous regime rod rotates with the same angular frequency

ωH than magnetic field.
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3.7.2 Asynchronous regime

The asynchronous regime is too complicated to calculate it analytically di-
rectly from equation (3.1), therefore some assumptions about the particle
movement should be made and the validity of the assumptions can be tested
numerically by solving (3.1).

We will assume that rod in the asynchronous regime, when the regime
is stabilized, in the frame rotating with the magnetic field forms disk. In
other words, ~n stays in the plane which rotates with angular frequency ωH
around ~eH . We will call this plane the plane of lag and the corresponding
normal vector of this plane would be ~eL. Therefore rotational velocity of
the rod ω~n can be divided into two parts: rotation around ~eH with velocity
ωH and rotation around ~eL with velocity −ωL. Therefore ~eL can be found
from relation:

ωH [~eH − (~eH · ~n)~n]− ωa(~n · ~h)[~h× ~n] = ωL~eL , (3.22)

where first term of the left hand side is synchronous rotation with the ex-
ternal field, second term is true rotation of the particle ~n and term on the
right hand side gives the lag angular velocity, where

ωL =

∣∣∣∣ωH [~eH − (~eH · ~n)~n]− ωa(~n · ~h)[~h× ~n]

∣∣∣∣
From equation (3.22) the ~eL can be calculated. It was checked for wide
range of variables ω and σ of asynchronous regime that ~eL reaches some
constant value after some time. In the synchronous regime ωL~eL = 0 and
no lag occur. But in asynchronous regime ωL changes in time.

As we know, in the region, where the synchronous regime of the rod is
unstable, the synchronous regime of the plate like particle is stable and, as
we just assumed, the rod in asynchronous regime forms something similar to
synchronously rotating disk. Therefore we assume that normal of the plane
of lag ~eL moves equally to ~n of the corresponding oblate particle (with
negative ωa). This can be proved numerically.

Now we know what is the trajectory of the rod in asynchronous regime
and we can calculate the mean rotational frequency of the rod in the asyn-
chronous regime. To do so we introduce one more unit vector ~k, which
in the direction of the projection of the ~h onto plane of lag. Therefore
~h = (~k · ~h)~k + (~eL · ~h)~eL, where ~k ⊥ ~eL. This gives that

~n · ~h = (~n · ~k)(~k · ~h)

because ~n · ~eL = 0. Examination the change of ~k · ~n in time gives:

d(~n · ~k)

dt
=
d~n

dt
· ~k +

d~k

dt
· ~n
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~k rotates with ~h and plane of lag therefore d~k
dt = ωH~eH × ~k and previous

expression is rewritten in form:

d(~n · ~k)

dt
= ωa(~k · ~h)2(~n · ~k)

(
1− (~n · ~k)2

)
− ωH~eH · [~n× ~k] (3.23)

This equation can be solved analytically introducing angle φ~k between ~k and

~n, then ~n · ~k = cosφ~k and ~n × ~k = sinφ~k~eL. In the angle form equation
(3.23) looks:

dφ~k
dt

= ωH(~eL · ~eH)− ωa(~k · ~h)2 cosφ~k sinφ~k (3.24)

From the definition and proved assumptions of ~eL and ~k the quantities (~eL ·
~eH) and (~k · ~h) does not change if the trajectory of the rod is stabilized.
Therefore equation (3.24) can be integrated analytically. Separation of the
variables and integration over period gives:

TL =
2π√

ω2
H(~eL · ~eH)2 − ω2

a
4 (~k · ~h)4

, (3.25)

where TL is period of the lag, when rod lags behind magnetic field one
full period. Remembering that ~eL is the same as ~n for the corresponding
oblate particle, the (~eL · ~h)2 = y can be calculated from equation f(y) = 0

(3.7). Knowing y we can calculate (~eL · ~eH)2 = σ2

y and knowing that ~k is

orthogonal to ~eL and ~h is between ~k and ~eL gives that (~k ·~h)2 = 1−y. These
relations give us average rotational frequency of the rod, which consists of
synchronous rotation with the field and periodic lag:

〈ω~n〉 = ωH −

√
ω2
H

σ2

y
− ω2

a

4
(1− y)2

Using equation (3.7) it can be written in form:

〈ω~n〉 = ωH −

√
ω2
H −

ω2
a

4
− ω2

a

(
y

2
− 3y2

4

)
, (3.26)

where 〈ω~n〉 is average angular velocity when he regime is stabilized and y
is solution of the cubic equation (3.7). If the magnetic field rotates in the
plane , not precesses, then σ = 0 and in asynchronous regime of the rod the
only real solution of the cubic equation (3.7) is y = 0 and we get known
formula [33]:

〈ω~n〉 = ωH −
√
ω2
H −

ω2
a

4
(3.27)
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But if σ 6= 0 the cubic equation (3.7) does not have solution y = 0 (if ω > 0).
From section 3.4 we know that rod like particle is in asynchronous regime
only if y < 1

3 is the only solution of the equation (3.7). This gives that(
y
2 −

3y2

4

)
> 0 and the average angular frequency of the rod is larger in the

precessing field than in the rotating field if magnetic field strength is kept
constant.
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Figure 3.5: Average rotation frequency 〈ω~n〉 in dependence of field frequency
ωH for angles of the field σ = (~eH · ~h) equal to 0; 0.2; and 0.4;. Solid lines
are values in asynchronous regime, where σ increases in upward direction.
Dashed line is synchronous rotation with the field frequency.

The calculated values of average angular velocity (3.26) is shown in fig.
3.5. As can be seen, the average rotational frequency in precessing field
only slightly differs from the situation in rotating field with the same field
strength H. It should be mentioned that for σ > 1

3 the graph of 〈ω~n〉 has
discontinuity between synchronous and asynchronous regime. This can be
seen in the fig. 3.5 for σ = 0.4. For σ < 1

3 the stable node disappears in
saddle node bifurcation, what means that the place, were the stable node is,
is still attractive and the plane of lag should go through this point. But for
σ > 1

3 the change of the stability of the regime changes the stability of the
node. That means that, when the synchronous regime becomes unstable, rod
should move to orthogonal plane to get stabilized in asynchronous regime,
which could have completely different rotational frequency.

As we remember from section 3.4, for σ > 1
3 , the stability changes at
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y = 1
3 and average frequency of asynchronous rotation in this situation is

〈ω~n〉 = ωH −
√
ω2
H −

ω2
a

3
= ωH

(
1−

√
9

2
σ2 − 1

2

)
,

which is unusable for σ < 1
3 and gives jump of average rotation frequency

of the rod equal to ωa
3

√
9σ2−1
1−3σ2 , when the particle goes from synchronous to

asynchronous regime or vice versa.

3.8 Experiment

To test provided theory, the experiment was made. The experiment was
made in Laboratory of Magnetic Soft Materials in University of Latvia by
Artis Brasovs and Kaspars Ērglis. In the experiment superparamagnetic
rods, which were synthesized according to the method detailed in [35], were
used. Technical details about used setup can be found in appendix B. The
superparamagnetic rod dynamics in synchronous and asynchronous regime
were studied using rotating field with field strength Hr = 54Oe and fixed
field frequencies in the range 0.05Hz − 2Hz and the constant field Hω was
increased in step like manner. Experimentally obtained angles of one rod
and corresponding magnetic field for one field frequency are shown in fig.
3.6. In this experiment mixture of glycerol and water in volume fractions
3:7 were used.

In fig. 3.6 it can be seen, that for small constant field strengths Hω rod
rotates slower, because it is in asynchronous regime, but, when the constant
field strength Hω is increased, at one moment rod starts to rotate much
faster (with the field frequency). The transition from asynchronous regime
to synchronous regime is not smooth. This can be seen as distortion of angle
graph at t ≈ 300 s. The reverse process, when rod moves from synchronous
to asynchronous state, can be seen at right end of the graph fig. 3.6, where
the rod rotates with field frequency or near to it even when the field strength
is below critical value and particle should be in asynchronous state.

To compare experimental results with theory the average rotational fre-
quency form obtained angles for each field strength ration Hω

Hr
were cal-

culated. First 10 s for each field strength is omitted in the calculation of
average frequency, in order to reduce influence of the previous state of super-
paramagnetic rod. The experimentally obtained results of average angular
velocity is seen in fig. 3.7.

As was seen in fig. 3.6 the transition from asynchronous regime to the
synchronous and vice versa took long time therefore in fig. 3.7 points, where
transition between stable and unstable regime was observed, is omitted. In
fig. 3.7 can bee seen that approximation goes a bit above experimental
values. This is done because it is assumed that rod is not fully stabilized in
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Figure 3.6: Experimentally measured orientation angle ϕ of the superpara-
magnetic rod (solid line and left axis) for different constant field strengths
Hω (dashed line and right axis) change in time. Rotating field frequency is
0.25Hz

the new state and rotates closer to the previous state, which in increasing
field strength is slower than new state. We could chose smaller ωc, which
makes approximation go through majority of the points of fig. 3.7. But
in that case critical value of Hω, where transition from asynchronous to
synchronous regime occurs, would increase and we will get that first (or
more) point of the synchronous regime would fall in asynchronous regime of
the approximation.

Experimentally 15 particles each for 2 or 3 different frequencies were
observed. Approximation of the experimental results gives ωc in the range
between 0.4 1

s and 1.3 1
s with mean value ωc = 0.81

s . To compare it with
other experiments, form-factor

F =
∆χ

8πΓ
=
ωcη

H2
r

of the rod should be calculated, which is characteristic property of the rod.
We get that form-factor F of the rods used in experiment is between 3.7·10−5

and 1.2 · 10−4 with mean value 7.1 · 10−5. Here the viscosity is calculated
according to [23] in temperature 25oC using volume fraction of water and
glycerol as 3:7. This gives η = 0.27P large viscosity. Calculated form-factor
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s in the asynchronous regime (lower circles).

is less than theoretical value F = 8.1 · 10−4 [14] but more then measured
value F = 4.7 · 10−5 in the same paper. The difference between theoretical
and measured value can be explained by finite size of the measurement cell,
which increases drag due to nearness of the walls, and is not taken into
account in theory.

In the precessing magnetic field the asynchronous rotation of the rod
besides back and forth [37] motion also has as swinging motion. The dy-
namics of rod with ωc = 0.41

s in precessing with field frequency 0.075Hz
and constant field strength Hω = 31.2Oe is shown in fig. 3.8. There can be
seen that at some time one end of the rod is sharp (in the focus) and after
some time the other end of the rod is sharp. And the visible length of the
rod is also changing. Only one end of the rod is sharp because rod is not
perpendicular to the plane of observation, but is tilted. In the asynchronous
regime rod lags from the rotating field and after some time the other end of
the particle is closer to the magnetic field. Therefore the other end of the
rod tries to align with the field, what looks like swing and other end of the
particle gets into focus (and becomes sharp).

The observable length of the particle is not compared with theoretical
result because in many pictures like at t = 16 s in fig. 3.8 it is hard to
define observable length. In synchronous regime particles is steeper than in
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Figure 3.8: Dynamics of the rod in asynchronous regime

asynchronous regime which makes it almost impossible to measure visible
length of the rod right. In order to measure angle of the rod in synchronous
regime, the camera with higher depth of field should be used or the direction
of observation should be changed which is impossible for used setup.



Chapter 4

Superparamagnetic particle
in microrheological
measurements

4.1 Motivation and contents

Possible usages of magnetic rods for microrheology are interested by scien-
tists [24, 9]. We wanted to try use method described long time ago by Crick
[31, 30] for measuring viscoelastic properties.

In this chapter in order to measure form-factor of the rods configuration
of crossed AC and DC magnetic fields is used. The possible stable regimes
in crossed AC and DC magnetic fields will be shown and stability of these
regimes will be calculated numerically for general case. Dynamics of the
rod in slow field and fast field limit will be calculated. It will be shown
how experimental data is processed for form-factor and microrheological
measurements.

