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Anotācija

Disertācijā tiek piedāvāts aperiodiska gadījuma skaitļu filtrācijas ģenerators. Šajā ģenera-

torā filtra virknes vietā tiek izmantots galīgi ģenerēts bi-ideāls. Disertācijā dota metode, kas

dotajai periodiskai virknei konstruē bezgalīgi daudz tādus galīgi ģenerētus bi-ideālus, ka fil-

trācijas ģeneratora rezultējošā virkne ir aperiodiska. Pierādīta universālu bi-idealu eksistence.

Tie ir tādi bi-ideāli, kuri filtrācijas rezultātā rada aperiodiskus vārdus, iedarbojoties uz visām

netriviālajām, periodiskajām virknēm.

Disertācijā aplūkots un analizēts kombinatorisks nosacījums – labi sadalīto ieeju jebWELL-

DOC īpašība. AnalizētaWELLDOC īpašība ierobežotiem bi-ideāliem. Pierādīta galīgā alfabētā

1-ierobežota bi-ideāla eksistence, kas apmierina WELLDOC īpašību. Dots piemērs, kas ilustrē

patvaļīga 1-ierobežota bi-ideāla iegūšanas procedūru. Tiek ieviesti pilnīgi ierobežoti bi-ideāli,

kuriem tiek uzlikti nosacījumi uz to ģenerējošajām bāzēm. Darbā pierādīts, ka ierobežoti bi-

ideāli ir lineāri rekurenti tad un tikai tad, ja tie ir pilnīgi ierobežoti.

Disertācijā tiek aplūkoti daļēji vārdi, t.i., vārdi, kas satur tā sauktos ”nezināmos” simbo-

lus. Pierādīts, ka dotam galīgi ģenerētam bi-ideālam ir iespējams atrast ģenerējošo bāzi. Tāpat

pierādīts, ka dotam bi-ideālam ir iespējams konstruēt tādu bāzi, kas ģenerē sākotnējo bi-ideālu

bez pirmā burta. Disertācijā dots pierādījums, ka galīgi ģenerētam bi-ideālam ar galīgu skaitu

”nezināmo” simbolu tos ir iespējams aizpildīt. Pierādīts, ka divi nereducējami galīgi ģenerēti

bi-ideāli satur bezgalīgi daudz ieejas, kurās to simboli ir atšķirīgi. Ir aprakstīts un dots dažādu

bezgalīgu vārdu klašu mērs. Disertācijā piedāvāta nestriktas metrikas konstrukcija uz bezgalīgu

vārdu kopas. Doti piemēri, kas parāda nestriktas metrikas priekšrocības, salīdzinot to ar stan-

darta metrikām vārdu kombinatorikā.

Atslēgas vārdi: Aperiodisks filtrācijas ģenerators, galīgi ģenerēts bi-ideāls, ierobežots bi-

ideāls, WELLDOC īpašība, daļēji vārdi, nestrikta metrika.



Abstract

The thesis presents a non-periodic random number generator based on the shrinking genera-

tor. The A-sequence is still generated using an LFSR, but the S-sequence is replaced by a finitely

generated bi-ideal — an aperiodic sequence. A method for the construction of an infinite num-

ber of finitely generated bi-ideals from a given A-sequence, such that the resulting sequence of

the shrinking generator is aperiodic is shown. The existence of what we call universal finitely

generated bi-ideals that produce aperiodic words when used as the S-sequence of a shrinking

generator for all non-trivial periodic A-sequences is proved.

A combinatorial condition called well distributed occurrences, or WELLDOC for short, has

been explored in the thesis. The WELLDOC property for bounded bi-ideals is analysed in the

thesis. The existence of a 1-bounded bi-ideal over the finite alphabet that satisfies the WELL-

DOC property has been proved in the thesis. An example of obtaining and achieving arbitrary

1-bounded bi-ideal with the WELLDOC property is given. The notion of completely bounded

bi-ideals by imposing a restriction on their generating base sequences is introduced. We prove

that a bounded bi-ideal is linearly recurrent if and only if it is completely bounded.

The thesis explores partial words, i.e., words which contain so called ”do not know” symbols.

The proof that for a given finitely generated bi-ideal sequence possibility of finding the basis

is given. It is proved that for a given bi-ideal it is possible to construct the basis for the same

bi-ideal without the first letter. The thesis also contains the proof of possibility to fill the finite

number of holes for a given finitely generated bi-ideal. The fact that two irreducible finitely

generated bi-ideals have infinitely many differ symbols is proved. Measures of different classes

of infinite words are given. The thesis introduces a new metric on the set of infinite words.

Construction of a fuzzy metric on the set of infinite words is given. Also, examples that show

advantages comparing fuzzy metric with standart metrics in combinatorics on words is given.

Keywords: Aperiodic shrinking generator, finitely generated bi-ideal, bounded bi-ideal,

WELLDOC property, partial words, fuzzy metric.
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Notions

N the set of all non-negative integers,

N+ the set of all positive integers,

Σn the set {0, 1, 2, . . . , n− 1} for some n ∈ N+,

i, j the set {i, i+ 1, i+ 2, . . . , j − 1, j} for some i, j ∈ N, i ≤ j,

gcd(n, k) the greatest common divisor of numbers n and k,

A∗ the set of all finite words over an alphabet A,

A+ the set of all finite non-empty words over an alphabet A,

Aω the set of all infinite words over an alphabet A,

λ the empty word,

un a finite word uu · · ·u︸ ︷︷ ︸
n

, where n ∈ N+ and u is a finite word,

uω the infinite word uu · · ·u · · · , where u is a finite non-empty word,

|u| the length of the finite word u,

|u|a the number of occurrences of the letter a in word the u,

|u|v the number of occurrences of the word v in word the u,

alph(u) the set of all letters occurring in the word u,

x[i, j] the factor of a word x starting in position i and ending in position j, where i < j,

in other words, xixi+1 · · · xj−1xj ,

x[i, j) the factor of a word x starting in position i and ending in position j − 1, where

i+ 1 < j, in other words, xixi+1 · · · xj−1,

prefnu prefix of length n of a word u.
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Pref(w) the set of all prefixes of a word x,

F(w) the set of all factors of a word x,

Suff(w) the set of all suffixes of a word x,

Rx,u the set of all return words to u of x,

⟨u0, u1, . . . , um−1⟩ a basis of a finitely generated bi-ideal,

⟨u(n)0 , u
(n)
1 , . . . , u

(n)
m−1⟩ a basis of a finitely generated bi-ideal that is obtained when the

basis ⟨u0, u1, . . . , um−1⟩ is L-prolonged n times,

(u
(k)
n )n≥0 the basis sequence of a bi-ideal that is obtained when the basis se-

quence (un)n≥0 is L-prolonged k times

u
(k)
i the i-th element of the basis sequence that is obtained, when the

initial basis sequence (un)n≥0 is L-prolonged k times,

(|w|0, |w|1, . . . , |w|d−1) Parikh vector of a finite word w.
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Introduction

Combinatorics on words is a relatively new field of discrete mathematics whose history started

a bit more than a hundred years ago, when a Norwegian mathematician Thue published his first

paper on repetition free words (Thue, 1906) and (Thue, 1912). It is considered as a starting

point of research on words. He published his papers in his native country (Oslo University) and

it became the reason his work remained unknown for a while although some of his results were

rediscovered by other scientists.

Highly significant work was done by Morse and Hedlund (Morse and Hedlund, 1938), who

founded the field of symbolic dynamics. The work of Morse got an intersection with Thue word

and resulted in the Thue-Morse infinite word, which still has an impact on the field of combi-

natorics on words. This historical word also have a connection with such scientific fields as

algebra, finite automata and others. Morse together with Hedlund introduced world to Sturmian

sequences (Morse and Hedlund, 1940), which still have an enormous impact nowadays.

The biggest revulsion of the combinatorics on words started in the middle of last century

when the theory of words was developed in Russia and France almost at the same time. A

massive influence in Russia was made by Novikov and Adjan and it resulted in some impor-

tant papers (Novikov, 1955) and (Adjan, 1979). The impact in France born from reserch of

Schützenberger, who worked on theory of codes (Schützenberger, 1956). Almost ten years later

he gave the insights in theory of context-free languages (Chomsky and Schützenberger, 1963)

and factorizations of free monoids (Schützenberger, 1965).

At this time the ground of theory of words was settled, so more and more scientific results

and theories ensued. This all lead down to the first book of the field, called Combinatorics on

Words (Lothaire, 1983), which was written by a group of authors. This book turned topic of

words a challenge on its own. 20 years later developements of words brought to the second book

– Algebraic Combinatorics on Words (Lothaire, 2002) and this book repeated nothing from the

first one.
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Since 1997 the conference –WORDS, devoted entirely to combinatorics on words, has been

created and every second year it brings many researchers of this challenging field to it. Nowa-

days combinatorics on words is connected to many other topics: algebra, probability theory,

automata theory, biology, physics, algorithms and others, but it still has remained as a research

topic of itself as well. For a good insight, summary of history and for new challenges we rec-

ommend (Berstel and Perrin, 2007), (Karhumäki, 2004) and (Berstel and Karhumäki, 2003).

Combinatorics on words is dealing with words – finite or infinite sequences of symbols

(letters). The main object in this thesis are infinite words (or ω-words). We are dealing with

a subclass of infinite words, so called recurrent words. Such words have a property that every

factor occurs in them infinitely many times. We use an equivalent notion – a bi-ideal, which

is an infinite word containing as prefixes all elements of a bi-ideal sequence (Coudrain and

Schützenberger, 1966). A bi-ideal sequence is a sequence of words such that each next element

of the sequence is at least twice as long as the previous element and contains the previous element

both its prefix and suffix. Also, the words in a bi-ideal sequence are known as Zimin’s words

(Zimin, 1982) or sesquipowers (Simon, 1988). Buls and Lorencs investigated bi-ideals from

different aspects. Regularities of periodicity in bi-ideals have been prospected in (Buls and

Lorencs, 2006) and (Buls and Lorencs, 2008), but Lorencs and Cers tried and successfully solved

the decision problem of finitely generated bi-ideals (Cers, 2010), (Cers, 2012) and (Lorencs,

2012).

As recurrent words and bi-ideals are describing the same class of infinite words (see e.g.,

(de Luca and Varricchio, 1999)), we choose to view this class as class of bi-ideals since they

have a nice and useful structure. A lot of the proofs in this thesis use this structure of bi-ideals.

As almost every word is a recurrent word, then bi-ideals have the same property. Bi-ideals are

covering almost the whole class of infinite words, so they have a significant role in the class

of infinite words. Mostly in this thesis we are dealing with subclasses of bi-ideals – class of

bounded bi-ideals and class of finitely generated bi-ideals (which is subclass of bounded bi-

ideals). While bounded bi-ideals have restriction on the length of base words, finitely generated

bi-ideals are generated by a periodic basis.

Applications in cryptology

In this thesis, we propose a method to generate non-periodic pseudo-random number sequences
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based on the shrinking generator modification, which was introduced by Coppersmith et.al. in

1993 (see (Coppersmith et al., 1994)) and is still considered to be a secure pseudo-random num-

ber generator. Normally, a shrinking generator uses two pseudo-random bit-sequences produced

by LFSR’s (see, e.g., (Schneier and Sutherland, 1995)) from which the resulting pseudo-random

sequence is obtained by taking the subsequence of one of the sequences (called the A-sequence)

corresponding to the positions of ones in the other sequence (called the S-sequence).

In this thesis we show two approaches for generating non-periodic pseudo-random number

sequences using our modified shrinking generator. Firstly, given a periodic A-sequence, we

prove that any finitely generated bi-ideal that satisfies a simple condition can be used as the

S-sequence together with this A-sequence in a shrinking generator, and the produced sequence

will be non-periodic. Secondly, we show that there are what we call universal bi-ideals – finitely

generated bi-ideals that generate non-periodic pseudo-random sequences when used as the S-

sequence in a shrinking generator with any A-sequence containing both zeroes and ones. We

give a description of a class of such universal bi-ideals.

Balkova et al. states that this modificated shrinking generator has not passed some latest

statistical tests. They recently introduced a combinatorial condition called well distributed oc-

currences, or WELLDOC for short in (Balková et al., 2013a) and (Balková et al., 2013b) for

that reason. In both papers they state that an infinite word with the property of well distributed

occurrences (WELLDOC) is used to combine two linear congruential generators and form an

infinite aperiodic sequence with good statistical behavior. The WELLDOC property is quite

strong because it requires some forceful properties for every factor and all the integers. It de-

mands all factors to be well distributed and since bi-ideals have a definite structure we tried

to find some conditions for bi-ideals to satisfy well distributed occurrences. We proved that

there exists a 1-bounded bi-ideal over the finite alphabet that satisfies the WELLDOC property.

Furthermore, the given construction in Chapter 3 permits to construct infinitely many such 1-

bounded bi-ideals with a such property.

Linearly recurrent bounded bi-ideals

We consider another interesting property of infinite words – linear recurrence in this thesis.

An infinite word is linearly recurrent if it is uniformly recurrent and there exists a constant K

such that the return time to an arbitrary its factor u is bounded byK|u|. In other words, the gap
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between two consecutive occurrences of a factor of length n does not exceed K · n. The linear

recurrence of the infinite word implies the linearity of its subword complexity (Durand et al.,

1999). For morphic sequences (for a survey on morphic words see (Allouche and Shallit, 2003))

the uniform recurrence is equivalent to the linear recurrence (see (Durand, 1998) and (Durand et

al., 2013)). As finitely generated bi-ideals are morphic words (for construction see, e.g., (Cers,

2012)), then finitely generated bi-ideals are linearly recurrent. We also give a characterization of

linearly recurrent bounded bi-ideals. We introduce the notion of completely bounded bi-ideals

and prove that completely bounded bi-ideals are exactly linearly recurrent bounded bi-ideals.

This class is very large, namely, its cardinality is continuum.

Partial bi-ideals and finding of basis

In nowadays the information is what all is about and most of the time we do not have all the in-

formation we need. The desire and importance of getting back the lost information or revealing

some unknown one is growing very fast. It is an axiom that all the information can be converted

into words. In case we do not have some information, we get to so called partial words. It all

started almost 15 years ago, when Blanchet-Sadri et al. (Blanchet-Sadri and Hegstrom, 2002)

combined partial words with the well known theorem of Fine and Wilf 25. The work in the

field of partial words has been tremendous from the side of Blanchet-Sadri. Her research on

partial words has many edges, but most important are periodicity, for example (Blanchet-Sadri

and Chriscoe, 2004) and (Blanchet-Sadri et al., 2008), complexity, for example (Blakeley et al.,

2009) and (Blanchet-Sadri et al., 2012) and avoidabiliby, for example (Blanchet-Sadri et al.,

2009) and (Blanchet-Sadri et al., 2012).

Blanchet-Sadri et al. in (Blanchet-Sadri and Hegstrom, 2002) accented that partial words

appear in natural ways in several fields such as DNA computing, data communication, molecular

biology etc. This was the inspiration of Chapter 5 – aggregate partial words with the class of

infinite words, what we are interested in, i.e., bi-ideals. Nowadays the importance of information

is so expansive that it is not possible to overvalue it and there are times and reasons of not

knowing the full information about something, for example, DNA structure. As DNAhave some

kind of structure (with possibility of missing information) and bi-ideals (in this case, finitely

generated bi-ideals) have a structure, in this chapter we are trying to solve the problem of filling

the holes (missing information) in finitely generated bi-ideals. In general case of finite amount
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of holes in finitely generated bi-ideals it is always possible to get all the information back. We

prove that in general case of infinite amount of holes it is not possible.

(Cers, 2012) solved the decision problem: given two basis, decide whether they generate the

same finitely generated bi-ideal. In this case the given part was basis, so we turned the problem

around and supposed that the given part is the bi-ideal. We were interested in a way opposite

problem – can we found a basis for a given finitely generated bi-ideal? As it turned out, for a

given finitely generated bi-ideal it is always possible.

The introduction to a new metric on the set of infinite words

We give an insight for measure and metrics in combinatorics on words. A good insight about

topologies on words gives (Calude et al., 2009). Mostly in combinatorics on words two types

of metrics are used (see, e.g., (Allouche and Shallit, 2003) and (Holmgren, 2000)). These types

of metrics give poor information and have some shortages, shown by the help of some exam-

ples. A new approach of metric (fuzzy metric) in combinatorics on words has been introduced

in Chapter 6. We try to justify the advantages of the use of fuzzy metrics instead of the ordinary

metric for the description of the nearness-type structures on the set of infinite words.

Goals and objectives

The main objectives of this thesis is to research the essential properties and applications of

finitely generated bi-ideals and bounded bi-ideals and to find a new approach for measuring

infinite words.

The tasks of the thesis therefore are:

• to explore possible applications of finitely generated bi-ideals and bounded bi-ideals in

cryptography;

• to construct an algorithm or a procedure that creates bounded bi-ideals with WELLDOC

property;

• to solve the problem of filling of the holes in a finitely generated bi-ideal;

• to construct and describe a new metric on the set of infinite words.
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The scientific importance of the thesis

In the thesis I offer a procedure that allows to create infinitely many bounded bi-ideals that have

WELLDOC property. I describe an algorithm for finding a basis for a given finitely generated

bi-ideal. The problem of filling of holes (”do not know” symbols) in finitely generated bi-ideal

is solved. A new metric on the set of infinite words has been introduced. It has been shown that

such (fuzzy) metric gives better description for closeness of infinite words.

Together with co-authors we give an approach of a non-periodic random number generator.

We introduce the notion of a completely bounded bi-ideal and we prove that a bounded bi-ideal

is linearly recurrent if and only if it is completely bounded.

The structure of the thesis

• Chapter 1 gives basic definitions and creates the background for the whole thesis. It also

contains some already known results on finitely generated bi-ideals and bounded bi-ideals

and some of them are used later in the thesis.

• In Chapter 2 we give a modification of the shrinking generator. With that we obtain

aperiodic pseudo-random sequences.

• Chapter 3 is a natural continuation of chapter 2. It introduces the WELLDOC property,

which is more advanced and passes more statistical tests than the shrinking generator. The

existence of a 1-bounded bi-ideal that satisfies the WELLDOC property has been proved

in this chapter.

• Chapter 4 gives the notion of completely bounded bi-ideals and its connection with linear

recurrence. In this chapter we prove that a bounded bi-ideal is linearly recurrent if and

only if it is completely bounded.

• Chapter 5 introduces so called partial words, which have many potentional applications in

other scientifical fields. Possibility of finding the basis for a given finitely generated bi-

ideal sequence in this chapter is given. Also possibility to fill the finite number of holes

for a given finitely generated bi-ideal is proved. Divergence of two irreducible finitely

generated bi-ideals has been explored in this chapter.

• Chapter 6 introduces measure and metric in combinatorics on words. A new approach

of metric (fuzzy metric) in combinatorics on words has been introduced in this chapter.
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Advantages of fuzzy metric have been shown.

