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Abstract

The use of biomimetic systems for the creation of microengines and fluid mixers is an
active area of research in the field of soft matter. It is feasible to use magnetic filaments,
which are easily controlled by varying the parameters of an external magnetic field, for
the aforementioned purposes. In this work we have formulated a mathematical model of
magnetic filaments that incorporates both the effects of twist and hydrodynamic interactions
to varying degrees of approximation and implemented it in the form of two software libraries.
We have used this model to explore the dynamics of both single filaments and ensembles of
filaments within a wide range of control parameters and to derive new results concerning the
behavior of both ferromagnetic and superparamagnetic filaments in time dependent magnetic
fields.
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Chapter 1
Introduction

Recent advances in material science and the continuing progress towards creating useful
technological devices at the micrometer and nanometer scale have led to considerable
scientific interest in potential sources of finely controlled motion that could be used as
microengines, microfluidic mixers, etc. Microscopic magnetically actuated filaments provide
one such candidate system and the purpose of this work is to establish a comprehensive
mathematical model to numerically explore the behaviour of various types of magnetic
filaments in a wide parameter space.

In this introductory chapter we begin by briefly describing the general background
and biological inspiration for research in microscopic filaments in general as well as the
motivation for this work in particular (sections 1.1 and 1.2). We also present a general outline

of this thesis in section 1.3.

1.1 General background and motivation

One of the most prevalent trends in modern technologies is the ever decreasing characteristic
size of the components used in the manufacturing of technological devices. This trend began
more than fifty years ago with the invention of microscopic transistors, which ultimately
led to the development of modern electronics and information technology. More recently,
researchers have learned to produce not just microelectrical but micromechanical devices as
well. The combination of the miniaturization of both electrical and mechanical components
is referred to as micro electro mechanical systems (MEMS). Engineers have learned to mass
produce many types of such devices using various techniques such as different kinds of
microlithography, surface micromachining and others [57]. These developments have led to
a great number of successful applications including microsensors, microscopic gyroscopes,

displays, inkjet printers and many others.



2 Introduction

All active microdevices require a supply of energy. These may be broadly divided in
two groups: internal and external sources. The most prominent example of the former is
the use of chemical energy, while external sources include the use of external electric and
magnetic fields to supply the energy that actuates the motion of the device. The choice
of using external sources of energy where feasible confers certain major advantages on
microdevices - there is no need to transport or replenish a supply of expendible fuel and it is
relatively easy to control the magnitude, geometry and time dependence of external magnetic
or electric fields, potentially providing a means of precise control of the microdevice. We
therefore focus on magnetically actuated microfilaments, composed of either ferromagnetic
or superparamagnetic beads, which may be either artificially linked or self-assemble into
linear chains under the influence of an external magnetic field. Nevertheless, the introduction
of an external field does complicate the physics of the problem to a degree, so it is no surprise
that, historically, the first scientific investigations in microscopic filamentary structures in

Newtonian fluids considered devices actuated by internal energy rather than external fields.

Since the characteristic sizes of the systems we’re considering are measured in microns,
the Reynolds numbers associated with the fluid flows are almost negligibly small and we
operate entirely within the viscosity dominated regime of Stokesian hydrodynamics. Insofar
as controlled propulsion is desired, the Stokesian regime imposes a major constraint on the
kind of dynamics we can use in the form of the scallop theorem (first published in 1977 by
Purcell in his seminal paper Life at Low Reynolds Number [66]). The theorem states that
in order to achieve net propulsion any prospective swimmer must undergo non-reciprocal
deformations (that is to say, deformations that are not geometrically invariant with respect
to time reversal). The name of the theorem derives from the observation that the scallop -
the only mollusc in the class of bivalves able to swim on its own - only swims as a result of
inertial effects and could not do so in the overdamped realm of Stokesian hydrodynamics.
While scallops are fortunate enough to live at a scale where inertia can aid in propulsion,
there are many examples in nature where that is not the case. For instance, nearly every cell
in the human body utilizes a non-motile primary cilium [35] that until recently was thought
to be a vestigial organelle of no importance. Much to the contrary, it was in fact shown to
play a crucial role in cell function, regulation of cell growth and so many human diseases
that genetic ciliopathies [2] are now a prolific object of medical research. In the case of
flexible filaments, the necessary symmetry breaking is accomplished by hydrodynamic self-
interactions - the process by which the filament, having experienced a force due to interaction
with the external magnetic field, transfers momentum to the surrounding fluid, which in

turn exerts a reaction force back on different segments of the filament. The mathematical
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description of hydrodynamic interactions is therefore a crucial part of modelling such devices

and plays a commensurately central role in this dissertation.

1.2 Recent studies on microscopic magnetic filaments

While the rich structures formed in magnetorheological suspensions in the presence of
external magnetic fields have long been recognized as an interesting field of study (see,
for instance, Bossis [10] for a comprehensive review), specific interest in the fundamental
dynamics and applications of chains of magnetic particles is of more recent origin. In
2003, Cebers [12] demonstrated the existence of two basic metastable modes of deformation
for elastic superparamagnetic filaments in a constant external magnetic field. While the
existence of the S-like long lived states had been predicted before (by Cébers [11] and Melle
[58]), it was the newly found U-like hairpin shapes (also found experimentally by Goubault
et al [39]) that would ultimately prove conducive to self-propulsion. This was shown by
the seminal experiment of Dreyfus [24] in 2005, where a red blood cell was attached to a
superparamagnetic filament, which was then able to transport the cell in a controlled direction
using the energy provided by an external magnetic field. This experiment attracted a great
deal of attention from researchers as the first practical demonstration of the considerable
potential utility of magnetically actuated microswimmers for medical applications. The
experiment of Dreyfus was soon numerically described by the model of Gauger and Stark
[36]. While in the experiment the symmetry breaking necessary to satisfy the scallop theorem
was provided by the attachment of the red blood cell, it was soon shown that it was also
possible to induce propulsive behavior by material defects in the filament itself [67] or the
buckling instability induced by the action of the external magnetic field. Several experimental
and theoretical studies of superparamagnetic filaments followed, as reviewed by Cebers in
2005 [13].

In an initially separate avenue of scientific research, it was also noted that magnetotactic
bacteria contained chains of ferromagnetic particles [28]. Biologically inspired ferromagnetic
filaments were also found [25] to exhibit similar behavior to superparamagnetic filaments in
terms of their tendency to assume either U-like or S-like metastable shapes depending on
the ratio of magnetic and elastic forces as well as the frequency of the external magnetic
field. It was therefore shown [5] that a ferromagnetic microswimmer was just as feasible as
a superparamagnetic one. Nevertheless, for the historical reasons outlined in this chapter,
ferromagnetic swimmers remain somewhat less studied compared to their superparamagnetic

counterparts, a deficiency which this dissertation partly attempts to address.
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1.3 Main objectives of this dissertation

The primary aim of this work is to construct a comprehensive numerical model capable of
handling a wide variety of ferromagnetic and superparamagnetic filament configurations in
arbitrary external magnetic fields for both single filaments and filament ensembles, taking
into account the effects of twist and hydrodynamic interactions. This is accomplished in

Chapters 2 and 3 (as well as Appendices A and B).

The construction of this model enables us to formulate additional objectives relating to
particular filament configurations that are of physical interest. In particular, we thoroughly
explore the dynamics of ferromagnetic filaments with free ends in both two and three di-
mensions with a view towards applications in micropropulsion. We also consider artificial
ferromagnetic cilia with potential applications in the mixing of microfluids, superparamag-
netic microswimmers and ensembles of magnetic filaments, to examine the hydrodynamic

coupling in different filament configurations.

Some of the research conducted during the preparation of this dissertation has already
become a part of the scientific record. In particular, we have recently published results
concerning the instability of the loops formed by ferromagnetic filaments in a constant
magnetic field [26], a review of the dynamics of ferromagnetic microswimmers in the resistive
force theory approximation [27], a discussion of the basic dynamics of ferromagnetic cilia
without hydrodynamic interactions [14] and a study on creating self-propelling microdevices
by attaching an elastic tail to a permanent magnetic dipole [55]. These results are not
explicitly restated in this work except where necessary to provide context for the many
additional results given here, particularly as it concerns the difference between the more

accurate treatment of hydrodynamic interactions we present here and previous results.

1.4 Dissertation outline

A comprehensive description of the theoretical model of a magnetic filament is presented
in Chapter 2. We begin by outlining a brief overview of the theoretical approaches used
to describe different elastic filaments in Section 2.1 along with a short description of the
methods used to model fluid flows in Stokesian fluids to varying degrees of accuracy. Section
2.2 describes the basic kinematic framework used to characterize the filament geometrically.
In Section 2.3 we present the various energy densities that enable us to derive the force
densities that affect the filament in the static case. We then proceed to discuss Stokesian

hydrodynamics and derive both the basic equation of motion for the filament and several
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types of approximations for the mobility tensor that ultimately serves to characterize the
hydrodynamic interactions the filament is subject to.

In Chapter 3 we introduce a discrete version of the expressions derived in Chapter 2 and
describe the numerical model developed to solve the equations of motion for the filament, its
generalization to an arbitrary number of filaments and the software implementation of the
numerical model. We also explore the computational properties of the model, establish its
accuracy and computational requirements for different values of the underlying numerical
parameters.

Chapter 4 details a selection of the results obtained through the use of the numerical
model, devoting particular attention to the impact of the hydrodynamic interactions at various
levels of approximation. Finally, we present the main conclusions of this dissertation in
Chapter 5.






Chapter 2

Theoretical model

2.1 General considerations

Before formulating the theoretical model of a flexible magnetic filament in a Stokesian fluid,
we first review briefly the approaches used in the scientific literature. The first modern
attempts to theoretically describe the full nonlinear dynamics of elastic filaments in viscous
fluids (without the additional complexity of magnetism) are due to Wolgemuth, Powers and
Goldstein [76], who formulated the basic bending and twist energy densities, derived the
twist diffusion equation and analyzed the linearized dynamics analytically and established the
existence of two possible states induced by the twist-bend coupling in a filament undergoing
twist injection at one of its ends. This provides a useful test for any implementation of the
filament equations of motion that includes the effects of twist, since it is possible to derive
to appropriate critical values of the relevant parameters analytically and compare them to
numerical results.

Cebers [12] formulated a theoretical model of the full nonlinear dynamics of a two dimen-
sional superparamagnetic filament (without hydrodynamic interactions at first) introducing
the tangent angle formalism, where the equations of motion were formulated for the angle ¢
(where the tangent vector was given by t = (cos @, sin ¢)) and solved in conjunction with an
equation for the Lagrange multiplier used to ensure the inextensibility of the filament. While
this approach proved quite useful for two dimensional calculations, it turned out that further
generalizations to three dimensional filament configurations and the inclusion of the effects
of twist produced a theoretical framework of considerable complexity [7] which required the
use of a complex quantity called the complex curvature and was not particularly amenable
to efficient numerical simulations. An alternative model in terms of the filament position
vector along the filament’s center line was therefore developed [26], generalized extensions

of which form the basis of the approach used in this work.
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It was recognized as early as 2006 [36] that improvements to the standard resistive force
theory approximation for hydrodynamic interactions were highly desirable. Nevertheless, no
applications of more sophisticated hydrodynamic models to the dynamics of ferromagnetic
filaments currently exist in the published scientific literature and are therefore a major focus of
this work. More generally, several promising approaches to the calculation of hydrodynamic
interactions in Stokes flows do exist. Some examples include the Rotne-Prager- Yamakawa
tensor [68] and the method of induced forces, which makes use of multipole expansions of
the flow field [18][32], both of which are utilized in this work.

There also exist more general approaches which focus on the calculation of the entire
flow field rather than just the mobility or friction tensors acting on collections of spheres
or more general objects immersed in Stokes flow. The most widespread of these is the
immersed boundary method [59], originally proposed by Peskin [64] to facilitate numerical
modelling of the human heart, but later adapted for use in a wide variety of situations where
fluid-structure interactions played a crucial role. While these methods are quite expensive
computationally due to the necessity of solving the full Stokes (or Navier-Stokes in cases
where Reynolds numbers were not negligibly small) equations, the appeal of immersed
boundary and immersed interface [53] lay in their ability to utilize wildly different Eulerian
(for the fluid flow) and Lagrangian (for the immersed body dynamics) numerical grids to
maximize computational efficiency. Most recently, Tian ef al [71] have published a novel
reformulation of the immersed boundary method which utilized a lattice Boltzmann [16]
method to ensure efficient and easily parallelizable solution of the hydrodynamics while
retaining the advantages of the flexible coupling to the Lagrangian immersed body dynamics
introduced by Peskin. This latter approach is under consideration for future extensions to
this work to realize efficient modelling of filament ensembles in the case of large numbers of
filaments, where current approaches face severe computational constraints (as described in
Chapter 3.3).

2.2 Filament kinematics

It is assumed throughout this work that the filament is thin, with a radius considerably smaller
than the total length of the filament. It is therefore reasonable to describe the filament as a
one dimensional curve (taken to be the filament’s center line) and make use of the standard
framework of differential geometry [22].

Given filament coordinates as functions of a material coordinate & (which labels points on
the center line of the filament) in the form x(&),y(&) and z(&) in R? space, we may readily

identify the arclength of the filament by noting that the distance between two points on the



2.2 Filament kinematics 9

2
center line of the filament is given by (g—g) dE? = dr? = ds*. The unit tangent vector of

the filament is then given by

or

_ 9g _or

t= o =35 2.1)
d¢

The position vector field in Cartesian coordinates may be now be expressed as as function
of the arclength parameter s

r(s) = x(s)i+y(s)i+z(s)k, (2.2)

where the vectors i, j, k give the standard Cartesian basis.

The normal and binormal vectors can now be defined as follows

ot

=70 (2.3)

n(s)

b(s) =t xn. (2.4)

The tangent, normal and binormal vectors together compose the Frenet frame. Thus, we
now have a moving frame, defined at each point on the filament center line. This frame is
purely intrinsic in that it describes the filament purely in terms of local quantities.

The filament curvature x(s) and torsion 7(s) are scalar functions defined in terms of the
Frenet basis vectors by the Frenet equations

) o), PO _ ts) +o6)b, PE) - roms). @)
ds ds
Geometrically, the curvature measures the bending of the filament in the t — n plane,

while the torsion quantifies any deviation from that plane. The Frenet frame is a moving
frame, attached to the center line of the filament. Since the filament is not necessarily straight,
the frame rotates as it traverses the center line.

The basic kinematic description outlined so far is, in fact, sufficient to proceed to deriving
the dynamic equations describing a curved filament under the action of an external force
(such as that induced in a magnetic material by an external magnetic field). However, in
order to describe the effects of twist as well as for the sake of completeness, we should
also introduce the material Darboux frame, which will prove quite useful in the subsequent
chapters.

The Darboux frame consists of a set of three orthonormal director vectors e} (s), e (s),e3(s).

As a matter of convention, we will assign e; (s) and e;(s) to the principal directions of the
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cross section of the filament at any s. The third vector is then given by e3(s) = e (s) x e (s).
Since the cross section is always orthogonal to the center line of the filament it follows that
e3(s) = t(s). Throughout this work e3(s) and t(s) will be used interchangably, generally
preferring t(s) wherever explicit reference to the Darboux (as opposed to the Frenet) frame
is not strictly necessary for clarity.

The angular velocity vector of the material frame (e;(s),e(s),e3(s)) is called the Dar-
boux vector Q [62]. Its properties may be obtained by considering the (rotational) changes

the material basis vectors undergo as the natural parameter s is varied, leading to

%
Js

for each i = 1,2,3. To express the Darboux vector directly we may simply take the cross

—Qxe (2.6)

product of both sides of (2.6) and an arbitrary Darboux basis vector to obtain

%
ds

The components of the Darboux vector are given by cyclic permutation of the indices

Q—=¢; X +ei(e-Q). 2.7)

according to the properties of the vector cross product

Q =%, 2.8)
ds
ds
and
93::§Tl.e} (2.10)
ds

We can now identify the curvature and torsion with the components of the Darboux vector
from the Frenet equations and the component expressions (2.8) - (2.10) if we recall that the
tangent vector of the Frenet frame will always coincide with the material basis vector e3:

202 2 dy
Ql+92:K,Q3:’c+x, (2.11)
where y denotes the angle between the Frenet normal vector n and the material frame
vector e so that cos(y) = e; -n. This is the crucial difference between the Frenet and the
Darboux frame.

The kinematic framework established here will be used in the next section to construct

the necessary expressions for the forces acting on the filament and to eventually arrive at the

equations of motion for the filament.
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2.3 Filament dynamics

To derive the expressions for the forces and moments acting on an arbitrary element of
the filament cross section it is useful to first define the total energy associated with the
physical processes the filament is subjected to. The total energy is the sum of the energies
associated with the phenomena of (a) bending, (b) twist, (c) the internal tension associated
with enforcing the inextensibility of the filament as well as (d) the magnetic forces induced
by the interaction between the external magnetic field and the magnetic materials in the

structure of the filament:

E= Ebending + Epwist + Estretching + Emagnetic- (2.12)

The bending energy [52] is given by

LN S D LS I LS
EbendingZEA 0 W dSZEA o KdS:EA . (Q1+Qz)ds, (2.13)

where A denotes the bending stiffness, assumed constant throughout the filament (A =
%a“Y for a circular filament with radius a and Young modulus Y [49]), L is the length
of the filament and ds denotes the differential line element of the filament in its natural
parametrization. The kinematic quantities r, K and the components of the vector Q have

already been identified in the previous section.

The twist energy [52] is

1 L
Epist = 5C / Q3ds, (2.14)
0

where C is the torsional stiffness, assumed constant throughout the filament.

The condition of inextensibility may be expressed as

o or_
ds ds

which may be enforced using a Lagrange multiplier function. Therefore, the associated

1, (2.15)

energy may be formally defined as

1 [k or\?
Etension = E,/O A(S) (g) ds, (2.16)
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where A(s) is a local Lagrange multiplier function. Physically, this may be interpreted
without loss of generality as an internal tensile force within the filament, as will become
more apparent after the appropriate force densities have been derived.

The magnetic energy for a ferromagnetic filament [51] is

L L or
Emagnetic = MH/ (h : t)ds = MH/ (h‘ —> ds, 2.17)
0 0 ds

where M is the magnitude of the spontaneous magnetization per unit length of the filament
(the magnetization vector per unit length is given by —Mt), H is the strength of the external
magnetic field and the unit vector h is the direction vector of the aforementioned field.

The magnetic energy for a superparamagnetic filament (see Appendix A for a derivation)

is given by

L L or 2
Emagnetic = M()/ (h : t)st = M()/ (h . —> dS, (218)
0 0 ds

az(ﬂ.fl)sz

where My = S(ET)

and u denotes the magnetic permeability of the filament with a
as its radius.

