
UNIVERSITY OF LATVIA
FACULTY OF COMPUTING

IVANS KUĻEŠOVS

MOBILE APPLICATIONS TESTING

Doctoral Thesis

Area: Computer Science and Information Technologies
Sub-area: Software Engineering

Scientific Advisor: Dr. habil. dat., Prof.

Juris Borzovs

RIGA 2017

2

ABSTRACT

The mobile conquers the world. The need in a comprehensive and systemized multi-edge

testing approach is rising along with mobile apps becoming even more complex, while there is

still some chaos present in the general testing terminology and clear classification of terms. The

thesis gives an overview of software testing on the meta-level, providing the theoretical

background related to the classification of terms on testing techniques, methods, and approaches.

As a leader in enterprise market, Apple iOS has been chosen as a target mobile platform

for the study. Aspects that influence functional testing of iOS apps in particular, and mobile – in

general, were investigated by the author. The thesis also exposes the security capabilities and

development/ testing leftovers that often are neglected and not cleaned up in favor of time to

market rush.

A separate chapter of the thesis deals with mobile UI test automation tools investigation

and clustering. The capabilities and limitations of Apple UIAutomation are discovered in the last

chapter. Solutions aimed at overcoming the limitations of out of the box UIAutomation are

united in tTap framework developed by the author. The practical usage experience gathered

during tTap framework creation is shared in the thesis as well. The practical usage experience

includes the difference between executing tests on a real device and on a simulator, examples of

situations when image comparison is the only or the most efficient assertion possible, examples

of test scenarios where change in connectivity is needed, and more.

The analysis performed on mobile UI test automation tools united with the solutions used

in tTap framework resulted in the ideal cross-platform mobile UI test automation tool proposal.

The whole thesis has a practical flavor. All mobile testing related information has been

verified or gathered during the real mobile software development projects execution.

The thesis consists of five chapters, 102 pages, 30 figures, and 9 tables.

Keywords: mobile applications testing, iOS, test automation.

3

CONTENTS

Introduction .. 9

The Aim and Tasks of PhD Thesis .. 11

Theses of PhD Thesis ... 11

Research Methods .. 12

Scientific Novelty... 12

Practical Value ... 13

Approbation of PhD Thesis .. 13

1. Inventory of Testing Ideas and Structuring of Testing Terms ... 16

1.1. Inventory of Testing Ideas .. 16

1.2. Software Testing Review on Meta-level ... 16

1.3. Software Testing Dichotomies .. 18

1.4. Testing Schools ... 20

1.5. Testing Strategy .. 21

1.5.1. Testing Oracles... 21

1.5.2. Quality Characteristics ... 22

1.5.3. Testing Levels .. 23

1.6. Testing Tactics .. 24

1.6.1. Testing Artifacts ... 24

1.6.2. Systematization of Testing Terms: Approach, Method, and Technique 25

1.6.3. Black-box Testing .. 27

1.6.4. White-box Testing .. 30

1.6.5. In-Operational Testing ... 32

2. Mobile Applications Testing Aspects .. 33

2.1. Apple iOS .. 33

2.1.1. Introduction .. 33

2.1.2. Research Methodology .. 34

2.1.3. Results .. 37

4

2.1.4. Discussion and Implications .. 40

2.2. Other Mobile Operating Systems .. 54

2.2.1. Google Android .. 54

2.2.2. Microsoft Windows/ Microsoft Windows Mobile ... 55

2.3. Conclusions ... 56

3. Mobile Applications Functional Security Testing ... 57

3.1. Apple iOS .. 57

3.1.1. Introduction .. 57

3.1.2. Usage of Secure Network Protocols .. 57

3.1.3. Data Base Encryption ... 57

3.1.4. Locking the Application Data .. 57

3.1.5. Advanced Functional Security Testing .. 58

3.1.6. Discussion and Implications .. 59

3.2. Other Mobile Operating Systems .. 59

4. Mobile Applications Test Automation ... 61

4.1. Introduction ... 61

4.2. Solutions for Automated UI Testing of iOS Apps .. 61

4.2.1. OEM Automation Tools ... 62

4.2.2. API-based Tools ... 63

4.2.3. Image Recognition Based Tools .. 68

4.2.4. Summary .. 69

5. tTap Extension for Apple UIAutomation ... 72

5.1. Apple UIAutomation Capabilities and Limitations .. 72

5.1.1. Application Level ... 72

5.1.2. OS Level .. 73

5.1.3. Device Level .. 73

5.1.4. Device/ OS Level ... 73

5.1.5. Framework Level ... 73

5

5.1.6. Summary .. 74

5.2. Choosing the Right Tool for the Environmental Context ... 76

5.3. The Rise of tTap .. 76

5.3.1. Introduction .. 76

5.3.2. Solution Details .. 77

5.3.3. Application Level ... 77

5.3.4. OS Level .. 78

5.3.5. Device/ OS Level ... 78

5.3.6. Framework Level ... 80

5.3.7. Summary .. 82

5.4. Practical Usage Experience ... 84

5.4.1. Connectivity ... 84

5.4.2. Image Comparison ... 85

5.4.3. Test Data Setup and Cleanup ... 87

5.4.4. Framework ... 88

5.4.5. Device vs. Simulator .. 89

5.5. Ideal Cross-Platform Mobile UI Test Automation Tool Proposal 91

Conclusions and Discussions ... 92

References .. 96

Appendix A: The Full List of Multivocal Literature ... 103

Appendix B: tTap Source Code ... 104

Appendix C: LinkConditioner Usage AppleScript .. 105

Appendix D: Search with Predicate Function .. 107

LIST OF FIGURES
Fig. 1.1. Software testing review on meta-level... 17

Fig. 1.2. Testing Oracles. ... 21

Fig. 1.3. Product Quality Model. ... 23

Fig. 1.4. Product Quality Model (continued). .. 23

6

Fig. 1.5. Relation between approach, method, and technique.. 26

Fig. 1.6. Black-box Approach. ... 27

Fig. 1.7. White-box Approach. .. 31

Fig. 1.8. In-Operational Testing. .. 32

Fig. 2.1. Process of sources selection for SLR and MLR. ... 34

Fig. 2.2. iOS Devices Variety. ... 41

Fig. 2.3. The difference between basic and extended keyboards., 49

Fig. 2.4. Pull to Refresh Example. ... 53

Fig. 3.1. Example of the development and test settings files in production build. 58

Fig. 4.1. Appium Architecture. .. 63

Fig. 4.2. Xamarin Test Cloud Agent in iOS. .. 64

Fig. 4.3. Xamarin Test Cloud Agent in Android.. 65

Fig. 4.4. DeviceAnywhere Testing Lab. .. 66

Fig. 4.5. iOS Gateway Network Architecture. ... 68

Fig. 5.1. Triggering low-memory warning on the simulator.. 78

Fig. 5.2. Switching on/ off WiFi connection via LinkConditioner. 79

Fig. 5.3. Creating new network conditions profile. ... 79

Fig. 5.4. The examples of responder chain in iOS. .. 81

Fig. 5.5. Image comparison example of OpenGL activities. ... 85

Fig. 5.6. Image comparison passed test example of viewport bookmark functionality. 85

Fig. 5.7. Image comparison failed test example of viewport bookmark functionality. 86

Fig. 5.8. Image comparison testing: the example of comparison with background

technique. ... 86

Fig. 5.9. Import from Photos app example. ... 88

Fig. 5.10. Wait until element is visible example. ... 88

Fig. 5.11. Wait until element has reached the specific position example. 89

Fig. 5.13. The ideal cross-platform mobile UI test automation tool architecture. 91

LIST OF TABLES
Table 2.1. Number of Papers Left after Exclusion/ Inclusion during Each SLR Stage ... 35

Table 2.2. Number of Papers Left after Exclusion during Each MLR Stage 37

Table 2.3 Aspects of iOS Applications Testing .. 39

Table 4.1. OEM Solutions for Mobile UI Test Automation .. 69

Table 4.2. Cross-platform Solutions for Mobile UI Test Automation - Clustering 69

Table 4.3. Cross-platform Solutions for Mobile UI Test Automation - Characteristics 70

7

Table 5.1. The Capabilities of Out of the Box Apple UIAutomation 74

Table 5.2. The Limitations of Out of the Box Apple UIAutomation 75

Table 5.3 The Status of Overcoming Apple UIAutomation Limitations 83

8

ACRONYMS

Acronym or
Abbreviation

Meaning

UI User Interface.
BYOD Bring Your Own Device - policy of permitting employees to bring personally owned

mobile devices.
(KV) Charts Karnaugh-Veitch Charts – black-box testing technique.
SLR Systematic Literature Review - a type of literature review that collects and critically

analyzes multiple research studies or papers.
MLR Multivocal Literature Review – a type of literature review that collects and critically

analyzes accessible, but non-academic writings on the topic.
Springer Springer Links – digital library.
IEEE IEEE Xplore – digital library.
ACM ACM Digital Library
OS Operating System.
IAP In-App Purchase – technology that allows buying items inside the app.
ROM Read-only Memory - a file containing the executable instructions (a system image) of an

Android OS and affiliated apps.
UWP Universal Windows Platform - a platform-homogeneous application architecture created

by Microsoft.
CI Continuous Integration - the practice of merging all developer working copies to a shared

mainline several times a day.

9

INTRODUCTION

In 1975, the first theoretic foundation of testing by Goodenough & Gerhart [1] was

published. A year before that the first publication on software testing was published in Latvia by

Barzdin et al. [2], but an enriched version of it was presented in 1977 [3]. Since those times,

theory and practice of testing have evolved quite significantly through emergence of testing

activists (Myers [4], Beizer [5] [6], Kaner [7] [8], Bach [8], Pettichord [8] [9], Black [10], etc.)

and under the influence of different software development approaches (waterfall, rapid

application development, agile, etc.). Nowadays, testing has become a crucial part of the

software development process.

The rise of mobile technology has touched upon the lives of everyone. According to the

study by Research and Markets [11], the mobile cloud market is expected to be worth US $46,90

billion by 2019, while the research by Markets and Markets [12] shows that heterogeneous

mobile processing & computing market will be worth US $61,70 billion by 2020. iOS from

Apple is one of the most popular mobile operating systems. According to Citrix [13], iOS holds

64%, and according to Good Technology [14], iOS holds even 73% market share of all

enterprise mobile devices. According to the same study by Good Technology [14], iPads hold

91,4% of enterprise tablets. That is why iOS has been chosen as a target platform for our

research.

With the growth of platform abilities, applications become more complex to satisfy the

increasing user needs [15]. The increased complexity means that there are many aspects that

should be taken into consideration when testing functional suitability, performance efficiency,

compatibility, reliability, maintainability, and portability of iOS native business applications.

Enterprise workers are always more interested in information security than private users.

The level of security is one of the factors why iOS has a dominant position in enterprise market

[16], especially in Bring Your Own Device (BYOD) market space. While the operating system

itself provides capabilities for secure application creation, they often are neglected in favor of

time to market rush. That is why testing of functional security is a hot topic as well.

In order to reduce the time needed for regression testing, to spare more time for

exploratory testing, or just to decrease the costs, tests are to be automated. Tests can be

automated at various levels. In terms of return on investments including the maintenance costs,

the following test coverage model is thought to be the right one in the ideal world: most of the

tests are automated at the unit level; the least of the tests are automated at the UI level; different

types of integration tests lay somewhere in between. The session based/ exploratory manual

testing ensures confidence in automated tests. The model is depicted in Fig. 1 [17].

10

Fig. 1. Automated test coverage model per test level. [17]

 While according to this model, tests at the UI level have the least coverage, these

automated end-to-end tests are still very important to ensure the general confidence that the

previously developed app functionality, as well as the basic UI interactions are still up and

running. Automated tests from this level are probably even more important for mobile apps,

because there are many gestures like tap, double tap, swipe, drag, etc. to be checked.

Several solutions have already been created or adapted for mobile UI test automation, in

particular, for iOS apps. However, they all have their pros and cons, while there is no study that

exposes them to choose and adapt the right one for the environmental context of a testing

organization. There are also no studies that investigate the capabilities and limitations of OEM

Apple UIAutomation tool.