Approbation

The results obtained during the thesis writing process have been presented at 4 international

conferences and 4 domestic conferences (see full list on page 88). Results on possible use of

finitely generated bi-ideals in cryptography have been presented at the 13th International Sym-

posium on Symbolic and Numeric Algorithms for Scientific Computing in Timisoara, Romania

(2011). In Romania, the results were presented by I.Bērziņa. Results on the measure of some

classes of infinite words have been presented at the 14th Mons Days of Theoretical Computer

Science in Louvain-La-Neuve, Belgium (2012). Results on the relation of bounded bi-ideals and

linearly recurrent words have been presented at the 15th International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing in Timisoara, Romania (2013). Results on

the existence of a 1-bounded bi-ideal that satisfies theWELLDOC property have been presented

at 15th Central European Conference on Cryptology in Klagenfurt, Austria (2015).

A list of author’s publications is given at the end of the bibliography.
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1 Preliminaries and Background

1.1 Preliminaries

Let N denote the set of all non-negative integers. Let N+ = N \ {0}. By Σn we denote the set

{0, 1, . . . , n− 1} for some n ∈ N+. Let i, j be the set {i, i+ 1, . . . , j − 1, j}, where i and j are

two non-negative integers such that i ≤ j.

Let A be a finite non-empty set called an alphabet. The elements of A are called letters. A

string of letters u = a0a1 · · · an−1 from A is called a finite word of length n. We denote the

length of a finite word u by |u| and the number of occurrences of a letter a ∈ A in a word u

by |u|a. We denote the empty word by λ and define |λ| = 0. By A∗ and A+ we denote the

sets of all finite words and all finite non-empty words over alphabet A, respectively. For finite

words u = a0a1 · · · an and v = b0b1 · · · bm we say that a word uv = a0a1 · · · anb0b1 · · · bm is the

concatenation of u and v. A word w′ is called a factor of w ∈ A∗ if there exist u, v ∈ A∗ such

that w = uw′v. The word u (v, respectively) is called a prefix (suffix, respectively) of w. By un

we denote the finite word uu · · ·u︸ ︷︷ ︸
n

, where n ∈ N+ and u is a finite word.

A total map x : N → A is called a (right) infinite word and the set of all infinite words is

denoted by Aω. For all i ≥ 0 we set xi = x(i) and write simply

x = x0x1 · · · xn · · ·

The notion of suffix, prefix and factor generalizes straightforwardly to infinite words by

setting that suffix v is an infinite word. Also concatenation extends naturally to the case when

the right word is infinite. By x[i, j] we denote a factor of a word x starting in the position i and

ending in the position j, where i < j, in other words, x[i, j] = xixi+1 · · · xj−1xj . We denote

x[i, j) = xixi+1 · · · xj−1, where i+ 1 < j. A non-negative integer i is called an occurence of a

word u in a word x if x[i; i+ |u|) = x[i; i+ |u| − 1] = u. If u is a factor of x, then we also say

that u occurs or appears in x. We also write ur x if u appears in x.

12



An infinite word x = x0x1 . . . xn . . . is called periodic with a period p if xi = xi+p for all

i ∈ N. If x is periodic with a period p and v = x0x1 · · · xp−1, where xi ∈ A for all i ∈ N, we

write x = vω. A word is called non-periodic if it is not periodic. A word x is called ultimately

periodic if there exist words u ∈ A∗, v ∈ A+ such that x = uvω. Each periodic word x = vω is

ultimately periodic, since it can be written in the form x = uvω, where u = λ. A word is called

aperiodic if it is not ultimately periodic.

An infinite word is called recurrent if each of its factors occurs in it infinite number of times.

An infinite word x is called uniformly recurrent if for each non-negative integer n there exists

a non-negative integerm such that each x factor of lengthm contains as factors all factors of x

of length n.

A sequence of finite words v0, v1, . . . , vi, . . . is called a bi-ideal sequence if for each i ≥ 0,

vi+1 ∈ viA
∗vi and v0 ̸= λ. If v0, v1, . . . , vn, . . . is a bi-ideal sequence, then there exists a unique

sequence of finite words u0, u1, . . . , un, . . .with u0 ̸= λ called the basis of the bi-ideal sequence

(vn) such that

v0 = u0

vi+1 = viui+1vi.

The infinite word one gets as a limit of this bi-ideal sequence x = limn→∞ vn is called a bi-ideal

and the sequence (un) is called a the basis of x or, equivalently, we say that (un) generates x.

We also say that (un) generates the bi-ideal sequence (vn).

Definition 1. The bi-ideal is called finitely generated if its basis sequence (ui) is periodic, i.e.,

there exists a positive integerm such that for all i, j ∈ N,

i ≡ j (mod m) ⇒ ui = uj.

In this case we say that the m−tuple ⟨u0, u1, . . . , um−1⟩ is a finite basis (or just a basis for

short) of the finitely generated bi-ideal x. We also say that the basis ⟨u0, u1, . . . , um−1⟩ generates

the bi-ideal sequence (vn).

13



Example 1. If the 3−tuple ⟨0, 1, 1⟩ is a basis of the bi-ideal x, then

v0 = u0 = 0,

v1 = v0u1v0 = 010,

v2 = v1u0v1 = 0101010,

v3 = v1u0v1 = 010101000101010,

· · ·

x = 0101010001010101010101000101010 · · · .

Definition 2. If (un)n≥0 is the basis of a bi-ideal x and there exists a non-negative integer l such

that, for each i, |ui| ≤ l, then the bi-ideal x is called bounded.

1.2 Some known results on bi-ideals

In this section some known results on bi-ideals are given.

Proposition 1. An infinite word x is recurrent if and only if it is a bi-ideal.

Lemma 2. Let x ∈ Aω be an ultimately periodic word. If x is recurrent, then it is periodic.

Due to the Proposition 1 and Lemma 2 in case of bi-ideals terms non-periodicity and aperi-

odicity are equivalent.

Proposition 1 and Lemma 2 gives that terms non-periodicity and aperiodicity are equivalent

in bi-ideal case.

Figure 1.1: Hierarchy of the class of bi-ideals

(Buls and Lorencs, 2008) considered the hierarchy (see Figure 1.1):

P ⊂ Bf ⊂ Bb ⊂ UR ⊂ B,
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where
P – the class of periodic words,

Bf – the class of finitely generated bi-ideals,

Bb – the class of bounded bi-ideals,

UR – the class of uniformly recurrent words,

B – the class of bi-ideals.

Theorem 3. A bi-ideal x is periodic if and only if

∃n ∈ N∃u∃v (vnu ∈ v∗ ∧ ∀i ∈ N+un+i ∈ uv∗) .

Theorem 4. Let (ui) be a sequence of words, which contains every uj infinitely often. The

bi-ideal x generated by (ui) is periodic if and only if

∃w∀i (ui ∈ w∗) .

Theorem 5. A bi-ideal x ∈ Aω that is generated by anm-tuple ⟨u0, u1, ..., um−1⟩ is periodic if

and only if there exists a finite word w ∈ A+ such that for all i ∈ 0,m− 1

ui ∈ w∗.

(Lorencs, 2012) showed how to change the basis sequence of a finitely generated bi-ideal and

proved that each finitely generated bi-ideal has countably many bases with the same number of

basis words. In fact, his construction can be used for changing the basis sequence of an arbitrary

bi-ideal.

Proposition 6. Ifx is a bi-ideal generated by a sequence (un)n≥0, then the sequenceu′0, u′1, . . . , u′n, . . .,

where u′i = u0ui+1, also generates x.

Later in Chapter 5 wewill show a bit different change of basis for finitely generated bi-ideals,

which contains getting rid of the first letter.

Example 2. If x is a bounded bi-ideal with a basis sequence 0, 1, 00, 00, 00, . . ., then sequences

01, 000, 000, 000, 000, . . . and 01000, 01000, 01000, 01000, 01000, . . . are also basis sequences

of x.

Proposition 7. If ⟨u0, u1, . . . , um−1⟩ is a basis of a finitely generated bi-ideal x, then them-tuple

⟨u′0, u′1, . . . , u′m−1⟩, where u′i = u0us and s = i+ 1 mod m, also is a basis of x.
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Corollary 8. Every finitely generated bi-ideal x has countably many bases with the same num-

ber of basis words.

Example 3. Let ⟨0, 1, 2⟩ be a basis of a finitely generated bi-ideal x. Then 3-tuples ⟨01, 02, 00⟩,

⟨0102, 0100, 0101⟩, and ⟨01020100, 01020101, 01020102⟩ are also bases of x.

If Proposition 6 or Corollary 7 is applied to some basis sequence of a bi-ideal x, then we

say that basis words of the bi-ideal x are L-prolonged or simply that the basis sequence of the

bi-ideal x (or the basis of a finitely generated bi-ideal) is L-prolonged. If x is a bi-ideal with a

basis sequence u0, u1, . . . , un, . . ., then for all n > 0 the sequence

u
(n)
0 , u

(n)
1 , . . . , u(n)m , . . . ,

where u(n)i = u
(n−1)
0 u

(n−1)
i+1 , is the basis sequence of the bi-ideal x after n iterations of L-

prolongation. If x is a finitely generated bi-ideal with basis ⟨u0, u1, . . . , um−1⟩, then for all

n > 0 them-tuple ⟨
u
(n)
0 , u

(n)
1 , . . . , u

(n)
m−1

⟩
,

where u(n)i = u
(n−1)
0 u

(n−1)
i+1 mod m, is the basis of the finitely generated bi-ideal x after n iterations

of L-prolongation.

Lemma 9. Let (un)n≥0 be a basis sequence of a bi-ideal x. Let (vn)n≥0 be the bi-ideal sequence

generated by (un)n≥0. Then for each n ∈ N+ and each i ∈ N

u
(n)
i = vn−1ui+n.

Proof. If n = 1 then, by definition of L-prolongation, u(1)i = u0ui+1 = v0ui+1 for each i ∈ N.

Assume that for all n ≤ k and for all i ∈ N we have u(n)i = vn−1ui+n. Let us prove that it also

holds for n = k+1. By definition of L-prolongation and our assumption, for all i ∈ N we have

u
(k+1)
i = u

(k)
0 u

(k)
i+1 = vk−1u0+kvk−1ui+1+k = vkui+k+1.

Corollary 10. Let x be a bounded bi-ideal. Let (un)n≥0 be a basis sequence of x such that each

element of (un)n≥0 occurs in (un)n≥0 infinite number of times. Then for all k ≥ 1 each element

of the basis sequence (u(k)n )n≥0 occurs in (u(k)n )n≥0 infinitely often.

Proof. It follows from Lemma 9.
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Lemma 11. If x is a bounded bi-ideal, then there exists a basis sequence (un)n≥0 of x such that

each element of (un)n≥0 occurs in (un)n≥0 infinite number of times.

Proof. Let x be a bounded bi-ideal with a basis sequence (un)n≥0. Since the length of each

basis word is bounded by some ℓ ∈ N+, then there is at least one basis word ui that occurs in

(un)n≥0 infinitely many times. Hence there is a non-negative integer δ such that each element

of the sequence (uδ+k)k≥0 occurs in (uδ+k)k≥0 infinite number of times.

We L-prolong the basis δ times. Then by Lemma 9 we have

u
(δ)
k = vδ−1uk+δ

for all k ∈ N. Since vδ−1 is a common prefix of words u
(δ)
0 , u

(δ)
1 , . . . , u

(δ)
n , . . . and since for each

k ∈ N the basis word uk+δ occurs in the sequence (uδ+n)n≥0 infinitely many times, the basis

sequence (u(δ)n )n≥0 satisfies conditions of the lemma.
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2 On a Non-periodic Shrinking Generator

2.1 Preliminaries

We start with a well–known approach (see, e.g., (L’Ecuyer, 1998)). As of today, the most con-

venient and reliable way of generating the random numbers for stochastic simulations appears

to be via deterministic algorithms with a solid mathematical basis. These algorithms produce

sequences of bits which are, in fact, not random at all, but seem to behave as if the bits were

chosen independently at random.

Definition 3. A pseudo-random number generator is a structureS = ⟨Q,B, q0, T,G⟩, whereQ

is a finite set of states, q0 ∈ Q is the initial state (or seed), the mapping Q T→ Q is the transition

function, B is finite set of symbols, and Q G→ B is the output function.

This model is called a Moore machine in automata theory. In fact, this model is the spe-

cialised Moore machine. The state of a generator is initially q0 and evolves according to the

recurrence qn = T (qn−1), for n = 1, 2, 3, .... At step n the generator outputs the symbol

bn = G(qn).

Clearly, since the state space Q is finite, the sequence of states qn is ultimately periodic;

therefore, this approach is limited. One method for obtaining non-periodic sequences is to use

the simplest chaotic system — the logistic map. In 1982 Oishi and Inoue (Oishi and Inoue,

1982) proposed the idea to use chaos in designing a pseudo-random generator. In 1992 Sandri

introduced a simple non-periodic pseudo-random number generator which is based on a sim-

ple logistic map (see (Sandri, 1992)). Recently, Hu et. al. (Hu et al., 2009) proposed a true

random number generator by combining congruential methods with prime numbers and higher

order composition of logistic maps. It generates a 256-bit random number by computer mouse

movement. For more information of using chaotic systems in generation of pseudo-random

sequences, see e.g. (Patidar et al., 2009), (Phatak and Suresh Rao, 1995).
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A pseudo-random number generator can be created by substituting the S-sequence by a

finitely generated bi-ideal — a non-periodic sequence (see (Buls and Lorencs, 2008)). Ob-

viously, such model is a generalization of the pseudo-random number generator (see definition

3). We conjecture, that for most non-trivial cases the resulting pseudo-random sequence is non-

periodic. The resulting pseudo-random sequence has good statistical properties as indicated by

the Diehard test suite (see Section 2.2.2).

In these theses we show two approaches for generating non-periodic pseudo-random number

sequences using our modified shrinking generator. Firstly, given a periodic A-sequence, we

prove that any finitely generated bi-ideal that satisfies a simple condition can be used as the S-

sequence together with this A-sequence in a shrinking generator, and the produced sequence will

be non-periodic. Secondly, we show that there are what we call universal bi-ideals — finitely

generated bi-ideals that generate non-periodic pseudo-random sequences when used as the S-

sequence in a shrinking generator with any A-sequence containing both zeroes and ones. We

give a description of a class of such universal bi-ideals.

Definition 4. Let x, y ∈ {0, 1}ω be two infinite words with |y|1 = ∞. The shrunk sequence of

x by y is defined inductively:

w1 :=

x1, if y1 = 1,

λ, if y1 = 0,

,

wi :=

wi−1xi, if yi = 1,

wi−1, if yi = 0,

The infinite word z = limi→∞wi is called the shrunk word of x by y and denoted by z := Sy(x).

By alph(u) we denote the set of distinct letters in the word u, i.e., alph(u) = {a | a ∈

A ∧ a ∈ F(u)}. If x is an infinite non-empty word and |alph(x)| = 1, then x is called a trivial

word, otherwise x is called a non-trivial word. Further we only consider non-trivial infinite

words.

2.2 Non-periodic shrunk words

In this section we show a method for the construction of an infinite number of finitely generated

bi-ideals from a given A-sequence, such that the corresponding shrunk sequence using the bi-

ideal as the S-sequence is non-periodic. Afterwards, we shortly analyse test results.
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2.2.1 Construction

In order to construct a non-periodic shrunk sequence, the finitely generated bi-ideal, which is

used as S-sequence, has to be non-periodic. In 2008 Buls and Lorencs (Buls and Lorencs, 2008)

obtained sufficient conditions for a finitely generated bi-ideal to be non-periodic:

Theorem 12. If
∪m−1
i=0 Pref(ui) or

∪m−1
i=0 Suff(ui) has at least two words with the same length,

then the bi-ideal with basis ⟨u0, u1, ..., um−1⟩ is non-periodic.

However, the non-periodicity of the bi-ideal (S-sequence) alone is not a sufficient condition

for the shrunk sequence to be non-periodic. Next, we give two examples (without proof), where

the resulting sequence is periodic.

Example 4. If x = (1100)ω and y is the finitely generated bi-ideal with basis ⟨01, 10⟩, then

z = Sy(x) = (10)ω.

Example 5. If x′ = (01)ω and y′ is a finitely generated bi-ideal with basis ⟨101, 10001⟩, then

z′ = Sy′(x
′) = (0011)ω.

In both examples Theorem 12 is satisified, e.g., the bi-ideals used as the S-sequences are

non-periodic, but the resulting shrunk sequence is periodic. Moreover, the period of the shrunk

sequence can be smaller or larger than the period of the respective A-sequence.

In order to construct a non-periodic shrunk sequence, we have to put some additional restric-

tions on the basis of the finitely generated bi-ideal that will be used as the S-sequence. First, we

state two lemmata that will be used in the proof of main result of this section.

Lemma 13. If x ∈ {0, 1}ω is a bi-ideal generated by ⟨u0, u1, ..., um−1⟩, then ∀p, T ∈ N
∞
∃α, β ∈

N, α ̸= β:

|vαm−1| ≡ |vβm−1| (mod p), (2.21)

|vαm−1|1 ≡ |vβm−1|1 (mod T ), (2.22)

where vi denotes the i-th element of the bi-ideal sequence with the basis (un).

Proof. Let (vn) be the bi-ideal sequence corresponding to the finitely generated bi-ideal x. We

consider the subsequence (vim−1)i≥1 of (vn). Since (vn) is an infinite sequence, (vim−1)i≥1 is

also an infinite sequence.

We partition (vim−1)i≥1 into equivalence classes by their length modulus p:

∀k ≥ 1 At =
{
vkm−1

∣∣ |vkm−1| ≡ t (mod p)
}
. (2.23)
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Since (vim−1)i≥1 is an infinite sequence, there exists an integer ℓ ∈ {0, 1, . . . , p − 1} such that

|Aℓ| = ∞. For all vk1m−1, vk2m−1 ∈ Aℓ condition (2.21) holds.

Next, we partition (vim−1)i≥1 further based on the number of ones modulo T :

∀k ≥ 1 Bt = {vkm−1| vkm−1 ∈ Aℓ ∧ |vkm−1|1 ≡ t (mod T )}.

Since |Aℓ| = ∞, there exists an integer s ∈ {0, 1, . . . , T − 1}, such that |Bs| = ∞. For all

vk1m−1, vk2m−1 ∈ Bs conditions (2.21) and (2.22) hold.

Lemma 14. (Let (vn) be a bi-ideal sequence, then

∀m ≤ n vm ∈ Pref(vn) ∩ Suff(vn).

Now we state the main results of this section.

Proposition 15. If x is a non-trivial infinite periodic word, then there exists an infinite number

of finitely generated bi-ideals y, such that z = Sy(x) is aperiodic.

Proof. Let x = uω ∈ {0, 1}ω, where |u| = p. Let y ∈ {0, 1}ω be an aperiodic bi-ideal generated

by ⟨u0, u1, . . . , um−1⟩.

We will show a condition on the basis of y, such that the shrunk word z = Sy(x) is aperiodic.

Suppose the contrary that the shrunk sequence is ultimately periodic, e.g., z = v′vω (where

|v′| = T1 and |v| = T ). Then by lemma 13 we can choose α, β ∈ N (α < β) such that

|vαm−1| ≡ |vβm−1| mod p,

|vαm−1|1 ≡ |vβm−1|1 mod T,

|vαm−1| ≥ p ∧ |vαm−1|1 ≥ T ∧ |vαm−1|1 > T1.