4.2 Model

In this chapter the superparamagnetic particle is used, therefore here similar
equations to chapter 3 will be used. The equation of motion of the particle
is taken from chapter 3 (3.1):

d~n

dt
=
V∆χ

ξ
(~n · ~H)

[
~H − (~n · ~H)~n

]
, (4.1)

Here elongated particles will be used, therefore ∆χ > 0
In this chapter crossed AC and DC magnetic fields will be used ~H =(

H⊥ cos(ωHt), 0, H‖
)
. Since magnetic field is two dimensional, the particle

will rotate in the same plane as magnetic field is, therefore particle motion

67
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can be expressed using only one angle ϕ: ~n = (sinϕ, 0, cosϕ). The equation
(4.1) in the angle representation looks:

2ϕ̇ = ωc

[
1

2
h2
⊥ cos(2ωHt) sin(2ϕ) +

(
1

2
h2
⊥ − 1

)
sin(2ϕ)+

+ 2h⊥ cos(ωHt) cos(2ϕ)

]
,

(4.2)

where ωc =
V∆χH2

‖

ξ
and h⊥ =

H⊥
H‖

.

4.3 Possible regimes

In the limit t→∞ particle can oscillate around DC magnetic field 〈ϕ〉 = 0
or around AC magnetic field 〈ϕ〉 = π

2 , where

〈ϕ〉 =
1

T

t+T∫
t

ϕ(s)ds

is the average value over the period T . This is because in the limit t → ∞
〈ϕ〉 should not change and we demand that ϕ̇(t + T

2 ) = −ϕ̇(t), what will
give that 〈ϕ̇〉 = 0. This condition is possible only if ϕ(t + T

2 ) = −ϕ̇(t) or
ϕ(t+ T

2 ) = π−ϕ(t) (equivalently ϕ(t+ T
2 )− π

2 = π
2 −ϕ(t)), what gives that

〈ϕ〉 = 0 or 〈ϕ〉 = π
2 in the stabilized regime where 〈ϕ〉 does not change over

period. To both of the found results kπ can be added, where k ∈ Z, because
~n is equivalent to −~n.

Around which of the magnetic fields AC or DC will particle fluctuate

depends on field frequency
ωH
ωc

and field strength ratio h⊥ =
H⊥
H‖

and can

be found numerically. In order to do numerical calculations we should prove
that both regimes 〈ϕ〉 = 0 and 〈ϕ〉 can not be stable simultaneously. We can
see in equation (4.2) that ϕ̇ depends linearly on sin(2ϕ) and cos(2ϕ), there-
fore time derivative of small perturbation around state ϕ will also depend
linearly on sin(2ϕ) and cos(2ϕ), which for transformation ϕ → ϕ + π

2 will
change sign. Therefore if the state with values ϕ is stable then state with
values ϕ + π

2 is unstable and vice versa. What means that only one of the
two possible states is stable and it is sufficient to calculate ϕ(t+ T )− ϕ(t)
and 〈ϕ〉 to know which of the states is stable. For example, if 0 < 〈ϕ〉 < π

2
and ϕ(t+T )−ϕ(t) < 0 then stable is state 〈ϕ〉 = 0, but if ϕ(t+T )−ϕ(t) > 0
then stable is state 〈ϕ〉 = π

2 . For better accuracy it is better to choose ϕ
around π

4 to increase ϕ(t+ T )− ϕ(t) values. The numerical results for line
of neutral stability is shown in fig. 4.1.

In fig. 4.1 can be seen that for slow fields or field with strong DC
magnetic field, stable is fluctuation of the particle around DC magnetic
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Figure 4.1: Phase diagram. Solid line is line of neutral stability. In the
region I oscillation of the particle around DC magnetic field is stable, in
the region II oscillation of the particle around AC magnetic field is stable.
Dashed line is asymptote H⊥

H‖
=
√

2 of solid line in the limit ωH →∞.

field. But if the field frequency is high or AC magnetic field is strong, the
particle prefer to fluctuate around AC field. The asymptote h⊥ =

√
2 will

be discussed in the next section.

4.3.1 Slow field limit

Equation (4.2) can be written into form:

ϕ̇ = ωcp(t, ϕ) , (4.3)

where

p(t, ϕ) = (h⊥ cos(ωHt) sinϕ+ cosϕ) (h⊥ cos(ωHt) cosϕ− sinϕ)

At the low frequency limit ωH � ωc particle is always aligned with
magnetic field and orientation angle ϕ stays on one of the stable solution
p(t, ϕ) = 0 (∂p(t,ϕ)

∂ϕ < 0) fig. 4.2. This solution corresponds to regime
〈ϕ〉 = 0.

At the extreme values of h⊥ � 1 (H⊥ � H‖) ϕ jumps between neighbor-

ing stable states p(t, ϕ) = 0 (∂p(t,ϕ)
∂ϕ < 0) fig. 4.3. In this situation H‖ can be

assumed as small perturbation of H⊥ and particle is in pure AC magnetic
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Figure 4.2: Numerical solution of particle movement (solid line) (4.2) in
slow field limit ωH = ωc

20 comparison with solution (4.4) (dashed line) at
H⊥ = 43H‖ - near neutral stability line shown in fig. 4.1. 〈ϕ〉 = 0 regime.

field, therefore it stays in AC field direction all the time. This corresponds
to regime 〈ϕ〉 = π

2 .
The equation p(t, ϕ) = 0 has two solutions

tanϕ = h⊥ cos(ωHt) & cotϕ = −h⊥ cos(ωHt)

and corresponding first derivatives ∂p(t,ϕ)
∂ϕ are

− cos2 ϕ
(
h2
⊥ cos2(ωHt) + 1

)
& sin2 ϕ

(
h2
⊥ cos2(ωHt) + 1

)
It can be seen that ∂p(t,ϕ)

∂ϕ < 0 for solution tanϕ = h⊥ cos(ωHt) for all values
of ϕ and t. This solution corresponds to particle which is aligned with
magnetic field ~n‖ ~H, but the solution cotϕ = −h⊥ cos(ωHt) corresponds
to particle which is orthogonal to magnetic field ~n ⊥ ~H, which, also from
physical point of view, is unstable. Therefore in fig. 4.2 and fig. 4.3 only
solution

tanϕ = h⊥ cos(ωHt) (4.4)

is shown.
In fig. 4.2 can be seen that in slow field limit ωH � ωc particle follows

direction of magnetic field even if the H⊥ is much larger then H‖. Near
neutral line of stability of fig. 4.1 particle starts to deviate from the direction
of magnetic field in the range where magnetic field direction changes rapidly
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Figure 4.3: Numerical solution of particle movement (solid line) (4.2) in
slow field limit ωH = ωc

20 comparison with solution (4.4) (dashed line) at
H⊥ = 44H‖ - near neutral stability line shown in fig. 4.1. 〈ϕ〉 = π

2 regime.

(this can be seen in fig. 4.2 near t = T
4 and t = 3T

4 . If we increase magnetic
field more, then deviation becomes larger until other end of the particle
is closer to the field direction. Then the particle starts to jump between
neighbouring states with p(t, ϕ) = 0 as can be seen in fig. 4.3 and particle
oscillates around AC field.

4.3.2 Fast field limit

At the fast field limit ωH � ωc there are two time scales: fast time scale
ωH corresponding to the period of the AC field, and slow time scale ωc
determined by the magnetic torque on the particle. The change of the angle
ϕ of the particle can be divided in slow part ϕs and fast part ϕf :

ϕ(t) = ϕs(t) + ϕf (t)

In the slow time scale ϕs(t) all the time effects, which comes from field
frequency ωH , are averaged out. Using identity 〈cos(ωHt)〉 = 0 the equation
(4.2) for slow field is:

2ϕ̇s = ωc

(
1

2
h2
⊥ − 1

)
sin(2ϕs) , (4.5)

which gives slow relaxation to one of the stable regimes.
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In the fast time scale we use that amplitude of fast oscillations is small,
therefore it can be assumed that ϕ(t) = ϕs(t) is constant. Then equation
(4.2) after subtraction of (4.5) can be integrated:

ϕf =
ωc
ωH

(
1

8
h2
⊥ sin(2ωHt) sin(2ϕs) + h⊥ sin(ωHt) cos(2ϕs)

)
This gives fast oscillations with frequency ωH and amplitude ωc

ωH
around

particles mean orientation ϕs.
Equation (4.5) shows that for h⊥ <

√
2 slow orientation angle tends to

value ϕs = 0 and particle relaxes to stable oscillations around DC magnetic
field. For h⊥ >

√
2 slow orientation angle goes to ϕ = pi

2 and particle

relaxes to stable oscillations around AC magnetic field. This value h⊥ =
√

2
is shown in fig. 4.1 by dashed line.

Equation (4.5) can be solved analytically:

ln(| tan(ϕs)|) = −λt+ C

or equivalently
ϕs = arctan [exp (−λt+ C)] , (4.6)

where

λ = ωc

(
1−

h2
⊥
2

)
and C is arbitrary constant, which is determined by the initial conditions.

The numerical solution of equation (4.2) in the fast field limit ωH � ωc
is shown in fig. 4.4 by the grey line. The grey line looks wide because,
besides slow rotation of the the particle, it also oscillates around its mean
value, with much higher frequency. As we can see, the numerical results is
in good agreement with solution (4.6) in the slow time scale.

4.4 Stray field

In the experiment AC magnetic field frequency was 50Hz and images was
obtained at frame-rate 25 frames per second. It was seen that particle rotates
slowly and is a bit smeared, what is in good agreement with found results
in fast field limit. Therefore we can assume that ωc � ωH and use equation
(4.6) for approximation of experimental results.

In experiment AC and DC fields are calculated using currents in the
coils (which is calibrated), but experimental results showed some deflection
from theory. Without AC magnetic field, the particle aligns with DC field.
Then turning on AC field with H⊥ >

√
2H‖ and ωH � ωc theoretically

it is equal probable for particle to rotate in both directions ϕ > 0 and
ϕ < 0, but in experiment it was found that one direction is more probable.
And was found that in experiment particle stops moving not only at values
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Figure 4.4: Numerical solution of particle movement (black line) (4.2) in
fast field limit ωH = 100ωc comparison with solution (4.6) (grey line) at
H⊥ = 1.41H‖ - near neutral stability line H⊥ =

√
2H‖.

ϕ = 0 or ϕ = π
2 , but also at some other values in between. Therefore

additional stray field Hs is introduced in the direction of AC field, which
theoretically explains experimentally observed behaviour. Then magnetic
field is ~H = (H⊥ cos(ωHt) +Hs, 0, H‖) and equation (4.5) for the change of
the angle ϕ in slow time scale is:

2ϕ̇s = ωc

[
1

2

(
H⊥
H‖

)2

+

(
Hs

H‖

)2

− 1

]
sin(2ϕs) + 2ωc

Hs

H‖
cos(2ϕs) (4.7)

This equation can be solved analytically:

ln(| tan(ϕs − ϕ∞c )|) = −λ′t+ C

or equivalently

ϕs = ϕ∞s + arctan
[
exp

(
−λ′t+ C

)]
, (4.8)

where C is arbitrary constant, which is determined by the initial conditions
and

λ′ = ωc
√
A2 +B2 , (4.9)

and function

ϕ∞s =
1

2
arccos

(
A√

A2 +B2

)
, (4.10)
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Figure 4.5: Stationary orientation angle ϕ∞s as a function of dimensionless
AC magnetic field H⊥

H‖
for different values of the stray field Hs: Hs = 0.01H‖

- solid line, Hs = 0.1H‖ - long dashed line, Hs = 0.5H‖ - short dashed line
and Hs = H‖ - dash-dot line.

where

A = 1− 1

2

(
H⊥
H‖

)2

−
(
Hs

H‖

)2

& B = 2
Hs

H‖

ϕ∞s is angle around which will particle oscillate after long time if the mag-
netic field components H‖, H⊥ and Hs are kept constant.