All this increases the need for the multi-edge iOS applications testing approach that

extends the systemized knowledge in the mobile testing field in general. Solutions that overcome

part of the limitations of a native automator like changing the connectivity, assertions based on

image comparison, advanced UI element search, repeatable executor for checking the wait

conditions, simulation of memory warnings, etc. are united under tTap extension developed by

the author and his colleagues.

The whole thesis has a practical flavor. All mobile testing related information has been

verified or gathered during the real mobile software development projects execution.

11

Thesis consists of five chapters. In the first chapter the systemized overview of software

testing is given. The proposal to organize the relation among software testing terms approach,

method, and technique is part of the chapter as well. In the second chapter the systematic review

on mobile applications testing aspects through the prism of iOS mobile operating system is

presented. In the third chapter a highlight on mobile functional security testing is provided. The

fourth chapter describes the study on existing mobile UI test automation solutions and their pros

and cons. The capabilities and limitations of Apple UIAutomation tool are described in the fifth

chapter. The details on tTap extension for Apple UIAutomation that overcomes part of the OEM

automator limitations are recorded in the same chapter. The chapter concludes with the proposal

of ideal cross-platform mobile UI test automation tool based on the information gathered and

solutions prepared during the thesis rise.

THE AIM AND TASKS OF PHD THESIS

The tasks of our PhD thesis are as follows:

1) To give a systemized overview of the software testing field.

2) To gather and systemize aspects (i.e. features and/ or limitations) that influence testing

of functional suitability, performance efficiency, compatibility, reliability,

maintainability, and portability of iOS native business applications to fill the gap that

exists in the current academic literature.

3) To perform a comprehensive analysis of the gathered aspects to optimize their

appliance in real iOS applications testing strategies.

4) To point out security capabilities of iOS that are often neglected in favor of time to

market rush.

5) To provide insight into the solutions available on the market for mobile apps UI test

automation, in particular for iOS apps, and help to choose the right one depending on

the environmental context of a testing organization.

6) To analyze limitations of a native iOS UI test automator and create a solution that

provides workarounds for them where applicable.

7) To come up with a suggestion of an ideal cross-platform mobile UI test automation

tool.

THESES OF PHD THESIS

1) The testing terms approach, method, and technique have a vague meaning in the

existing testing literature.

12

2) Knowing a defined and detailed set of aspects that influence testing of iOS native

business applications will increase the quality of such apps through increasing the test

coverage.

3) Various iOS security capabilities are neglected in favor of time to market rush. Such

situation should be eliminated.

4) Apple UIAutomation has various limitations. The existing workarounds help to

overcome one group of limitations, however it is impossible to overcome others on

non-jailbroken device or without integrating a custom library into the app source code.

5) An ideal cross-platform mobile UI test automation tool can be created by means of

uniting concepts that already exist in the market.

RESEARCH METHODS

1) Systematic reviews of academic and multivocal literature sources have been performed

in order to get a comprehensive overview of the software testing field and to gather and

systemize aspects that influence testing of iOS native business applications.

2) Documentation analysis, static analysis, and dynamic analysis data collection

techniques have been applied to gather and process the data needed for the

comprehensive analysis of:

• aspects that influence testing of iOS native business applications;

• the neglected security capabilities of iOS;

• mobile UI test automation tools;

• features and limitations of Apple UIAutomation.

3) Various visual modeling techniques have been used to report the data analysis results

of a systemized overview of the software testing field, of the aspects that influence

testing of iOS native business applications, and of the features and limitations of Apple

UIAutomation.

4) Various experiments have been performed to expose the neglected security capabilities

that allow breaking the app via a reverse engineering method.

5) A number of experiments have been performed to test the workarounds found to

overcome the limitations of Apple UIAutomation.

SCIENTIFIC NOVELTY

1) The main result of the thesis is tTap framework development that overcomes the

limitations of native Apple UIAutomation automator for iOS mobile operating system.

13

2) Besides that the variety of methodical improvements were made in the software testing

theory field:

• Our own systemized overview of software testing is provided.

• A new systematization of software testing terms approach, method, and technique

is given.

• A detailed list of aspects that influence testing of iOS native business applications,

which has not been published before, was created and systemized.

3) The proposal of an ideal cross-platform mobile UI test automation tool has been

provided.

PRACTICAL VALUE

1) Our own systemized overview of software testing, as well as a new systematization of

software testing terms approach, method, and technique can be applied while teaching

software testing professionals and computer science students. This should give a

clearer and more comprehensive understanding of the software testing field for them.

2) A complete, systemized, and detailed list of aspects that influence testing of iOS native

business applications can be used for creating more thorough testing strategies. These

strategies should be applied for testing the real iOS apps.

3) Exposing the neglected security capabilities of iOS should help software development

organizations to create more secure apps.

4) The study on solutions for mobile applications UI test automation should help test

professionals to choose the right one, depending on the environmental context of a

testing organization.

5) tTap extension for Apple UIAutomation is already used for UI test automation of iOS

apps in C.T.Co 1 software development company. Testing specialists from other

organizations could use it as well if an appropriate marketing campaign is performed.

APPROBATION OF PHD THESIS

The research results are described and published in the following papers or book chapters:

1) Ivans Kulesovs et al. (2015). The Multi-Edge Approach for iOS Applications Testing.

In Cipolla Ficarra, F. et al. (Ed.), New Perspectives from User Interfaces and Semantic

Web: Information Quality, Advanced Interdisciplinary Applications and Combination

1 http://www.ctco.lv/

http://www.ctco.lv/

14

of the Technologies Challenges, Blue Herons, Bergamo, Italy, pp.77 – 107 (accepted

for publication). Involvement – 80% (text writer, main driver, discussions participant).

2) Ivans Kulesovs, Aigars Susters, Kirils Keiduns, Janis Skutelis. Automated Testing of

iOS Apps: tTap Extension for Apple UIAutomation. In proceedings of “3rd

International Conference on Horizons for Information Architecture, Security and Cloud

Intelligent Technology: Programming, Software Quality, Online Communities, Cyber

Behaviour and Business (HIASCIT)”, July 9 – 10, 2015, Sanremo, Italy, pp. 4 – 22.

Involvement – 80% (text writer, main driver, discussions participant).

3) Ivans Kulesovs (2015). iOS Applications Testing. In “Environment. Technology.

Resources. Proceedings of the 10th International Scientific and Practical Conference.”

vol. 3, Rezekne, Latvia, pp. 138 – 150. [Scopus]

4) Ivans Kuļešovs, Vineta Arnicane, Guntis Arnicans, Juris Borzovs (2013). Inventory of

Testing Ideas and Structuring of Testing Terms. In “Baltic J. Modern Computing”, vol.

1, No. 3 -4, pp. 210 – 227. Involvement – 50% (text writer, discussions participant).

5) Imants Gorbans, Ivans Kulesovs, Uldis Straujums, Jānis Buls. The Myths about and

Solutions for an Android OS Controlled and Secure Environment. In “Environment.

Technology. Resources. Proceedings of the 10th International Scientific and Practical

Conference.” vol. 3, Rezekne, Latvia, pp. 54 – 64. Involvement – 30% (text reviewer,

discussions participant). [Scopus]

6) Jānis Buls, Imants Gorbans, Ivans Kulesovs, Uldis Straujums (2016). The Adaptation

of Shamir’s Approach for Increasing the Security of a Mobile Environment. In “Baltic

J. Modern Computing”, vol. 4, No. 1, pp. 51-58. Involvement – 15% (text reviewer,

discussions participant). [Web of Science]

The research results were presented at the following conferences:

1) Ivans Kulesovs, Aigars Susters, Kirils Keiduns, Janis Skutelis. Automated Testing of

iOS Apps: tTap Extension for Apple UIAutomation. 3rd International Conference on

Horizons for Information Architecture, Security and Cloud Intelligent Technology:

Programming, Software Quality, Online Communities, Cyber Behaviour and Business

(HIASCIT), July 9 – 10, 2015, Sanremo, Italy.

2) Ivans Kulesovs. iOS Applications Testing. 10th International Scientific Practical

Conference “Environment. Technology. Resources.” 18-20 June 2015, Rezekne,

Latvia.

3) Juris Borzovs, Ivans Kuļešovs, Vineta Arnicāne, Guntis Arnicāns. An Attempt to

Systemize Software Testing Concepts. 5th International Workshop “Data Analysis

Methods for Software Systems”, December 5 -7, 2013, Druskininkai, Lithuania.

15

4) Imants Gorbans, Ivans Kulesovs, Uldis Straujums, Jānis Buls. The Myths about and

Solutions for an Android OS Controlled and Secure Environment. 10th International

Scientific Practical Conference “Environment. Technology. Resources.” 18-20 June

2015, Rezekne, Latvia.

16

1. INVENTORY OF TESTING IDEAS AND STRUCTURING OF TESTING

TERMS

1.1. Inventory of Testing Ideas

The author and his colleagues have performed the inventory of testing ideas [18]. It was

inspired by [19]. This activity resulted into the ideas division among the following eight classes:

• Fundamental ideas.

• How to detect the correctness of the test result?

• How to detect the completeness of the testing?

• How to test (approach, method, technique)?

• What to test (object)?

• Which quality attribute (characteristic) to test?

• When to test (phase)?

• Unclassified.

Three millennial fundamental testing ideas are:

• Errare humanum est – To err is human.

• Aliena vitia in oculis habemus, a tergo nostra sunt - The vices of others we have in

the eyes, in the rear of our own.

• In propria causa nemo judex - No one can be judge in his own cause.

Other testing ideas were identified through analyzing the testing terms from ISTQB

Glossary [20]. As a result, a map showing the linkage between the testing terms and their

relation to the definite class was generated (see http://science.df.lu.lv/kaab13). It was

produced using the tool that adopts the term graph building algorithm developed by Arnicans,

Romans, and Straujums [21] [22]. The same color scheme, as shown for the ideas classes, is used

to distinguish the terms parent in the resulting graphs.

1.2. Software Testing Review on Meta-level

From practical point of view software testing mainly can be expressed by testing strategy

and testing tactics on the meta-level (i.e. on the higher level of abstraction). Contexts of real

testing project and theoretical background and experience of testing team influence the selection

of the strategy and/ or tactics and the usage of principles of testing schools in the current testing

project or campaign. A software testing review on meta-level is depicted in Fig. 1.1.

http://science.df.lu.lv/kaab13

17

Fig. 1.1. Software testing review on meta-level.

Static context influences very much the testing vision and testing mission. Static context

depends on the type of the organization (i.e. governmental, outsourcer, start-up, etc.) and on the

type of the software produced (enterprise software, commercial software, web page, etc.). The

options mentioned above are generally static during the whole product lifecycle. Testing vision

denotes the aims that the testing team wants to achieve by testing. In some cases testing vision

can be focused on producing the software with all high and critical software failures discovered

and fixed, and 95% of medium severity failures identified. In some cases it can be to receive an

acceptance sign-off of the product from the customer. Testing mission denotes actions that

testing team does in order to achieve the testing vision. For example, the team can use only

scripted testing, or it can use the benefits of the exploratory testing as well, to receive an

acceptance sign-off of the product from the customer. Or testers prepare automated tests before

the development to keep the product always deliverable to the customer as test-driven

development suggests. Testing schools are theoretical frameworks that define testing vision and

testing mission based on the static context.

All aspects of testing schools (it can also be the mix of aspects from different schools) that

prevail within the organization and are common for the definite product type influence the

testing strategy of the given software project. Testing strategy describes a general approach for

testing. Testing strategy consists of the specification of the roles and responsibilities of each

person involved in testing, testing levels, environment requirements, overall testing schedule,

testing tools, risks and its mitigations, testing priorities, testing status reporting, etc.

Testing oracles that define testing exit-criteria and those that are used as the source of the

derivation of test cases and expected results (i.e. correctness oracles) should be chosen within the

18

testing strategy definition. The selection of quality characteristics to be covered by testing

process should occur during the definition of testing strategy as well. Test results completeness

oracles can be defined when selecting testing tactics, because often there are much more details

about expected results amount available during tactics selection process. Testing oracles are in

details discussed in the section 1.5.1.