Therefore, there exist k, k1 ∈ N, such that both

|vβm−1| − |vαm−1| = kp (2.24)

|vβm−1|1 − |vαm−1|1 = k1T (2.25)

hold. Now we observe that vαm = vαm−1u0vαm−1 and vβm = vβm−1u0vβm−1. Therefore from
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Figure 2.1: Structure of the bi-ideal y.

(2.24) and (2.25) and using lemma 14 we obtain (see Figure 2.1)

|y[|vβm−1| − |vαm−1|+ 1, |vβm| − |vαm|]| =

= |vβm| − |vαm| − |vβm−1|+ |vαm−1| =

= 2|vβm−1|+ |u0| − 2|vαm−1|−

−|u0| − |vβm−1|+ |vαm−1| =

= |vβm−1| − |vαm−1| = kp

(2.26)

and

|y[|vβm−1| − |vαm−1|+ 1, |vβm| − |vαm|]|1 = |vβm−1|1 − |vαm−1|1 = k1T. (2.27)

Now, if we set x′ = x[1, kp], y′ = y[1, kp], x′′ = x[kp + 1, 2kp], y′′ = y[kp + 1, 2kp]

and consider the shrinking construction for these finite fragments, then by (2.26) and (2.27) we

obtain

Sy′(x
′) = v′z[T1 + 1, k1T ], (2.28)

Sy′′(x
′′) = v′′z[k1T + T1 + 1, 2k1T ], (2.29)

where |v′| = |v′′| = T1. Next, by (2.28), (2.29), |vαm−1|1 > T1 and from the assumption that z

is ultimately periodic it follows that

z[T1 + 1, k1T ] = z[k1T + T1 + 1, 2k1T ], (2.210)

Similarly, since |u1vαm−1u0| = |u0vαm−1u1| and |u1vαm−1u0|1 = |u0vαm−1u1|1, it follows that

Sy[kp−s+1,kp]

(
x[kp− s+ 1, kp]

)
= Sy[2kp−s+1,2kp]

(
x[2kp− s+ 1, 2kp]

)
, (2.211)

where s = |u1vαm−1u0| (see Figure 2.2).

We will show how to construct u0 and u1 such that (2.211) does not hold, hence proving the

existence of a finitely generated bi-ideal y, such that the shrunk word z = Sy(x) is aperiodic.
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Figure 2.2: Structure of the bi-ideal y.

Since |alph(x)| = 2, it follows that

∃i ∈ 2, p : (u[i− 1] = a ∧ ∀j ∈ i, p u[j] = a)), (2.212)

where a ∈ {0, 1} and ā = 1 if a = 0 or ā = 0 if a = 1. We set

u0 = u′10w, u1 = u′′01w, (2.213)

where w ∈ {0, 1}∗, |w| = p− i and u′, u′′ ∈ {0, 1}∗ are arbitrary finite words over the alphabet

{0, 1}.

If |w|1 = γ, then by (2.212) and (2.213) z[k1T − γ] = a but z[2k1T − γ] = a. Thus (2.210)

and (2.211) do not hold. Hence z is aperiodic. Since u′, u′′ ∈ {0, 1}∗ are arbitrary finite words

over alphabet {0, 1}, there exists an infinite number of u0, u1 such that the shrunk word z is

aperiodic.

Moreover, we have not made any restrictions on other elements of the basis of y. Therefore,

for allm ≥ 3 the basis words uj (j ≥ 3) can be chosen arbitrarily.

Corollary 16. If x is a non-trivial infinite periodic word, then there exist an infinite number of

finitely generated bi-ideals y, such that z = Sy(x) is non-periodic.

Proof. Since each periodic word is also ultimately periodic, the proof follows directly from the

proof of the Proposition 15.

2.2.2 Statistics

One way of evaluating the fitness of a pseudo random generator for cryptographic applications

is to check whether the produced bit-sequence appears random in the statistical sense, i.e., that

it does not exemplify patterns that would be unexpected in a sequence of truly random and

independent coin flips. The simplest of such tests is the frequency test, that checks if the number

of ones is close to the number of zeroes. Many such tests can and have been constructed and
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several software packages for testing pseudo-random number generators are available. We used

the well known Diehard battery of tests (Marsaglia, 1996) to asses the fitness of our generator.

This test suite includes 18 main and several more additional tests, all of which a good generator

is expected to pass.

While it was known that the shrinking generator has good statistical properties (Coppersmith

et al., 1994), this did not necessitate that these properties would carry over to our construction.

Still, we found that our shrinking generator passed all tests in the Diehard test suite. For the

testing purposes a 32 bit LFSR was taken as the A-sequence and a bi-ideal with base words

of lengths around 2KB (that were generated by cutting up another 32-bit LFSR) was used as

the S-sequence. Additionally the first two base words were altered in a way so that (2.213)

was satisfied, making the shrunk sequence non-periodic (the required changes are very small

compared to a freely selected base). The number of base words was not limited, but the lengths

of the tests were such, that around the first 20 base words were used while performing each test.

2.3 Universal Bi-ideals

In Section 2.2 we showed how it was possible to construct non-periodic S-sequences for each

periodic A-sequence such that the resulting shrunk words were non-periodic. Even though for

each A-sequence there exists an infinite number of S-sequences such that the shrunk word is

aperiodic, the choice of the S-sequence depends on the choice of the A-sequence. In order to

simplify the choice of the sequences, it would be more convenient to use non-periodic bi-ideals

(as S-sequences) such that for each non-trivial A-sequence the resulting shrunk word would be

non-periodic. In Proposition 19 we prove the existence of such bi-ideals.

Definition 5. A Bi-ideal y is called universal if for all non-trivial periodic x = uω, the shrunk

word z = Sy(x) is aperiodic.

Before turning to our main proposition, we will prove two easy but crucial lemmata:

Lemma 17. Let a, b ∈ A, u ∈ A∗ and |aub| > T > 1. If T is the least period of aub, then

au ̸= ub.

Proof. If u = λ, then aub = ab. Since T > 1 then a ̸= b. Therefore

au = a ̸= b = ub.
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The rest of the proof is by induction on the length of the word u. Since T is the period of aub,

the period t of the word au has to be less than or equal to T , i.e., t ≤ T .

(i) If t = 1, then au = an, where n = |au|. Since T > 1 is the period of the word aub,

b ̸= a. Therefore au = an ̸= ub.

(ii) Let u = vc and t > 1, i.e., t > 1 is the period of the word au = avc. By the induction

assumption av ̸= vc. From this

au = avc ̸= vcb = ub.

Lemma 18. Letm ∈ N,m ≥ 2. If u0 = 1, u1 = 10,m > 2 ⇒
(
∀i ∈ {2, 3, . . . ,m− 1} (00 /∈

F(ui))
)
, then 00 /∈ F(x), where x is the bi-ideal generated by the basis ⟨u0, u1, ..., um−1⟩.

Proof. The proof is by induction. By (vn) we denoe the bi-ideal sequence generated by the

basis ⟨u0, u1, . . . , um−1⟩. Since v0 = 1 and v1 = 1101, then 00 /∈ F(v0) and 00 /∈ F(v1) and we

assume that 00 /∈ F(vi) for all i ≤ k.

Since vk+1 = vkujvk, where j ≡ k + 1 (mod m) and both 00 /∈ F(vk) and 00 /∈ F(uj), and

1 = v0 ∈ Pref(vk) ∩ Suff(vk) (by lemma 14), then 00 /∈ F(vk+1).

Proposition 19. Let m ∈ N, m ≥ 2. If u0 = 1, u1 = 10 and 00 /∈ F(ui) for all i ∈

{2, 3, . . . ,m − 1}, then the bi-ideal generated by the basis ⟨u0, u1, . . . , um−1⟩ is a universal

bi-ideal.

Proof. Let y be the bi-ideal generated by them-tuple ⟨u0, u1, ..., um−1⟩. Let’s assume the con-

trary that y is not a universal bi-ideal. Then there exists a non-trivial periodic word x = uω with

|u| = p ≥ 2, such that z = Sy(x) is a ultimately periodic word with period T and pre-period

T1, i.e., z = wvω, where |v| = T and |w| = T1.

By lemma 13, we can choose sufficiently large α, β, γ, δ ∈ N, such that |vαm−1|1 > T1 and

|vαm−1| ≡ |vβm−1| ≡ |vγm−1| ≡ |vδm−1| mod p,

|vαm−1|1 ≡ |vβm−1|1 ≡ |vγm−1|1 ≡ |vδm−1|1 mod T,

|vδm−1| > |vγm−1| > |vβm−1| > |vαm−1| > p,

|vδm−1|1 > |vγm−1|1 > |vβm−1|1 > |vαm−1|1 > T,

which implies

|vβm−1| − |vαm−1| = kp, (2.31)

|vβm−1|1 − |vαm−1|1 = k1T. (2.32)
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for some k, k1 ∈ N.

Now, similarly to the proof of Proposition 15, we observe that vαm = vαm−11vαm−1 and

vβm = vβm−11vβm−1 and, therefore, from (2.31), (2.32) and using lemma 14 we obtain (see

Figure 2.3)

|y[|vβm−1| − |vαm−1|+ 1, |vβm| − |vαm|]| = |vβm−1| − |vαm−1| = kp (2.33)

and

|y[|vβm−1| − |vαm−1|+ 1, |vβm| − |vαm|]|1 = |vβm−1|1 − |vαm−1|1 = k1T. (2.34)

Now, from the periodicity of x and the equations (2.33) and (2.34) we obtain

x[kp− |vαm−1|, kp− 1] = x[2kp− |vαm−1|, 2kp− 1], (2.35)

y[kp− |vαm−1|, kp− 1] = y[2kp− |vαm−1| − 1, 2kp− 2] = vαm−1, (2.36)

and,

|y[kp− |vαm−1|, kp]|1 = |y[2kp− |vαm−1| − 1, 2kp]|1. (2.37)

If we set |vαm−1| = ℓ and consider the same shrinking construction for finite words

x′ = x[kp− ℓ, kp− 1],

x′′ = x[2kp− ℓ− 1, 2kp− 2] = x[kp− ℓ− 1, kp− 2],

y′ = vαm−1,

then from here, (2.35), (2.36) and (2.37) and using our assumption that z is ultimately periodic

we obtain

Svαm−1(x[kp− ℓ, kp− 1]) = Svαm−1(x[kp− ℓ− 1, kp− 2]). (2.38)

If we further set x[kp− ℓ− 1, kp− 1] = avb = v′ = v′1v
′
2 . . . v

′
ℓ+1, then

Svαm−1(av) = Svαm−1(vb), (2.39)

...
αm-1v

βm-1v

kp

βmv αmv 0 (mod p)βm-1v αm-1v 0 (mod p)

...
βm-1v

01 011 1 11

kp
αm-1v αm-1v αm-1v αm-1v αm-1v

Figure 2.3: Structure of the bi-ideal y.
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au

u1

u1 ...
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ui

ui+1

ui+1 uj+1

uj+1...

...

...

...

...

unuj

uj

a

bub

αm-1vy'	= y'	[i]

y'	[i] y'	[j]

y'	[j]

αm-1vy'	=

u2

u2 un

Figure 2.4: Structure of the bi-ideal y.

but av ̸= vb from lemma 17. From here

∃i > 1∀j ≤ i : v′[j − 1] = v′[j] ∧ v′[i] ̸= v′[i+ 1], (2.310)

but from (2.39) it follows that

∀s ∈ 1, ℓ Sy′[1,s](v
′[1, s]) = Sy′[1,s](v

′[2, s+ 1]). (2.311)

Observe that if i is the index mentioned in (2.310) and y′[i] = 1, then from (2.311) equation

(2.39) does not hold (see Figure 2.4). Thus y′[i] = 0. Moreover, since (2.311) holds for all

s ∈ {1, 2, . . . , ℓ} then

∀t ∈ 1, ℓ− 1 : v′[t] ̸= v′[t+ 1] ⇒ y′[t] = 0. (2.312)

Since |alph(u)| = 2 and ℓ > p there exists an index t0 < p such that (2.312) holds. From this,

(2.312) and the periodicity of x we get that for all t ∈ {1, 2, . . . , p− 1} and for all µ ∈ N

(v′[t] ̸= v′[t+ 1] ∧ t+ µp < ℓ) ⇒ y′[t+ µp] = y′[t] = 0, (2.313)

i.e., there are zeros in y′ = vαm−1 repeating periodically with period p.

Similarly, if we consider vγm−1 and vδm−1 (instead of vαm−1 and vβm−1), we obtain that there

are zeros in vγm−1 that repeat periodically with period p. From this and considering |alph(u)| =

2 and |vγm−1| > ℓ > p, there exists an index i0 < p such that for all η ∈ N

i0 + ηp ≤ |vγm−1| ⇒ vγm−1[i0] = vγm−1[i0 + ηp] = 0. (2.314)

From this and the fact that vαm−1 ∈ Pref (vγm−1) it follows that for all η ∈ N

i0 + ηp ≤ |vαm−1| ⇒ vαm−1[i0] = vαm−1[i0 + ηp] = 0. (2.315)

Since α < β < γ and m = 2 then |vαm−1| < |vβm−1| < |vβm| < |vγm−1|. From this and the

equations (2.31), (2.32) and (2.314) we obtain

vγm−1[i0] = vγm−1[i0 + kp] = vγm−1[i0 + 2kp] = 0 (2.316)
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. . .

βm-1v
kp

. . .

αm-1v

01 011 1 11

2kp

. . .. . . 0 0

[r]αm-1v
p p

][ αm-1v0i +kp]=γm-1v [ 0i ][ αm-1v0i +2kp]=γm-1v [ 0i

[ αm-1v0i+(2k-1)p]=γm-1v [r+1][ αm-1v0i +(k-1)p]=γm-1v [r]

. . .

γm-1v

. . .

βm-1v

αm-1v αm-1v αm-1v

Figure 2.5: Structure of the bi-ideal with basis ⟨1, 10⟩.

and

vγm−1[i0] = vγm−1[i0 + (k − 1)p] = vγm−1[i0 + (2k − 1)p] = 0. (2.317)

Next we observe that from the construction of a bi-ideal (see Figure 2.1 and 2.5) and from the

equations (2.31) and (2.32) it follows that

vγm−1[kp− ℓ− 1, kp] = y[kp− ℓ− 1, kp] = vαm−11 (2.318)

and

vγm−1[2kp− ℓ− 2, kp] = y[2kp− ℓ− 2, kp] = vαm−110. (2.319)

Since vγm−1[kp− 1] = vαm−1[ℓ] = 1 (by construcion vγm−1[kp− 1] = 1 and by lemma 14 —

v0 ∈ Suff (vαm−1)), then i0 ̸= p− 1 and i0 ̸= p.

Further, if vγm−1[i0 + (k − 1)p] = vαm−1[r] (where r ∈ {1, 2, . . . , ℓ− 1}), then vγm−1[i0 +

(2k−1)p] = vαm−1[r+1]. Finally from (2.317) it follows that vαm−1[r] = vαm−1[r+1] = 0, i.e.,

00 ∈ F(y), but from lemma 18 we know that 00 /∈ F(y). This is a contradiction and therefore

z = Sy(x) is not ultimately periodic.
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3 WELLDOC property in bi-ideals

3.1 Preliminaries

Balkova et al. states that the modified shrinking generator, introduced in Chapter 2, has not

passed some latest statistical tests. They recently introduced a combinatorial condition called

well distributed occurrences, or WELLDOC for short in (Balková et al., 2013a) and (Balková et

al., 2013b) for that reason. In both papers they state that an infinite word with the WELLDOC

property is used to combine two linear congruential generators and form an infinite aperiodic

sequence with good statistical behavior (better that the modificated shrinking generator).

This was the main reason why the author has analysed theWELLDOC property for bounded

bi-ideals, a subclass of recurrent words, and has proved the existence of a 1-bounded bi-ideal

over the finite alphabet that satisfies the WELLDOC property in this thesis (particularly, this

chapter). Significantly that the procedure given in this chapter allows to construct infinitely

many such 1-bounded bi-ideals with such a property.

Bounded bi-ideals are natural extension of finitely generated bi-ideals. LetS ⊆ A∗ be a finite

set of words from the alphabetA. Pick up randomly or algorithmically a sequence of words (ui),

where ui ∈ S for all i ∈ N. This sequence generates a bounded bi-ideal x = limn→+∞ vn with

v0 = u0 and vn = vn−1unvn−1 for all n greater than 0. Clearly, if (ui) is periodic, then we obtain

a finitely generated bi-ideal.

For a finite or infinite word u = u0u1u2 . . . , Prefnu will denote the prefix of length n

of u, i.e., Prefnu = u0u1 . . . un−1. The Parikh vector of a finite word over an alphabet

{0, 1, . . . , d− 1} is defined as (|w|0, |w|1, . . . , |w|d−1).

Let i0, i1, . . . denote the occurrences of w in an aperiodic infinite word u over the alphabet

{0, 1, . . . , d− 1}. According to the definition u has well distributed occurrences (i.e. it has the

WELLDOC property), if for anym ∈ N and any factor w of u,

{(|Prefiju|0, . . . , |Prefiju|d−1) modm|j ∈ N} = Zdm;
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that is, the Parikh vectors of Prefiju for j ∈ N, when reduced by modulom, give the complete

set Zdm. In order to give the reader a better chance of understanding the WELLDOC property,

two examples will be provided.

Example 6. Suppose the Thue-Morse word

t = 0110100110010110 . . .

is given over binary alphabet, where

t0 = 0,

t2n = tn

t2n+1 = 1− tn

Thue-Morse word does not satisfy the WELLDOC property, if we choose m = 2 and w = 00.

As w occurs only in odd positions ij , it is easy to see that

(|Prefiju|0 + |Prefiju|1) = ij

is odd. It means that

(|Prefiju|0, |Prefiju|1) mod 2 ̸= (0, 0),

which gives us the necessary

{(|Prefiju|0, |Prefiju|1) modm|j ∈ N} ̸= Z2
2;

Balkova et al. states useful definition and proposition.

Definition 6. We say that an infinite word, u, over an alphabet A, where |A| = d, is universal

if it contains all finite words over A as its factors.

Proposition 20. Any word, which is universal, satisfies the WELLDOC property.

Proof. For any word w ∈ A∗ and any m there exists a finite word v therefore, if i0, i1, . . . , ik

denote the occurrences of w in v, then

{(|Prefiju|0, . . . , |Prefiju|d−1) modm|j ∈ {0, 1. . . . , k}} = Zdm.
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Since u is universal, v is a factor of u. By denoting an occurrence of v in u with i, we get that

the positions i+ ij are occurrences of w in u. That gives us

{(|Prefi+iju|0, . . . , |Prefi+iju|d−1) modm|j ∈ {0, 1. . . . , k}} =

= {(|Prefiu|0, . . . , |Prefiu|d−1)+

+ {(|Prefijv|0, . . . , |Prefijv|d−1) modm|j ∈ {0, 1. . . . , k}} = Zdm.

Thus u satisfies the WELLDOC property.

Example 7. It is easy to construct a bi-ideal over binary alphabet with WELLDOC property.

