Karlis Podnieks. On the reducibility of function classes. In: *Equations of Mathematical Physics and Theory of Algorithms*, Riga, Latvia State University, 1972, pp. 120–139 (in Russian, English translation: *Automatic Control and Computer Sciences*).

Abstract. N – the set of all natural numbers, \mathbf{F} – the set of all total functions N \rightarrow N, A, $B \subseteq \mathbf{F}$. We say that A is m-reducible to B ($A \leq_m B$), iff there is a recursive operator M such that $f \in A \leftrightarrow M$ (f) $\in B$ for all $f \in \mathbf{F}$. Similarly, 1-reducibility, tt-, btt-, 1tt- and Turing reducibility can be introduced.

Table of contents. 1. Introduction. 2. Definitions of reducibilities and their simplest properties. 3. *m*-reducibility and the arithmetical hierarchy. 4. *m*-reducibility on Σ_1^{fn} . 5. Special classes $F - \{f\}$. 6. Comparing various reducibilities on Σ_1^{fn} . 7. Notes on reducibilities of classes of sets.

Keywords: recursive functions, reducibility, m-reducibility, tabular reducibility, Turing reducibility.

О СВОДИМОСТЯХ КЛАССОВ ФУНКЦИЙ/

К. М. Полниекс

I. Введение

 \mathcal{N} — множество натуральных чисел, \mathcal{F} — множество всех всрху определенных функций из \mathcal{N} в \mathcal{N} , \mathbb{R} — класс всех общерекурсивных функций (орф), \mathcal{F}^o — класс всех предмкатов (множеств) на \mathcal{N} (можно считать, что $\mathcal{F}^o \subset \mathcal{F}$).

Аля классов функций (т.е. подиножеств \mathcal{F}) можно ввести понятия сводимостей, аналогичные тем, которые изучаются для множеств чисел. Эта аналогия сохраняется на уровне простейших свойств этих сводимостей (см. раздел 2).

В разделе 3 доказано существование муниверсальных классов на всех уровнях арифистической исрархии классов функций (см. [I]). Некоторые известные результаты об этой керархии применение м- сводимости повволяет доказывать более просто.

В разделе установлен общий вид полурешетки m -степеней на $\sum_{i=1}^{n}$ (что соответствует р.п. иножествам чисел). Замечены существенные особенности этой полурешетки по сравнению со случаем иножеств чисел, связанине в основном с существованием т.н. особенных классов.

В разделе 5 строятся (своего рода) вложения упорядоченного множества. T — степеней на \sum_1 в полурешетку m — степеней на \sum_1^{n} . Это позволяет перенести некоторые классические результати о несравнимости на случай классов функций.

В разделе 6 приведено несколько теорем о сравнении различных видов сводимости на $\sum_{i}^{i_n}$. Установлено еще одно отличие от случая множеств чисел (теорема 9).

В разделе 7 отмечены те результаты разделов 2 - 6, которые остаются верными для сводимостей классов множеств (см. [1]). Привелены (без доказательств) две теоремы (II и I2), показивающие различие случаев \mathcal{F} и \mathcal{F} а \mathcal{F} обозначения. Начальный кусок $\langle \mathscr{C}(o) - \mathscr{C}(n) \rangle$ фикции $\mathscr{C}(n)$ собозначим через $\mathscr{C}(n)$ Если рассматривать функции из $\mathscr{F}(n)$ как последовательности чисел $\{\mathscr{C}(n)\}$, то понятны обозначения:

0° 0° 1° × 1° 0°

Фиксируем естественнур нумерацир машин Търринга с оракулом из \mathcal{F} : машина с номером m вычисляет с оракулом \mathcal{F} функцир $[m,\mathcal{F}]$ (бить может — частичнур). В частнос ти, [:] есть чрф с номером : Ми будем пользовать ся также следуршей нумерацией всех р.п. множеств:

 $W_i = D(Li_1)$

Понятия (обще) рекурсивного и частично рекурсивного функционала из $N^n \times \mathcal{F}$ в N (сокращения: 0РФ и ЧРФ) считартся известными (см. [1], гл. 15, § 3).

Отображение $M: \mathcal{F} \to \mathcal{F}$ будем называть рекурсивным оператором, если существует ОРФ $F: \mathcal{F} \times \mathcal{N} \to \mathcal{N}$ такой, что для всех \mathscr{C} :

 $M(x) = \lambda x F(x, x)$.

Эначение функции $M(\ell)$ на аргументе x будем обозначать через $M(\ell,x)$.

2. Определения сводимостей и их простейшие свойства

м-сводимость. Пусть А, В ⊆ Э. Тогда А ≤ В, если существует рекурсивный оператор М такой, что:

4 E A CO M(4) EB

для всех $q \in \mathcal{F}$. 1 - сводимость получается стседа, если требовать одно-одно-значность оператора \mathcal{M} .

Понятие рекурсивного изоморфизма: A = B , если су-

1) MM'(x) = M'M(x) = x,

(Неизвестно, имеет ли эдесь место аналог теоремя майхилла о совпадении \equiv_1 и \equiv .)