Dynamic context depends on the project phase and influences the choice of the testing

tactics that are appropriate for the given time frame, for the definite object under test, and for the

current micro testing goal. Examples of the dynamic context factors are fulfillment of test entry

criteria in time, availability of shared testing resources, the stabilization and bug fixing phase of

the development process, etc. Testing tactics should be consistent with the testing strategy.

Testing tactics for each object under test are depicted in the test plan. Test plan consists of

organizational and technical aspects. Testing tactic also influences the choice of the testing

approach to be used to fulfill the current micro testing goals. Thus, technical aspects of the test

plan should include the selection of the appropriate testing approaches, methods, and techniques.

Testing artifacts (like test cases, test suites, traceability matrix, test data, etc.) to be produced by

the testing process should be mentioned in the test plan as well. It is worth noting that some

schools do not require formal and written test plans as a mandatory artifact of testing process.

1.3. Software Testing Dichotomies

There are many dichotomies exist in software testing. Some of them clearly belong to

definite testing school. Others are opposable because of other reasons, for example project phase.

It is worth mentioning that dichotomies mentioned below, despite their difference, make good

testing when used together proportionally.

The dichotomy we should start with is testing vs. debugging. The goal of testing is to

discover the defect while the goal of debugging is to find why the defect occurs. Some schools

see debugging as a job of software developer only, but nowadays it is more common for good

test engineer to investigate the root cause of the defect by himself or together with a software

developer.

The most known testing dichotomy is black-box testing vs. white-box testing. The

difference between them is the point of view on the knowledge of the internal structure of the

software that test engineer takes when designing the test cases.

Functional testing vs. non-functional testing is another important testing dichotomy.

Functional testing “verifies a program by checking it against ... design document(s) or

[functional] specification(s)” [7]. Non-functional testing checks software against its non-

19

functional requirements where non-functional quality characteristics are addressed. System

testing is different from functional testing because it “validate[s] a program by checking it

against the published user or system requirements” [7].

Another quite old dichotomy is manual testing vs. automated testing. Return on

investment is taken into consideration when testing is automated, as it requires skilful workforce

and additional scripting and maintenance effort. Still, only part of the testing can be automated.

UI automation is often used for regression testing, while unit and integration tests can be written

in advance to development.

These two testing ideas are very different by their nature: scripted testing vs. exploratory

testing. Scripted testing can show the thoroughness of the testing to stakeholders, while

exploratory testing can find failures that hardly could be discovered when using scripted testing,

because it is sometimes even hard to imagine the appropriate test cases before investigating the

behavior of the new functionality under test.

Another dichotomy consists of two of the oldest testing ideas: verification vs. validation.

Controversy contract vs. client happiness is closely connected to the testing missions

represented above, thus, depending on this, different testing strategies are chosen. Verification

evaluates if product meets the requirements that usually are part of the contract while validation

check if product satisfy the clients (or other stakeholders) expectations, i.e. makes them happy.

Positive testing vs. negative testing dichotomy both parts are necessary if there is an aim to

make testing as complete as possible. Positive testing tends to prove that software behaves in the

way it is supposed to. Negative testing shows that software does not do that it is not supposed to.

Testing of design vs. testing of implementation identifies different testing needs

depending on the software project phase. Thus, different testing tactics can be used during each

phase. Testing of design also uncovers the idea that testing should be started as early as possible.

Static testing vs. dynamic testing dichotomy intersects with previously mentioned

dichotomy. Testing of designs is always a static testing, i.e. testing process without executing the

software itself. Testing of implementation (except the review of the code) in most cases is a

dynamic testing, i.e. testing of the running software.

Hierarchical vs. big bang are different approaches of the integration testing. There are two

hierarchical integration testing approaches: bottom-up and top-down. When bottom-up approach

is used then testing is started from the components on the lowest level and goes up to the testing

of the integration of the next level components. Integration testing between top level components

is the first point of the top-down approach. It goes to the lower level components testing

afterwards till the lowest level is reached. On the contrary, integration on all levels occurs

simultaneously when big bang integration testing approach is used.

20

The last, but not least software testing dichotomy that we would like to mention is

traditional testing vs. agile testing. Agile school has completely different mission then other

ones. Agile testing proves that system under test works as expected. It discovers the role of

software engineer in test as the great automation specialist and the main participant of the test

driven development.

1.4. Testing Schools

Testing society distinguishes five testing schools [9]. They are:

• Analytic School;

• Standard School;

• Quality School;

• Context-Driven School;

• Agile School.

The schools are frameworks for categorization of test engineers’ believes about testing and

are their guide on the testing process. Testing schools are not competitive; they can be used in

the collaborative mode as well. They all have exemplar techniques or paradigms, but they are not

limited to them. Usage of schools can vary within the organization from project to project, but it

is often hard to move the whole organization from one school to another.

The analytic school assumes that software is a logical artifact. It concentrates on technical

aspects, and it is keen on the white-box testing. Analytic school is associated with academia

institutions, and it is assumed to be the most suitable for safety-critical and telecom software.

The standard school assumes that testing should be very well planned in advance and

managed. According to this school, testing main goal is to validate that software meets

contractual requirements and/or governmental standards using the most cost-effective model,

thus it is mostly applied for governmental and enterprise IT products. Requirements traceability

matrix is the most common testing artifact for the school. Software testing can be seen like

assembly line through V-model prism. IEEE standards’ boards and testing certifications are the

most valued institutions by this school.

The quality school prefers “Quality Assurance” over “Testing”. Thus testing defines and

controls the development processes. QA manager or test lead is like a gatekeeper who can decide

if software is ready or not. ISO and CMMI are the most valued institutions for followers of this

school.

The context-driven school concentrates about (skilled) people and their collaboration. The

goal of the context-driven testing is to find bugs that can bother any of the stakeholders. What to

21

test right now is defined according to the current situation in the project. Test plans to be

constantly adapted based on the test results. Exploratory testing is an exemplar technique of this

school. Context-driven testing is mostly applied for the commercial and market-driven software.

The Los Altos Workshop on Software Testing held by Cem Kaner and Brian Lawrence are

thought to be the main events of this school.

The agile school main postulate is that tests must be automated. Testing answers the

question if user story is done (and system under test works as expected). Test-driven

development is one of the agile testing school paradigms, thus automated acceptance tests are

demonstrative exemplar of the school.

It is worth mentioning that categorization of beliefs and testing goals into testing schools

helps testers to understand and to evaluate each other experience through the prism of the

specific organizational context.

1.5. Testing Strategy

There are many things to be covered in the testing strategy that define the overall approach

for testing. Here we only look into the details of its most important aspects that are noticeable on

the software testing meta-level.

1.5.1. Testing Oracles

Testing oracles can be divided into three major groups based on their purpose. Groups of

oracles and representatives per each group are shown in Fig. 1.2.

Fig. 1.2. Testing Oracles. [23]

22

Test results completeness oracles are differentiated based on the completeness of the set of

the expected test results. There are five main types of test result completeness oracles. They are

[23]:

• True oracles – they have the complete set of expected test results.

• Stochastic oracles – they verify a randomly selected sample.

• Heuristic oracles– they can verify the correctness of some values and the

consistency of other values.

• Consistent oracles – they verify current test run results with previous test run

results (regression).

• Sampling oracles – they select the specific collection of inputs or results.

They all have their advantages and disadvantages, as well as their cost decreases in a top-

down manner, but speed increases in the same manner.

Test case derivation (correctness) oracles are differentiated based on the source test cases

and expected results are derived from.

Exit-criteria oracles define when testing can be finished. The most common, but not

complete testing exit-criteria are:

• All planned test cases are executed (Contracts and other obligations).

• All high and critical priority bugs are fixed (Contracts and other obligations).

• All planned requirements are met (Contracts and other obligations).

• Scheduled time to finish testing has come (Project budget and schedule oracle).

• Test manger has signed off the release (Human judgment oracle).

It is worth mentioning that multiple oracles of each group are often used together

depending on the software project phase.

1.5.2. Quality Characteristics

There are 8 quality characteristics shown in the new revision of ISO/IEC 9126 standard -

ISO/IEC 25010 [24]. All quality characteristics are depicted in Fig. 1.3 and Fig. 1.4.

23

Fig. 1.3. Product Quality Model. [24]

Fig. 1.4. Product Quality Model (continued). [24]

Functional testing is a testing of functional suitability characteristic. Almost all formal

testing methods and techniques are concentrated around functional suitability quality

characteristic. They are especially related to the functional correctness and functional

completeness sub-characteristics.

1.5.3. Testing Levels

There are four main testing levels differentiated in the software development project. Their

applicability differs based on the project phase and the scale of the object under test. These levels

are [10]:

• Unit Testing – testing of single component on the code level; it is usually

performed by developers.

• Integration Testing – testing of cooperation of several components; comparison

with expected result can be done both on the code level and manually by human;

can be performed either by developer, or by tester.

24

• System Testing – testing of the whole complete system; usually is performed by

tester.

• Acceptance Testing - testing of the whole system to verify that it meets some

contract obligation and/ or satisfies users’ expectation about the software product;

usually is performed by the customer.

All levels starting from integration testing can be scaled out till the system of systems

testing when product consists of or is dependent on multiple systems.

1.6. Testing Tactics

Testing tactics can differ depending on the phase of the project and other changeable

circumstances of the environment. Testing tactics should be consistent with the testing strategy.

Thus tactics often are chosen within the static boundaries of the influencer schools. Appropriate

testing approaches, methods, and techniques should be selected for micro testing goals

fulfillment and should be depicted in the test plan. Testing artifacts (like test cases, test suites,

traceability matrix, test data, etc.) to be produced by the testing process should be mentioned in

the test plan as well. We have structured testing methods and techniques under black-box and

white-box approaches. The borders of grey-box testing approach are quite ambiguous, and

methods and techniques under this approach are not formally described yet in the testing theory.

They do not have settled definitions in the testing practice as well.

It is worth mentioning that we respect other software testing systematization concepts, for

instance, division of all methods and techniques under 4 coverage approaches (Graph Coverage,

Logic Coverage, Input Space Partitioning, and Syntax-Based Testing) by Ammann & Offutt

[25], but we still have not found the explicit difference between testing approach, method, and

technique in other concepts.

1.6.1. Testing Artifacts

Software testing usually produces testing artifacts mentioned below:

• Test Data – multiple sets of values to be used as inputs for testing definite

functionality often combined into one file.

• Test Script – code that substitutes user activity and/or interaction with software UI.

• Test Case – consists of preconditions, steps, inputs, and expected results to test

some part of the functionality.

• Test Scenario – test case with higher level of abstraction that depicts scenarios in

which user is considered to use the software.

25

• Test Suite – the set of test cases or test scenarios for given functionality or testing

type (i.e. regression, smoke, or sanity).

• Test Plan – document that depicts testing tactics to test definite software product in

the definite testing run; often consists of the test suites to be executed and the

testing approach to be used.

Traceability matrix is the example of cross-referring document that can be used to depict

the relations between test cases/test scenarios/ test suites (depending on the scale) and

requirements.

Test harness is a virtual, to testing related artifact that consists of many aspects to make

testing under given conditions and configurations possible. It can consist of the specific IT

infrastructure, tools, big samples of test data, etc.

Despite the fact that testing artifacts mentioned above to be produced during the whole

testing process lifecycle, the high level description of the approach to be used to produce them to

be defined in the testing strategy.

1.6.2. Systematization of Testing Terms: Approach, Method, and Technique

Despite the attempts of standardization of testing terms and ideas by different authorities,

such as ISTQB and IEEE, there is still a little chaos prevailing in the testing literature, and

between the testers themselves on the explicit usage and definition of the terms.