In order to describe the dynamics of a magnetic filament, we must first determine the
forces that control its motion. Let us consider an arbitrary infinitesimal internal segment of
the filament located between two arbitrarily close cross sections (at a distance ds) within the
filament. We then have a force —F on one end of the segment and F + dF on the other. A
mechanical equilibrium (a state in which linear and angular momenta are conserved and the
net force and moment both equal zero) may then be imposed by applying an external force
Kds, which must balance the total internal force dF. Therefore, since all the forces must sum
to zero at equilibrium, it follows that

dF
K= I (2.19)
Moments acting on the segment may be treated in an identical fashion. To first order (the

moment produced by the external force K is of higher order) this yields

—=Fxt 2.20
5 xt, (2.20)

where M denotes the external moment required to achieve mechanical equilibrium.
According to the principle of virtual work, if an infinitesimal displacement of the filament
is considered, the sum of the total energy (2.12) and the external forces K acting on the

filament must be at a minimum in equilibrium. This means that any variation in the functional
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of the internal energy of the filament must be balanced by an appropriate change in the
external forces if equilibrium is to be maintained. Using the calculus of variations [37],
generalizing the infinitesimal segment invoked previously to the entire filament and taking
into account the ends of the filament, we can express the first variation of the filament energy
functional (2.12) in the following general form, one that is very similar to the traditional

approach employed in the tangent angle formalism [12]:

L
5E:—/ (- St 4+mdys)ds+ (Fons - S5+ Mo -£)[L 221)
0

where f denotes the total internal force density

f= fbending +Erwist + Lrension + fmagnetic, (2.22)

while m is the internal moment density required to hold the filament in an equilibrium
configuration against twist, F.,; and M,,; denote the external forces and moments acting on
the appropriate ends of the filament, Sr is the variation of the position vector of the filament,
whereas the angle variation 8 3 describes the rotational variation of the basis vector e3 in the
Darboux frame. Evidently, to obtain the force densities we require to formulate an equation
of motion for the filament we will first have to calculate a number of auxiliary quantities,
including the variation of the position vector. Before we proceed, it should be noted that
there are several approaches to calculating the energy variation in the published literature.
One of the most concise and geometrically illustrative approaches for the particular case of
inextensible filaments was recently given by Powers [65] and it will be employed throughout

this chapter.

In order to compute the necessary variations it is useful to first consider the variation of

the arclength of the filament (to first order):

or 0 2 or 9

Given the constraint of inextensibility we only consider variations that do not stretch the
filament so that 6ds = 0 and therefore

Jr o

2 (or) =0, (2.24)



14 Theoretical model

Thus, the order in which we calculate the derivative of the variation of the position vector
and the variation of the derivative of the position vector becomes irrelevant and the notation
can be simplified accordingly
%(Sr) = 6% = or'. (2.25)

Let us now consider infinitesimal variations of the body-fitted Darboux frame. Since
we only consider those variations that are constrained to preserve the inextensible nature
of the filament, it follows that variations may only change the Darboux basis vectors by an

infinitesimal rotation angle y; so that

oe;, = € x ¢, (2.26)

where € = 0x1e; + O pe, + O x3€3.

Having obtained the variations of the basis vectors we are now equipped to derive the
variation of the angular velocity (or Darboux) vector Q of the material frame we defined as
part of the description of the kinematic framework in Section 2.1. Recall that Q is defined by

%:Qxei, i=1,2,3. (2.27)
ds

Its variation will prove useful in deriving the twist force density. We may begin by taking
the variation of both sides of equation (2.27)

&ei

— =0(Q xe;). 2.28

5@ xe) 28)
Note that 5% = %(8 x €;) due to equations (2.26) and (2.25). Utilizing the standard

rules of differentiation and the definition of the Darboux vector we get

SQxei:?xei—ksx(ﬂxei)—ﬂx(exei), (2.29)
S

which is easily simplified using the rules of vector calculus and the fact that for an
arbitrary vector v, if v x e; = 0 for all values of the index i, it follows that v = 0. The final
form of the variation of the Darboux vector is thus given by

o0Q = 3_8 + & xQ. (2.30)
ds

We have now derived the necessary variations for the geometric quantities describing the
filament in the Darboux frame. Before proceeding with the calculation of the force densities,

however, let us consider the geometric significance of the results we have just obtained.
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The variation of the Darboux vector given in (2.30) is by itself sufficient to establish the
existence of a coupling between curvature and twist. In particular, if we impose a non-zero
deformation of the filament’s center line in the form € = dx €| + 0 x2€, and write out the
components of equation (2.30) explicitly:

50, = é%mzém — 67, 231)
)

692:3%4—935%1—915)(3, (2.32)

5Q; — éddﬁ Q18— Sy, (2.33)
)

we see from equation (2.33) that, given non-zero curvature K = @/Q% +Q% = 0 any
deformation of the center line will result in a change in twist. This implies that even given
zero initial twist and no external moments acting on the ends of the filament, a filament
may still twist as a result of other deformations and this should always be considered when
exploring the properties a new filament configuration - it is not always trivial to decide
whether the effects of twist may be neglected and often a numerical investigation is required.
It is, however, true, as we will see in later chapters, that this effect is often quite negligible in
many situations of practical interest.

Furthermore, the converse is not strictly true. If we impose an explicit change of twist in
the form € = § y3e3, the principal curvatures €; and €, do change (see equations (2.31) and
(2.32)), but the curvature k = |/ Q2% + Q3 remains invariant.

We can now return to the filament energy variation given in equation (2.21) and consider
the individual terms. The force density term can be immediately rewritten as follows using

the product rule for the derivative

JF 0
f-5r:$-5r:$(F-6r)—F-5e3. (2.34)

Using the definition of the constrained variation given in eq. (2.26) we can rewrite the
last term to obtain

) d
f-6r:g(F~6r)—F-£xe3:a(F-Sr)—S-QXF, (2.35)

where the last expression was obtained using the properties of the scalar triple product.

A similar approach can be adopted to deal with the moments. We begin by noting that

the variations of the components of the Darboux vector given in equations (2.31)-(2.33) let
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us once again utilize the properties of the scalar triple product and write for the moment

components
_ i
s
Making use of the derivative product rule again we obtain
d oM
MiSQ,- = % (M,6x,) — W -E. (2.37)
Furthermore, from equations (2.30) - (2.33) it follows that
€
Ma— =M;0Q; +Mr6Q) +M36Q3. (2.38)
s

From the energy densities specified in equations (2.13) and (2.14) we also know the
moments for bending and twist: M| = AQ, My = AQ; and M3 = CQ3. Using equation

(2.38) we may now express the energy variation in the following way

L aM L
o= [ &5 [ e Mudst (Fur-Sr M0, 239)
0 0

where M, is the moment associated with the interaction with the external magnetic field,
written in a generalized way to avoid writing two separate expressions to accommodate both
ferromagnetic and superparamagnetic filaments. Since equation (2.39) must hold for an
arbitrary infinitesimal basis vector rotation € and considering equations (2.21), (2.35) and

(2.37) the following moment balance equation must be true:

oM
x—l—%xF—f—Mm—l—MV:O, (2.40)

where M, is technically arbitrary at this point, but may be readily identified with the
viscous torque per unit length from physical considerations. One may note that in the absence
of the magnetic and viscous torques, equation (2.40) reduces to the classical equilibrium
moment balance equation for a bent and twisted rod [52].

Excluding the tangential part of equation (2.40) and disregarding the magnetic and

viscous terms we immediately obtain

dr Jr [dr I°r or J’r

The first term in equation (2.41) is the bending force minus its tangential part. The

tangential part can then be absorbed into the tension force density which we shall obtain

shortly, since it by definition includes all of the internal tension in the filament that ultimately
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serves to ensure that the inextensibility constraint is satisfied. The second term is the twisting
force, which can be simply differentiated with respect to the arclength parameter of the

filament to obtain the twist force density

d or J°r
frwise = C% <Q3(s)$ X ﬁ) . (2.42)

The bending force density is simply the derivative of the first term in eq. (2.41):

4

foending ZA%. (2.43)

We have now obtained the moment balance equation for the filament and used it to

determine the bending and twist force densities. However, we still need to find the tension

and magnetic force densities as well as the boundary conditions. While the moment balance

approach could be further extended to accomplish this, it is much more straightforward to
obtain these directly from the energy densities specified in the beginning of this chapter.

To illustrate the simplicity of this approach, let us force derive the bending force density

directly from the energy density given in equation (2.13). The variation for the bending

energy of the filament may be formally expressed as

L
8 Epending = A / r'’ - 6r'ds, (2.44)
0
where the primes denote differentiation with respect to the natural parameter. Integrating
equation (2.44) by parts yields
L L
SEbending = —A/ "' 8r'ds+ (r'8r') |, (2.45)
0

which may be integrated by parts again to give

L
SEbending :A/ r'"" Srds + (r”6r/—r”’5r)}é. (2.46)
0

The bending force per unit length can now be calculated directly as the functional
derivative of the energy term

4
anending . _8Ebending . a°r

fbending = T T - W7 (247)

where Fp,nqing denotes the bending force (rather than the force density) and the boundary
terms of equation (2.46) will be used later on to establish the boundary conditions for the

filament.
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The derivation of the tension and the magnetic force densities is analogous to the bending
force and may be found in Appendix B. The resulting tension force density required to ensure
the inextensibility of the filament is

d or
frension = g (A$> . (2.48)

The magnetic force density for the ferromagnetic filament is given by

fmagnelic = 07 (249)

while the superparamagnetic case yields

d°r
fmagnetic = _2MO h- m h. (250)

Note that equation (2.49) does not imply that a ferromagnetic filament is unaffected by
the external magnetic field, since we have not yet considered boundary conditions. It is,
however, interesting to note that within the limits of the approximations we have employed
the magnetic force density affecting a ferromagnetic filament acts only on the ends of the
filament.

The use of this direct approach does, however, have its limitations. We might, for instance,
try to derive the twist force density we obtained from the moment balance approach using
the relevant energy density directly. To do so, let us formally write the variation of the twist

energy as follows

L L
6Etwist = C/ Q35Q3ds = C/ (6 LE + Q4 6%2 — .Q.25X1> (2.51)
0 0
Noting that, due to the condition of inextensibility (2.15), 6x; = —e, - 0dsr and S =
e - 8d,r (which are the only two possible degrees of freedom for the variation dr, as we are
only considering an infinitesimal rotation), one may rewrite the integral (2.51) as follows

3 ar d°’r d

6E;Wis, = C/ i 0= Q361 6— — Q.3Q.1625—r — 9.39.2562 €3 (2.52)
0 30s " ds ds ds

One could now proceed to laboriously calculate each of the four terms in (2.52) and

obtain the necessary force density, but it is quite evident that the moment balance approach

employed previously was much better suited for the particular task of finding the twist force
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density. Nevertheless, the direct approach is clearly very convenient for quickly obtaining
expressions for the other force densities and easily yields boundary terms that will be useful
later.

Although we have now derived all of the force densities acting on a bent and twisted
magnetic filament in an external magnetic field, there are still two crucial free parameters
that remain to be determined - the internal tension A(s) and the twist Q3(s). For the former,
the traditional approach used in works that utilize the tangent angle formalism (see [12] for
the classical treatment) is to use a variational approach to derive an equation for A(s) to be
solved in conjunction with the equations of motion of the filament. We will now illustrate
why this approach is not particularly useful in the formalism employed here.

We may start by noting that the condition of inextensibility given in equation (2.15) may
be rewritten as

av(s)

which may then be reformulated in an integral form to incorporate the tension term from
equation (2.48)

L L
0:—/ At-@ds:/ v 2D A+ (v AL (2.54)
0 (9s 0 aS

Since, up to first approximation and disregarding hydrodynamic interactions (see Section
2.4 for the full treatment), the velocity can be expressed as v = { ~! ¥ f, we can substitute in

the bending force density from (2.47) and write

L d*r 9(At) I(At)  [I(AL)\?
T—/O <—Aa—s4‘a—s+fmagnetic' Js +( ) ds, (2.55)

ds

where we have left the magnetic term unspecified for generality (the magnetic properties
of the filament are irrelevant to this derivation) and the twist term has been omitted for brevity.
The standard way to derive an equation for the function A(s) is to find the associated Euler-
Lagrange equation [20]. In order to do so, we need to compute the functional derivatives
dT /dA and T /N, where T refers to the functional (2.55). This is fairly straightforward
to do, yielding

oT

A= rt — At — 2AUt + frggnerict (2.56)
aT
FYNG - I'(4)t —2Att" —2A'tt + fmagnetict; (2.57)
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where the primes as well as the superscript (4) denote the appropriate order derivatives

with respect to the arclength s. The derivative % % reads

rOt+r@t —2 (At + AU+ AY) —2 (A"t +2A0'6) + (Fnagnerict) - (2.58)

Putting (2.56), (2.57) and (2.58) together and algebraically simplifying the results we
obtain the Euler-Lagrange equation for the tension A

r _I*A JA ot It d’t  IMuagneric

= 57 =0. (2.59)

It is evident that in contrast to the tangent angle formalism [12], where the tension
equation was considerably simpler than the equation of motion, the differential equation we
have obtained here is a fairly complicated way to go about ensuring the inextensibility of the
filament. Fortunately, there is a better way, incorporated as part of the numerical model and

described along with it in Chapter 3 of this work.

To conclude this description of filament dynamics, it only remains to develop an equation
for the twist density Q3(s). In order to do so, let us return to considering a constrained
variation that only rotates an arbitrary segment of the filament, but does not stretch it, as
defined in (2.26). The local angular velocity vector with respect to an infinitesimal time 8¢
may be written as @ = % The constrained variation of the basis vectors (2.26) can now be

expressed using the local angular velocity as

Se;

= i 2.
5 o X e (2.60)

In the limit where 8t tends to zero, (2.60) reduces to

0 €;
—— =0 Xe. 2.61
a t ] ( )
The same argument holds for the time derivative of the Darboux vector in the limit 6¢ — 0.
Taking into account the constrained variation of the Darboux vector (2.30) we may express

the temporal change of the Darboux vector in terms of the local angular velocity as follows

0Q Jw
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Since we are aiming to derive an equation for the twist density Q3, the third component

of equation (2.62) is particularly significant
8Q3 . 8(03
ot ds

Considering the definition of the Darboux vector (2.6), equation (2.63) can be rewritten

+ Qim0 — Q. (2.63)

purely in terms of the filament’s shape and the angular velocity component @3

Q3 8a)3+8r d%r 9 or
ot  ds  ds 952 dsot’

Equation (2.64) is sometimes called the condition of compatibility in the literature [6]. It

(2.64)

is essentially a conservation law for the twist density which states that the filament can only
twist for two reasons - either the angular velocity is non-uniform throughout the filament (the
first term of equation (2.64)) or as the result of certain changes in the geometry of the filament
involving a non-uniform linear velocity. The geometric interpretation of the second term of
equation (2.64) is not intuitively straightforward and may benefit from the introduction of an
additional mathematical concept called the writhe, because it turns out that the second term
in the condition of compatibility essentially describes all the possible filament deformations
which change the writhe of the filament.

In differential geometry and knot theory, the writhe is a quantity that essentially describes
the amount of coiling in any closed, simple curve. The underlying theoretical material is
quite rich and we recommend the extensive review article of Kamien [45] for a thorough
treatment. For our purposes here, it is sufficient to note the integral definition of writhe for

the case of an isolated space curve

1 [Te,(txdt/ds)
Wr = = 2.65
27:/0 1+cos(0) > (2.65)

where 0(s) is the angle between the tangent vector t(s) and the z axis in Cartesian
coordinates. In numerical calculations involving situations in which the filament periodically
forms loops the writhe is often useful as a quantitative metric of the evolution of the filament’s
shape [26].

Finally, we can rewrite the condition of compatibility in the form of a diffusion equation
for the twist density that can be solved in conjunction with the filament’s equation of motion

that will be formulated in a subsequent chapter

C (99.3 8293 C r 82 0 or
"ot "Os asz Jds ot’

where {, = 87na? is the rotational friction coefficient.

(2.66)
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We have now established the basic force densities acting on arbitrary inner points in
the filament as well as the twist diffusion equation and can now proceed to formulating the

equations of motion and the appropriate boundary conditions.

2.4 Equations of motion and hydrodynamic interactions

Now that we have developed a mathematical framework to describe the forces that change the
shape of a flexible magnetic filament, it is possible to formulate the equations of motion that
govern the overall dynamics of the system. The filament is immersed in an incompressible
Newtonian fluid which is quiescent until perturbed by the deformation of the filament, which
is in turn actuated by the external magnetic field. Naturally, when the filament deforms, the
surrounding fluid exerts a force back on the filament, which in turn affects the filament’s
shape. Therefore, even in the case of a single filament, any movement of any element of
the filament will induce an indirect effect, mediated by the fluid, on all other parts of the
filament. This is what we refer to by the term hydrodynamic interactions. Furthermore, from
a theoretical point of view, it makes no difference if our system consists of a single filament
or an entire ensemble when it comes to describing hydrodynamic interactions, except insofar
as we can make simplifying assumptions in limiting cases when different filaments are far
from each other.

In the most general form, one may distinguish between three kinds of forces, which must
sum to zero

Foiscous + Finertial + Ffilamenl = 07 (2.67)

where F jjgnen: denotes the sum of all the internal forces acting on the filament. In
general, to obtain the viscous and inertial forces it is necessary to analyze the motion of the

fluid surrounding the filament.

To begin with, if we denote the fluid velocity vector field by # and the fluid density scalar
field by p, the conservation of mass dictates the following continuity equation [48][50]
dp

> +V.(pu) =0, (2.68)

where V denotes the vector differential operator V =0 /dxi+ d/dyj+ d/dzk and p is

the fluid density. Since we have already stated our inclination to remain firmly in the realm
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of incompressible fluids, assuming p = const in (2.68) immediately yields the condition of

incompressibility

V.u=0, (2.69)

which will remain in force throughout this work. However, we also need an equation of

motion for the fluid. For an arbitrary fluid (unit) volume element, Newton’s second law reads

du
E = fhydrodynamic + fexternal (270)
and the hydrodynamic force may be expressed formally from the definition of the stress
tensor
thdrodynamic = # (O' : Il) d&V, 2.71)
Vv

where o denotes the second order stress tensor and n is the outer normal of the volume

element. Using Gauss’ theorem we can transform (2.71) into a volume integral

thdrodynamic = /// (V : G) dV, (272)
%

which enables us to reformulate (2.70) in the following form

p% =V.0 +fevernals (2.73)

where the derivative d /dt represents the total (also known as the substantive or convective)

derivative d/dt +u- V. The reasons for this and the general distinction between Lagrangian

and Eulerian coordinates are well described in virtually all standard works on fluid dynamics
(such as [48], [50] and many others) and will not be further detailed here.

As was already mentioned, the isotropic and Newtonian nature of the fluid will assumed
for the entirety of this work. The hydrodynamic stress tensor therefore consists only of the
hydrostatic pressure term and linear viscous stresses according to the stress-strain equation

6 =—pl+n (Vu+ (Vu)T> , (2.74)

where I denotes the identity tensor, 7 is the (dynamic) fluid viscosity and Vu is the tensor
gradient. The tensor gradient Vu can be expressed in component form as (Vu);; = du;/dx;,

with x; denoting the i-th spatial coordinate.
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Inserting the stress-strain equation (2.74) in (2.73) and noting the incompressible nature

of the fluid we obtain the Navier-Stokes equation

d
p (E +u- V) u= TIV211 = Vp+tosernal- (2.75)

Combined with the condition of incompressibility (2.69) the Navier-Stokes equation is
sufficient to fully describe the motion of the fluid under the external (from the perspective
of the fluid) force provided by the filament. It is, however, worth considering whether we
actually need all of the complexity inherent in the Navier-Stokes equation to describe the
behaviour of our system.

