@R LATVIJAS
%. 9 UNIVERSITATE

ANNO 1919

UNIVERSITY OF LATVIA
FACULTY OF PHYSICS AND MATHEMATICS
DEPARTMENT OF MATHEMATICS

STRUCTURE OF RECURRENT WORDS: RESISTANCE AND
MEASURE OF PROXIMITY

PhD Thesis

Author: Raivis Béts
Student ID rb09224

Scientific advisor: Prof. Janis Buls

RIGA 2016



2z ESF Y

LATVIJAS
EIROPAS SOCIALAIS Iy NIVERSITATE

ANNO 1919

EIROPAS SAVIENIBA
IEGULDIJUMS TAVA NAKOTNE

This work has been supported by the European Social Fund within the two projects:
“Support for Doctoral Studies at University of Latvia” and
project No. 2013/0024/1DP/1.1.1.2.0/13/APIA/VIAA/045.



Anotacija

Disertacija tiek piedavats aperiodiska gadijuma skaitlu filtracijas generators. Saja genera-
tora filtra virknes vieta tiek izmantots galigi generéts bi-ideals. Disertacija dota metode, kas
dotajai periodiskai virknei konstrué bezgaligi daudz tadus galigi generétus bi-idealus, ka fil-
tracijas generatora rezult€josa virkne ir aperiodiska. Pieradita universalu bi-idealu eksistence.
Tie ir tadi bi-ideali, kuri filtracijas rezultata rada aperiodiskus vardus, iedarbojoties uz visam
netrivialajam, periodiskajam virkném.

Disertacija apliikots un analizéts kombinatorisks nosacijums — labi sadalito ieeju jeb WELL-
DOC 1pasiba. Analizéta WELLDOC 1pasiba ierobezotiem bi-idealiem. Pieradita galiga alfab&ta
I-ierobezota bi-ideala eksistence, kas apmierina WELLDOC 1pasibu. Dots piemérs, kas ilustré
patvaliga l-ierobezota bi-ideala iegtiSanas procediiru. Tiek ieviesti pilnigi ierobeZoti bi-ideali,
kuriem tiek uzlikti nosacijumi uz to genergjosajam bazém. Darba pieradits, ka ierobezoti bi-
ideali ir lineari rekurenti tad un tikai tad, ja tie ir pilnigi ierobeZoti.

Disertacija tiek apliukoti dal&ji vardi, t.i., vardi, kas satur ta sauktos nezinamos” simbo-
lus. Pieradits, ka dotam galigi generétam bi-idealam ir iesp&jams atrast genergjoso bazi. Tapat
pieradits, ka dotam bi-idealam ir iesp&jams konstruét tadu bazi, kas generé sakotn&jo bi-idealu
bez pirma burta. Disertacija dots pieradijums, ka galigi generétam bi-idealam ar galigu skaitu
“nezinamo” simbolu tos ir iesp&jams aizpildit. Pieradits, ka divi nereduc€jami galigi generé&ti
bi-ideali satur bezgaligi daudz ieejas, kuras to simboli ir atskirigi. Ir aprakstits un dots dazadu
bezgaligu vardu klasu mérs. Disertacija piedavata nestriktas metrikas konstrukcija uz bezgaligu
vardu kopas. Doti pieméri, kas parada nestriktas metrikas prieksrocibas, salidzinot to ar stan-
darta metrikam vardu kombinatorika.

Atslégas vardi: Aperiodisks filtracijas generators, galigi generéts bi-ideals, ierobeZots bi-

ideals, WELLDOC 1paSiba, dal&ji vardi, nestrikta metrika.



Abstract

The thesis presents a non-periodic random number generator based on the shrinking genera-
tor. The A-sequence is still generated using an LFSR, but the S-sequence is replaced by a finitely
generated bi-ideal — an aperiodic sequence. A method for the construction of an infinite num-
ber of finitely generated bi-ideals from a given A-sequence, such that the resulting sequence of
the shrinking generator is aperiodic is shown. The existence of what we call universal finitely
generated bi-ideals that produce aperiodic words when used as the S-sequence of a shrinking
generator for all non-trivial periodic A-sequences is proved.

A combinatorial condition called well distributed occurrences, or WELLDOC for short, has
been explored in the thesis. The WELLDOC property for bounded bi-ideals is analysed in the
thesis. The existence of a 1-bounded bi-ideal over the finite alphabet that satisfies the WELL-
DOC property has been proved in the thesis. An example of obtaining and achieving arbitrary
1-bounded bi-ideal with the WELLDOC property is given. The notion of completely bounded
bi-ideals by imposing a restriction on their generating base sequences is introduced. We prove
that a bounded bi-ideal is linearly recurrent if and only if it is completely bounded.

The thesis explores partial words, i.e., words which contain so called ”do not know” symbols.
The proof that for a given finitely generated bi-ideal sequence possibility of finding the basis
is given. It is proved that for a given bi-ideal it is possible to construct the basis for the same
bi-ideal without the first letter. The thesis also contains the proof of possibility to fill the finite
number of holes for a given finitely generated bi-ideal. The fact that two irreducible finitely
generated bi-ideals have infinitely many differ symbols is proved. Measures of different classes
of infinite words are given. The thesis introduces a new metric on the set of infinite words.
Construction of a fuzzy metric on the set of infinite words is given. Also, examples that show
advantages comparing fuzzy metric with standart metrics in combinatorics on words is given.

Keywords: Aperiodic shrinking generator, finitely generated bi-ideal, bounded bi-ideal,

WELLDOC property, partial words, fuzzy metric.
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Notions

ged(n, k)
A*
A+
Aw

prefou

the set of all non-negative integers,

the set of all positive integers,

the set {0,1,2,...,n — 1} forsome n € N,

theset {i,i+ 1,i+2,...,j — 1,5} forsomei,j € N,i < j,
the greatest common divisor of numbers n and &,

the set of all finite words over an alphabet A,

the set of all finite non-empty words over an alphabet A,

the set of all infinite words over an alphabet A,

the empty word,

a finite word uu - - - u, where n € N, and u is a finite word,
——

n

the infinite word ww - - - u - - -, where u is a finite non-empty word,

the length of the finite word w,

the number of occurrences of the letter a in word the w,

the number of occurrences of the word v in word the u,

the set of all letters occurring in the word u,

the factor of a word x starting in position ¢ and ending in position j, where ¢ < j,
in other words, z;z;11 - - - z;_17;,

the factor of a word x starting in position ¢ and ending in position j — 1, where
it + 1 < j, in other words, x;x; 1 - -x;_1,

prefix of length n of a word w.
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Suff(w)
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9 um—l)
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the set of all prefixes of a word =,

the set of all factors of a word z,

the set of all suffixes of a word =z,

the set of all return words to u of z,

a basis of a finitely generated bi-ideal,

a basis of a finitely generated bi-ideal that is obtained when the
basis (ug, uq, . .., Uy,_1) is L-prolonged n times,

the basis sequence of a bi-ideal that is obtained when the basis se-
quence (uy)n>o is L-prolonged & times

the ¢-th element of the basis sequence that is obtained, when the
initial basis sequence (u,,),>o is L-prolonged & times,

Parikh vector of a finite word w.



Introduction

Combinatorics on words is a relatively new field of discrete mathematics whose history started
a bit more than a hundred years ago, when a Norwegian mathematician Thue published his first
paper on repetition free words (Thue, 1906) and (Thue, 1912). It is considered as a starting
point of research on words. He published his papers in his native country (Oslo University) and
it became the reason his work remained unknown for a while although some of his results were
rediscovered by other scientists.

Highly significant work was done by Morse and Hedlund (Morse and Hedlund, 1938), who
founded the field of symbolic dynamics. The work of Morse got an intersection with Thue word
and resulted in the Thue-Morse infinite word, which still has an impact on the field of combi-
natorics on words. This historical word also have a connection with such scientific fields as
algebra, finite automata and others. Morse together with Hedlund introduced world to Sturmian
sequences (Morse and Hedlund, 1940), which still have an enormous impact nowadays.

The biggest revulsion of the combinatorics on words started in the middle of last century
when the theory of words was developed in Russia and France almost at the same time. A
massive influence in Russia was made by Novikov and Adjan and it resulted in some impor-
tant papers (Novikov, 1955) and (Adjan, 1979). The impact in France born from reserch of
Schiitzenberger, who worked on theory of codes (Schiitzenberger, 1956). Almost ten years later
he gave the insights in theory of context-free languages (Chomsky and Schiitzenberger, 1963)
and factorizations of free monoids (Schiitzenberger, 1965).

At this time the ground of theory of words was settled, so more and more scientific results
and theories ensued. This all lead down to the first book of the field, called Combinatorics on
Words (Lothaire, 1983), which was written by a group of authors. This book turned topic of
words a challenge on its own. 20 years later developements of words brought to the second book
— Algebraic Combinatorics on Words (Lothaire, 2002) and this book repeated nothing from the

first one.



Since 1997 the conference — WORDS, devoted entirely to combinatorics on words, has been
created and every second year it brings many researchers of this challenging field to it. Nowa-
days combinatorics on words is connected to many other topics: algebra, probability theory,
automata theory, biology, physics, algorithms and others, but it still has remained as a research
topic of itself as well. For a good insight, summary of history and for new challenges we rec-
ommend (Berstel and Perrin, 2007), (Karhumaki, 2004) and (Berstel and Karhumaiki, 2003).

Combinatorics on words is dealing with words — finite or infinite sequences of symbols
(letters). The main object in this thesis are infinite words (or w-words). We are dealing with
a subclass of infinite words, so called recurrent words. Such words have a property that every
factor occurs in them infinitely many times. We use an equivalent notion — a bi-ideal, which
is an infinite word containing as prefixes all elements of a bi-ideal sequence (Coudrain and
Schiitzenberger, 1966). A bi-ideal sequence is a sequence of words such that each next element
ofthe sequence is at least twice as long as the previous element and contains the previous element
both its prefix and suffix. Also, the words in a bi-ideal sequence are known as Zimin’s words
(Zimin, 1982) or sesquipowers (Simon, 1988). Buls and Lorencs investigated bi-ideals from
different aspects. Regularities of periodicity in bi-ideals have been prospected in (Buls and
Lorencs, 2006) and (Buls and Lorencs, 2008), but Lorencs and Cers tried and successfully solved
the decision problem of finitely generated bi-ideals (Cers, 2010), (Cers, 2012) and (Lorencs,
2012).

As recurrent words and bi-ideals are describing the same class of infinite words (see e.g.,
(de Luca and Varricchio, 1999)), we choose to view this class as class of bi-ideals since they
have a nice and useful structure. A lot of the proofs in this thesis use this structure of bi-ideals.
As almost every word is a recurrent word, then bi-ideals have the same property. Bi-ideals are
covering almost the whole class of infinite words, so they have a significant role in the class
of infinite words. Mostly in this thesis we are dealing with subclasses of bi-ideals — class of
bounded bi-ideals and class of finitely generated bi-ideals (which is subclass of bounded bi-
ideals). While bounded bi-ideals have restriction on the length of base words, finitely generated

bi-ideals are generated by a periodic basis.

Applications in cryptology

In this thesis, we propose a method to generate non-periodic pseudo-random number sequences



based on the shrinking generator modification, which was introduced by Coppersmith et.al. in
1993 (see (Coppersmith et al., 1994))) and is still considered to be a secure pseudo-random num-
ber generator. Normally, a shrinking generator uses two pseudo-random bit-sequences produced
by LFSR’s (see, e.g., (Schneier and Sutherland, 1995)) from which the resulting pseudo-random
sequence is obtained by taking the subsequence of one of the sequences (called the A-sequence)
corresponding to the positions of ones in the other sequence (called the S-sequence).

In this thesis we show two approaches for generating non-periodic pseudo-random number
sequences using our modified shrinking generator. Firstly, given a periodic A-sequence, we
prove that any finitely generated bi-ideal that satisfies a simple condition can be used as the
S-sequence together with this A-sequence in a shrinking generator, and the produced sequence
will be non-periodic. Secondly, we show that there are what we call universal bi-ideals — finitely
generated bi-ideals that generate non-periodic pseudo-random sequences when used as the S-
sequence in a shrinking generator with any A-sequence containing both zeroes and ones. We
give a description of a class of such universal bi-ideals.

Balkova et al. states that this modificated shrinking generator has not passed some latest
statistical tests. They recently introduced a combinatorial condition called well distributed oc-
currences, or WELLDOC for short in (Balkova et al., 2013a) and (Balkova et al., 2013b) for
that reason. In both papers they state that an infinite word with the property of well distributed
occurrences (WELLDOC) is used to combine two linear congruential generators and form an
infinite aperiodic sequence with good statistical behavior. The WELLDOC property is quite
strong because it requires some forceful properties for every factor and all the integers. It de-
mands all factors to be well distributed and since bi-ideals have a definite structure we tried
to find some conditions for bi-ideals to satisfy well distributed occurrences. We proved that
there exists a 1-bounded bi-ideal over the finite alphabet that satisfies the WELLDOC property.
Furthermore, the given construction in Chapter 3 permits to construct infinitely many such 1-

bounded bi-ideals with a such property.
Linearly recurrent bounded bi-ideals
We consider another interesting property of infinite words — linear recurrence in this thesis.

An infinite word is linearly recurrent if it is uniformly recurrent and there exists a constant K

such that the return time to an arbitrary its factor u is bounded by K |u|. In other words, the gap



between two consecutive occurrences of a factor of length n does not exceed K - n. The linear
recurrence of the infinite word implies the linearity of its subword complexity (Durand et al.,
1999). For morphic sequences (for a survey on morphic words see (Allouche and Shallit, 2003))
the uniform recurrence is equivalent to the linear recurrence (see (Durand, 1998) and (Durand et
al., 2013)). As finitely generated bi-ideals are morphic words (for construction see, e.g., (Cers,
2012)), then finitely generated bi-ideals are linearly recurrent. We also give a characterization of
linearly recurrent bounded bi-ideals. We introduce the notion of completely bounded bi-ideals
and prove that completely bounded bi-ideals are exactly linearly recurrent bounded bi-ideals.

This class is very large, namely, its cardinality is continuum.

Partial bi-ideals and finding of basis

In nowadays the information is what all is about and most of the time we do not have all the in-
formation we need. The desire and importance of getting back the lost information or revealing
some unknown one is growing very fast. It is an axiom that all the information can be converted
into words. In case we do not have some information, we get to so called partial words. It all
started almost 15 years ago, when Blanchet-Sadri et al. (Blanchet-Sadri and Hegstrom, 2002)
combined partial words with the well known theorem of Fine and Wilf 3. The work in the
field of partial words has been tremendous from the side of Blanchet-Sadri. Her research on
partial words has many edges, but most important are periodicity, for example (Blanchet-Sadri
and Chriscoe, 2004) and (Blanchet-Sadri et al., 2008), complexity, for example (Blakeley et al.,
2009) and (Blanchet-Sadri et al., 2012) and avoidabiliby, for example (Blanchet-Sadri et al.,
2009) and (Blanchet-Sadri et al., 2012).

Blanchet-Sadri et al. in (Blanchet-Sadri and Hegstrom, 2002) accented that partial words
appear in natural ways in several fields such as DNA computing, data communication, molecular
biology etc. This was the inspiration of Chapter [ — aggregate partial words with the class of
infinite words, what we are interested in, i.e., bi-ideals. Nowadays the importance of information
is so expansive that it is not possible to overvalue it and there are times and reasons of not
knowing the full information about something, for example, DNA structure. As DNA have some
kind of structure (with possibility of missing information) and bi-ideals (in this case, finitely
generated bi-ideals) have a structure, in this chapter we are trying to solve the problem of filling

the holes (missing information) in finitely generated bi-ideals. In general case of finite amount



of holes in finitely generated bi-ideals it is always possible to get all the information back. We
prove that in general case of infinite amount of holes it is not possible.

(Cers, 2012) solved the decision problem: given two basis, decide whether they generate the
same finitely generated bi-ideal. In this case the given part was basis, so we turned the problem
around and supposed that the given part is the bi-ideal. We were interested in a way opposite
problem — can we found a basis for a given finitely generated bi-ideal? As it turned out, for a

given finitely generated bi-ideal it is always possible.

The introduction to a new metric on the set of infinite words

We give an insight for measure and metrics in combinatorics on words. A good insight about
topologies on words gives (Calude et al., 2009). Mostly in combinatorics on words two types
of metrics are used (see, e.g., (Allouche and Shallit, 2003)) and (Holmgren, 2000)). These types
of metrics give poor information and have some shortages, shown by the help of some exam-
ples. A new approach of metric (fuzzy metric) in combinatorics on words has been introduced
in Chapter [§. We try to justify the advantages of the use of fuzzy metrics instead of the ordinary

metric for the description of the nearness-type structures on the set of infinite words.

Goals and objectives

The main objectives of this thesis is to research the essential properties and applications of
finitely generated bi-ideals and bounded bi-ideals and to find a new approach for measuring
infinite words.

The tasks of the thesis therefore are:

* to explore possible applications of finitely generated bi-ideals and bounded bi-ideals in

cryptography;

* to construct an algorithm or a procedure that creates bounded bi-ideals with WELLDOC

property;
* to solve the problem of filling of the holes in a finitely generated bi-ideal;

* to construct and describe a new metric on the set of infinite words.



The scientific importance of the thesis

In the thesis I offer a procedure that allows to create infinitely many bounded bi-ideals that have
WELLDOC property. I describe an algorithm for finding a basis for a given finitely generated
bi-ideal. The problem of filling of holes (”do not know” symbols) in finitely generated bi-ideal
is solved. A new metric on the set of infinite words has been introduced. It has been shown that
such (fuzzy) metric gives better description for closeness of infinite words.

Together with co-authors we give an approach of a non-periodic random number generator.
We introduce the notion of a completely bounded bi-ideal and we prove that a bounded bi-ideal

is linearly recurrent if and only if it is completely bounded.

The structure of the thesis

* Chapter [l gives basic definitions and creates the background for the whole thesis. It also
contains some already known results on finitely generated bi-ideals and bounded bi-ideals

and some of them are used later in the thesis.

* In Chapter 2 we give a modification of the shrinking generator. With that we obtain

aperiodic pseudo-random sequences.

« Chapter [ is a natural continuation of chapter . It introduces the WELLDOC property,
which is more advanced and passes more statistical tests than the shrinking generator. The
existence of a 1-bounded bi-ideal that satisfies the WELLDOC property has been proved

in this chapter.