The connection and clear border between testing approach, testing method, and testing

technique are not defined in the testing theory. For example, Beizer [6] defines test technique as

a systematic method: “A test strategy or test technique is a systematic method used to select

and/or generate tests to be included in a test suite.” In the same time, he uses test technique and

test method as completely equal statements: “… here I present you with ready-made equivalence

class partitioning methods (or test techniques) …” [6]; “[T]est execution technique: The

method used to perform the actual test execution, either manual or automated” [20]. Other

authors, such as Kaner et al. [7] [8], Pressman [26], and Sommerville [27] have a mix of using

words technique, method, approach, and strategy in regard to testing as well.

The attempts of making a distinction between approach, method, and technique were

already performed by language teaching specialists in 1963, 12 years before the first theoretic

foundation of testing by Goodenough & Gerhart was published. In 1963 Anthony provided

“much needed coherence to the conception and representation of elements that constitute

language teaching:” (as cited in [28])

26

An approach is “a set of correlative assumptions dealing with the nature of language and

the nature of language teaching and learning. It describes the nature of the subject matter to be

taught. It states a point of view, a philosophy, an article faith…”

A method is “an overall plan for the orderly presentation of language material, no part of

which contradicts, and all of which is based on the selected approach. An approach is axiomatic,

a method is procedural”.

A technique is described as “a particular trick, stratagem, or contrivance used to

accomplish an immediate objective”.

"The arrangement is hierarchical. The organizational key is that techniques carry out a

method which is consistent with an approach."

In 1982 Richards & Rogers (as cited in [28]) performed an attempt to enhance the

framework developed by Anthony through dividing language teaching process into approach,

design, and procedure. But, despite rather vague definition of terms approach, method, and

technique, and not considering in any way of complex connections between them, exactly these

terms are in favor of the most current teacher training manuals. [29]

We suggest systemizing testing approach, testing method, and testing technique in the

same hierarchical way, using the experience and keeping in mind the mistakes of language

teaching specialist. Schematic relation between terms mentioned above is shown in Fig. 1.5.

Fig. 1.5. Relation between approach, method, and technique.

Testing approach “states a point of view, a philosophy, an article faith” that a test

engineer takes when designing test cases.

Testing method is “an overall plan for the orderly presentation” of testing techniques.

Testing technique is “a particular trick, stratagem, or contrivance” to design a test case.

Testing techniques are united under testing methods based on the test case design formality

(for black-box testing approach) or based on other common pronounced attributes (for white-box

testing approach).

The “organizational key” stays the same as suggested by Anthony – “techniques carry out

a method which is consistent with an approach”.

27

1.6.3. Black-box Testing

Black-box is a software testing approach when test engineer designs test cases as if she

does not know anything about the internal structure of the software under test.

Black-box testing approach consists of seven testing methods that are differentiated based

on the source used for test case design process and based on the level of formality of test case

designs. The relation between black-box testing methods and techniques is shown in Fig. 1.6.

Fig. 1.6. Black-box Approach.

Specification-based testing is a testing method which includes all formal test case design

techniques. As can be derived from the name of the method, specification (or requirements)

documents are used as a source for test case design. Formal test case design techniques or groups

of techniques are Domain Analysis, Logic-based Testing, Combinatorial Testing, State

Transition Testing, and Use Case Testing.

Domain analysis group consists of two closely connected testing techniques: Equivalence

Class Partitioning and Boundary Value Analysis. The first technique defines the group (class) of

inputs that produces the same output. The second technique checks the boundary values of the

equivalence classes.

Logic-based testing group consists of two testing techniques: Decision Tables and

Karnaugh-Veitch (KV) Charts. They all are used when combination of different inputs results

into specific output. They are used for checking business logic and user interface. According to

Copeland [30], a decision table consists of conditions, combinations of every condition

alternatives that result into single rules, actions, and actions occurrence under every rule. It is

28

worth mentioning that cause-effect graphing can also be used for designing decision tables

according to Myers [4].

KV charts are used to simplify the Boolean algebra expressions. They were introduced by

E. Veitch in 1952 and improved by Karnaugh in 1953. They allow decreasing the amount of

calculation needed through humans' pattern-recognition capability [5]. From the author

experience usage of decision tables is more common technique from these two in the field of

business application testing, especially nowadays.

State Transition Testing is a group of techniques that are used when some part of the

functionality of the system can be represented as “finite-state machine”. Finite state machine is

an abstract machine that has finite states, that can be in only one state at once, and whose

transitions from one state to another are triggered by some event or condition. There are two

common techniques that are used for state transition testing: State Transition Diagrams and State

Transition Tables. State transition diagram is a schematic representation of machine’s states and

transitions between them. State transition table is more complete and systematic way of

representation of the same machine’s states and transitions. Only valid state-transition

combinations are depicted in the state transition diagrams, while all possible state-transition

combinations are covered in the state transition tables that can be required for testing the safety-

critical software. [10]

Combinatorial Testing is a group of testing techniques that are most often used for testing

combinations of configurations or input parameters. The most popular techniques are Orthogonal

Arrays and Allpairs Algorithm. Orthogonal array is a two-dimensional array that has an

interesting property – “all the pairwise combinations will occur in all the column pairs” [30].

This part of discrete math was introduced into testing field by Tatsumi in 1987 [31]. Allpairs

algorithm invented by Bach allows achieving the coverage of testing of all pairs combination

with less steps when input parameters have different number of possible values [8].

Use Case Testing is a technique that allows to test system’s functionality that is described

as a use case. Use case is a type of quite detailed specification that concentrates on user (or

another system) interaction with the system under test to complete some specific task or to

deliver some other business value. It often has a main, the most commonly used flow and

extensions or some special cases. The test scenario for main flow and every extension or special

case should be created when use case testing is performed. Use case can be described using

natural language or depicted using different modeling languages, for example, UML.

Model-based testing is a testing method which unites testing techniques that use similar

software, or software prototype, or software usage models as the basis for test cases design. The

29

main representatives of this method are previously described state transition testing and use case

testing (when use case is described using some of the modeling language).

User story testing method includes acceptance testing techniques in combination with

exploratory testing techniques that are described later. User story is a way of a non-detailed

software specification that describes it using the mask “As an <actor> I want (or need) <action>

so that <achievement>” (in practice, sometimes <achievement> part is not formally specified).

User story must come to the development team together with acceptance criteria to align the

constraints of the business value to be delivered. User stories are mostly used when software is

developed using such Agile software development practices as Scrum, Kanban, and XP.

Acceptance tests are executed to verify if implemented user story meets the acceptance criteria.

More thorough testing using exploratory testing techniques is performed after acceptance criteria

is met. Sometimes, depending on the complexity of the system, usage of more formal testing

techniques also takes place.

Experience-based testing method unites less formal testing techniques, but some of them

are still very powerful when are used by professionals. These techniques are Checklist-based

Testing, Exploratory Testing, Error Guessing, and Ad-hoc Testing.

Very high level checklist of quality attributes or items that are important for the system

under test is used for checklist-based testing. Such list should be constantly improved to cover

things that are important to some of stakeholders or are parts of some regulation standard (for

example, operating system UI guidelines) while product is evolving during the development

process.

Test engineer intuition and experience to evaluate the test results are the basis of the

exploratory testing technique. The design of new test cases occurs on the fly using the

information discovered from the testing of the software itself. Exploratory testing to be

productive must be performed in definite time frames and the scope of testing must be defined in

advance. Test charters are often used to make these two “musts” possible and also show the

productivity of the testing session to the stakeholders by notifying its results. Such exploratory

testing management was developed by Jonathan and James Bach in 2000. They named it session-

based testing, but we suppose that exploratory testing without clearly defined objectives and time

frames is ad-hoc testing that is the least formal testing technique of the experience-based testing

method. Usage of ad-hoc testing technique should be avoided. [10]

Error-guessing is a testing technique that uses most common programming errors as test

case basis. Examples of such errors are null pointers, division by zero, wrong types of

parameters, etc. Even if tester does not have knowledge of programming she will often discover

such errors while testing the software and will reuse this experience afterwards. That is why this

30

technique is part of experience-based testing method. In most cases error-guessing is used as

informal supplementary of formally scripted testing techniques.

Defect-based testing method uses the knowledge about defects taxonomies for test cases

design or selection. According to Beizer [5], there are eight categories to be used for defects

classification: Functional, System, Process, Data, Code, Documentation, Standards, and Other.

There are also five supplementary categories to be used for defects housekeeping: Duplicate, Not

a problem, Bad Unit, Root cause needed, Unknown. Black [10] uses the same defects

classification. From the author experience this method can be hardly used independently for test

cases design. It can only point out which test cases may lead to more defects discovery based on

the historical data if it is available. What is more, such analysis of defects is quite expensive and

such bookkeeping options are supported by only few tools by default.

Random testing method uses randomly generated inputs from the definite subset as test

data. It can be a powerful method for functional testing when operational profile (input domains)

of the system and effective oracle are available. In such cases systems are tested with condition

that whole test fails if it fails on at least one of the inputs. But in real situation the options

mentioned above are hardly available. Even if uniform distribution can be applied to the input

values, it is very hard to substitute the effective oracle for outputs. That is why random testing is

mostly used for reliability testing of the complex systems. It can prove that system can work

without failures for given amount of time [32]. When reliability of the system is tested with

totally random input values it means that Fuzz Testing technique is applied.

Syntax testing is a static, black box testing method for testing syntactic specification of a

system’s (or protocol’s) input values. “Anti-parser” can be used to compile the grammar to

produce “structured garbage”. This “structured garbage”, that can contain misplaced or missing

elements, illegal delimiters, and so on, is used to test how object under test behaves when inputs

deviate from the defined syntax. [5]

1.6.4. White-box Testing

White-box is a software testing approach when test engineer designs test cases based on the

internal structure of the software under test. There are three most known white box testing

methods: control flow testing, data flow testing, and mutation testing. The relation between the

white-box testing methods and techniques is shown in Fig. 1.7.

31

+

Fig. 1.7. White-box Approach.

Control flow testing concentrates about testing the sequence of the statements in which

system under test operates. There are two main programming paradigms that influence the

statements’ sequence execution. They are conditions and loops. The main technique of control

flow testing is called Decision-to-Decision Path Testing [33]. Decision-to-Decision path testing

technique uses program graph to represent all possible statements (graph nodes) and conditions

(graph edges). Coverage of different code aspects can be checked when using this technique.

Dataflow testing method concentrates about the points of program graph where variables

receive values and where these variables are used. Thus dependent pairs of the DD-paths

coverage of previously mentioned Decision-to-Decision Path Testing technique is most efficient

exit criteria for such testing method while the whole lifecycle of the variable is monitored.

Mutation testing method is used to prove that the set of unit tests that pass actually is

correct and complete. Mutation (i.e. wrong peace of code) is introduced into the program itself.

For example, operators or commands execution order can be changed, or even some code can be

removed. If unit tests still pass after mutation introduction then it means that some of the unit

tests are wrong or that mutated code is never executed.

Some static testing techniques are used for software code testing. They differ based on the

formality and thoroughness of the process. Code review is often used to improve the overall

quality of the code and to educate less experienced developers. This process helps to deliver

more qualitative and tested code from development to testing right at the moment, but educative

aspects help to improve the quality of the code for the future deliveries. Inspections and

walkthroughs are used when there is less time available to conduct the static testing process.

32

1.6.5. In-Operational Testing

Classical black-box and white-box testing approaches are mainly used applied during

software development. Nowadays the new in-operational testing approach emerges. It means that

validation occurs during the system run-time. Execution environment testing, self-testing,

runtime verification of business process execution are the methods united under this approach.

These testing methods are part of so called smart technologies idea that software should behave

as a living being and adapt to, optimize in and defend itself again changing environment. [34]

[35] The relation between the in-operational testing methods and techniques is shown in Fig.

1.8.

Execution environment testing checks that software surrounding environment matches “the

requirements regarding its execution, for instance, OS version, configuration file and registry

entries, regional settings, etc.” [36] This automated check can be done both during the

deployment and during the run-time.

Fig. 1.8. In-Operational Testing.

Self-testing ensures “that the software is working correctly at any point of its life cycle”.

[37] This check can be automated that gives the method the pro-active flavor.