Here stray field is assumed only in AC field direction, firstly because stray
field in DC direction would not change physically observable movement just
critical values of the AC magnetic field strength. Secondly, less unknown
values make approximation of noisy experimental data more robust. Thirdly
stray field is observed mainly in AC field direction.

In the limit Hs → 0 we get that λ′ = |λ| and ϕ∞s = 1
2 arccos [sign (A)],

what is ϕ∞s = 0 for A > 0 and ϕ∞s = π
2 for A < 0. Therefore results in the

limit Hs → 0 are equal to results found in section 4.3.2 without stray field,
what validates the found results. Therefore stray field smooths jump of ϕ∞s
graph what can be seen in fig. 4.5, where increase of stray field Hs makes
graph more flat.

The relaxation constant λ′ has a minimum in dependence of H⊥H‖
at H⊥

H‖
=√

2

[
1−

(
Hs
H‖

)2
]

and minimal value is λ′ = 2ωc
Hs
H‖

if Hs
H‖

< 1. It can be seen
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Figure 4.6: Relaxation constant λ′ in dependence of AC magnetic field
strength H⊥ for different stray field strength Hs values. Hs = 0.01H‖ -
solid line; Hs = 0.1H‖ - long dashed line; Hs = 0.5H‖ - short dashed line;
Hs = H‖ - dash-dot line.

in fig. 4.6 that minimum moves to the left if Hs
H‖

is increased. If Hs ≥ H‖,

minimum stays at H⊥ = 0 and minimal value is λ′ = ωc

[
1 +

(
Hs
H‖

)2
]

.

From equations (4.9) and (4.10) we see that minimum of λ′ is at A = 0 or
φ∞s = π

4 , where both directions (AC and DC) are equal distant, if Hs < H‖.
It was found that stray field strength in experiment is around 0.1H‖.

4.5 Experimental results

The experiment was made in Laboratory of Magnetic Soft Materials in Uni-
versity of Latvia by Artis Brasovs and Kaspars Ērglis. In the experiments
described in this work superparamagnetic rods were synthesized according
to the method detailed in [35]. Technical details about used setup can be
found in appendix B. Dynamics of the superparamagnetic rod at different
values of H⊥

H‖
were studied by applying impulses of AC field with frequency

50 Hz with increasing amplitude while retaining a constant value of DC
field H‖ = 18Oe. The orientation angle and field fraction h⊥ = H⊥

H‖
in the

dependence of time for one particle are shown in fig. 4.7.
The experimental data was divided in intervals, where h⊥ is constant

and in each interval approximated by equation (4.8). In order to reduce
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Figure 4.7: Experimentally measured mean orientation angle ϕs of the mag-
netic rod (solid line and left axis) for different AC field strengths h (dashed
line and right axis) as a function of time.

errors, for each interval the local time is used, which is zero at beginning of
the interval. The experimental data and their approximation in one of the
intervals are shown in fig. 4.8. The approximation is made using (4.8) by
varying ϕ∞s , λ′ and C, thus in each interval ϕ∞s and λ′ are found, what give
ϕ∞s and λ′ in dependence of h⊥.

For each rod more than 20 intervals with significant change of ϕs were
found, where less than half of them were for h⊥ = 0. Therefore for each
particle more than 20 plausible ϕ∞s and λ′ values were found. Further for
each experiment ϕ∞s was approximated by (4.10) from which the stray field
Hs
H‖

was found. Experimental results of ϕ∞s and its approximation with (4.10)

for one rod can be found in fig. 4.9.
From obtained values of λ′ the characteristic frequency ωc is found using

fit to (4.9), where Hs
H‖

is known from fit of ϕ∞s . This fit also shows that Hs
H‖

is found correctly. Experimental results of λ′ and its approximation with
(4.9) for one rod can be found in fig. 4.10. It was found that characteristic
frequency ωc is from 0.5Hz for the longest particle (shown in fig. 4.7, 4.8,
4.9 and 4.10) to 2.4Hz for shortest particle with mean value 1.5Hz.

Lets remember that ωc =
V∆χH2

‖
ξ and assume that particle is ellipsoidal,

then from (1.24) we have ξ = 8πηV Γ. This gives us possibility to calculate



CHAPTER 4. MICRORHEOLOGICAL MEASUREMENTS 77

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  5  10  15  20  25  30  35  40

ϕ
s,

 o

t, s

Figure 4.8: Experimentally measured mean orientation angle ϕs of the mag-
netic rod in the region with constant h⊥ = 1.58 as a function of the lo-
cal time in the interval. Full circles denote the experimental data. The
solid line shows the fit of experimental data with (4.8) with parameters
ϕ∞s = 74.3◦, λ′ = 0.12s−1 and C = 1.15. This interval in experiment time
is t ∈ (206 s, 241 s) shown in fig. 4.7.

dimensionless form-factor

F =
∆χ

8πΓ
=
ωcη

H2
‖

, (4.11)

which depends on particles form and material. For used rods experimental
obtained form-factor F is between 1.7 · 10−5 and 7.4 · 10−5 with mean value
at 4.7 · 10−5, where the viscosity of water at room temperature is taken
η = 1 cP .

The form-factor F can be also calculated theoretically from known values
of rod. In experiment were used rods with axis ratio a

b = 18 and susceptibil-

ity χ = 3.4 [24], what gives theoretical value of form-factor F = 8.1 · 10−4,
which is more than 10 times larger then experimental value. Experimen-
tally obtained value is smaller because of enhanced rotational drag on the
rod due to its settlement near the bottom of the cell under action of the
gravitational force.

In experiment was found that stray field is H0 = 1.1Oe. Comparing it
with horizontal component of Earth’s magnetic field in Riga HRiga = 0.16Oe
[61], gives that stray field comes from equipment and therefore it is called
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Figure 4.9: Orientation angle ϕ∞0 dependence on the parameter h⊥. Full
circles denote experimental data obtained from a fit to (4.8). The solid line
shows a fit to (4.10), using stray field Hs

H‖
= 0.06.

the stray field. It was also found that this stray field is in the direction of
earth magnetic field.

4.6 Magnetorheological measurements

The rods characterized in crossed AC and DC fields are used to determine
the viscoelastic properties of the gel by studying the relaxation of the rod
orientation after releasing the acting torque in the deformed state of the
gel. The geometry and the process of the experiment are explained in fig.
4.11. Magnetic torque is applied on the particle for small time interval T .
Afterwards the magnetic field is switched off and relaxation of the particle
to the position near initial is registered. In experiments the magnetic field
with strength H0 = 36Oe is used.

Magnetic torque on superparamagnetic rod in the setup shown in fig.
4.11 is calculated as (2.22):

~Mm = ~m× ~H = V∆χ( ~H · ~n)[~n× ~H] ,

which in angle representation looks like

Mm =
V∆χH2

0

2
sin
(π

2
− 2ϑ

)
. (4.12)
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Figure 4.10: Relaxation frequency λ′ dependence on the parameter h⊥. Full
circles denote experimental data obtained from a fit to (4.8). The solid line
shows a fit to (4.9), using characteristic frequency ωc = 0.5Hz and stray
field Hs

H‖
= 0.06.

This torque is balanced by viscoelastic torque, which can be calculated from
Jeffrey fluid model (1.37) giving:

dMm

dt
+
Mm

τM
=
ξV + ξM
τM

dϑ

dt
+ ξV

d2ϑ

dt2
, (4.13)

where ξV and ξM are rotational drag coefficients (1.24) of corresponding
dashpots with viscosities ηV and ηM .

Since the duration of the applied magnetic field was chosen to be fairly
short so the angle ϑ is close to its initial value π

2 all the time, it is possible
to consider the case with the constant applied torque determined by the
magnetic torque in the initial moment of time ϑ = π

2 . This assumption
gives magnetic torque:

Mm =
V∆χH2

0

2
. (4.14)

And dynamic of the particle is defined by equation:

η0
dϑ

dt
+ ηV τM

d2ϑ

dt2
= −FH

2
0

2
, (4.15)

where η0 = ηV + ηM and F is form factor defined in (4.11).
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Figure 4.11: Sketch of the experiment of microrheology. Magnetic rod is
initially oriened along the y axis by the application of the magnetic field.
At some moment the magnetic field is swiched to a new direction making
an angle pi

4 with the y axis. The time interval T of the application of
the magnetic field in π

4 direction is chosen to be small enough to ensure
that during this time interval the magnetic torque acting on the particle is
practically constant. During this time the angle ϑ of the particle changes
from initial π

2 to some value ϑ(T ) < π2. After time interval T the magnetic
field is swiched off and relaxation process of the angle ϑ to a value close to
the initial is registered.

Solving (4.15) gives similar expression to (1.38)

ϑ(t) = ϑ(0)−FH
2
0

2

1

η0
t−τJ

(
ϑ̇(0+) +

FH2
0

2

1

η0

)[
1− exp

(
− t

τJ

)]
, (4.16)

where τJ =
ηMηV
η0E

is Jeffrey relaxation time. Angular velocity at initial time

ϑ(0+) can be found in two equivalent ways. First, by integrating (4.13) in
the time interval [−ε, ε], where due to the switching of the direction of the
magnetic field, the term Ṁm is infinity large. Taking the limit ε → 0 the
only terms which gives finite contribution are

ε∫
−ε

dMm

dt
dt = Mm(ε)−Mm(−ε) = −V∆χH2

0

2

and
ε∫
−ε

d2ϑ

dt2
dt = ϑ̇(ε)− ϑ̇(−ε) = ε̇(0+)

Therefore

ϑ̇(0+) = −FH
2
0

2

1

ηV
(4.17)

Second possibility is using assumption that at initial state spring in Jeffrey
model (fig. 1.5) has no strain. Therefore strain on dashpot with ηM also
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must be zero, since it is in series with spring. Therefore all applied strain
works on dashpot with ηV , And we get equation (4.17).

With calculated ϑ(0+) eqrefeq:tetaexp1 can be written in form:

ϑ(t) = ϑ(0)− FH2
0

2

1

η0
t− FH2

0

2

1

k

[
1− exp

(
− t

τJ

)]
, (4.18)

where k =
η20E

η2M
. In [14] is used a bit different description of Jeffrey model, but

the obtained equation (4.18) is the same. Jeffrey model has three unknown
parameters and the sets (ηV , ηM , E) and (η0, k, τJ) are equivalent to describe
properties of viscoelastic fluid.

Since torque is applied only for short time, it can be assumed that t� τJ
and only linear part of the equation (4.18) will be used:

ϑ(t) =
π

2
− FH2

0

2

1

ηV
t (4.19)

At the time moment t=T the magnetic field is switched off and the orien-
tation angle relaxes towards the initial value due to the accumulated elastic
energy in the gel. The relaxation process when M = 0 is described by the
equation:

d2ϑ

dt2
+

1

τJ

dϑ

dt
= 0 (4.20)

The solution of the equation (4.20) is

ϑ(t) = ϑ(T )− τJ ϑ̇(T+)

[
1− exp

(
− t− T

τJ

)]
(4.21)

The angular velocity of the rod at the time moment T+, when the field
is switched off, can be found as previously by the integration of equation
(4.13) in the time interval [T − ε, T + ε]. In the limit ε→ 0 we get:

ϑ̇(T+)− ϑ̇(T−) =
FH2

0

2

1

ηV

and ϑ̇(T−) can be calculated from (4.18):

ϑ̇(T−) = −FH
2
0

2

[
1

η0
+

1

τJk
exp

(
− T
τJ

)]
Putting all this in equation (4.21) gives:

ϑ(t) = ϑ(T )− FH2
0

2

1

k

[
1− exp

(
− T
τJ

)][
1− exp

(
− t− T

τJ

)]
(4.22)

Relations (4.19) and (4.22) are further used to describe experimental
results and calculate rheological parameters.
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Figure 4.12: Dependence of the orientation angle of the rod if Pf1 gel when
the field is on and off. Experimental data- full circle, approximation with
(4.19) and (4.22) - solid lines.