Suppose we take

u0 = 0, u1 = 1, u2 = 00,

u3 = 01, u4 = 10, u5 = 11,

u6 = 000, u7 = 001, . . .

In other words, we take all the words as generating words in lexicographycal order. In this case

our bi-ideal obviously contains all the finite words as its factors, which gives us the WELLDOC

property.

3.2 Bounded bi-ideals and WELLDOC property

Theorem 21. There exists a 1-bounded bi-ideal with the WELLDOC property in a binary al-

phabet.

Proof. The idea of the proof is that at first we show how the Parikh vector, when reducedmodulo

m, gives the whole set Zdm for a fixed factor and a fixed m. Let us choose any factor w of a

bi-ideal x and take an arbitrary integer m. From the construction of the bi-ideal there ∃i ∈ N

(minimal) such that w \ vi. Let us define a suffix of vi, which follows the factor w, by w′ (see

Figure 1).

Figure 3.1: Structure of bi-ideal x
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Suppose that the first occurrence of w in the bi-ideal x is k. Let us define some integers:

p0 = |Prefkx|0 modm, p1 = |Prefkx|1 modm

q0 = |w|0 modm, q1 = |w|1 modm,

r0 = |w′|0 modm, r1 = |w′|1 modm

It is obvious that the Parikh vector for the first occurrence w is (p0, p1). Our aim is to show

that, at first, we can get the vectors

(p0 + 1, p1), (p0 + 2, p1), . . . ,

. . . , (0, p1), . . . ,

. . . , (p0 − 1, p1), (p0, p1).

Then we can change the Parikh vector to (p0, p1 + 1) and do the same again until we get the

whole set Z2
m.

Further, let us examine vi which is consecutive (m+1)-st and its occurrence which is some

integer s1 (see Figure 2). Let us calculate the Parikh vector for this occurrence w.

Figure 3.2: Structure of bi-ideal x

|Prefs1v|0=p0+m(p0 + q0 + r0)+b0,

where b0 denotes the sum of all the 0’s in the base words which comes in the middle of vi’s.

Similarly, we get

|Prefs1v|1=p1+m(p1 + q1 + r1)+b1,

where b1 denotes the sum of all 1’s in the base words which comes in the middle of vi’s. From

this we can conclude that
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(p0+m(p0 + q0 + r0)+b0) modm = (p0+b0) modm

(p1+m(p1 + q1 + r1)+b1) modm = (p1+b1) modm.

Suppose that the base word with the biggest index in the middle of the issued vi’s is ui+j .

Lets choose the base words in such a way:

ui+l = λ, ∀l ∈ {1, 2, . . . , j − 1},

but

ui+j = 0.

From the construction of the bi-ideal it is known that there is only one base word, ui+j , in

the middle. Now we get that

(|Prefs1u|0, |Prefs1u|1) modm = ((p0 + 1) modm, p1).

Let us define k = i+j and now observe the element vk of the bi-ideal sequence and continue

to deal with the factor w at occurrence s, which gave us the vector

((p0 + 1) modm, p1).

Let us again examine that vk, which is consecutive (m+1)-st and its occurrence is some integer

s2 (see figure 3).

Figure 3.3: Structure of bi-ideal x

We choose the base words again in the following way:

uk+l = λ, ∀l ∈ {1, 2, . . . , j − 1},

but
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uk+j = 0.

Now we can see that

(|Prefs2u|0, |Prefs2u|1) modm = ((p0 + 2) modm, p1).

Continuing to construct the bi-ideal in such way we get all the vectors

(0, p1), (1, p1), . . . , (m− 1, p1).

At this point we apply our procedure by taking the base word with the biggest index and defining

it by letter 1. This gives us a Parikh vector

(p0, (p1 + 1) modm).

From this point we continue to construct the bi-ideal as before by taking the base word with the

biggest index again and defining it by letter 0. Firstly, we get the vector

(|Prefs′1u|0, |Prefs′1u|1) modm = ((p0 + 1) modm, (p1 + 1) modm),

where s′1 is the new occurrence of factor w wherewith we are working. By continuing this

construction we get the vectors

(0, (p1 + 1) modm), (1, (p1 + 1) modm), . . . ,

. . . , (m− 1, (p1 + 1) modm).

The idea of the further construction is simple. We increase the second coordinate by one

(defining the base word with the biggest index by 1) and then forcing in the first coordinate all

the possible values reduced modulom:

0,1, . . . ,m− 1.

After applying this m times the Parikh vectors give the whole set Z2
m. At this point we have

completed the proof for a fixed factor and a fixed integerm.

To make it work for any m ∈ N and any factor w of the bi-ideal x, we can make a lexico-

graphic order for all of factors w of x and make an infinite table with all of factors in top row

and all the integers (starting from 2, because natural numbers reduced modulo 1 are always 0,

so we get vector (0,0) every time and Z2
1 = (0, 0)) in the left column (see Table 3.2).

To make our bi-ideal with WELLDOC property, we do the following. First, we apply our

procedure for the factor w1 and integer 2 (in the table the cell marked as 1) to get the Parikh
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— wi w1 w2 w3 w4 w5 w6

m — — — — — — —

2 — 1 2 4 7 11 ...

3 — 3 5 8 12 ...

4 — 6 9 13 ...

5 — 10 14 ...

6 — 15 ...

7 — ...

Table 3.1: Sequence of provable cases

vectors to complete the whole set Z2
1. Then, we take the next marked cell (cell number 2) with a

factor w2 and an integer 2. With the help of the procedure we get the Parikh vectors to complete

again the whole set Z2
1. Then we take the cell number 3 with a factor w1 and an integer 3, and,

again, through the procedure we complete the whole set Z2
2. By applying our procedure to the

all other cells from Table I, we can construct a bi-ideal with the WELLDOC property. Thus,

this completes our proof.

To help the reader understand our construction and procedure, we would like to demonstrate

producing a 1-bounded bi-ideal with the WELLDOC property.

Example 8. As we will construct a 1-bounded bi-ideal x, we can arbitrary choose our first base

element: u0 = 0. It means that from lexicographical order a factor 0 will be the first one, i.e.,

w1 = 0. It means that for cell number 1 in Table 1 we have a factor w1 = 0 and an integer

m = 2. Accordingly, we have to prove that the Parikh vectors for prefixes of factor 0 give the

whole set Z2
2. It results in getting vectors

(0,0), (0,1), (1,0) and (1,1).

We get the vector (0,0) at once because of Pref0x = λ. Thus, the first element of the bi-ideal

sequence, v0, is the one which has w1 = 0 as factor because v0 = u0 = 0.

Asm = 2 we have to look at the 3rd of v0’s (see Figure 4).

The base word with the biggest index is u2. Thus, we define u2 = 0, but u1 = λ. From this

we have achieved vector (1,0) because
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Figure 3.4: Structure of bi-ideal x

Pref3x = 000.

Currently we have constructed

x = v2z = 00000z,

where z here and further will define a still unknown infinite suffix of the bi-ideal which we are

constructing. Further, we have to look at the 3rd of v2’s (see Figure 5).

Figure 3.5: Structure of bi-ideal x

The base word with the biggest index is u4, so we define u4 = 0, but u3 = λ. Now we have

acquired vector (0,0) back again because

Pref14x = 014.

At this point we have constructed

x = v4z = 021z.

Further, we want to increase the second coordinate by one. In order to do that, we have to start

including 1’s in our bi-ideal. We have to look at the 3rd of v4’s once again (see Figure 6).

Figure 3.6: Structure of bi-ideal x

The base word with the biggest index is u6, so we define u6 = 1, but u5 = λ. From this we

have acquired vector (0,1) back again because
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Pref57x = 0421014.

For now we have constructed

x = v6z = 0421042z.

To get the whole set Z2
2 we have to get the Parikh vector (1,1). It means we have to look at the

3rd of v6’s (see Figure 7).

Figure 3.7: Structure of bi-ideal x

The base word with the biggest index is u8, so we define u8 = 0, but u7 = λ. Now we have

acquired vector (1,1) back again because

Pref228x = 0421042042104200421014.

At this moment we have constructed

x = v8z = v6u7v6u8v6u7v6 = 04210420421042004210420421042z.

At this point we should go to the cell number 2 in Table 1. There we have a factor w2 = 1

and an integer m = 2. Further, we have to construct our 1-bounded bi-ideal further so that

Parikh vectors for prefixes of factor 1 give the whole set

Z2
2={(0, 0), (0, 1), (1, 0), (1, 1)}.

The first occurrence of factor 1 is 42 (known from the element v8). Thus, we get

(|Pref42x|0, |Pref42x|1) mod 2 = (|042|0, |042|1) mod 2 = (0, 0).

Asm = 2 we have to look at the 3rd of v8’s. The base word with the biggest index is u10, so

we define u10 = 0, but u9 = λ. In such way we can acquire a vector (1,0). In order to get back

vector (0,0) we have to look at the 3rd of v10’s and define u12 = 0, but u11 = λ. By defining

u14 = 1, but u13 = λ we get vector (0,1) and by defining u16 = 0, but u15 = λ we get vector

(1,1). So the Parikh vectors when reduced by modulo 2 give the whole set Z2
2.
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Further we go to the cell number 3 in Table 1 with the factor w2 = 0 and integerm = 3. In

this case (m = 3) the Parikh vectors for prefixes of factor 1 have to give the whole set

Z2
3 = {(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)}

The procedure continues to work as before, but at this time it starts with the element v16. Since

this time m = 3, we have to look at the 4th of v16’s. The base word with the biggest index is

u18 (in case ofm = 4 the biggest index increases by 3). Thus, we define u18 = 0, but u17 = λ,

which occours twice this time in the middle.

In general, if we start with element vi and we have this integerm, we can define

b = ⌈log2(m+ 1)⌉.

The base word with the biggest index in the middle is ui+b (from the construction of the bi-

ideals). Thus, we define ui+b = 0 or ui+b = 1 (according to the case we want to achieve),

but

∀j ∈ {0, 1, . . . , b− 1}: ui+j = λ.

Remark 22. It is easy to see that there are infinitely many 1-bounded bi-ideals with WELLDOC

property, because in this construction we can make ”the breaks” at some point and include some

spontaneous elements to achieve new bi-ideals.

Remark 23. We can create a modificated 1-bounded bi-ideal, where some of the first base

words are not 1-bounded, but bounded with some µ ∈ N.

For example, we can define first two base words by

u0 = 00110, u1 = 1101.

In this case we can still construct a modified 1-bounded bi-ideal with WELLDOC property by

using our construction and procedure.

Proposition 24. There are infinitely many 1-bounded bi-ideals with WELLDOC property in

every finite alphabet A.

Proof. The idea of this proof is somewhat similar to the proof of the theorem 21. The Parikh

vectors have more dimensions (in general case, |A|=d). It implies that there will be some more

steps in the procedure for the whole set Zdm to be completed. However, it is finite, and the

procedure will stop at some point. Although the number of possible factors wi grows, they are

countable and we can arrange them in a row in Table I.
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4 Bounded bi-ideals and linear recurrence

4.1 Preliminaries and background

In this chapter we also give a characterization of linearly recurrent bounded bi-ideals. We intro-

duce the notion of completely bounded bi-ideals and prove that completely bounded bi-ideals

are exactly linearly recurrent bounded bi-ideals. This class is very large, namely, its cardinality

is continuum.

Theorem 25. Let w be a word having periods p and q and let gcd(p, q) be the greatest common

divisor of p and q. If |w| ≥ p+ q − gcd(p, q), then w has also the period gcd(p, q).

Let u be a non-empty factor of x ∈ Aω. A word w ∈ A+ is called a return word to u of x if

wur x, u is a prefix of wu, and |wu|u = 2. The set of all return words to u of x we denote by

Rx,u.

If x ∈ Aω is uniformly recurrent, then the difference between two consecutive occurrences of

u in x is bounded, thereforeRx,u is finite. As finitely generated bi-ideals and bounded bi-ideals

are uniformly recurrent, then Rx,u is finite for each finitely generated (or bounded) bi-ideal x

and for each its factor u.

An infinite word x ∈ Aω is called linearly recurrent if it is uniformly recurrent and there

exists a constantK ∈ N such that for all ur x and all w ∈ Rx,u we have |w| ≤ K · |u|.

Theorem 26. Let x be an aperiodic linearly recurrent word with constantK. Then:

1. For all n ∈ N each subword of length n appears in each factor of length (K + 1)n in x.

2. The number of distinct factors of length n in x is less than or equal to Kn.

3. For all u ∈ F(x) and for all w ∈ Rx,u we have (1/K)|u| < |w|.

4. For all u ∈ F(x), Card(Rx,u) ≤ K(K + 1)2.
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In (Durand, 2000) and (Durand, 2003) Durand gave a S-adic characterization of linearly

recurrent sequences. If S is a set of morphisms (possibly infinite), an S-adic representation

of x is given by a sequence (σn : A∗
n+1 → A∗

n)n∈N of morphisms in S and a sequence (ai)i∈N

of letters (ai ∈ Ai for all i ∈ N) such that A = A0, x = limn→+∞ σ0σ1 . . . σn(a
ω
n+1) and

limn→+∞ |σ0σ1 . . . σn(an+1)| = +∞. An infinite word x over alphabet A is called S-adic if

there exists a set S of morphisms such that x admits S-adic representation. If there exists s ∈ N

such that for all r ∈ N, for all b ∈ Ar, and c ∈ Ar+s+1 the letter b occurs in σr+1σr+2 . . . σr+s(c),

then x is called a primitive S-adic sequence (with constant s). Amorphism σ : A→ B∗ is called

proper if there exist two letters r, l ∈ B such that for all a ∈ A the first letter of σ(a) is l, and the

last letter of σ(a) is r. We say that x ∈ Aω is proper S-adic if it is S-adic, and all morphisms

σ ∈ S are proper.

Proposition 27. A sequence is linearly recurrent if and only if it is a primitive and proper S-adic

sequence.

According to Proposition 27 in order to check whether a bounded bi-ideal x is linearly recur-

rent or is not linearly recurrent we should be able to choose a finite set S of proper morphisms

and show that x is primitive and proper S-adic, or to prove that there does not exist a finite set

of proper morphisms S such that x is primitive and proper S-adic. For our purposes it is more

convenient to make restrictions on the basis sequence (ui) before the bi-ideal is generated.

4.2 Bounded Bi-ideals and Linear Recurrence

In this section we state and prove the main result of this chapter, that is, completely bounded

bi-ideals are exactly linearly recurrent bounded bi-ideals.

4.2.1 Completely Bounded Bi-ideals

Let

u0, u1, . . . , un, . . . (4.21)

be a sequence of finite words over alphabet A.

A subsequence of sequence (4.21)

ui0 , ui1 , . . . , uik , . . . (4.22)

is called constant if the following conditions hold:
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(i) ∀j, j′ ∈ N
(
uij = uij′

)
;

(ii) uk = ui0 =⇒ ∃n(k = in).

A constant subsequence (4.22) is called bounded if it is finite or there exists a positive integer

l such that

in − in−1 ≤ l

for all n ∈ N. A constant subsequence (4.22) is called boundless if it is not bounded.

Definition 7. A bounded bi-ideal x is called completely bounded if there exists a basis sequence

(4.21) of x which contains only bounded constant subsequences.

Since each bi-ideal has infinitely many basis sequences, then the “existence” condition in

Definition 7 is crucial.

Example 9. Let x be a periodic word (01)ω. It is a completely bounded bi-ideal since its basis

sequence

01, 01, 01, . . . , 01, . . .

has only one constant subsequence, and it is bounded. Nevertheless, the sequence (ui)i≥0 which

is defined by

ui =

01 if i = k2 for a k ∈ N,

0101 otherwise

also is a basis sequence of x. Clearly, (ui)i≥0 contains a boundless constant subsequence.

Let x be a bounded bi-ideal generated by a sequence (4.21). As the length of each basis word

of x is bounded by some s ∈ N, the set

U = {u
∣∣ ∃k(u = uk)}

is finite. From here there exists a non-negative integerm such that

U = {u
∣∣ ∃k ∈ 0,m(u = uk)}. (4.23)

We denote µ0 = min
u∈U

|u|, and µ1 = max
u∈U

|u|.

Let (un) be a basis sequence of a completely bounded bi-ideal x such that all constant sub-

sequences (4.22) of (un) are bounded. Then there exists a positive integer l such that for all

constant subsequences (4.22) of the basis sequence (un) we have
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in − in−1 ≤ l (4.24)

for all n ∈ N.

In the sequel we use denotationm (l, respectively) for the smallest integer that satisfies (4.23)

((4.24), respectively) for a completely bounded bi-ideal with a given basis sequence (un).

We recall that by vn we denote the n-th element of the bi-ideal sequence that is generated

by a basis sequence (un), i.e., v0 = u0 and vn+1 = vnun+1vn for all n ∈ N.

Lemma 28. Let x be a bounded bi-ideal with a basis sequence (un). Let (vn) be a bi-ideal

sequence generated by (un). Then (2k+1 − 1)µ0 ≤ |vk| ≤ (2k+1 − 1)µ1 for all k ∈ N.

Proof. If k = 0, then v0 = u0, therefore

µ0 ≤ |u0| ≤ µ1.

Now we assume that

(2k+1 − 1)µ0 ≤ |vk| ≤ (2k+1 − 1)µ1

and consider the length of vk+1. The equality

|vk+1| = 2 · |vk|+ |uk+1|

implies

|vk+1| ≥ 2(2k+1 − 1)µ0 + µ0 = (2k+2 − 1)µ0

and

|vk+1| ≤ 2(2k+1 − 1)µ1 + µ1 = (2k+2 − 1)µ1.

Lemma 29. Let x be a bounded bi-ideal with a basis sequence (un). Let (vn) be a bi-ideal

sequence generated by (un). Then |vk+n| ≤ 2n|vk|+ (2n − 1)µ1 for all k, n ∈ N.

Proof. The proof is by induction. If n = 1, then

|vk+1| = 2 · |vk|+ |uk+1| ≤ 2 · |vk|+ (2− 1)µ1.

We assume that condition holds for |vk+n| and consider the length of vk+n+1:

|vk+n+1| = 2 · |vk+n|+ |uk+n+1| ≤ 2 · (2n|vk|+ (2n − 1)µ1) + µ1

= 2n+1|vk|+ (2n+1 − 1)µ1.
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Figure 4.1: Three possibilities where the word u can occur in v′unv′′.

From now we will consider only completely bounded bi-ideals.

Lemma 30. Let x be a completely bounded bi-ideal. Let (un) be a basis sequence of x that

contains only bounded constant subsequences. Let (vn) be a bi-ideal sequence generated by the

sequence (un). If u ∈ F(vn), u /∈ F(vn−1), and n ≥ m+ 1, then |u| > |vn−1−l|.

Proof. Firstly, we observe that vn = vn−1unvn−1 and u /∈ F(vn−1) imply u r v′unv
′′, where

v′ ∈ Pref(u)∩ Suff(vn−1) and v′′ ∈ Suff(u)∩ Pref(vn−1). We can represent this condition with

three alternative schemes (see Figure 4.1).

As one can see, it is possible to have v′ = λ or v′′ = λ.