(Asynchronous) runtime verification of business process execution is a method that gives

an opportunity to verify that business processes run as expected without interrupting the business

processes already being executed inside the live system. [38] [39]

33

2. MOBILE APPLICATIONS TESTING ASPECTS

2.1. Apple iOS

2.1.1. Introduction

According to the different studies [11] – [14] iOS devices hold the major market share

among the corporate workers.

With the growth of platform abilities applications become more complex [15] to satisfy the

increasing user needs. The increased complexity means that there are many aspects that should

be taken into consideration when testing mobile applications. Mobile workers mostly use native

business applications on their devices; otherwise there would not be such a dominant position of

the single operating system. That is why iOS native applications are the subject of the main

interest for this chapter and study in general.

Despite the fact that the topic being hot, there are only some academic studies [40], [41],

[42] performed that systemize the generic aspects that should be taken into consideration when

testing the mobile applications without specifying the platform. Other studies – [43] and [44] that

include the clear distinction between the platforms, concentrate on some narrow topic. On the

other side, there are different iOS testing checklists, mind maps, blogs, etc. available in the

internet. This motivates the author to perform the systematic literature review of academic

literature in the field of mobile testing and perform the literature review of the available non-

academic (or multivocal, as per [45]) sources in the field of iOS testing [46].

It was decided to concentrate both reviews on aspects of manual testing of such quality

characteristics as functional suitability, performance efficiency, compatibility, reliability,

maintainability, and portability according to [24]. Usability testing is out of scope (except parts

that are closely related to or are on the border line with the quality characteristics mentioned

above).

The following research question was formulated:

RQ: Which aspects (i.e. features and/ or limitations) influence the testing of functional

suitability, performance efficiency, compatibility, reliability, maintainability, and portability of

the iOS native business applications?

The results of both reviews are merged in order to answer the research question. The goal

of the chapter is to eliminate the gap that currently exists between academic and non-academic

sources in the field of iOS applications testing, as well as to provide the sufficient details for

practitioners to make their iOS applications testing strategy more complete and solid.

34

2.1.2. Research Methodology

The systematic literature review (SLR) of the academic sources was performed in order to

gain the aspects of the mobile applications testing. The multivocal literature review (MLR) was

performed in order to gain the exclusive aspects of iOS applications testing. The idea to perform

two types of the review to consolidate the data from different sources was taken from work by

Tom et al [47]. Fig. 2.1 shows the stages of sources selection for the whole review process

applied in this paper.

Fig. 2.1. Process of sources selection for SLR and MLR.

The procedure described by Kitchenham and Charters [48] was followed in order to

conduct the systematic literature review. The qualitative review approach was applied in order to

include a rigor into the systematic review of multivocal literature as suggested by Ogawa and

Malen [45]. They define the multivocal sources as accessible, but non-academic writings on the

topic.

35

2.1.2.1. Systematic Literature Review

The search of academic literature for SLR was performed in two iterations. The first

iteration was executed using the databases and search criteria that are described below. 12 papers

were selected as relevant to answer RQ. The second iteration was executed based on the

references in the papers selected after the first iteration. Some relevant sources were found, but

they appeared to be non peer-reviewed. The details of each iteration can be found in Table 2.1.

Table 2.1.
Number of Papers Left after Exclusion/ Inclusion during Each SLR Stage

Iteration Stage Number of Academic Works

after Stage
1 1. Initial repeatable search (duplicates removed) 946

 2. Refined search to include works from 2014 972

 3. Exclusion upon titles 33

 4. Exclusion upon abstract 18

 5. Exclusion upon full text 12

2 6. Secondary search based on references in selected
results

0

 Total: 12

1) Databases. The following databases were used to search the keywords described in the

Search Keywords section: Springer Links (Springer), IEEE Xplore (IEEE further in the text), and

ACM Digital Library (ACM).

2) Search Keywords. Appropriate keywords were searched in metadata. Due to the search

engines differences, metadata should be treated as a search within the title, OR abstract, OR

keywords for ACM and as a search within the title only for Springer, while IEEE has an option

to search within all metadata at once.

Because preliminary search of keywords “iOS application” and “testing” or “iOS

application” and “quality” returned small amount of results, the keyword “iOS” was substituted

with “mobile”. It was also given a try to shorten the word “application” to “app”. The following

search string was used: (("iOS apps" OR "iOS applications") OR ("iPhone OS apps" OR "iPhone

OS applications") OR ("mobile apps" OR "mobile applications")) AND ("quality" OR "testing"

OR “verification” OR “validation”).

3) Inclusion/ Exclusion Criteria. Only peer-reviewed papers in English were selected.

There was no limitation given on the type of the source (i.e. journals, conference proceedings,

etc.). Papers starting from the year 2007 were chosen, because it is the year when iOS (iPhone

OS at that time) was released. The year 2013 was chosen as the last year of publication for the

36

search results repeatability. The search was also refined by adding papers from the year 2014 in

order not to miss the latest available information.

Irrelevant papers were excluded upon title, then upon abstract, and then upon full text. The

main credit was given to the papers that offered some categorization or general overview of

mobile applications testing. Papers that mention only the specific testing type of mobile

applications (i.e. unit testing, security, usability, etc.) or that are related to test automation were

excluded from the results after additional acquaintance with abstract because they do not focus

on the aspects asked in RQ. Only non-shortened version of papers were included if two versions

of the same paper for different occasions (e.g. conference proceedings and magazine) were

identified.

4) Data Extraction and Synthesis. The data extraction phase involved the extraction of

aspects and categories of aspects related to RQ from the selected studies. The categories of

multiple non-overlapping aspects are mentioned in some papers, while the detailed description of

aspects from single category is mentioned in others. The data synthesis phase includes the merge

of aspects from the different papers that appeared to have the same meaning. In order to make

the data more usable the aspects were divided between 4 large clusters: Environment,

Application Lifecycle, Inside the Application, and (functional or performance aspects of) UI/

UX.

2.1.2.2. Multivocal Literature Review

1) Data Sources and Search Strategy. Sources for MLR were searched in Google

(http://www.google.com/). The combination of the same keywords as for SLR, excluding the

“mobile applications” OR “mobile apps” part, was used for the first search iteration. The

keyword “checklist” was added for the second iteration. The first 50 relevant articles per

iteration (see Appendix B) based on the Google ranking algorithm were taken for subsequent

analysis.

2) Inclusion/ Exclusion Criteria. The sources were excluded during three stages by

evaluating 1) Title/ partial text available in the search results; 2) full text; 3) overall quality. The

sources related to iOS testing only were included into the final results, i.e. the sources containing

only information about general mobile testing aspects were excluded. The sources on security or

unit testing, as well as the sources on testing automation were excluded as well. Duplicates were

excluded upon title during the first exclusion stage. Some sources were excluded on the second

stage because they directly referred to other sources found. The inclusion/ exclusion progress is

depicted in Table 2.2.

37

Table 2.2.
Number of Papers Left after Exclusion during Each MLR Stage

Iteration Initial Stage 1 Stage 2 Stage 3

Iteration 1 50 20 5 5
Iteration 2 50 20 5 4

Total 9

3) Data Extraction and Synthesis. The data extraction phase involved the extraction of

aspects and aspects categories asked in RQ. Some sources already contain categorized lists of

aspects while others are the materials written in narrative. The data synthesis phase includes the

merge of aspects from the selected sources. The identified aspects were divided between the

same clusters as done for SLR.

2.1.3. Results

2.1.3.1. Summary of Reviews

Despite the fact that the search criteria for SLR includes studies starting from 2007, the

first selected study was published in 2009 [41], but the most productive years are 2012 (five

studies: [44], [49], [50], [51], and [40]) and 2013 (three studies: [52], [53], and [54]). Two

studies [43] and [55] were published in 2011, and one study [42] was published in 2014. Two

studies [44] and [43] are related to narrow topic of mobile application lifecycle, one study [54] is

related to user complaints about iOS applications, and other nine sources, [41], [49], [50], [51],

[40], [52], [53], [55], and [42] are related to the general testing of mobile applications.

Between the sources selected through MLR, seven sources [56], [57], [58], [59], [60], [61],

and [62] were published in 2013, and one source was published in 2012 [63] and one in 2014

[64]. Five sources [57], [58], [59], [63], [64] are blog posts, two sources [56] and [62] are testing

checklists, one source [60] is a white paper, and one source [61] is a mind map. All the blog

posts describe the testing only of one or some aspects, while other sources try to cover the whole

iOS testing field.

2.1.3.2. Aspects of iOS Applications Testing

The aspects that influence the testing of iOS applications gathered through SLR and MLR

are shown in Table 2.3. If a source is referred in the table before the details of an aspect, it means

that aspect is just mentioned in the source without pointing the details that are related to iOS

applications testing.

38

There are three types of iOS devices: iPad, iPhone, and iPod mentioned in [56], [60], [61],

and [62] that have different screen size, resolution & pixel ratio, processing efficiency, memory,

and storage capacity, as per [41], [50], [51], [40], [53], [54], [55], [42], [60], [61], and [62]. It is

claimed in [41] that functionalities, usability issues in the interface design, and user behavior “to

be tested in emulator”, while other sources [50], [53], [54], [55], and [64] state that almost

everything should be tested on the real device to get the reliable test results. There are also

different types of the external accessories, both wired and wireless [49], [52] like headphones

[49], [52], [62] and keyboard [49], [52] that can be connected to the device.

It is claimed in many sources [50], [40], [53], [42], [60], [61], and [62] that the variety of

operating systems (OS) is an important testing aspect, while OS upgrade is mentioned explicitly

only in [53]. It is possible to set the restrictions on the usage of different hardware or OEM

software completely or for the specific application within the iOS [56], [59], [61].

Mobile devices have limited power, processing, and memory resource [41], [44], [49],

[51], [40], [53], [54]. Thus resources consumption efficiency plays an important role in

application success [41], [49], [51], [40], [54], [56]. Applications should also be checked on

different networks, i.e. strong WiFi connection, cellular network (LTE, 3G, EDGE), and in

Airplane mode [41], [49], [40], [42], [58], [59], [61], [62]. Different network conditions (e.g.

slow connection, packets loss, etc.) should be taken into consideration as well [61]. Different

regional settings, like data and time formats [61], [62], as well as time zones [62] are also the

subject of interest.

iOS application lifecycle consists of several phases, and there are specific conditions that

can uniquely influence application’s behavior while being in the definite phase. An application

can be just installed and launched for the first time [51], [56], [62], work in foreground, stay in

background [44], [49], [43], [56], [61], receive memory warnings [44], [49], [43], [55], [62], be

interrupted by a call or SMS [52], [56], system alert [52], push notification [56], [61], GPS signal

[52], or audio/ video from another application [56], [61], [62]. It can even crash [53], [54], [60],

[61]. Or it can also be updated to the next version [53], [61], [62].

[59] warns about the need to check an extended (Asian) on-screen keyboard, while [41]

mentions on-screen keyboard as a generic aspect that should be taken into consideration.

According to [56] and [61] data can be shared via email or Bluetooth, or another network

between the applications. According to [61] and [62] it is necessary to check application’s

logging and analytics features. Testing of In-App Purchase component is mentioned in [61].

Testing of Web View component is mentioned both in [42] and [61].

An application can be manipulated with a variety of gestures [42], [61]. When animated

transitions occur, they must run smoothly [54], [61] irrespectively of the task executed in

39

parallel. Testing for half pixels glitches and testing of Pull to Refresh feature are mentioned in

[61]. The necessity of checking the application both in portrait and landscape is noticed in [41],

[49], [61], and [62]. The importance of localization testing is mentioned in [53] and [62]. [56]

identifies the need for testing of native characters and special symbols. It should also be checked

that application works as designed when accessibility features of OS are enabled [57], [60], [61],

[62], [63].

Table 2.3
Aspects of iOS Applications Testing

Environment
Hardware

Devices iPad, iPhone, iPod
[56], [60], [61],
[62].

Screen size, resolution & pixel ratio, processing efficiency,
memory, storage capacity; [41], [50], [51], [40], [53], [54],
[55], [42], [60], [61], [62]
motion activities [61], [62].