In figure 4.12 can be seen experimental data obtained in Laboratory of
magnetic soft materials at University of Latvia by Artis Brasovs and Kaspars
Ērgis. The experimental setup is described in fig. 4.11 and particles are
characterized in section 4.5.

From the approximation of experimental data when the magnetic field is
switched on with the straight line (4.19) the constant ηV can be found (left
part of fig. 4.12). Approximating right part of fig. 4.12 when the magnetic
field is switched off with (4.22) the parameters k and τJ can be found.
Therefore viscoelastic properties of the fluid can be found. The results of
viscoelastic properties of Pf1 gel with different concentration of MgCl2 salt
is found in [14], where in this section described method is compared with
macrorheological measurements.



Chapter 5

Stochastic dynamics of hard
magnetic dipole in
viscoelastic fluid

5.1 Motivation and contents

Available theory for contrast agents for nuclear magnetic resonance (NMR)
assumes that contrast agents are immersed in viscous fluid [57]. Liquids
in human organism are mainly viscoelastic (not viscous). The aim of this
chapter is to compare relaxation relation in viscous and viscoelastic fluid.

In this chapter the relaxation of particle in viscoelastic fluid without
magnetic field in 2 dimensional case will be calculated analytically. Series
expansion of relaxation of the particle direction in viscoelastic fluid in 3
dimensions will be derived. The numerical algorithm for calculating particle
direction relaxation in 3 dimensions in static external magnetic field will
be shown. Qualitative difference between relaxation of magnetic particle in
viscous and viscoelastic fluid will be given.

5.2 Model

For modelling viscoelasticity we will use Jeffrey fluid model discussed in
section 1.6.3. As mentioned in section 1.6.3 Jeffrey model consists of parallel
connected viscous element (dashpot) and Maxwell element. Without any
additional forces in inertia-free limit the equation of motion of the particle
is:

~MV + ~MM = 0 (5.1)

where viscous part satisfies

~MV = −ξV ~ω + ~ζV (5.2)

83
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and Maxwell part satisfies

~MM + τM
d ~MM

dt
= −ξM~ω + ~ζM , (5.3)

where ξV,M = 8πV ηV,MΓ is drag coefficient of corresponding dashpot in
Jeffrey model (fig. 1.5), τM = ηM

E is Maxwell relaxation time and ζV,M is

corresponding white noise terms with 〈ζV,Mi (t)〉 = 0 and

〈ζV,Mi (t)ζV,Mk (t′)〉 = 2δikξV,MkBTδ(t− t′)

Combining equations (5.1), (5.2) and (5.3) give system of stochastic dif-
ferential equations: 

~ω =
~MM

ξV
+
~ζV

ξV

d ~MM

dt
= −

~MM

τJ
−
~ζV

τV
+
~ζM

τM

, (5.4)

where τJ = ξV τM
ξV +ξM

= τM τV
τV +τM

and τV = ξV τM
ξM

= ηV
E

5.3 Two-dimensional case

In two-dimensional (2D) case, when particle can rotate only in the plane,
equation (5.4) can be written in form, where ~ω and ~MM have only one
nonzero component. Then angular velocity ~ω is time derivative of angle φ
between particle direction ~n and some static axis ~eH in the plane of rotation
of particle. Then we have system of stochastic equations for the angle φ:

dφ

dt
= ω =

MM

ξV
+
ζV

ξV

dMM

dt
= −M

M

τJ
− ζV

τV
+
ζM

τM

(5.5)

The second equation of (5.5) can be solved giving:

MM (t) = MM (0) exp

(
− t

τJ

)
−

t∫
0

exp

(
− t− τ

τJ

)(
ζV (τ)

τV
− ζM (τ)

τM

)
dτ

(5.6)
Equipartition gives that in equilibrium mean energy on the spring in Jeffrey

model 〈M
M (t)mM (t)〉

2k is equal to kBT
2 , where k = 8πV ΓE = ξM

τM
is stiffness of

the spring. This gives that

〈MM (t)MM (t)〉 =
kBTξMξV

(ξM + ξV )τJ
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〈MM (t)MM (t)〉 should stay constant all the time and mean value 〈MM (t)〉 =
0. Then, using that both white noise generators are independent of MM

(〈MM (t)ζM,V (t′)〉 = 0) and independent between themselves (〈ζV (t)ζM (t′)〉 =
0), the correlation of MM can be calculated analytically:

〈MM (t)MM (t′)〉 =
kBTξMξV

(ξM + ξV )τJ
exp

(
−|t− t

′|
τJ

)
(5.7)

This result gives us possibility to calculate correlation of ω:

〈ω(t)ω(t′)〉 =
2kBT

ξV
δ(t− t′)− kBTξM

(ξM + ξV )ξV τJ
exp

(
−|t− t

′|
τJ

)
(5.8)

and 〈ω(t)〉 = 0.
In 2D we can simply calculate average value of change of the angle φ:

〈φ(t)− φ(t′)〉 =

t∫
t′

〈ω(τ)〉 dτ = 0

and mean square rotation is

〈[φ(t)− φ(t′)]2〉 =

t∫
t′

t∫
t′

〈ω(τ)ω(τ ′)〉 dτdτ ′ =

= 2D

{
|t− t′|+ τJ

ξM
ξV

[
1− exp

(
−|t− t

′|
τJ

)]} , (5.9)

where D = kBT
ξV +ξM

is rotational diffusion coefficient. This result coincide

with results found by Raikher and Rusakov [72], [73]. For simplicity we will
use that t′ = 0 and t > 0, then (5.9) can be written for new parameter
∆φ = φ(t)− φ(0) in form:

〈(∆φ)2〉 = 2D

{
t+ τJ

ξM
ξV

[
1− exp

(
− t

τJ

)]}
(5.10)

Equation (5.10) shows two diffusion processes. Expanding (5.10) in the
limit t� τJ we get fast diffusion:

〈(∆φ)2〉 = 2D
ξM + ξV
ξV

t =
2kBT

ξV
t (5.11)

and in the limit t� τJ we get slow diffusion:

〈(∆φ)2〉 = 2D

(
t+ τJ

ξM
ξV

)
(5.12)

The difference between (5.11) and (5.12) becomes notable if ξM � ξV .
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The Jeffrey fluid in the limit ξM � ξV becomes equivalent to Maxwell
fluid model discussed in section 1.6.1. The main advantage of Jeffrey fluid
is that diffusion in short times t � τJ is large but finite (5.11), where in
Maxwell model it becomes infinite what is non-physical. For the long time
interval t� τJ both models give similar result (5.12).

The Jeffrey fluid in the limit ξM � ξV becomes equivalent to Voigt-
Kelvin fluid model discussed in section 1.6.2. This situation is not interesting
for further analysis because it gives same result as viscous fluid:

〈(∆φ)2〉 = 2Dt

for all values of t.
Since ω consists of independent and identically distributed random beats,

then, according to central limit theorem, ω is normally distributed. Since
∆φ is infinite sum (integral) of normally distributed variables ω, then ∆φ
is also normally distributed. Exponent of normally distributed variables is
log-normally distributed with mean value [69]:

〈exp(i∆φ)〉 = exp

(
−〈(∆φ)2〉

2

)
(5.13)

since mean value 〈∆φ〉 = 0
On the other hand

exp(i∆φ) = exp(i[φ(t)− φ(0)]) =

= cos(φ(t)) cos(φ(0)) + sin(φ(t)) sin(φ(0))−
− i[sin(φ(t)) cos(φ(0)) + cos(φ(t)) sin(φ(0))]

Taking average of both sides gives that complex part on right hand side is
zero. After averaging the equation should not depend on starting value φ(0),
but only on time t, therefore we can add arbitrary constant to φ, what shows
that 〈cos(φ(t)) cos(φ(0))〉 should be equal to 〈sin(φ(t)) sin(φ(0))〉. Compar-
ing it with (5.13) and knowing that 〈cos2(φ(0))〉 + 〈sin2(φ(0))〉 = 1 gives
that:

〈cos(φ(t)) cos(φ(0))〉 = 〈sin(φ(t)) sin(φ(0))〉 =

=
1

2
exp

{
−Dt−DτJ

ξM
ξV

[
1− exp

(
− t

τJ

)]}
(5.14)

5.4 Three-dimensional case

In the 3-dimensional (3D) case solutions for MM (t) and ω(t) does not change
their appearance, just they are expanded to the 3D, where they are vectors
~MM and ~ω. For the components of the vector ~ω we can write:

〈ωi(t)ωk(t′)〉 = δik

[
2kBT

ξV
δ(t− t′)− kBTξM

(ξM + ξV )ξV τJ
exp

(
−|t− t

′|
τJ

)]
(5.15)
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The main difference between 2D and 3D case is that in 3D total rotation
depends on order of simple rotations. In general:

~ω1 × [~ω2 × ~n] 6= ~ω2 × [~ω1 × ~n] ,

where ~n denotes direction of the particle and satisfies equation

d~n

dt
= ~ω × ~n , (5.16)

where ~ω is coloured noise with zero mean and correlation defined in (5.15).

For further analysis it is necessary to introduce rotation matrix
~~U(t, t0)

with property

~n(t) =
~~U · ~n(t0)

in component form it looks:

ni(t) = Uik(t, t0)nk(t0)

From the definition of
~~U follows that

• ~~U(t, t) =
~~I, where

~~I is unit matrix.

• ~~U(t, t0) · ~~U(t0, t1) =
~~U(t, t1)

• ~~U−1(t, t0) =
~~U(t0, t)

And from fact that
~~U preserves length of ~n follows that

~~U is orthogonal
matrix with

• ~~UT (t, t0) =
~~U−1(t, t0)

The equation (5.16) for rotation matrix can be written as:

d
~~U(t, t0)

dt
=
~~W (t) · ~~U(t, t0) , (5.17)

where product of angular velocity ~ω× is replaced with skew-symmetric an-

gular velocity tensor
~~W , which in component form looks like:

Wik = εijkωj ,

where εijk is totally antisymmetric Levi-Civita symbol.
Integrating both sides of (5.17) gives:

~~U(t, t0) =
~~I +

t∫
t0

~~W (τ) · ~~U(τ, t0) dτ
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Putting in last expression into itself gives so called Dyson-Chen [10] series:

~~U(t, t0) =
∞∑
n=0

~~Un(t, t0) , (5.18)

where

~~Un(t, t0) =

t∫
t0

dτ1

τ1∫
t0

dτ2 · · ·
τn−1∫
t0

dτn
~~W (τ1) · ~~W (τ2) · · · ~~W (τn)

It also can be written using time-ordering operator T on exponent [10]

~~U(t, t0) = T exp

 t∫
t0

~~W (τ) dτ

 (5.19)

In order to find relaxation of ~n it is necessary to know mean value of
~~U(t, t0) calculated by (5.18) or (5.19). We will use (5.18), which reduces
problems with time-ordering.

〈~~U(t, t0)〉 =

∞∑
n=0

〈~~Un(t, t0)〉 (5.20)

Since ~ω is normally distributed with zero mean, all mean values of odd
powers (odd moments) of ~ω is zero, therefore

〈~~U2k+1(t, t0)〉 = 0 ∀k ∈ N

Whereas for mean values of even powers (even moments) of ~ω we can write

〈~~U2k(t, t0)〉 =
~~Ci1···in

t∫
t0

dτ1

τ1∫
t0

dτ2 · · ·
τn−1∫
t0

dτn〈ωi1(τ1)ωi2(τ2) · · ·ωin(τn)〉 ,

(5.21)

where
~~Ci1···in =

n∏
j=1

~~̀
ij and

~~̀
j is matrix with coordinates

(
~~̀
j

)
ik

= εijk.