« Chapter [ gives the notion of completely bounded bi-ideals and its connection with linear
recurrence. In this chapter we prove that a bounded bi-ideal is linearly recurrent if and

only if it is completely bounded.

« Chapter [ introduces so called partial words, which have many potentional applications in
other scientifical fields. Possibility of finding the basis for a given finitely generated bi-
ideal sequence in this chapter is given. Also possibility to fill the finite number of holes
for a given finitely generated bi-ideal is proved. Divergence of two irreducible finitely

generated bi-ideals has been explored in this chapter.

« Chapter [§ introduces measure and metric in combinatorics on words. A new approach

of metric (fuzzy metric) in combinatorics on words has been introduced in this chapter.

10



Advantages of fuzzy metric have been shown.

Approbation

The results obtained during the thesis writing process have been presented at 4 international
conferences and 4 domestic conferences (see full list on page B). Results on possible use of
finitely generated bi-ideals in cryptography have been presented at the 13th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing in Timisoara, Romania
(2011). In Romania, the results were presented by I.B&érzina. Results on the measure of some
classes of infinite words have been presented at the 14th Mons Days of Theoretical Computer
Science in Louvain-La-Neuve, Belgium (2012). Results on the relation of bounded bi-ideals and
linearly recurrent words have been presented at the 15th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing in Timisoara, Romania (2013). Results on
the existence of a 1-bounded bi-ideal that satisfies the WELLDOC property have been presented
at 15th Central European Conference on Cryptology in Klagenfurt, Austria (2015).
A list of author’s publications is given at the end of the bibliography.
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1 Preliminaries and Background

1.1 Preliminaries

Let N denote the set of all non-negative integers. Let N. = N\ {0}. By X,, we denote the set
{0,1,...,n— 1} forsomen € N,. Let i, j be the set {i,i +1,...,j — 1,5}, where i and j are
two non-negative integers such that ¢ < j.

Let A be a finite non-empty set called an alphabet. The elements of A are called letters. A
string of letters u = agay - - - a,_1 from A is called a finite word of length n. We denote the
length of a finite word u by |u| and the number of occurrences of a letter a € A in a word u
by |ul,. We denote the empty word by A and define |A\| = 0. By A* and A" we denote the
sets of all finite words and all finite non-empty words over alphabet A, respectively. For finite
words u = agay - - - a, and v = byby - - - b, we say that a word uv = agay - - - a,boby - - - by, 1s the
concatenation of u and v. A word w' is called a factor of w € A* if there exist u,v € A* such
that w = uw’v. The word u (v, respectively) is called a prefix (suffix, respectively) of w. By u"

we denote the finite word yu - - - u, where n € N and u is a finite word.
——

Atotalmapz : N — A i: called a (right) infinite word and the set of all infinite words is

denoted by A“. For all i > 0 we set x; = x(i) and write simply
x:xoxl-.-xn.-.

The notion of suffix, prefix and factor generalizes straightforwardly to infinite words by
setting that suffix v is an infinite word. Also concatenation extends naturally to the case when
the right word is infinite. By z[i, j] we denote a factor of a word « starting in the position i and
ending in the position j, where ¢ < j, in other words, z[i, j| = z;x;11 - - - xj_12;. We denote
xli,j) = x;xiy1 - - - xj_1, where ¢ + 1 < j. A non-negative integer ¢ is called an occurence of a
word u in a word x if z[i; i + |u|) = x[i; 1 + |u| — 1] = w. If u is a factor of x, then we also say

that v occurs or appears in x. We also write u \ z if u appears in z.

12



An infinite word x = zox; ..., ... 1s called periodic with a period p if x; = x;, for all
¢ € N. If z is periodic with a period p and v = z¢zy - - - 2,1, Where z; € A forall 7 € N, we
write x = v*. A word is called non-periodic if it is not periodic. A word z is called ultimately
periodic if there exist words u € A*, v € AT such that © = uv“. Each periodic word x = v* is
ultimately periodic, since it can be written in the form x = v, where u = A. A word is called
aperiodic if it is not ultimately periodic.

An infinite word is called recurrent if each of its factors occurs in it infinite number of times.
An infinite word z is called uniformly recurrent if for each non-negative integer n there exists

a non-negative integer m such that each x factor of length m contains as factors all factors of =

of length n.

A sequence of finite words vg, vy, ..., v;, ... is called a bi-ideal sequence if for each i > 0,
Vir1 € viA*v; and vy # A If vy, vy, ..., vy, ... is a bi-ideal sequence, then there exists a unique
sequence of finite words ug, U1, . . ., Uy, . . . with ug # X called the basis of the bi-ideal sequence

(vy,) such that

Vo = Up
Vip1 = Villiy10;.
The infinite word one gets as a limit of this bi-ideal sequence x = lim,,_,, v, is called a bi-ideal

and the sequence (u,,) is called a the basis of = or, equivalently, we say that (u,,) generates x.

We also say that (u, ) generates the bi-ideal sequence (v,,).

Definition 1. The bi-ideal is called finitely generated if its basis sequence (u;) is periodic, i.e.,

there exists a positive integer m such that for all 7, j € N,
i=j (modm)= u; =u.

In this case we say that the m—tuple (ug, u1, . .., U,_1) is a finite basis (or just a basis for
short) of the finitely generated bi-ideal x. We also say that the basis (ug, uy, . . ., u,,_1) generates

the bi-ideal sequence (v,,).
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Example 1. If the 3—tuple (0, 1, 1) is a basis of the bi-ideal z, then

vo = ug = 0,
V1 = VoU1Vy = 0].0,
Vg = V1UQU1 = 0101010,

vz = vuov; = 010101000101010,

x = 0101010001010101010101000101010 - - - .

Definition 2. If (u,,),>¢ is the basis of a bi-ideal  and there exists a non-negative integer [ such

that, for each 4, |u;| < [, then the bi-ideal x is called bounded.

1.2 Some known results on bi-ideals

In this section some known results on bi-ideals are given.
Proposition 1. An infinite word x is recurrent if and only if it is a bi-ideal.
Lemma 2. Let x € A“ be an ultimately periodic word. If x is recurrent, then it is periodic.

Due to the Proposition [l and Lemma 2 in case of bi-ideals terms non-periodicity and aperi-
odicity are equivalent.
Proposition [l| and Lemma [ gives that terms non-periodicity and aperiodicity are equivalent

in bi-ideal case.

(P)5;) B ) ur | B

Figure 1.1: Hierarchy of the class of bi-ideals

(Buls and Lorencs, 2008) considered the hierarchy (see Figure [L.1)):

PCBfCBbCURCB,
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where

P — the class of periodic words,

By — the class of finitely generated bi-ideals,
B, — the class of bounded bi-ideals,

UR — the class of uniformly recurrent words,
B — the class of bi-ideals.

Theorem 3. A bi-ideal x is periodic if and only if
dn € NJudv (v,u € v° AVi € Nyu,y; € uv®).

Theorem 4. Let (u;) be a sequence of words, which contains every u; infinitely often. The

bi-ideal x generated by (u;) is periodic if and only if
JwVi (u; € w*).

Theorem 5. A bi-ideal x € A“ that is generated by an m~tuple (ug,uy, ..., Un,—1) is periodic if

and only if there exists a finite word w € A™ such that for all i € 0,m — 1
u; € w.

(Lorencs, 2012) showed how to change the basis sequence of a finitely generated bi-ideal and
proved that each finitely generated bi-ideal has countably many bases with the same number of
basis words. In fact, his construction can be used for changing the basis sequence of an arbitrary

bi-ideal.

Proposition 6. Ifz is a bi-ideal generated by a sequence (uy,), >0, then the sequence uj, u\, . . ., u

9 ny -

where u), = ugu;y1, also generates x.

Later in Chapter [y we will show a bit different change of basis for finitely generated bi-ideals,

which contains getting rid of the first letter.

Example 2. If = is a bounded bi-ideal with a basis sequence 0, 1, 00, 00, 00, . . ., then sequences
01, 000, 000, 000, 000, . .. and 01000, 01000, 01000, 01000, 01000, . .. are also basis sequences

of z.

Proposition 7. If (ug, u1, . .., Uy, _1) is a basis of a finitely generated bi-ideal x, then the m-tuple

(ug, uy, .. ul,_q), where u; = ugus and s =i+ 1 mod m, also is a basis of .

15
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Corollary 8. Every finitely generated bi-ideal x has countably many bases with the same num-

ber of basis words.

Example 3. Let (0, 1, 2) be a basis of a finitely generated bi-ideal 2. Then 3-tuples (01, 02, 00),
(0102,0100,0101), and (01020100, 01020101, 01020102) are also bases of x.

If Proposition [ or Corollary [7 is applied to some basis sequence of a bi-ideal z, then we
say that basis words of the bi-ideal x are L-prolonged or simply that the basis sequence of the

bi-ideal x (or the basis of a finitely generated bi-ideal) is L-prolonged. If x is a bi-ideal with a

basis sequence ug, U1, . . ., Uy, - - ., then for all n > 0 the sequence
u(()n),ugn), o™
(n) _  (n—-1) (n—-1) . . .. . .
where u; ' = uy ‘u;, ', is the basis sequence of the bi-ideal x after n iterations of L-

prolongation. 1f x is a finitely generated bi-ideal with basis (ug, uy, ..., Un,—_1), then for all

n > (0 the m-tuple

<u(()"), W ,u$11> ,
where u{" = (""" §i}20d > 18 the basis of the finitely generated bi-ideal x after n iterations
of L-prolongation.

Lemma 9. Let (uy,),>0 be a basis sequence of a bi-ideal x. Let (v,),>0 be the bi-ideal sequence

generated by (uy)n>0. Then for eachn € N and eachi € N

(n) _ ,
U; ~ = Un—1Ujyn-

Proof. 1f n = 1 then, by definition of L-prolongation, ugl)
(n)

i

= UpU;y+1 = Vou,;+1 for each 7 € N.
Assume that for all n < k and for all € N we have v, * = v,,_1u;.,. Let us prove that it also

holds for n = k£ + 1. By definition of L-prolongation and our assumption, for all « € N we have

u§k+1) (k) (k)

= Uy "U;1p = Vk—1U0+kVk—1Ui 414k = VpUifk41-
[

Corollary 10. Let x be a bounded bi-ideal. Let (uy,),>0 be a basis sequence of x such that each

element of (uy,)n>0 occurs in (uy,)n>o infinite number of times. Then for all k > 1 each element

of the basis sequence (uglk))nzo occurs in (uglk))nzo infinitely often.

Proof. 1t follows from Lemma [J. [
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Lemma 11. [fz is a bounded bi-ideal, then there exists a basis sequence (uy),>o of x such that

each element of (u,,)n>0 occurs in (uy,)n>o infinite number of times.

Proof. Let x be a bounded bi-ideal with a basis sequence (u,),>0. Since the length of each
basis word is bounded by some ¢ € N, then there is at least one basis word u; that occurs in
(un)n>o infinitely many times. Hence there is a non-negative integer ¢ such that each element
of the sequence (us.x)r>0 occurs in (usiy)g>o infinite number of times.

We L-prolong the basis ¢ times. Then by Lemma [ we have

(6) _
Up " = Vs—1Uk+5

for all k£ € N. Since vs_; is a common prefix of words ué‘”, u@, ce ug), ... and since for each

k € N the basis word w5 occurs in the sequence (w4, ),>0 infinitely many times, the basis

sequence (ugf) )n>0 satisfies conditions of the lemma. O
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2 On a Non-periodic Shrinking Generator

2.1 Preliminaries

We start with a well-known approach (see, e.g., (L’Ecuyer, 1998)). As of today, the most con-
venient and reliable way of generating the random numbers for stochastic simulations appears
to be via deterministic algorithms with a solid mathematical basis. These algorithms produce
sequences of bits which are, in fact, not random at all, but seem to behave as if the bits were

chosen independently at random.

Definition 3. A pseudo-random number generator is a structure S = (Q, B, qo, T, G), where Q)
is a finite set of states, gy € () is the initial state (or seed), the mapping () KN (@ is the transition

function, B is finite set of symbols, and () & Bis the output function.

This model is called a Moore machine in automata theory. In fact, this model is the spe-
cialised Moore machine. The state of a generator is initially gy and evolves according to the
recurrence g, = 1(q,—1), forn = 1,2,3,.... At step n the generator outputs the symbol
bn = G(qn)-

Clearly, since the state space () is finite, the sequence of states ¢, is ultimately periodic;
therefore, this approach is limited. One method for obtaining non-periodic sequences is to use
the simplest chaotic system — the logistic map. In 1982 Oishi and Inoue (Oishi and Inoue,
1982) proposed the idea to use chaos in designing a pseudo-random generator. In 1992 Sandri
introduced a simple non-periodic pseudo-random number generator which is based on a sim-
ple logistic map (see (Sandri, 1992)). Recently, Hu et. al. (Hu et al., 2009) proposed a true
random number generator by combining congruential methods with prime numbers and higher
order composition of logistic maps. It generates a 256-bit random number by computer mouse
movement. For more information of using chaotic systems in generation of pseudo-random

sequences, see e.g. (Patidar et al., 2009), (Phatak and Suresh Rao, 1995).
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A pseudo-random number generator can be created by substituting the S-sequence by a
finitely generated bi-ideal — a non-periodic sequence (see (Buls and Lorencs, 2008)). Ob-
viously, such model is a generalization of the pseudo-random number generator (see definition
B). We conjecture, that for most non-trivial cases the resulting pseudo-random sequence is non-
periodic. The resulting pseudo-random sequence has good statistical properties as indicated by
the Diehard test suite (see Section 2.2.2).

In these theses we show two approaches for generating non-periodic pseudo-random number
sequences using our modified shrinking generator. Firstly, given a periodic A-sequence, we
prove that any finitely generated bi-ideal that satisfies a simple condition can be used as the S-
sequence together with this A-sequence in a shrinking generator, and the produced sequence will
be non-periodic. Secondly, we show that there are what we call universal bi-ideals — finitely
generated bi-ideals that generate non-periodic pseudo-random sequences when used as the S-
sequence in a shrinking generator with any A-sequence containing both zeroes and ones. We

give a description of a class of such universal bi-ideals.

Definition 4. Let =,y € {0, 1}* be two infinite words with |y|; = co. The shrunk sequence of

x by y is defined inductively:

x1, lfyl = ]_,
w1 = s
)\, lfyl = O,
\
¢
W;—1Z4, lfyz - 1a
w; ‘=
Wi—1, ify; =0,
\

The infinite word z = lim;_,, w; is called the shrunk word of x by y and denoted by 2 := S, ().

By alph(u) we denote the set of distinct letters in the word u, i.e., alph(u) = {a | a €
AN a € F(u)}. If z is an infinite non-empty word and |alph(z)| = 1, then x is called a trivial
word, otherwise x is called a non-trivial word. Further we only consider non-trivial infinite

words.

2.2 Non-periodic shrunk words

In this section we show a method for the construction of an infinite number of finitely generated
bi-ideals from a given A-sequence, such that the corresponding shrunk sequence using the bi-

ideal as the S-sequence is non-periodic. Afterwards, we shortly analyse test results.
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2.2.1 Construction

In order to construct a non-periodic shrunk sequence, the finitely generated bi-ideal, which is
used as S-sequence, has to be non-periodic. In 2008 Buls and Lorencs (Buls and Lorencs, 2008)

obtained sufficient conditions for a finitely generated bi-ideal to be non-periodic:

Theorem 12. If|J" ' Preflu;) or U™y Suff(u:) has at least two words with the same length,

then the bi-ideal with basis (ug, 1, ..., Up,_1) is non-periodic.

However, the non-periodicity of the bi-ideal (S-sequence) alone is not a sufficient condition
for the shrunk sequence to be non-periodic. Next, we give two examples (without proof), where

the resulting sequence is periodic.

Example 4. If x = (1100)“ and y is the finitely generated bi-ideal with basis (01, 10), then
z = Sy(z) = (10)~.

Example 5. If 2’ = (01)“ and ¢/ is a finitely generated bi-ideal with basis (101, 10001), then
2 = Sy(z') = (0011)~.

In both examples Theorem [12 is satisified, e.g., the bi-ideals used as the S-sequences are
non-periodic, but the resulting shrunk sequence is periodic. Moreover, the period of the shrunk
sequence can be smaller or larger than the period of the respective A-sequence.

In order to construct a non-periodic shrunk sequence, we have to put some additional restric-
tions on the basis of the finitely generated bi-ideal that will be used as the S-sequence. First, we

state two lemmata that will be used in the proof of main result of this section.
Lemma 13. Ifz € {0, 1} is a bi-ideal generated by (ug, u1, ..., up,_1), thenVp, T € N OETa, B e
N, o # -
[Vam—1| = [vgm-1] (mod p), (2.21)
[Vam—1|1 = [Vgm-1]1 (mod T), (2.22)
where v; denotes the i-th element of the bi-ideal sequence with the basis (uy,).

Proof. Let (v,) be the bi-ideal sequence corresponding to the finitely generated bi-ideal x. We
consider the subsequence (vj;,—1);>1 of (v,,). Since (v,) is an infinite sequence, (Viy,—1)i>1 1S
also an infinite sequence.

We partition (v;,,—1);>1 into equivalence classes by their length modulus p:
Vk >1 Ay = {vkm-1| [vkm-1] = t (mod p)}. (2.23)
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Since (v;m—1)i>1 is an infinite sequence, there exists an integer £ € {0,1,...,p — 1} such that
| Ay| = oo. For all vy, pm_1, Ukym—1 € Ay condition (2.21]) holds.

Next, we partition (v;,,,—1);>1 further based on the number of ones modulo 7":
Vk>1 By = {Ukmfl‘ Vgm—1 € Ag A ‘vkmflll =t (mOd T)}

Since |A¢| = oo, there exists an integer s € {0,1,...,7 — 1}, such that |B;| = co. For all
Vkym—1,Vkym—1 € By conditions (2.21)) and (2.22) hold. O

Lemma 14. (Let (v,,) be a bi-ideal sequence, then
Vm < n v, € Preflu,) N Suff{vy,).
Now we state the main results of this section.

Proposition 15. If x is a non-trivial infinite periodic word, then there exists an infinite number

of finitely generated bi-ideals y, such that z = S,(x) is aperiodic.