Табличные сводимости. $A \leq_{t_1} B$, если существует оре $S: \mathcal{F} \to \mathcal{N}$, значения $S(\mathscr{C})$ которого суть номера кортежей вида $\langle m_1, \dots, m_r, \beta \rangle$, где $L^m: \langle \ell 1 \in \mathcal{F} \rangle$ дая всех $\ell: K = K(\mathscr{C}) \geq 1$, а $\beta - K$ -местная сущева функция; притом имеет место:

YEA ⇔ B(ILMI, +IEBI, ..., ILMK, +IEBI)

где "модуль" показывает значение истинности предиката. btt— сводимость получается отседа, если потребовать: $K(x) \leq C_{AB}$, а 1tt— сводимость — если трефовать: $K(x) \equiv 1$.

(Легко видеть, что m - сводимость получится, если требовать одновременно: $\kappa(R) \equiv 1$, $\mathcal{R}(R) = R$ для всех φ .)

T— сводимость. Пусть $B \subseteq \mathcal{F}$. Функционал $F: \mathcal{F} \rightarrow \mathcal{N}$ назовем рекурсивным B , если существует машина E с двумя оракулами, которая для любой $\mathcal{H} \in \mathcal{F}$ останавливается, напечатав число $F(\mathcal{H})$, и при этом:

I) первому оракулу задартся только вопросы вида $\Re(\infty) = 2$

2) второму оракулу задартся только вопросы вида "[m, <] ∈ В ? ", соблюдая условие [m, <] ∈ F. (Это определение легко сформулировать и вполне точно - на языке конфигураций.)

Если $A, B \subseteq F$ то $A \leq_T B$ означает, что характеристический функционал (хф):

$$H_{A}(e) = \begin{cases} 0, e c \pi n & \forall \in A, \\ 1, e c \pi n & \in A. \end{cases}$$

рекурсивен в β . В частности, A есть рекурсивный класс, если H_A рекурсивен в β (т.е. H_A есть ОРФ).

Для всех рассматриваемых сводимостей непосредственно роверяется:

рефлексивность и транзитивность.

-2) Если B - рекурсивный класс и $A \le B$, то A - то-

Итак, можно ввести все соответствующие эквивалентности и степени: $d_{m}(A)$, $d_{+}(A)$ итп.

Для 14t - сводимости легко проверять, что:

Все рекурсивные классы
 Аст - эквивалентны.

2) $A \equiv_{tt} \overline{A}$ для всех $A \subseteq \mathcal{F}$.

Для и - сводимости легко проверяется, что:

I) A ≤m B ⇔ Ā ≤m B.

2) $A \leq_m \phi \Rightarrow A = \phi$; $A \leq_m \mathfrak{F} \Rightarrow A = \mathfrak{F}$.

 Все нетривиальные рекурсивные класси — эквивалентны.

4) Частично-упорядоченное множество m - степеней есть верхняя полурешетка. В качестве A joun B можно взять класс:

{ 4 | [4(0) = 0 & x x 4(x + 1) & A] V [4(0) > 0 & x x 4(x + 1) & B] }.

3. м - сводимость и арифистическая нерархия

Из всех классов функций виделяются арифиетические классов ([I], гл.15, § 2), которые образуют арифиетическую верархир: \sum_{n}^{∞} , \prod_{n}^{∞} ($n \ge 0$). Если $n \ge 1$, то для классов семейства \sum_{n}^{∞} существует "вичислимая" нумерация $\{E_{n}^{\infty}\}$:

 $\varphi \in E_z^{(n)} \iff \exists x_1 \forall x_1 \cdots T_n (z, \varphi, x_1, \dots, x_n),$ где T_n есть оро на $N^{n+1}x$ \mathcal{F} . Аналогично для $\Pi_n^{f_n}$ $(n \ge 1)$. $\Sigma_0^{f_n} = \Pi_0^{f_n}$ — это семейство всех рекурсивных классов.

Семейство $\Sigma_1^{f_n}$ характеризуется тем, что $A \in \Sigma_1^{f_n}$ если и только если частичный характеристический функционал (ЧХФ) \mathcal{H}_A есть ЧРФ.

Очевидно также, что

 $A \leq B & B \in \Sigma_n^{f_n} \Rightarrow A \in \Sigma_n^{f_n}$

Поэтому правомерен вопрос о существовании и - универсальных плассов в

Легио построить эффективную нумерацию пар < х, ч > обладаршур своиствами:

 $1) < 0, 0 > \pm 0$

2) \text{\pi} x > \pi E x \text{\pi} (s

через L. R обозначии обратные функции этой нумерации. (полезность такого рода нумераций впервые замечена, по-видимому, Р.В. Фреквалдом.)

Символ < ч, ч > обозначает функцию:

 $\langle 4, 4 \rangle (x) = \langle 4(x), +(x) \rangle$

Аналогично для L. R

Творема I. Пусть n > 1. Тогда класс функций

 $U^{(n)} = \{ \forall | R \forall \in E_{L^{q}(0)} \}$ принадленит $\sum_{n=1}^{\infty} \prod_{n=1}^{\infty} \mathbb{Z}_{n}^{(n)}$ и m – универсален в $\sum_{n=1}^{\infty} \mathbb{Z}_{n}^{(n)}$

Доказательство. Из соотношения

 $Y \in \mathcal{U}^{(n)} \Leftrightarrow \exists x_1 \forall x_2 \cdots T_n (L_Y(0), R_Y, x_2, ..., x_n)$ cheaver, sto $\mathcal{U}^{(n)} \in \Sigma_n^{(n)}$. Coothomense

(2000, 47 € U(m) ⇔ 4 € E(m)

HORASHBART, 4TO OHERATOR $M_Z(x)=< z\,0^{\infty},\, x>m$ - CBO- ART $E_Z^{(n)}$ R $\mathcal{U}^{(n)}$, T.e. $\mathcal{U}^{(n)}$ - m- yhubepсальный класс в 214.