Since ~ω is normally distributed, then 〈ωi1(τ1) · · ·ωin(τn)〉 can be expressed
using Isserlis’ theorem [64]:

〈ωi1(τ1) · · ·ωin(τn)〉 =
∑∏

〈ωij (τj)ωim(τm)〉 ,

where the notation
∑∏

means summing over all distinct ways of partition-
ing ωi1(τ1), ωi2(τ2), . . . , ωin(τn) into pairs. This sum consists of (2k − 1)!!
terms.
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As we remember 〈ωij (τj)ωim(τm)〉 contains δijim and
~~Ci1···in contains

sum of multiplications of δijim , because of identity of Levi-Civita sym-
bol εijlεlmk = δimδjk − δikδjm. Since all indexes ik is summed out, then

〈~~U2k(t, t0)〉 is some function of t− t0 multiplied by identity matrix
~~I, what

means that all directions is equivalent and they do not interact with each
other.

In order to calculate 〈~~U2k(t, t0)〉 we will divide ~ω into two non-cross-
correlated noises [69]:

~ω = ~ωV + ~ωM

where
〈ωVi (t)ωVj (t′)〉 = δij2D(1 + q)δ(t− t′)

and

〈ωMi (t)ωMj (t′)〉 = −δij
Dq

τJ
exp

(
−|t− t

′|
τJ

)
] ,

where we introduced new dimensionless parameter q = ξM
ξV

as in [73, 72].
Then

〈~~U〉 = 〈~~UV 〉 · 〈~~UM 〉 = 〈~~UM 〉 · 〈~~UV 〉 , (5.22)

where
~~UM,V is calculated using accordingly ~ωM,V . Equation(5.22) can be

proved using that ~ωM influence only
~~UM and ~ωV influence only

~~UV . Then
on the one hand〈

d
~~U

dt

〉
= 〈 ~~W · ~~U〉 = 〈 ~~WM · ~~UM 〉 · 〈~~UV 〉+ 〈~~UM 〉 · 〈 ~~W V · ~~UV 〉

on the other hand〈
d
~~U

dt

〉
=

〈
d
~~UM

dt

〉
· 〈~~UV 〉+ 〈~~UM 〉 ·

〈
d
~~UV

dt

〉
,

what proves the validity of (5.22).

For the
~~UV2k the only non-zero integral in (5.21) is the one where all

δ(τij − τik) has subsequent τi. This is possible only if i1 . . . in is progressive
and then integral is

t∫
0

dτ1

τ1∫
0

dτ2 · · ·
τn−1∫
0

dτnδ(τ1 − τ2) . . . δ(τn−1 − τn) =
1

2k
1

k!
tk ,

where first multiplier comes from the delta function, which is non-zero only
at the limit of the integral, second multiplier comes from multiple integration
of τi.
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For progressive i1 . . . in the matrix multiplier consists of k equal elements

εri1j1εj1i2sδi1i2 = −2δrs

therefore matrix multiplier is

~~Ci1···nδi1i2 . . . δin−1in = (−2)k
~~I

and we get that

〈~~UV2k(t, 0)〉 =
[−2D(q + 1)]k

k!
tk
~~I

Sum of 〈~~UV2k〉 gives exponent:

〈~~UV (t, 0)〉 = exp (−2D(q + 1)t)
~~I

We should emphasize that t > 0, otherwise we should use |t| instead of t.

The situation becomes more complicated with 〈~~UM (t, 0)〉, because in-
tegral (5.21) is non-zero for all combinations of i1 . . . in and these integrals

has different multipliers, which comes from
~~Ci1...in . Therefore this situation

is calculated explicitly using Wolfram Mathematica c©. The Mathematica c©

code is available in appendix C.2. Computational time increases more than
exponentially therefore only first six terms (not counting zeroth term) are

calculated of expansion of 〈~~UM 〉. Further we will leave 〈~~UM 〉 unexpanded
but keeping in mind that this is series which numerically can be calculated
to certain accuracy.

For further analysis we will need to calculate correlation of particle di-
rection ~n. This can easily be done knowing correlation of rotation matrix

〈~~U(t, t0)〉.
〈ni(t)nj(t′)〉 = 〈Uik(t, t′)nk(t′)nj(t′)〉

and Uik(t, t
′) is independent of starting position nk(t

′), therefore

〈ni(t)nj(t′)〉 = 〈Uik(t, t′)〉〈nk(t′)nj(t′)〉 .

Since all directions are equal, uncorrelated and ni(t)ni(t) = 1, then

〈nk(t)nj(t)〉 =
1

3
δkj .

This gives that correlation of ~n is

〈ni(t)nj(0)〉 =
1

3
〈Uij(t, 0)〉 =

1

3
exp (−2D(q + 1)t) 〈UMij (t, 0)〉 (5.23)
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If we assume that result for 〈~~U(t, 0)〉 is in form exp(λ(t)), where λ(t)
is some function of t, and use only first term of the expansion to compare
exp(λ(t)) with (5.20) we get similar result to 2D case (5.14):

〈~~U(t, 0)〉 = exp

{
−2Dt− 2DτJ

ξM
ξV

[
1− exp

(
− t

τJ

)]}
~~I (5.24)

Comparison of series expansion and approximate result (5.24) with numer-
ical results is shown in fig. 5.1.
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Figure 5.1: Comparison of results obtained by Dyson series with six terms
(solid line), approximated result (5.24) (dashed line) and numerical results
obtained by algorithm explained in section 5.6 (full circles). q = 100, 2DτJ =
0.001 and averaged in numerical experiment over N = 107 samples.

In figure 5.1 summation is outside averaging sign 〈〉 to make maximal
value equal to 1 and reduce error of numerical calculations. In fig. 5.1 as true
relaxation relation we will assume numerical result. As can be seen in fig. 5.1
approximate formula (5.24) gives wrong exponential decay for t > τJ . The
approximate result gives comparable result to numerical calculations only
for small values of q. Whereas result (5.23) with Dyson-Chen expansion in
fig. 5.1 gives reasonable result, but too few terms in expansion makes it to
depart from numerical result for larger times. Only six terms in Dyson-Chen
expansion are calculated because calculation time for terms increases more
than exponentially.
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5.5 Relaxation in external magnetic field

If we put this particle in the static magnetic field with magnetic field strength
~H = H~h then in the equation (5.1) additional therm ~MH should be added.
We assume that magnetic moment ~m of the particle is in the same direc-
tion as particle direction ~n which match hydrodynamic anisotropy axis (for
spherical particle all directions are equal). Therefore ~m = m~n and

~MH = mH~n× ~h (5.25)

Then equation of angular velocity is similar to (5.4):
~ω =

~MM

ξV
+
~ζV +mH~n× ~h

ξV

d ~MM

dt
=−

~MM

τJ
−
~ζV +mH~n× ~h

τV
+
ζM

τM

(5.26)

As can be seen, we can divide angular velocity ~ω and Maxwell torque
~MM into random part ~ωR, ~MR and deterministic part which depends on

particle orientation ~n: ~ωD and ~MD, where

~ω = ~ωR + ~ωD

~ωD =
~MD

ξV
+
mH~n× ~h

ξV

d ~MD

dt
= −

~MD

τJ
− mH~n× ~h

τV

and properties of the random angular velocity ~ωR are the same as in the
situation without magnetic field discussed in previous sections 5.3 and 5.4.
Solving equation for ~ωD gives:

~ωD(t) =

t∫
0

[
2mH

ξV
δ(t− τ)− mHq

(ξM + ξV )τJ
exp

(
− t− τ

τJ

)]
[~n(τ)× ~h] dτ

(5.27)
It was assumed that ~ωD(0) = ~MD(0) = 0. In the equation (5.27) the first
term on the right hand side has been putted under integral sign to make
this equation look similar to (5.8).

For the rotation of the vector ~n we have equation:

d~n

dt
= ~ωR × ~n+ ~ωD × ~n

Taking average of both sides gives:

d〈~n〉
dt

= 〈~ωR × ~n〉+ 〈~ωD × ~n〉 , (5.28)
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where first term on the right hand side can be found from equation without
magnetic field (5.23). If we assume that for situation without magnetic field
we had

〈ni(t)nj(0)〉 = exp(F (t))〈ni(0)nj(0)〉 ,

where exp(F (t)) is relaxation function calculated in (5.23). For some start-
ing state 〈~n(0)〉, which is not in equilibrium, particles will relax to equilib-
rium as

〈~n(t)〉 = exp(F (t))〈~n(0)〉

and without magnetic field 〈~ωR×~n〉 should be equal to d〈~n〉
dt what gives that:

〈~ωR(t)× ~n(t)〉 = Ḟ (t)〈~n(t)〉 , (5.29)

where Ḟ (t) is time derivative of F (t).
Looking at deterministic part separately, we should calculate:

d~n(t)

dt
=

t∫
0

fD(t− τ)[~n(τ)× ~h]× ~n(t) dτ ,

where fD(t− τ) is function found under integral sign in (5.27). Solution of
this equation is

~n(t) = ~n(0) +

t∫
0

τ1∫
0

fD(τ1 − τ2)[~n(τ2)× ~h]× ~n(τ1) dτ1 dτ2

Putting this solution into itself we will get different from (5.18) Dyson-Chen
series, what makes further analysis complicated.

Mean values in viscoelastic fluid coincide with mean values in viscous
fluid. The evolution of mean value 〈n‖〉 and other in viscoelastic fluid can
be found in appendix A.5. Therefore relaxation in the direction of the
magnetic field ~h is:

〈n‖(t)〉 = (〈n‖(0)〉 − 〈n‖〉)F‖(t) + 〈n‖〉 (5.30)

and relaxation of the component perpendicular to magnetic field direction:

〈n⊥(t)〉 = 〈n⊥(0)〉F⊥(t) , (5.31)

where 〈n‖〉 = L(ν) is average value of the n‖ in the equilibrium [7]:

L(x) = coth(x)− 1

x

called Langevin function and F⊥(t) and F‖(t) is corresponding relaxation
relations.
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In viscous fluid Fi(t) = exp

(
− t

τi

)
, where i stands for ⊥ or ‖ and

corresponding τi can be calculated using effective field method [59]:

2Dτ‖ =
ν

L(ν)

dL(ν)

dν
2Dτ⊥ =

2L(ν)

ν − L(ν)
. (5.32)

But relaxation relation in viscoelastic fluid is more complicated and will be
calculated numerically.

5.6 Numerical calculations

For the numerical calculations the equation (5.26) is used, which is written
in form: 

~ω =
~MM

ξV
+
mH

ξV
~n× ~h+

~ζV

ξV

d ~MM

dt
= −

~MM

τM
− ξM~ω

τM
+
~ζM

τM
d~n

dt
= ~ω × ~n

(5.33)

Further we will write this equation in dimensionless form using dimensionless
variables:

~̂ω =
~ω

2D
~̂MM =

~MM

2kBT
~̂ζV,M = 2kBT

√
ξV,M

ξV + ξM
ζV,M

and dimensionless parameters

q =
ξM
ξV

τ̂J =
2DξV τM
ξM + ξV

ν =
mH

kBT
,

where D =
ξV + ξM
kBT

and dimensionless time is t̂ = Dt. Dimensionless form

of the equation (5.33) then is (hats further in this section will be omitted):

~ω = (1 + q)
(
~MM + ν~n× ~h

)
+
√

1 + q~ζV

d ~MM

dt
= − 1

(1 + q)τJ

(
~MM +

q

1 + q
~ω −

√
q

1 + q
~ζM
)

d~n

dt
= ~ω × ~n

, (5.34)

where dimensionless noise ~ζV,M has zero mean value and correlation is delta
function 〈ζVi (t)ζVk (t′)〉 = 〈ζMi (t)ζMk (t′)〉 = δ(t− t′).