Proof. Letx = u* € {0,1}*, where |u| = p. Lety € {0, 1}* be an aperiodic bi-ideal generated

by (ug, Uty ..oy Up—1)-

We will show a condition on the basis of y, such that the shrunk word z = S, (z) is aperiodic.
Suppose the contrary that the shrunk sequence is ultimately periodic, e.g., z = v'v* (where

|v'| = T7 and |v| = T'). Then by lemma [13 we can choose «, 3 € N (a < 3) such that

|Uam—1’ = |Uﬂm—1| mOd D,
[Vam—1]1 = |vgm-1|1 mod T,

‘Uam—ly Z p/\ ’Uozm—l‘l 2 T A |Uozm—1‘l > Tl-
Therefore, there exist k£, k; € N, such that both

‘/Uﬁmfl‘ - ‘/Uamfll == kp (224)

[Vgm—1]1 — [Vam—1]1 = k1T (2.25)

hold. Now we observe that v4,, = Vam—1UVam—1 and Vg, = Vg —1UoUsm—1. Therefore from
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: | S—— 4 ——J —

Uam 1 vam iy /Uum 1 'Uam—l ,Uam 1 vam—1 ',Uam 1 Vo
S 1 S 1
kp 1 kp 1

1 1
‘Uﬁm—l‘ - "Uam-l‘ =0 (mod p) ‘/Uﬁm‘ - "Uam‘ =0 (mod p)

Figure 2.1: Structure of the bi-ideal y.

(2.24) and (2.23) and using lemma [14 we obtain (see Figure 2.1])

yllvam—| = [vam—] + 1, [vgm] = |vam|]| =

= |Uﬂm‘ - ’Uam‘ - |Uﬁmf1‘ + ‘/Uamfly =
= 2[vgm-1| + uo| = 2|Vam-1]|— (2.26)
—|U0| - |Uﬁm—1| + |Uam—1| =

= |U,Bmfl| - |vam71‘ = kp

and
‘?/Hvﬁm—l‘ — |Vam-1| + 1, ’Uﬁm| — [Vaml]l1 = ’U,Bm—1|1 — [Vam-1]1 = ki T (2.27)

Now, if we set 2’ = z[1,kp|, v = y[l,kp|, 2" = z[kp + 1,2kp|, v" = ylkp + 1, 2kp|

and consider the shrinking construction for these finite fragments, then by (2.26)) and (2.27) we

obtain

Sy(a') = v'2[Th + 1, ki T, (2.28)
Sy//<ilj'”) = U//Z[le -+ T1 + 1, 2]{31T], (229)

where |v/| = [v"'| = T}. Next, by (2.28), 2.29), [vam—1|1 > T} and from the assumption that z

is ultimately periodic it follows that

AT+ 1,k T) = 2[ T + Ty + 1,2k, T), (2.210)
Similarly, since |t Vam—1uo| = |UoVam—1u1| and |u1vam—1uo|1 = |UoVam—1u1]1, it follows that
Sy[kpferl,kp] (a:[kp — S+ 17 kp]) = Sy[Qkpfs+1,2kp} (x[?kp — S5+ 1: 2kp])> (221 1)

where 5 = |u1Uam_11o| (see Figure 2.2).
We will show how to construct ug and u; such that (2.211]) does not hold, hence proving the

existence of a finitely generated bi-ideal y, such that the shrunk word =z = S, () is aperiodic.
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| Upmes | = [V Izkp | Upim| — [ Vo] |=2kp

> Uy U, . . . U KR
—— ) —— ) g
Uam—1 vam—l ! Uam—1 Uam-l !
S S

Figure 2.2: Structure of the bi-ideal .
Since |alph(z)| = 2, it follows that
Ji€2,p: (ufi — 1] =aAVj €i,pulj] =a)), (2.212)
wherea € {0,1}anda =1ifa=0o0ra =0ifa = 1. We set
uy = u'10w, u; = u”01lw, (2.213)

where w € {0,1}*, |w| = p—iand v/, u” € {0, 1}* are arbitrary finite words over the alphabet
{0,1}.

If |w|; = 7, then by (2.212) and (2.213)) 2[k,T — +] = a but 2[2k, T — ] = @. Thus (2.210)
and (2.211) do not hold. Hence = is aperiodic. Since v/, u” € {0,1}* are arbitrary finite words

over alphabet {0, 1}, there exists an infinite number of wg, u; such that the shrunk word z is
aperiodic.
Moreover, we have not made any restrictions on other elements of the basis of y. Therefore,

for all m > 3 the basis words u; (7 > 3) can be chosen arbitrarily. O]

Corollary 16. If x is a non-trivial infinite periodic word, then there exist an infinite number of

finitely generated bi-ideals y, such that z = S, (z) is non-periodic.

Proof. Since each periodic word is also ultimately periodic, the proof follows directly from the

proof of the Proposition [15. [

2.2.2 Statistics

One way of evaluating the fitness of a pseudo random generator for cryptographic applications
is to check whether the produced bit-sequence appears random in the statistical sense, i.e., that
it does not exemplify patterns that would be unexpected in a sequence of truly random and
independent coin flips. The simplest of such tests is the frequency test, that checks if the number

of ones is close to the number of zeroes. Many such tests can and have been constructed and
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several software packages for testing pseudo-random number generators are available. We used
the well known Diehard battery of tests (Marsaglia, 1996) to asses the fitness of our generator.
This test suite includes 18 main and several more additional tests, all of which a good generator
is expected to pass.

While it was known that the shrinking generator has good statistical properties (Coppersmith
et al., 1994), this did not necessitate that these properties would carry over to our construction.
Still, we found that our shrinking generator passed all tests in the Diehard test suite. For the
testing purposes a 32 bit LFSR was taken as the A-sequence and a bi-ideal with base words
of lengths around 2KB (that were generated by cutting up another 32-bit LFSR) was used as
the S-sequence. Additionally the first two base words were altered in a way so that (2.213)
was satisfied, making the shrunk sequence non-periodic (the required changes are very small
compared to a freely selected base). The number of base words was not limited, but the lengths

of the tests were such, that around the first 20 base words were used while performing each test.

2.3 Universal Bi-ideals

In Section 2.2 we showed how it was possible to construct non-periodic S-sequences for each
periodic A-sequence such that the resulting shrunk words were non-periodic. Even though for
each A-sequence there exists an infinite number of S-sequences such that the shrunk word is
aperiodic, the choice of the S-sequence depends on the choice of the A-sequence. In order to
simplify the choice of the sequences, it would be more convenient to use non-periodic bi-ideals
(as S-sequences) such that for each non-trivial A-sequence the resulting shrunk word would be

non-periodic. In Proposition [19 we prove the existence of such bi-ideals.

Definition 5. A Bi-ideal y is called universal if for all non-trivial periodic x = u*, the shrunk

word z = S, () is aperiodic.
Before turning to our main proposition, we will prove two easy but crucial lemmata:

Lemma 17. Let a,b € A, uw € A* and |aub| > T > 1. If T is the least period of aub, then
au # ub.

Proof. 1f u = A, then aub = ab. Since T' > 1 then a # b. Therefore

au = a # b = ub.
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The rest of the proof is by induction on the length of the word w. Since 1" is the period of aub,
the period ¢ of the word au has to be less than or equal to 7', i.e., t < T

(i) If t = 1, then au = a", where n = |au|. Since T' > 1 is the period of the word aub,
b # a. Therefore au = a™ # ub.

(i) Letuw = vcand t > 1, 1.e.,t > 1 is the period of the word au = avc. By the induction

assumption av # vc. From this
au = avc # veb = ub.
O
Lemma 18. Letm € N, m > 2. Ifug =1, u; =10, m > 2 = (Vi € {2,3,...,m — 1} (00 ¢
F(u;))), then 00 & F(x), where x is the bi-ideal generated by the basis (ug, 1, ..., Unm—1).

Proof. The proof is by induction. By (v,) we denoe the bi-ideal sequence generated by the
basis (ug, U1, ..., Uy,_1). Since vy = 1 and v; = 1101, then 00 ¢ F(vy) and 00 ¢ F(v;) and we
assume that 00 ¢ F(v;) forall i < k.

Since vg4+1 = vV, where j = k + 1 (mod m) and both 00 ¢ F(vy) and 00 ¢ F(u;), and
1 = vy € Pref(vy) N Suff(v,) (by lemma [14), then 00 ¢ F(vy,1). O
Proposition 19. Let m € N, m > 2. Ifuy = 1, uy = 10 and 00 ¢ F(u;) for all i €
{2,3,...,m — 1}, then the bi-ideal generated by the basis (ug,uy,...,Un_1) is a universal

bi-ideal.
Proof. Let y be the bi-ideal generated by the m-tuple (ug, uy, ..., u,,—1). Let’s assume the con-
trary that y is not a universal bi-ideal. Then there exists a non-trivial periodic word x = u* with
|u| = p > 2, such that z = S,(x) is a ultimately periodic word with period 7" and pre-period
Ty, i.e., z = wv*, where |v| = T and |w| = T3.
By lemma [13, we can choose sufficiently large o, 3, v, 6 € N, such that |va,,_1|; > T} and
[Vam—1| = [vgm-1] = [Vym-1] = [Vsm—1] mod p,
[Vam—1]1 = [V8m-1|1 = [Vym-1]1 = [Vsm—1/1 mod T,
[Vsm—1| > [vym-1] > [Vgm-1] > |[Vam-1] > p,
vsm—1]1 > [vym-1l1 > [vgm-1l1 > [vam-1h > T,
which implies
[Vgm—1] — |Vam—1| = kp, (2.31)
[vgm-1l1 = [vam-1]1 = k1 T. (2.32)

25



for some k, ky € N.

Now, similarly to the proof of Proposition , we observe that v,,, = Vam—_11Vam—1 and
Ugm = Ugm—11Usm—1 and, therefore, from (2.31)), (£.32)) and using lemma [14 we obtain (see
Figure 2.3)

|y[|v,8m—1| - |Uocm—1| +1, |Uﬁm| - |vam|” = |Uﬂm—1| - |Uozm—1| = kp (2.33)
and
‘y[‘vﬁmfl‘ - ‘/Uamfll + 17 ’Uﬁm| - ’Uamml = ’U,quh - \Uamqh = le (234)

Now, from the periodicity of x and the equations (2.33) and (2.34) we obtain

x[kp — |vam-1], kp — 1] = z[2kp — |Vam—1|, 2kp — 1], (2.35)
ylkp — [vam—1|, kp — 1] = y[2kp — [vam—1] — 1,2kp — 2] = Vam—1, (2.36)

and,
|y[k:p - |Uam—1|,kp]|1 = |y[2/€p - ’Uozm—1| - 1727529“1- (2.37)

If we set |vam—1| = ¢ and consider the same shrinking construction for finite words

¥ =zxlkp— €, kp — 1],
" =x2kp — 0 —1,2kp — 2| = xlkp — € — 1, kp — 2],

/
Y = Vam-1,

then from here, (2.33), (2.36) and (2.37) and using our assumption that z is ultimately periodic

we obtain

S

Vam—1

(x[kp — L kp—1]) = S

Vam—1

(x[kp — € —1,kp — 2]). (2.38)

If we further set x[kp — ¢ — 1, kp — 1] = avb = v = v{v} ... v, 4, then

Svamfl (av> - Sﬂamfl (Ub)7 (2'39)
UBm—l UBm 1
...y TER |1 (T 101 ),
v(lm 1 ,v(lm—l 1 Uum—l U(lm 1 1 U(Xm 1 v(lm 1
< kp >l kp > |

| Ut | = [V = 0 (mod p) | Upm| — [Vam|= 0 (mod p)
Figure 2.3: Structure of the bi-ideal y.
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y' = Vym y| [Z] yv[J]

le—
l—
l—
l—
]
l—
]
l—
l—

au AU U oo | U | YU ... | W

i1 J 7+ n
ub (V7% IETS IO (VR VA R KT CV7 IO KV Y
| I
y = Vum- y'[l] yv[J]

Figure 2.4: Structure of the bi-ideal y.

but av # vb from lemma [17. From here
Ji>1Vj <i: V[j—1] =[] AV[i] £ + 1], (2.310)
but from (R.39) it follows that
Vs € 1,0 Sy g (V'[1, 8]) = Sypg(V']2, s + 1]). (2.311)

Observe that if 7 is the index mentioned in (2.310) and y/[i] = 1, then from (R.311]) equation

(.39) does not hold (see Figure 2.4). Thus ¢/[i] = 0. Moreover, since (2.311)) holds for all
s€{l1,2,...,(} then

Viel,0—1: J[t] £V [t+1] =[] =0. (2.312)

Since |alph(u)| = 2 and £ > p there exists an index o, < p such that (2.312) holds. From this,
(.312) and the periodicity of = we get that forall t € {1,2,...,p — 1} and for all u € N

W] AV[t+ 1A t+up <€) =yt +ppl =4[] =0, (2.313)

i.e., there are zeros in vy’ = v,,,_1 repeating periodically with period p.
Similarly, if we consider v.,,—1 and vs,,—1 (instead of v, —1 and vg,,,—1), we obtain that there
are zeros in v.,,,_1 that repeat periodically with period p. From this and considering |alph(u)| =

2 and |v,,—1| > £ > p, there exists an index iy < p such that forall € N

io + 1D < [yt | = Vym_ilio] = Vgm_1[io + np] = 0. (2.314)
From this and the fact that v,,,,—1 € Pref (v,,,_1) it follows that for all € N

io + 1P < |Vam—1] = Vam-1lio] = Vam-1lio +np] = 0. (2.315)

Since o < f < yand m = 2 then |vam—1| < [Vgm—1| < |Vgm| < |Uym—1|. From this and the

equations (2.31)), (2.32) and (2.314) we obtain
U'ymfl[iO] = Uqu[io + kp] = U'ymfl[io + 2kp] =0 (2316)
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Uy [ig+Ep]=Vom-n[ig] Uy [ig+2kp]=Vgm-i[ig]
Uy 19+ (k-1)p]= Vo1 [r]] Uyma lig+(2k-1)p]= Vam- [r+1]

p p
\/\ v(lﬂl—l[r]\ PR
. [1]0| [ | [1'...]0| ... 1] [ ]| ]1]0'...]0] [1]...q...
LI L LI ) l\ LI LI IJ T « LI ) T
1 1
vaml ! vam-l vaml ! Uam 1
kp ) 2kp
Upm- Upm-1
vym1

Figure 2.5: Structure of the bi-ideal with basis (1, 10).
and
Vym—1lio] = Vym—1lto + (k — 1)p|] = vym_1lio + (2k — 1)p] = 0. (2.317)

Next we observe that from the construction of a bi-ideal (see Figure and P.3) and from the
equations (2.31]) and (2.32) it follows that

Vym—1lkp — € — 1, kp] = y[kp — € — 1, kp] = vam-11 (2.318)

and

Vym—1[2kp — € — 2, kp] = y[2kp — € — 2, kp] = Vam—110. (2.319)

Since vym—1[kp — 1] = vam—1[¢] = 1 (by construcion v.,,_1[kp — 1] = 1 and by lemma [14 —
v € Suff (Vam-_1)), then iy # p — 1 and iy # p.

Further, if v.,,,_1[ip + (kK — 1)p] = vam—1[r] (Where r € {1,2,...,¢ — 1}), then v,,_1[ip +
(2k—1)p] = vam—1[r+1]. Finally from (2.317) it follows that v, _1[1] = vVam—_1[r+1] = 0, i.e.,
00 € F(y), but from lemma [L§ we know that 00 ¢ F(y). This is a contradiction and therefore

z = Sy(z) is not ultimately periodic. O
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3 WELLDOC property in bi-ideals

3.1 Preliminaries

Balkova et al. states that the modified shrinking generator, introduced in Chapter [, has not
passed some latest statistical tests. They recently introduced a combinatorial condition called
well distributed occurrences, or WELLDOC for short in (Balkova et al., 2013a) and (Balkov4 et
al., 2013b) for that reason. In both papers they state that an infinite word with the WELLDOC
property is used to combine two linear congruential generators and form an infinite aperiodic
sequence with good statistical behavior (better that the modificated shrinking generator).

This was the main reason why the author has analysed the WELLDOC property for bounded
bi-ideals, a subclass of recurrent words, and has proved the existence of a 1-bounded bi-ideal
over the finite alphabet that satisfies the WELLDOC property in this thesis (particularly, this
chapter). Significantly that the procedure given in this chapter allows to construct infinitely
many such 1-bounded bi-ideals with such a property.

Bounded bi-ideals are natural extension of finitely generated bi-ideals. Let S C A* be a finite
set of words from the alphabet A. Pick up randomly or algorithmically a sequence of words (u;),
where u; € S for all ¢ € N. This sequence generates a bounded bi-ideal x = lim,,_, o v,, with
vo = up and v,, = v, _1u,v,_1 for all n greater than 0. Clearly, if (u;) is periodic, then we obtain
a finitely generated bi-ideal.

For a finite or infinite word v = wuguqus ..., Pref,u will denote the prefix of length n
of u, i.e., Prefy,u = wuguy...u,_1. The Parikh vector of a finite word over an alphabet
{0,1,...,d — 1} is defined as (|wlo, |w]1, ..., |w|q—1)-

Let 29,71, ... denote the occurrences of w in an aperiodic infinite word u over the alphabet
{0,1,...,d — 1}. According to the definition u has well distributed occurrences (i.e. it has the

WELLDOC property), if for any m € N and any factor w of u,

{(|Prefi,ulo, ..., |Prefiulsg—1) mod m|j € N} = Z¢ ;
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that is, the Parikh vectors of Pref; u for j € N, when reduced by modulo m, give the complete
set Z< . In order to give the reader a better chance of understanding the WELLDOC property,

two examples will be provided.

Example 6. Suppose the Thue-Morse word
t =0110100110010110. ..

is given over binary alphabet, where

t2n+1 =1- tn

Thue-Morse word does not satisfy the WELLDOC property, if we choose m = 2 and w = 00.

As w occurs only in odd positions 7;, it is easy to see that
(|Prefiulo + |Prefiul1) = i;
is odd. It means that
(|Prefi ulo, [Prefi;uli) mod 2 # (0,0),
which gives us the necessary
{(|Prefi,ulo, |Pref;,uly) mod m|j € N} # Z3;
Balkova et al. states useful definition and proposition.