Остается показать, что $\mathcal{U}^{(n)} \in \Pi_n^4$, это будет непосредственным доказательством невырожденности нерархии (которая в [1] выводится из результатов дия множеств THE THE MODIFICIAL STATE $\mathcal{U}^{(n)} \in \Pi_n^{(n)}$, to $\mathcal{U}^{(n)} \in \mathcal{F}^{(n)}$ для некоторого и , т.е.

Re E E (n) = e E En.

Найдем t такое, что $\langle u, t \rangle = t$ и положим ч=+000

to∞ € En ⇔ to∞ € E(n)

Противоречие, т.е. $\mathcal{U}^{(n)} \in \Pi_n^{+n}$, что и требовалось.

Замечание. Использование т - сводимости классов функций позволяет также доказать, что

 $A = \{ \varphi \mid \varphi^{-1}(0) -$ κοнечное множество $\} \in \Sigma_{+}^{1} \setminus \Pi_{+}^{1}$ без применения категорных рассуждений (см. [1], гл.15). Для этого достаточно заметить, что А - м - универсальный класс в $\sum_{i=1}^{4n}$

m - сводимость на \sum_{1}^{1} .

Для — сводимости классов функций легче найти приме» ры "естественных" классов, м - универсальных в Дім чем это было в случае множеств чисел.

Например, если 9 - некоторая орф, то оченидно: F. {9} E 5. Докажем универсальность этого класса: Пусть $A \in \Sigma_1^{in}$, тогда ЧХФ H_A есть ЧРФ. Оператор М определям так: для вычисления М(ч) вычисляем На (ч) по шагам и полагаем:

$$M(\mathbf{e}, \mathbf{n}) = \begin{cases} g(\mathbf{n}), \text{ если} & H_{\mathbf{a}}(\mathbf{e}) \text{ не останавливается за} \\ g(\mathbf{n}) + 1, & \text{иначе}. \end{cases}$$

Очевидно:

 $e \in A \iff H_A(e)$ останавливается $\iff M(e) \neq g$. Итак, М сводит А к 🗲 (93, что и требовалось. Класси функций, м - универсальные для 274 легко охарантеризовать в следурших терминах. Функцию ч. назовем

внешней точкой прикосновения для класса А, если I) Yo ects opp n Yo € A

2) существует вычислимая последовательность $\{i_c\}$ орф из A такая, что $\forall i \in \S^{[c]} = \varsigma^{[c]}$ (В бэровской топологии на $\mathcal F$ (см. [I]) такая точка $\mathcal F$ и в самом деле будет точкой прикосновения для A .)

Теорена 2. класс A m — универсален для $\sum_{1}^{f_n}$, если и только если A имеет внешною точку прикосновения.

Мокавательство. Необходимость. м- универсальность класоа A влечет: $\$ - \{0^\infty\} \le_m A$, т.е. для некоторого M:

Если \mathscr{C} есть орф, то и $M(\mathscr{C})$ — орф. Следовательно, как $M(0^{\infty})$ так и все $M(0^{\varepsilon}1^{\infty})$ суть орф. Очевидно такке, что $M(0^{\infty}) \in A$, а все $M(0^{\varepsilon}1^{\infty}) \in A$. Рекурсивный оператор M непрерывен в бэровской топологии, поэтому

· lim
$$0^{i}1^{\infty} = 0^{\infty} \implies \lim_{n \to \infty} M(0^{i}1^{\infty}) = M(0^{\infty})$$

Итак, функция $M(0^{\infty})$ будет внешней точкой прикосновения для A, если в качестве $\{f_i\}$ мы возмем подходящую подпоследовательность из $\{M(0^i, t^{\infty})\}$.

А о с т а т о ч н о с т ь. Пусть φ . — внешняя точка прикосновения для A. а $\{f_i\}$ — соответствующая последовательность. Достаточно поназать, что $\mathcal{F} \setminus \{0^\infty\} \leqslant M$. Для этого оператор M определии так:

$$M(\Psi, \mathbf{x}) = \begin{cases} Y_0(\mathbf{x}), & \text{comm} & \Psi^{[\mathbf{x}]} = 0^{\mathbf{x}+4} \\ f_{(t+1)}(\mathbf{x}), & \text{comm} & i < \mathbf{x} & \Psi^{[i]} = 0^{i+4} & \Psi(i+1) > 0 \end{cases}$$

$$Y_0(\mathbf{x}), & \text{comm} & \Psi(0) > 0.$$

Очевидно: $4 + 0^{\infty} \Leftrightarrow H(4) \in A$, что и требовалось.