These equations are solved numerically using Euler-Maruyama method
[51], where white noise part is replaced by normally distributed random
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variable with zero mean and variance equal to time step ∆t. The numerical
algorithm will look like:

~ω(t)∆t =(1 + q)
(
~MM (t) + ν~n(t)× ~h

)
∆t+

√
(1 + q)∆t ~N(0, 1)

~MM ((t+ ∆t) = ~MM (t)− 1

(1 + q)τJ
·

·

(
~MM (t)∆t+

q

1 + q
~ω(t)∆t+

√
q∆t

1 + q
~N(0, 1)

)
~n(t+ ∆t) =~n(t) + [~ω(t)∆t]× ~n(t)

,

(5.35)
where ~N(0, 1) is vector whose coordinates are independent normally dis-
tributed random variables with zero mean and unit variance.

We should take into account that equation (5.35) contains multiplicative
noise. According to [55] the equation in the form:

dxi
dt

= fi(~x) + gij(~x)ζ̂j(t) (5.36)

contains multiplicative noise if gij(~x) depends on ~x, where ζj(t) is white
noise term and fi(~x) does not contain noise. In the case of multiplicative
noise, additional drift term [55]

f1
i (~x) =

1

2

∂(gilgjl)

∂xj
− α∂gij

∂xl
glj (5.37)

should be added to the equation (5.36), where α depends on the discretiza-
tion scheme used. If gij(~x) is calculated at the beginning of the time interval
(t, t + ∆t) then α = 0 and it is called Ito convention. Taking gij(~x) from
(5.34) and calculating drift term according to (5.37) gives two drift terms:

f1M
i (~n, ~MM ) = 0 f1n

i (~n, ~MM ) = (1− 2α)ni (5.38)

where f1n
i is drift term which should be added to ~n(t + ∆t) and f1M

i is

drift term which should be added to ~MM ((t+ ∆t). Drift term f1M
i is zero

because noise in d ~MM

dt is not multiplicative. The drift term f1n
i will increase

the length of the unit vector ~n and can be neglected if the vector ~n is
normalized to unit after each time step.

In order to calculate numerically relaxation relations (5.30) and (5.31),
first of all we multiply ni(t) by ni(0) and after averaging we get that:

〈n‖(t)n‖(0)〉 = (〈n2
‖〉 − 〈n‖〉

2)F‖(t) + 〈n‖〉2 (5.39)

and
〈n⊥(t)n⊥(0)〉 = 〈n2

⊥〉F⊥(t) . (5.40)
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We assumed that particles are in equilibrium state at the beginning (〈ni(0)〉 =
〈ni〉 and 〈n2

i (0)〉 = 〈n2
i 〉, here i stands for ‖ or ⊥). Equations (5.39) and

(5.40) give us possibility to calculate relaxation functions in equilibrium
state, where 〈ni〉 and 〈n2

i 〉 stays constant.
Secondly we use Ergodic hypothesis [66] assuming that average of the

process over the statistical ensemble is the same as average over time for
long enough observation times. Then average 〈ni(t)ni(0)〉 is calculated as

1

N

N∑
j=1

ni(t+ tj)ni(tj) .

Averaging part implementation in C++ programming language with GSL
package is shown in appendix C.3

5.7 Numerical results

In this section we will check some properties of relaxation in viscoelastic
fluid in field which differs from viscous fluid. The analysis will be based on
direction ⊥, but similar results can be obtained in ‖.
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Figure 5.2: Normalized relaxation function 〈n⊥(t)n⊥(0)〉norm (5.41) for di-
mensionless magnetic field strength ξ = 0; 1; 2; 3; 4; 5; 6; 7. Field strength
is increasing in upward direction. Viscoelastic fluid parameters: q = 100,
τJ = 0.01. Averaging is made over 108 samples for each line.

Numerical computations using implementation of algorithm (5.35) in
C++ programming language show that there are two time scales in vis-
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coelastic fluid as was predicted. In the short time scale t � τJ particle
behaves as it were in viscous fluid with viscosity ηV . This is because in this

limit exp
(
− t
τJ

)
→ 0 and relaxation is determined by the delta function

relation in 〈ωi(t)ωj(0)〉 (5.8). This can be seen in fig. 5.2. In this section
dimensionless parameters introduced in previous section are used.

In fig. 5.2 normalized relaxation function is used:

〈n⊥(t)n⊥(0)〉norm = exp

[
ln

(
〈n⊥(t)n⊥(0)〉
〈n2
⊥〉

)
τ⊥

]
, (5.41)

where τ⊥ and 〈n2
⊥〉 depend on ξ and are calculated according to (5.32) and

(A.17). This shows that in short time scale t � τJ viscoelastic particle
dynamics scale similar to viscous fluid, but, as can be seen, for large time
scale t � τJ viscoelastic behaviour is important and scales different from
viscous fluid. How 〈n⊥(t)n⊥(0)〉 depends on ξ in the large time scale t� τJ
is left open for further work.
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Figure 5.3: Relaxation function 〈n⊥(t)n⊥(0)〉 in for different values of vis-
coelastic parameter q in magnetic field with dimensionless strength ξ = 10.
Viscoelastic fluid parameter τJ = 0.003. Averaging is made over 108 samples
for each line.

In fig. 5.3 different time scale is used, which is fixed when q changes:

t̃ = (1 + q)t . (5.42)

In fig. 5.3 can be seen that increase in viscoelasticity by increasing q sharpens
the difference between short time behaviour and long time behaviour. It can
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also be seen in fig. 5.3 that increase of q decreases exponential decay at large
time scale. It can be seen in fig. 5.3 that if viscoelasticity is not pronounced
(small q), the relaxation graph can be approximated by single exponential
decay similar to viscous fluid but for large values of q viscoelasticity becomes
notable and should be taken into account.



Chapter 6

Results and conclusions

• For the first time it is shown that single-domain particle with uni-
axial anisotropy in rotating magnetic field has three possible stable
regimes: synchronous planar rotation, synchronous precession and
asynchronous planar rotation.

• The stable regimes for defined parameters of the rotating magnetic
field are given by the calculated phase diagram.

• It is shown that for defined range of the field strength and frequency ir-
reversible magnetic moment ”jumps” occur, which increase the energy
dissipation.

• The transformation map which connects prolate and oblate superpara-
magnetic particle in precessing magnetic field is found.

• There exists jump in mean rotational frequency of the superparam-
agnetic particle in precessing magnetic field if particle goes from syn-
chronous to asynchronous regime or vice versa. This jump exists in
definite range of precession angle

• Superparamagnetic particle in crossed AC and DC magnetic fields
can oscillate around AC or DC field in dependence of magnetic field
strength.

• Stochastic rotational relaxation of magnetic particle in viscoelastic
fluid has two time scales and which of the time scales will be de-
terminative depends on magnetic field strength.

6.1 Thesis

• Magnetic moment jumps is important for dissipated energy of single
domain particle in asynchronous rotation.

99



CHAPTER 6. RESULTS AND CONCLUSIONS 100

• Superparamagnetic particle rotation dynamics in magnetic field can
be used as a tool for microrheological measurements.

• Viscoelastic properties of the fluid are important in relaxation spec-
trum in nuclear magnetic resonance.
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Appendix A

Derivations

A.1 Rotation of magnetic rod in Maxwell fluid

Let us look at magnetic dipole with dipole moment ~m in Maxwell fluid
(introduced in section 1.6.1), which tries to align with external magnetic
field ~H. In inertialess limit sum of all mechanical moments should be zero:

~Mve + ~MH = 0 , (A.1)

where ~MH = ~m× ~H is magnetic torque and ~Mve is viscoelastic torque, which
should satisfy (1.35), (1.34)

~Mve + τM ~̇Mve = −ξ~ω , (A.2)

where ~ω is rotation frequency of particle with its magnetic moment ~̇m =
~ω× ~m and ξ is viscous drag (1.24). Expressing ~Mve from (A.1) and putting
it in (A.2) gives:

ξ~ω − τM [~ω × ~m]× ~H = ~m× ~H (A.3)

In component form it can be written as:[
δij

(
1 +

τM
ξ
~m · ~H

)
− τM

ξ
miHj

]
ωj =

1

ξ
εijkmjHk ,

where εijk gives vector cross product as (~m× ~H)i = εijkmjHk.
Using Neumann series we get that:[

δij

(
1 +

τM
ξ
~m · ~H

)
− τM

ξ
miHj

]−1

=
δij + τM

ξ miHj

1 + τM
ξ ~m · ~H

,

what gives equation for rotational velocity components:

ωi =
εijkmjHk

ξ + τM ~m · ~H
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therefore equation of motion of the particle is

d~m

dt
=

~H − (~m · ~H)~m

ξ + τM ~m · ~H
. (A.4)

In all fluids ~m should try to align with external magnetic field ~H or ~m · ~H
tries to become maximal. In Maxwell fluid it looks like:

d(~m · ~H)

dt
=

~H2 − (~m · ~H)2

ξ + τM (~m · ~H)

and it should be positive for all values of (~m · ~H), but for τM > ξ there exist

values (~m · ~H) < 0, where d(~m· ~H)
dt < 0, which is non-physical. Therefore it is

preferred not to use Maxwell model in computation, but take Jeffery model

instead which gives positive d(~m· ~H)
dt for all starting values of (~m · ~H).

A.2 Stability analysis

Stability [80] of regime α̇ = fα(α, γ) = 0 and γ̇ = fγ(α, γ) = 0 depends on
the sign of the eigenvalues of Jacobi matrix

∂fα
∂α

∂fα
∂γ

∂fγ
∂α

∂fγ
∂γ


These eigenvalues are:

λ1,2 =
τ ±
√
D

2
, (A.5)

where τ =
∂fα
∂α

+
∂fγ
∂γ

and D = τ2 − 4∆, where ∆ =
∂fα
∂α

∂fγ
∂γ
− ∂fα

∂γ

∂fγ
∂α

.

A.3 Energy dissipation due magnetic moment move-
ment

At the beginning of the magnetic moment ”jump” ~e is not in equilibrium
therefore (from (2.23) and (1.19))

d~e

dt
·
(
−mH~h−KV (~e · ~n)~n

)
=
d~e

dt
· ∂E
∂~e
6= 0 (A.6)

If we assume some finite drag coefficient for magnetic moment ξmag 6= 0 then

magnetic moment movement is described by equation ~J~eE = −ξmag~ω~e. It
is assumed that particle movement is much slower than magnetic moment
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movement so particle can be considered stationary. ~ω~e is angular velocity of
magnetic moment relaxation (same as ~ωR in (1.22)). Therefore

~ω~e = − 1

ξmag
~e× ∂E

∂~e
, where

d~e

dt
= ~ω~e × ~e

Putting this in (A.6) we can see that in (A.6) calculated variable is viscous
dissipation of magnetic moment:

d~e

dt
· ∂E
∂~e

= ~ω~e ·
[
~e× ∂E

∂~e

]
= −ξmag~ω2

~e = −
~J~eE

ξmag
(A.7)

In equilibrium ~J~eE = 0 therefore dissipation in magnetic moment move-
ment is zero, but before magnetic moment ”jump” is disbalance and ~J~eE 6= 0
which gives infinite instantaneous dissipation, because ξmag → 0. In order
to calculate all dissipated energy in magnetic moment ”jump” the equation
(A.6) or (A.7) should be integrated, which gives:

QE =

∫
d~e

dt
· ∂E
∂~e

dt = −∆E ,

where ∆E is energy difference between magnetic moment energy before and
after ”jump”. Here ∆E > 0 therefore minus sign is added because energy
before ”jump” is higher than after ”jump”.