Definition 6. We say that an infinite word, u, over an alphabet A, where |A| = d, is universal

if it contains all finite words over A as its factors.
Proposition 20. Any word, which is universal, satisfies the WELLDOC property.

Proof. For any word w € A* and any m there exists a finite word v therefore, if ig, 1, .. ., i

denote the occurrences of w in v, then

{(|Prefiulo, ..., |Prefiula—1) mod m|j € {0,1.... k}} = Z%.
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Since w 1s universal, v is a factor of u. By denoting an occurrence of v in u with 7, we get that

the positions ¢ + ¢; are occurrences of w in u. That gives us

{(IPrefiviyulo, -, |Prefiyiula—1) modm|j € {0,1.... k}} =
= {(’P?"@fﬂllo, e \Prefiu\d,l)—i—

+{(|Pref;,vlo, ..., |Pref;vla—1) mod m|j € {0,1.... k}} = Z{,.
Thus u satisfies the WELLDOC property. [

Example 7. It is easy to construct a bi-ideal over binary alphabet with WELLDOC property.

Suppose we take

Uy = O, Uy = 1, U = OO,
Uz = 01, Ug = 10, Us = 11,
ug = 000, uy = 001,

In other words, we take all the words as generating words in lexicographycal order. In this case

our bi-ideal obviously contains all the finite words as its factors, which gives us the WELLDOC

property.

3.2 Bounded bi-ideals and WELLDOC property

Theorem 21. There exists a 1-bounded bi-ideal with the WELLDOC property in a binary al-
phabet.

Proof. The idea of the proofis that at first we show how the Parikh vector, when reduced modulo
m, gives the whole set Z¢ for a fixed factor and a fixed m. Let us choose any factor w of a
bi-ideal x and take an arbitrary integer m. From the construction of the bi-ideal there J¢ € N
(minimal) such that w \ v;. Let us define a suffix of v;, which follows the factor w, by w’ (see
Figure 1).

(A .

1 [

p= Jwlw|%] |w|lw]..

Figure 3.1: Structure of bi-ideal =
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Suppose that the first occurrence of w in the bi-ideal x is k. Let us define some integers:

po = |Prefrx|o mod m, p1 = |Prefix|y mod m
qo = |wlo mod m, ¢1 = |w|; mod m,
ro = |w'[o mod m, r1 = |w'[; mod m

It is obvious that the Parikh vector for the first occurrence w is (pg, p1). Our aim is to show

that, at first, we can get the vectors

(po+1,m1), (po +2,m1),
cey (O,pl), ey

R (pO_ 17p1)7 (p07p1)-

Then we can change the Parikh vector to (pg, p1 + 1) and do the same again until we get the
whole set Z2,.
Further, let us examine v; which is consecutive (m + 1)-st and its occurrence which is some

integer s, (see Figure 2). Let us calculate the Parikh vector for this occurrence w.

i i 7

v | v, v,
= Jwlw %] |w]| |%e]
@
r Ul \
| Jw]| |

Figure 3.2: Structure of bi-ideal x

| Pre fs,vlo=potm(po + qo + 70)+bo,

where by denotes the sum of all the 0’s in the base words which comes in the middle of v;’s.

Similarly, we get
|Prefsvi=prtm(pr + ¢ + 71)+b1,

where b; denotes the sum of all 1’s in the base words which comes in the middle of v;’s. From

this we can conclude that
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(Potm(po + qo + 70)+bo) mod m = (po+by) mod m
(p1+m(p1 + ¢ + r1)+b1) mod m = (p;+b;) mod m.

Suppose that the base word with the biggest index in the middle of the issued v;’s 1s u;4;.

Lets choose the base words in such a way:
Ui = NVLE{1,2,...,5 — 1},
but
Uiy = 0.

From the construction of the bi-ideal it is known that there is only one base word, u;;, in

the middle. Now we get that
(’Prefﬁu‘(]? yprefﬁu‘l) mod m = ((p[) + 1) mod mapl)'

Let us define £ = ¢+ j and now observe the element v, of the bi-ideal sequence and continue

to deal with the factor w at occurrence s, which gave us the vector
((po + 1) mod m, py).

Let us again examine that v, which is consecutive (m + 1)-st and its occurrence is some integer

s (see figure 3).

Parikh vector
((p, +1) mod m; p,)

z= | (w] [ | |w] |u.]
U (A (%
& b &
| w] | .. |
U,

m+1

Figure 3.3: Structure of bi-ideal

We choose the base words again in the following way:
Uk+1 =A\Vle {1,2,...,j— 1},

but
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U+ = 0.
Now we can see that
(|Prefs,ulo, |Prefs,ul1) mod m= ((po + 2) mod m, py).

Continuing to construct the bi-ideal in such way we get all the vectors

(0,]91)7 (1,]91), ceey (m - 1ap1)'

At this point we apply our procedure by taking the base word with the biggest index and defining

it by letter 1. This gives us a Parikh vector
(po, (p1 + 1) mod m).

From this point we continue to construct the bi-ideal as before by taking the base word with the

biggest index again and defining it by letter 0. Firstly, we get the vector
(|Prefsulo, [Prefsuli) modm = ((po + 1) mod m, (p1 + 1) mod m),

where s is the new occurrence of factor w wherewith we are working. By continuing this

construction we get the vectors

(0, (p1 + 1) mod m), (1, (p1 + 1) mod m), e

e (m—1,(p1 + 1) mod m).

The idea of the further construction is simple. We increase the second coordinate by one
(defining the base word with the biggest index by 1) and then forcing in the first coordinate all

the possible values reduced modulo m:
0,1,...,m—1.

After applying this m times the Parikh vectors give the whole set Z2,. At this point we have
completed the proof for a fixed factor and a fixed integer m.

To make it work for any m € N and any factor w of the bi-ideal z, we can make a lexico-
graphic order for all of factors w of x and make an infinite table with all of factors in top row
and all the integers (starting from 2, because natural numbers reduced modulo 1 are always 0,

so we get vector (0,0) every time and Z? = (0, 0)) in the left column (see Table B.2).

To make our bi-ideal with WELLDOC property, we do the following. First, we apply our

procedure for the factor w; and integer 2 (in the table the cell marked as 1) to get the Parikh
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— | w; | wy | Wy | W3 | Wy | Wy | We
ml— — | — | — | — | — | —
2 |— | 1] 214]7]1

3 | —[] 3 ]5 8|12

4 |— | 6 ]9 |13

5 |— 1|10 | 14

6 | — |15

7 | —

Table 3.1: Sequence of provable cases

vectors to complete the whole set Z2. Then, we take the next marked cell (cell number 2) with a
factor w, and an integer 2. With the help of the procedure we get the Parikh vectors to complete
again the whole set Z2. Then we take the cell number 3 with a factor w; and an integer 3, and,
again, through the procedure we complete the whole set Z3. By applying our procedure to the
all other cells from Table I, we can construct a bi-ideal with the WELLDOC property. Thus,

this completes our proof. O]

To help the reader understand our construction and procedure, we would like to demonstrate

producing a 1-bounded bi-ideal with the WELLDOC property.

Example 8. As we will construct a 1-bounded bi-ideal z, we can arbitrary choose our first base
element: uy = 0. It means that from lexicographical order a factor 0 will be the first one, 1.e.,
wy; = 0. It means that for cell number 1 in Table 1 we have a factor w; = 0 and an integer
m = 2. Accordingly, we have to prove that the Parikh vectors for prefixes of factor 0 give the

whole set Z3. It results in getting vectors
(0,0), (0,1), (1,0) and (1,1).

We get the vector (0,0) at once because of Prefox = A. Thus, the first element of the bi-ideal
sequence, vy, is the one which has w; = 0 as factor because vy = ug = 0.

As m = 2 we have to look at the 3rd of vy’s (see Figure 4).

The base word with the biggest index is uy. Thus, we define uy = 0, but u; = A. From this

we have achieved vector (1,0) because
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A S ¢

v U 0,

$:|0u10u20

\ 4

Figure 3.4: Structure of bi-ideal =

Prefsx = 000.

Currently we have constructed

T = vz = 00000z,

where z here and further will define a still unknown infinite suffix of the bi-ideal which we are
constructing. Further, we have to look at the 3rd of v,’s (see Figure 5).

v uYu vy u v,

g=|0 X0 00N 0w vu|0L000LO)|

w,
: | T

Figure 3.5: Structure of bi-ideal x

The base word with the biggest index is u4, so we define uy, = 0, but u3 = A. Now we have

acquired vector (0,0) back again because

Prefix = 01,
At this point we have constructed

r =4z = 0%z

Further, we want to increase the second coordinate by one. In order to do that, we have to start

including 1’s in our bi-ideal. We have to look at the 3rd of v,’s once again (see Figure 6).

A

ZI}:|U4 U, v, U, v,

\/

Figure 3.6: Structure of bi-ideal x

The base word with the biggest index is ug, so we define ug = 1, but us = A. From this we

have acquired vector (0,1) back again because
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Prefs;x = 04210,
For now we have constructed
r = vgz = 0*210%22.

To get the whole set Z3 we have to get the Parikh vector (1,1). It means we have to look at the

3rd of vg’s (see Figure 7).

\

Figure 3.7: Structure of bi-ideal x

The base word with the biggest index is ug, so we define ug = 0, but u; = A. Now we have

acquired vector (1,1) back again because
Pre fasx = 0*210%204210%200*210*.
At this moment we have constructed
T = vgz = veurvgusUrvs = 0'21020%210"200*10"20"*10* .

At this point we should go to the cell number 2 in Table 1. There we have a factor wy, = 1
and an integer m = 2. Further, we have to construct our 1-bounded bi-ideal further so that

Parikh vectors for prefixes of factor 1 give the whole set

25={(0,0), (0,1),(1,0), (1,1)}.

The first occurrence of factor 1 is 42 (known from the element vg). Thus, we get
(|Prefazlo, | Pre fax|i) mod 2 = (|0%o,0%];) mod 2 = (0,0).

As m = 2 we have to look at the 3rd of vg’s. The base word with the biggest index is w1, SO
we define u;y = 0, but ug = A. In such way we can acquire a vector (1,0). In order to get back
vector (0,0) we have to look at the 3rd of vy’s and define uy5 = 0, but u1; = A. By defining
u1s = 1, but uy3 = A we get vector (0,1) and by defining u14 = 0, but u;; = A we get vector

(1,1). So the Parikh vectors when reduced by modulo 2 give the whole set Z3.
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Further we go to the cell number 3 in Table 1 with the factor wy = 0 and integer m = 3. In

this case (m = 3) the Parikh vectors for prefixes of factor 1 have to give the whole set

Z; ={(0,0),(0,1),(0,2), (1,0), (1,1),(1,2),(2,0),(2,1), (2,2)}

The procedure continues to work as before, but at this time it starts with the element v4. Since
this time m = 3, we have to look at the 4th of v145’s. The base word with the biggest index is
uyg (in case of m = 4 the biggest index increases by 3). Thus, we define u;3 = 0, but u17; = A,
which occours twice this time in the middle.

In general, if we start with element v; and we have this integer m, we can define
b= [loga(m+1)].

The base word with the biggest index in the middle is u;,; (from the construction of the bi-
ideals). Thus, we define u;, = 0 or u;y, = 1 (according to the case we want to achieve),

but
‘v’jG{O,l,...,b—l}: UH_]’:/\.

Remark 22. It is easy to see that there are infinitely many 1-bounded bi-ideals with WELLDOC
property, because in this construction we can make “'the breaks” at some point and include some

spontaneous elements to achieve new bi-ideals.

Remark 23. We can create a modificated 1-bounded bi-ideal, where some of the first base

words are not 1-bounded, but bounded with some p € N.
For example, we can define first two base words by
1o = 00110, u; = 1101.

In this case we can still construct a modified 1-bounded bi-ideal with WELLDOC property by

using our construction and procedure.

Proposition 24. There are infinitely many 1-bounded bi-ideals with WELLDOC property in
every finite alphabet A.

Proof. The idea of this proof is somewhat similar to the proof of the theorem R1. The Parikh
vectors have more dimensions (in general case, | A|=d). It implies that there will be some more
steps in the procedure for the whole set Z% to be completed. However, it is finite, and the
procedure will stop at some point. Although the number of possible factors w; grows, they are

countable and we can arrange them in a row in Table L. U
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4 Bounded bi-ideals and linear recurrence

4.1 Preliminaries and background

In this chapter we also give a characterization of linearly recurrent bounded bi-ideals. We intro-
duce the notion of completely bounded bi-ideals and prove that completely bounded bi-ideals
are exactly linearly recurrent bounded bi-ideals. This class is very large, namely, its cardinality

1s continuum.

Theorem 25. Let w be a word having periods p and q and let gcd(p, q) be the greatest common

divisor of p and q. If |w| > p + q — gcd(p, q), then w has also the period gcd(p, q).

Let u be a non-empty factor of x € A¥. A word w € A™ is called a return word to u of x if
wu \ x, u is a prefix of wu, and |wul|, = 2. The set of all return words to u of = we denote by
Rau-

If x € A¥ isuniformly recurrent, then the difference between two consecutive occurrences of
u in x is bounded, therefore R, ,, is finite. As finitely generated bi-ideals and bounded bi-ideals
are uniformly recurrent, then R, , is finite for each finitely generated (or bounded) bi-ideal x
and for each its factor w.

An infinite word = € A“ is called linearly recurrent if it is uniformly recurrent and there

exists a constant X € N such that for all u \ x and all w € R, we have |w| < K - |u|.
Theorem 26. Let x be an aperiodic linearly recurrent word with constant K. Then:
1. Forall n € N each subword of length n appears in each factor of length (K + 1)n in x.
2. The number of distinct factors of length n in x is less than or equal to Kn.
3. Forallu € F(x) and for all w € R, we have (1/K)|u| < |w].

4. Forallu € F(z), Card(R,,) < K(K + 1)~
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In (Durand, 2000) and (Durand, 2003) Durand gave a S-adic characterization of linearly
recurrent sequences. If S is a set of morphisms (possibly infinite), an S-adic representation
of x is given by a sequence (0, : A}, — A’ )nen of morphisms in S and a sequence (a;)ien
of letters (a; € A; for all i € N) such that A = Ay, x = lim,, 0001 ...0,(a,,) and
lim,, 1 |00071 . .. 0n(ans1)| = +oo. An infinite word = over alphabet A is called S-adic if
there exists a set .S of morphisms such that = admits S-adic representation. If there exists s € N
such that forall » € N, forallb € A,,and c € A, 4,1 the letter boccurs in o, 110,42 . ..0.14(c),
then z is called a primitive S-adic sequence (with constant s). A morphismo : A — B* is called
proper if there exist two letters 7, | € B such that for all « € A the first letter of o (a) is [, and the
last letter of o(a) is . We say that x € A“ is proper S-adic if it is S-adic, and all morphisms

o € S are proper.

Proposition 27. A4 sequence is linearly recurrent if and only if it is a primitive and proper S-adic

sequence.

According to Proposition 7 in order to check whether a bounded bi-ideal z is linearly recur-
rent or is not linearly recurrent we should be able to choose a finite set .S of proper morphisms
and show that z is primitive and proper S-adic, or to prove that there does not exist a finite set
of proper morphisms S such that x is primitive and proper S-adic. For our purposes it is more

convenient to make restrictions on the basis sequence (u;) before the bi-ideal is generated.

4.2 Bounded Bi-ideals and Linear Recurrence

In this section we state and prove the main result of this chapter, that is, completely bounded

bi-ideals are exactly linearly recurrent bounded bi-ideals.

4.2.1 Completely Bounded Bi-ideals

Let
UQy Uy v v vy Upyy v 4.21)

be a sequence of finite words over alphabet A.

A subsequence of sequence (4.21])
Uy Ugyy oo vy Ugpy v - (422)
is called constant if the following conditions hold:
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() 5.7 €N (s, =g, );
(i) up = uy, == In(k =1iy,).

A constant subsequence (#.22)) is called bounded if it is finite or there exists a positive integer
[ such that

in - ZAn—l S [
for all n € N. A constant subsequence (#.22) is called boundless if it is not bounded.

Definition 7. A bounded bi-ideal x is called completely bounded if there exists a basis sequence

(B.21)) of 2 which contains only bounded constant subsequences.

Since each bi-ideal has infinitely many basis sequences, then the “existence” condition in

Definition [ is crucial.

Example 9. Let x be a periodic word (01)%. It is a completely bounded bi-ideal since its basis

sequence

01,01,01,...,01,...

has only one constant subsequence, and it is bounded. Nevertheless, the sequence (u;);>o which
is defined by
01 ifi=k?>forak €N,

U; =
0101 otherwise

also is a basis sequence of z. Clearly, (u;);>0 contains a boundless constant subsequence.

Let 2 be a bounded bi-ideal generated by a sequence (4.21]). As the length of each basis word

of = is bounded by some s € N, the set
U = {u| Fk(u=wu)}
is finite. From here there exists a non-negative integer m such that
U = {u| Ik €0, m(u=u)}. (4.23)

We denote 1o = min|u|, and p; = max|u.
uel ueU
Let (u, ) be a basis sequence of a completely bounded bi-ideal x such that all constant sub-
sequences (#.22) of (uy,) are bounded. Then there exists a positive integer [ such that for all

constant subsequences (#.22) of the basis sequence (u,,) we have
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in —in1 <1 (4.24)

foralln € N.

In the sequel we use denotation m (I, respectively) for the smallest integer that satisfies (#.23)
((B.24), respectively) for a completely bounded bi-ideal with a given basis sequence (u,,).

We recall that by v,, we denote the n-th element of the bi-ideal sequence that is generated

by a basis sequence (uy,), i.e., vg = ug and v, .1 = VU110, foralln € N.

Lemma 28. Let © be a bounded bi-ideal with a basis sequence (u,). Let (v,) be a bi-ideal

sequence generated by (uy,). Then (2871 — 1) g < |vg| < (28 — 1)y for all k € N.
Proof. If k = 0, then vy = uy, therefore
fo < uo| < pa.