Следствие. Если В — конечное множество орф, то класс $5 \cdot 8$ м — универсален в $\sum_{i=1}^{1}$

кроме того, легко видеть, что $\mathcal{F} \cdot \mathcal{F}^* \in \Sigma_1^+$. Из теореми 2 следует, что это — m — универсальный класс. Можно показать, что $\mathcal{F} \cdot \mathcal{F}^*$ есть даже 1 — универсальный класс в Σ_1^+ . С другой отороны очевидию, что и $\mathcal{F} \cdot \{0^\infty\}$ 1 — сводятся только классы, дополнения которых содержат не более одного элемента. Таким образом, не все m— универсальные классы 1— универсальны, но в универсальной m— степены имеется наибольшая 1—степень. Открытым остается вопрос об изоморфизме классов этой 1— степени.

Этим установлена первая особенность рассматриваемой мерархии по сравнению со случаем множесть чисел.

Имеется и другая особенность. В случае множеств чисел репурсивное множество м - сводится и просму нетривиальному множеству.

В случае же классов функций нетривиальный рекурсивных класс A открыто-замкнут в бэровской топологии, поэтому как A, так и \overline{A} содержит орф. Но тогда из $A \leq_m B$ следует, что B и \overline{B} тоже содержат орф.

Всегда ли нетривиальний $\sum_{i=1}^{n}$ - класс В удовлетворяет этому условие? Всякий непустой $\sum_{i=1}^{n}$ - класс открыт в сэровской топологии и поэтому содержит орф. Таким обравом, наи вопрос сводится к такому: существуют ли нетрививальные $\sum_{i=1}^{n}$ - классы, дополнения которых не содержат орф?

Оказывается, такие классы существуют. Доказательство этого факта, по существу, приведено в [I] (гл.16,§ 7), даже в более сильной форме: существует класс $\mathcal{B} \in \Sigma_{+}^{1}$ такой, что \mathcal{B} не пусто, однако не содержит гиперарифметических функций.

Класси из \sum_{I}^{+} , имерщие непустое дополнение, не содержащее орф, назовем <u>особенным</u>. Очевидно, все такие класси не рекурсивны.

Имертся и более простые примеры особенных классов.

I. Пусть V - простое иножество (чисел). Класс β всех таких γ , что:

a) $\forall x \ \forall (x) < \forall (x+1)$

b) ∀x 4(x) ∈ V.

есть, очевидно, дополнение к $\sum_{i=1}^{4}$ - классу. Однако, если \forall є β \cap R то область значений ψ есть бесконечное рекурсивное полиномество ∇ , что невозможно. Таким обравом β \cap R = ϕ , хотя β \neq ϕ .

- 2. Пусть V_0 , V_1 два рекурсивно перечислимых и рекурсивно неотделимых множества. Класс C всех таких φ , что:
 - a) /x e(x) = 1
 - b) Yx [(xix) = 0 > x \(\varepsilon\)/1, & (x(x) = 1 \(\pi\) \(\varepsilon\)/1.

есть, очевидно, дополнение к $\Sigma_1^{i_1}$ - классу. Однако, если $\varphi \in C \cap \mathbb{R}$, то φ - характеристическая функция рекурсивного иномества, отделярщего V_i и V_i , что невозножно. Таким образом, $C \cap \mathbb{R} = \varphi$, хотя $C \neq \varphi$

Отметим еще следурщие фанты:

1) Из $A \leq_{m} B$ и B - особенный класс следует, что A = F или A - особенный класс.

 Сообенный класс не мажет быть м - универсальным (см. теорему 2).

3) Всякий рекурсивный класс m - сводится ко всякому $\sum_{i=1}^{n}$ - классу, отличному от ϕ , \mathcal{F} и особенных классов. Теперь в общей характеристике верхней полурешетки m-стененей на $\sum_{i=1}^{n}$ неясными остались два пункта:

а) Существурт ли $\sum_{i}^{j_{i}}$ - класси не рекурсивние, неуниверсальные и не являющиеся особенными? Такие классы назовем нормальными.

b) Если нормальные классы существуют, то существует им для камдого особенного В нормальный класс В' такой что В ≤ 8'?

Ответ на оба вопроса дает

Теорема 3. Аля всякого особенного класса B класс B_j осо ϕ является нормальным (и поэтому $B <_m B_j$ осо ϕ). Доказательство. Напомним. что:

В јого $\phi = \{ e \mid e(0) = 0 \text{ & } \lambda \times e(x+t) \in B \}$. Очевидно $1^\infty \in B$ јого ϕ , т.е. этот класс не является особенным. В јого ϕ не может бить и m — универсальным, ибо для орф e0 из e0 e0 следует (В сиду того, что e0 — особенный класс), что e0 (0) > 0, тогда как все e0 e0 миевт e00 — ого, т.е. e0 не может бить точкой прикосновения для e0 e0 (ом. теорему 2).

Если допустить, наконец, что 8 јост ϕ имеет рекурсивний $x \phi H$, то

$$H(0e) = \begin{cases} O, \text{ если } e \in B, \\ 1, \text{ если } e \in B. \end{cases}$$

т.е. В - рекурсивный класс, что невозможно. Таким образом В јеси ф - нерекурсивный, т.е. нормаланый класс. Что и требовалось.