Definition of a completely bounded bi-ideal implies existence of i, 1 ≤ i ≤ l, such that un =

un−i, but from bi-ideal construction we have vn−1−i ∈ Pref(vn−1) and vn−1−i ∈ Suff(vn−1).

From here we obtain

vn = vn−1unvn−1 = w1vn−iw2,

with |w1| = |w2|. For a schematical representation see Figure 4.2.

Now, one can see that the inequality |u| ≤ |vn−1−i| implies |v′| ≤ |vn−1−i| and |v′′| ≤

|vn−1−i|.

Thus v′unv′′ r vn−i ∈ Pref(vn−1). Contradiction, since u /∈ F(vn−1).

Corollary 31. Let x be a completely bounded bi-ideal. Let (un) be a basis sequence of x that

contains only bounded constant subsequences. Let (vn) be a bi-ideal sequence generated by

(un). If ur vn, but u does not appear in vn−1, then |vn| < 2κ(|u|+ µ1), where κ = max{m+

1, l + 1}.

Figure 4.2: The structure of vn−i.
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Proof. (i) Let n ≥ m+ 1. Then from Lemma 29 and Lemma 30 we obtain

|vn| ≤ 2l+1|vn−1−l|+ (2l+1 − 1)µ1

< 2l+1|vn−1−l|+ 2l+1µ1

< 2l+1|u|+ 2l+1µ1

= 2l+1 (|u|+ µ1)

≤ 2κ (|u|+ µ1) .

(ii) If n ≤ m, then by Lemma 29 it follows that

|vn| ≤ 2n|v0|+ (2n − 1)µ1 < 2n|u0|+ 2nµ1

≤ 2nµ1 + 2nµ1 ≤ 2m+1µ1 ≤ 2m+1 (|u|+ µ1)

≤ 2κ (|u|+ µ1) .

Lemma 32. If a ≥ 1 and b ≥ 1, then a+ b ≤ ab+ 1.

Proof. From inequalities a ≥ 1 and b ≥ 1 we easily obtain

a− 1 ≤ (a− 1)b,

a− 1 ≤ ab− b,

a+ b ≤ ab+ 1.

Corollary 33. If a ≥ 1 and b ≥ 1, then a+ b ≤ 2ab.

Proof. Lemma 32 implies

a+ b ≤ ab+ 1 ≤ ab+ ab = 2ab.

Corollary 34. Let x be a completely bounded bi-ideal. Let (un) be a basis sequence of x that

contains only bounded constant subsequences. Let (vn) be a bi-ideal sequence generated by

(un). If ur vn and u /∈ F(vn−1), then

|vn| < 2κ+1µ1|u|,

where κ = max{m+ 1, l + 1}.

Proof. Corollary 31 and Corollary 33.
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4.2.2 The Main Result

Theorem 35. A bounded bi-ideal x is linearly recurrent if and only if it is completely bounded.

Proof. ⇐=: At first we prove that a completely bounded bi-ideal x is linearly recurrent. Let x

be a completely bounded bi-ideal, and (ui)i≥0 be its basis sequence that contains only bounded

constant subsequences. Let urx. Then there exists an element vn of the bi-ideal sequence such

that urvn. By construction of a completely bounded bi-ideal, x can be written as a factorization

of vn and basis words, i.e.,

x = vnu
′
1vnu

′
2 . . . vnu

′
k . . . ,

where u′s ∈ U for all s ∈ N+.

Let u[i, j) be an occurrence of u in x such that u = x[i, j). Then there is k ∈ N and

occurrence of vnu′kvn in x

vn[i1, i2)u′k[i2, i3)vn[i3, i4) = x[i1, i4)

such that i1 ≤ i < i3. Otherwise, for i ∈ [i3, i4) we would consider the occurrence of vnu′k+1vn

in x instead of vnu′kvn. So, i1 ≤ i < i3 and we will find the next occurrence of u in x, e.g.,

u[i′, j′) = x[i′, j′). As u has an occurrence in vn, then i3 ≤ i′ < i4. Clearly, u[i, j) and u[i′, j′)

are two distinct occurrences of u in x and we can estimate the length of w, e.g., the length of the

corresponding return word to u is

|w| ≤ i′ − i ≤ |vnu′k| ≤ |vn|+ µ1.

(i) If u does not appear in vn−1, then, by Corollary 34, we have

|w| ≤ |vn|+ µ1 < 2κ+1µ1|u|+ µ1 ≤ 2κ+2µ1|u|.

(ii) Observe, if ur vn−1, then we need to consider only the case when ur v0. Then

|w| ≤ |v0|+ µ1 ≤ 2µ1 ≤ 2κ+2µ1|u|.

We conclude the proof by setting K = 2κ+2µ1. Then for each u r x and each return word

w ∈ Rx,u we have

|w| ≤ K · |u|.

=⇒:We assume the contrary that x is a linearly recurrent bounded bi-ideal that is not com-

pletely bounded. Then there exists a constantK such that for each factor w we have

|w| ≤ K · |rw|,
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where rw is arbitrary return word to w in a bi-ideal x.

Let (ui) be a basis sequence of x. Without loss of generality we can assume that the length

µ0 of the shortest basis word is greater than zero. Indeed, if µ0 = 0 (i.e., at least one of the

basis words is the empty word λ), then we can L-prolong the basis words once and consider the

new obtained basis sequence (u(1)i ) instead of (ui). By definition of L-prolongation, u0 ̸= λ is

a prefix of u(1)i for all i ∈ N. Thus none of the basis words in (u
(1)
i ) is empty. Clearly, as x is

not a completely bounded bi-ideal, then (u(1)i ) contains a boundless constant subsequence.

Let ki = |ui| − |ui+1| for all i ∈ N. Let K = {|ki|
∣∣i ∈ N}. According to the definition of

L-prolongation

k
(1)
i = |u(1)i | − |u(1)i+1| = |u0ui+1| − |u0ui+2| = ki+1.

Hence, if K′ = {|k(1)i |
∣∣i ∈ N}, then K′ ⊂ K. From here, without loss of generality we can

assume that the basis sequence (ui) satisfies such two conditions

µ1 < 2µ0, (4.25)

where µ0 (µ1, respectively) is the length of the shortest (longest, respectively) basis word, and

0 < kmax < 0.1µ0, (4.26)

where kmax = max{||ui| − |ui+1|| ; i ∈ N}.

Otherwise we could L-prolong basis words until we obtain a basis sequence that satisfies

(4.25) and (4.26). Since x is not a completely bounded bi-ideal, then after any number of L-

prolongations we obtain a basis sequence that contains a boundless constant subsequence.

The aperiodicity of x implies the existence of a constant n′ such that for all n′′ ≥ n′ the n′′-th

element of the bi-ideal sequence vn′′ is not p-periodic for all p ≤ 3µ1. Later this fact will help

us to obtain a contradiction.

As the basis sequence of x contains a boundless constant subsequence (uik), then there exists

n > max{2m, n′} such that n = ik, uik = uik+1
, and ik+1 − ik ≥ K + 3. In order to simplify

calculations we assume that equality holds, namely, ik+1 = n + K + 3. We prove that for a

word w = vnunvn there exists a return word rw such that |rw| > K · |w|.

Further we divide the proof in two parts. First we prove that vn+K+2 does not contain w =

vnunvn as a factor. Then we show that if w does not occur in vn+K+2, then there exists a return

word to w such that its length is greater thanK · |w|.

By the bi-ideal construction, it follows that vn+K+2 can be written as a factorization of vn

and basis words. Hence, if we denote each ui ∈ U \ {un} by u∗, then vn+K+2 can be written in

46



Figure 4.3: The word w is in the prefix of vn+K+2.

...

...

...

...
...
...

...

...

...

...

Figure 4.4: The word un overlaps with u∗; the case when |un| > |u∗|.

the form

vn+K+2 = vnu∗vnu∗vnu∗ . . . vnu∗vn. (4.27)

We use denotation u∗ to point out the absence of un in factorization (4.27) of vn+K+2, i.e., to

point out the inequality u∗ ̸= un.

Firstly, we observe that w /∈ Pref(vn+K+2). Assume the contrary that w ∈ Pref(vn+K+2).

Then |un| ̸= |u∗| (otherwise the equality u∗ = un leads to contradiction). Hence we obtain a

shift of vn to the right of un and u∗ (see Figure 4.3); therefore vn is periodic with the length of

the shift |u′| < µ1 < 3µ1. Contradiction. Analogously, we can prove that w /∈ Suff(vn+K+2).

Next, we consider the case when un = w[|vn|, |vnun|) occurs in vnu∗vnu∗vn so that un

overlaps with one of the basis words u∗. As un ̸= u∗, then these two conditions cannot hold at

the same time:

a) |u∗| = |un|;

b) occurrences of words u∗ and un in vn+K+2 start at the same position.

From here we obtain the shift of vn to the right or to the left of un and u∗ (see Figure 4.4),

therefore vn is periodic with the length of the shift |u′| < µ1 < 3µ1. Contradiction.

It remains to consider the case when un = w[|vn|, |vnun|) occurs in

vn = (vnu∗vnu∗vn)[|vnu∗|, |vnu∗vn|).

Here we recall that vn = vn−1unvn−1 and consider three subcases:
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Figure 4.5: There is a shift, when un overlaps with un in vn.

Figure 4.6: The case when |un| > |u∗|.

Case I

The word un = w[|vn|, |vnun|) overlaps with un = vn[|vn−1|, |vn−1un|) so that

a) there is a shift of vn−1 to the left or to the right of un (see Figure 4.5). Then vn−1 is periodic

with the length of the shift |u′| < µ1 < 3µ1. Contradiction.

b) their occurrences coincide, namely,

w = vnunvn = vn−1unvn−1unvn−1unvn−1 =

= (vnu∗vn−1unvn−1u∗vn)[|vnu∗| − |vn−1un|, |vnu∗vn|+ |unvn−1|].

From here the equality of lengths of un and u∗ would imply the equality of words them-

selves (which would lead to contradiction). Thus |un| ̸= |u∗| and we obtain shift of vn−1

to the right of u∗ and un (see Figure 4.6).

From here vn−1 is periodic with the length of the shift |u′| < kmax < µ1 < 3µ1. Contra-

diction.

Case II

Let vn−1 = v′v′′v′′′ with |v′| = |v′′′| = 2µ1. Let un = w[|vn|, |vnun|) occur in v′ = vn−1[0, 2µ1)

or v′′′ = vn−1[|vn−1| − 2µ1, |vn−1|). Here we are not interested if un occurs in vn−1 ∈ Pref(vn)

or in vn−1 ∈ Suff(vn). If un occurs in v′ starting at position α, then, as

w[|vn|, |vnunvn−1|) = unvn−1,

we obtain a shift of vn−1 of length α + |un| to the right of un (see Figure 4.7). Hence vn−1 is

periodic with the length of the shift

α + |un| ≤ |v′| = 2µ1.
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Contradiction.

Similarly, if un occurs in v′′′ ending in position |vn−1| − β, then, since

w[|vn−1un|, |vnun|) = vn−1un,

we have shift of vn−1 of length β + |un| to the left of un (see Figure 4.7), therefore vn−1 is

periodic with a period

β + |un| ≤ |v′′′| = 2µ1.

Contradiction.

Case III

Let vn−1 = v′v′′v′′′, where |v′| = |v′′′| > µ1. Let un = w[|vn|, |vnun|) occur in v′′ =

vn−1[|v′|, |v′v′′|). First we consider the case, when un occurs in v′′ which is a factor of vn−1 ∈

Pref(vn). If un = w[|vn|, |vnun|) occurs in vn−1 starting in position α (see Figure 4.8), then vn

is both α + |u∗| and α + |un| periodic.

a) If |u∗| ̸= |un|, then according to Theorem 25: if

α + |u∗|+ α + |un| − gcd(α + |u∗|, α + |un|)

=2α+ |un|+ |u∗| − gcd(α + |u∗|, α + |un|) < |vn|,

then vn is also gcd(α + |u∗|, α + |un|) periodic. Indeed, we have

2α + |un|+ |u∗| − gcd(α + |u∗|, α + |un|) < 2|vn−1| − 2µ1 + 2µ1 − 1 < |vn|,

therefore vn is

gcd(α + |u∗|, α + |un|)

= gcd(min(α + |u∗|, α + |un|), ||u∗| − |un||) ≤ ||u∗| − |un|| < µ1

periodic. Contradiction.

Figure 4.7: The word un occurs in v′ or v′′′.
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Figure 4.8: The word un occurs in v′′.

b) If |u∗| = |un|, then we consider u′ and u′′ (see Figure 4.8), two suffixes of vn−1, and

compare their lengths α and γ:

α = |u′| = |vn−1| − β − |un| = γ.

Hence u∗u′ and unu′′ are two suffixes of vn−1 of the same length. From here and the

equality of lengths of un and u∗ we obtain that

un = u∗

as prefixes of the same length of equal words. Contradiction.

If un = w[|vn|, |vnun|) occurs in vn−1 ∈ Suff(vn) ending in position |vn−1| − α (see Figure

4.9), then vn is both α + |u∗| and α + |un| periodic. Analogously as before we obtain:

a) If |u∗| ̸= |un|, then vn is also

gcd(α + |u∗|, α + |un|) < µ1

periodic, which leads to contradiction.

b) If |u∗| = |un|, then |u′′| = |u′| (see Figure 4.9), hence u′′ = u′ as prefixes of vn−1 of equal

length. From here u∗ = un as suffixes of equal length of the same word u′′un = u′u∗ ∈

Pref(vn−1).

We have proved that w = vnunvn does not occur in vn+K+2. It remains to show that this

implies existence of a return word to w such that its length exceeds K · |w|. As vn+K+2 does

Figure 4.9: The word un occurs in v′′.
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not contain w as a factor, there exists a return word rw to w such that rww contains vn+K+2 as

a factor. We need to prolong vn+K+2 for at least two symbols to obtain rww (if we add one

symbol to the right or to the left, we can obtain maximum one occurrence of w). From here

|rw| = |rww| − |w| ≥ |vn+K+2|+ 2− |w|. (4.28)

Now we estimate the length of w. By Lemma 28:

|w| = |vnunvn| ≤ 2|vn|+ µ1 ≤ 2(2n+1 − 1)µ1 + µ1 < 2n+2µ1. (4.29)

Next, from (4.28), (4.29), and Lemma 28 we have

|rw| ≥ |vn+K+2|+ 2− |w|

> (2n+K+3 − 1)µ0 + 2− 2n+2µ1

= 2n+K+3µ0 − µ0 + 2− 2n+2µ1

> 2n+K+2µ1 − 2n+1µ1 − 2n+2µ1

=

(
2K − 3

2

)
· 2n+2µ1

>

(
2K − 3

2

)
· |w|.

Finally, we conclude the proof by observing that for each integerK > 1 we have 2K − 3
2
> K.

Hence

|rw| > K · |w|,

and x is not LR. Contradiction.

We have given a characterization of linearly recurrent bounded bi-ideals. Moreover, the

famous Thue-Morse word is linearly recurrent (as uniformly recurrent morphic infinite word),

but it is not a bounded bi-ideal (Buls and Lorencs, 2006). Hence we conclude that class of

bounded bi-ideals intersects with the class of linearly recurrent words but neither of these classes

is a proper subclass of another one (see Figure 4.10).
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Figure 4.10: Hierarchy of uniformly recurrent words (UR): the class of linearly recurrent words

– LR, the class of bounded bi-ideals – Bb, the class of completely bounded bi-ideals – Bcb, the

class of finitely generated bi-ideals – Bf , the class of periodic words – P .
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5 Partial finitely generated bi-ideals

5.1 Preliminaries and background

Blanchet-Sadri et al. in (Blanchet-Sadri and Hegstrom, 2002) accented that partial words appear

naturally in several fields such as DNA computing, data communication, molecular biology etc.

This was the inspiration of this chapter – to aggregate partial words with the class of infinite

words that we are interested in, i.e., bi-ideals. Nowadays the importance of information is so

expansive that it is not possible to overvalue it, as there are times and reasons for knowing only

partial information about something, for example, DNA structure. As DNA has some certain

structure (with possible missing information) and bi-ideals (in this case, finitely generated bi-

ideals) have a structure, in this chapter we are trying to solve the problem of filling the holes

(missing information) in finitely generated bi-ideals. In general case of finite amount of holes

in finitely generated bi-ideals it is always possible to get the whole information back. Unfortu-

nately, in general case of infinite amount of holes it is not possible.

A finite partial word of length n over A is a map w : {0, . . . , n − 1} → A ∪ {⋄}, where

⋄ ̸∈ A. The symbol ⋄ is viewed as a “do not know” symbol. The union set A ∪ {⋄} is denoted

by A⋄. A right infinite partial word or infinite partial word over A is a map w : N → A⋄. In

both the finite and infinite cases, the symbol at position i in w is denoted by wi. If wi ∈ A, then

i is defined in w, and if wi = ⋄, then i is a hole in w.

5.2 Finding a basis for a bi-ideal

We start this section with the theorem what gives an orientation in this chapter.

Theorem 36. Suppose that ⟨u0, u1,…,um−1⟩ is a basis that generates the bi-ideal x. If u′0 ∈

Pref(x) and u′0 ̸= u0, then there exists a basis ⟨u′0, u′1,…,u′m−1, u
′
m, u

′
1, u

′
2,…,u′m, u′1,…⟩ for

almost finitely generated bi-ideal, which generates the same bi-ideal x.
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Proof. From given it is known that u′0 ∈ Pref(x). It follows that either u′0 ∈ Pref(v0) or

either ∃n > 0 : u′0 ∈ Pref(vn) and u′0 /∈ Pref(vn−1). It means that ∃w:

vn = u′0w (5.21)

From the bi-ideal construction and (5.21), we have

vn+1 = vnun+1vn = u′0wun+1u
′
0w.

Let’s define u′1 := wun+1 which gives us

vn+1 = u′0u
′
1u

′
0w = v′0u

′
1v

′
0w = v′1w.

un+2w

vn vnvnvn

v0́

u0́

v1́

u0́ wwun+1

u2́u1́

v1́

...

v2́

Figure 5.1: Scheme of change of basis

Let’s examine the next element of the bi-ideal sequence:

vn+2 = vn+1un+2vn+1 = v′1wun+2v
′
1w.

Let’s define again similarly u′2 := wun+2 and it gives us

vn+2 = v′1u
′
2v

′
1w = v′2w.

We will use mathematical induction to prove this theorem. Suppose that vn+i = v′iw, where

i < m. It is easy to see that

vn+i+1 = vn+iun+i+1vn+i = v′iwun+i+1v
′
iw.

If we define u′i+1 := wun+i+1, we get

vn+i+1 = v′i+1w.

Now we have to make an inductive step, i.e., we have to get vn+m+1 = v′m+1w. From the bi-

ideal construction and from the fact that the initial basis of finitely generated bi-ideal is a basis

withm elements we get that

vn+m+1 = vn+mun+m+1vn+m = vn+mun+1vn+m = v′mwun+1v
′
mw.
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Bus as we know from the definition that u′1 := wun+1, then

vn+m+1 = v′mu
′
1v

′
mw = v′m+1w.