Simulator [41], [50], [40], [53], [55], [64].
External
Accessories

Headphones [49], [52], [62], keyboard [49], [52]; wired/ wireless [49], [52].

Operating System
OS Variety [50], [40], [53]

[42], [60], [61],
[62].

OS upgrade [53].

Restrictions and
Privacy Settings

[41], [53], [54], [42].
Safari, Camera, Siri, IAP (in-app purchase), Location Services, Contacts,
Calendars, Photos, Social Networking, Microphone, Motion Activities, Cellular
Data Use, Background App Refresh. [56], [59], [61]

Resources
Limitations Lack of storage, amount of memory, running out of battery, processing

capabilities. [41], [44], [49], [51], [40], [53], [54]
Consumption Memory consumption, battery consumption. [41], [49], [51], [40], [54], [56]
Connectivity
Network Types WiFi, Cellular networks; [41], [49], [40], [42], [58], [62]

Bluetooth [41], [49], [40], [62]; Airplane mode. [61], [62]
Network
Conditions

[41], [49], [51], [40], [52], [54].
Strong/ no/ poor connection; connection loss. [56], [58], [59], [61]
Ask for connection [41].

Internalization
Region Formats [51].

Date format, hour format [61], [62]
Date/ Time Settings Switching between time zones, system time too fast/ too slow. [61]

40

Aspects of iOS Applications Testing (continued)
Application Lifecycle

Installing and
Launching

[51], [56], [62].

Background [44], [49], [43], [56], [61].
Crash [53], [54], [60], [61].
Low-Memory
Warnings

[44], [49], [43], [55], [61]

Interruptions [41], [44], [49], [51], [43].
Call/ SMS [52], [56]; push notifications [56], [61], system alerts [52]; GPS
signal [52]; audio/ video [56], [61], [62].

Application Update [53], [61], [62].
Inside the Application

Keyboard [41].
Extended keyboard [59].

Data Import/ Export Email; Bluetooth/ network (peer to peer) [56], [61].
Logging/ Analytics [61], [62].
In-App Purchases [61].
Web View [42], [61].

UI/ UX
Gestures [42], [61].
Smooth Animation [54], [61].
Pull to Refresh [61].
Orientation Portrait, landscape. [41], [49], [61], [62]
Half Pixels [61].
Localization [53], [62].

Native characters and special symbols [56].
Accessibility VoiceOver, accessibility zoom, etc. [57], [60], [61], [62], [63]

2.1.4. Discussion and Implications

Despite the fact that the Results section shows the identified aspects of iOS applications

testing gathered through SLR and MLR, the author feels the necessity to discuss the details of

identified aspects. There are also some aspects that are known to the author (like iAd, update of

Xcode, AirDrop, etc.), but they are missing in the reviewed literature. Some of the details are

provided in the reviewed sources. Others are added based on the author’s more than five years of

professional experience of leading more than 20 iOS applications testing projects for several

Global Fortune 5002 and other multinational companies, giving the references to iOS Developer

Library3 or other credible sources where possible.

2 http://money.cnn.com/magazines/fortune/global500/index.html
3 https://developer.apple.com/library/

http://money.cnn.com/magazines/fortune/%E2%80%8Cglobal500/index.html
https://developer.apple.com/library/

41

2.1.4.1. Hardware

1) Devices. While there are four types of iOS devices, business applications are mostly

developed for iPads4, and sometimes have reduced iPhone versions5. iPods and Apple Watch

devices generally are out of scope, however Apple Watch begins to receive more and more

attention. The variety of iOS device is depicted in Fig. 2.2.

Fig. 2.2. iOS Devices Variety.6

iPad 1st generation devices, as well as iPhone 3G, iPhone 3GS, and iPhone 4 are not taken

into consideration anymore when new applications for iOS are developed. Only iPhone 4

supports iOS 7 (the latest iOS version at the moment of writing is iOS 9), but three other

mentioned devices already are not7.

iPad 28 and iPad mini9 both have non retina display (i.e. a display with lower pixel density

than the latest iOS devices) and generally the same hardware options. They are the least

powerful iPad devices that support the latest iOS version. Special checks that application design

fits the small screen of the device and that every UI control can be easily interacted with should

be performed on iPad mini.

4 http://www.apple.com/ipad/business/
5 http://www.apple.com/iphone/business/
6 http://gbtimes.com/world/apple-iwatch-and-other-smart-watch-competitorstime-savers-or-waste-time
7 http://support.apple.com/kb/ht5457
8 http://support.apple.com/kb/sp622
9 http://support.apple.com/kb/SP661

http://www.apple.com/ipad/business/
http://www.apple.com/iphone/business/
http://gbtimes.com/world/apple-iwatch-and-other-smart-watch-competitorstime-savers-or-waste-time
http://support.apple.com/kb/ht5457
http://support.apple.com/kb/sp622
http://support.apple.com/kb/SP661

42

iPad 410 and iPad 311 both have retina displays, but iPad 4 is more powerful than iPad 3.

Generally, it is enough to have only one device of any generation to cover this category of

devices.

iPad Air12 and iPad mini retina13 both have faster GPU (but still retina display) and M7 64-

bit core processor that has built-in hardware for motion activities like accelerometer, gyroscope,

and compass.

iPad Air 214 and iPad mini 315 are equipped with Touch ID16 technology. iPad Air is also

equipped with even faster GPU and M8 64-bit core processor that has a barometer sensor in

addition. iPad Pro17 is an iPad with the largest screen size and more powerful M9 processor.

iPhone 418 and higher all have retina displays. iPhone 4S19 has a faster dual core processor

in comparison with iPhone 4. iPhone 520 and iPhone 5C21 are both packed with even faster next

generation processor. iPhone 5S22 is packed with already mentioned M7 64-bit core processor

and fingerprint identity sensor.

Despite the fact that iPhone 5th generation devices have larger screen size in comparison

with iPhone 4th generation devices, applications designed for iPhone 4th generation devices can

still run on iPhone 5th generation devices, but there are black bars above and below application

content, unless properly named and to a larger screen accordingly sized launch image is

provided.23

iPhone 624 and iPhone 6 Plus25 have M8 64-bit core processor, larger and even larger

screen size, and already mentioned fingerprint identity sensor, barometer, and other sensors.

Separate image resources should be prepared for applications to look smooth on iPhone 6 Plus.

The “S” upgrade of iPhone 6th line26, 27 comes with yet more powerful M9 processor and 3D

Touch28 technology that recognizes the power of the pressure of the touch. This technology

brings two new gestures like Peek and Pop.

10 http://support.apple.com/kb/sp662
11 http://support.apple.com/kb/sp647
12 http://support.apple.com/kb/SP692
13 http://support.apple.com/kb/SP693
14 http://support.apple.com/kb/SP708
15 http://support.apple.com/kb/SP709
16 http://support.apple.com/en-us/HT5883
17 https://support.apple.com/kb/SP723
18 http://support.apple.com/kb/sp587
19 http://support.apple.com/kb/sp643
20 http://support.apple.com/kb/sp655
21 http://support.apple.com/kb/SP684
22 http://support.apple.com/kb/SP685
23 https://developer.apple.com/library/ios/documentation/

iPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html
24 http://support.apple.com/kb/SP705
25 http://support.apple.com/kb/SP706
26 https://support.apple.com/kb/SP726
27 https://support.apple.com/kb/SP727
28 http://www.apple.com/iphone-6s/3d-touch/

http://support.apple.com/kb/sp662
http://support.apple.com/kb/sp647
http://support.apple.com/kb/SP692
http://support.apple.com/kb/SP693
http://support.apple.com/kb/SP708
http://support.apple.com/kb/SP709
http://support.apple.com/en-us/HT5883
https://support.apple.com/kb/SP723
http://support.apple.com/kb/sp587
http://support.apple.com/kb/sp643
http://support.apple.com/kb/sp655
http://support.apple.com/kb/SP684
http://support.apple.com/kb/SP685
https://developer.apple.com/library/ios/documentation/%E2%80%8CiPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html
https://developer.apple.com/library/ios/documentation/%E2%80%8CiPhone/Conceptual/iPhoneOSProgrammingGuide/AdvancedAppTricks/AdvancedAppTricks.html
http://support.apple.com/kb/SP705
http://support.apple.com/kb/SP706
https://support.apple.com/kb/SP726
https://support.apple.com/kb/SP727
http://www.apple.com/iphone-6s/3d-touch/

43

iPhone 6th line supports Near Field Communications-based mobile payment technology

Apple Pay29. Apple Pay can be used also on iPhone 5th line, but only when paired with Apple

Watch. Payments can be made also on iPad Air 2, iPad mini 3, and iPad Pro, but only within the

applications.

Generally speaking, one device from each generation would be enough to cover the whole

set of iPhones, in case of application under test does not rely on the specific function of the

device like motion activity or finger print of iPhone 5S and higher or Siri (advanced voice

control) that is available only starting from iPhone 4S.

2) Device vs. Simulator. The author’s professional experience supports the statement

expressed in [50], [53], [54], [55], and [64] that for achieving good quality of the application, it

should be tested on the device rather than on the simulator, because testing results can vary. It

also should be taken into consideration that application can behave differently when it is built in

debug, not in release mode.30

3) External Accessories. There are different kinds of accessories, both wired and wireless

[49], [52], that can be attached to the device: headphones [49], [52], [62], keyboard, [49], [52],

stylus, etc. It can occur that an application handles the inputs and outputs from/ to external

accessories in a different way than it does without them, or it does not handle them at all.31

External accessories from different manufacturers can behave differently, e.g. styluses from

different manufacturers can have different configurations inside the application in order to

handle the palm (interaction) rejection, etc.32

2.1.4.2. Operating System

1) iOS Variety. Release of the new iOS version almost always leads to the major retesting

cycle for the non-trivial applications. New Xcode33 version (that includes new version of iOS

SDK and compiler) 34 is shipped together with the new iOS version. Thus, there can be

completely different test results when the same code is built by the different Xcode versions.

The following update strategy is followed by the development organizations which the

author works or worked for when the new iOS version is released:

1) Current application version built by previous the Xcode is checked on the new iOS

version (preliminary checks are done already on Beta or GM versions).

29 https://www.apple.com/apple-pay/
30 https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/DebugYourApp/DebugYourApp.html
31 https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Articles/MonitoringEvents.html
32 http://www.apartmenttherapy.com/tablet-stylus-test-lab-comparison-of-pencil-intuos-pogo-connect-jot-script-tech-test-lab-reviews-196850
33 https://developer.apple.com/xcode/
34 https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/WhatsNewXcode/00-Introduction/Introduction.html

https://www.apple.com/apple-pay/
https://developer.apple.com/library/ios/documentation/ToolsLanguages/Conceptual/Xcode_Overview/DebugYourApp/DebugYourApp.html
https://developer.apple.com/library/ios/featuredarticles/ExternalAccessoryPT/Articles/MonitoringEvents.html
http://www.apartmenttherapy.com/tablet-stylus-test-lab-comparison-of-pencil-intuos-pogo-connect-jot-script-tech-test-lab-reviews-196850
https://developer.apple.com/xcode/
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/WhatsNewXcode/00-Introduction/Introduction.html

44

2) Major failures, if any, are fixed, and the application is released with remark that it

supports the latest iOS version.

3) More thorough testing cycle follows when the application current version is built

by the new Xcode afterwards.

It is possible to leave the application version built by the previous Xcode for some period

of time if, for example, active development currently is not planned. But here is a list of

situations when developers are forced to rebuild the application with the new version of Xcode:

• New iOS version does not support the methods that were previously deprecated,

but still used in the application; new supported methods that substitute the

deprecated ones are available with the new Xcode, e.g. detection of UDID.35

• Apple announces that all the new applications or application updates submitted to

the App Store must be optimized for new iOS and built with the latest Xcode.36

• Application should be redesigned for the marketing purposes, because of the iOS

redesign (as it occurred with iOS 737), but new UI is achieved using the latest

Xcode only.