Now we assume that

(21 = Dpo < Juel < (2" = D
and consider the length of vy ;. The equality
|Vesa] = 2+ [or] + |k ]

implies
[oka] > 2257 = D)o + po = (2% = D)o

and
opa| <22 = D+ = (272 = Dy

]

Lemma 29. Let © be a bounded bi-ideal with a basis sequence (u,). Let (v,) be a bi-ideal

sequence generated by (uy,). Then |vgin| < 2" vg| + (2" — 1)y for all k,n € N.
Proof. The proof is by induction. If n = 1, then

V1] = 2 - ok] + g | < 2- o[ + (2 = D
We assume that condition holds for |vy,,| and consider the length of v, 1:

|Vktna1] = 2 [Vkin| + |Ukingr| < 24 (2%0r] + (2" = D)) +

_ 2n+1|vk| + (2n+1 o 1),“1'
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Uu U U
’Ul un U/ un v// un U”
Un—1 Unp, Un—1 | Un [Unp—1 Up | Un—1

Figure 4.1: Three possibilities where the word u can occur in v'u,v".

From now we will consider only completely bounded bi-ideals.

Lemma 30. Let x be a completely bounded bi-ideal. Let (u,) be a basis sequence of x that
contains only bounded constant subsequences. Let (v,,) be a bi-ideal sequence generated by the

sequence (uy). If u € F(v,), u ¢ F(v,_1), andn > m + 1, then |u| > |v,_1_|.

Proof. Firstly, we observe that v,, = v, ju,v, 1 and u ¢ F(v,_1) imply u \ v'u,v”, where
v" € Pref(u) N Suff(v,_1) and v € Suff(u) N Pref(v,_1). We can represent this condition with
three alternative schemes (see Figure [.1]).

As one can see, it is possible to have v/ = X or v = A.

Definition of a completely bounded bi-ideal implies existence of 7, 1 < ¢ < [, such that u,, =
up,—;, but from bi-ideal construction we have v,,_;_; € Pref(v,_1) and v,_1_; € Suff(v,,_1).
From here we obtain

Up = Up—1UpUp—1 = W1VUp—;W2,

with |w;| = |w,|. For a schematical representation see Figure #.2.
Now, one can see that the inequality |u| < |v,_;_;| implies [v'| < |v,—1_;] and [v"| <
[

Thus v'u,v"” \ v,—; € Pref(v,_;). Contradiction, since u ¢ F(v,_1). O

Corollary 31. Let x be a completely bounded bi-ideal. Let (u,) be a basis sequence of x that
contains only bounded constant subsequences. Let (v,) be a bi-ideal sequence generated by
(un). If u \ vy, but u does not appear in v,,_1, then |v,| < 2*(|u| + p1), where 3« = max{m +

1,0+ 1}

vn—z
Un—1— Uy, Up—1—i
U/ un U”

Figure 4.2: The structure of v,,_;.
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Proof. (i) Letn > m + 1. Then from Lemma P9 and Lemma B we obtain
[vn| < 2l+1‘vn7171| + (2”1 — 1)
< 2y + 2%
< 2 [y| 4 2y,
=21 (Jul + )

< 27 (Jul + ) -
(ii) Ifn < m, then by Lemma R9 it follows that

|vn| < 2wl + (2" — D)pa < 2%uo| 4 2"

< 2%y 42"y < 2y <27 (Jul + )

< 27 ([u| + ) -
O
Lemma 32. [fa > 1andb > 1, thena+ b < ab+ 1.
Proof. From inequalities a > 1 and b > 1 we easily obtain
a—1<(a—1),
a—1<ab—b,
a+b<ab+ 1.
O]
Corollary 33. Ifa > 1 and b > 1, then a + b < 2ab.
Proof. Lemma B2 implies
a+b<ab+1<ab-+ ab=2ab.
O

Corollary 34. Let x be a completely bounded bi-ideal. Let (u,) be a basis sequence of x that
contains only bounded constant subsequences. Let (v,) be a bi-ideal sequence generated by

(un). If u v, and u & ¥(v,_1), then
[val < 2 g ful,
where s = max{m + 1,1 + 1}.
Proof. Corollary B1 and Corollary B3). [

44



4.2.2 The Main Result

Theorem 35. A bounded bi-ideal x is linearly recurrent if and only if it is completely bounded.

Proof. <=: At first we prove that a completely bounded bi-ideal z is linearly recurrent. Let x
be a completely bounded bi-ideal, and (u;);>o be its basis sequence that contains only bounded
constant subsequences. Let u . x. Then there exists an element v,, of the bi-ideal sequence such
that u \ v,,. By construction of a completely bounded bi-ideal, z can be written as a factorization
of v,, and basis words, i.c.,
T = VU VU . VU -

where u/, € U forall s € N,

Let uli,j) be an occurrence of w in = such that u = x[i,j). Then there is k& € N and

occurrence of v, u v, in
Uplin, i)y iz, i3) vy [is, i) = x[ir, iq)

such that i; < ¢ < i3. Otherwise, for i € [i3,4) we would consider the occurrence of v,uj_ vy,
in z instead of v,u)v,. So, i3 < ¢ < i3 and we will find the next occurrence of u in z, e.g.,
uli’,j') = x[¢', j'). As u has an occurrence in v, then i3 < i’ < iy. Clearly, uli,j) and uli’, j')
are two distinct occurrences of « in x and we can estimate the length of w, e.g., the length of the

corresponding return word to u is
w| < 4" =i < ] < vl +
(1) If u does not appear in v,,_1, then, by Corollary @, we have

w] < |vp| + p1 < 27 ful + pn < 2772 ful.

(i1) Observe, if u \ v,_1, then we need to consider only the case when u \ vy. Then
w| < Jug| + p1 < 200 < 22 pg|ul.
We conclude the proof by setting K = 272y, Then for each u \. x and each return word

w € Ry, we have

w] < K- ul.

==>: We assume the contrary that x is a linearly recurrent bounded bi-ideal that is not com-

pletely bounded. Then there exists a constant A such that for each factor w we have
jw| < K - [ru,
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where 7, 1s arbitrary return word to w in a bi-ideal x.

Let (u;) be a basis sequence of z. Without loss of generality we can assume that the length
1o of the shortest basis word is greater than zero. Indeed, if ;4o = 0 (i.e., at least one of the
basis words is the empty word \), then we can L-prolong the basis words once and consider the

)

new obtained basis sequence (u, ') instead of (u;). By definition of L-prolongation, ug # A is
a prefix of ugl) for all « € N. Thus none of the basis words in (ugl)) is empty. Clearly, as x is
not a completely bounded bi-ideal, then (ugl)) contains a boundless constant subsequence.

Let k; = |u;| — |uis] foralli € N. Let K = {|k;||i € N}. According to the definition of
L-prolongation

kfl) = ’U£1)| - |U§i)1 = |ugtis1| — |uotita| = kit

Hence, if £' = {|kfl)||2 € N}, then K’ C K. From here, without loss of generality we can

assume that the basis sequence (u;) satisfies such two conditions
p < 2po, (4.25)
where 1o (11, respectively) is the length of the shortest (longest, respectively) basis word, and
0 < Emax < 0.1y, (4.26)

where kmax = max{||u;| — |ui1]|; ¢ € N}.
Otherwise we could L-prolong basis words until we obtain a basis sequence that satisfies

(M) and (M). Since x is not a completely bounded bi-ideal, then after any number of L-

prolongations we obtain a basis sequence that contains a boundless constant subsequence.

The aperiodicity of = implies the existence of a constant n” such that for all n” > n’ the n”-th
element of the bi-ideal sequence v, is not p-periodic for all p < 3p4. Later this fact will help
us to obtain a contradiction.

As the basis sequence of x contains a boundless constant subsequence (u;, ), then there exists
n > max{2™,n'} such that n = iy, u;, = u,,,,, and iy41 — i, > K + 3. In order to simplify
calculations we assume that equality holds, namely, i1 = n + K + 3. We prove that for a
word w = v, u,v, there exists a return word r,, such that |r,,| > K - |w|.

Further we divide the proof in two parts. First we prove that v, ko does not contain w =
UnUnv, as a factor. Then we show that if w does not occur in v,, 1 12, then there exists a return
word to w such that its length is greater than K - |w)|.

By the bi-ideal construction, it follows that v,,, k.o can be written as a factorization of v,

and basis words. Hence, if we denote each u; € U \ {u, } by u., then v, 2 can be written in

46



w w

Un unlll‘lf’u/i Un | Un Up !U»/i Un |
U U, |u° Up | Up, Us[u" ot Uy ]

Figure 4.3: The word w is in the prefix of v, i (2.

Un | Unp, | u' ... Un Un Unp, | u'ie. Up
Un | u*| ul U’/ b ,UTL U’I’L u*| ul U,/ ces Un
Up .../ Up | Un, Uy, ... /] Uy Un,

Up v/ Uyl Un Up, . Uy Un,

/Un | un |ZI’§ cee ,Un

Un, |u* |u’§u’§ Un

Figure 4.4: The word w,, overlaps with u,; the case when |u,,| > |u.].

the form

Ut K+2 = UnUsUpUsVpUs - . . UpUg Uy 4.27)

We use denotation u, to point out the absence of u,, in factorization () of v k4o, 1.€., tO
point out the inequality u, # u,,.

Firstly, we observe that w ¢ Pref(v,x12). Assume the contrary that w € Pref(v,4 g 12).
Then |u,| # |u.| (otherwise the equality u, = u, leads to contradiction). Hence we obtain a
shift of v,, to the right of u,, and u, (see Figure §.3)); therefore v,, is periodic with the length of
the shift |u/| < g1 < 3. Contradiction. Analogously, we can prove that w ¢ Suff(v,,, i 12).

Next, we consider the case when u,, = w[|v,|, |v,u,|) oceurs in v,uv,uv, so that u,
overlaps with one of the basis words u.. As u,, # u,, then these two conditions cannot hold at

the same time:
a) || = ugl;
b) occurrences of words u, and u,, in v, g o start at the same position.

From here we obtain the shift of v, to the right or to the left of u,, and u, (see Figure §.4),
therefore v,, is periodic with the length of the shift |u/| < p; < 3p;. Contradiction.

It remains to consider the case when u,, = w[|v,|, |v,u,|) occurs in
Un = (UpUsVp s U ) [|Vp |, |V Ui ])-

Here we recall that v,, = v,,_1u,v,—1 and consider three subcases:
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| U’n—l | U/n | u/‘i Un—1 | | ’Un_l | u?’L |U/§ ll,j U’I’L—l |
[ Unoy [Un [u/ W/l Un—1 | [ Un_1 [Up [ Up—1 |

Figure 4.5: There is a shift, when u,, overlaps with u,, in v,,.

Un,
U Un—1 Uy, [/ Up—1
| Un—1 U, Un—1 U [/ Up—1 |[Up | Un—1
Un, Un,

Figure 4.6: The case when |u,| > |u.|.

Casel
The word u,, = w[|v,|, |vau,|) overlaps with u,, = v,[|v,_1], |vn_1un|) so that
a) there is a shift of v,,_; to the left or to the right of u,, (see Figure #.5). Then v,,_; is periodic
with the length of the shift |u/| < p; < 3p;. Contradiction.

b) their occurrences coincide, namely,

W = VpUnUp = Un—1UnUp-1UnUp—1UpUn—1 =
= (UnUsVp— 1 Up V1 Ui Op) [|Up e | — |Vn— 10|, |[Vntavn| + |unvn_1]].
From here the equality of lengths of u,, and u, would imply the equality of words them-

selves (which would lead to contradiction). Thus |u,| # |u.| and we obtain shift of v,,_;

to the right of u, and u,, (see Figure }.6).

From here v,,_; is periodic with the length of the shift |v/| < kpax < 11 < 3p1. Contra-

diction.

Case II

Let v, = v'v"v" with [v'| = [v"]| = 2u4. Let u,, = w[|v,], |vau,|) occur in o' = v, 1[0, 2p7)

or v = v, q[|vn_1| — 2u1, |vn_1|). Here we are not interested if u,, occurs in v,,_; € Pref(v,,)

or in v,_1 € Suff(v,). If u, occurs in v’ starting at position «, then, as
wHUnla |Ununvn—1|) = UnpUp—1,

we obtain a shift of v,,_; of length a + |u,,| to the right of w,, (see Figure #.7). Hence v,,_ is
periodic with the length of the shift

@+ [un| < V| =241
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Contradiction.

Similarly, if u,, occurs in v ending in position |v,_1| — /3, then, since
w[lvn—lun|7 |Unun’) = Un—1Unp,

we have shift of v,,_; of length 5 + |u,| to the left of u,, (see Figure @), therefore v,,_; is
periodic with a period

B+ Jua] < [0 = 2.

Contradiction.

Case 111

Let v,_1 = vv"V"”, where |v'| = |v"/| > pi. Let u, = w[|v,|, |vauy,|) occur in v =

Un—1[|V'], |0'v"|). First we consider the case, when u,, occurs in v” which is a factor of v,,_; €
Pref(v,,). If u,, = w(|vy|, |[vnt,|) occurs in v,_; starting in position o (see Figure 4.8), then v,

is both « + |u.| and v + |u,,| periodic.
a) If |u,| # |u,|, then according to Theorem P35 if

a+ |u] + @+ |u,| — ged(a + |uy|, o + |uy))

=200 + |up| + |us| — ged(o + |us], a + |uy]) < |vl,
then v, is also ged(a + |u.|, @ + |u,|) periodic. Indeed, we have
20+ |up| + |us| — ged(a + |us], o+ [un]) < 2|vp-1] = 21 + 2p1 — 1 < |vy],
therefore v,, 1s

ged(a + |ug|, o + |uy|)

= ged(min(a + [u.], a + fun|), [Ju] = unl]) < ] = unl] < m
periodic. Contradiction.

Up—1 Up—1

= |l

'~
<

Figure 4.7: The word u,, occurs in v’ or v"”.
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1 a /6 1 1 ,‘Y

/ ) N / )
Un vy |un | Up—1: v |un | Un—1 |
Un [Us| 2] v [ " | U | | Us| Un

Figure 4.8: The word u,, occurs in v”.

b) If |u.| = |u,|, then we consider u’ and u” (see Figure §.8), two suffixes of v,_;, and

compare their lengths v and ~:
a=[u| = |vpa]| = B = |ua| = 7.

Hence u,u' and u,u” are two suffixes of v,,_; of the same length. From here and the

equality of lengths of u,, and u, we obtain that
Up = Usx
as prefixes of the same length of equal words. Contradiction.

If u,, = w(|v,], |vauy|) occurs in v,y € Suff(v,) ending in position |v,_;| — « (see Figure

#.9), then v,, is both o + |u,| and a + |u,| periodic. Analogously as before we obtain:

a) If |u.| # |uy|, then v, is also
ged(or+ |u, a + Jun) <
periodic, which leads to contradiction.

b) If |u.| = |u,|, then |[u”| = |u'| (see Figure {.9), hence u” = v’ as prefixes of v, _; of equal
length. From here u, = u,, as suffixes of equal length of the same word v"u,, = v'u, €

Pref(v,_1).

We have proved that w = v,u,v, does not occur in v, g1o. It remains to show that this

implies existence of a return word to w such that its length exceeds K - |w|. As v, k12 does

8l I} «
S
Un—1 [Un | u” Up—1 [Un | v L Up
Un | Uy [Un| o] v’ [ "] Us| U

Up—1 Un—1

Figure 4.9: The word u,, occurs in v”.
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not contain w as a factor, there exists a return word r,, to w such that r,,w contains v, 2 as
a factor. We need to prolong v, k.o for at least two symbols to obtain r,w (if we add one

symbol to the right or to the left, we can obtain maximum one occurrence of w). From here
rw| = [ruw| = |w] = [oni kol +2 = |wl. (4.28)
Now we estimate the length of w. By Lemma R§:
[w] = [Untnvn| < 2|vn] + p1 < 2027 — Dpg + py < 27 2. (4.29)

Next, from (#.28), (#.29), and Lemma R§ we have

70| 2> |Vngk2| + 2 — W]

> (2n+K+3 _ 1)M0 + 2 _ 2n+2[1’1

— 271+K+3,u0 — Ity + 2 o 2714—2“1

S gnHiH2,  gntl

fu i — 2"

— <2K o ;) . 2n+2/1/1
3

Finally, we conclude the proof by observing that for each integer K > 1 we have 2% — % > K.

Hence

7| > K- fwl,

and zx is not LR. Contradiction. O]

We have given a characterization of linearly recurrent bounded bi-ideals. Moreover, the
famous Thue-Morse word is linearly recurrent (as uniformly recurrent morphic infinite word),
but it is not a bounded bi-ideal (Buls and Lorencs, 2006). Hence we conclude that class of
bounded bi-ideals intersects with the class of linearly recurrent words but neither of these classes

is a proper subclass of another one (see Figure §.10).

51



Figure 4.10: Hierarchy of uniformly recurrent words (/R ): the class of linearly recurrent words
— LR, the class of bounded bi-ideals — 3, the class of completely bounded bi-ideals — B, the

class of finitely generated bi-ideals — By, the class of periodic words — P.
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S Partial finitely generated bi-ideals

5.1 Preliminaries and background

Blanchet-Sadri et al. in (Blanchet-Sadri and Hegstrom, 2002) accented that partial words appear
naturally in several fields such as DNA computing, data communication, molecular biology etc.
This was the inspiration of this chapter — to aggregate partial words with the class of infinite
words that we are interested in, i.e., bi-ideals. Nowadays the importance of information is so
expansive that it is not possible to overvalue it, as there are times and reasons for knowing only
partial information about something, for example, DNA structure. As DNA has some certain
structure (with possible missing information) and bi-ideals (in this case, finitely generated bi-
ideals) have a structure, in this chapter we are trying to solve the problem of filling the holes
(missing information) in finitely generated bi-ideals. In general case of finite amount of holes
in finitely generated bi-ideals it is always possible to get the whole information back. Unfortu-
nately, in general case of infinite amount of holes it is not possible.

A finite partial word of length n over A isamap w : {0,...,n — 1} — AU {o}, where
o ¢ A. The symbol ¢ is viewed as a “do not know” symbol. The union set A U {¢} is denoted
by A,. A right infinite partial word or infinite partial word over Aisamap w : N — A,. In
both the finite and infinite cases, the symbol at position ¢ in w is denoted by w;. If w; € A, then

1 18 defined in w, and if w; = ©, then 7 is a hole in w.

5.2 Finding a basis for a bi-ideal

We start this section with the theorem what gives an orientation in this chapter.

Theorem 36. Suppose that (ug, uy, ..., Un,—1) is a basis that generates the bi-ideal x. If uj, €

/ / / / / /
(T T T T T Iy ()4

Pref(x) and u, # uy, then there exists a basis (uy,u!,...,ul, _,,ul,,

almost finitely generated bi-ideal, which generates the same bi-ideal x.