If we assume, as will be done throughout this work, no-slip boundary conditions between
the surface of the filament and the surrounding fluid and denote the filament velocity by

V= % we can approximate the viscous and inertial forces to clarify equation (2.67)

nLv+ pL2 ? = Ffilamenta (2.76)

where L is the filament length. Given that typical sizes of the filaments discussed in this
work are on the order of a few to a few hundred micrometers and filament velocities cannot
be expected to exceed a fraction of the filament length per second, the viscous force is larger
than the inertial force by a factor of a million at the very least, often even more. It is therefore
reasonable to discard inertial effects as negligible.
It is common to denote the ratio of inertial and viscous forces using the Reynolds number
__ pvL

Re , (2.77)
n

which in our case is expected to be roughly on the order of Re < 107°. In the limit of
small Reynolds numbers the Navier-Stokes equation (2.75) reduces to the stationary Stokes
equation [48], obtained by eliminating all the inertial terms

Tlvzu + fexternal = va (278)

which, coupled with the condition of incompressibility (2.69) completely describes the
motion of an overdamped, viscous (often called Stokesian) fluid under the influence of an
external force. The term Stokes equations (note the plural) will be used throughout the
remainder of this work to refer to the combination of the Stokes equation and the condition
of incompressibility. The required boundary conditions are given simply by stating that the
fluid velocity must match the velocity of the filament at the surface of the filament (no-slip

boundary conditions). Note that the pressure variable is necessary to satisfy the condition
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of incompressibility (2.69). This kind of flow is often called creeping flow due to the fact
that at macroscopic sizes such flows are typically very slow. Henceforth, all discussion of

hydrodynamics in this work will assume Stokesian flow.

Two important observations about the Stokes equation are immediately apparent. First,
it does not contain a derivative with respect to time: in the Stokesian regime all flows
are stationary, thus momentum transfer is essentially instantaneous. Secondly, the Stokes
equation is a linear equation. This is crucially important because the superposition of arbitrary
many solutions of a linear differential equation constitutes a solution. One may therefore
construct solutions to the Stokes equation in complicated circumstances as superpositions
of simpler, known solutions. This fact underlies virtually all existing practical methods for
describing Stokes flow in the presence of external forces, as direct analytical solutions are

possible in only the most trivial cases.

In the simplest possible case, one may take a single point-like particle immersed in the
fluid subject to a force F, located at position ro. The fluid as a whole is therefore subject to the
force density f(r) = F- 8(r —rp), where 8 denotes the Dirac delta function [38]. Considering

the linearity of the Stokes equation, the fluid velocity field can be immediately written as

u(r) =G(r—ry)-F. (2.79)

This velocity field is known as the stokeslet in the literature [54], while the mobility
tensor is called the Oseen tensor. It is denoted with the capital G because, given the point-like
perturbation of the otherwise quiescent fluid, it is by definition the Green function of the

Stokes equation [4].

The crucial linearity of the Stokes equations lets us easily generalize this to a flow field

corresponding to an arbitrary distribution of point-like forces

u(r) :/G(r—r')-f(r’)dr’. (2.80)

However, we have not yet specified the Oseen tensor. The classical approach [47]
involves taking the Fourier transform of the Stokes equation and the incompressibility
condition and utilizing the symmetries of the system to calculate the necessary integrals
in Fourier space. In a similar approach, Zapryanov [79] used the fundamental solutions of
the Laplace and biharmonic equations in Fourier space to circumvent the need for explicit
integration. However, a more physically illustrative approach has been recently given by
Dhont in his seminal textbook on the dynamics of colloid systems [21]. We will give an

extremely brief overview of this derivation since the Oseen tensor is quite central to the
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topic of hydrodynamic interactions in Stokesian fluids, the interested reader may refer to the

aforementioned textbook for a more complete treatment.

We begin by noting that an expression analogous to (2.80) exists for the pressure as well

p(r) = /g(r—r’)~f(r’)dr', (2.81)

where g(r —r’) is usually called the pressure vector. It plays an analogous role to the
Oseen tensor in (2.80), however since pressure is a scalar field, the quantity is a vector rather
than a tensor. Noting that in this generalized case the force is distributed somewhere in the
fluid and we therefore have F = [f(r') - §(r —r/)dr/, we can insert (2.80) and (2.81) in the

Stokes equations to obtain

/ (Vg(r—r)—nV?-G(r—r)—-1-8(r—r)) -f(r')dr’ =0 (2.82)

from the Stokes equation itself (I denotes the identity tensor), whereas the condition of

incompressibility yields

/ (V-G(r—r')) -f(r')dr’ =0. (2.83)

Since (2.82) and (2.83) must hold for arbitrary force densities f(r’), the parts of those
two expressions enclosed in the brackets must be equal to zero, thereby giving us explicit

equations for the Green functions of the Stokes equations

Vg(r—r)=nV?.Gr—r)+I-8(r—r) (2.84)

and

V-G(r—r)=0. (2.85)

Do note that the vector gradient Vg(r —r’) in (2.84) is in fact a tensor of rank two
sometimes denoted V ® g(r —r’) in the literature to clarify that point, since it may be seen
as the dyadic product of the nabla operator and a vector. We may now apply the V operator
once more to take the divergence of (2.84) and find that the pressure vector must satisfy the
following Poisson equation

Vg =VI§(r), (2.86)
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which can be immediately solved using the fundamental solutions to the Laplace equation

that are well described in standard mathematical literature [30] to yield

r
= ) 2.87
. 4mr3 ( )
The pressure vector can now be substituted directly into (2.84) to obtain
I 1 /1T 3r®r
V2 (—-nG = =—— 2.88
<47W (r)) 4r (r3 r ) ’ (2.88)

which after some algebraic manipulation to satisfy the boundary condition that the fluid
is quiescent at infinity (G(r) — 0 as r — o) yields the Oseen tensor

G(r) 1<I+r®r). (2.89)

- 87N r r3

The Oseen tensor decays with increasing distance as 1/r, showing the rather long range
character of hydrodynamic interactions. This is one of the main reasons why relatively
accurate modelling of hydrodynamic interactions is crucial to understanding the behaviour
of complex systems in Stokes flows.

As we’ve already mentioned, because of the linearity of the Stokes equations, it is in
principle possible to construct any Stokes flow from an appropriate contribution of stokeslets.
Nevertheless, for the sake of completeness we should mention that it is sometimes considered
illustrative to utilize derivatives of the stokeslet to describe the nature of relatively simple
Stokes flows [23] in the form of a Taylor expansion of a stokeslet around the center of a
geometric body. This is sometimes referred to as the multipole expansion of Stokes flow [47]
in analogy to classical electromagnetism. In such an expansion, the presence of a single force
is described by a monopole solution (which is simply the stokeslet), two forces give rise to a

dipole, four cause a quadrupole, etc. For instance, one may write the Stokes dipole [74] as

(2.90)

Wiipole =

1 (_F-d+3(F-r)(d-r)> 1 ((dxF)xr),

87n r3 P T 87N r3

where d denotes the vector between the two forces. The first term in (2.90) is often
referred to as the stresslet [54], whereas the second term is called the rotlet. The rotlet is
notable for being the lowest order multipole expansion term that exerts any net torque on the
fluid.

It is also worth remarking that the Oseen tensor has an obvious singularity at » = 0. This
causes certain issues in numerical methods based on integrating distributions of stokeslets

such as the boundary integral approach [72] and imposes constraints on the computational
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efficiency of such methods. This is largely addressed by the method of regularized stokeslets
[19], where the delta function used to obtain (2.79) is replaced by a smoothed out regularized
function leading to exact regularized replacements for all of the multipole expansion terms

without any singularities.

More generally, considering the linearity of the Stokes equation, we may express the

linear and angular velocities of an arbitrary segment of the filament as follows

vi=Y (nf) Fepl ), (2.91)
J

o =Y (uf Fj+pl 1)), (2.92)
J

where F; and T; denote the force and torque acting on the particular segment of the
filament; [,Lg.t), ugr), ul(;t), uf;r) are four 3 x 3 mobility tensors and the sums run over the
entire filament. These tensors are all symmetrical, as a consequence of the Lorentz reciprocal

theorem (for a complete treatment see [41]).

Seeing as how in practice the mobility tensors can only be computed on the basis of
known analytical solutions to the Stokes equation (2.78), we have in effect established a
natural discretization of the filament in the form of N identical spheres. These and subsequent
expressions regarding the properties of these mobility tensors are therefore not specific to
filaments, but rather pertain to arbitrary configurations of spheres or anything that can be
approximated as such. However, given that internal segments in our filament only rotate as

an effect of twist (see Section 2.3), we need only consider the linear velocities, reducing the
‘,
This yields the general equation of motion that will be used throughout this work

number of necessary mobility tensors to one: p7’;, which will be denoted p;; from now on.

v=p-f. (2.93)

Furthermore, the mobility tensor is also positive definite. This may be seen from a purely
physical consideration: the energy dissipated in the fluid per unit of time is }; (F; - v;) =
f-v=f.pu-fand must be positive, therefore the mobility tensor is positive definite. This
property is very useful for the efficient numerical calculation of mobility tensors for arbitrary
filament configurations (or, more generally, arbitrary collections of spheres in 3D space).

We have in effect already calculated the mobility tensor g for a particularly simple
case: a situation where we have two point-like particles, one of which is acted upon by an
external force and the other being free from external influence. In this case p;; = G(r;;) with

rij=rp—ryand W; = ﬁ, which is simply the inverse of the well known hydrodynamic



2.4 Equations of motion and hydrodynamic interactions 29

drag coefficient for a single sphere in Stokes flow. This is a complete description for the case
of two point-like particles, since point-like particles cannot rotate and therefore higher order
multipole terms are irrelevant. The only caveat is that the particles cannot be closer than 1.5a,
as the Oseen tensor loses the positive definiteness that we already showed to be necessary for
retaining physical behaviour. This can be remedied by using regularized modifications of the
Oseen tensor [19] or other corrections that take into account the finite (non-zero) size of the
particles.

Unfortunately, this approach cannot be directly generalized to the vastly more complicated
case of a discretized filament of arbitrary shape (effectively, an arbitrary configuration of finite
size spheres) in analytic form. It is possible to make considerable headway by considering
asymptotic expansions for slightly more complicated geometries involving fairly thin bodies
such as prolate spheroids and cylinders and matching coefficients with far-field expansions
of Stokes flow. This lead to the slender body theory of Keller and Rubinow [46] which
involves solving boundary integral equations for the force exerted by the body on the fluid.
This approach was later improved and extended by Shelley [69], partly addressing certain
numerical challenges involving the evaluation of integrals with nearly singular kernels at
certain points. The method of regularized stokeslets of Cortez [19] can also be interpreted as
an alternative reformulation of slender body theory addressing many of the same concerns
cited by Shelley [69] using different means to achieve similar ends. Ultimately, all versions
of slender body theory share the problem of limited scalability to large problems, due to the
need to numerically solve computationally intensive boundary integral equations for each
filament configuration. Since we do not directly employ slender body theory in this work, we
will only discuss the limiting case of an asymptotically thin filament which leads to a fully
local approximation of hydrodynamic interactions known as resistive force theory.

Resistive force theory was first derived in the seminal paper of Gray and Hancock [40]
in 1955. They analyzed the propulsive behaviour of sea-urchin spermatozoa and used the
empirical observation of a travelling wave across the tail of the spermatozoon to derive
an effective anisotropy between the friction coefficients felt by the organism in different
directions on motion. Two decades later, in his 1975 John von Neumann lecture on flagellar
hydrodynamics Lighthill [54] derived more precise expressions for the values of normal and
tangential friction coefficients after identifying resistive force theory as a particular limiting
case of the slender body approach. In particular, Lighthill showed that for an asymptotically
thin filament the friction coefficients for the normal and tangential directions can be expressed
as

B 47tn
~ log(2q/a)+1/2’

n (2.94)
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B 27n
log(2g/a)’

where ¢ = 0.094, A is the wavelength of the helical distribution of stokeslets measured

G (2.95)

along the center line of the filament and a is the radius of the filament. Obviously, as the
A values are difficult to determine when examining arbitrary configurations of filaments
without prior experimental guidance, the exact values of the friction coefficients are difficult
to estimate with any accuracy. Nevertheless, the asymptotic behaviour is clear: as the filament
radius a tends to zero, the friction anisotropy ratio §,/{ tends to 2. The convergence of the
asymptotic behaviour is only logarithmic, however, meaning that for any finite values of the
filament radius a the anisotropy ratio will likely be considerably smaller. Nevertheless, this
resistive force theory approach provides an extremely convenient if imprecise approximation
to hydrodynamic interactions due to being entirely local and very cheap computationally. It
has therefore enjoyed very widespread use in the scientific research of flexible filaments in
Stokesian fluids and will also be used extensively throughout this work, although we will
compare the results to more sophisticated approaches whenever it is feasible to do so.

While the derivation of Lighthill [54] is quite laborious and will not be detailed here,
the asymptotic behaviour can be seen in a fairly straightforward fashion. Let us consider a
distribution of stokeslets along the center line of a thin filament oriented along the x axis
in Cartesian coordinates. Since the filament is thin and no slip boundary conditions are in
effect, we may reasonably expect the fluid velocity close to any arbitrary line element to
be close to that induced by a stokeslet of appropriate strength. The filament is given by
the position vector r(s) = (rc(s),ry(s),7:(s)) = (r1(s),r2(s),r3(s)) with the filament radius
given by a*(s) = r3(s) + r3(s). We will also make an exception to the kinematic framework
outlined in Section 2.2 and set the arclength to the range (—L,L), so the filament length
is 2L in this case, following the approach outlined by Batchelor [3]. This is done because
having symmetric integration limits greatly simplifies the algebraic manipulations required
to derive the result we are looking for and is unequivocally the better choice for this problem.

Considering equation (2.80) we can express the fluid velocity using the Oseen tensor

l/t,'(l')

1t ( £i(r) (ri =) (rj = ry)fi(r1)

= < dri, (2.96)
8N J_L ((r1—r'1)2+a2)1/2 (<r1_r,1)2+a2)3/2 ) 1

where the indices i and j take the values 1, 2, 3. Assuming an initially quiescent fluid,
(2.96) represents an integral equation for the force densities associated with the stokeslets

and therefore also for the friction coefficients of the filament. While this cannot be solved
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analytically, we can nevertheless analyze the asymptotic behaviour of the solution as the
ratio 7 tends to zero for an asymptotically thin filament. It is evident from (2.96) that the

asymptotic solution is determined by four integrals

o [ dry (2.97)
1= I\ 2 1/27 .
L ((r1—r)?+a?)
+L ro— r/ n
hss= / (ri=r1) s3dr (2.98)

-L ((r1 —r)? +a2)
where n = 0,1,2. The integrals themselves are trivial to calculate, but the asymptotic
behaviour is worth looking at in more detail. For the first integral we get

FA+Lt (@4 (L+r)?)

r —L+(a2+(L—r1)2)1/2.

I =log (2.99)

Dividing both the numerator and denominator by L and utilizing the fact that for an
arbitrary « and a real, analytic function x the expression & + (o +x?) 1/2 can be expanded
in the Taylor series (up to second order) (o + |ct|) + % + O(x*) we can expand (2.99) into

a power series of the ratio a/L up to second order

2400+ (1)

_ 27
I =log PRV , (2.100)
(f) 2L2r1
where we have also utilized the fact that %‘ - rler and ’1L_L‘ = L_L”. After algebraic
simplification we get
—4(r?—L* r-L
=1 1 — 2.101
1 0g< a2 ri+L ) ( )

where the second term can be neglected in the limit of asymptotically small ratios a/L.
Dividing both the numerator and denominator by a generalized average filament radius ag to
account for the fact the a need not be constant everywhere and further simplifying, we get
Batchelor’s result [3]

24 1/2
ﬂ. (2.102)

2L
I =2log— +2log
ag alagp

Following a perfectly analogous process for the other integrals (although one involving a

slightly more laborious process of algebraic manipulation) we obtain b, =2, I3 =0, I4 =1} —2.
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Substituting these results in (2.96) we get a second order asymptotically correct (disregarding
boundary effects at the ends) expression for the fluid velocity induced by a uniformly dense

stokeslet distribution along a thin filament

1
~ 4mne

ui(r) (fi+ 8uifi + HlO(e)), (2.103)

ag

where € = TTog2L" We have therefore showed that f| = 2xneu;, f, = 4nnéeuy and
f3 =4nneus. Thus, for an asymptotically thin filament up to a certain approximation it is
reasonable to state that the ratio of friction coefficients §,/{, — 2, which was our goal. As
was already mentioned, Lighthill (and others after him) have improved upon the accuracy of
the resistive theory approach outlined here, but the relative simplicity of the method has kept
it in widespread use and it remains a useful first approximation to hydrodynamic interactions.

Unlike the full framework of slender body theory, which would require us to solve
boundary integral equations simultaneously with a set of equations for the filament shape
(or, as in the case of some current approaches in the regularized stokeslets method [70], add
an additional corrective integral term to the equations of motion), resistive force theory lets
us easily formulate a friction tensor (the inverse of the mobility tensor) for the equation of
motion (2.93)

b —Gnor ar) , (2.104)

H 1:‘:”(” g, a5 as

with the additional note that, as will be seen later, after the equations of motion are cast

in dimensionless form, only the ratio {,/; remains as the sole free parameter in the mobility
tensor, thereby avoiding the need to explicitly calculate the friction coefficients.

The preceding description of Stokesian hydrodynamics has established an exact descrip-
tion of the hydrodynamic interactions in the simple case of two spheres through the Oseen
tensor and an approximate description of the case of more complicated bodies in the form of
slender body theory. However, this is approach necessarily limited to fairly simple bodies and
the general problem is analytically intractable. It is, however, possible to extend the approach
used for the Oseen tensor to the case of many spheres and thereby model more complicated
bodies as a discrete collection of spheres. This leads to two distinct methods known as
the method of reflections and the method of induced forces. We will briefly describe the
theoretical underpinnings of both, focusing primarily on the method of reflections since it is
used far more extensively in this work.

The idea behind the method of reflections is essentially to iteratively calculate the
flow field induced by arbitrarily many spheres in a series of corrective terms under the

approximation that additional spheres essentially reflect the flow field from one sphere to the
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next. The theoretical foundation for this is given by the well known theorems of Faxen [41]

which for the case of a translating sphere (with radius a) in Stokes flow yield

1
S =¥ (14689 w0y (2.105)
where u(r) |r:rxphm denotes the fluid velocity at the surface of the sphere.

A similar law exists for the case of rotational motion, but due to the restrictions mentioned

previously we remain within the realm of translational motion here.

In a system of N spheres, any given sphere i acted upon by a force F; and located in an

entirely quiescent fluid moves according to Stokes’ law

v = u'F; = (67na)”'F.. (2.106)

Since in a real system of N potentially moving spheres, the flow field will in general
assume non-zero values, Stokes’ law essentially gives a zeroth order approximation (referred
to as the particle self-interaction) to the velocity of any sphere which we will refer to as v°.
Any movement of a single sphere will necessarily impact the motion of any nearby spheres,

the velocity of which is directly given by Faxen’s theorem (2.105)

1
VE_]) — u'F;+ (1 n 6an2> ul®(r)

: (2.107)

I’:l'j

where u(o)(r) refers to the flow field induced by the sphere velocity VEO). It may be
said that the sphere j essentially reflects the flow induced by the movement of sphere i,
thereby inducing an appropriate flow field u(!) (r), with the total flow field being equal to the

superposition of the two flows u(® (r) and u(!) (r) due to the linearity of the Stokes equations

u(r) =u® () +u(r). (2.108)

The new flow field u(!) (r), however, now violates the boundary conditions of the original
sphere i, requiring a further correction. This may once again be calculated from Faxen’s the-
orem (2.105), taking care to omit the self-interaction term which has already been accounted

for both spheres

v = (1 + lazvz) u(r) (2.109)

6

r=r;
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which again creates a reflected flow field u(® (r) that violates the boundary conditions of
sphere j and so forth. In effect, we have created an infinite series of corrective terms for the
total flow field

u(r) =u @) +uV (@) +u® )+ .. (2.110)

and similarly for the velocities of the individual spheres. This in effect constitutes a power
series in terms of the inverse dimensionless particle distance ratio % (where r;j = ‘r i— ri‘)
which has been shown to be unconditionally convergent [56].