Общур характеристику расположения m - степеней на $\sum_{i=1}^{n-1}$ можно свести в диаграмму:

5. Особенные илассы вида $\mathcal{F} \setminus \{ \forall \}$.

Мы уже видели, что для орф φ_o класс $\mathcal{F} \setminus \{ \psi_o \} \in \Sigma_1^{f_o}$. Но следует ли из $\mathcal{F} \setminus \{ \psi_o \} \in \Sigma_1^{f_o}$, что ψ – орф ?

Аля ответа на вопрос заметим сперва, что класс всех $f \in \mathcal{F}$, графики которых лежат в Π_i , содержит все орф, а также некоторые нерекурсивные функции. Определим, например, следующие функции:

 $f_{i}(x) = \begin{cases} t+i, \text{если } [i](x) \text{ вычисляется за точно } t \text{ магов,} \\ 0, \text{ если } [i](x) \text{ не определено.} \end{cases}$

. J; есть орф не для всех с , нос:

$$f_i(x) > 0 \iff x \in \mathbb{D}(I \cup I) = W_i \tag{1}$$

ж не все W. рекурсивны.

Для предиката $f_i(x) = q$ имеем выражение:

$$[y=0k \forall t]T(i,x,t)]v[y>0kT(i,x,y-1)], (2)$$

где $T(t, \infty, t)$ — рекурсивный предикат, показывающий, остановится ди вычисление $T(t)(\infty)$ на шаге номер t. Таки образои, графики всех f; лежат в Π_i и среди этих функций есть и нерекурсивные.

Теорема 4. Если $\psi_{\bullet} \in \mathcal{F}$ и график ψ_{\bullet} есть $\prod_{i} -$ множество, то $\mathcal{F} \cdot \{\psi_{\bullet}\} \in \sum_{i} f_{\bullet}$

Доказательство. Пусть

$$\Psi_{o}(x) = y \iff \forall_{z} R(x, y, z),$$

где предикат R рекурсивен. Нам достаточно построить ЧХФ H для предиката $\varphi + \varphi_0$ Процесс вычисления $H(\varphi)$ будет состоять в поиске такого ∞ . ЧТО

Нашли — полагаем $H(\mathfrak{C}) = O$ (тогда, очевидно $\mathfrak{C} = \mathfrak{C}_0$) если такого \mathfrak{L} не существует, пусть $H(\mathfrak{C})$ не определено (ибо тогда $\mathfrak{C} = \mathfrak{C}_0$). Теорема доказана.

Итак, $\sum_{i=1}^{4}$ содержит класси вида $\mathcal{F} \setminus \{ + \}$, где ψ нерекурсивна. Такие класси по определению особении.

Замечание I. Графики функции Υ , данных теоремой 4, все лежат в Π_1 . Открытым остается вопрос: следует ли из $\mathcal{F} \setminus \{+\} \in \Sigma_1^+$, что график Υ лежит в Π_1 ?

Замечание 2. Изложенные построения позволяют легко доказать следующее

Предложение. Аля класса множеств $C = \{ N : \{x\} \mid x \in N \}$ невозможна такая чрф h, что если $W_i \in C$, то h(i) определено и $W_{h(i)} = \overline{W_i}$.

Это значит, что хотя множества из С рек; рсивны, невозможен эффективный перевод их описаний на языке перечислений в описания на языке характеристических функций. Следовательно, такой перевод невозможен, в частности, и для всего класса рекурсивных множеств (это - результат Сузуки, см. [3]).

<u>Доказательство предложения.</u> Пусть W_o — нерекурсивное множество. Последовательность множеств из C:

$$A_{j} = \{ x \mid x + f_{o}(j) \}$$

является в силу (2) вычислимой, т.е. $A_i = W_{f(i)}$, где f есть орф. Если функция h существует, то h f — орф и $W_{h+(i)} = \{f_o(i)\}$, т.е. f_o есть орф, тогда как W_o нерекурсивно и имеет место (I). Что и требовалось. Конец замечания 2.

Имеется некоторая связь между w_i - сводимостью классов $\{f_n\}$ и \mathcal{T} - сводимостью (числовых) множеств W_i

Teopena 5.
$$\{f_i\} \leq \{f_i\} \iff W_i \leq W_i$$
.

Доказательство. (I) показывает, что f_j есть орф,ести и только если $W_{\hat{q}}$ - рекурсивное множество. Поэтому в случае рекурсивного $W_{\hat{q}}$ теорема очевидна. Допустим для дальнеймего, что $W_{\hat{q}}$ нерекурсивно.

Легко проверять, что для всех n функция f_n рекурсивна с оракулом W_n , в свор очередь W_n рекурсивно с ора-кулом f_n (см. соотношение (I)).

1. Пусть $\varphi = f_i \Leftrightarrow M(\varphi) = f_j$, тогла $M(f_i) = f_j$, т.е. f_i рекурсивна с оракулом f_i . Итак, левое рекурсивно в правом:

T.e.
$$W_i \leq W_i$$
.