Example 10. Let’s observe a basis ⟨u0, u1⟩, where u0 = 0 and u1 = 1. This basis generates a

bi-ideal x = 0100010101000100... Suppose that we choose u′0 = 01000 and try to get a basis

for an almost finitely generated bi-ideal, which generates the same bi-ideal x. As u′0 = 01000,

then it is known that u′0 ∈ Pref(v2). It means that there exists a word w = 10 such that:

v2 = u′0w

Inductive hypothesis: ∀i ≤ k: vi+2 = v′iw. Now we have to prove the inductive step, i.e., that

vk+3 = v′k+1w. From the bi-ideal construction and inductive hypotheses ∀i ≤ k: vi+2 = v′iw

we get that

vk+3 = vk+2uk+3vk+2 = v′iwuk+3v
′
iw.

Let’s consider 2 cases, based on the parity of indexes:

(i) If k - even number, then

v′kwuk+3v
′
kw = v′kw1v

′
kw = v′k101v

′
kw.

If we define u′k+1 = 101, we get that

v′k101v
′
kw = v′ku

′
k+1v

′
kw = v′k+1w.

(ii) If k - odd number, then

v′kwuk+3v
′
kw = v′kw0v

′
kw = v′k100v

′
kw.

If we define u′k+1 = 100 in this case, againgwe get that

v′k100v
′
kw = v′ku

′
k+1v

′
kw = v′k+1w.

And that completes the proof. It means that if we choose u′0 = 01000, then there exists an almost

finitely generated basis – ⟨01000, 101, 100, 101, 100, . . . , 101, 100, . . . ⟩, which generates the

same bi-ideal x.

Suppose that we have a given bi-ideal over a finite alphabet A and |A|=k. Is it possible to

find a basis sequence, which corresponds to it? In general case, it is not possible and we need

to know at least two things to do that.
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Proposition 37. The amount of base words has to be certain in order to find the corresponding

basis.

Proof. Let us deal with such a basis sequence:

⟨0, 0, . . . , 0, 1⟩. (5.22)

If we don’t know howmany base words we have got, we can’t know how far we have to examine

the given bi-ideal.

Proposition 38. The maximal length of base words has to be certain in order to find the corre-

sponding basis.

Proof. Let us deal with such a basis sequence:

⟨00000 . . . 001⟩. (5.23)

Almost the same idea applies here. If we don’t know how long the longest base word is, we

can’t know how far we have to examine the given bi-ideal.

Theorem 39. It is possible to find a base for a given finitely generated bi-ideal.

Proof. This means that we have to know two numbers:

n – amount of base words,

l= max
0≤i≤n−1

ui.

From this we get that it is possible to find a base sequence only for finitely generated bi-

ideals. As we know the cardinality of the alphabet, the maximum length of the base words

(bounded bi-ideals) and amount of base words (finitely generated bi-ideals), there is a possibility

of only finite amount of distinct bases. That means we can construct a finite amount of bi-ideals

from all these distinct bases. We do that together for all distinct bases continuously until almost

all of bases (except the correct one) do not match at some point to the given bi-ideal sequence.

At the time when penultimate base fails, we have left with the base we were looking for. This

base is the one that corresponds to the given bi-ideal.
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5.3 Filling of holes in a finitely generated bi-ideal

Suppose a finitely generated bi-ideal x is given over a finite alphabetA and there is a place (index

i, which correspond to x[i]) with a hole in it. It means we have lost an information about what

letter has to be there. Natural question appears – is it possible to find a letter which corresponds

to this hole?

Definition 8. If u is a word, then −→u defines the same word without a first letter.

Example 11. If u=01110, then −→u =1110.

Theorem 40. Suppose we have a finitely generated bi-ideal x with a basis sequence (un). If we

define

a) u′0 =
−→u0

∀i >0 : u′i = uiu0[0].

Then x′ is a bi-ideal genereted by basis (u′n) besides x′ =
−→x .

b) u′′0 = u′0u
′
1

∀i >0 : u′′i = u′0u
′
i+1.

Then basis (u′′n) defines a bi-ideal x′′ =
−→x .

Proof. At first, we will prove the first part. To do that, we have to show that

∀n ∈ N: v′n = −→vn

The base case (k = 0) executes clearly, because v′0 = u′i =
−→u0 = −→v0 . Now we suppose that

our statement holds for some natural k, i.e., v′k =
−→vk . The inductive step follows from

v′k+1 = v′ku
′
k+1v

′
k =

−→vku′k+1
−→vk = −→vkuk+1u0[0]

−→vk = −→vkuk+1vk =
−−→vk+1.

The second part directly follows from Proposition 6.

Now we state a theorem that helps us to prove our main result in this chapter.

Theorem 41. If x is a finitely generated bi-ideal with a basis ⟨u0, u1, . . . , un⟩, then −→x is also a

finitely generated bi-ideal.

Proof. We can construct a basis for a finitely generated bi-ideal −→x in the following way. First

we define a sequence:
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u′0 =
−→u0

u′1 = u1u0[0]

u′2 = u2u0[0]

…

u′n = unu0[0]

u′n+1 = u0u0[0]

u′n+2 = u1u0[0]

u′n+3 = u2u0[0]

…

u′2n+1 = unu0[0]

u′2n+2 = u0u0[0]

…

In other words we can define the basis as

u′0 =
−→u0

∀m ≥ 1 : u′m = um mod (n+1)u0[0].

Now suppose that the basis ⟨u′0, u′1, . . . , u′n, u′n+1, . . . ⟩ defines a bi-ideal x′. In this case this

basis defines an almost finitely generated bi-ideal. It means that our base sequence is ultimately

periodic. The first base word is u′0 and then we have a periodic sequence ⟨u′1, . . . , u′n, u′n+1⟩ that

generates our bi-ideal x′. Secondly, we define another sequence:

u′′0 = u′0u
′
1

u′′1 = u′0u
′
2

u′′2 = u′0u
′
3

…

u′′n = u′0u
′
n+1

The basis ⟨u′′0, u′′1, . . . , u′′n⟩ defines a bi-ideal x′′ = −→x . To prove that, at first we prove that

x′ = −→x by mathematical induction. To do that we need to prove that

∀i: v′i = −→vi .

The base case (k = 0) executes clearly, because v′0 = u′i = −→u0 = −→v0 . Now we suppose

that our statement holds for some natural k, i.e., v′k = −→vk . From the defined basis sequence

⟨u′0, u′1, . . . , u′n, u′n+1, u
′
1, . . . ⟩ and construction of bi-ideals we get that
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v′k+1 = v′ku
′
k+1v

′
k =

−→vku′k+1u(k+1) mod (n+1)
−→vk = −→vkum mod (n+1)u0[0]

−→vk = −→vkum mod (n+1)vk =

= −−→vk+1.

The last part that the basis ⟨u′′0, u′′1, . . . , u′′n⟩ defines a bi-ideal x′′ = −→x again directly follows

from Proposition7.

(Cers, 2010) solved the decision problem: given two bases, decide whether they generate

the same finitely generated bi-ideal.

Definition 9. We say a basis ⟨u0, u1, . . . , um−1⟩ of a finitely generated bi-ideal x is reducible if

it can be changed by an application of any of the following reductions:

1. There is a word u and non-negative integers ki, such that ui = uki for all i ∈ 0,m− 1.

Then the 1-tuple ⟨u⟩ is also a basis of x.

2. There is a T < m such that m = k · T for some k ∈ N and ui = ui+T for all i ∈

1,m− T − 1. Then the T -tuple ⟨u0, u1, . . . , uT−1⟩ is also a basis of x.

3. There are words wi such that ui = wm−1wi for all i ∈ 0,m− 1. Then the m-tuple

⟨wm−1, w0, w1, . . . , wm−2⟩ is also a basis of x.

Example 12. Here we give an example of each reduction:

1. If ⟨0101, 01010101, 01⟩ is a basis of x, then ⟨01⟩ also is a basis of x;

2. If ⟨0, 1, 2, 0, 1, 2⟩ is a basis of x, then ⟨0, 1, 2⟩ also is a basis of x;

3. If ⟨01020100, 01020101, 01020102⟩ is a basis of x, then ⟨0102, 0100, 0101⟩ is also a basis

of x.

Definition 10. A finite basis of a bi-ideal is called irreducible if it cannot be further reduced by

any reduction of Definition 9.

Theorem 42. There is one and only one irreducible basis for any finitely generated bi-ideal.

Theorem 43. If two irreducible finitely generated bi-ideals x and y are not equal, then there

∞
∃i : xi ̸= yi.

.
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Proof. Suppose that we have two bi-ideals – x with a basis ⟨u0, u1, . . . , un⟩ and y with a ba-

sis ⟨w0, w1, . . . , wm⟩, with finitely many different occurrences. It means that we can find an

occurrence starting from which both bi-ideals are equal. We also suppose that both of bases

⟨u0, u1, . . . , un⟩ and ⟨w0, w1, . . . , wm⟩ are irreducible.

First, suppose that incorrespondence is only in the first letter. This means that x = 0z and

y = 1z. By the help of construction from Theorem 41, it is possible to construct two finitely

generated bases for bi-ideal z. The first one:

u′′0 = u′0u
′
1 =

−→u0u1u0[0]

u′′1 = u′0u
′
2 =

−→u0u2u0[0]

u′′2 = u′0u
′
3 =

−→u0u3u0[0]

…

u′′n = u′0u
′
n+1 =

−→u0un+1u0[0]

And the second one:

w′′
0 = w′

0w
′
1 =

−→w0w1w0[0]

w′′
1 = w′

0w
′
2 =

−→w0w2w0[0]

w′′
2 = w′

0w
′
3 =

−→w0w3w0[0]

…

w′′
m = w′

0w
′
m+1 =

−→w0wm+1w0[0]

At this point we have two bases

⟨u′′0, u′′1, . . . , u′′n⟩ and ⟨w′′
0 , w

′′
1 , . . . , w

′′
m⟩,

which generate the same finitely generated bi-ideal z. From Theorem 42 it is known that for any

finitely generated bi-ideal there exists one and only one reduced basis. It means that it should

be possible to reduce ⟨u′′0, u′′1, . . . , u′′n⟩ to ⟨w′′
0 , w

′′
1 , . . . , w

′′
m⟩ or vice versa.

From the construction of base words ⟨u′′0, u′′1, . . . , u′′n⟩, it is known that the last letter of all

these base words is 0 because u0[0] = 0. Likewise, it is known that the last letter of all the base

words ⟨w′′
0 , w

′′
1 , . . . , w

′′
m⟩ is 1 because w0[0] = 1. From the definition of reducibility of finitely

generated bi-ideals, it is easy to see that in all three cases the last letter of the base words remains

the same. Thus, it mean it is not possible to reduce these two bases into one. Contradiction. It is

not possible that incorrespondence of two finitely generated bi-ideals is only in the first letter.

Now suppose that we have a general case – incorrespondence is in finitely many different

occurrences. Let us suppose that an occurrence, starting from which both bi-ideals are equals, is
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some integer k+1. This mean that we can make a construction from Theorem 41 (making basis

for a bi-ideal −→x ) k-times for both bi-ideals x and y and get to the case we already dealt with –

0z and 1z. Doing this change of bases we still have a finitely generated bi-ideal. This concludes

the proof.

Theorem 44. It is possible to fill the finite number of holes for a given finitely generated bi-ideal.

Proof. As we have a finite alphabet, there is a finite number of ways to fill the holes in. It

means that we have a finite amount of potential finitely generated bi-ideals. And there is still

a possibility of only a finite number of distinct bases. That means we can construct a finite

amount of bi-ideals from all these distinct bases. We do that for all distinct bases continuously

until almost all of bases (except the correct one) do not match all the potential bi-ideal sequences.

At some point there will be just one basis and one potential bi-ideal without fail. This basis is

the corresponding one to the given bi-ideal and we can fill in the holes.

We will give an example, which shows that this problem is not resolvable in general case

with infinite amount of holes in a finitely generated bi-ideal.

Example 13. Suppose we have a finitely generated bi-ideal with the basis {00, 01}. This basis

generates a bi-ideal

x = 00010000000100 . . .

A letter 0 is always in every odd position of this bi-ideal. Suppose that we have the holes of the

given bi-ideal in every odd position

x = ⋄0⋄1⋄0⋄0⋄0⋄1⋄0. . .

It is impossible to fill these holes in because there is a finitely generated bi-ideal with a basis

⟨10, 11⟩, which corresponds to the given bi-ideal.

Corollary 45. If a given finitely generated bi-ideal x has an infinite number of holes, it is not

possible to fill them all in general case.
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6 Fuzzy metrics on the set of infinite words

and fuzzifying topologies

Some researchers working on the theory of automatic sequences, stringology, in particular, be-

came interested in the use of different analytical methods to study the structure of sets of infinite

words and languages. In particular, different metrics describing distance between infinite words,

limits of sequences of words and topologies, both metrizable and non-metrizable, on the set of

infinite words were studied. In this chapter we develop an alternative approach to the study of

the analytic structure of the family of infinite words, based on the use of fuzzy metrics.

6.1 Measure of some classes of infinite words

Before we turn to the main statements and results of this chapter, let us introduce the measure of

the set of infinite words and give some measures of the classes of infinite words. In Section1.2

we already mentioned the hierarchy of infinite words (see Figure 1.1). As at this point we are

interested in the measure, it is defined in the following way. Let Σ be a finite alphabet. We can

specify a natural topology on Σω, the set of infinite words over Σ, by specifying a sub-base D

as follows:

D =
∪
j≥0
a∈Σ

Dj,a,

where Dj,a consists of those words w such that w[j] = a. Base elements, which are non-empty

finite intersections of theDj,a are of the formΣi1a1Σ
i2a2 . . .Σ

ijajΣ
ω, where j, i1, i2, . . . , ij ≥ 0

are integers and a1, a2, . . . , aj ∈ Σ. Such a set is called a cylinder. We can put a measure m

on Σω, by defining the measure of the cylinders:
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m(Σi1a1Σ
i2a2 . . .Σ

ijajΣ
ω) = k−j ,

where k = |Σ|.

In this section we are using a well–known theorem to prove our results.

Theorem 46. Almost all sequences w over a finite alphabet Σ satisfy pw(n) = |Σ|n for all

n ≥ 0.

It means, that almost all the words w over alphabet Σ have all the possible factors of length

n and as it is described above, the measure of such words is 1. From the definition of measure

it follows the measure of all the infinite words is 1, because

m(Σω) = k−j = k0 = 1.

Theorem 47. The measure of bounded bi-ideals over alphabet {0, 1} in space of infinite words

is 0.

Proof. From the definition of bounded bi-ideals it is known that for an arbitrary bounded bi-

ideal x there exists an integer l such that ∀i |ui| ≤ l. If we regard the first base word u0 from

our bi-ideal x, then there are two possible cases in an alphabet {0, 1}:

Case A

u0[0] = 0, i.e., the base word u0 starts with a letter 0. From the construction of bi-ideals is

known, that

x = u0u1u0u2u0u1u0u3u0u1u0u2u0u1u0u4 . . .,

i.e., every second base word in the bi-ideal x is u0. As it stands, that ∀i |ui| ≤ l and u0[0] = 0,

then there cannot be more than 2l-1 letters of 1’s between two different 0’s. Hence, bi-ideal x

does not contain a factor 12l. From Theorem 46 it is known, that almost all the words w over

alphabet Σ satisfy ∀n ≥ 0: pw(n) = |Σ|n, i.e., the measure of such words ism(w) = 1. In this

case, our bounded bi-ideal x does not contain a factor 12l. Hence

m(all bounded bi-ideals with the first letter 0) = m(Σω)− 1 = 0.

Case B

u0[0] = 1, i.e., the base word u0 starts with a letter 1. Again from the construction of bi-ideals

it is known that

x = u0u1u0u2u0u1u0u3u0u1u0u2u0u1u0u4 . . .,
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and the further construction of the proof for Case B follows straightforward from Case A and

therefore

m(all bounded bi-ideals with the first letter 1) = m(Σω)− 1 = 0.

Theorem 48. Themeasure of uniformly recurrent words over alphabet {0, 1} in space of infinite

words is 0.

Proof. Suppose, that x – an arbitrary uniformly recurrent word. There are 2 possible cases:

Case A

x[0] = 0. From the definition of uniformly recurrent words it is known that for each its factors

(suppose v), there exists an integer k such that v occurs in every factor of x, which is at least of

length k (see Figure 6.1). It follows, that for a factor 0 there also exists an integer k ∈ N such,

that

0 occurs in x[0;k-1];

0 occurs in x[k;2k-1];

0 occurs in x[2k;3k-1];

...

0 occurs in x[nk;(n+1)k-1];

...

Figure 6.1: Letter 0 as a factor in a uniformly recurrent word

It means, that in every factor of length k of our uniformly recurrent word x there will appear

at least one 0. Since the length of each of those blocks is k, there cannot be more than 2k-2 letters

of 1’s between two consecutive 0’s. It follows, that there is no factor 12k−1 in our uniformly

recurrent word x.

Case B

x[0] = 1. From the definition of uniformly recurrent words it is known that for each its factors
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(suppose v), there exists an integer k such that v occurs in every factor of x, which is at least of

length k (see Figure 6.2). Further construction of the proof that there is no factor 02k−1 in our

uniformly recurrent word x follows straightforward from Case A.

Figure 6.2: Letter 1 as a factor in a uniformly recurrent word

From Theorem 46 it is known, that almost all sequences w over a finite alphabet Σ satisfy

pw(n) = |Σ|n for all n ≥ 0, i.e., the measure of such words is m(w) = 1. In this case, our

uniformly recurrent word x does not contain a factor 12k−1 in case A (a factor 02k−1 in Case B).

Hence,

m(Ru) = m(Σω)− 1=0.

Corollary 49. The measure of bounded bi-ideals over every finite alphabet Σ in the space of

infinite words is 0.

Corollary 50. The measure of uniformly recurrent words over every finite alphabet Σ in the

space of infinite words is 0.

Theorem 51. The measure of the bi-ideals over every finite alphabet Σ in the space of infinite

words is 1.

Proof. Suppose that we have a finite alphabet Σ and x – an arbitrary word with F (x) = Σ∗.

From Theorem 46 it is known that the measure of all words, which have all the possible factors,

is 1. So if we can show that our arbitrary word x is a bi-ideal, then we will get that measure of

all bi-ideals is 1 as well. Let us take the first letter of x and denote it as u0 and it will be the

first element v0 of our bi-ideal sequence. As the set of x factors is Σ∗, then there has to be a

factor u30 = u0u0u0 somewhere in x (see Figure 6.3). Let us look at the first such one. Now we

denote by u1 the factor of x, which is between the first x letter u0 and the last one u0 (from first

appeared factor in form u0u0u0). From the definition of bi-ideals, we get the next element of

the bi-ideal sequence v1 = v0u1v0, because v0 = u0.

Further, we prove theorem by induction, i.e., suppose that vi is an element of the bi-ideal

sequence. As the set of x factors is Σ∗, then there has to be a factor v3i = vivivi somewhere
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Figure 6.3: Structure of the bi-ideal x

in x. Let us look again at the first such one. Now we denote by ui+1 the factor of x, which

is between the first x factor vi and the last one vi. From the definition of bi-ideals, we get the

next element of bi-ideal sequence vi+1 = viui+1vi. Inductive step has been done. Therefore,

the arbitrary word x is a bi-ideal. Hence the measure of bi-ideals over finite alphabet is 1, i.e.,

m(B) = 1.