Before elaborating on the specifics of calculating the terms of the series (2.110) we must
also remark that the series as given here only involves two sphere interactions. In truth,
given a system of more than two spheres any flow reflected by an arbitrary sphere exerts
an influence on every single constituent of the whole system. These kinds of many body
interactions can also be included in the expansion, though it requires significant additional
effort and comes at a considerable computational cost (see the excellent textbook of Dhont
[21] for a comprehensive treatment of three body interactions).

For the purposes of this work (and most practical uses of the method of reflections found
in current scientific literature), it is sufficient to consider the truncated (up to order (a/r;;)?)

two body mobility tensor known as the Rotne-Prager-Yamakawa tensor [21]:

a® 1 24> 24>
= (1+—=V?|G(r;) = 14+ |1+ | 1= |r®r; |, (@111
Hij ( += ) (rij) ST +3r,-2,~ + z rjj QT (2.111)

where the vector r;; = (r; —r;) /ri;, the scalar quantity r;; = |r;;| and the whole expression

is valid for the case where r;; > 2a for all values of the indices i and j which run over the
entire system of arbitrarily many spheres. For (partially or completely) overlapping spheres,

the following formulation of the mobility tensor has been shown to be in effect [75]

1 9!’,']' 31‘,‘]'
. DU S P 2.112
Hij 67rna(( 32a> +32ar”®r”) (112

Do note that that in the limit of self-interaction when r;; — 0 the expression (2.112)

reduces to the standard single sphere mobility of Stokes.

The tensors (2.111) and (2.112) were originally derived using a variational approach
by Rotne and Prager [68] and independently by Yamakawa [78]. Since such an approach
intrinsically attempts to minimize energy dissipation, the Rotne-Prager- Yamakawa tensor
essentially provides an upper bound to the mobility coefficients. There also exist expressions

derived much later [75] for hydrodynamic interactions involving rotating spheres, which
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will not be used in this work for the reasons stated in previous chapters. It can also be
shown [75] that both expressions of the Rotne-Prager-Yamakawa tensor are positive definite
for all values of r;;, which greatly aids efficient numerical computation of its components.
The computational aspects of this and other hydrodynamic approximations will be further
explored in Chapter 3.

There remains one final common method of hydrodynamic approximation we have not
yet described, known as the method of induced forces. The idea here is to consider the effect
of finite sized spheres located within the fluid in terms of the reactive forces induced upon
the fluid by the no-slip boundary conditions in effect on the surfaces of said spheres. One
may therefore solve the fluid Stokes equations with the additional force density that is the
(vectorial) sum of all the individual force densities chosen so that each fluid element located
within a sphere would move with the velocity of the sphere in question: u(r; +rp) = v;
for each |rg| < aforall i =1,2,...,N. The traditional approach of the method of induced
forces now calls for expanding the the standard expression for the Stokesian fluid flow (2.80)
in terms of vector spherical harmonics [42] and formulating an infinite set of algebraic
equations for the coefficients of vector spherical harmonics that in turn determine the fluid
flow. Since we employ a previously published and rather well known implementation of this
method [44] in this work, we will give a brief overview of the formal approach employed in
this implementation. We will not detail the basic concepts of multipole expansions, which
are well known in physics. Readers interested in the mathematical basis of irreducible

representations of multipole moments are referred to [31].

To utilize the notation of Cichocki ef al [18], the (p + 1) rank force multipole tensor may

be written as a function of the individual force density of sphere i as

Firl) — l’ / r'Pf(r)dr, (2.113)

where r(?) denotes the p-fold direct product of the position vectors r. The set of irre-
ducible multipole moments is denoted as fj,,; for the indices [ = 1,2,..., m = —[,—[ +
1,...,1—1,1, 0 =0,1,2, where the three components of f,,9 correspond to the Carte-
sian components of the total force F; exerted on the fluid by the sphere i according to
F;= [fid 3r. The force multipole moments may be arranged in an infinite dimensional vector
g = (Fi, T;, glgo) , gg), ) , where g, formally denotes the higher order multipole components.
These may be eliminated by defining the operator P; which projects the multipole vector g;

onto the force-torque subspace of the i-th sphere.
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An analogous multipole expansion may be written for the velocities, yielding an equiva-

lent infinite dimensional multipole vector ¢;, which under projection gives

1
Pc; = (u,-—vl-(rl-),a)i—EV XV(I‘,‘),O,...) . (2.114)

The multipole vectors are related by the single sphere extended friction matrix Z

fl' = ZiCi. (2.115)

The vector ¢; can be decomposed ¢; = cEO) —¢/, with cl(o) = (u;,®;,0,...). The first

vector is known, the second may be expressed as

N
¢ =Y Gift;, (2.116)
=1

where G;; is called the Green matrix, which is a function of the geometry of the problem.
Substituting (2.116) and the decomposition of the velocity multipole vector into (2.115) we
obtain an exact set of multipole equations in the form

0 N
=7 (c”-Y Gt |. (2.117)
j=1

Formally, the solution of (2.117) can be easily expressed in matrix form

f=Z(1+GZ) ', (2.118)

which leads to the actual friction matrix through the projection operator defined previously

{=PZ(1+GZ)'P. (2.119)

While the solution (2.119) is exact, practical calculation requires truncating the infinite
multipole series at some finite order, yielding an approximation scheme for the friction (and
therefore mobility) tensors for arbitrary collections of spheres in a Stokesian fluid. We utilize
the freely available software library HYDROLIB [44] for this purpose, with minor code
modifications to facilitate interoperability with our codebase and to be able to use modern
compilers (see Chapter 3 for details). This library has been extensively verified and its results
compared to experiments as well as direct numerical simulation (DNS) approaches [60],
which makes it immensely useful for benchmarking the accuracy of simpler hydrodynamic

approximations.
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This concludes our brief overview of the basic methods for approximating hydrodynamic
interactions. Given the equation of motion (2.93) and the various methods for calculating
the mobility tensor we have presented in this section, we only need to derive appropriate
boundary conditions to have a complete theoretical model for a single magnetoelastic filament

immersed in a Stokesian fluid. Accordingly, this is the subject of the next section.

2.5 Boundary conditions

The purpose of this section is to develop the general form of the boundary conditions relevant
to the physical situations considered in this work using the variational derivations of force
densities from (2.46) and Appendix B. The implementation details are left for chapter 3 as

part of the description of the numerical model.

In general, the ends of the filament can be either free or constrained. Although several
types of constraints are possible in principle, we will only explicitly derive the case of a
completely fixed end (to be used for modeling artificial cilia), as other types of constraints
are straightforward to implement in an analogous fashion. Given the equations of motion
(2.93) and (2.66) developed in the previous section, which is a system of two non-linear
partial differential equations, a fourth order equation of motion coupled with a second order
diffusion equation for the twist density, we need six boundary conditions (four for the radius
vector and/or its spatial derivatives and two for the twist density and/or its spatial derivatives)

and two initial conditions for the problem to be fully specified.

In the case of free ends, by definition, forces and torques on the ends are zero. Thus, the

curvature and twist density are also equal to zero:

22r|*
K|t = 9|, = 0, (2.120)
Q)6 =
315 =0. (2.121)

This immediately gives us four out of the six necessary boundary conditions. The
remaining two may be obtained by considering the expressions for the force densities derived
in Section 2.3 and Appendix A and noting that in the case of free ends the total force on each

end must be equal to zero

L

=0. (2.122)
0

A= +A—+ Fmagnetic + C-Q3 5

d’r or ar y 8_21'
ds3 ds ds = ds?
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The case of a single fixed end is best handled numerically by fixing the position of an
end and introducing an appropriate discrete reaction force on neighboring segments of the
filament. This is described further in Chapter 3 along with the discretization of the equations
of motion and the formulation of the numerical model.



Chapter 3

Numerical model: methodology and

implementation

In the previous chapter we established a comprehensive theoretical framework for describing
the motion of a single magnetically actuated filament immersed in a Stokesian fluid. However,
since the equations of motion obtained there are not amenable to analytic solution, a numerical
framework must be developed in order to obtain actual results. In doing so, we will also see
how the case of arbitrary many filaments can be seen as a natural extension of the numerical
model described in this chapter, thereby giving us the ability to model the ensemble dynamics

of magnetic filaments to a reasonable degree of approximation.

3.1 Discrete equations of motion and numerical implemen-

tation

In order to obtain a numerically tractable set of equations of motion for the filament described
in Chapter 2, we must first discretize the filament. To do so, we divide the filament in p
segments of equal length /4. The continuous partial differential equations of Chapter 2 will
thereby be replaced by a set of algebraic equations describing the dynamics of p + 1 marker
points.

Before proceeding further we also cast the equations of motion in dimensionless form.
Length and time are scaled by the filament length L and the characteristic elastic relaxation
time #, = §,L* /A respectively. Consequently, the principal dimensionless parameters control-
ling the dynamics of the filament are the magnetoelastic number Cm (this is the ratio of the
magnetic and elastic forces; for instance, in the ferromagnetic case Cm = MH I? /A) and the

ratio of the filament length L and the characteristic elastic penetration length L, = (A/{, o) 1/4,
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The magnetoelastic number is simply the ratio of the magnetic and elastic forces, with M
as the magnetization per unit length. The dimensionless frequency of the external magnetic
field is therefore given by @ = (L/L,)*.

The equations of motion from Chapter 2 may be formally written in a discretized dimen-
sionless form (omitting the tension term which will be handled separately) as

Vi=MU; (_Dé4)r+ fmagnetic +Dt(ylv) (.Q3D(1)l' X D(z)r)> y (31)
% — doD P05 + (D(l)r x D<2>r> .pWy, 3.2)

where the index i = 1,2, ..., p+ 1 runs over all the marker points of the filament, dy = C/{,
denotes the dimensionless twist diffusion constant while the operators D(l), D@ and D®
denote the appropriate order finite differentiation matrices with the property that Dy ~ %
All of the terms in equations (3.1) and (3.2) as well as in the remainder of this work are
written in dimensionless form. In terms of implementation, the differentiation operators need
to handle both scalar arrays such as (Q3); and lists of vectors like r;, so all lists of vectors are
represented as scalar arrays of size 3 x n with the structure (x1,y1,21,%2,2,22, -, X0, YnsZn)
for an arbitrary list of n vectors r; = (x;,y;,z;). While the standard finite difference expressions
are well known in the literature [1], we also need to take into account the boundary conditions,
which is reflected with the appropriate subscripts for the operators Dz(;4)’ D,(VZV), D,(vlv). This

process is outlined in Appendix B.

The magnetic term f,,45eric 18 €asy to handle. In the ferromagnetic case, as was discussed
in Chapter 2, the force only acts on the ends of the filament so that in dimensionless form we

simply have Fmagnetic‘ | = Cmh and Fmagne,,-C!. —Cmbh. In the superparamagnetic

i= i=p+1 -
case we obtain

fmagnetic ‘

o p=—20m(0-DVel,, ), (33)

i=p+1

i=p+1 1
Fmagnetic‘l-:ll7Jr = <2Cm(hD,(n)r)h>

(3.4)
i=1

Note that once again the operator D,(n1 ) must be formulated in such a way as to incorpo-

rate the boundary conditions in the finite differentiation formulation (see Appendix C for

implementation details).

Since we neglected to include the tension term in (3.1), we need to handle the condition

of inextensibility separately. Although one approach would be to include the tension force
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density in the equation of motion and then solve a discretized version of the tension equation
(2.59), there is another approach that will serve us much better here.

In the case of a discretized filament the condition of incompressibility (2.69) can be
reformulated in a useful fashion to further explore the role of the internal tension A(s). If
the filament is discretized by p 4+ 1 marker points, incompressibility may be enforced by p
constraints

gi=(ri—r)> =n, (3.5)

where the index i = 1,2, ..., p. If we now define the p x 3(p + 1) Jacobian matrix of

constraints with the components

dgi
8rj’

Jij= (3.6)

we obtain a new form for the condition of incompressibility, one that is reminiscent of

the condition of incompressibility in fluid dynamics

J-v=0. (3.7)

For the sake of clarity, let us now write an arbitrary part of the (transposed) Jacobian
matrix explicitly, using x;, y; and z; to denote the appropriate components of the position

vector r; = (xi7Yi,Zi)

Ji=1 —20—x) =20j—y) —2(z—z) 20xj—x) 20j—y) 2(zj—z)

(3.8)
Considering that the stretching force density (2.48) may be approximated by standard
first order finite differences as

tretchin a 81" rit]—T; r,—ri_|
i gZX(A"a_Q“AiH : n2 A R (3.9)

it should be apparent from (3.8) that the Jacobian constraint matrix can be used to express

the discretized stretching force density as

A
fstretching ~ _JTﬁ- (310)
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If we denote all of the discretized force densities except the stretching force density as fj
so that the discrete equation of motion in matrix form reads v = p (fo + fst,e,ch,-ng) ,(3.7) and

(3.10) immediately yield the following discrete equation of motion

A
Ju (fO_JTQ_hZ> =0. (3.11)

Our goal now is to use the Jacobian matrix and the constraint of inextensibility to exclude
the internal tension A from the equation of motion entirely so as to avoid the necessity of
explicitly calculating the tension, which would require a new differential equation in addition

to the equation of motion. Rearranging (3.11) gives

A
_ T
Jufo=JulJ Tk (3.12)

It is now straightforward to express the tension

A _
S = (") ufo (3.13)

If we now recall (3.10), we can simply reinsert the tension (3.13) in the discrete equation
of motion to obtain an expression that no longer requires us to explicitly calculate the tension
itself

vep (fo — 7 (JuJT)’IJfO) —u (I—uJT (JuJT)*lJ) fo. (3.14)

The operator P = (I—puJ” (JuJ") 1y ) satisfies the property P? = P and may be inter-
preted as an orthogonal projection operator that essentially projects a filament configuration
to a configuration in the space of allowed motions for an appropriately constrained (inexten-
sible) filament. The general approach of using a projection operator to ensure inextensibility
is due to Nedelec and Foethke [61], while the adaptation to the case of magnetic filaments
was first published in [26].

The discrete equation of motion can be expressed using the newly obtained projection
operator as

v :[J.Pf(), (3.15)

which coupled with the twist diffusion equation (3.2) finally gives the full set of spatially
discrete equations that fully characterize the dynamics of an elastic, magnetic filament
immersed in a Stokesian fluid, assuming that any applicable boundary conditions are properly
accounted for by the differentiation operators described previously. This lets us formulate

the following general algorithm to calculate the filament dynamics
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1. Define the simulation parameters Cm, L/L,, p and any relevant parameters for the

hydrodynamic approximations.

2. Formulate appropriate initial conditions for the filament position vector r; and the twist

density €23;, if applicable.
3. Calculate all of the differentiation operators D" for n = 1,2,4.
4. Evolve the filament dynamics, advancing the dimensionless time by a timestep 7:

(a) compute the Jacobian matrix using (3.6) and (3.5)

(b) calculate the mobility tensor i using the appropriate expressions for the chosen

approximation
(c) compute the projection operator P = (I—puJ” (JuJ") 1 )

(d) update any time dependent boundary conditions in the differentiation operators

(typically only D,(,} ))

(e) obtain the magnetic force density f,4gneric (see (3.3), (3.4) and the preceding

discussion)

(f) solve the equations of motion using any appropriate numerical method and

advance the timestep
5. Repeat step (4) until an arbitrary end time ?,,,4.

6. Conduct any desired post-processing of the results, etc.

Two major points in the general numerical algorithm still require further elaboration: the
computation of the mobility tensor i (4b) and the integration of the equations of motion (4f).
In accordance with the methods of approximating hydrodynamic interactions outlined in
chapter 2.4, our numerical model currently includes three methods of computing the mobility
tensor W: resistive force theory, the method of reflections up to the Rotne-Prager- Yamakawa
level and the method of induced forces as implemented by the software library HYDROLIB
[44].

The dimensionless mobility tensor in the resistive force theory approximation (given in
dimensional form in (2.104), which only needs to be divided by , to obtain the dimensionless

expression) reads

Brptr = <1+ & g C”) pWrepWr, (3.16)
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The expression (3.16) introduces a new free dimensionless parameter §,/{ in the nu-
merical model. As derived in chapter 2.4, the limiting value in the case of an infinitely thin
filament is {,/{; while ratios in real cases are expected to be in the range 1 < §,/{ < 2.
The effect of different values of the ratio §,/{; on the dynamics of the filament as well as
extensive comparisons with more sophisticated hydrodynamic approximations are discussed
at length in chapter 4.1.1.

The Rotne-Prager-Yamakawa (RPY) mobility tensor is given in dimensional form in
(2.111) and (2.112). Dividing by the classical Stokes friction coefficient for a single sphere

{ = 6mna yields the dimensionless expressions

3a 2a® 2a?
7= (14351 (3 Jen ) oo
ij ij ij

Or;; 3ri;
RPY
‘ul.j = ( —ﬁ) I+3Tlcjlr,-j®r,-j, Tij < 2a, (318)

where the indices i,j = 1,2, ..., p+ 1, the scalar parameter r;; = |r; —r;| and the vec-
tors r;; are unit vectors, scaled by the scalar norm r;;. As with the resistive force theory
approximation, we again have a new dimensionless free parameter in the model, although
this time it is considerably more subtle in terms of physical considerations. The expres-
sions (3.17) and (3.18) depend on the radius a of a virtual sphere used to represent an area
around an arbitrary marker point on the filament. There is, however, no physical reason
in the general case to prefer a particular distance between the spheres. For a linear array
of p+ 1 spheres of radius a, situated at a constant distance A - a from each other, the total
length reads L = 2a(p + 1) 4+ Aap. If we recall that the length in all dimensional equations
was scaled by the filament length L, the dimensionless sphere radius can be immediately
expressed asa = (2(p+1)+Ap)~ ' The intersphere distance A is thus a free parameter in
the Rotne-Prager- Yamakawa approximation of hydrodynamic interactions within the context
of our numerical model. Since the expressions (3.17) and (3.18) remain well defined for
any values of the relevant parameters, as long as r;; # 0. There are therefore no additional
physical or mathematical considerations to limit the range of values the parameter A may
take unless additional information about the filament structure is provided. On the other
hand, this approximation enables us to accommodate a wide range of filament structures
should the need arise.

In terms of free parameters, the mobility tensor in the case of the method of induced
forces is identical to the Rotne-Prager- Yamakawa approach, as will indeed be the case with all
approximations of hydrodynamic interactions that fundamentally deal with arbitrary arrays

of spheres. There is, however, a difference in terms of the scales used to cast the relevant
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quantities in dimensionless form. While the HYDROLIB library produces scale-invariant
dimensionless mobility tensors automatically, the length scale is divided by the sphere radius
a [44] rather than the filament length L as is done in our model. At each time step we
therefore need to re-scale the position vector of the filament marker points r; by multiplying

it with an appropriate scale factor

rHYDROLIB — (3 (1 1)+ pA)r;, (3.19)

where the parameter A once again denotes the separation distance between two neighbor-
ing spheres in units of sphere radii. The only additional constraint is imposed by the fact that
the HYDROLIB library does not handle overlapping spheres, so the intersphere separation
distance is strictly required to obey the constraint A > 0 while in practice we recommend
A > 0.5 to avoid numerical issues.

Since we have now fully specified the methodology (if not the implementation) of
computing all of the quantities required for the dimensionless equations of motion (3.15)
and (3.2), it only remains to specify the method of numerical solution of the aforementioned
equations.