53



Proof. From given it is known that w), € Pref(x). It follows that either u;, € Pref(vy) or

either 3n > 0 : u{, € Pref(v,) and uy ¢ Pref(v,_1). It means that Jw:

Up = UgW (5.21)
From the bi-ideal construction and (5.21), we have
Unt1 = Uplp+1Up = UGWUp11UGW.
Let’s define v} := wu,, which gives us
Unt1 = UUj uGw = vyuiviw = vjw.

U, v v, v

A A A

U , W Y| Y W |2 w

\J

Figure 5.1: Scheme of change of basis

Let’s examine the next element of the bi-ideal sequence:
Up42 = Upg1Un42Ungl = V) Wly 2V W.
Let’s define again similarly uf, := wu,,» and it gives us
Upao = Viubviw = vhw.

We will use mathematical induction to prove this theorem. Suppose that v,,; = vjw, where

1 < m. It is easy to see that
Untitl = Untillngit1Vn+i = UjWlhp 4541V,
If we define uj, | := Wupyii1, We get
Untitl = Uiy W.

Now we have to make an inductive step, i.e., we have to get vy mi1 = v, w. From the bi-
ideal construction and from the fact that the initial basis of finitely generated bi-ideal is a basis

with m elements we get that

!/ /
Un+m+1 = UntmUn+m+1Unt+m = UngmUn4+1Untm = Up, Wlp41V, W.
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Bus as we know from the definition that v := wu,,, then
— / !, _ /
Ungm41 = U, U0, W = U, W,
O

Example 10. Let’s observe a basis (ug, u;), where ug = 0 and u; = 1. This basis generates a
bi-ideal z = 0100010101000100... Suppose that we choose v, = 01000 and try to get a basis
for an almost finitely generated bi-ideal, which generates the same bi-ideal z. As u;, = 01000,

then it is known that u, € Pref(v2). It means that there exists a word w = 10 such that:
Vg = UG

Inductive hypothesis: Vi < k: v;.2 = vjw. Now we have to prove the inductive step, i.e., that
Upts = Upw. From the bi-ideal construction and inductive hypotheses Vi < k: v;1o = vjw

we get that

!/ !/
Vk+3 = Uk42Uk4+3Vk4+2 = V;WUE43V;W.

Let’s consider 2 cases, based on the parity of indexes:

(1) If £ - even number, then
Vw3V w = vywlvw = v 101vw.
If we define u;, ., = 101, we get that
v, 101vw = Vg VW = U)W,
(i1) If k£ - odd number, then
w3V w = vwlv,w = v, 100V w.
If we define u;, ; = 100 in this case, againgwe get that
v}, 100v,w = ViU VW = Uy, w.

And that completes the proof. It means that if we choose u(, = 01000, then there exists an almost
finitely generated basis — (01000, 101, 100, 101, 100, ..., 101, 100, ... ), which generates the

same bi-ideal x.

Suppose that we have a given bi-ideal over a finite alphabet A and |A|=k. Is it possible to
find a basis sequence, which corresponds to it? In general case, it is not possible and we need

to know at least two things to do that.
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Proposition 37. The amount of base words has to be certain in order to find the corresponding

basis.

Proof. Let us deal with such a basis sequence:
(0,0,...,0,1). (5.22)

If we don’t know how many base words we have got, we can’t know how far we have to examine

the given bi-ideal. [

Proposition 38. The maximal length of base words has to be certain in order to find the corre-

sponding basis.
Proof. Let us deal with such a basis sequence:

(00000 .. 001). (5.23)

Almost the same idea applies here. If we don’t know how long the longest base word is, we

can’t know how far we have to examine the given bi-ideal. ]
Theorem 39. It is possible to find a base for a given finitely generated bi-ideal.
Proof. This means that we have to know two numbers:

n — amount of base words,

[= max u;.
0<i<n—1

From this we get that it is possible to find a base sequence only for finitely generated bi-
ideals. As we know the cardinality of the alphabet, the maximum length of the base words
(bounded bi-ideals) and amount of base words (finitely generated bi-ideals), there is a possibility
of only finite amount of distinct bases. That means we can construct a finite amount of bi-ideals
from all these distinct bases. We do that together for all distinct bases continuously until almost
all of bases (except the correct one) do not match at some point to the given bi-ideal sequence.
At the time when penultimate base fails, we have left with the base we were looking for. This

base is the one that corresponds to the given bi-ideal. [
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5.3 Filling of holes in a finitely generated bi-ideal

Suppose a finitely generated bi-ideal « is given over a finite alphabet A and there is a place (index
i, which correspond to z[i]) with a hole in it. It means we have lost an information about what
letter has to be there. Natural question appears — is it possible to find a letter which corresponds

to this hole?
Definition 8. If v is a word, then U defines the same word without a first letter.
Example 11. If u=01110, then @=1110.

Theorem 40. Suppose we have a finitely generated bi-ideal x with a basis sequence (u,,). If we

define

a) =

Vi >0 : w), = u;u[0].

Then ' is a bi-ideal genereted by basis (u.,) besides ' = .

"o o
b) uy = ugu)

Vi >0 uf = uguy ;.
Then basis (u") defines a bi-ideal z" = .

Proof. At first, we will prove the first part. To do that, we have to show that

Vn e N: v, =71,

w5 = .

The base case (k = 0) executes clearly, because v, = u; = Now we suppose that

our statement holds for some natural £, i.e., v = Tk The inductive step follows from

/ ) e SN R S o - _ = _ —
Vi1 = Va1 V), = VpUp, 1 U = UpUp41Uo[0]Vf = Vi1V = Uil

The second part directly follows from Proposition .

Now we state a theorem that helps us to prove our main result in this chapter.

Theorem 41. If x is a finitely generated bi-ideal with a basis (ug, uy, . .., uy,), then 2 is also a

finitely generated bi-ideal.

Proof. We can construct a basis for a finitely generated bi-ideal 7 in the following way. First

we define a sequence:
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ul, = uppl0]
Uy, 1 = Ugtio|0]
Up 4o = U1o[0]

Uy, 45 = Ustp 0]

Uspg1 = Untio[0]

Us,, 9 = Ul 0]

In other words we can define the basis as

ul) =

Vm > 11w, = U mod (nt1)%o|[0].

Now suppose that the basis (ug, u),...,u.,u’ . {,...) defines a bi-ideal z’. In this case this
pp 0» %1 n) “n+4l
basis defines an almost finitely generated bi-ideal. It means that our base sequence is ultimately
periodic. The first base word is u(, and then we have a periodic sequence (u}, ..., u,,,u, ) that
generates our bi-ideal 2’. Secondly, we define another sequence:
Uy = uu
uy = ugul

n __ !,/
Ug = UglUg

Uy = Uy, 1y
The basis (u”,u”, ..., u") defines a bi-ideal 2 = 7. To prove that, at first we prove that
0s U1 n p p

P =T by mathematical induction. To do that we need to prove that

Vi o) = ..

The base case (k = 0) executes clearly, because v) = u; = w

_
’ = vj. Now we suppose

that our statement holds for some natural £, i.e., v, = Wk From the defined basis sequence

/ / ! / / 3 S
(ug,uy, ..., u,,unq,ul, ... ) and construction of bi-ideals we get that
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/ o A A - — - B
Uyt = Vg1 V), = ViU Ut 1) mod (n+1) Uk = Uk U mod (n41)%0[0] 0k = Uk U mod (n+1)Vk =
—
= Vk+1-

The last part that the basis (u],u”, ..., u") defines a bi-ideal 2” = 7’ again directly follows

from Propositionfj. O

(Cers, 2010) solved the decision problem: given two bases, decide whether they generate

the same finitely generated bi-ideal.

Definition 9. We say a basis (ug, u1, . .., u,,—1) of a finitely generated bi-ideal x is reducible if

it can be changed by an application of any of the following reductions:

1. There is a word u and non-negative integers k;, such that v; = v for alli € 0,m — 1.

Then the 1-tuple (u) is also a basis of .

2. There is a'T" < m such that m = k - T for some £k € N and v; = wu;.p for all i €

1,m — T — 1. Then the T-tuple (ug, u1, ..., ur_1) is also a basis of z.

3. There are words w; such that u; = w,,_jw; for all ¢ € 0,m — 1. Then the m-tuple

(Wy—1, Wo, W1, . . ., Wyy_2) 18 also a basis of .
Example 12. Here we give an example of each reduction:
1. If (0101,01010101, 01) is a basis of z, then (01) also is a basis of z;
2. 1f (0,1,2,0, 1, 2) is a basis of z, then (0, 1, 2) also is a basis of x;

3. 1f (01020100, 01020101, 01020102) is a basis of , then (0102, 0100, 0101) is also a basis

of z.

Definition 10. A finite basis of a bi-ideal is called irreducible if it cannot be further reduced by

any reduction of Definition [g.
Theorem 42. There is one and only one irreducible basis for any finitely generated bi-ideal.

Theorem 43. [If two irreducible finitely generated bi-ideals x and y are not equal, then there
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Proof. Suppose that we have two bi-ideals — = with a basis (ug, uy, ..., u,) and y with a ba-
sis (wg, w1, ..., wy,), with finitely many different occurrences. It means that we can find an
occurrence starting from which both bi-ideals are equal. We also suppose that both of bases
(g, Uy, ..., u,) and (wg, wy, . .., w,) are irreducible.

First, suppose that incorrespondence is only in the first letter. This means that x = 0z and
y = 1z. By the help of construction from Theorem |1, it is possible to construct two finitely

generated bases for bi-ideal z. The first one:

And the second one:

1 / /

wy = wiw| = whwiwe[0]
N D R o

w! = wiwlh = whwawg[0]
" / /

wh = wywy = wywswy|0]

"o o__

/ol =
Wy, = WHWy, 1 = WHWyr41Wo[0)]

At this point we have two bases

(ug,uf,...,ulyand (wy,w!,...,wl),

which generate the same finitely generated bi-ideal z. From Theorem @2 it is known that for any

finitely generated bi-ideal there exists one and only one reduced basis. It means that it should

be possible to reduce (ug, uf, ..., ul) to (wj,wy, ..., wy) or vice versa.
From the construction of base words (ug, u/, ..., u!), it is known that the last letter of all

these base words is 0 because uy[0] = 0. Likewise, it is known that the last letter of all the base
words (wy,wy, ... ,w) is 1 because wy[0] = 1. From the definition of reducibility of finitely
generated bi-ideals, it is easy to see that in all three cases the last letter of the base words remains
the same. Thus, it mean it is not possible to reduce these two bases into one. Contradiction. It is
not possible that incorrespondence of two finitely generated bi-ideals is only in the first letter.
Now suppose that we have a general case — incorrespondence is in finitely many different

occurrences. Let us suppose that an occurrence, starting from which both bi-ideals are equals, is
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some integer k£+1. This mean that we can make a construction from Theorem #1| (making basis
for a bi-ideal ?) k-times for both bi-ideals x and y and get to the case we already dealt with —
0z and 1z. Doing this change of bases we still have a finitely generated bi-ideal. This concludes

the proof. [
Theorem 44. It is possible to fill the finite number of holes for a given finitely generated bi-ideal.

Proof. As we have a finite alphabet, there is a finite number of ways to fill the holes in. It
means that we have a finite amount of potential finitely generated bi-ideals. And there is still
a possibility of only a finite number of distinct bases. That means we can construct a finite
amount of bi-ideals from all these distinct bases. We do that for all distinct bases continuously
until almost all of bases (except the correct one) do not match all the potential bi-ideal sequences.
At some point there will be just one basis and one potential bi-ideal without fail. This basis is

the corresponding one to the given bi-ideal and we can fill in the holes. [

We will give an example, which shows that this problem is not resolvable in general case

with infinite amount of holes in a finitely generated bi-ideal.

Example 13. Suppose we have a finitely generated bi-ideal with the basis {00, 01}. This basis

generates a bi-ideal
x = 00010000000100.. ..

A letter 0 is always in every odd position of this bi-ideal. Suppose that we have the holes of the

given bi-ideal in every odd position
r = 0001000000¢100. . .

It is impossible to fill these holes in because there is a finitely generated bi-ideal with a basis

(10, 11), which corresponds to the given bi-ideal.

Corollary 45. If a given finitely generated bi-ideal x has an infinite number of holes, it is not

possible to fill them all in general case.
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6 Fuzzy metrics on the set of infinite words

and fuzzifying topologies

Some researchers working on the theory of automatic sequences, stringology, in particular, be-
came interested in the use of different analytical methods to study the structure of sets of infinite
words and languages. In particular, different metrics describing distance between infinite words,
limits of sequences of words and topologies, both metrizable and non-metrizable, on the set of
infinite words were studied. In this chapter we develop an alternative approach to the study of

the analytic structure of the family of infinite words, based on the use of fuzzy metrics.

6.1 Measure of some classes of infinite words

Before we turn to the main statements and results of this chapter, let us introduce the measure of
the set of infinite words and give some measures of the classes of infinite words. In Section[l.2
we already mentioned the hierarchy of infinite words (see Figure [L.1)). As at this point we are
interested in the measure, it is defined in the following way. Let Y. be a finite alphabet. We can
specify a natural topology on >, the set of infinite words over X, by specifying a sub-base D

as follows:

D = Dj.,

Jj=0
acXx

where D; , consists of those words w such that w[j] = a. Base elements, which are non-empty
finite intersections of the D, , are of the form X a; X2 ay . .. ¥a,; X%, where j, 4,2, ..., i; > 0
are integers and ay, az, . ..,a; € X. Such a set is called a cylinder. We can put a measure m

on X“, by defining the measure of the cylinders:
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m(XhaX%ay ... X5a;3%) = k™I,
where k£ = |X|.

In this section we are using a well-known theorem to prove our results.

Theorem 46. Almost all sequences w over a finite alphabet 3. satisfy p,,(n) = |X|" for all

n > 0.

It means, that almost all the words w over alphabet > have all the possible factors of length
n and as it is described above, the measure of such words is 1. From the definition of measure

it follows the measure of all the infinite words is 1, because
m(E¥) =k =k = 1.

Theorem 47. The measure of bounded bi-ideals over alphabet {0, 1} in space of infinite words
is 0.

Proof. From the definition of bounded bi-ideals it is known that for an arbitrary bounded bi-
ideal x there exists an integer [ such that Vi |u;| < [. If we regard the first base word v, from

our bi-ideal x, then there are two possible cases in an alphabet {0, 1}:

Case A
up[0] = 0, i.e., the base word g starts with a letter 0. From the construction of bi-ideals is
known, that

T = UpgU1UpgU2UULUU3UULUgU2UULUpU4 - - -,

i.e., every second base word in the bi-ideal z is ug. As it stands, that Vi |u;| < [ and u,[0] = 0,
then there cannot be more than 2/-1 letters of 1’s between two different 0’s. Hence, bi-ideal x
does not contain a factor 1%. From Theorem [ it is known, that almost all the words w over
alphabet X satisfy Vn > 0: p,,(n) = |X|", i.e., the measure of such words is m(w) = 1. In this

case, our bounded bi-ideal z does not contain a factor 1%. Hence
m(all bounded bi-ideals with the first letter 0) = m(3¥) — 1 = 0.

Case B
up[0] = 1, i.e., the base word u starts with a letter 1. Again from the construction of bi-ideals

it is known that

T = UgU1UgU2UULUU3UULUgU2UULUeU4 - - -,
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and the further construction of the proof for Case B follows straightforward from Case A and

therefore
m(all bounded bi-ideals with the first letter 1) = m(3¥) — 1 = 0.
0

Theorem 48. The measure of uniformly recurrent words over alphabet {0, 1} in space of infinite

words is 0.

Proof. Suppose, that = — an arbitrary uniformly recurrent word. There are 2 possible cases:

Case A
x[0] = 0. From the definition of uniformly recurrent words it is known that for each its factors
(suppose v), there exists an integer k such that v occurs in every factor of =, which is at least of
length k (see Figure b.1)). It follows, that for a factor 0 there also exists an integer & € N such,
that

0 occurs in x[0;k-1];
0 occurs in x[k;2k-1];
0 occurs in x[2k;3k-1];

0 occurs in x[nk;(n+1)k-1];

0 l 0 10 | 0 |

3 k k k

In each block is O

Figure 6.1: Letter 0 as a factor in a uniformly recurrent word

It means, that in every factor of length & of our uniformly recurrent word x there will appear
at least one 0. Since the length of each of those blocks is %, there cannot be more than 2%-2 letters
of 1’s between two consecutive 0’s. It follows, that there is no factor 12~ in our uniformly
recurrent word x.

Case B

x[0] = 1. From the definition of uniformly recurrent words it is known that for each its factors

64



(suppose v), there exists an integer k such that v occurs in every factor of x, which is at least of

O2k—1

length & (see Figure p.2). Further construction of the proof that there is no factor in our

uniformly recurrent word z follows straightforward from Case A.

1 1 L1 | 1 |

|
T N 4 > >
K R/_T /T K K

In each block is O

Figure 6.2: Letter 1 as a factor in a uniformly recurrent word

From Theorem @4 it is known, that almost all sequences w over a finite alphabet ¥ satisfy
pw(n) = |E|" for all n > 0, i.e., the measure of such words is m(w) = 1. In this case, our
uniformly recurrent word z does not contain a factor 12~ in case A (a factor 0%~! in Case B).

Hence,
m(Ry) = m(X¥) — 1=0.
O

Corollary 49. The measure of bounded bi-ideals over every finite alphabet 3. in the space of

infinite words is 0.

Corollary 50. The measure of uniformly recurrent words over every finite alphabet 3. in the

space of infinite words is 0.

Theorem 51. The measure of the bi-ideals over every finite alphabet ¥ in the space of infinite

words is 1.

Proof. Suppose that we have a finite alphabet ¥ and x — an arbitrary word with F'(z) = X*.
From Theorem (4 it is known that the measure of all words, which have all the possible factors,
is 1. So if we can show that our arbitrary word z is a bi-ideal, then we will get that measure of
all bi-ideals is 1 as well. Let us take the first letter of x and denote it as ug and it will be the
first element v, of our bi-ideal sequence. As the set of x factors is ¥, then there has to be a
factor uj = uguoug somewhere in z (see Figure 6.3). Let us look at the first such one. Now we
denote by u; the factor of =, which is between the first x letter u( and the last one wu (from first
appeared factor in form ugugug). From the definition of bi-ideals, we get the next element of
the bi-ideal sequence v; = vyu,vy, because vy = uy.