A.4 Perturbation of synchronous regime of super-
paramagnetic particle in precessing field

Giving small perturbation ~ε to (3.1) gives equation for perturbation in the
linear form:

d~ε

dt
= ωa(~ε · ~h)(~h− ~n(~n · ~h))− ωa~ε(~n · ~h)2 − ωa~n(~ε · ~h)(~n · ~h) (A.8)

Expressing ~ε in the component form gives (3.8):

~ε = ε1[~n× ~h] + ε2[~eH × ~n]

In further computations we should take into account that [~n × ~h] and
[~eH × ~n] are not unit vectors. Since ~n and ~h rotate with angular frequency
ωH~eH , then we can write:

d~ε

dt
=
dε1

dt
[~n×~h] +

dε2

dt
[~eH ×~n] + ε1ωH

[
~eH × [~n× ~h]

]
+ ε2ωH

[
~eH × [~eH ×~n]

]
(A.9)
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Before we can go further, some relations should be computed, which comes
from (3.2) and its consequences (3.3), (3.4) un (3.5):

(~ε · ~h) = ε2(~eH · [~n× ~h])
(3.4)
= ε2

ωa
ωH

(~n · ~h)(1− (~n · ~h)2)

ωa(~h− ~n(~n · ~h))
(3.2)
=

ωH

(~n · ~h)
[~eH × ~n][

~eH × [~n× ~h]
]

=
(
~n(~eH · ~h)− ~h(~eH · ~n)

)
(3.3)
=

(3.3)
=
(
~n(~eH · ~n)(~n · ~h)− ~h(~eH · ~n)

)
(3.2)
=

(3.2)
= −ωH

ωa

(~eH · ~n)

~n · ~h
[~eH × ~n]

ωa~n(~ε · ~h)(~n · ~h) + ε2ωH

[
~eH × [~eH × ~n]

] (3.5)
=

(3.5)
= ~nε2ωH(1− (~n · ~eH)2) + ε2ωH(~eH(~eH · ~n)− ~n) =

= ε2ωH(~eH · ~n)(~eH − ~n(~eH · ~n)) =

= ε2ωH(~eH · ~n)
[
~n× [~eH × ~n]

]
(3.2)
=

(3.2)
= ε2ωa(~eH · ~n)(~n · ~h)[~n× ~h]

From equations (A.8) and (A.9) using just calculated relations we can sep-
arate terms with [~n× ~h] and [~eH × ~n]. And we get equations for ε1 and ε2

time derivatives:
dε1

dt
= −ωa(~n · ~h)2ε1 − ωa(~eH · ~n)(~n · ~h)ε2

dε2

dt
=
ω2
H

ωa

(~eH · ~n)

(~n · ~h)
ε1 + ωa

(
1− 2(~n · ~h)2

)
ε2

(A.10)

Further analysis are given in section 3.4.

A.5 Mean values of magnetic moment in external
field

In thermal equilibrium the probability of finding particle in state ~n is deter-
mined by Boltzmann distribution with probability density:

p(~n) =
1

Z~n
exp

(
−E(~n)

kBT

)
, (A.11)

where Z~n is scaling constant. Unfortunately energy of the particle in vis-
coelastic fluid depends not only on magnetic moment direction ~n but also
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on elastic component of viscoelastic fluid. Energy of the particle in Jeffrey
viscoelastic fluid is written as

E(~n, ~MM ) = −mH(~n · ~h) +
( ~MM )2

k
, (A.12)

where k is stiffness of the spring in Jeffrey model for rotation. Energy
E(~n, ~MM ) can be divided into two disconnected parts E(~n, ~MM ) = E(~n) +
E( ~MM ) since ~n value is independent of ~MMvalue. Then probability density
of the particle is product of probability densities of each variable:

p(~n, ~MM ) = p(~n)p( ~MM ) =
1

Z~n
exp

(
−E(~n)

kBT

)
1

Z ~MM

exp

(
−E( ~MM )

kBT

)
,

(A.13)
where

E(~n) = −mH(~n · ~h) E( ~MM ) =
( ~MM )2

k
.

Since we are interested only in mean values of ~n and integration of prob-
ability density function p( ~MM ) over all possible values ~MM should give one,
then the ~MM part in (A.13) can be neglected (because integral of it will al-
ways give 1) and in Jeffrey fluid we can use equation (A.11) for probability
density.

To calculate moments of ~n we use spherical coordinates:
nx = sinφ cosβ

ny = sinφ sinβ

nz = cosφ

and choose magnetic moment ~h into direction ~eH , therefore nz = n‖ and
both nx or ny can be chosen as n⊥. Since length of ~n should not change
all possible values of ~n are on the unit sphere and integration is made over
surface with surface element in spherical coordinates dS = sinφdφ dβ. Prob-
ability of finding ~n on the unit sphere is 1, what gives that

Z = Z~n =

π∫
0

exp (ν cosφ) sinφdφ

2π∫
0

dβ =
4π sinh ν

ν
, (A.14)

where ν = mH
kBT

. This give us possibility to calculate some mean values using
probability density function (A.11)

〈nz〉 =
1

Z

π∫
0

cosφ exp (ν cosφ) sinφdφ

2π∫
0

dβ =
4π

Z

(
cosh ν

ν
− sinh ν

ν2

)
=

= tanh ν − 1

ν
= L(ν)

,

(A.15)
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where L(ν) is Langevin function. Similar can be calculated other mean
values

〈nx〉 = 〈ny〉 = 〈n⊥〉 = 0 (A.16)

and higher moments

〈n2
x〉 = 〈n2

y〉 = 〈n2
⊥〉 =

L(ν)

ν
, (A.17)

〈n2
z〉 = 〈n2

‖〉 = 1− 2
L(ν)

ν
(A.18)



Appendix B

Materials and methods

B.1 Rods

For microrheological measurements superparamagnetic rods in the length
range 10 − 25µm and diameter range 0.5 − 1.5µm were synthesized as
described in [35]. The solution of superparamagnetic rods was diluted to
sufficiently low concentration to ensure approximately one rod on average
per area of sight in the microscope Leica DMI3000 B with an oil immersion
objective of 100× magnification. High resolution images were obtained with
a MIK-ROTRON MC1363 camera at 25 frames per second. Images were
processed using MatLab, obtaining dimension and mean orientation angle
of the rod as a function of time.

B.2 Magnetic field

An external magnetic field was applied using a custom made setup featuring
five water-cooled coils with a power supply Kepco BOP 20-10M, managed
with a controller NI DAQ card.
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Appendix C

Codes

C.1 Octave code for finding zero stability line of
asynchronous planar regime

0 clear a l l ;
global alpha ; % i n t e g r a t i o n parameter
global HHa; % =H/Ha
global omega ; % =omega H/omega a
global alpha0 ; % i n t e g r a t i o n l i m i t , where ”jump” occur

5 global theta0 ; % where magnetic moment shou ld be found

HHa= 0 . 5 ; % in [ 0 . 5 , 1/ s q r t ( 2 ) )

function r e z=E( x ) % energy /mHa
10 global alpha ;

global HHa;
r ez=−HHa∗cos ( alpha−x)−1/2∗cos ( x )∗ cos ( x ) ;

endfunction

15 function r e z=f1 ( x )
global HHa;

r ez =(cos ( x )∗∗2)∗∗(1/3)+( sin ( x )∗∗2)∗∗(1/3)−HHa∗∗(−2/3);
endfunction

20 function r e z = I ( x )
global omega ;
global alpha ;
global HHa;
global theta0 ;

25 alpha=x ;
theta=fminbnd (@E, theta0−pi , theta0 ) ;
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f=cos ( theta )∗∗2/( cos ( alpha)+cos ( theta )/HHa) ;
r e z=f ∗cos ( alpha )/ ( omega−f ∗ sin ( alpha ) ) ;

endfunction
30

alpha0=fzero ( @f1 ,[−pi/2,−pi / 4 ] )
theta0=atan((−tan ( alpha0 ) )∗∗ ( 1 / 3 ) )

function r e z=I0 ( x )
35 global omega

global alpha0
omega=x ;

i f (x<=0.5)
r ez=−i n f ;

40 else
r e z=quadv ( ” I ” , alpha0 , alpha0+pi ) ;

endif
endfunction

45 domega =0.00001; % because omega=0.5 g i v e s − i n f
fzero (@I0 , [ 0 . 5 + domega , 1 ] )

C.2 Mathematica code for calculating Dyson se-
ries

0 fmain [ x ]:=−d∗q/ tJ∗Exp[−x/ tJ ]

Kr [ i ] :=
I f [ i ==1 ,{{0 ,0 ,0} ,{0 ,0 ,−1} ,{0 ,1 ,0}} ,
I f [ i ==2 ,{{0 ,0 , 1} ,{0 ,0 ,0} ,{ −1 ,0 ,0}} ,

5 I f [ i ==3 ,{{0 , −1 ,0} ,{1 ,0 ,0} ,{0 ,0 ,0}} , 0 ] ] ]

p a i r s [ l ] :=Module [{ i , j , k1 , k2 , l2 , n ,m1,m2,m3, r e s } ,
l 2 =( l − 1 ) ! ! ;
r e s=Table [ j ,{ i , l 2 } ,{ j , l } ] ;

10 For [ j =1, j<l /2 , j ++,
n = 2∗ j ;
For [ i = 1 , i<=l−n , i ++,
m1=(l−n− 1 ) ! ! ;
m3=m1∗( l−n+1);

15 m2=l 2 /m3;
For [ k1=1,k1<=m1, k1++,
For [ k2=0,k2<m2, k2++,
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{ r e s [ [ i ∗m1+k1+k2∗m3, n ] ] ,
r e s [ [ i ∗m1+k1+k2∗m3, n+i ] ]}={ r e s [ [ i ∗m1+k1+k2∗m3,

20 n+i ] ] , r e s [ [ i ∗m1+k1+k2∗m3, n ] ] } ;
] ;

] ;
] ;

] ;
25 For [ i =1, i<=l2 , i ++,

For [ j =1, j<=l /2 , j ++,
I f [ r e s [ [ i , 2∗ j −1]]> r e s [ [ i , 2∗ j ] ] ,
{ r e s [ [ i , 2∗ j −1 ] ] , r e s [ [ i , 2∗ j ] ]}={ r e s [ [ i , 2∗ j ] ] ,

r e s [ [ i , 2∗ j −1 ] ]} ;
30 , {}

] ;
] ;

] ;
r e s

35 ]
p a i r s 1 [ l ] :=Module [{ i , j , k , l2 , r e s } ,

l 2 = l ∗( l −2)/8+1;
r e s = Table [ j ,{ i , l 2 } ,{ j , l } ] ;
For [ i =2, i<l 2 +1, i ++,

40 For [ j=l /2+1 , j<l +1, j ++,
r e s [ [ i , j ] ]= r e s [ [ i −1, j ] ] ;
] ;

For [ j=l /2 , j >0, j−−,
r e s [ [ i , j ] ]= r e s [ [ i −1, j ] ] ;

45 I f [ r e s [ [ i −1, j ] ]<2∗ j −1,
k=l /2+1;
While [ r e s [ [ i , k ] ] ! = r e s [ [ i −1, j ] ]+1 ,

k++
] ;

50 { r e s [ [ i , k ] ] , r e s [ [ i , j ] ]}={ r e s [ [ i , j ] ] , r e s [ [ i −1, j ] ] + 1} ;
Break [ ]
] ;

] ;
] ;

55 r e s
]

func [ s e t ] :=Module [{ l , i , j , k , f , matrix , res , fKr , fKr1 , l1 , n} ,
l=Length [ s e t ] ;

60 I f [ l ==0,Return [ 1 ] , I f [OddQ[ l ] , Return [ 0 ] ,
n=l ∗( l −2)/8+1;
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f=ConstantArray [ 1 , n ] ;
matrix=p a i r s 1 [ l ] ;
For [ j =1, j<n+1, j ++,