In order to execute the entirety of the algorithm outlined previously in this chapter, we
first created a software package in the well known MATLAB programming environment.
The MATLAB language and its associated ecosystem of toolboxes is extremely well suited
to the rapid prototyping of numerical applications due to the wide array of in-built numeric
calculation and analysis functions as well as the integrated development environment supplied
with the software. However, while the performance of matrix/vector operations is usually
very good due to the integrated Intel MKL backend library, the efficiency of relatively
simple algebraic operations carried out in loops suffers the usual overhead associated with
most high level interpreted programming languages. The common solution for performance
sensitive applications in the domain of scientific computing is to write code in (comparatively
lower level) compiled programming languages such as C++ or Fortran. This in turn bears
a considerable cost in terms of additional development time and diminished flexibility of
the codebase due to both the increased complexity of the codebase and the lack of dynamic
integrated development environments comparable to that of MATLAB.

In our case, as long as hydrodynamic interactions are neglected or computed in the
resistive force theory approximation, the computational cost of the algorithm is dominated
by matrix multiplication and factorization operations and the MATLAB implementation
is therefore close to optimal. This changes radically if we decide to simulate the effect
of hydrodynamic interactions in the Rotne-Prager- Yamakawa tensor approximation. With

sufficiently large systems of equations (p > 50) the computation time is dominated by
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the calculation of the mobility tensor. Since we also aim to simulate the dynamics of
multiple hydrodynamically coupled filaments (described in more detail in the next chapter)
an alternative implementation becomes highly desirable to ensure scalability. For this purpose
we employ the Julia programming language [9][8], a newly developed high-level dynamic
programming language developed at the Massachusetts Institute of Technology (MIT) with
a considerable emphasis on efficient scientific computing while retaining the general ease
of use associated with languages such as MATLAB and Python. In addition to having a
fairly rich standard library for the purposes of numeric computation, its syntax also bears
considerable similarities to the MATLAB language, letting us port MATLAB code to Julia
with minimal effort. In doing so we have obtained a performance advantage of roughly
two orders of magnitude in limiting cases where the computation time is dominated by the
calculation of the Rotne-Prager- Yamakawa tensor, enabling us to conduct simulations that
would have normally taken days in less than an hour. This immense performance differential
in certain cases is largely explained to a first approximation by Julia’s implementation of
an efficient just-in-time (JIT) compiler which automatically generates a highly optimized
statically typed machine code representation of any function written in the high level language
itself, as long as it satisfies certain restrictions.

In both languages we implement two different approaches to integrating the equations
of motion (3.15) and (3.2) with different computational advantages. First, we discretize
both equations using the method of lines (MOL), replacing the spatial derivatives with finite
difference analogues and obtaining a large system of ordinary differential equations. While
a basic explicit first order Euler scheme that would transform the system of ODEs into a
set of algebraic expressions is trivial to implement, there are considerable advantages to
employing a variable order multistep solver intended for numerically stiff problems (which
quickly becomes the case as the frequency of the external magnetic field is increased due to
the disparity between the time scales of the physical phenomena involved). For this reason
we employ the odel5s function in the MATLAB programming environment. A comparable
capability is provided by the well known and extensively tested Sundials [43] library available
from the Lawrence Livermore National Laboratory. An easy to use interface to this library
is available under the name Sundials.jl through the integrated package manager of the Julia

programming environment.

However, in addition to the MOL approach we also implement an implicit backward
Euler scheme [1] for the many cases where the twist may be neglected. This lets us use much
larger timesteps than any explicit scheme and is a single-step scheme (whereas the different
multistep methods require multiple evaluations of the right hand side terms, which is quite

expensive computationally), thereby vastly decreasing the amount of mobility tensors we
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need to compute over any fixed interval of time. The backward Euler scheme also has the
advantage of unconditional numerical stability. Unfortunately, due to the velocity-dependent
term in the twist diffusion equation (3.2) there is no way to formulate a fully implicit
computational scheme that would include the effects of twist without incurring significant
computational overhead.

In order to obtain the implicit backward Euler (IBE) formulation of our equations, we
discretize the time dependence in (3.15) as follows

(t+7) _ (1)
e =P (DR ) ) (3.20)

magnetic

T
where the superscripts 7 and 7 4+ 7 denote denote the dimensionless time. Multiplying

both sides by 7 and adding and subtracting Dl(f)r(’ ) in the bracketed right hand side term we

get
P49 _p0) _ oy ( D7) p&e) 4 pele) _|_f’(21gnetic> , (3.21)
which may be immediately rearranged to yield
(I - wPDl(f)) . (r(m) _ r(t)) — tupP (Dl<)4)r(r) +f}§§ignmc) , (3.22)

which represents a set of linear algebraic equations formally solved by inverting the
matrix <I — TMPDI(;‘)) (in practice, methods utilizing LU decompositions are much more
efficient). The mldivide function in the MATLAB programming environment is used to
solve equation (3.22) once all the necessary quantities have been computed, this allows
for automatic selection of the appropriate method of matrix decomposition based on the
symmetry properties of the coefficient matrix <I — TuPD,(f)) at runtime. The backslash
operator from the Julia standard library provides equivalent functionality and is used in the
Julia implementation of the IBE scheme. In practice, we find that using the IBE scheme when
the effects of twist are neglected often (but not always) leads to much smaller computation
times at comparable accuracy, as shown in chapter 3.3. It is also worth noting that the
codebase of the numerical model is deliberately structured very modularly, so that new
hydrodynamic approximations, boundary conditions, force density terms and entire solution
schemes can be implemented with minimal effort, reusing the existing code as much as
possible. Great care is also taken to dynamically analyze the the input parameters and
determine what calculations are required in each particular case. Because of this, the
implementation of more advanced approximations, the effects of twist, etc. introduces
virtually no overhead in terms of computational efficiency whenever they are not directly

employed.
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3.2 Multiple filaments

In the previous chapter we established a complete numerical model for simulating the
dynamics of a magnetoelastic filament immersed in a Stokesian fluid under the action of
an external magnetic field utilizing different levels of approximation for the hydrodynamic
interactions. In this chapter we will demonstrate that the aforementioned approach is in fact
sufficiently flexible as to be straightforwardly generalized to the case of arbitrarily many

hydrodynamically coupled filaments with minimal modifications.

Since we stated at the very beginning of our theoretical model in Chapter 2 that we
disregard the effect of the magnetic filament on the surrounding field, it follows that in
the case of several filaments they will not be magnetically coupled in any way. Thus,
the only coupling we need to consider is through momentum transfer via hydrodynamic
interactions. This is something resistive force theory clearly cannot accommodate without
further modifications in the form of approximate interaction factors. We shall therefore only
consider the Rotne-Prager-Yamakawa tensor approximation and the method of induced (as
used in the HYDROLIB library) in this chapter. Both approaches yield mobility tensors for
arbitrary configurations of identical spheres, so no modifications to the parts of the numerical
model responsible for computing the mobility tensor are necessary, we simply compute the

total mobility tensor for N - (p + 1) marker points for N filaments.

In order to solve the equations of motion for an arbitrary amount of filaments, we simply
compute the individual projection operators, force densities and terms of the twist diffusion
equation for each filament separately (this may be done in parallel) and arrange them in the

ensemble equations of motion

aQ
a—; — doD X0, + (D(l)r X D<2>r> -pWy, (3.24)
where V= (V1 1,V12,..., V1 p+1,V2,1;- - - ,VN7(p+1)) so that the velocity vector with the

indices i, j denotes the velocity of the j-th marker point of the i-th filament and similarly for
vectors fy and r. Analogously, the ensemble twist density reads 3 = Q3 ;; fori=1,2,...,N
and j =1,2,..., p+ 1. The total mobility tensor is denoted by g and computed according
to (3.17) and (3.18) (using the ensemble position vector r) if the Rotne-Prager-Yamakawa
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tensor approximation is used or using the HYDROLIB library. Finally, the total projection

operator P can be expressed in diagonal block matrix form as

P, 0 0 --- 0
o P, 0 --- 0

P=10 0 P3 --- 0|, (3.25)
0 0 0 --- Py

where the 3(p+ 1) x 3(p+ 1) matrices P; denote the individual filament projection
operators fori =1,2,... N.

While the formalism employed here is very straightforward, we have in fact implicitly
made one additional approximation in our approach. Namely, in order to compute the single
filament projection operators P; we must employ mobility tensors of size 3(p+1) x3(p+1)
as per our definition of the projection operator P = (I—uJ T (J [TR) T) - J). In using what is in
effect a single filament mobility tensor for this part of the calculation we essentially neglect
a part of the long range hydrodynamic coupling in order to retain the overall simplicity of
the formalism defined here. While we expect the error introduced thereby to be very small
(especially for filaments that are comparatively far apart), this is one potential point where
improvements may be sought in future work.

Naturally, while the capability to describe ensembles of arbitrarily many filaments has
been developed, in practice the number of filaments is severely constrained by available
computational resources due to the scaling of the computational cost of calculating large
mobility tensors with increasing numbers of marker points. This issue is explored further in

the next section.

3.3 Numerical accuracy and computational performance

The purpose of this section is to briefly sketch the basic computational properties of the
numerical model empirically and establish the practical limitations in terms of the parameter
sets we are reasonably able to use on current computer hardware.

First of all, we need not worry about numerical stability in the strict sense of the term,
since in the IBE scheme numerical stability is guaranteed by the basic properties of the
backward Euler method itself, whereas in the MOL approach we only employ solvers
that feature automatic stability control (and employ variable size timesteps). Nevertheless,
choosing overly large timesteps in the IBE scheme risks not fully resolving the dynamics of

the system, thereby obtaining numerically correct but physically inaccurate results. In the
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Ap=4096 | Aw=20736 | time, s
107 | 1.1616 | 0.9943 | 28
107 [ 0.6765 | 0.9621 69
1072 ] 0.2564 | 03104 | 140
1071 0.2059 |0.1320 | 282
107 0.1476 | 0.0263 | 642
1071 0.1235 |0.0084 | 1326

— NN =N

Table 3.1 Relative errors with different dimensionless timesteps 7 in the IBE scheme.

parameter ranges that are of physical interest this is primarily controlled by the choice of
the dimensionless frequency (or, equivalently, the ratio L/L,), which ultimately drives the
filament.

We therefore first look at the relative errors introduced by the use of different timesteps
in the IBE scheme by comparing the resulting total displacement of the center of mass
coordinate in the direction of motion for a ferromagnetic microswimmer with free ends
located entirely in the x —y plane (see Section 4.1.1 for a detailed description of the physical
properties of this configuration) to the same quantity obtained through the use of the MOL
scheme with variable timesteps, the latter being considered exact for the purposes of this
comparison. Since we are only evaluating the effect of different timesteps here, hydrodynamic
interactions were approximated at merely the resistive force theory level (with the classical
value §,/{; = 2), the number of marker points was p = 200 for the IBE scheme and p = 50
for the MOL scheme, the magnetoelastic number was Cm = 400. All calculations were run
until 7,,,; = 0.025, at which point the total displacement of the center of mass y coordinate
was recorded, the results are shown in Table 3.1. The end time was chosen so that the stable
periodic regime of the filament’s motion would have already been established for several
periods at both frequencies, after which point any errors would grow linearly. Nevertheless,
we must note that for most of the physical situations modelled in Chapter 4 of this work
much larger values of ¢.,,4 are required, so all the computation times given in this section are
smaller than those typically seen for a single simulation, often by an order of magnitude. For
purposes of consistency in comparing computation times all calculations presented in this
chapter were done on the same Intel 17 920-D0 processor running at a constant frequency
of 3.8 Ghz. The numerical model fully exploits all available cores for all linear algebra
operations of sufficient size and the HYDROLIB library was compiled a modern OpenBLAS
linear algebra backend [77] to achieve the same end.

The two frequencies used are chosen to roughly correspond to the opposite ends of

the frequency range where propulsion occurs for this particular physical configurations,
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P | Aw=4096 | Aw=20736 | time, s
25 0.1014 0.1502 8

50 | 0.1270 0.0719 22

75 0.1229 0.0436 57

100 | 0.1149 | 0.0292 109
150 | 0.0997 | 0.0146 317
200 | 0.0880 0.0073 635
300 | 0.0000 0.0000 1860

Table 3.2 Relative errors with different numbers of marker points p + 1 in the IBE scheme,
T=2-10"°.

otherwise the errors would have little meaning. For the sake of comparison, the computation
times for the MOL scheme were t = 765s in the case of the lower frequency and t = 1556s
for the higher frequency. The computation times in the IBE scheme naturally do not depend
on the choice of frequency, since the timestep is constant. From Table 3.1 we can see that
timesteps 7 < 2- 107 can offer reasonable accuracy and do make the IBE scheme worth
using as the computation time is smaller by a factor of 2.5 compared to the MOL scheme.
Nevertheless, the errors introduced can also grow to unacceptably large values for particular
values of the dimensionless frequency so an initial investigation using the MOL scheme as a
point of comparison is always required. It was also observed during calculations with the
MOL scheme that while the mean timestep tended to be approximately 10~°, the smallest
timesteps occasionally used were on the order of 1078, whereas the largest could go as high
as 3- 107>, a difference of over three orders of magnitude. These results serve to remind us
that when dealing with phenomena involving vastly different time scales numerical stability
and seemingly reasonable outputs (even for the largest timesteps used here the filament
still behaved qualitatively similarly, no obviously unphysical behavior was observed) are no
guarantee of accuracy. In the absence of directly comparable analytic or experimental data
one must be especially careful about ensuring that the choice of numerical parameters has
minimal effect on the accuracy of the results.

We also need to evaluate the impact of the number of marker points chosen to represent a
given filament. We do this separately for both numerical schemes because the MOL scheme
typically requires far fewer points to attain comparable accuracy. We take the same two
frequencies as well as the parameters 7,,,;, Cm as in Table 3.1 and calculate the relative errors

of the center of mass with respect to the most accurate computation done. The results are
shown in Tables 3.2 and 3.3.
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P | Aw=4096 | Aw=20736 | timey=4096, S | 1imMmey=20736, S
10 | 1.0963 0.3276 4 7

20 | 1.0097 0.1092 30 47

30 | 0.0328 0.0635 109 246

40 | 0.0244 | 0.0399 307 643

50 | 0.0154 | 0.0258 894 1633

75 | 0.0000 | 0.0000 5014 11372

Table 3.3 Relative errors with different numbers of marker points p + 1 in the MOL scheme.

As we can see, the amount of marker points necessary to attain reasonable accuracy
differs by a factor of 4 between the MOL and the IBE scheme. The general pattern of
convergence is more reliable in the MOL scheme due to the automatic timestep control.
However, the computation time scales cubically in the MOL scheme and only quadratically
in the IBE scheme, making the latter quite useful for large values of p 4 1, an especially
important property for simulations involving several filaments. The general recommendation
is the same as before: for every substantially different frequency of the external field a control
calculation using the MOL scheme is advisable before making any claims about the accuracy
of results obtained through the use of the IBE scheme. Nevertheless, using the implicit
backward Euler (IBE) scheme is justified for computational efficiency when large numbers
of marker points or large numbers of simulations for fairly similar frequencies are required.

Finally, to fully appreciate the computational requirements of our numerical model we
need to look at the impact of the choice of approximation for hydrodynamic interactions.
It is trivial to observe that any cost associated with computing hydrodynamic interactions
will grow linearly with the amount of timesteps we have to resolve, however the dependence
on the number of marker points p + 1 is of crucial importance, especially when considering
ensembles of filaments. We therefore take the IBE scheme with @ = 4096, Cm = 400,
tond = 0.01, T =107 and evaluate the total computation times for the resistive force theory
approximation, the Rotne-Prager-Yamakawa approximation (in both MATLAB and Julia
implementations) and the method of induced forces approximation (utilizing the library
HYDROLIB) for several different values of p+ 1. The results of this comparison are given
in Table 3.4.

Several major conclusions can be drawn from the data presented in Table 3.4. First, the
use of the HYDROLIB library is extremely expensive computationally, slowing down the
calculation by more than three orders of magnitude. Furthermore, the computation time for
HYDROLIB actually grows faster than for the other methods as the number of marker points

is increased. This renders it effectively unusable for practical computations, except to explore
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p trRrT, S | trpy iIn MATLAB, s | tgpy in Julia, s | tgyproLis, S
40 |1 50 2 2406

50 |2 76 3 3903

60 |3 109 4 5852

80 |5 193 6 11628

100 | 8 299 10 21738

Table 3.4 Computation time for different approximations of the mobility tensor.

the accuracy of the other methods in simplified benchmarking scenarios. To illustrate, a
typical single computation to explore the dynamics of a magnetic filament for a fixed set of
the main simulation parameters (p, Cm, ®, dy, t.,q4, T) usually runs up to at least #,,; = 0.1,
requires at least p = 100 in the implicit backward Euler (IBE) scheme (usually p = 200
or p=300) and T =2-10(-9), a calculation using HYDROLIB even for a single filament
would take approximately 300 hours on the workstation level hardware used in this work.
Since explorations of the full parameter space usually require hundreds or thousands of such
calculations, the impracticality of relying on the HYDROLIB library for practical research is
evident.

On the other hand, while the MATLAB implementation of the Rotne-Prager- Yamakawa
tensor also demands significant computational resources (although it is still faster than
HYDROLIB by a factor of roughly 50 on average), the Julia implementation is a vast
improvement. In particular, the Julia version of the RPY approximation at commonly used
values of p is on average slower only by about 20% compared to the resistive force theory.
This makes it perfectly feasible to employ the Rotne-Prager-Yamakawa approximation in
routine simulations and justifies the time invested in developing a second implementation of
the numerical model in the Julia language.

We have now established the basic computational properties of the model developed
in previous sections, demonstrated the impact of various parameters on solution accuracy
as well as the computational cost of choosing different approximations for hydrodynamic
interactions. Due to the lack of directly and quantitatively comparable experimental results
or analytic solutions for most of the filament configurations considered in this work, the
properties we have shown in this section are crucially important to obtaining accurate results
relevant to the appropriate physical situations being investigated. A selection of such results
is presented in the next chapter.






Chapter 4
Numerical results and analysis

The purpose of this chapter is to present a reasonably representative selection of the main
results obtained from the numerical model developed in Chapter 3 with a particular emphasis
on the impact of various approximations to hydrodynamic interactions. While the basic
dynamics of most of the filament configurations described in the various sections of this
chapter have been explored in previous works using simpler models in the resistive force
theory approximation or neglecting hydrodynamic interactions altogether, we analyze the
impact of more sophisticated approximations as well as use the computational efficiency
of our model to obtain a more general picture of the properties of magnetic filaments in a
comprehensive parameter space. Due to the emphasis on hydrodynamic interactions in this
work we focus primarily on filaments with free ends, which are known to exhibit periodic
swimming behavior in periodically oscillating external magnetic fields. Nevertheless, to
showcase the flexibility of our numerical model we also provide an example of a filament
configuration with a fixed end - an artificial cilia - and calculate the induced fluid velocities
in its vicinity in a wide range of parameters.

The chapter is divided in four major sections, each dedicated to a separate class of
magnetic filaments that exhibit considerably varied dynamics when subjected to different
configurations of external magnetic fields. We first discuss ferromagnetic filaments with free
ends, previously [5] shown to be viable microswimmers. Some basic properties are examined
and the available scientific literature used to verify the results of our model. Then we move
on to discuss new results obtained using more precise hydrodynamic approximations than
previously employed for the analysis of ferromagnetic filaments and quantify the role of twist.
The second section of the chapter details artificial cilia producing by constraining one end of
a ferromagnetic filament. After establishing the basic properties of such a system we use the
capabilities of our model to obtain the flow fields surrounding the rotating ferromagnetic cilia.