Further, we prove theorem by induction, i.e., suppose that v; is an element of the bi-ideal

sequence. As the set of z factors is 2%, then there has to be a factor vf’ = v;v;v; somewhere
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Uy ( Uy lauijf Vi AW >

Figure 6.3: Structure of the bi-ideal z

in z. Let us look again at the first such one. Now we denote by u;,; the factor of =, which
is between the first « factor v; and the last one v;. From the definition of bi-ideals, we get the
next element of bi-ideal sequence v;; = v;u;11v;. Inductive step has been done. Therefore,
the arbitrary word z is a bi-ideal. Hence the measure of bi-ideals over finite alphabet is 1, i.e.,

m(B) = 1. O

6.2 Ordinary metrics on the set of infinite words

6.2.1 Pseudometrics and pseudometric space

Recall that a metric on a set X is a mapping d : X x X — R* where RT = [0, 00) such that
forall x,y,z € X:

(1d) d(z,y) =0<=z =vy;

(2d) d(z,y) = d(y, z);

(3d) d(z,2z) < d(z,y) +d(y, 2)

In case axiom (1d) is replaced by a weaker axiom
(I'd) d(z,y) =0 <=z =y;

we come to the definition of a pseudometric.

In case a stronger version of the axiom (3d)
(3"d) d(,z) < max{d(z,y),d(y,2)};
holds, a pseudometric is called an ultra pseudometric

Clearly, every ultra pseudometric is a pseudometric, but not vice-versa: the standard metric

on the plane is not an ultrametric.

A pair (X, d) where X is a set and d is a pseudometric on X is called a pseudometric space.
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6.2.2 Metrics on the set of infinite words

In the literature we have found two kinds of metrics (they are ultrametrics, actually) on the set
of all infinite words. The first one that we denote here by p, is defined as follows, see e.g.
(Allouche and Shallit, 2003)).

Let

r = (20,1, T, ... Tn,...)and y = (Yo, Y1, Y2, - - Yn, - - -)

be infinite words. Then

0 ifx=y
p(z,y) = , o
27" otherwise, where n = min{i : x; # y;}

We do not think that this metric gives satisfactory information about real “nearness-type” rela-
tions between the words. For example, consider the following three words x = (1,1,1,1,1,1,...),
y=(0,1,1,1,1,1,1,...) and z = (0,0,0,0,0,0,...).Then p(x,y) = p(z, z) = 1, that is in the
both cases the distance of these infinite words is the largest possible value in the correspond-
ing metric that equals to 1. Or, if otherwise stated, everything is dictated by the first digits of
the strings. However, in different situations one’s intuition may say that x should be estimated

’closer” to y than to z.

Another known definition of a metric on the set of infinite words is introduced as follows,
see e.g. (Holmgren, 2000).
Let z = (xo, 21, %9, ... Tp,...) and y = (Yo, Y1, Y2, - - - Yn, - - -) be infinite words, and let for
a given i € N U {0} the number y; be defined by:
0 if x; = y; where i is the i-th coordinate of the word

Xi(r,y) = . . .
1 if z; # y; where 7 is the i-th coordinate of the word

Now let

o0
o(w,y) = %Xi(x, y)-
i=0
Then one can easily see that o : X x X — [0, 1] is an ultrametric on the set of all infinite words.
In our opinion o is more adequate for describing nearness of the words than p, since it takes
into account information about the whole length of the words, not only considers the informa-
tion contained in the prefixes of these words. However, this metric only gives an accumulated

imformation about nearness between the words and neglects all specific details of this informa-

tion. For example, let z = (1,0,0,0,0,...),y = (0,1,1,1,1,...) and z = (0,0, 0, 0,0, ...). Then
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o(y,z) = 1, and o(z,z) = 1, and hence this metric does not take into account the essential
difference of this words, but just accumulates all information in one number.

Therefore, we do not think that ordinary metrics is an adequate analytical tool for describing
nearness-type relation between infinite words. We propose to use fuzzy metrics instead. In
our opinion, which we try to justify in this thesis, fuzzy metrics are much more subtle and, if
properly defined, will give more refined information about the nearness-type properties between

the words.

6.3 Fuzzy metrics

In 1954 K. Menger introduced the concept of the statistical metric (Menger, 2003). The theory
of statistical metric was developed mainly in the second half of the previous century by differ-
ent authors, see, e.g. the fundamental monograph, (Schweizer and Sklar, 1960). Based on the
concept of the statistical metric Kramosil and Michalek in (Kramosil and Michalek, 1975) in-
troduced the notion of a fuzzy metric. Actually a fuzzy metric is in a certain sense equivalent to
the concept of the statistical metric, but the essential difference is in its definition and interpre-
tation. While the statistical metric F,,(\) on a set X is interpreted as “the probability that the
obtained distance between points =, y € X is smaller than A € (—o0, +00)”, the fuzzy approach
to the notion of a distance follows from the idea that “’the distance between two points is not an
actually existing real number, but it is a fuzzy notion, i.e. the only way which the distance in
question is to ascribe some values from [0, 1] to various sentences proclaming something related
to distance” (Kramosil and Michalek, 1975).

In 1994 George and Veeramani (George and Veeramani, 1994), see also (George and Veera-
mani, 1997), slightly modified the original concept of a fuzzy metric, we call this modification
GV-fuzzy metric. On one hand this modification allows more natural examples of fuzzy met-
rics, in particular fuzzy pseudometrics constructed from metrics. On the other hand George and
Veeramani fuzzy pseudometrics are more appropriate for the definition and the study of the in-
duced topological structure. In our work we modify GM-definition of a fuzzy pseudometric by
weakening one of the axioms in George-Veeramani definition of a fuzzy metric thus coming
to a concept which will be call a fragmentary fuzzy metric. The necessity to enlarge the class
of fuzzy metrics will be explained at the appropriate place. We contruct a special fragmentary

fuzzy metric on the set of infinite words from a sequence of partial ordinary pseudometrics on
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this set. The fuzzy metric obtained in this way will be used for the description of the analytic
structure of the set of infinite words.

Before we can define the concept of a fragmentary fuzzy metric we need the notion of a ¢-
norm, introduced first by K.Menger (Menger, 2003), and later studied and applied in the research

by many authors, see e.g. (Schweizer and Sklar, 1960), (Klement et al., 2000), et. al.

6.3.1 {-norms

Definition 11. A ¢-norm is a binary operation on the unit interval x : [0,1] x [0,1] — [0, 1]

satisfying the following conditions:
(0t) * is monotone: o« < = axy < fx*forall o, 5,7 € [0, 1];
(1t) * is commutative: v x 3 = §x o for all o, 8 € [0, 1];
(2t) * is associative: (o 5) xy = a* (B *~) forall o, 5, € [0, 1];
(Bt) axl=a, ax0=0foralla € [0,1];

(4t) * distributes over arbitrary joins: o * (\/,c; 8i) = Ve (o * 5;)
for every o € [0,1] and forall {53, | i € I} C [0, 1].

Example 14. Among the most important examples of ¢-norms are the following three:
* Let x = A. It is called the minimum t-norm.
* Let ax 0 := « - (8 be the product. This is the so called product t-norm.
* Leta* = max(« + 8 — 1,0). This is the Lukasiewicz ¢-norm.

Remark 52. It is known that A is the largest ¢-norm:

For any t-norm * and any «, 5 € [0, 1] itholds a x 5 < a A 5.

Although in order to introduce the concept of a fuzzy metric we need the general definition
of the ¢-norm, our work is mainly based on the minimum ¢-norm. Referring to Remark 52 our

results can be extended for the case of other ¢-norms if they satisfy some additional conditions.
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6.3.2 Fuzzy pseudometrics and fragmentary fuzzy metrics: basic defini-

tions and results

Definition 12. A fuzzy pseudometric on the set X is a pair (m, *), or simply m, where m :
X x X x RT — [0, 1] (that is m is a fuzzy subset of X x X x R"), satisfying the following

conditions for all z,y, z € X, s,t € R*:
(IGV) m(z,y,t) > 0;
(2GV) m(z,y,t) =1 <=z =y;
(BGV) m(z,y,t) = m(y,z,t);
(4GV) m(z,z,t+ s) > m(z,y,t) *m(y, z, $);
(5GV) m(z,y,—) : Rt — [0, 1] is continuous.

If (m, ) is a fuzzy metric on X, then the triple (X, m, ) is called a fuzzy metric space.

If axiom (2GV) is replaced by a stronger axiom
2'GV) z =y <= m(x,y,t) =1
we get definitions of a fuzzy metric, and the corresponding fuzzy metric space.

Note that axiom (4GV) combined with axiom (2GV) implies that the fuzzy metric m(z, y, t)

1s non-decreasing on the third argument.

Definition 13. A fragmentary fuzzy metric on the set X is a pair (m, ), or simply m where
the mapping m : X x X x Rt — (0, 1] satisfies the following conditions for all z,y, z € X,
s, t € RT:

(IFEM) m(x,y,t) > 0;

(2FFM) m(z,y,t) > ;17 Whenever x = y;

(BFFM) m(z,y,t) = m(y, z,t);

(4FFM) m(ZL‘,Z,t + 3) > m(m,y,t) * m(yvz7 S);

(SFFM) function m(x,y, —) : R™ — [0, 1] is continuous and non-decreasing.
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If (m, x) is a fragmentary fuzzy metric on X, then the triple (X, m, ) is called a fragmentary

fuzzy metric space.

Remark 53. Thus axioms (1FFM), (3FFM) and (4FFM) coincides with axioms (1GV), (3GV)
and (4GV) respectively.

Since we weaken the axiom (2GV) to the axiom (2FFM) we had to strengthen axiom (5GV)
replacing it by axiom (SFFM): The reason for this is that combination of axioms (2FFM) and
(4FFM) (as different from the combination of axioms (2GV) and (4GV)) does not imply that
the function m(x,y, —) : RT™ — [0,1] is non-decreasing. Therefore we have to request this

important property explicitly by replacing axiom (5GV) with axiom (SFFM).

Remark 54. We think it is reasonable to replace axiom (2GV) by a weaker axiom (2FFM) at
least for two reasons.

First, this generalized version of the definition of a fuzzy pseudometric is more appropriate
for the description of the distance between two infinite words which is defined inductively from
certain fragments. And second, constituting that a distance between two equal objects should
be fixed for every ¢ € R™ and not to be a subject of some possible evaluation seems to be not

very natural in the context of defining “distance” with fuzzy metrics. Note also that

tlim m(z,y,t) = 1 whenever x = y
—00

also in case the fragmentary fuzzy metric.

Patterned after (Piera, 2001) we introduce the following fundamental for our research con-

cept:

Definition 14. A fragmentary fuzzy metric is called a fragmentary fuzzy ultrametric if for every
r,y,z€ X,t € R:

m(z,y,t) > min{m(x, z,t),m(z,y,t)}.

Further, the next definition is ”the fragmentary version” of the concept of a strong fuzzy

metric, see e.g. (Gregori et al., 2010):

Definition 15. A fragmentary fuzzy metric m on X is called strong if, in addition to the prop-
erties (1FFM), (2FFM), (3FFM) (4FFM) and (5FFM), the following modification of axiom
(4FFM) is satisfied

(4°FFM) m(x, z,t) > m(x,y,t) * m(y, z,t) forall z,y, = € X and for all ¢ > 0.
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To justify this definition we show that actually in this context the axiom (4FFM) may be
omitted, that is axiom (4FF°M) is indeed stronger than axiom (4FFM). This is proved in the

next proposition:

Proposition 55. Let m : X x X x R satisfy axioms (1FFM), (2FFM), (3FFM), (4°FFM) and
(SFFM). Then m : X x X x RY — [0, 1] is a fragmentary fuzzy metric.

Proof. Referring to axioms (4°FFM) and (5FFM) we get the following series of inequalities:
iz, 2.t +5) = m(@,y,t +s) xm(y, 2.t +5) = m(@,y,1) £ m(y, 2, s),

which holds for any z,y,2 € X and any t, s € R*.

Thus we come to the following fundamental in our research concept:

Definition 16. A strong fuzzy fragmentary metric on a set X is a pair (m, *), or simply m where

m: X x X x R™ — (0, 1], satisfies the following conditions for all z,y,z € X, t € R*:
(IFFM) m(x,y,t) > 0;
(2FFM) m(z,y,t) > ;17 whenever z = y;
(BFFM) m(x,y,t) = m(y, x,t);
(4°FFM) m(x, z,t) > m(x,y,t) * m(y, z,t);

(SFFM) m(z,y,—) : RT — [0, 1] is continuous and non-decreasing.

In what follows we will need the following Lemma, showing that also in this weaker form
axiom (2FFM) in case of the minimum ¢-norm the point x is ”closer” to itself than to any other

point:

Lemma 56. Let (m, \) be a fragmentary fuzzy metric. For every x,y € X, and everyt € R*

it holds m(x, x,t) > m(x,y,t).
Proof. From axioms (4FFM) and (3FFM) we have

m(z,x,t) > m(x,y,t) Am(y,z,t) =m(x,y,t) Am(z,y,t) = m(z,y,t).
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Definition 17. A fragmentary fuzzy strong metric m : X x X x Rt — (0,1] is called a

fragmentary fuzzy strong ultrametric if
m(z,y,t) < m(z,z,t) Am(z,y,1)
forall z,y,z € X, and every t € R™.

Definition 18. (Gregori et al., 2010) Given two fuzzy metric spaces (X, m, *,,) and (Y, n, *,,), a
mapping f : X — Y is called continuous if for every ¢ € (0,1), every x € X and every t € R™
there exists 0 € (0,1) and s € R" such that n(f(z), f(y),t) > 1 — & whenever m(z,y, s) >

1 — 4. In symbols:
Ve € (0,1),Vz € X,Vt e R" 36 € (0,1),3s € R" such that
m(z,y,s) >1=0=n(f(z), f(y), 1) >1—-¢

The following proposition gives the standard construction of a fuzzy metric from a usual

metric on the same set:

Proposition 57. (Gregori et al., 2010) Let (X, d) be a pseudometric space. Let my be the fuzzy
set defined on X x X x RT by

ma(x,y,t) = m

Then (myg, *) is a strong fuzzy pseudometric in case * = - is the product t-norm.
We will need the following modification of the above statement.

Proposition 58. Let (X, d) be an ultrametric space and define the fuzzy set mg on the set X x

X x R* = (0,1] by
t
t+1+d(z,y)

Then my(z,y,t) is a fragmentary strong fuzzy metric in case of t-norms N\ (minimum) and -

md<x> Y, t) =

(product). In particular in case of the minimum t-norm, my is a fragmentary fuzzy strong ultra-

metric.

Proof. Tt is clear that m, satisfies axioms (1IFFM), (2FFM) (since d : X x X — [0,00) is a
metric) and (3FFM). The continuity of m, is clear and the non-decreasingness of m, can be
proved straightforward. To show (4°FFM) let x,y, 2 € X. Then, referring to the properties of

an ultrametric d : X x X — RT we have
d(z,z) < max{d(z,y),d(y, 2)}.
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Further, let ¢ > 0 be fixed. Now we consider two separately the cases of the minimum and the

product £-norms. In case * = A we obviously have

t N t /\ t
t+1+d(x,z) —t+1+dxy) ! Vt+1+d(y,2)’
and hence my(z, z) > mgy(z,y) A mq(y, z) and hence axiom (4FFM) holds.

In case of the product we again refer to the inequality d(z, z) < max{d(z,y),d(y,z)} and

easily verify that
t N t t
t+1+d(z,z) —t+1+d(z,y) t+14+d(y,z2)
O]
Referring to Proposition 52 and to Proposition 5§ we get the following
Corollary 59. Given a ultra pseudometric d : X x X — R™ the mapping mgy(z,y,t) =
m is a fuzzy fragmentary metric with respect to any t-norm x. In particular, if ¥ = - or

if * = A\, then this fuzzy fragmentary metric is strong.

In (Gregori and Romaguera, 2004) a fuzzy pseudometric m on X is called stationary, if m
does not depend on ¢, i.e. if for every =,y € X, the function m, ,(t) = m(x,y,t) is constant.

We will need the following specification of this property.

Definition 19. A fragmentary fuzzy metric m on X is said to be stationary on the interval

[c,d] C RT, if for each z,y € X, the function m,, ,(t) = m(z, y, t) is constant on [c, d].

6.3.3 Topology induced by a fragmentary fuzzy metrics

Letm : X x X — RT — (0,1] be a fragmetary fuzzy metric. We follow the lines of the
construction of a topology from a fuzzy metric, see (George and Veeramani, 1994) to define the
topology induced by a fragmentary fuzzy metric.
Given apointz € X, e € [0,1), t € RT we define the ball with center x, at the level ¢ and
radius ¢ as follows:
B(xz,e,t) ={y [ m(z,y,t) = 1 -}

t <s== B(x,e,t) C B(x,e,s) and ¢ < 0 = B(x,¢,t) C B(x,6,t).

We use the family of balls
B = {B(z,e,t) |r € X,e €[0,1),t € R}
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to induce a topology 777.

In (George and Veeramani, 1994)), (George and Veeramani, 1997) it is proved that the fam-
ily B = {B(z,e,t) | v € X,t € (0,00),e € (0,1]} satisfies necessary conditions to be a
base for some topology 7,, on X. We cannot prove the analogous theorem in our case, since
the axiom (2GK) is weaker than the axiom (2FFM). Therefore, simulating the proof of such
theorem we cannot guarantee that for every y € B(z,¢,t) there exists a ball B(y,d, s) such
that B(y, d,s) C B(x,¢,t): the problem is that under our assumptions we cannot guarantee that
this ’ball” contains y, in particular, this ”’ball” can be empty. However we can prove an even

stronger statement in the special case of the fragmentary fuzzy ultrametric.

Theorem 60. Let m : X x X x xR* — (0, 1] be an fragmentary fuzzy ultrametric. Then for
everyy € B(x,e,t) it holds B(y,e,t) C B(x,¢,t).