65 For [ i =0, i<l /2 , i ++,
f [ [ j ] ]∗=

fmain [ s e t [ [ matrix [ [ j , i + 1 ] ] ] ] −
s e t [ [ matrix [ [ j , i+1+l / 2 ] ] ] ] ] ;

] ;
70 ] ;

For [ j =1, j<n+1, j ++,
For [ i =0, i<l −1, i ++,

f [ [ j ] ]=
FullSimplify [

75 Integrate [ f [ [ j ] ] , { s e t [ [ l−i ] ] , 0 , s e t [ [ l−i −1 ] ]} ] ,
s e t [ [ l−i −1] ]>0] ;

] ;
f [ [ j ] ]=

FullSimplify [
80 Integrate [ f [ [ j ] ] , { s e t [ [ 1 ] ] , 0 , t } ] , t >0] ;

] ;
matrix=p a i r s [ l ] ;
r e s =0;
For [ j =1, j<=(l −1 ) ! ! , j ++,

85 fKr=IdentityMatrix [ 3 ] ;
For [ i =1, i<=l , i ++,

fKr=fKr . Kr [ s e t [ [ i ] ] ] ;
] ;

For [ i =0, i<l /2 , i ++,
90 fKr∗=

KroneckerDelta [ s e t [ [ matrix [ [ j , 2∗ i + 1 ] ] ] ] ,
s e t [ [ matrix [ [ j , 2∗ i + 2 ] ] ] ] ] ;

] ;
For [ i =1, i<=l , i ++,

95 fKr1 =0;
For [ k=1,k<=3,k++,

fKr1+=fKr / . s e t [ [ i ]]−>k ;
] ;

fKr=fKr1 ;
100 ] ;

n=0;
For [ i =0, i<l /2 , i ++,

n+=matrix [ [ j , 2∗ i + 1 ] ] ;
] ;

105 n=n−l ∗( l +2)/8+1;
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r e s+=f [ [ n ] ] ∗ fKr [ [ 1 , 1 ] ] ;
] ;

] ; ] ;
Return [ r e s ]

110 ]

f 1=func [ Array [ a , 2 ] ] // Simplify
f 2=func [ Array [ a , 4 ] ] // Simplify
f 3=func [ Array [ a , 6 ] ] // Simplify

115 f4=func [ Array [ a , 8 ] ] // Simplify
f 5=func [ Array [ a , 1 0 ] ] // Simplify
f 6=func [ Array [ a , 1 2 ] ] // Simplify
main=1+f1+f2+f3+f4+f5+f6 ;

120 Out[1]=−2 d q (−t+tJ − Eˆ(−( t / tJ ) ) tJ )

Out[2 ]=1/2 dˆ2 Eˆ(−((2 t )/
tJ ) ) qˆ2 (4 Eˆ( t / tJ ) ( t−3 tJ ) tJ+3 tJ ˆ2 +
Eˆ((2 t )/ tJ ) (4 tˆ2−10 t tJ+9 tJ ˆ2))

125
Out[3 ]= 1/18 dˆ3 Eˆ(−((3 t )/

tJ ) ) qˆ3 (9 Eˆ( t / tJ ) ( t−10 tJ ) tJˆ2+10 tJ ˆ3 +
18 Eˆ((2 t )/ tJ ) tJ ( tˆ2−6 t tJ+15 tJ ˆ2) +
Eˆ((3 t )/ tJ ) (24 t ˆ3−108 t ˆ2 tJ+219 t tJ ˆ2−190 tJ ˆ3) )

130
Out[4 ]=1/432 dˆ4 Eˆ(−((4 t )/

tJ ) ) qˆ4 (4 Eˆ( t / tJ ) (60 t−73 tJ ) tJˆ3+75 tJ ˆ4 −
54 Eˆ((2 t )/ tJ ) tJ ˆ2 (40 t ˆ2+434 t tJ+1219 tJ ˆ2)+
12 Eˆ((3 t )/ tJ )

135 tJ (−312 t ˆ3+378 t ˆ2 tJ−5586 t tJ ˆ2+1499 tJ ˆ3)+
Eˆ((4 t )/

tJ )(288 t ˆ4−2016 t ˆ3 tJ+7812 t ˆ2 tJ ˆ2−24012 t tJˆ3+
48055 tJ ˆ4) )

140 Out [ 5 ]=(1/2160) dˆ5 Eˆ(−((5 t )/
tJ ) ) qˆ5 (25 Eˆ( t / tJ ) (9 t−25 tJ ) tJˆ4+84 tJˆ5−
10 Eˆ((2 t )/ tJ ) tJ ˆ3 (900 t ˆ2+7940 t tJ +19287 tJˆ2)−
30 Eˆ((3 t )/ tJ ) tJ ˆ3 (639 t ˆ2+23361 t tJ +59140 tJ ˆ2)+
10 Eˆ((4 t )/ tJ )

145 tJ (2448 t ˆ4+6588 t ˆ3 tJ +131346 t ˆ2 tJ ˆ2+160926 t tJˆ3+
687253 tJ ˆ4)+

Eˆ((5 t )/
tJ )(576 t ˆ5−5760 t ˆ4 tJ +41760 t ˆ3 tJ ˆ2−330990 t ˆ2 tJˆ3+

1914185 t tJ ˆ4−4904919 tJ ˆ5))
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150
Out[ 6 ]=(1/194400) dˆ6 Eˆ(−((6 t )/

tJ ) ) qˆ6 (1470 tJ ˆ6+504 Eˆ( t / tJ ) tJ ˆ5 (15 t+14 tJ)−
375 Eˆ((2 t )/ tJ ) tJ ˆ4 (1008 t ˆ2+8142 t tJ +19337 tJˆ2)−

100 Eˆ((3 t )/ tJ ) tJ ˆ4 (15660 t ˆ2+261009 t tJ +496682 tJˆ2)−
155 450 Eˆ((4 t )/ tJ ) tJ ˆ4 (−14211 t ˆ2+374652 t tJ +1241102 tJˆ2)−

60 Eˆ((5 t )/ tJ )
tJ (27648 t ˆ5+204930 t ˆ4 tJ +3608370 t ˆ3 tJˆ2+

15179670 t ˆ2 tJ ˆ3+74388915 t tJ ˆ4+102436342 tJ ˆ5)+
Eˆ((6 t )/

160 tJ ) (17280 t ˆ6−233280 t ˆ5 tJ +3056400 t ˆ4 tJˆ2−
46737900 t ˆ3 tJ ˆ3+486814950 t ˆ2 tJ ˆ4−2780063430 t tJˆ5+

6761587469 tJ ˆ6))

d1 = 1 ;
165 tJ1 = 0 . 0 0 1 ;

q1 = 100 ;
Plot [{main∗Exp[−2∗d∗(1+q )∗ t ] / . { d−>d1 , tJ−>tJ1 , q−>q1 } ,

Exp[−2∗d∗ t−2∗d∗ tJ∗q∗(1−Exp[− t / tJ ] ) ] / . { d−>d1 , tJ−>tJ1 ,
q −> q1 }} , { t , 0 , 0 . 1 } ]

C.3 C++ code for averaging

0 void compute ( )
{
// Some parameters are d e f i n e d o u t s i d e t h i s f u n c t i o n
// they are :
// dt= S i z e o f the time s t e p

5 // d e l t a= I n t e r v a l between n e i g h b o r i n g
// c o r r e l a t i o n f u n c t i o n p o i n t s
// nCorr= Number o f p o i n t s in c o r r e l a t i o n f u n c t i o n
// nN= Number o f p o i n t s f o r averag ing

10 int i , j , dn , k1 , k2 ;
int dt n=round ( d e l t a /dt ) ; // Number o f time s t e p s

// between n e i g h b o r i n g c o r r e l a t i o n f u n c t i o n p o i n t s

for ( i =0; i<nCorr ; i++)
15 trange [ i ]=(double ) i ∗ d e l t a ;

// I n i t i a l i z e s i z e o f b u f f e r
int n bu f f=max( nCorr , 1 0 0 0 0 0 ) ;
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int nx = nN / n bu f f ; // Number o f b u f f e r s used
20 nN = nx ∗ n bu f f ; // nN w i l l be a m u l t i p l e o f N BUF

// I n i t i a l i z e b u f f e r s
g s l m a t r i x ∗ buf f1 ;
g s l m a t r i x ∗ buf f2 ;

25 bu f f1=g s l m a t r i x a l l o c (3 , n bu f f ) ;
bu f f 2=g s l m a t r i x a l l o c (3 , n bu f f ) ;

// C o r r e l a t i o n f u n c t i o n p l a c e h o l d e r s
double tmp1 nx , tmp1 ny , tmp1 nz ;

30 double tmp2 nx , tmp2 ny , tmp2 nz ;

// I n i t i a l i z e c o r r e l a t i o n f u n c t i o n p l a c e h o l d e r s
for ( i =0; i<nCorr ; i++)
{

35 cor r nx [ i ] = 0 . ;
co r r ny [ i ] = 0 . ;
c o r r n z [ i ] = 0 . ;

}

40 // Wait t i l l n goes to e q u i l i b r i u m s t a t e
for ( i =0; i<n bu f f ; i++)

new n ( ) ;

// F i l l f i r s t b u f f e r
45 for ( i =0; i<n bu f f ; i++)

{
new n ( ) ;
g s l m a t r i x s e t c o l ( buf f1 , i , n ) ;

}
50

for ( i =0; i<nx ; i++)
{

// F i l l second b u f f e r
for ( j =0; j<n bu f f ; j++)

55 {
new n ( ) ;
g s l m a t r i x s e t c o l ( buf f2 , j , n ) ;

}
// C a l c u l a t e c o r r e l a t i o n f u n c t i o n

60 for ( j =0; j<nCorr ; j++)
{

dn = j ∗dt n ; // Time s t e p s in i n t e r v a l j ∗ d e l t a
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for ( k1=0; k1<n bu f f ; k1++)
{

65 k2=k1+dn ;
tmp1 nx=g s l m a t r i x g e t ( buf f1 , 0 , k1 ) ;
tmp1 ny=g s l m a t r i x g e t ( buf f1 , 1 , k1 ) ;
tmp1 nz=g s l m a t r i x g e t ( buf f1 , 2 , k1 ) ;
i f ( k2/ n bu f f ) // I f k2>=n b u f f

70 {
tmp2 nx=g s l m a t r i x g e t ( buf f2 , 0 , k2%n bu f f ) ;
tmp2 ny=g s l m a t r i x g e t ( buf f2 , 1 , k2%n bu f f ) ;
tmp2 nz=g s l m a t r i x g e t ( buf f2 , 2 , k2%n bu f f ) ;

}
75 else // I f k2<n b u f f

{
tmp2 nx=g s l m a t r i x g e t ( buf f1 , 0 , k2 ) ;
tmp2 ny=g s l m a t r i x g e t ( buf f1 , 1 , k2 ) ;
tmp2 nz=g s l m a t r i x g e t ( buf f1 , 2 , k2 ) ;

80 }
cor r nx [ j ]+=tmp1 nx∗tmp2 nx ;
cor r ny [ j ]+=tmp1 ny∗tmp2 ny ;
c o r r n z [ j ]+=tmp1 nz∗ tmp2 nz ;

}
85 }

// Second b u f f e r becomes f i r s t
gs l matr ix swap ( buf f1 , bu f f 2 ) ;

}
// Normal izat ion

90 for ( i =0; i<nCorr ; i++)
{

cor r nx [ i ]/=(double )nN;
cor r ny [ i ]/=(double )nN;
c o r r n z [ i ]/=(double )nN;

95 }

// P l o t s c a l c u l a t e d r e s u l t s
p lo t ( trange , corr nx , corr ny , cor r nz , nCorr ) ;

}
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