It is worth mentioning that devices with the previous iOS version should always be

available and handled carefully in case some of the applications developed within the

organization still support it. It should not be forgotten that there is no official way to install any

previous major iOS version after the release of the latest major iOS version38. It should be taken

into consideration that not all users update iOS version as soon as it is released39, but can

continue to use the previous one for quite a long period of time. From the author’s experience, it

is especially applicable for enterprise users – they update iOS version only after the enterprise

infrastructure that supports the latest iOS version is ready.

2) Restrictions and Privacy Settings. In iOS a user can set different restrictions, both

system and application wise, on the usage of different hardware or OEM software. For example,

it is possible to restrict the usage of Safari, Camera, Siri, IAP (In-App Purchase), Location

Services, Contacts, Calendars, Photos, Social Networking, Microphone, Motion Activities,

Cellular Data Use, Background App Refresh, etc. [56], [59], [61] The application should handle

cases when it tries to access the restricted item. The user should also be warned about the

35 https://developer.apple.com/library/ios/documentation/uikit/

reference/UIDevice_Class/DeprecationAppendix/AppendixADeprecatedAPI.html
36 https://developer.apple.com/news/?id=12172013a
37 http://www.apple.com/pr/library/2013/09/10iOS-7-With-Completely-Redesigned-User-Interface-Great-New-Features-Available-September-

18.html
38 http://www.itproportal.com/2013/09/29/why-apple-wont-allow-you-to-downgrade-your-iphone-from-ios-7-to-ios-6/
39 http://appleinsider.com/articles/13/12/31/ios-7-now-installed-on-78-of-active-apple-handheld-devices

https://developer.apple.com/library/ios/documentation/uikit/%E2%80%8Creference/UIDevice_Class/DeprecationAppendix/AppendixADeprecatedAPI.html
https://developer.apple.com/library/ios/documentation/uikit/%E2%80%8Creference/UIDevice_Class/DeprecationAppendix/AppendixADeprecatedAPI.html
https://developer.apple.com/news/?id=12172013a
http://www.apple.com/pr/library/2013/09/10iOS-7-With-Completely-Redesigned-User-Interface-Great-New-Features-Available-September-18.html
http://www.apple.com/pr/library/2013/09/10iOS-7-With-Completely-Redesigned-User-Interface-Great-New-Features-Available-September-18.html
http://www.itproportal.com/2013/09/29/why-apple-wont-allow-you-to-downgrade-your-iphone-from-ios-7-to-ios-6/
http://appleinsider.com/articles/13/12/31/ios-7-now-installed-on-78-of-active-apple-handheld-devices

45

restriction and instructed how to remove it 40 or offered to remove the restriction within the

application if it is possible.

2.1.4.3. Resources

1) Limitations and Consumption. Due to the fact that a mobile device has more limited

storage, memory, power, and processing capabilities than an ordinary PC [41], [44], [49], [51],

[40], [53], [54], examination of how the applications handle these limits and operate within these

limits are of special interest. The application should check for the free storage availability when

the new data is added/ downloaded. Otherwise, from the author’s experience, the user will not be

able to operate with the data that already is inside the application due to crashes. The application

should be checked for efficient battery consumption as well [41], [49], [51], [40], [54], [56]. It

can be verified using Xcode Instruments tools41. Battery usage logging can also be enabled on

the device that is provisioned for the development42. Instruments tools can also be used for

profiling the efficiency of memory and processor resource utilization.

2.1.4.4. Connectivity

1) Network Types. During Alpha testing the application is mostly checked in the laboratory

environment [41]: on the strong WiFi connection and in the Airplane mode. The working on the

cellular data (LTE, 3G, EDGE) should be checked as well [41], [49], [40], [42], [58], [62],

especially if the application utilizes a lot of traffic. The user, at least, should be warned when

large data synchronization occurs on the cellular network.

2) Network Conditions. There are different network conditions possible [41], [49], [51],

[40], [52], [54], [56], [58], [59], [61] (e.g. slow connection, packets loss, etc.). It should be

checked if under these conditions:

• The application handles different network conditions on the first launch. [61]

• Proper error messages are shown on timeouts and other network errors. [61]

• The interaction with UI (i.e. the main thread) is not blocked. [61]

• The corrupted data is not stored, or at least can be redownloaded.

For simulating different network conditions Apple Network Link Conditioner can be used

[M45]. This tool is a part of Xcode Developer Tools43 and can simulate network conditions on

40 http://support.apple.com/kb/ht4213
41 https://developer.apple.com/library/ios/documentation/

AnalysisTools/Reference/Instruments_User_Reference/Introduction/Introduction.html
42 https://developer.apple.com/library/ios/recipes/xcode_help-devices_organizer/articles/provision_device_for_development-generic.html
43 https://developer.apple.com/library/ios/documentation/

NetworkingInternetWeb/Conceptual/NetworkingOverview/WhyNetworkingIsHard/WhyNetworkingIsHard.html

http://support.apple.com/kb/ht4213
https://developer.apple.com/library/ios/documentation/%E2%80%8CAnalysisTools/Reference/Instruments_User_Reference/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/%E2%80%8CAnalysisTools/Reference/Instruments_User_Reference/Introduction/Introduction.html
https://developer.apple.com/library/ios/recipes/xcode_help-devices_organizer/articles/provision_device_for_development-generic.html
https://developer.apple.com/library/ios/documentation/%E2%80%8CNetworkingInternetWeb/Conceptual/NetworkingOverview/WhyNetworkingIsHard/WhyNetworkingIsHard.html
https://developer.apple.com/library/ios/documentation/%E2%80%8CNetworkingInternetWeb/Conceptual/NetworkingOverview/WhyNetworkingIsHard/WhyNetworkingIsHard.html

46

the device if the network connection from Mac is shared. It can also be enabled directly on the

device that is provisioned for development.

Sometimes it is also necessary to check a poor connection or a connection loss/ switching

in the real world. From the author’s experience, the most common cases that should not be

simulated, but should be checked in the field are:

• The traffic loss while the device “thinks” that it is still connected to the network

(e.g. entering the elevator or walking outside the network coverage).

• Switching from WiFi to the cellular network and vice versa, switching from one

WiFi access point to another, switching between different cellular network types.

• Only cellular network conditions (e.g. inbound/ outbound connection speed, packet

loss ratio, etc.) can be simulated, but the device will still think that it is on WiFi.

Thus, the real cellular network should be used to check the cellular network

specific functionality of the application.

• The situation when the device is not connected to any network should be checked

separately to make sure that this condition is treated the same way as the Airplane

mode.

2.1.4.5. Internalization

1) Region Formats. Applications should be tested using different region formats [51] that

have different hour format (24 or 12) [61], [62] and different coma separators. For example,

German Switzerland and United States regions cover these both differences. From the author’s

experience, the specific Arabic and Israel region formats should be explicitly tested if the

application’s functionality is directly related to the calendar and weekend days.

2) Date/ Time Settings. When the application receives updates from backend, and

especially when creation/ update timestamps for items are visible (but the same also applies for

locally created items), it is necessary to check how the application behaves with different time

settings [61]:

• When switching between time zones.

• When the system time is too fast or too slow.

Besides checking that functionality works properly itself, it is necessary to check that

relative times are properly calculated [61].

47

2.1.4.6. Application Lifecycle

1) Installing and Launching. The application should be installed both on the device that

already contained some version of the application and on the clean device after the factory reset.

The user should be warned through a message or a progress bar in case the access to the

application functionality is given in more than 5 seconds after launching. [56]

2) Background. The background mode is one of the major cycles of iOS application

lifecycle. If the application cannot be sent to the background in approximately 5 seconds, then

iOS kills it. The same is applicable when going back to the foreground. 44 That is why it is

necessary to check that the application changes the state in sufficient amount of time even with

the large amounts of data inside. The application can also perform the refreshes in the

background using the special multitasking feature provided in iOS 7 or if it uses the Location

Services, or plays audio content in background, etc. It should be checked that all the data is

preserved [62], but specific data is updated and is not corrupted after the application is returned

to the foreground. All the animations should be restarted as well – it does not occur

automatically.

3) Locked Device. Apple warns that improper design or implementation of cryptographic

operations can introduce performance or battery life problems. Locking the device with passcode

can influence the applications that can operate in background. What is more, the device denies

the access to the keychain and files.45 From the author’s experience, the incidents including data

loss and crashes can occur if the application needs access to the keychain during the background

activity, but the situation when the keychain is not available is not handled properly. It usually

takes a long time to isolate the cause of such incidents. It is easy to crash the application just by

frequent locking with a passcode and unlocking the device if the file data protection strategy is

poorly designed.

4) Crashes. There is an option to use crash reports [61] when the tester cannot reproduce

the exact steps that led to the crash. Some crash reports if symbolicated (i.e. converted to the

proper stack trace using debug symbols of the build)46 can give a hint on the exact scenario that

led to crash. Others are not useful if the crash occurred not in the application, but in iOS itself.

5) Low-Memory Warning. When iOS needs more memory, it unloads applications that are

currently in the background [49], [43], [61]. Prior to iOS 6, if the application needed even more

memory it could unload cashed images (if cashing was performed) and not visible views of the

44 https://developer.apple.com/library/ios/documentation/

iphone/conceptual/iphoneosprogrammingguide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html
45 https://www.apple.com/ipad/business/docs/iOS_Security_Oct12.pdf
46 https://developer.apple.com/library/ios/documentation/IDEs/

Conceptual/AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashReports.html

https://developer.apple.com/library/ios/documentation/%E2%80%8Ciphone/conceptual/iphoneosprogrammingguide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html
https://developer.apple.com/library/ios/documentation/%E2%80%8Ciphone/conceptual/iphoneosprogrammingguide/ManagingYourApplicationsFlow/ManagingYourApplicationsFlow.html
https://www.apple.com/ipad/business/docs/iOS_Security_Oct12.pdf
https://developer.apple.com/library/ios/documentation/IDEs/%E2%80%8CConceptual/AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashReports.html
https://developer.apple.com/library/ios/documentation/IDEs/%E2%80%8CConceptual/AppDistributionGuide/AnalyzingCrashReports/AnalyzingCrashReports.html

48

currently running application. In such cases it was possible to see only the placeholders of

images or the application could even crash if unloaded data reload was not properly handled

during the further navigation activities. Now developers must handle actions to perform when

memory warning is received completely on their own.47, 48 If the application utilizes a lot of

memory (usually it means that there are memory leaks in the application) then it can be fully

unloaded from the device memory by iOS itself.48 Low-memory warnings can be simulated by

Xcode Instruments (but only for the simulator).48, 49 From the author’s experience, they can be

easily reproduced on the device when many heavy pages are loaded in Safari or when photos or

videos are made while the application under test is running on the background. Working with

very large data or quick and frequent refreshes of data in UI collections can cause low-memory

warnings when the application under test is running on the foreground.

6) Interruptions. The application should preserve its state and should not freeze if it

receives an incoming call or SMS [52], [56], system alert [52], or local, or push [56], [61]

notification while being in the foreground, especially when activities occur on the main thread.

It is possible to open the application through the push notification if it is received when the

application is in the background or closed. Different navigation start points should be checked in

case the application also does some navigation actions inside itself on confirming the push

notification. The application icon badge update should also be checked including the case when

several updates are received in a row.50, 51

For applications that play audio/video it should be checked that other audio/ video streams

are paused on in-application audio stream start. It should be checked if audio continues to play or

not when the application is in the background (to play or not - it depends on the requirements).