The third section concerns superparamagnetic filaments with free ends. This presents a further
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opportunity to verify the results of our model, as the basic dynamics of superparamagnetic
filaments in constant fields are well described in the literature. We further present a number
of new results demonstrating the existence of a directed propulsive regime in a particular
range of the governing parameters when a specific rotating magnetic field is applied. In the
fourth section we describe the behaviour of a system that consists of a magnetic dipole and a
non-magnetic, elastic tail attached to the dipole. Regions of stable propulsion as well as the
impact of various approximations to the hydrodynamic interactions are described. Finally,
we consider the dynamics of multiple ferromagnetic filaments in the fifth section of this
chapter, demonstrating the existence of a hydrodynamic coupling in systems of two and three
filaments.

4.1 Ferromagnetic filaments with free ends

4.1.1 Ferromagnetic microswimmers without twist

Ferromagnetic filaments with free ends under the influence of an external magnetic field are
known to undergo two possible modes of deformation: S-like and U-like shapes, depending
on the strength of the applied field and the elastic properties on the filament. This has been
shown both experimentally and from a theoretical stability analysis back in 2009 by Erglis
et al [25]. It was further shown the same year by Belovs and Cébers [5] that ferromagnetic
filaments with free ends could serve as microswimmers in linearly oscillating external
magnetic fields by means of a two dimensional numerical model utilizing the tangent angle
formalism mentioned in the introductory chapters of this work.

In a constant magnetic field, assuming that the parameters governing the simulation
are chosen such that the U-like deformation mode is preferred, the filament forms a loop
if the magnetic field is strong enough. Let us begin by examining this behaviour in a two

dimensional configuration using the following initial conditions for the shape of the filament
x;=1—(0.017/2)%ih, (4.1)

TX;

.= 0.01si
Vi ST —0.017/2)2

); (4.2)

2 =0, 4.3)

and the initial filament position vector is r; = (x;,y;,z;) for each value of the index

i=1,2,...,p+1and h = le The filament is therefore initially almost straight, only
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slightly curved in the y direction to provide the initial perturbation that will lead to the
development of the U-like deformation mode. A constant magnetic field is applied in the x
direction with its strength determined by the magnetoelastic number Cm. Each numerical
calculation is then run until a final stable configuration is attained. The stopping criterion is
that the maximal curvature of the filament has changed by less than 0.1% during the last 100
timesteps taken by the solver. A representative selection of such configurations at different
values of the magnetoelastic number is shown in Figures 4.1, 4.2 and 4.3. Since it has been
shown in a previous stability analysis that the magnetoelastic number has a critical value 72
(established as 2 /4 in [5], however, due to different scale factors the magnetoelastic number
used in this work is larger than that in the reference by a factor of 4) below which the filament
does not deform, we do not show configurations with Cm < 10. From the aforementioned
figures it can be seen that at relatively low values of the magnetoelastic number the filament
does not bend strongly enough to form loops. This point may be made quantitatively precise
utilizing the concept of the writhe introduced in Chapter 2. The writhe of the ferromagnetic
filament configurations as a function of the magnetoelastic number is shown in Fig. 4.4.
This gives a useful quantitative measure of the loop formation at different magnetoelastic

numbers.

P
-
01 01
> Ofeeeeesesscsosssoce ®e00000000s0eees > Of
0.4 F 0.1
02 0.2

Fig. 4.1 Stable 2D configurations of the ferromagnetic filament in a constant field with
Cm = 10 (left), Cm = 15 (right).

The curvature of the stable two dimensional configurations can be estimated theoretically
by solving the following equation in the tangent angle formulation (t = (cos(6),sin(0)))
d*6
which in the case of free ends (d0/ds|,_,; = 0) yields

0 = —2arcsin(sin(6,,/2)sn (@s,sinz(em/Z))), 4.5)



58 Numerical results and analysis

05 05
04 04l
03F 03F

02 02
. e
> 0fF > 0fF
0.1 01

.
02 02F
03 03[

04f 04

05 L L L L L L 1 L 1 I s 1 L L L L L L L
0 0.1 0.2 03 04 05 06 07 08 0.9 1 0 0.1 02 03 04 05 06 0.7 0.8 0.9 1

Fig. 4.2 Stable 2D configurations of the ferromagnetic filament in a constant field with
Cm =20 (left), Cm = 30 (right).

05 05

04 04

03 03

02 02
o1 01

> of > of

04 M N*"v*., 01 o o

02 02

03[ 03

04 04k

05 L ! L ! L L L L L 1 05
0 0.1 0.2 03 04 05 0.6 07 0.8 09 1 0 0.1 0.2 03 04 0.5 06 0.7 08 0.9 1

x

Fig. 4.3 Stable 2D configurations of the ferromagnetic filament in a constant field with
Cm = 50 (left), Cm = 100 (right).

where 6,, denotes the tangent angle at the ends of the filament while the function sn(x, k%)
is the Jacobi elliptic function. It may be shown [26] that asymptotically, for Cm > 10, the
relation kg = 2v/Cm describes the maximal curvature quite well. A comparison with the
results of our numerical simulations is given in Fig. 4.5. Clearly the results agree very
well for magnetoelastic numbers up to about Cm = 100, whereupon the numerical maximal

curvature continues to increase faster than the theoretical estimate.
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Fig. 4.4 The writhe as a function of the magnetoelastic number.
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Fig. 4.5 The maximal curvature as a function of the magnetoelastic number: comparing
numerical data with the theoretical estimate.
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In a previous publication [26] we have shown that the configurations produced by the
ferromagnetic filament in a constant field are no longer stable when even very small per-
turbations from the purely two dimensional state are applied. This result was also verified
experimentally and is fully reproduced by the computational model described in this work.
We therefore begin our examination of the filament dynamics in a time varying magnetic
field by examining an initially two dimensional configuration as defined in equations (4.1) -
(4.3).

The magnetic field is linearly oscillating in the x direction so that H = Cm(cos wt,0,0).
Since the motion is entirely two dimensional, the effects of twist may be neglected entirely.
Our aim here is to determine what values of the magnetoelastic number and the dimensionless
frequency of the external magnetic field lead to the largest swimming velocities and what
effect the level of approximation for the hydrodynamic interactions has on the filament

dynamics.

In order to obtain a comprehensive overview of the swimming velocities as a function of
the magnetoelastic number Cm and the dimensionless frequency @ we conduct a series of
2520 simulations in total, which represent over a month of computation time. We look at
magnetoelastic numbers in the range 25 < Cm < 500 and the ratio L/L, = ®'/* in the range
2...18, each time conducting a simulation until a fixed dimensionless end time f.,; = 0.1
and noting the total displacement of the y component (which is in the direction of motion) of
the center of mass position relative to the initial state. We conduct all of these simulations
both in the resistive force theory approximation (for three different values of the ratio §,/{;:
the classical asymptotic value 2 as well as the values 1.75 and 1.5) and in the Rotne-Prager-
Yamakawa approximation (for three different values of the inter-sphere distance parameter
A =0.5,2,4 in units of sphere radii). All calculations are conducted using the method of
lines (MOL) scheme (for reasons outlined in Chapter 3), with p = 100. The results are shown
in Figures 4.6 - 4.11, with the total displacement shown using the color scale displayed on

the right side of each figure.

Several conclusions can be drawn immediately. First of all, the classical value §,/{ =2
for the resistive force theory approximation to hydrodynamic interactions clearly results
in a fairly significant (roughly 20% on average) overestimation of the filament velocity.
The value §,/{; = 1.75 seems quite appropriate for closely located spheres (as can be seen
by directly comparing Figure 4.7 with Figures 4.9 and 4.10) while smaller values may
still be useful depending on the filament structure. Secondly, the Rotne-Prager-Yamakawa
approximation does constrain the region in Cm — @ space where directed motion takes place
more so than resistive force theory, irrespective of the particular value of the anisotropic

friction ratio (see, for instance, the contrast between Fig. 4.7 and Fig. 4.9). There is a range
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Fig. 4.6 The total displacement in the y direction y, at dimensionless time # = 0.1 using
resistive force theory. §,/ = 1.5.

of frequencies (roughly between L/L, ~ 8 and L/L, =~ 10, though a slight dependence on
the magnetoelastic number also exists) at which directed motion occurs in the resistive force
theory approximation, but not in the more accurate Rotne-Prager-Yamakawa approach. This
is a qualitative difference between both approximations for our use case that could not be
found without the comprehensive computational effort undertaken to explore the filament
motion throughout the parameter space Cm — @. We also note that despite the stringent
attention to the choice of numerical parameters described in Chapter 3.3 the border regions
in Figures 4.6 - 4.11 where periodic motion only just begins to occur still show signs of
numerical effects. A more detailed investigation of filament dynamics in precisely these
regions may help further elucidate the effects of different hydrodynamic approximations in
the future.

In the absence of directly relevant experimental data that could confirm our results
quantitatively in this particular case, questions must still be asked regarding the accuracy of
the Rotne-Prager-Yamakawa approximation we have employed. Reproducing the numerical
results shown here using the more accurate HYDROLIB library to calculate hydrodynamic
interactions in the method of induced forces approximation would require many years of
computation time and is not practically feasible at the present time. Nevertheless, we

may take a particular representative pair of values for the magnetoelastic number and the
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Fig. 4.7 The total displacement in the y direction y, at dimensionless time t = 0.1 using
resistive force theory. §,/{ = 1.75.

dimensionless field frequency and explore the role of hydrodynamic interactions in more
detail. Figures 4.12 and 4.13 show the time evolution of the y coordinate of the center of
mass of the filament in all three methods of calculating hydrodynamic interactions we have
thus far implemented in our numerical model: the resistive force theory approximation, the
RPY tensor and the HYDROLIB library.

For the parameters chosen here it seems that the benchmark HYDROLIB calculation
closely mirrors the Rotne-Prager- Yamakawa results as long as the sphere separation distance
A = 0.5, with differences of a few percent at most as measured in the total displacement of
the filament’s center of mass in the direction of motion. The difference between the two
methods grows substantially as the separation distance A is increased. With respect to the
resistive force theory approximation, the de facto standard approximation in the literature,
it seems to hold up to the Rotne-Prager-Yamakawa approximation rather well as long as
appropriate values of the anisotropic friction coefficient ratio §,/{, are chosen. However,
as we saw in the discussion of the results shown in Figures 4.6 - 4.11, the seemingly close
correspondence may be somewhat deceptive as the RPY approximation introduces qualitative
changes in specific regions of the parameter space Cm — ®.

Let us now look at the regions of Cm — @ space where we have the major differences

between the resistive force theory (RFT) and Rotne-Prager-Yamakawa (RPY) approximations.
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Fig. 4.8 The total displacement in the y direction y, at dimensionless time # = 0.1 using
resistive force theory. §,/ = 2.

If we take Cm = 288 and @ = 4800 (L/L, = 8.32) and look at the dependence of the center
of mass y coordinate on time, as depicted in Fig. 4.14, the reason for the discrepancy becomes
clear immediately: the U-shape of the filament, which was perpetually stable in the resistive
force theory approximation as long as the initial configuration was located entirely in the
x —y plane, is only metastable in the RPY approximation. This is a fundamental departure
from the results we have reported previously [27] and has not been described before. To show
the progression of this phenomenon in more detail we have plotted a series of 12 projected
snapshots of the filament configurations in the x —y and y — z planes in Figures 4.15 - 4.27.
It is interesting to note that fairly substantial quantitative differences in the filament shape
appear immediately even during the regime of stable planar motion, as seen in Figures 4.15 -
4.19. Looking at a later period of motion starting with Figure 4.20 we see that the filament
calculated in the RPY approximation begins to deform in a fundamentally three dimensional
way despite the initial configuration being entirely planar. This ultimately leads (see Figures
4.22 and 4.23 in particular) to the filament loop relaxing through the third dimension exactly
as we had previously found in the case where the initial configuration was slightly perturbed
out of the x — y plane (published in [26]). This explains how the change from the resistive
force theory (RFT) approximation which merely assigns anisotropic friction coefficients
to the full Rotne-Prager-Yamakawa (RPY) mobility tensor which can potentially (and, in
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Fig. 4.9 The total displacement in the y direction y, at dimensionless time ¢t = 0.1 using the
Rotne-Prager-Yamakawa tensor at A = 0.5.

this case, actually does) qualitatively affect the entire shape of the filament leads to this
new instability. It therefore appears that even strictly constraining the initial state of the
ferromagnetic microswimmer to the x — y plane cannot assure long term stable planar motion
when more accurate representations of hydrodynamic interactions are taken into account.
The time after which the filament relaxes to the S-like shape is determined by the
parameters Cm and . Since the figures 4.6 - 4.11 show results calculated up to t = 0.1,
whereas Fig. 4.14 shows that the metastable swimming regime only lasts up to approximately
t = 0.009, it may be concluded that by choosing appropriate values for the governing
parameters it is possible to prolong the swimming regime considerably. Nevertheless, from
the results described here it is evident that the accuracy of the approximations used to
model hydrodynamic interactions is crucial to predicting the properties of ferromagnetic

microswimmers.
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Fig. 4.10 The total displacement in the y direction y. at dimensionless time ¢

Rotne-Prager-Yamakawa tensor at A = 2.
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Fig. 4.11 The total displacement in the y direction y. at dimensionless time ¢t = 0.1 using the

Rotne-Prager-Yamakawa tensor at A = 4.
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Fig. 4.12 The y coordinate of the center of mass as a function of dimensionless time:
resistive force theory and more sophisticated methods. Cm = 400, @ = 20880.25.
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Fig. 4.13 The y coordinate of the center of mass as a function of dimensionless time: a closer
look at the precision of the RPY approximation. Cm = 400, @ = 20880.25.
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Fig. 4.14 The y coordinate of the center of mass as a function of dimensionless time at
Cm =288, ® =4800, §,/{ =1.75,A =0.5.
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Fig. 4.15 The filament shape at t = 0.002, Cm = 288, w = 4800, §,/{ =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.16 The filament shape at t = 0.003, Cm = 288, w = 4800, §,/{; =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.17 The filament shape at t = 0.004, Cm = 288, w = 4800, {,/{ =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.18 The filament shape at ¢t = 0.005, Cm = 288, w = 4800, §,/{; =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.19 The filament shape at t = 0.006, Cm = 288, w = 4800, {,/{ =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.20 The filament shape att = 0.013, Cm = 288, w = 4800, §,/{; =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.21 The filament shape at t = 0.014, Cm = 288, w = 4800, {,/{ =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.22 The filament shape at t = 0.015, Cm = 288, w = 4800, {,/{; =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.23 The filament shape att = 0.016, Cm = 288, w = 4800, §,/{; =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.24 The filament shape att = 0.017, Cm = 288, w = 4800, §,/{; =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.25 The filament shape at t = 0.018, Cm = 288, w = 4800, {,/{ =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.26 The filament shape att = 0.019, Cm = 288, w = 4800, §,/{; =1.75,A = 0.5 in
the RFT (blue) and RPY (red) approximations.
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Fig. 4.27 The filament shape at r = 0.02, Cm = 288, @ = 4800, {,/{; = 1.75, A = 0.5 in the
RFT (blue) and RPY (red) approximations.
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4.1.2 The role of twist in ferromagnetic microswimmers

In the previous section we analyzed the swimming behavior of a two dimensional config-
uration of the ferromagnetic filament where the effects of twist were absent by definition.
Let us now explore the full three dimensional dynamics of the same configuration including
the effects of twist. The initial conditions are unchanged for the initial x; and y; (given in
(4.1) and (4.2) respectively), however this time we also impose a slight perturbation in the z

direction

where « is an arbitrary small constant parameter. The role of different values of
in a constant magnetic field has been explored in previous work [26], for the purposes of
this discussion we shall take o = 10~*. Ultimately, the larger the value of « the faster the
filament will relax to a stable state in which the filament’s center of mass is stationary.

We begin by examining the filament configurations for a representative set of parameter
values chosen to correspond to those used in a previous work, where the basic filament
dynamics were described in the resistive force theory approximation and neglecting the
effects of twist [27]. We show two important snapshots of the dynamics of the filament in
Figures 4.28 and 4.29, where four different filament configurations (resistive force or RPY
hydrodynamics, with or without the effects of twist) are superimposed on top of each other
at the same instant to show the differences. These results enable us to distinguish the relative
importance of the effects of twist from the impact of different hydrodynamic approximations.
As seen in Fig. 4.28, the two cases where the Rotne-Prager-Yamakawa tensor was used
relax to the stable S-like state faster than the two configurations that employed the resistive
force theory approach of anisotropic friction coefficients. Fig. 4.29 shows a much later
stage where all four filaments have transitioned to the stable S-like state and shows that,
despite the fairly small twist diffusion constant used (dyp = 1) the use of a more accurate
approximation for the calculation of the hydrodynamic interactions has a considerably larger
impact on the overall dynamics of the filament than the effects of twist. These conclusions
are further supported by the time dependence of the center of mass coordinate in the y
direction (the direction of motion for the U-like metastable state before it relaxes to the S-like
state and the filament’s center of mass ceases to swim), shown in Figures 4.30 and 4.31 for
different values of the twist diffusion constant d and in both the resistive force theory and
the RPY approximation. To further illustrate the role of twist as distinct from any impact of
hydrodynamic approximations, we also show snapshots of filament configurations at different

times computed in the RFT approximation with dp = 1 in x — y and x — z projections shown
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in Figures 4.32, 4.33 and 4.34. All three snapshots are taken during the transition period
from the propulsive U-like state and the stationary S-like state, since the effects of twist are
non-existent in purely planar motion. It is easy to see from these three snapshots that while
taking the effects of twist into account does induce minor quantitative changes in the shape
of the filament during the transitionary regime, these do not affect the overall dynamics of
the filament in any qualitatively important way and may be reasonably neglected in many
cases of practical interest.

It may be concluded that for the kind of ferromagnetic microswimmers studied in this
work the effects of twist are not particularly important unless the filament’s twist diffusion
constant is extremely small whereas hydrodynamic interactions play a crucial role and their
accurate calculation is of paramount importance to precisely calculating the dynamics of the

microswimmers.

dimensionless time = 0.0028

=—=RFT without twist
=—=RPY without twist
1 RFT w/ twist, dj = 1

—RPY w/ twist, dO =1
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-1.5 -0.5

Fig. 4.28 The role of twist and different hydrodynamic approximations in the dynamics of
the fully 3D ferromagnetic microswimmer at t = 0.0028. o = 1074, Cm= 288, w = 4800,
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dimensionless time = 0.0153
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1 =—RPY without twist
RFT w/ twist, d0 =1

—RPY w/ twist, d0 =1
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Fig. 4.29 The role of twist and different hydrodynamic approximations in the dynamics of
the fully 3D ferromagnetic microswimmer at t = 0.0153. @ = 1074, Cm = 288, » = 4800,
A=05,8,/8 =1.75.
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Fig. 4.30 The role of twist at different values of the twist diffusion constant in the dynamics
of the fully 3D ferromagnetic microswimmer in the resistive force theory (RFT)
approximation. & = 1074, Cm = 288, w = 4800, ¢, /& = 1.75.
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Fig. 4.31 The role of twist at different values of the twist diffusion constant in the dynamics
of the fully 3D ferromagnetic microswimmer in the Rotne-Prager-Yamakawa (RPY)
approximation. & = 10~*, Cm = 288, @ = 4800, A = 0.5.
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Fig. 4.32 Comparison of the filament shapes with (shown in red) and without (shown in blue)
the effects of twist taken into account. Dimensionless time ¢ = 0.0039,Cm = 288, @ = 4800.
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Fig. 4.33 Comparison of the filament shapes with (shown in red) and without (shown in blue)
the effects of twist taken into account. Dimensionless time ¢ = 0.0052,Cm = 288, 0 = 4800.
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Fig. 4.34 Comparison of the filament shapes with (shown in red) and without (shown in blue)
the effects of twist taken into account. Dimensionless time t = 0.0078,Cm = 288, @ = 4800.
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4.2 Ferromagnetic filaments with a fixed end (cilia)

The typical model situation for a ferromagnetic filament with a fixed end is as an artificial
cilia, with a view towards potential application as a microfluidic mixer. In this scenario
one of the filament’s ends is fixed (considered to be attached to a wall located in the x —y
plane, though we do not consider the hydrodynamic effects of the wall for simplicity) and
the other is free to be actuated by an external rotating magnetic field. We have described
the basic dynamics of such a system in a previous work [14], neglecting hydrodynamic
interactions and the effects of twist entirely. While the latter may indeed be neglected from
physical considerations, as we would naturally expect a high twist diffusion constant for
any artificial cilia useful for mixing microfluids, the effect of hydrodynamic interactions is
worth investigating. While it is natural to expect any corrections to the shape of the cilia to
be quantitative rather than qualitative, the approximation of hydrodynamic interactions will
also enable us to calculate the flow fields induced by the ciliary motion, which is in turn of

crucial importance to describing the efficiency of any prospective mixing device.