2. Пусть $W_i \leq_T W_i$, т.е. W_i рекурсивно в W_i , тогда аналогично, левое рекурсивно в правом:

Поэтому существует манина m такая, что [m, f;] = f. Заметни теперь, что по теореме 4; $\Im \setminus \{f;\} \in \Sigma_{\ell}^{m}$, т.е. существует ЧХФ H_{ℓ} для предиката $\forall + f$. Нужный на оператор M со свойством

$$e = f_i \Leftrightarrow M(e) = f_i$$

вниксилем на $\varphi \in \mathcal{F}$ так. Запускаем машину m паралельно на всех значениях аргумента x, но с оракулом φ (с которым ей не обязательно вниксиять \mathcal{F} — функции). Одновременно вниксилем $\mathcal{H}_i(\varphi)$. Если до остановки $\mathcal{H}_i(\varphi)$ машина m на x остановилась, напечатав y, то полагаем $\mathcal{M}(\varphi, \infty) = y$. После остановки $\mathcal{H}_i(\varphi)$ все свободные неста в $\mathcal{M}(\varphi)$ заполняем нулями, не обращаясь больше к мащине m.

МТАК, если $H_i(t)$ не определено (т.е. $x = f_i$), то $M(x) = f_i$ (но $[x, f_i] = f_i$). Если же $H_i(t)$ определено (т.е. $x = f_i$), то M(x) есть орф и, следовательно $M(x) = f_i$ (ин допустили что $x = f_i$). Что и требовалось

CHERCTANE. $\{f_i\} \equiv \{f_j\} \Leftrightarrow W_i \equiv W_i$.

Теорема 5 вместе с этим следствием показывает, что "структура". T – степеней на $\mathbb{Z}_1 \setminus \Pi_1$ может быть в известном смысле ("в обратном порядке") вложена в полурещетку особенных ∞ – степеней на $\mathbb{Z}_1^{\frac{1}{2}}$

Замечание. Понятие "полурешетка особенных м- степеней" предполагает, что если А, 8 - особенные классы, то
и А још В - особенный класс. Это легко проверить.
Аналогично устанавливается правомерность понятия полурешетки нормальных м - степеней.

Можно было бы предположить, что в упомянутом вложении универсальной \mathcal{T} — степени соответствует наименьшая особенная m— степень. Однако это не так: как уже указывалось, в [1] приведено доказательство существования особенного класса, дополнение которого не содержит гиперарифметических функций, тогда как $\mathcal{F} \setminus \{i,j\} \leq m$ влечет сразу, что $\overline{\mathbb{R}}$ содержит арифметическую (даже $\mathbf{2}$ — рекурсивную, см. [2]) функцию.

Оказывается, "структуру" T - степеней на $\Sigma_t \cdot \Pi_t$ можно вложить (в обратном порядке) и в полуреметку нормальных M - степеней на $\Sigma_t^{f_t}$

Теорема 6. Пусть $A_i = \widehat{F} \setminus \{f_i\}$, а $B \subseteq \widehat{F}$. Тогла: $A_i \leq_m B \iff A_i \neq_i \text{ join } \phi \leq_m B \neq_i \text{ join } \phi.$

Доназательство. І. Импликацию вправо легко доназать для произвольного класоа A (вместо специальных A_i). Дано, что $A \in A \Leftrightarrow M(A) \in B$, тогла

 $e \in A$ join $\phi \Leftrightarrow e(0) = 0$ & $\lambda \times e(x+t) \in A \Leftrightarrow e(0) = 0$ & $M(\lambda \times e(x+t)) \in B$ join ϕ .

Итак, оператор $M'(\mathcal{C}) = \mathcal{C}(0)M(\lambda x \mathcal{C}(x+t))$ сводит A join ϕ к В join ϕ , что и требовалось.

 Импликация влево является менее общей. Она не выполняется даже для некоторых особенных классов А. Но для классов А; она верна; пусть: 4 ∈ A; join \$ \$ M(e) ∈ Bjoin \$.

Тогда:

 $\Psi \in A_i \Leftrightarrow O_{\Psi} \in A_j \circ in \Phi \Leftrightarrow M(O_{\Psi}) \in B_j \circ in \Phi$.

Banethin, 4to $\Psi \in A_i \Leftrightarrow \Psi \neq f_i$, T.e.

4 + 1; \$ M(04,0) = 0 & xx M(04, x+1) ∈ B, (3)

H/IN

 $Y = \{i \iff M(0 \cdot e, 0) > 0 \ V \} \propto M(0 \cdot e, x + t) \in \mathcal{B}$. Допустии, что $M(0 \cdot e, 0) > 0$ для некоторой Y. Но $M(0 \cdot e, 0) > 0$ для всех Y из некоторой окрестности Y. Но тогда $Y = \{i, x, y \in Y\}$ ито невозможно. Итак, $M(0 \cdot e, 0) = 0$ для всех $Y \in Y$ и $Y \in Y$ и Y

 $\forall \pm 1$; $\Leftrightarrow \lambda \times M(0 + \alpha \times 1) \in B$, T.e. $A_i \leq_m B$, $\forall To \ m \ Tpedobanoob$.

Теореми 3, 5 и 6 дарт следурщее

Следствие. Пусть $A_n = \mathcal{F} \setminus \{f_n\}$, гле множество W_n нережурсивно. Тогда A_n јого ϕ — нормальния класс, причем всегда:

A: join \$ sm A; join \$ \$ W; S- Wi.