6.2 Ordinary metrics on the set of infinite words

6.2.1 Pseudometrics and pseudometric space

Recall that a metric on a set X is a mapping d : X × X → R+ where R+ = [0,∞) such that

for all x, y, z ∈ X:

(1d) d(x, y) = 0 ⇐⇒ x = y;

(2d) d(x, y) = d(y, x);

(3d) d(x, z) ≤ d(x, y) + d(y, z)

In case axiom (1d) is replaced by a weaker axiom

(1′d) d(x, y) = 0 ⇐= x = y;

we come to the definition of a pseudometric.

In case a stronger version of the axiom (3d)

(3ud) d(x, z) ≤ max{d(x, y), d(y, z)};

holds, a pseudometric is called an ultra pseudometric

Clearly, every ultra pseudometric is a pseudometric, but not vice-versa: the standard metric

on the plane is not an ultrametric.

A pair (X, d) whereX is a set and d is a pseudometric onX is called a pseudometric space.
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6.2.2 Metrics on the set of infinite words

In the literature we have found two kinds of metrics (they are ultrametrics, actually) on the set

of all infinite words. The first one that we denote here by ρ, is defined as follows, see e.g.

(Allouche and Shallit, 2003).

Let

x = (x0, x1, x2, . . . xn, . . .) and y = (y0, y1, y2, . . . yn, . . .)

be infinite words. Then

ρ(x, y) =

 0 if x = y

2−n otherwise, where n = min{i : xi ̸= yi}

We do not think that this metric gives satisfactory information about real ”nearness-type” rela-

tions between thewords. For example, consider the following threewordsx = (1, 1, 1, 1, 1, 1, ...),

y = (0, 1, 1, 1, 1, 1, 1, ...) and z = (0, 0, 0, 0, 0, 0, ...).Then ρ(x, y) = ρ(x, z) = 1, that is in the

both cases the distance of these infinite words is the largest possible value in the correspond-

ing metric that equals to 1. Or, if otherwise stated, everything is dictated by the first digits of

the strings. However, in different situations one’s intuition may say that x should be estimated

”closer” to y than to z.

Another known definition of a metric on the set of infinite words is introduced as follows,

see e.g. (Holmgren, 2000).

Let x = (x0, x1, x2, . . . xn, . . .) and y = (y0, y1, y2, . . . yn, . . .) be infinite words, and let for

a given i ∈ N ∪ {0} the number χi be defined by:

χi(x, y) =

 0 if xi = yi where i is the i-th coordinate of the word

1 if xi ̸= yi where i is the i-th coordinate of the word

Now let

σ(x, y) =
∞∑
i=0

1

2i
χi(x, y).

Then one can easily see that σ : X×X → [0, 1] is an ultrametric on the set of all infinite words.

In our opinion σ is more adequate for describing nearness of the words than ρ, since it takes

into account information about the whole length of the words, not only considers the informa-

tion contained in the prefixes of these words. However, this metric only gives an accumulated

imformation about nearness between the words and neglects all specific details of this informa-

tion. For example, let x = (1, 0, 0, 0, 0, ...), y = (0, 1, 1, 1, 1, ...) and z = (0, 0, 0, 0, 0, ...). Then
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σ(y, z) = 1, and σ(x, z) = 1, and hence this metric does not take into account the essential

difference of this words, but just accumulates all information in one number.

Therefore, we do not think that ordinary metrics is an adequate analytical tool for describing

nearness-type relation between infinite words. We propose to use fuzzy metrics instead. In

our opinion, which we try to justify in this thesis, fuzzy metrics are much more subtle and, if

properly defined, will give more refined information about the nearness-type properties between

the words.

6.3 Fuzzy metrics

In 1954 K. Menger introduced the concept of the statistical metric (Menger, 2003). The theory

of statistical metric was developed mainly in the second half of the previous century by differ-

ent authors, see, e.g. the fundamental monograph, (Schweizer and Sklar, 1960). Based on the

concept of the statistical metric Kramosil and Michalek in (Kramosil and Michalek, 1975) in-

troduced the notion of a fuzzy metric. Actually a fuzzy metric is in a certain sense equivalent to

the concept of the statistical metric, but the essential difference is in its definition and interpre-

tation. While the statistical metric Fxy(λ) on a set X is interpreted as ”the probability that the

obtained distance between points x, y ∈ X is smaller than λ ∈ (−∞,+∞)”, the fuzzy approach

to the notion of a distance follows from the idea that ”the distance between two points is not an

actually existing real number, but it is a fuzzy notion, i.e. the only way which the distance in

question is to ascribe some values from [0, 1] to various sentences proclaming something related

to distance” (Kramosil and Michalek, 1975).

In 1994 George and Veeramani (George and Veeramani, 1994), see also (George and Veera-

mani, 1997), slightly modified the original concept of a fuzzy metric, we call this modification

GV-fuzzy metric. On one hand this modification allows more natural examples of fuzzy met-

rics, in particular fuzzy pseudometrics constructed from metrics. On the other hand George and

Veeramani fuzzy pseudometrics are more appropriate for the definition and the study of the in-

duced topological structure. In our work we modify GM-definition of a fuzzy pseudometric by

weakening one of the axioms in George-Veeramani definition of a fuzzy metric thus coming

to a concept which will be call a fragmentary fuzzy metric. The necessity to enlarge the class

of fuzzy metrics will be explained at the appropriate place. We contruct a special fragmentary

fuzzy metric on the set of infinite words from a sequence of partial ordinary pseudometrics on
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this set. The fuzzy metric obtained in this way will be used for the description of the analytic

structure of the set of infinite words.

Before we can define the concept of a fragmentary fuzzy metric we need the notion of a t-

norm, introduced first byK.Menger (Menger, 2003), and later studied and applied in the research

by many authors, see e.g. (Schweizer and Sklar, 1960), (Klement et al., 2000), et. al.

6.3.1 t-norms

Definition 11. A t-norm is a binary operation on the unit interval ∗ : [0, 1] × [0, 1] → [0, 1]

satisfying the following conditions:

(0t) ∗ is monotone: α ≤ β ⇒ α ∗ γ ≤ β ∗ γ for all α, β, γ ∈ [0, 1];

(1t) ∗ is commutative: α ∗ β = β ∗ α for all α, β ∈ [0, 1];

(2t) ∗ is associative: (α ∗ β) ∗ γ = α ∗ (β ∗ γ) for all α, β, γ ∈ [0, 1];

(3t) α ∗ 1 = α, α ∗ 0 = 0 for all α ∈ [0, 1];

(4t) ∗ distributes over arbitrary joins: α ∗
(∨

i∈I βi
)
=

∨
i∈I(α ∗ βi)

for every α ∈ [0, 1] and for all {βi | i ∈ I} ⊆ [0, 1].

Example 14. Among the most important examples of t-norms are the following three:

• Let ∗ = ∧. It is called the minimum t-norm.

• Let α ∗ β := α · β be the product. This is the so called product t-norm.

• Let α ∗ β = max(α + β − 1, 0). This is the Łukasiewicz t-norm.

Remark 52. It is known that ∧ is the largest t-norm:

For any t-norm ∗ and any α, β ∈ [0, 1] it holds α ∗ β ≤ α ∧ β.

Although in order to introduce the concept of a fuzzy metric we need the general definition

of the t-norm, our work is mainly based on the minimum t-norm. Referring to Remark 52 our

results can be extended for the case of other t-norms if they satisfy some additional conditions.
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6.3.2 Fuzzy pseudometrics and fragmentary fuzzy metrics: basic defini-

tions and results

Definition 12. A fuzzy pseudometric on the set X is a pair (m, ∗), or simply m, where m :

X × X × R+ → [0, 1] (that is m is a fuzzy subset of X × X × R+), satisfying the following

conditions for all x, y, z ∈ X , s, t ∈ R+:

(1GV) m(x, y, t) > 0;

(2GV) m(x, y, t) = 1 ⇐= x = y;

(3GV) m(x, y, t) = m(y, x, t);

(4GV) m(x, z, t+ s) ≥ m(x, y, t) ∗m(y, z, s);

(5GV) m(x, y,−) : R+ → [0, 1] is continuous.

If (m, ∗) is a fuzzy metric on X , then the triple (X,m, ∗) is called a fuzzy metric space.

If axiom (2GV) is replaced by a stronger axiom

(2′GV) x = y ⇐⇒ m(x, y, t) = 1

we get definitions of a fuzzy metric, and the corresponding fuzzy metric space.

Note that axiom (4GV) combined with axiom (2GV) implies that the fuzzy metricm(x, y, t)

is non-decreasing on the third argument.

Definition 13. A fragmentary fuzzy metric on the set X is a pair (m, ∗), or simply m where

the mapping m : X × X × R+ → (0, 1] satisfies the following conditions for all x, y, z ∈ X ,

s, t ∈ R+:

(1FFM) m(x, y, t) > 0;

(2FFM) m(x, y, t) ≥ t
t+1

whenever x = y;

(3FFM) m(x, y, t) = m(y, x, t);

(4FFM) m(x, z, t+ s) ≥ m(x, y, t) ∗m(y, z, s);

(5FFM) functionm(x, y,−) : R+ → [0, 1] is continuous and non-decreasing.
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If (m, ∗) is a fragmentary fuzzy metric on X , then the triple (X,m, ∗) is called a fragmentary

fuzzy metric space.

Remark 53. Thus axioms (1FFM), (3FFM) and (4FFM) coincides with axioms (1GV), (3GV)

and (4GV) respectively.

Since we weaken the axiom (2GV) to the axiom (2FFM) we had to strengthen axiom (5GV)

replacing it by axiom (5FFM): The reason for this is that combination of axioms (2FFM) and

(4FFM) (as different from the combination of axioms (2GV) and (4GV)) does not imply that

the function m(x, y,−) : R+ → [0, 1] is non-decreasing. Therefore we have to request this

important property explicitly by replacing axiom (5GV) with axiom (5FFM).

Remark 54. We think it is reasonable to replace axiom (2GV) by a weaker axiom (2FFM) at

least for two reasons.

First, this generalized version of the definition of a fuzzy pseudometric is more appropriate

for the description of the distance between two infinite words which is defined inductively from

certain fragments. And second, constituting that a distance between two equal objects should

be fixed for every t ∈ R+ and not to be a subject of some possible evaluation seems to be not

very natural in the context of defining ”distance” with fuzzy metrics. Note also that

lim
t→∞

m(x, y, t) = 1 whenever x = y

also in case the fragmentary fuzzy metric.

Patterned after (Piera, 2001) we introduce the following fundamental for our research con-

cept:

Definition 14. A fragmentary fuzzy metric is called a fragmentary fuzzy ultrametric if for every

x, y, z ∈ X , t ∈ R+:

m(x, y, t) ≥ min{m(x, z, t),m(z, y, t)}.

Further, the next definition is ”the fragmentary version” of the concept of a strong fuzzy

metric, see e.g. (Gregori et al., 2010):

Definition 15. A fragmentary fuzzy metric m on X is called strong if, in addition to the prop-

erties (1FFM), (2FFM), (3FFM) (4FFM) and (5FFM), the following modification of axiom

(4FFM) is satisfied

(4sFFM) m(x, z, t) ≥ m(x, y, t) ∗m(y, z, t) for all x, y, z ∈ X and for all t > 0.
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To justify this definition we show that actually in this context the axiom (4FFM) may be

omitted, that is axiom (4FFsM) is indeed stronger than axiom (4FFM). This is proved in the

next proposition:

Proposition 55. Letm : X ×X ×R+ satisfy axioms (1FFM), (2FFM), (3FFM), (4sFFM) and

(5FFM). Thenm : X ×X × R+ → [0, 1] is a fragmentary fuzzy metric.

Proof. Referring to axioms (4sFFM) and (5FFM) we get the following series of inequalities:

m(x, z, t+ s) ≥ m(x, y, t+ s) ∗m(y, z, t+ s) ≥ m(x, y, t) ∗m(y, z, s),

which holds for any x, y, z ∈ X and any t, s ∈ R+.

Thus we come to the following fundamental in our research concept:

Definition 16. A strong fuzzy fragmentary metric on a setX is a pair (m, ∗), or simplymwhere

m : X ×X × R+ → (0, 1], satisfies the following conditions for all x, y, z ∈ X , t ∈ R+:

(1FFM) m(x, y, t) > 0;

(2FFM) m(x, y, t) ≥ t
t+1

whenever x = y;

(3FFM) m(x, y, t) = m(y, x, t);

(4sFFM) m(x, z, t) ≥ m(x, y, t) ∗m(y, z, t);

(5FFM) m(x, y,−) : R+ → [0, 1] is continuous and non-decreasing.

In what follows we will need the following Lemma, showing that also in this weaker form

axiom (2FFM) in case of the minimum t-norm the point x is ”closer” to itself than to any other

point:

Lemma 56. Let (m,∧) be a fragmentary fuzzy metric. For every x, y ∈ X , and every t ∈ R+

it holdsm(x, x, t) ≥ m(x, y, t).

Proof. From axioms (4FFM) and (3FFM) we have

m(x, x, t) ≥ m(x, y, t) ∧m(y, x, t) = m(x, y, t) ∧m(x, y, t) = m(x, y, t).
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Definition 17. A fragmentary fuzzy strong metric m : X × X × R+ → (0, 1] is called a

fragmentary fuzzy strong ultrametric if

m(x, y, t) ≤ m(x, z, t) ∧m(z, y, t)

for all x, y, z ∈ X , and every t ∈ R+.

Definition 18. (Gregori et al., 2010) Given two fuzzy metric spaces (X,m, ∗m) and (Y, n, ∗n), a

mapping f : X → Y is called continuous if for every ε ∈ (0, 1), every x ∈ X and every t ∈ R+

there exists δ ∈ (0, 1) and s ∈ R+ such that n(f(x), f(y), t) > 1 − ε wheneverm(x, y, s) >

1− δ. In symbols:

∀ε ∈ (0, 1),∀x ∈ X, ∀t ∈ R+ ∃ δ ∈ (0, 1),∃s ∈ R+ such that

m(x, y, s) > 1− δ =⇒ n(f(x), f(y), t) > 1− ε

The following proposition gives the standard construction of a fuzzy metric from a usual

metric on the same set:

Proposition 57. (Gregori et al., 2010) Let (X, d) be a pseudometric space. Letmd be the fuzzy

set defined on X ×X × R+ by

md(x, y, t) =
t

t+ d(x, y)
.

Then (md, ∗) is a strong fuzzy pseudometric in case ∗ = · is the product t-norm.

We will need the following modification of the above statement.

Proposition 58. Let (X, d) be an ultrametric space and define the fuzzy setmd on the set X ×

X × R+ → (0, 1] by

md(x, y, t) =
t

t+ 1 + d(x, y)
.

Then md(x, y, t) is a fragmentary strong fuzzy metric in case of t-norms ∧ (minimum) and ·

(product). In particular in case of the minimum t-norm,md is a fragmentary fuzzy strong ultra-

metric.

Proof. It is clear that md satisfies axioms (1FFM), (2FFM) (since d : X × X → [0,∞) is a

metric) and (3FFM). The continuity of md is clear and the non-decreasingness of md can be

proved straightforward. To show (4sFFM) let x, y, z ∈ X . Then, referring to the properties of

an ultrametric d : X ×X → R+ we have

d(x, z) ≤ max{d(x, y), d(y, z)}.
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Further, let t > 0 be fixed. Now we consider two separately the cases of the minimum and the

product t-norms. In case ∗ = ∧ we obviously have

t

t+ 1 + d(x, z)
≥ t

t+ 1 + d(x, y)

∧ t

t+ 1 + d(y, z)
,

and hencemd(x, z) ≥ md(x, y) ∧md(y, z) and hence axiom (4FFM) holds.

In case of the product we again refer to the inequality d(x, z) ≤ max{d(x, y), d(y, z)} and

easily verify that

t

t+ 1 + d(x, z)
≥ t

t+ 1 + d(x, y)
· t

t+ 1 + d(y, z)
.

Referring to Proposition 52 and to Proposition 58 we get the following

Corollary 59. Given a ultra pseudometric d : X × X → R+ the mapping md(x, y, t) =

t
t+1+d(x,y)

is a fuzzy fragmentary metric with respect to any t-norm ∗. In particular, if ∗ = · or

if ∗ = ∧, then this fuzzy fragmentary metric is strong.

In (Gregori and Romaguera, 2004) a fuzzy pseudometric m on X is called stationary, if m

does not depend on t, i.e. if for every x, y ∈ X , the function mx,y(t) = m(x, y, t) is constant.

We will need the following specification of this property.

Definition 19. A fragmentary fuzzy metric m on X is said to be stationary on the interval

[c, d] ⊆ R+, if for each x, y ∈ X , the functionmx,y(t) = m(x, y, t) is constant on [c, d].

6.3.3 Topology induced by a fragmentary fuzzy metrics

Let m : X × X → R+ → (0, 1] be a fragmetary fuzzy metric. We follow the lines of the

construction of a topology from a fuzzy metric, see (George and Veeramani, 1994) to define the

topology induced by a fragmentary fuzzy metric.

Given a point x ∈ X , ε ∈ [0, 1), t ∈ R+ we define the ball with center x, at the level t and

radius ε as follows:

B(x, ε, t) = {y | m(x, y, t) ≥ 1− ε}

t ≤ s =⇒ B(x, ε, t) ⊆ B(x, ε, s) and ε ≤ δ =⇒ B(x, ε, t) ⊆ B(x, δ, t).

We use the family of balls

B = {B(x, ε, t) | x ∈ X, ε ∈ [0, 1), t ∈ R+}
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to induce a topology Tφm.

In (George and Veeramani, 1994), (George and Veeramani, 1997) it is proved that the fam-

ily B = {B(x, ε, t) | x ∈ X, t ∈ (0,∞), ε ∈ (0, 1]} satisfies necessary conditions to be a

base for some topology Tm on X . We cannot prove the analogous theorem in our case, since

the axiom (2GK) is weaker than the axiom (2FFM). Therefore, simulating the proof of such

theorem we cannot guarantee that for every y ∈ B(x, ε, t) there exists a ball B(y, δ, s) such

thatB(y, δ, s) ⊆ B(x, ε, t): the problem is that under our assumptions we cannot guarantee that

this ”ball” contains y, in particular, this ”ball” can be empty. However we can prove an even

stronger statement in the special case of the fragmentary fuzzy ultrametric.

Theorem 60. Let m : X ×X × ×R+ → (0, 1] be an fragmentary fuzzy ultrametric. Then for

every y ∈ B(x, ε, t) it holds B(y, ε, t) ⊆ B(x, ε, t).

Proof. To show that B(y, ε, t) ⊆ B(x, ε, t) let z ∈ B(y, ε, t). Then m(x, y, t) > 1 − ε and,

sincem is fragmentarym(x, x) ≥ t
t+1

. Now, recalling thatm is a fragmentary fuzzy ultrametric

we conclude thatm(y, y, t) > 1− ε, that isB(y, ε, t) ⊆ B(x, ε, t). Further, since y ∈ B(x, ε, t)

andm(x, y) is fragmentary fuzzy ultrametric it follows thatm(y, y, t) = m(x, x, t) ≥ t
t+1

, and

hence y ∈ B(y, ε, t).