The filament is initially defined to be perfectly straight in the z direction. An external
magnetic field rotating in the x — y plane is then applied so that H = Cm(cos ot,sin @t,0).
The magnetic field then induces bending in the filament, the extent of which depends on
the value of the magnetoelastic number, and the bent filament rotates synchronously with
the external magnetic field. An example of a typical filament configuration is shown in Fig.
4.35 for different types of hydrodynamic approximations. Evidently, while the basic mode of
behavior remains, the degree to which the filament bends is changed substantially. It should
be noted, however, that neither resistive force theory nor the Rotne-Prager-Yamakawa tensor
take into account the shielding effect of the wall, which will introduce an error dependent on
the distance from the wall. Appropriate corrections will be introduced into the model in the

future.

The use of the Rotne-Prager-Yamakawa tensor and the linearity of the Stokes equations
enables us to calculate the flow fields that surround the cilia. In Chapter 2.4 we obtained the
expression (eq. (2.80))

u(r) = /G(r—r’)-f(r’)dr’. (4.7)

In the context of our numerical model, each marker point essentially exerts a force
f = Zi.’;l it yl._jlv j on the surrounding fluid, which lets us calculate the fluid velocity at

an arbitrary point by numerically integrating (4.7). In order to avoid numerical issues with
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Fig. 4.35 Filament configuration at # = 0.02 for different hydrodynamic approximations.
Cm =288,  =4800, §,/{ =1.75,A =0.5.

the integral (4.7), we employ a regularized version introduced by Cortez [19], which in
dimensionless form reads
Jo— |r|2_|_2g§ It ror 7 438)
(2 +€2)"2 " (Ie2 +€2)2
where € is a small regularization parameter. We use the value € = 0.02. An example
of a typical 3D flow field obtained from (4.7) is shown in Fig. 4.36. Since the full 3D
visualization is difficult to interpret directly, we also show two x — y projections at two

different z coordinates - z= 0.5 in 4.37 and z = 1 in 4.38. Evidently, the rotating filament
induces a circular flow pattern generally conducive to fluid mixing. Atz < 1 a vortex close
to the filament may be seen (Fig. 4.37), whereas the flow above the filament (Fig. 4.38) the

flow pattern is more uniform.

In order to understand the impact of the primary dimensionless parameters that govern
the motion of the filament - Cm and the dimensionless frequency @ we proceed analogously
to Section 4.1.1 and conduct a comprehensive series of simulations for a wide range of values
of these parameters and measure the resulting fluid velocity at a fixed point. Since the overall
flow pattern does not change qualitatively so long as the external field remains confined to

rotating in the x —y plane, we expect the results to be indicative of the kind of values for
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\

Fig. 4.36 Flow field induced by the rotating filament at # = 0.005, the contour lines denote
the dimensionless fluid velocity magnitude. Cm = 288, @ = 4800, A = 0.5.

Cm and  that might be chosen for a reasonably efficient microfluidic mixer. The mean
dimensionless fluid velocity values at the point ro = (1,1,0.5) as functions of the parameters
Cmand L/L, = ®'/4 are shown in Fig. 4.39. We can see that as the magnetoelastic number
Cm is increased, the range of dimensionless frequencies at which the mean fluid velocity is
largest is more and more constrained.
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Fig. 4.37 Flow field induced by the rotating filament at # = 0.005 in the x — y plane at
z7=0.5, the contour lines denote the dimensionless fluid velocity magnitude while the arrows

288, w = 4800, A =0.5.

show the direction and magnitude of the velocity vectors. Cm
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Fig. 4.38 Flow field induced by the rotating filament at ¢

288, w = 4800, A =0.5.

the direction and magnitude of the velocity vectors. Cm
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Fig. 4.39 Mean dimensionless fluid velocity induced by the rotating filament at # = 0.005 at
the point ro = (1,1,0.5), the contour lines denote the dimensionless fluid velocity
magnitude quantified by the color scale shown on the right. A = 0.5.
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4.3 Superparamagnetic filaments

Up until this point in the chapter we have only concerned ourselves with ferromagnetic
filaments. While it is true that most of the research we have done is focused on ferromagnetic
filaments, the model we have formulated in Chapters 2 and 3 describes superparamagnetic
filaments as well. The basic dynamics of superparamagnetic filaments with free ends are
well known. In a constant magnetic field, the filaments form hairpin-like shapes [12], which
are metastable. In a time varying field these hairpins may swim depending on the kind of
field that is applied.

We begin by once again taking advantage of an opportunity to verify the results of
our model against the existing literature. To do so, we apply a constant magnetic field in
the y direction and set the initial conditions of the filament to the same two dimensional
configuration we used to investigate the basic properties of ferromagnetic filaments in section
4.1.1. These are given by equations (4.1), (4.2) and (4.3). We therefore have an almost straight
configuration slightly bent in the direction of the applied field. Since superparamagnetic
filaments tend to align with the external field, this represents a suitable setting to observe the
formation of the metastable hairpin-like shapes.

We carry out numerical simulations over a wide range of values for the magnetoelastic
number Cm using the same stopping condition as before - each calculation is carried out until
the change in the maximal curvature in the filament over the last 100 timesteps decreases
below 0.1%. A representative series of resulting configurations is given in Figures 4.40, 4.41,
4.42 and 4.43. Of the eight configurations portrayed in the aforementioned figures the first
five are examples the characteristic hairpin shapes described in [12], [13] and elsewhere,
while the last three correspond to the higher order deformation modes described by Erglis
et al in [13]. Both types of shapes have also been observed experimentally (also detailed in
[29D.

The shapes observed in numerical calculations using the model established in this work
fully conform to the critical values of the magnetoelastic number described in [13] and
previous works. In particular (here and elsewhere the critical values will be given in accor-
dance with the definition of the magnetoelastic number used in this work which may differ
by a constant factor of 4 from publications that use 2L for the length of the filament), the
critical value for the hairpin formation (referred to as the first odd mode in the reference
article) is given as Cm. = m>/2 and we observe hairpin formation starting from Cm ~ 5.
The higher order shapes are described in [29] at Cm = 32, we also begin to observe them
in the interval 30 < Cm < 35. This result constitutes a further verification of our model, in
particular the implementation of superparamagnetic filaments appears to be in full accor-

dance with previous results (where direct comparison is possible), including results derived
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from entirely different formulations of the governing equations (such as the tangent angle
formalism) which have been verified experimentally. In addition, the maximal curvature
of the metastable superparamagnetic filament shapes as a function of the magnetoelastic
number Cm is given in Fig. 4.44.
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Fig. 4.40 2D hairpin configuration of the superparamagnetic filament in a constant field with
Cm = 6 (left), Cm = 8 (right).
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Fig. 4.41 2D hairpin configuration of the superparamagnetic filament in a constant field with
Cm = 12 (left), Cm = 20 (right).
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Fig. 4.42 2D hairpin configuration of the superparamagnetic filament in a constant field with

Fig. 4.43 2D configuration of the superparamagnetic filament in a constant field with
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Fig. 4.44 Maximal curvature K., of the metastable superparamagnetic configurations in a
constant field as a function of the magnetoelastic number Cm.
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Partly inspired by the recent article of Vach and Faivre [73] we explore the dynamics of the
filament in a magnetic field configuration that is somewhat different from those described in
most of the pre-existing literature. The field is given by H= Cm(sin( cos(@t)),cos(B cos(wt)),0),
with B as a new free parameter. The purpose of using such a field is to facilitate swimming
in a particular direction, specified by the parameter 3. All calculations in this section are
conducted in the resistive force theory approximation with the classical value {,/{ = 2. Our
parameter space is therefore expanded to Cm — @ — . Using the implicit backward Euler
(IBE) scheme with a timestep of 2- 10~® and a pre-formed hairpin (obtained from a linear
configuration in the x — y plane using a constant magnetic field as described previously in this
section) as an initial condition, we explore the filament velocity over a representative number
of identical periods of motion as a function of each of the three parameters while holding the
other two constant. In the case of a constant 8 = 0.5 the filament exhibits a stable pattern
of motion, but only within a narrow range of the parameters Cm and @, as shown in figures
4.45 and 4.46, respectively.
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Fig. 4.45 Mean dimensionless filament velocity as a function of the magnetoelastic number
Cm for B = 0.5, @ = 16000.
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Fig. 4.46 Mean dimensionless filament velocity as a function of the dimensionless field
frequency o for B = 0.5, Cm = 200.
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The dependence of the dimensionless filament velocity on the newly introduced parameter
B is somewhat more intriguing. As shown in Fig. 4.47, there appears to be a quadratic
dependence of the velocity on increasing values of the parameter 8 until a particular critical
value at approximately B..isicat = 1.2, after which the motion ceases abruptly. To the best
of our knowledge, this finding has not been described before and may warrant further

investigation should the configuration prove interesting for potential applications.
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Fig. 4.47 Mean dimensionless filament velocity as a function of the parameter 8 for
® = 16000, Cm = 200.
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4.4 Magnetic dipole with an elastic tail

In the last few years a great deal of attention has been garnered by efforts to develop efficient
externally actuated targeted delivery mechanisms for biomedical applications. In particular,
in light of two recent articles by Pak, Gao et al [63] [34] which detailed the properties of a
system consisting of a permanent magnet attached to a non-magnetic flexible tail we have
been motivated to consider a new filament configuration where a flexible non-magnetic tail is
attached to a magnetic dipole.

Due to the comprehensive nature of the numerical model and its theoretical underpinnings
described in Chapters 2 and 3, only minimal modifications to our model are required to
accommodate this new configuration. In particular, the only magnetic force we apply to the
filament now comes in the form of a single boundary condition on the dipole itself, which in

dimensionless form reads

d%r

32| = Cm(h—(h-t)t), (4.9)

where the magnetoelastic number is now defined as Cm = mHL/A with the dipole
moment m. The overall dynamics are controlled by the magnetoelastic number Cm, the
ratio of the total filament length L to the elastic penetration length L, = (A/{y®)'/* and
the ratio of the dipole length L; and the total filament length L. In terms of the numerical
implementation, the dipole is modeled by the last discretization segment of the whole filament,
with the boundary condition given in equation (4.9) replaced by the standard finite difference
approximations used throughout this work. Both ends of the segment representing the dipole
experience a force that is equal in magnitude and opposite in sign to satisfy the force and
moment balance requirements discussed in Chapter 2. As for the dipole length, except where
specifically noted otherwise, we use the ratio L; /L = 0.1. The fact that the last segment of
the filament now has different length also naturally modifies the resistive force theory (RFT)

mobility tensor, given in Chapter 3 as

Bt = <I+ & g C") pWrepWr, (4.10)

since the finite difference operators D) naturally include the segment length (see Ap-
pendix C for the operator definitions). No such modifications are made to the Rotne-Prager-
Yamakawa (RPY) mobility tensor.

Given an initially straight configuration oriented in the z direction it is found that the
device exhibits propulsive behavior in both linearly oscillating (in either the x or y directions)

and rotating (in the x — y plane) external magnetic fields, swimming perpendicularly to the
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direction of the applied field. The propulsion is due to a bending deformation wave that
propagates from the dipole down the elastic tail and induces a propulsive reaction force
in the opposite direction, thus the swimmer propels itself head-first. This may be seen in
configuration snapshots taken during a single period of the magnetic field shown in Figures
4.48 and 4.49. We also show a representative example of the center of mass displacement
as a function of time in Figure 4.50. It is apparent that the characteristic back and forth
pattern of motion that was also observed in ferromagnetic microswimmers (see section 4.1)
is only seen during propulsion in a linearly oscillating field, whereas swimming in a rotating
magnetic field displays a steady, continuous pattern of motion. It also seems that, all other

parameters being equal, swimming in a rotating magnetic field is slightly more efficient.

We have published the results so far outlined in this subsection in an article in the
journal Physical Review E [55] along with a detailed theoretical analysis of the swimmer
dynamics. However, since the publication predates the introduction of more sophisticated
approximations of hydrodynamic interactions in our model, it is interesting to further explore
the impact of different hydrodynamic approximations on the dynamics of this microswimmer
as well as the impact of the dipole length to total length ratio Ly /L.

First, let us review a representative sample of the center of mass displacements obtained
using different hydrodynamic approximations. This is shown in Figure 4.51, with RF T,
denoting the resistive force theory mobility tensor calculated taking into account the extended
length of the segment containing the dipole, whereas the usual RFT and RPY approximations
neglect it. Similarly to our findings in previous filament configurations, it appears that
the friction coefficient ratio §,/{, = 1.75 provides a closer match to the results obtained
in the Rotne-Prager-Yamakawa approximation than the classical value {,/{, = 2. The
impact of taking into account the extended length of the last segment of the filament is to
slightly increase the velocity of the swimmer, however, the overall pattern of motion remains
qualitatively unchanged. An appropriate adjustment to the Rotne-Prager-Yamakawa tensor

will be considered in future research.

To broadly appreciate the impact of different frequencies for the external magnetic field
(as expressed by the ratio L/L, = ®'/%) we have calculated the dimensionless velocity of
the center of mass of the microswimmer in both linear and rotating field configurations
at two representative values of the magnetoelastic number. The results, calculated in the
modified resistive force theory (RFT) approximation described previously, are shown in
Fig. 4.52. The velocities display the usual quadratic dependence on the external field
frequency described in previous sections and the published literature, however, it appears
that the rotating field configuration produces considerably (by a factor of 1.5 — 2 on average)

higher swimming velocities, partly explained by the absence of the back and forth movement
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pattern observed in linearly oscillating fields (see Fig. 4.50 for a comparison). Furthermore,
higher magnetoelastic numbers do not merely increase the resulting velocities observed in
the motion of the microswimmer but also increase the numerical value of the optimal field
frequency.

To complete our computational study of this microswimmer configuration we also analyze
the impact of different values of the ratio of the dipole length to the total length of the
microswimmer L, /L in both linearly oscillating and rotating magnetic fields. Once again,
the modified RFT approach is used to approximate the effect of hydrodynamic interactions.
The results, displayed in Figures 4.53 and 4.54, show a consistent pattern: larger values of
the ratio L, /L are advantageous in comparatively slowly varying magnetic fields but produce
the slowest microswimmers when large frequencies are chosen. This effect does not seem to
directly depend on the value of the magnetoelastic number.

In summary, we have comprehensively described the general properties of a novel
microswimmer assembled by attaching an elastic tail to a magnetic dipole in different
configurations of the external magnetic field. The impact of all of the relevant parameters
has been quantitatively described and the analysis conducted provides clear guidance to

designing efficient magnetic microswimmers.
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Fig. 4.48 Configuration of a dipole with an elastic tail in a linearly oscillating field at
t =0.0015 (left) and t = 0.0017 (right). Cm =10, L/L, =17.5, §,/& = 1.75.
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Fig. 4.49 Configuration of a dipole with an elastic tail in a linearly oscillating field at
t =0.0019 (left) and t = 0.0021 (right). Cm =10, L/L, =17.5, §,/& = 1.75.
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Fig. 4.50 Displacement of the swimmer’s center of mass in a linearly oscillating (blue) and
rotating (red) magnetic field. Cm =10, L/L, =7.5, {,/§ = 1.75.
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Fig. 4.51 Displacement of the swimmer’s center of mass in a linearly oscillating magnetic
field using different hydrodynamic approximations. Cm = 10, L/L, = 8.
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Fig. 4.52 Velocity of the swimmer’s center of mass using the modified RFT approximation,

L,/ G = 1.75.
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Fig. 4.53 Velocity of the swimmer’s center of mass using the modified RFT approximation at
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Fig. 4.54 Velocity of the swimmer’s center of mass using the modified RFT approximation at
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4.5 Multiple interacting filaments

As we noted in Chapter 3, the way we have formulated our model permits straightforward
generalization to an arbitrary number of filaments. While filament ensemble calculations are
subject to fairly severe computational constraints, as described in Section 3.3, we do have a
brief selection of results to elucidate the hydrodynamic coupling between filaments in small
ensembles of two or three filaments.

Let us take the same initial conditions as in sections 4.1.1 and 4.1.2 (for the two dimen-
sional and three dimensional case, respectively) and generalize them to an arbitrary number
of ferromagnetic filaments with free ends arranged in a linear sequence in the y direction so
that

AN = (1-(0.017/2)%R), (4.11)

(N) _ . X
7" =0.01sin(— 517 7a) VY (4.12)
N = ax;, 4.13)

where N denotes the filament index (running from 1 to the number of filaments in the
system) and 7Y is the distance between two consecutive filaments in the y direction. For
the purposes of this section we shall take Y= 1.5 and N < 3, where the latter restriction is
imposed for computational reasons. The parameter o = 0 in the 2D case (see section 4.1.1 for
the single filament treatment) and o = 10~% (as in section 4.1.2). All calculations are done
using the method of lines (MOL) scheme with p = 100 and hydrodynamic interactions are
computed to the Rotne-Prager-Yamakawa (RPY) level with A = 0.5. Let us first consider the
two dimensional case, where we already established in section 4.1.1 that the basic dynamics
of the filament consist of a metastable swimming regime which (in the RPY approximation)
ultimately resolves into the S-like shape where the filament’s center of mass is stationary.
In Fig. 4.55 we have juxtaposed this result from section 4.1.1 with the relative y coordinate
(with respect to the initial condition) of the center of mass of both filaments in a two filament
ensemble, whereas the equivalent three dimensional situation is portrayed in Fig. 4.56. We
can see that in both cases the swimming regime is still only metastable just as it was in the
case of a single filament, with the relaxation time being approximately conserved. However,
unlike the single filament case, the stable S-like shapes which are the ultimate result of both
the single filament and the ensemble configurations are no longer stationary. In fact, in

the two filament ensemble both filaments appear to be moving towards each other after the
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relaxation to the stable S-like configurations, solely as a result of hydrodynamic interactions,
at least to the level of approximation provided by the Rotne-Prager-Yamakawa tensor. This
may be further illustrated by visualizing the resulting flow field at + = 0.0108 using the same
methodology as in section 4.2, as shown in Fig. 4.57. The two filaments, after relaxing to the
stable S-like shapes, appear to have synchronized their periodic oscillations in such a way so
as to mirror each other.

01 I I I I I I I I I
single filament
filament 1 of 2
014 filament 2 of 2 |
=
011 ‘\ g
02F .
[&]
==
-03r .
04 r g
051 t \1 g
0.6 ! 1 L I \I__'--’—’I--’—’—’I_;D I 1 |

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
dimensionless time

Fig. 4.55 Relative dimensionless center of mass y coordinate for a single filament and a two
filament system with respect to dimensionless time in the 2D case. Cm = 288, @ = 4800,
o =0.