Это и есть упомянутое второе "вложение в обратном порядке".

Итак, из соответствующих результатов для Т—степеней множеств чисел следует существование несравнимых м—
степеней в полурешетке как нормальных, так и ососенных м—
степеней. Разумеется, до уровня полноти, достигнутого для
множеств чисел, здесь еще далеко.

6. Сравнение различных сводимостей на $\sum_{i=1}^{3}$

Тривиальное различие му- и 1tt-сводимости заключается в том, что: I) m - степени $\{\phi\}$, $\{\mathfrak{F}\}$, $\{$ нетривиальные режку ременые классы $\}$ различны, из них только $\{\mathfrak{F}\}$ меньше особенных m - степеней;

2) 1tt - степень { все рекурсивные классы} меньше всех других 1tt - степеней.

Теорема 7. $B \equiv_{tet} B_j \circ in \phi$ для всех $B \subseteq \mathcal{F}$

Доказательство. $B \leqslant_{i} B_{join} \Leftrightarrow_{j}$ поэтому достаточно показать, что $B_{join} \Leftrightarrow_{i} B_{i}$ В нам нужен, по существу, некоторый орф F, значением F(3) которого является пара (m, 2), где $[m, 2] \in \mathcal{F}$, а β - одноместная булева функция.

Теорема 8. Всякий класс, 1tt- универсальный в \sum_{i}^{in} является m - универсальным в \sum_{i}^{in} , т.е. $d_{m}(\mathcal{U}^{\omega}) = d_{nt}(\mathcal{U}^{(\omega)}) \cap \sum_{i}^{in}$ (Большего ожидать не приходится из-за $A \equiv_{tt} A$.)

Доказательство. Носкольку $\mathcal{F} \setminus \{0^{\infty}\}$ — m— универсальный класс в $\sum_{i=1}^{\infty}$, то достаточно показать, что из: $\mathcal{F} \setminus \{0^{\infty}\} \leq_{tet} \mathcal{B}$ и $\mathcal{B} \in \sum_{i=1}^{\infty}$ следует, что $\mathcal{F} \setminus \{0^{\infty}\} \leq_{m} \mathcal{B}$.

Значение $F(0^{\infty})$ 1++ сводящего функционала F зависит только от некоторого начального куска 0° , обозначим это значение через < m, 5 >. Итак:

0 + + 000 0 (1Em, 0 +] (B1).

причем, по определенир, для всех $\forall \in \mathcal{F}$ имеем: $[m, C^{\ell}\gamma] \in \mathcal{F}$ Поэтому можно определять рекурсивный оператор

Torna:

$$Y + 0^{\infty} \Leftrightarrow \beta(|M(Y) \in B|)$$
 (4)

Для функции β (она фиксирована) возможни, вообще говоря, 4 варианта: $\beta \equiv 0$, $\beta \equiv 1$, $\beta(x) = x$, $\beta(x) = \overline{x}$. Первые два отпадарт сразу, ибо левая часть (4) непостоянна. В случае четвертого им имели бы:

T.e. $\{0^{\infty}\} \leq \mathbb{R}$, что невозможно, ибо из теоремн I следует, что $\{0^{\infty}\} \in \prod_{i=1}^{j_{\infty}} \sum_{i=1}^{j_{\infty}}$, а $B \in \sum_{i=1}^{j_{\infty}}$ Итак, $f^{B(\infty)} = \infty$ и (4) принимает вид

+ +0° ⇔ M(+) ∈ B,

что и требовалось.

Заменание. Теореми 7, 8 верны и для множеств чисел. Открытым остается вопрос о различии $d_{tet}(\mathcal{U}^{(u)})$ и $d_{bet}(\mathcal{U}^{(u)})$. Весьма вероятно, что ситуация здесь будет такой же, как в случае множеств чисел (см. [1]).

Однако, в противоположность этому случав, имеет место

Teopena 9. $d_{htt}(u^{(u)}) = d_{tt}(u^{(u)})$

Доказательство. Достаточно показать, что

F \ \ 1000] < , B => F \ \ 1000] < , B

Значение $5(0^{\infty})$ — $\ell\ell$ — сводящего функционала S зависит только от некоторого начального куска 0^{ℓ} , обозначим это значение через $< m_{\ell}, ..., m_{k}, \mathcal{L} >$. Тогда для всех φ :

$$O^{\ell} \neq O^{\infty} \Leftrightarrow \beta(--|\underline{\mathsf{Lm}}_{i}, O^{\ell} \neq \underline{\mathsf{l}} \in B)$$
 (5) Определям орф h такур, что для всех x и q :

[h(x), e] = [x, 0]e

Тогда постоянный ОРФ S':

S'(4) = < h(mx), ..., h(mx), B>

в силу (5) btt-сводит $\Im \{0 \sim \}$ к В , что и требованось

Открытым остается вопрос о различии $\operatorname{cl}_{tt}(\mathcal{U}^{(o)})$ и $\operatorname{cl}_{\tau}(\mathcal{U}^{(o)}).$

Теорема 10. Особенный класс не может быть T -уни-

(Это свойство является, очевидно, общим для всех видов сводимости классов функций.)