Proof. To show that B(y,e,t) C B(z,e,t) let z € B(y,¢e,t). Then m(x,y,t) > 1 — ¢ and,

_t
t+1

we conclude that m(y, y,t) > 1 —¢, thatis B(y,e,t) C B(x,¢,t). Further, since y € B(z,¢,t)

since m is fragmentary m(x, z) > Now, recalling that m is a fragmentary fuzzy ultrametric

and m(x,y) is fragmentary fuzzy ultrametric it follows that m(y, y,t) = m(z, x,t) > and

_t
- t+1)

hence y € B(y,¢,t).

One can easily verify the following proposition:

Proposition 61. Given two fragmentary fuzzy metric spaces (X, m, *,,) and (Y, n, *,,), a map-
ping (X, T,,) — (Y, T,) is continuous if and only if

Ve € (0,1),Vox € X,Vt € (0,00) 36 € (0,1),3s € (0, 00) such that

n(f(x), f(y),t) > 1 — e whenever m(z,y,s) > 1—4.

6.4 Fragmentary fuzzy ultrametric on the set of infinite words

6.4.1 Construction of a fragmentary fuzzy ultrametric on the set of infinite

words

Let X be the set of infinite words. We define a sequence

{d. |neNJ{o})
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of ultra pseudometrics on X as follows. Let © = (xo, 21, %2,...),y = (Yo, ¥1,Y2,-..) € X and
let x;(z,y) = 0if z; = y; and x;(z,y) = 1 if x; # y;. We define:
do(z,y) = xo(z,y);

x1(z,y)

di(z,y) = xo(,y) + =55
da(w,y) = xo(w,y) + 2G4 G,

do(w,y) = Sy X5

Theorem 62. Every d,, is an ultra pseudometric.

Proof. Obviously every w is an ultra pseudometric. From here we conclude that every

d,(z,y) is an ultra pseudometric by induction referring to the following easily provable Lemma:

Lemma 63. Let dy,dy : X x X — RY be ultra pseudometrics. Assume that d;(x,y) € {0} U
la, 1] for any x,y € X and that dy(z,y) € [0,5]. Thend = dy +dy : X x X — [0, 1] is an ultra

pseudometric.

Basing on this sequence of ultra pseudometrics and referring to Proposition 5§ we construct
the sequence of fragmentary fuzzy strong ultrametrics on the set X of all infinite words:
1o(2,9,t) = Firima)s
(T, y.t) = S

J— t :
12(2,9,t) = s nE

J— t *
,U/n(xa Y, t) - m’

Further we define the following family of mappings: mg(z,y,t) = po(z,y,1t);
ml(xv Y, t) = Nl(x7 Y, t) \ MO(:U7 Y, 1)a
m2(£7 Y, t) - MQ(xa Y, t) \4 Ml('ra Y, 2):

mn<w7y7t) = Mn<$,y,t) \ Mn,1($, y,n),
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Proposition 64. Mappings m,, : X x X xR™ — [0, 1] are fragmentary strong fuzzy ultrametrics

on the set X of infinite words.

Proof. From Proposition 5§ we know that each 1, is a fragmentary fuzzy strong ultrametric, that
is pn (2, 2,t) > pin(x,y,t) A pn(y, 2,t). Since my(x,y,t) = p,(z,y,t) V a,, where a,, is some
constant, it is clear that m,,(z, y, t) is a fragmentary fuzzy ultrametric and besides m,,(z, z,t) >

my(x,y,t) Amy(y, z,t), that is m,, is strong.

Finally, we construct a mapping M : X x X x RT — [0, 1] as follows:

mo(z,y,t) if0<t<1
my(z,y,t) ifl <t <2
mo(z,y,t) 1f2<t<3
Mgty =4 "0

my(z,y,t) ifn<t<n+1

\
Proposition 65. The mapping M : X x X x Rt — [0,1] is a fragmentary fuzzy strong

ultrametric.

The proof is straightforward from Proposition (4.

6.4.2 Possible shapes of the fragmentary fuzzy strong ultrametric M in

the first 3 stages

We illustrate the shape in the initial interval (0, 3] of the fuzzy metric M describing the distance
between infinite words x = (zg, 1, Z2...) and y = (Yo, y1, ¥o...) in dependence of the values z,

T1, T2, Yo, Y1 and Ya.

1. The case To = Yo, T1 = Y1,T2 = Ya. Then

M(z,y,t) = fort € (0, 3].

t+1
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Distance in the case when the first three letters are equal

0.8

) /
0.6

) /
0.4

/

03 /
0.2

./
A/

0 01 02 03 04 050607 0809 1 11 12 13 14 15 16 1.7 1.8 19 2 21 22 23 24 25 26 2.7 28 29 3

Figure 6.4: The metrics for the Case 1

2. The case x¢g = Yo, T1 = Y1, T2 # Y2. Then

t+1

M(z,y,t) = 2 if2<t<3
t 5
ﬁ 1f§<t§3

3. The case z¢ = o, 1 # Y1, T2 = Y2. Then

L if0<t<1

)

_ 1 3

Mz, y,t) = 3 ifl<t<y
o i3 <t<3

4. The case ¢ = Yo, T1 # Y1, T2 # Yo. Then
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Distance in the case when the first letters are equal, but the second and
third are different

0,7

0,6

05

; pd

/
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0,2

/

01 /
0

T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
o 010203 040506070809 1 1112 13 14 15 16 1,7 1,8 1,9 2 21 22 23 24 25 26 27 28 29 3

Figure 6.5: The metrics for the Case 4

A ifo<t<1
1 . 3
M(z,y,t) = | % if$ <t<2
2 if2<t<
| o ifg<t<3

4

5. The case xg # Yo, 1 = Y1, T2 = y2. Then
M(z,y,t) = —— fort € (0,3
x ) = )
Y t+2

6. The case z¢ # Yo, T1 = Y1, T2 # Y2. Then

3
M(z,y,t) = Toif2<t<?
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Distance in the case when the first two letters are not equal, but the third
is equal

0.6

0.5

0.4 //
03

L

./
V4

0O 01 02 03 04 05 06 07 08 09 1 11 12 13 14 15 16 17 18 19 2 21 22 23 24 25 26 27 28 29 3

Figure 6.6: The metrics for the Case 7

7. The case z¢ # Yo, T1 # Y1, T2 = Y2. Then

L ifo<t<1

t+2
_ 1 5
Mz, y,t) = ;3 ifl<t<y
e if3 <t <3
2
8. The case xy # Yo, 1 # Y1, T2 7 Y2. Then
(
s if0<t<1
1 5
M(z,y,t) =9 o5 if7<t<2
2
4 11
| g iy <t<3
4
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6.5 Principal fuzzy pseudometrics

6.5.1 Topology induced by a fragmentary fuzzy strong ultrametric: the
role of the property of principality

Recall that in (George and Veeramani, 1994), (George and Veeramani, 1997) a fuzzy pseudo-
metric (m, %) on a set X induces a (crisp) topology on it by taking as a base the family of all
balls:

B={B(z,e,t) |z € X,t € (0,0),e € (0,1)}

where B(z,e,t) = {y € X | m(z,y,t) > 1 — ¢}. Referring to Theorem 3.18 one can easily
see that the same scheme works also in the case of a fragmentary fuzzy strong ultrametric space.

Thus, when defining a topology induced by a fragmentary fuzzy strong ultrametric space we
have to take into consideration for each x € X all¢ € (0, 1] as well as all ¢ € R™. The structure
of the topology becomes more lucid and simple if the families B, = {B(x,¢,t) : x € X, ¢ €
(0,1)} induce the same topology on the set X for all ¢ € R*. In other words this means that
B; = {B(z,e,t) : € € (0,1)} is a local base at the point = for the topology 7;,. Following
(Gregori et al., 2009) we call such fuzzy metrics principle. For our merits we will need the

following generalization and specification of this notion.

Definition 20. A fragmentary fuzzy ultrametric m : X x X x Rt — (0, 1] is called principal
on the interval [c,d] C (0, c0) if the families B, = {B(z,¢,t) : ¢ € (0,1)} induce the same

topology on the set X.

6.5.2 Principal fuzzy pseudometric on the set of infinite words

The following theorem will be used in the study of the topology on the set of infinite words.

Theorem 66. Fuzzy ultrametric M constructed in Section 6.4 on the family of infinite words is

principal.
To prove this theorem we first establish two lemmas:

Lemma 67. Let d : X x X — [0,1] be a metric and a fuzzy pseudometric m : X x X X

R — [0,1] be such that m(z,y,t) =  for each t € [e,d] € (0,00). Then the fuzzy

t
t+1+d(z,y

pseudometric m : X x X x R™ — [0, 1] is principal on [c, d).
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Proof. To prove this lemma it is sufficient to show that for each = € X, for each ¢ € ¢, d]| and

for each e € (0, 1) we can find ¢ € (0, 1) such that B(z,d,t) = B(x, ¢, ¢). Then

C
B = 1 —
(2,2,0) {y|c+1+d<x,y>> }

and

t
B(z,0,t) = {y | [ 1+ d(ny) > 1—5}.

Since t € [c, d] we can find o € (0, 4+00) such that £ = ¢+ a. Now the requested condition that
B(z,0,t) = B(x,¢,¢)

can be reformulated as follows: For a given o and € we must find 6 € (0, 1) such that

C c+ «

With simple calculations from here we get that

et
0= —— ——.
t+a(l—e¢)

et

Ta—a=e 28 t increases from c to d.

]

Obviously 0 = € when t = c and ¢ decreases from ¢ to

Lemma 68. If a fragmentary fuzzy metricm : X X X x R™ — [0, 1] is stationary on an interval

lc, d], then it is also principal on this interval.

Proof. The proofis obvious, since stationarity in this case means that m(x, y, t) = m(x, y, s) for
all t, s € [c,d] and hence topologies generated by all pseudometrics m(z,y, t) where t € [c, d]

coincide.

Now we are ready to prove the theorem.

Proof. From the construction of the fragmentary fuzzy ultrametric M(x, y, t), see Subsection
6.4.1], see also Subsection [6.4.2, it is clear that, for a given infinite word = = (x,, z1, 75, . . .) this

fragmentary fuzzy ultrametric defines one of the following three types of sequences of numbers
O=cp<cy<cy<cg...Copq < Cop < Copy1 < oe

OZCO<61<CQ<03...CQk_1<Cgk<62k+1
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O=cp<c1<cy<cC3...Cp1<Cy

such that on the interval (¢, ¢1] and on each interval [cog, cor11] for k € NU{0} the fragmentary

fuzzy ultrametric M(z,y,t) is defined by the formula M(z,y,t) = and on each

B
interval [cor_1, co| for kK € NU {0} the fragmentary fuzzy ultrametric is stationary.

Consider first the case 0 = ¢y < ¢; < ¢3 < €3...Cop1 < Cop < Copr1 < .... Referring
to Lemma [67 we conclude that the topologies generated by the fragmentary fuzzy ultrametric
m(z,y,t) coincide for all t € (co, 1], and all t € [cok, Cax11], K € N U {0}. On the other hand,
referring to Lemma [68§ we see that the topologies generated by the fragmentary fuzzy ultrametric
M(x,y,t) coincide for all ¢ € [cay,_1, cox], & € NT. Since the end points of the intervals belong
to the both types of the intervals, by induction we conclude that the topologies generated by all
t € (0,00) coincide and hence the fragmentary fuzzy ultrametric is principal.

In case of a finite sequence 0 = ¢y < ¢; < €3 < C3...Cop_1 < Cop < Copr1 WE are reasoning
as in the first case and finish the proof noticing that at the last infinite interval (cgy41,00) the
fuzzy metric is stationary.

In case of a finite sequence 0 = ¢y < ¢; < ¢3 < ¢3...Cok_1 < Co WE are reasoning as in the
first case and finish the proof noticing that at the last infinite interval (cox 1, 00) the fragmentary

fuzzy ultrametric is defined by the formula m(x,y,t) = ) and hence is principal.

t
t+1+d(z,y

6.5.3 Topology on the set of infinite words induced by the fragmentary

fuzzy ultrametric M

From Theorem 6§ we immediately get the following:

Theorem 69. Foreacht € R" the familyB = {B(x,¢,t) | € € (0,1)} where B(x,e,t) = {y €
X | m > 1 — e} is a base for the fuzzy topology T that is induced by the fragmentary
Sfuzzy ultrametric M(z,y, t).

Proof. Hence we can take any ¢ in particular ¢ = 1 and consider the set B; = {B(z,¢,1) : € €
(0,1}. It is easy to notice, that B; contains all one-point sets {} of infinite words, and hence

the topology induced by M is discrete.
]

The main conclusion from the previous theorem is the following. As different from fuzzy

pseudometric M defined in Section 5.4, that reflects in an more or less adequate way the analytic
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structure of the set of all infinite words, the topology generated by this metric is discrete and
hence gives us only the trivial information about the analytic structure of this set. In order to also
apply topological methods for the description of the set of infinite words we suggest to use the
so called fuzzifying topologies instead of ordinary topologies. This method will be developed

in the next section.

6.6 Fuzzifying topologies on the set of infinite words

6.6.1 Fuzzifying topologies

The concept of a fuzzifying topology (under the name of a fuzzy topology) was introduced in
1980 by U. Hohle (Hohle, 1980), as a certain probabilistic modification of the concept of topol-
ogy. Later, in 1991, the same concept was independently introduced by M.S. Ying (Ying, 1991),
under the name of a fuzzifying topology. M.S. Ying rediscovered this concept by making a log-
ical analysis of topological axioms and different properties of topological spaces. Later the
theory of fuzzifying topologies got a profound development in the works by different authors,
see e.g. (Ying, 1992), (Ying, 1993b), (Ying, 1993a), (Hohle, 1999), et. al.

Definition 21. Given a set X, a mapping 7 : 2% — [0, 1] is called a fuzzifying topology on X

if it satisfies the following axioms:

2. T(ANB) > T(A) AT (B) VA, B € 2%;
The pair (X, 7T) is called a fuzzifying topological space.

Remark 70. The intuitive meaning of the value 7 (A) is the degree to which a set A C X is

open. In particular, an ordinary topology 7" on a set X can be realized as a fuzzifying topology
T : 2% — {0,1} C [0,1] by assigning 7(A) = 1ifand only if A € T, and T(A) = 0

otherwise.

Definition 22. Given two fuzzifying topological spaces (X, 7~) and (Y, 7" ), a mapping f :
(X, TX) — (Y, TY) is called continuous if

TX(f1(B)) = T"(B) VB CY.
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6.6.2 Fuzzifying topology on the set of infinite words

We again consider the family of fragmentary fuzzy strong ultrametrics {1, | n = 0,1,...,n,...}

(cf subsection [6.4.1)): defined as follows:

—_— t i
mo(®,y,t) = mmeGays

—_— t N
,Ull(xv Y, t) - m’

N t N
12(2, 9, 1) = moamay

t .
(9, 1) = gy

Further, for every n € N U {0} let T* be the topology, induced by the fragmentary fuzzy
ultrametric y,,, that is T* is the topology defined by the family of balls B,, = { B, (z,&,t) : x €
X,e,t € RT} where

Bn(z,e,t) = {y | pnlz,y,1) > 1 —¢€}.
Starting with the sequence of topologies {T{',T}',...,T#, ...} we construct by induction an

increasing family of topologies
{To, Th, ..., Ty, ...} where T, =sup{T},T¢,...,T"

We extend the obtained family of topologies {70, 71,...,T, ...} to the family indexed by all
non-negative numbers by setting 7; = T,Vt € [n,n + 1). As the result we obtain a non-

decreasing family of topologies
T,:t<t,t>0=T, CTy.

Let ¢ : [0,00) — (0, 1] be any order reversing continuous bijection and let ¢ : (0, 1] — [0, c0)

be its inverse (For example one can take ¢(t) = t%l, then ¢ (o) = 1=2). By setting 7, = Tyy(a)

we obtain a non-increasing family of topologies on the set X:

{7Ta @ € (0,1]}.

Theorem 71. By setting T (A) = sup{a | A € 74} for each A C X where X is the family of

infinite words, we obtain a fuzzifying topology.

Proof. 1. T(0) = T(X) = 1, since obviously (), X € T, for every .
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2. To show that T(A( B) > T(A) A T(B) for any A, B C X and assume that 7 (A) <
T(B). Then T(A) = sup{\ : A < T(A),\ € (0,1]}, and A, B € T), for every A\ <
T(A),\ € (0,1]. Hence AN B € Ty whenever A < T(A) AT (B), A (0, 1], and therefore
(AN B) > (A) A (B) by the definition of 7.

3. To show that 7(J, A;) > A, 7T (4;) for every family {A4; : i € I}, where A; C X

for each i € I, let A\, T(A;) = «. In case a = 0 the statement is obvious. Otherwise,

a = sup{\ : A < o, A € (0,1]}, and hence T(A;) > A for every i € I and every

A < a, A € (0,1]. Therefore for every A < o, A € K the family T, contains all A;, ¢ € 1.

However, this means that  J, A, € T for every A < o, A € (0, 1], and hence, by the
definition of 7 we have 7 (|, 4i) > a = A, T (4).

O

Remark 72. We explain the meaning of the value 7 (A) > « as follows. Let {z;, € {0,1}} for
allj=1,... kandlet (z;, <...<uay)letV(x;,...,z; ) be the family of all words having
in the position i; the designated value x;,. Then, givena set A C X the inequality 7 (A) > n%l
means that A can be obtained as a union of some family of sets V' (x;,, ..., z;, ) where i < n.
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Conclusions

This thesis focused on investigation of subclasses of different bi-ideals. The construction of a
1-bounded bi-ideal with WELLDOC property has been given. Such infinite words are used to
constuct aperiodic infinite words wit good statistical behaviour. It is important to note that it is
possible to construct an infinite number of such bi-ideals.

We solved the problem of filling holes (unknown information) in finitely generated bi-ideals.
We proved that not only the finite amount of holes in finitely generated bi-ideals can be recreated,
but also with the help of the counterexample showed, that in the case of infinite number of holes
the problem is unsolvable.

Also together with co-authors we did research on possible use of finitely generated bi-ideals
in cryptography by modifying the so—called shrinking generator.

Since bi-ideals by definition are a limit of a sequence it was purposeful to investigate metric
at the end of this thesis. Known metrics on infinite words poorly describe nearness-type rela-
tions, therefore a new (fuzzy) metric was introdused. The metric offered in this thesis is an area
to be further developed. As currently there is a lot of research on fuzzy sets and metrics it is

likely that our research could prove to be a turning point for a new broad field of research.
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