The results for the two filament system inspire a natural level of curiosity with respect to
further generalization: what happens if we add more filaments to the ensemble? Given the
similarity of both the 2D and 3D cases, it is sufficient to consider the 3D case with & = 10~#
and N = 3. The results are shown in Fig. 4.58. It appears that the general pattern of the two
filament ensemble hold for the two outer filaments in this new configuration, whereas the
middle filament is essentially stationary due to the mutually canceling effect of the two outer
filaments.
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Fig. 4.56 Relative dimensionless center of mass y coordinate for a single filament and a two
filament system with respect to dimensionless time in the 3D case. Cm = 288, @ = 4800,
a=10"*

The results we have obtained for the ensemble of ferromagnetic swimmers can be
generalized to arbitrarily many swimmers as long as the linear array pattern is preserved, with
any even number of filaments mirroring the results of the two filament system and any odd
number of filaments echoing the results of the three filament ensemble. The methodology
outlined here can be used to describe any arrangement of magnetic filaments as long as
sufficient computational resources are available.
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Fig. 4.58 Relative dimensionless center of mass y coordinate for a single filament and a three
filament system with respect to dimensionless time in the 3D case. Cm = 288, @ = 4800,
a=10"%



Chapter 5
Results overview and future perspectives

In this chapter we briefly summarize the main results obtained in this dissertation and describe
potential avenues for further research.

The primary purpose of this work was to construct a comprehensive and flexible com-
putational model that would enable us to numerically obtain accurate descriptions of the
dynamics of a wide range of filament configurations under the influence of different configu-
rations of external magnetic fields. We have formulated the theoretical foundations of such a
model in Chapter 2 using the known potential energy densities associated with the different
phenomena a flexible magnetic filament is subject to when immersed in a Stokesian fluid and
actuated by an external time dependent magnetic field. Utilizing a variational approach we
then derived the appropriate force densities and formulated equations of motion. We also
described three different methods of calculating the mobility tensor used to calculate the
impact of hydrodynamic interactions on the filament dynamics.

We then discretized the equations of motion in Chapter 3, constructing two finite differ-
ence schemes to solve the discrete equivalents of the governing differential equations and
described our dual implementation of the numerical model in two different programming
languages - MATLAB and Julia. We also showed how the numerical model we had obtained
could be generalized quite straightforwardly to the case of arbitrarily many hydrodynam-
ically coupled filaments. The computational characteristics of the model were examined
empirically, establishing both the numerical accuracy with respect to the primary numerical
parameters and the computational requirements for calculating the filament dynamics at
different levels of approximation. It is shown that certain hydrodynamic approximations -
chiefly the method of induced forces, as implemented in the HYDROLIB library, but also
some implementations of the Rotne-Prager- Yamakawa tensor are quite expensive compu-
tationally on modern computer hardware, even to the point of making certain calculations

completely impractical. It is therefore of paramount importance to establish the importance
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of different levels of hydrodynamic approximations to the dynamics of magnetic filaments in

different cases.

We therefore obtained empirical results for the benchmark case of a planar ferromagnetic
microswimmer with free ends the dynamics of which we had described in previous work.
The accuracy of the Rotne-Prager-Yamakawa approximation was established by comparisons
with both the more accurate HYDROLIB library and previous results.

The dynamics of a fully three dimensional ferromagnetic microswimmer were described
using the Rotne-Prager- Yamakawa approximation, obtaining a novel result: the swimming
regime which was previously considered stable from results obtained in the resistive force
theory approximation are in fact merely metastable when more accurate models of hydro-
dynamic interactions are considered, although the instability can in fact be minimized by
an appropriate choice of the primary dimensionless parameters that govern the filament
dynamics - the magnetoelastic number Cm and the dimensionless field frequency @. We also
utilize the computational efficiency of our model implementation to map out the parameter
space Cm — m, thereby clearly delineating the precise regions of the parameter space where
the level of hydrodynamic approximation matters the most.

We then proceeded to examine the effects of twist on the dynamics of ferromagnetic
microswimmers and showed that, even for small values of the dimensionless twist diffusion
do, the effects of twist are fairly negligible in comparison to the impact of hydrodynamic
interactions as calculated to the Rotne-Prager- Yamakawa level. We also find that the dynamics
of the ferromagnetic swimmer with the Rotne-Prager-Yamakawa approximation are even

more unstable than previously established at the resistive force theory level.

Ferromagnetic cilia are investigated using various approximations to the hydrodynamic
interactions. Substantial differences in the filament shape are found compared to previously
published data. We also utilize the properties of the Stokes equations to calculate the fluid
flow field induced by the rotating cilia and establish the dependence of the mean velocity of

the flow in the vicinity of the filament on the governing parameters Cm and .

A modified rotating field configuration for superparamagnetic filaments with free ends is
employed to characterize the swimming of superparamagnetic filaments at a particular angle,
controlled by the external field. The velocities of the swimming filament are calculated in a
wide range of the parameters Cm and @ in the resistive force theory approximation, showing
that only narrow sets of the field parameters actually permit propulsive motion. It is also
shown that the velocity depends approximately quadratically on the newly introduced field
parameter 3 until a critical B ~ 1.2 is reached, at which point the filament abruptly ceases to

swim.
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We have investigated a novel system consisting of an elastic tail attached to a magnetic
dipole. It is shown that this configuration exhibits propulsive behavior in both linearly
oscillating and rotating magnetic fields, with overall higher velocities than the other swimmers
considered in this work. The impact of different hydrodynamic approximations as well as
the ratio of the dipole length to the overall length of this microswimmer are numerically
investigated for different values of the magnetoelastic number Cm and the dimensionless
field frequency ®.

Filament ensembles of two and three ferromagnetic swimmers are investigated, establish-
ing the existence of a hydrodynamic coupling between the stable S-like shapes. The same
coupling also exists in the three filament system when the outer two filaments are examined,
while the middle filament is effectively shielded by the opposite flows induced by the outer
filaments.

To summarize, we have constructed a comprehensive model capable of calculating the
single and ensemble dynamics of ferromagnetic and superparamagnetic filaments in different
external magnetic fields to different levels of approximation and used it to derive a number
of novel results, elucidating several previously unknown features of these systems compared
to the published literature.






Conclusions

1. A comprehensive numerical model capable of simulating both the single and ensemble
dynamics of magnetic filaments has been formulated and implemented in the form
of two software packages. It allows one to take into account the effects of bending
and twist for both ferromagnetic and superparamagnetic filaments in arbitrary external
magnetic fields, handling hydrodynamic interactions at three distinctly different levels
of approximation and the flexibility of the model implementation allows for easy
extension to different boundary conditions and filament configurations. The accuracy

and computational requirements of the model have been extensively investigated.

2. The swimming behavior of ferromagnetic filaments with free ends, previously consid-
ered stable at least in the two dimensional case, has been shown to be only metastable
when more accurate hydrodynamic approximations are used. The instability has been
quantified with respect to the governing parameters of motion - the magnetoelastic

number Cm and the dimensionless field frequency .

3. The dynamics of ferromagnetic cilia in rotating fields have been investigated taking
into account hydrodynamic interactions for the first time. Substantial differences in
the filament shape due to the hydrodynamic interactions have been found and the
flow fields surrounding the rotating filaments quantified, supporting the potential

applications of ferromagnetic artificial cilia in microfluidic mixing.

4. A new kind of microswimmer consisting of an elastic tail attached to a magnetic dipole
has been extensively described numerically and shown to be more efficient in terms of

swimming velocity than previously proposed types of microswimmers.

5. Small ensembles of ferromagnetic filaments have been investigated numerically,
demonstrating the existence of a hydrodynamic coupling between the stable S-like
states.
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Appendix A

Superparamagnetic energy term
derivation

The purpose of this appendix is to compute the energy of the magnetic interaction between
the superparamagnetic filament and the external magnetic field. For the purposes of this
derivation, the filament is approximated by a semi-infinite paramagnetic cylinder. We also
assume knowledge of the theory of classical electromagnetism, giving references where
appropriate.

For a general magnetic object subjected to an external magnetic field the interaction

energy reads

1
E:——/M~HdV, (A1)
2 )y

where M represents the magnetization, H is the external field and the integration is done
over the volume of the object in question. When an external magnetic field is applied to a
paramagnetic object, the orderly alignment of the magnetic dipoles in the material, which
we assume to be instantaneous for the purposes of this derivation, gives rise to a non-zero
magnetization, directed along the applied field. In component form, this may be given in the

following form [51]

M, = xH, (A2)
M, — ﬁygﬂ, (A3)
n

where M; and M,, denote the tangential (directed along the long axis of the cylinder)

and normal (cross-sectional) components of the magnetization M respectively, H and
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H" are the appropriate components of the external magnetic field and J is the magnetic
susceptibility. Since the demagnetizing tensor, describing the impact of the object’s geometry
in inducing the demagnetizing field, is diagonal for ellipsoids [51], it may be reduced to three
coefficients, which in our case are Ny = N, = N, and N3 = N;. For semi-infinite cylinders
the values are well known in the literature: N, = 27, N; = 0 and expressions for arbitrary
finite cylinders have also been obtained [15]. The analytic values for semi-infinite cylinders
are sufficient for the case of long and thin filaments.

The internal magnetic field induced in the cylinder taking into account the demagnetizing

field may be given in the following form

H"™ = Hf™, (A4)
: N,
H" =™ — M, (A.5)
4r

Using the expressions (A.2)-(A.5) we rewrite the scalar product M - H from equation
(A.1)

XH?

M-H = yH} ~ 1427y’

(A.6)

where we have dropped the superscript in H* and H™ for brevity since only the external
magnetic field will be referred to from now on. Utilizing the fact that H> = H> — H? we
can separate out the terms dependent on the tangential component of the magnetic field, the

remaining term is constant and therefore irrelevant to the integration

Xth

M-H:)CH,2+1+27IX

+ const. (A.7)

We may now formally carry out the integration of the energy given in (A.1), using 7a® as
the cross-sectional area for a cylinder of radius a and keeping an integral factor for ensuring

the orientation dependence

n2a2 x>
E= H-t)%ds. A.
1427y /< t)7ds (A8)

Rewriting this result in terms of the relative magnetic permeability and separating out the

orientation independent part of the magnetic field H we get

2l —1)2H2
:—;F(‘Mﬁl;’ / (h-1)2ds. (A9)



Appendix B

Variational derivation of filament force
densities

This appendix details the derivation of the filament force densities from the energies given
in Section 2.2. Since the bending and twist force densities were already derived in the
aforementioned chapter, we only need to consider the magnetic and stretching force densities
here. For brevity, we do not restate the variational arguments presented in Section 2.3 and

proceed directly to the calculation of the relevant integrals.

The relevant energies from Section 2.3 are restated here for reference. First, the stretching

energy

1 [t or\ >
Estretching: 5/0 A<S) (a) dS, (Bl)

where A(s) is the internal tension of the filament. The ferromagnetic energy is given by

L L or
Emagnetic - MH/ (h : t)dS = MH/ (h : —) dS, (BZ)
0 0 ds

where —Mt is the spontaneous magnetization (per unit length) of the filament and H is

the strength of the external magnetic field. The superparamagnetic energy is given by

L L or 2
Emagnetic = MO/ (h : t)st = MO/ <h : —> ds. (B.3)
0 0 aS
_ a®(u—1)%H? . . .
where My = B TES) e and u denotes the magnetic permeability of the filament with a

as its radius.
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We now proceed to derive the stretching force density in a manner analogous to the

bending energy derived in Section 2.2. The variation of the stretching energy is given by

L
5Estretching:/0 Atétds, (B.4)

which can be integrated by parts to yield

L
5Estretching = (At51‘)’6 —/0 %(At)5rds (B.5)

The relevant force density is now obtained as the functional derivative utilizing the energy

variation (B.5)

. 5Estretching . J Jr
fslretching - _T — a Am (B6)

and the boundary terms in (B.5) can be immediately utilized to derive the boundary

conditions in section 2.5.

For the ferromagnetic term the variation of the energy (B.2) reads

L
8 Emagnetic = MH / h- 8tds. (B.7)
0

Since the magnetic field unit vector h is not a function of the arclength, (B.7) can be

integrated immediately to yield

6Emagnetic = (MHh : 51‘) |é . (B.8)

Obviously, the appropriate functional derivative gives f = 0 in this case, implying that in
the case of a ferromagnetic filament the external magnetic field acts solely upon the ends of
the filament.

For the superparamagnetic case the variation of the energy (B.3) reads

L
OE nagnetic = 2M0/ (h-t)(h-t)ds, (B.9)
0

which may be integrated by parts (again utilizing the fact that h is not a function of the

arclength parameter s) to yield

L 2
8 Eagneric = 2Mo ((ht)h&r)[5 — 20, / (h%) hdrds. (B.10)
0 A
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The appropriate functional derivative now gives us the magnetic force density for the

superparamagnetic case

6Ema onetic 821.
Enagneric = =g = 2Mo (hﬁ> h. (B.11)
This concludes the derivation of the required force densities for chapter 2.3 and the

boundary terms that are used in chapter 2.5.






Appendix C

Derivation of the differentiation

operators for the numerical model

The purpose of this appendix is to derive the finite differentiation operators DY, D@ and
D™ as well as their modified versions that take into account any relevant boundary conditions.
The basic approach to deriving finite difference approximations to the derivatives of smooth
functions is well known [1] and so only the main results will be briefly restated here as a
starting point for our derivation.

If we take an arbitrary function of a scalar parameter f(x;), where the parameter x
has been discretized in a uniform one dimensional grid with the constant spatial step &
using p + 1 marker points indexed by i = 1,2,---,p+ 1, the Taylor series expansion for
f(xix1) = f(xi+ h) reads
h* 9% f

T

fxi+h)=f(x;)+h %

I +..., (C.1)

Xi

Xj
which may be easily rearranged to express a discrete approximation to the derivative

fxi+h)—f(x) df

h © Ox

+0(h), (C.2)

Xi

where we have truncated the series at the first order term with respect to the parameter A,
which corresponds to the order of the error introduced by the discrete approximation using a
finite 4. The left hand side of (C.2) is known as the first order accurate forward difference
approximation to the first derivative of the function f(x;). An identical process of reasoning

also yields the first order accurate backwards difference approximation

af| _ flx)—fxi—h)
ox|. h

Xi

+O(h), (C3)
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whereas combining (C.3) and (C.2) gives the second order accurate central difference

approximation, as the first order error term cancels out

of| _ flxith)—f(xi—h)
ox|, 2h

+O0(h?), (C.4)

so now the convergence of the approximation as the grid spacing & is decreased is
quadratic rather than linear. This process may be continued recursively to obtain even order
approximations to the first derivative up to arbitrary order, though it is usually not particularly
useful to employ approximations of higher than fourth order due to the oscillations introduced

by Runge’s phenomenon [17] unless special grids are used.

Let us now generalize this approach to arbitrary order derivatives on arbitrary uniformly

spaced grids for any level of accuracy we might wish. Suppose we pick a set of points (called

a stencil) we would like to use in an approximate expression for the derivative gx” = f),
.

with known function values f(x;) = fj, where j =i—1,...,i+r. Given the auxiliary index
m = —I,...,r, the appropriate Taylor series reads
m>h? m3h’

f(z) -+ f(3) —+... (CS)

h
fotm = fit TV +

2! 3!

Multiplying both sides of (C.5) by an arbitrary constant a,, and rearranging immediately
yields a set of linear equations for the unknown coefficients a,,, with an equation for each

possible value of the index m

( L %MMJ—< )} m&ﬁZ( ) m%)%ﬂ”fn (C.6)

m=—1,m#0 m=—1,m#0 m=—1,m#0

The coefficient of the n-th derivative is therefore given by ¢, = Y., ,,.om" am.

To illustrate this approach, let us take a simple example and use (C.6) to derive the fourth
order accurate central difference approximation to the first derivative on the symmetric stencil
given by [ =2, r = 2. We then have ¢ = (1,0,0,0) and the resulting system of equations
reads

2 —1 1 2\ [a_, 1
4 1 1 4 B 0

R : (C.7)
8 —11 8|/ a 0
6 1 1 16/ \ a 0
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yielding the coefficient vector a = 1—12 (1,—8,8,—1), which is well known in the literature.
This method is illustrative but not particularly efficient. Fornberg [33] has derived recursive
formulas for the derivation of arbitrarily precise approximations of any order derivative on
grids that may be non-uniform, we have implemented this as part of our numerical model
and therefore have the ability to programmatically generate the necessary coefficients for any
desired finite difference approximation. This enables us to switch the approximation order at
will.

For the sake of clarity, we list the basic differentiation operators used in Chapter 3 in

matrix form with second order accuracy, beginning with the first order operator

3 4 -1 0 0 -0
-1 0 1 0 O -- 0
o -1 o 1 O -~ 0
o= s s ] (€8)
o -~ 0 -1 0 1 O
o - 0 0 -1 0
o -~ 0 0 1 —-43

Evidently, in order to define such operators for a fixed order of accuracy it is sufficient to
specify the diagonal coefficients (—1/2,0, 1/2) and the boundary coefficients (—3/2,2,1/2),
noting that the boundary coefficients on opposite ends are equal in magnitude, reversed in
order and have opposite signs for odd order derivatives and equal signs for even order
derivatives.

Similarly, the diagonal coefficients for the second derivative operator are given by
diag(D(z)) = (1,—2,1), whereas the boundary coefficients are D) = (2,-5,4,—1). The
third order derivative operator is specified by diag(D®) = (=5/2,9,—12,7,—3/2) and
SDB) = (—1/2,1,0,—1,1/2), whereas the fourth order derivative operator (using first order
accuracy here for numerical reasons) can be written as diag(D™*) = §D®) = (1, —4,6,—4,1).

We have now explicitly specified the finite differentiation operators for the first four
derivatives of an arbitrary scalar function defined on a regularly spaced grid. However, as
noted in Chapter 3, we also need to consider modified boundary coefficients for some of the
operators to take into account the boundary conditions of the filament. In particular, we need

to derive the modified operators Dz(;4)’ D,(vlv), Dt(vzv) and D,(ﬂ1 ) used in Section 3.1.

Let us begin with the modified operator D,(; ) used in the calculation of the magnetic force
density for the ends of the filament in the case of a superparamagnetic material, since the
derivation of the appropriate first derivative is relatively compact and will serve to illustrate

the general principle, which we can generalize to the other operators as well.
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First of all, we note that all of the modified differentiation operators differ only in the
boundary coefficients, so we will only concern ourselves with the derivation of those here.
In the case of a superparamagnetic filament with free ends, the boundary condition given in
Section 2.5 implies that we need a differentiation operator for the first derivative that takes
into account the fact that the second derivative must be equal to zero at the boundary. If we
decide to satisfy the boundary condition to second order accuracy, we may take the second
derivative approximation to second order accuracy and first order derivative to third order
accuracy (so the number of points used in the approximation would match) and require that

the following system of two linear algebraic equations be satisfied

82
2r — 512+ 413 — 14 + O(h2) = arl —0, (C.9)
S
~1ry 4 188 = 913 + 214 + O(h*) = 6h %5 . (C.10)
h)

If we multiply (C.9) by 2 and add the two equations together, we obtain

9
71+ 812 — 13+ O(h?) = 6h%7 (C.11)
S

so the modified set of boundary coefficients is D,(n1 ) = (—7,8,—1)/(6h). Since the
constraint that SD®) = 0 is the same in all of our cases, the same approach we have utilized
to derive D,(n1 ) leads immediately to the appropriate coefficients for the other differentiation
operators as well. For instance, the modified fourth order differentiation operator for the

bending term yields 5Dl(;4) =(1,-2,1)/h%.
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