<u>Доказательство</u>. От противного, пусть $\mathfrak{T} \setminus \{o^{\infty}\} \leq_{\mathsf{T}} \mathsf{B}$ для некоторого особенного класса B , т.е. существует нашена Z , которая с оракулами C , B вычисляет X выправления $\mathsf{C} = \mathsf{C} = \mathsf{C}$

Понажен, что тогда Z остановится, напечатав 1, и в случае $\gamma = 0^{\ell} 1^{\infty}$. В сниом деле, в процессе этого вычисления Z будет задавать оракулу γ те же вопросм, что и при $\gamma = 0^{\infty}$ (в получать те же ответи $\gamma = 0^{\infty}$). Оражизи $\gamma = 0^{\infty}$ (в получать те же ответи $\gamma = 0^{\infty}$). Оражизи $\gamma = 0^{\infty}$ (заметии, что отличие $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ не содержится в конфитурациях $\gamma = 0^{\infty}$ (ответи в этом случае будут те же $\gamma = 0^{\infty}$), ибо опять $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) а $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) а $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ ($\gamma = 0^{\infty}$) от $\gamma = 0^{\infty}$ (

итак, по определенио $Z: T(0^{\ell}1^{\infty} \pm 0^{\infty})$. Противоречие, следовательно В не есть T — универсальный класс,

Теорема IO фактически устанавливает существование неуниверсальных и нерекурсивных \mathcal{T} - степеней на $\sum_{i=1}^{n} t^{n_i}$. Существование несравнимых \mathcal{T} - степеней остается недокавания.

7. Замечания о сводимостях классов множеств

В [I] (гл. 15, § I) рассматривается также арифметическая мерархия классов иноместв: $\sum_{n}^{(s)}$, $\bigcap_{n}^{(s)}$ ($n \ge 0$). Часть выше изложенного легко переносится на этот случай.

Определения сводимостей и формулировки их простейших свойств требурт лишь замени \mathcal{F} на \mathcal{F}° . Теорему I можно переформулировать (заменив $\mathcal{U}^{(4)}$ на более сложный объект) и передоказать, хотя это несколько сложнее.

Теорема 2 и ее следствие верин для \mathcal{F}° без изменений. Существование особенных классов следует в этом случае из нашего примера 2 (см. раздел 4). Сильнейший результат этого рода для \mathcal{F} , приведенный в [I], не имеет место для \mathcal{F}° здесь верна

Теорема II. Если β - нетривиальный класс из $\sum_{1}^{(s)}$ то $\overline{\beta}$ содержит множество из $\Sigma_{2} \cap \Pi_{2}$.

Это нетрудно показать, используя язык предельной рекурски 2.

Теорема 3 остается верной для \mathcal{F}^o , тем самым общая карактеристика полурешетки m - степеней на $\Sigma_i^{(i)}$ совпадает со случаем $\Sigma_i^{(i)}$.

Особенных классов вида $\mathfrak{F}^{\circ} \setminus \{\pi\}$ на $\Sigma_t^{(s)}$

теорема 12. \mathfrak{F}° \ $\{\pi\}$ ∈ $\Sigma_{i}^{(3)}$ если и только если π - ре. урсивное множество.

Итак, результаты раздела 5 не имерт аналогов в слу-

Результати же раздела 6 (о сравнении различных сводимостей) переносятся на Э° без изменений.

Литература

- 1. Rogers H., The theory of recursive functions and effective computability, Mc Graw-Hill, N-Y,1967.
- 2. Gold E.M., Limiting recursion, Journal of Symbolic Logic, vol 30, N 1 /March 1965/.
- 3. Gold E.M., Language identification in the limit, Information and Controll, vol 10, N 5 /May 1967/.

Министерство висшего и среднего специального образования Латвийской ССР .

Латвийский ордена Трудового Красного Знамени государственный университет имени Петра Стучки Вычислительный центр

УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ И ТЕОРИЯ АЛГОРИТМОВ

Сборник научных работ аспирантов

Редакционно-издательский отдел ЛГУ им. Петра Стучки Рига 1972

оглавление

Буйкис И.	А. Исследование флуктуаций колебаний параметри- ческого лампового генератора с запаздиванией
	обратной связью
Bynne M.	А., Царьков Е.Ф. Исследование колебаний в квази-
	линейных стохастических дифференциально-функ-
	циональных уравнениях
Икауниеко	э.А. О "райских садах" и взаимно стираемых кон-
- E	фигурациях
Польский	Б.С. О двух, задачах для уравнения теплопровод-
	ности со сменаними граничными условиями 63
HOTTOWN	Б.С. Численное решение одной смещанной гранич-
HOMBONER	ной задачи для уравнения теплопроводности
	그리는 사람들은 그리다면 사람들은 사람들이 가지 않는데 그리는 사람들이 되었다. 그리는 그리는 사람들이 되었다.
	альтериирующим методом Пварца
ACMHCKMM	В.К. Устойчивость решений динейных стохастичес-
	ких дяфференциально-функциональных систем с
	последействием
SCHHORNE.	В. К. Об С. Ср. 4) устойчивости решений систем
1.	дифференциально-функциональных уравнений со
	случанным параметрами
Подименс	К.И. О своимостях классов функций