One can easily verify the following proposition:

Proposition 61. Given two fragmentary fuzzy metric spaces (X,m, ∗m) and (Y, n, ∗n), a map-

ping f : (X,Tm) → (Y, Tn) is continuous if and only if

∀ε ∈ (0, 1),∀x ∈ X, ∀t ∈ (0,∞) ∃ δ ∈ (0, 1),∃s ∈ (0,∞) such that

n(f(x), f(y), t) > 1− ε wheneverm(x, y, s) > 1− δ.

6.4 Fragmentary fuzzy ultrametric on the set of infinitewords

6.4.1 Construction of a fragmentary fuzzy ultrametric on the set of infinite

words

Let X be the set of infinite words. We define a sequence

{dn | n ∈ N
∪

{0}}
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of ultra pseudometrics on X as follows. Let x = (x0, x1, x2, . . .), y = (y0, y1, y2, . . .) ∈ X and

let χi(x, y) = 0 if xi = yi and χi(x, y) = 1 if xi ̸= yi. We define:

d0(x, y) = χ0(x, y);

d1(x, y) = χ0(x, y) +
χ1(x,y)

2
;

d2(x, y) = χ0(x, y) +
χ1(x,y)

2
+ χ2(x,y)

22
;

. . .

dn(x, y) =
∑n

i=0
χi(x,y)

2n
;

. . . .

Theorem 62. Every dn is an ultra pseudometric.

Proof. Obviously every χi(x,y)
2i

is an ultra pseudometric. From here we conclude that every

dn(x, y) is an ultra pseudometric by induction referring to the following easily provable Lemma:

Lemma 63. Let d1, d2 : X ×X → R+ be ultra pseudometrics. Assume that d1(x, y) ∈ {0} ∪

[a, 1] for any x, y ∈ X and that d2(x, y) ∈ [0, a
2
]. Then d = d1+d2 : X×X → [0, 1] is an ultra

pseudometric.

Basing on this sequence of ultra pseudometrics and referring to Proposition 58 we construct

the sequence of fragmentary fuzzy strong ultrametrics on the set X of all infinite words:

µ0(x, y, t) =
t

t+1+d0(x,y)
;

µ1(x, y, t) =
t

t+1+d1(x,y)
;

µ2(x, y, t) =
t

t+1+d2(x,y)
;

. . .

µn(x, y, t) =
t

t+1+dn(x,y)
;

. . . .

Further we define the following family of mappings: m0(x, y, t) = µ0(x, y, t);

m1(x, y, t) = µ1(x, y, t) ∨ µ0(x, y, 1);

m2(x, y, t) = µ2(x, y, t) ∨ µ1(x, y, 2);

. . .

mn(x, y, t) = µn(x, y, t) ∨ µn−1(x, y, n);

. . . .

76



Proposition 64. Mappingsmn : X×X×R+ → [0, 1] are fragmentary strong fuzzy ultrametrics

on the set X of infinite words.

Proof. FromProposition 58we know that each µn is a fragmentary fuzzy strong ultrametric, that

is µn(x, z, t) ≥ µn(x, y, t) ∧ µn(y, z, t). Sincemn(x, y, t) = µn(x, y, t) ∨ an where an is some

constant, it is clear thatmn(x, y, t) is a fragmentary fuzzy ultrametric and besidesmn(x, z, t) ≥

mn(x, y, t) ∧mn(y, z, t), that ismn is strong.

Finally, we construct a mappingM : X ×X × R+ → [0, 1] as follows:

M(x, y, t) =



m0(x, y, t) if 0 < t ≤ 1

m1(x, y, t) if 1 < t ≤ 2

m2(x, y, t) if 2 < t ≤ 3

. . .

mn(x, y, t) if n < t ≤ n+ 1

. . . .

Proposition 65. The mapping M : X × X × R+ → [0, 1] is a fragmentary fuzzy strong

ultrametric.

The proof is straightforward from Proposition 64.

6.4.2 Possible shapes of the fragmentary fuzzy strong ultrametric M in

the first 3 stages

We illustrate the shape in the initial interval (0, 3] of the fuzzy metricM describing the distance

between infinite words x = (x0, x1, x2...) and y = (y0, y1, y2...) in dependence of the values x0,

x1, x2, y0, y1 and y2.

1. The case x0 = y0, x1 = y1, x2 = y2. Then

M(x, y, t) =
t

t+ 1
for t ∈ (0, 3].
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Distance in the case when the first three letters are equal

Figure 6.4: The metrics for the Case 1

2. The case x0 = y0, x1 = y1, x2 ̸= y2. Then

M(x, y, t) =


t
t+1

if 0 < t ≤ 2

2
3

if 2 < t ≤ 5
2

t
t+ 5

4

if 5
2
< t ≤ 3

3. The case x0 = y0, x1 ̸= y1, x2 = y2. Then

M(x, y, t) =


t
t+1

if 0 < t ≤ 1

1
2

if 1 < t ≤ 3
2

t
t+ 3

2

if 3
2
< t ≤ 3

4. The case x0 = y0, x1 ̸= y1, x2 ̸= y2. Then
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Figure 6.5: The metrics for the Case 4

M(x, y, t) =



t
t+1

if 0 < t ≤ 1

1
2

if 1 < t ≤ 3
2

t
t+ 3

2

if 3
2
< t ≤ 2

4
7

if 2 < t ≤ 7
3

t
t+ 7

4

if 7
3
< t ≤ 3

5. The case x0 ̸= y0, x1 = y1, x2 = y2. Then

M(x, y, t) =
t

t+ 2
for t ∈ (0, 3]

6. The case x0 ̸= y0, x1 = y1, x2 ̸= y2. Then

M(x, y, t) =


t
t+2

if 0 < t ≤ 2

1
2

if 2 < t ≤ 9
4

t
t+ 9

4

if 9
4
< t ≤ 3
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Figure 6.6: The metrics for the Case 7

7. The case x0 ̸= y0, x1 ̸= y1, x2 = y2. Then
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6.5 Principal fuzzy pseudometrics

6.5.1 Topology induced by a fragmentary fuzzy strong ultrametric: the

role of the property of principality

Recall that in (George and Veeramani, 1994), (George and Veeramani, 1997) a fuzzy pseudo-

metric (m, ∗) on a set X induces a (crisp) topology on it by taking as a base the family of all

balls:

B = {B(x, ε, t) | x ∈ X, t ∈ (0,∞), ε ∈ (0, 1)}

where B(x, ε, t) = {y ∈ X | m(x, y, t) > 1 − ε}. Referring to Theorem 3.18 one can easily

see that the same scheme works also in the case of a fragmentary fuzzy strong ultrametric space.

Thus, when defining a topology induced by a fragmentary fuzzy strong ultrametric space we

have to take into consideration for each x ∈ X all ε ∈ (0, 1] as well as all t ∈ R+. The structure

of the topology becomes more lucid and simple if the families Bt = {B(x, ε, t) : x ∈ X, ε ∈

(0, 1)} induce the same topology on the set X for all t ∈ R+. In other words this means that

Bt = {B(x, ε, t) : ε ∈ (0, 1)} is a local base at the point x for the topology Tm. Following

(Gregori et al., 2009) we call such fuzzy metrics principle. For our merits we will need the

following generalization and specification of this notion.

Definition 20. A fragmentary fuzzy ultrametric m : X ×X × R+ → (0, 1] is called principal

on the interval [c, d] ⊆ (0,∞) if the families Bt = {B(x, ε, t) : ε ∈ (0, 1)} induce the same

topology on the set X .

6.5.2 Principal fuzzy pseudometric on the set of infinite words

The following theorem will be used in the study of the topology on the set of infinite words.

Theorem 66. Fuzzy ultrametricM constructed in Section 6.4 on the family of infinite words is

principal.

To prove this theorem we first establish two lemmas:

Lemma 67. Let d : X × X → [0, 1] be a metric and a fuzzy pseudometric m : X × X ×

R+ → [0, 1] be such that m(x, y, t) = t
t+1+d(x,y)

for each t ∈ [c, d] ⊆ (0,∞). Then the fuzzy

pseudometricm : X ×X × R+ → [0, 1] is principal on [c, d].
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Proof. To prove this lemma it is sufficient to show that for each x ∈ X , for each t ∈ [c, d] and

for each ε ∈ (0, 1) we can find δ ∈ (0, 1) such that B(x, δ, t) = B(x, ε, c). Then

B(x, ε, c) =

{
y | c

c+ 1 + d(x, y)
> 1− ε

}
and

B(x, δ, t) =

{
y | t

t+ 1 + d(x, y)
> 1− δ

}
.

Since t ∈ [c, d] we can find α ∈ (0,+∞) such that t = c+α. Now the requested condition that

B(x, δ, t) = B(x, ε, c)

can be reformulated as follows: For a given α and ε we must find δ ∈ (0, 1) such that

c

c+ b
= 1− ε⇐⇒ c+ α

c+ α+ b
.

With simple calculations from here we get that

δ =
εt

t+ α(1− ε)
.

Obviously δ = ε when t = c and δ decreases from ε to εt
t+(d−c)(1−ε) as t increases from c to d.

Lemma 68. If a fragmentary fuzzy metricm : X×X×R+ → [0, 1] is stationary on an interval

[c, d], then it is also principal on this interval.

Proof. The proof is obvious, since stationarity in this casemeans thatm(x, y, t) = m(x, y, s) for

all t, s ∈ [c, d] and hence topologies generated by all pseudometrics m(x, y, t) where t ∈ [c, d]

coincide.

Now we are ready to prove the theorem.

Proof. From the construction of the fragmentary fuzzy ultrametric M(x, y, t), see Subsection

6.4.1, see also Subsection 6.4.2, it is clear that, for a given infinite word x = (xo, x1, x2, . . .) this

fragmentary fuzzy ultrametric defines one of the following three types of sequences of numbers

0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k < c2k+1 < . . .

0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k < c2k+1
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0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k

such that on the interval (c0, c1] and on each interval [c2k, c2k+1] for k ∈ N∪{0} the fragmentary

fuzzy ultrametric M(x, y, t) is defined by the formula M(x, y, t) = t
t+1+d(x,y)

and on each

interval [c2k−1, c2k] for k ∈ N ∪ {0} the fragmentary fuzzy ultrametric is stationary.

Consider first the case 0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k < c2k+1 < . . .. Referring

to Lemma 67 we conclude that the topologies generated by the fragmentary fuzzy ultrametric

m(x, y, t) coincide for all t ∈ (c0, c1], and all t ∈ [c2k, c2k+1], k ∈ N ∪ {0}. On the other hand,

referring to Lemma 68 we see that the topologies generated by the fragmentary fuzzy ultrametric

M(x, y, t) coincide for all t ∈ [c2k−1, c2k], k ∈ N+. Since the end points of the intervals belong

to the both types of the intervals, by induction we conclude that the topologies generated by all

t ∈ (0,∞) coincide and hence the fragmentary fuzzy ultrametric is principal.

In case of a finite sequence 0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k < c2k+1 we are reasoning

as in the first case and finish the proof noticing that at the last infinite interval (c2k+1,∞) the

fuzzy metric is stationary.

In case of a finite sequence 0 = c0 < c1 < c2 < c3 . . . c2k−1 < c2k we are reasoning as in the

first case and finish the proof noticing that at the last infinite interval (c2k+1,∞) the fragmentary

fuzzy ultrametric is defined by the formulam(x, y, t) = t
t+1+d(x,y)

and hence is principal.

6.5.3 Topology on the set of infinite words induced by the fragmentary

fuzzy ultrametricM

From Theorem 66 we immediately get the following:

Theorem 69. For each t ∈ R+ the familyB = {B(x, ε, t) | ε ∈ (0, 1)}whereB(x, ε, t) = {y ∈

X | t
t+1+d(x,y)

> 1− ε} is a base for the fuzzy topology TM that is induced by the fragmentary

fuzzy ultrametricM(x, y, t).

Proof. Hence we can take any t in particular t = 1 and consider the set B1 = {B(x, ε, 1) : ε ∈

(0, 1}. It is easy to notice, that B1 contains all one-point sets {x} of infinite words, and hence

the topology induced byM is discrete.

The main conclusion from the previous theorem is the following. As different from fuzzy

pseudometricM defined in Section 6.4, that reflects in anmore or less adequate way the analytic
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structure of the set of all infinite words, the topology generated by this metric is discrete and

hence gives us only the trivial information about the analytic structure of this set. In order to also

apply topological methods for the description of the set of infinite words we suggest to use the

so called fuzzifying topologies instead of ordinary topologies. This method will be developed

in the next section.

6.6 Fuzzifying topologies on the set of infinite words

6.6.1 Fuzzifying topologies

The concept of a fuzzifying topology (under the name of a fuzzy topology) was introduced in

1980 by U. Höhle (Höhle, 1980), as a certain probabilistic modification of the concept of topol-

ogy. Later, in 1991, the same concept was independently introduced byM.S. Ying (Ying, 1991),

under the name of a fuzzifying topology. M.S. Ying rediscovered this concept by making a log-

ical analysis of topological axioms and different properties of topological spaces. Later the

theory of fuzzifying topologies got a profound development in the works by different authors,

see e.g. (Ying, 1992), (Ying, 1993b), (Ying, 1993a), (Höhle, 1999), et. al.

Definition 21. Given a set X , a mapping T : 2X → [0, 1] is called a fuzzifying topology on X

if it satisfies the following axioms:

1. T (∅) = T (X) = 1;

2. T (A ∩B) ≥ T (A) ∧ T (B) ∀A,B ∈ 2X ;

3. T (
∪
iAi) ≥

∧
i T (Ai) ∀{Ai : i ∈ I} ⊆ 2X .

The pair (X, T ) is called a fuzzifying topological space.

Remark 70. The intuitive meaning of the value T (A) is the degree to which a set A ⊆ X is

open. In particular, an ordinary topology T on a set X can be realized as a fuzzifying topology

T : 2X → {0, 1} ⊂ [0, 1] by assigning T (A) = 1 if and only if A ∈ T , and T (A) = 0

otherwise.

Definition 22. Given two fuzzifying topological spaces (X, T X) and (Y, T Y ), a mapping f :

(X, T X) → (Y, T Y ) is called continuous if

T X
(
f−1(B)

)
≥ T Y (B) ∀B ⊆ Y.
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6.6.2 Fuzzifying topology on the set of infinite words

Weagain consider the family of fragmentary fuzzy strong ultrametrics {µn | n = 0, 1, . . . , n, . . .}

(cf subsection 6.4.1): defined as follows:

µ0(x, y, t) =
t

t+1+χ0(x,y)
;

µ1(x, y, t) =
t

t+1+χ1(x,y)
;

µ2(x, y, t) =
t

t+1+χ2(x,y)
;

. . .

µn(x, y, t) =
t

t+1+χn(x,y)
;

. . . .

Further, for every n ∈ N ∪ {0} let T µn be the topology, induced by the fragmentary fuzzy

ultrametric µn, that is T µn is the topology defined by the family of balls Bn = {Bn(x, ε, t) : x ∈

X, ε, t ∈ R+} where

Bn(x, ε, t) = {y | µn(x, y, t) > 1− ε}.

Starting with the sequence of topologies {T µ0 , T
µ
1 , . . . , T

µ
n , . . .} we construct by induction an

increasing family of topologies

{T0, T1, . . . , Tn, . . .} where Tn = sup{T µ0 , T
µ
1 , . . . , T

µ
n }

We extend the obtained family of topologies {T0, T1, . . . , Tn . . .} to the family indexed by all

non-negative numbers by setting Tt = Tn∀t ∈ [n, n + 1). As the result we obtain a non-

decreasing family of topologies

Tt : t < t′, t ≥ 0 =⇒ Tt ⊆ Tt′ .

Let φ : [0,∞) → (0, 1] be any order reversing continuous bijection and let ψ : (0, 1] → [0,∞)

be its inverse (For example one can take φ(t) = 1
t+1
, then ψ(α) = 1−α

α
). By setting τα = Tψ(α)

we obtain a non-increasing family of topologies on the set X:

{τα : α ∈ (0, 1]}.

Theorem 71. By setting T (A) = sup{α | A ∈ τA} for each A ⊆ X where X is the family of

infinite words, we obtain a fuzzifying topology.

Proof. 1. T (∅) = T (X) = 1, since obviously ∅, X ∈ Tα for every α.
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2. To show that T (A
∩
B) ≥ T (A) ∧ T (B) for any A,B ⊆ X and assume that T (A) ≤

T (B). Then T (A) = sup{λ : λ < T (A), λ ∈ (0, 1]}, and A,B ∈ Tλ for every λ <

T (A), λ ∈ (0, 1]. HenceA∩B ∈ Tλ whenever λ < T (A)∧T (B), λ (0, 1], and therefore

(A ∩B) ≥ (A) ∧ (B) by the definition of T .

3. To show that T (
∪
iAi) ≥

∧
i T (Ai) for every family {Ai : i ∈ I}, where Ai ⊆ X

for each i ∈ I , let
∧
i T (Ai) = α. In case α = 0 the statement is obvious. Otherwise,

α = sup{λ : λ < α, λ ∈ (0, 1]}, and hence T (Ai) ≥ λ for every i ∈ I and every

λ < α, λ ∈ (0, 1]. Therefore for every λ < α, λ ∈ K the family Tλ contains all Ai, i ∈ I.

However, this means that
∪
iAi ∈ Tλ for every λ < α, λ ∈ (0, 1], and hence, by the

definition of T we have T (
∪
iAi) ≥ α =

∧
i T (Ai).

Remark 72. We explain the meaning of the value T (A) ≥ α as follows. Let {xij ∈ {0, 1}} for

all j = 1, . . . , k and let (xi1 < . . . < xik) let V (xi1 , . . . , xik) be the family of all words having

in the position ij the designated value xj1 . Then, given a set A ⊆ X the inequality T (A) ≥ 1
n+1

means that A can be obtained as a union of some family of sets V (xi1 , . . . , xik) where ik ≤ n.
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Conclusions

This thesis focused on investigation of subclasses of different bi-ideals. The construction of a

1-bounded bi-ideal with WELLDOC property has been given. Such infinite words are used to

constuct aperiodic infinite words wit good statistical behaviour. It is important to note that it is

possible to construct an infinite number of such bi-ideals.

We solved the problem of filling holes (unknown information) in finitely generated bi-ideals.

We proved that not only the finite amount of holes in finitely generated bi-ideals can be recreated,

but also with the help of the counterexample showed, that in the case of infinite number of holes

the problem is unsolvable.

Also together with co-authors we did research on possible use of finitely generated bi-ideals

in cryptography by modifying the so–called shrinking generator.

Since bi-ideals by definition are a limit of a sequence it was purposeful to investigate metric

at the end of this thesis. Known metrics on infinite words poorly describe nearness-type rela-

tions, therefore a new (fuzzy) metric was introdused. The metric offered in this thesis is an area

to be further developed. As currently there is a lot of research on fuzzy sets and metrics it is

likely that our research could prove to be a turning point for a new broad field of research.
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