[56], [61], [62] It is worth mentioning that audio/ video inside the Web Views is handled in a

different way than audio/ video played natively.52

7) Application Update. The migration process of the application from the previous versions

should be tested before the new version of the application that will be available to the final user

is released. [61], [62] After the application is updated from the previous version it should be

checked that:

• The data is not corrupted.53

• The user preferences stay in place. [61]

47 https://developer.apple.com/library/ios/documentation/uikit/reference/UIViewController_Class/Reference/Reference.html
48 https://developer.apple.com/library/ios/documentation/

iphone/conceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
49 https://developer.apple.com/library/ios/documentation/IDEs/

Conceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html
50 https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
51 https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/

Chapters/IPhoneOSClientImp.html
52 https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html
53 https://developer.apple.com/library/ios/technotes/tn2285/_index.html

https://developer.apple.com/library/ios/documentation/uikit/%E2%80%8Creference/UIViewController_Class/Reference/Reference.html
https://developer.apple.com/library/ios/documentation/iphone/%E2%80%8Cconceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
https://developer.apple.com/library/ios/documentation/iphone/%E2%80%8Cconceptual/iphoneosprogrammingguide/PerformanceTuning/PerformanceTuning.html
https://developer.apple.com/library/ios/documentation/IDEs/%E2%80%8CConceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html
https://developer.apple.com/library/ios/documentation/IDEs/%E2%80%8CConceptual/iOS_Simulator_Guide/InteractingwiththeiOSSimulator/InteractingwiththeiOSSimulator.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/Introduction.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/%E2%80%8CChapters/IPhoneOSClientImp.html
https://developer.apple.com/library/ios/documentation/NetworkingInternet/Conceptual/RemoteNotificationsPG/%E2%80%8CChapters/IPhoneOSClientImp.html
https://developer.apple.com/library/ios/documentation/AudioVideo/Conceptual/AVFoundationPG/Articles/00_Introduction.html
https://developer.apple.com/library/ios/technotes/tn2285/_index.html

49

• Saved credentials are still there. [61]

• Previously registered push notifications are still received.53 [61]

The updates should be performed using the different possible paths starting from the very

first application release [61]. From the author’s experience, in some cases (e.g. due to the

requirements change, or the incomplete data model design during the first release) data model

changes can be so significant that users are asked to perform the backup of their data and to

perform the clean install of the application. Encrypted data migration is also the subject of

interest. When there is a backend server and it is updated as well, it is necessary to check the old

application versions on the new server version if there is no mechanism that does not allow

connecting to the server with the old versions of the application.

2.1.4.7. Inside the Application

1) Keyboard. Editable UI elements should be focused through auto scroll after onscreen

keyboard appears. In practice, it is often forgotten to check how they behave in case of split,

undocked, extended [59] (see Fig. 2.3) or external keyboard [49], [52], only docked and merged

onscreen keyboard is taken into account. From the author’s experience, non standard keyboard

appearances often influence the usability of those editable elements that are placed near the

screen bottom border.

Fig. 2.3. The difference between basic and extended keyboards.54,55

54 http://www.digitaltrends.com/apple/ios-8-review/
55 http://stackoverflow.com/questions/19626619/where-is-the-ios7-simulator-japanese-keyboard-dictionary-located

a) Basic keyboard. b) Extended keyboard.

http://www.digitaltrends.com/apple/ios-8-review/
http://stackoverflow.com/questions/19626619/where-is-the-ios7-simulator-japanese-keyboard-dictionary-located

50

2) Data Import/ Export. Many applications support different file formats that they can

operate with. There are different ways how supported file formats can be imported into or

exported from the application. They are:

• Open In from email, web browser, or other applications;56

• via Air Drop;57

• via Email; [56], [61]

• via iTunes;58

• via Photos application/ Camera;59

• via Bluetooth/ network (peer to peer); [56], [61]

• import (download and open) from URL.60

It should be checked that the application handles (i.e. is registered to open and can open61)

supported file formats in non case sensitive manner.62 Names of the exported files should be

verified as well.

Files can be sent via email from the application. In most cases, iOS native email client is

used for this purpose. It should be checked that there are default to, subject, and body set on

email creation. The application should also properly handle the case when there is no email

account configured. [61]

From the author’s experience, there are not many problems encountered when images are

imported from the Photos application using the native view controller. But in case when custom

view controller is used, it should be more strictly checked how it is synchronized with Photos

application. The robustness of the Camera component usage is also the subject of worries. The

Camera component tests should include the device orientation change, rotation lock,

background, etc., i.e. the same aspects that should be checked for every mobile application.

3) Logging/ Analytics. Public analytics engines are often used for collecting crash reports,

feature usage statistics and other logs for further development activities and testing thoroughness

prioritization [61], [62]. Analytics is mostly used for publically available applications without

own backend server. Based on the author’s experience, if analytics is used then the main points

that should be checked are:

56 https://developer.apple.com/library/ios/qa/qa1587/_index.html
57 http://support.apple.com/kb/ht5887
58 http://www.apple.com/itunes/
59 https://developer.apple.com/library/ios/documentation/Audio

Video/Conceptual/CameraAndPhotoLib_TopicsForIOS/Introduction/Introduction.html
60 https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/URLLoadingSystem/Tasks/UsingNSURLDownload.html
61 https://developer.apple.com/library/ios/documentation/

filemanagement/conceptual/documentinteraction_topicsforios/Introduction/Introduction.html
62 https://developer.apple.com/library/ios/qa/qa1697/_index.html

https://developer.apple.com/library/ios/qa/qa1587/_index.html
http://support.apple.com/kb/ht5887
http://www.apple.com/itunes/
https://developer.apple.com/library/ios/documentation/Audio%E2%80%8CVideo/Conceptual/CameraAndPhotoLib_TopicsForIOS/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/Audio%E2%80%8CVideo/Conceptual/CameraAndPhotoLib_TopicsForIOS/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/URLLoadingSystem/Tasks/UsingNSURLDownload.html
https://developer.apple.com/library/ios/documentation/%E2%80%8Cfilemanagement/conceptual/documentinteraction_topicsforios/Introduction/Introduction.html
https://developer.apple.com/library/ios/documentation/%E2%80%8Cfilemanagement/conceptual/documentinteraction_topicsforios/Introduction/Introduction.html
https://developer.apple.com/library/ios/qa/qa1697/_index.html

51

• Analytics gathering should handle situations when the data is not available or has

another format than expected. It is better to send the wrong one or no statistics than

to break the UX.

• The statistics should not be sent via cellular networks. In most cases only WiFi

connection should be used.

• The analytics should not gather the data about the user without his/ her permission.

The user should be warned about how and where the data will be used.63

• Collecting the data should not break the UX in any other way.

Enterprise applications can have other, more strict and extensive rules for logging

depending on the corporate policy. Own logging protocols are used in such cases.

4) In-App Purchase. In-App Purchase (IAP) is a business model that allows the user to buy

virtual or digital consumables, non-consumables, and subscriptions within the application that is

distributed via Apple App Store. It should be checked that the purchased items are available on

all the devices that are registered for the particular user, and that purchases are restored after the

application reinstall, clean install, and iOS update or clean install.64

IAP products can be tested using special test users on Apple test environments. It is also

possible to test auto-renewable subscriptions on these environments, because they have

compressed durations for testing purposes.65

IAP password cashing system setting is of the special interest. The password can be saved

for 15 minutes or asked each time the user makes any IAP.66 The application should be checked

for handling both options. [61]

5) iAd. iAd is Apple’s platform that allows to “generate revenue and promote … apps” by

showing an advertisement within the applications.67 Test advertisements, including the erroneous

one can be sent “over local networks or USB using iAd Producer, or over the carrier network

using Apple's test servers”.68 There are two types of advertisement available: banner views and

full-screen advertisements. 69 Apple suggests checking that the application shows only fully

loaded advertisements. The application should pause other activities when the user begins the

interaction with a banner and should restart them when the user finishes (or system cancels) the

interaction with a banner. Advertisements should appear quickly and response to the device

orientation changes.69

63 https://developer.apple.com/appstore/resources/approval/guidelines.html
64 https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf
65 https://developer.apple.com/library/ios/documentation/

LanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/TestingInAppPurchases.html
66 http://support.apple.com/kb/ht6088
67 https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iAd_Guide/Introduction/Introduction.html
68 http://support.apple.com/kb/HT5245
69 https://developer.apple.com/library/ios/documentation/

userexperience/conceptual/iAd_Guide/TestingiAdApplications/TestingiAdApplications.html

https://developer.apple.com/appstore/resources/approval/guidelines.html
https://developer.apple.com/in-app-purchase/In-App-Purchase-Guidelines.pdf
https://developer.apple.com/library/ios/documentation/%E2%80%8CLanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/TestingInAppPurchases.html
https://developer.apple.com/library/ios/documentation/%E2%80%8CLanguagesUtilities/Conceptual/iTunesConnectInAppPurchase_Guide/Chapters/TestingInAppPurchases.html
http://support.apple.com/kb/ht6088
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/iAd_Guide/Introduction/Introduction.html
http://support.apple.com/kb/HT5245
https://developer.apple.com/library/ios/documentation/%E2%80%8Cuserexperience/conceptual/iAd_Guide/TestingiAdApplications/TestingiAdApplications.html
https://developer.apple.com/library/ios/documentation/%E2%80%8Cuserexperience/conceptual/iAd_Guide/TestingiAdApplications/TestingiAdApplications.html

52

6) Web View. Web View is a part of WebKit. Web Views are used to represent the web

content inside the native mobile applications.70 The native application is called a hybrid when

most of the data inside it is represented using Web Views.71 Web Views are often used in order

to open different file formats 72 or to login to the different content providers. It should be

checked that the links inside the Web Views are opened in the way they are designed to (they are

opened in the same view by default73, but they often should be opened in a default browser, for

example). From the author’s experience, unnecessary scroll bars and bouncing effects should be

eliminated if any.

2.1.4.8. (Functional Aspects of) UI/ UX

1) Gestures. The application can be manipulated with a variety of gestures like tap, double

tap, touch and hold, pinch, pan, swipe, etc. It should be checked that gestures bring the same user

experience as suggested in iOS Human Interface Guidelines.74 The applications made by Apple

can be used for reference. Based on the author’s practice, if some elements on the definite

application screen support non-trivial gestures other than single tap, other screen elements

around should be checked for interaction using the same non-trivial gestures. It also should be

verified that unexpected interactions with multiple UI elements at once are not allowed, because

such actions often lead to crash.

It is worth mentioning that minimal suggested tappable area is 44 x 44 pt.75

2) Smooth Animation. The animation is used to improve UX when the application responds

to the user actions or when it provides the user with a feedback about the occurring on the

screen. But they should not be “excessive or gratuitous” otherwise they “can obstruct app flow,

decrease performance, and distract users from their task”.76 The animation should be smooth

irrespectively of the currently running background tasks, thus the author recommends testing

different animated transitions for smoothness while heavy background tasks occur.

3) Pull to Refresh. Pull to Refresh [61] feature is a very common user experience

mechanism that is used for performing delta data loads in mobile applications (see Fig. 2.4).77 It

should be verified that Pull to Refresh mechanism loads only the new data, not the whole

available data set, and that already loaded data is persisted in case of the Pull to Refresh update

70 https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DisplayWebContent/DisplayWebContent.html
71 http://blogs.telerik.com/appbuilder/posts/12-06-14/what-is-a-hybrid-mobile-app-
72 https://developer.apple.com/library/IOs/qa/qa1630/_index.html
73 https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DisplayWebContent/Tasks/SimpleBrowsing.html
74 https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/InteractivityInput.html
75 https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/LayoutandAppearance.html
76 https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/Animation.html
77 http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1

&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,448,084.PN.&OS=PN/8,448,084&RS=P
N/8,448,084

https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DisplayWebContent/DisplayWebContent.html
http://blogs.telerik.com/appbuilder/posts/12-06-14/what-is-a-hybrid-mobile-app-
https://developer.apple.com/library/IOs/qa/qa1630/_index.html
https://developer.apple.com/library/mac/documentation/Cocoa/Conceptual/DisplayWebContent/Tasks/SimpleBrowsing.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/MobileHIG/InteractivityInput.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/LayoutandAppearance.html
https://developer.apple.com/library/ios/documentation/userexperience/conceptual/mobilehig/Animation.html
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1%E2%80%8C&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,448,084.PN.&OS=PN/8,448,084&RS=PN/8,448,084
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1%E2%80%8C&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,448,084.PN.&OS=PN/8,448,084&RS=PN/8,448,084
http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1%E2%80%8C&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=8,448,084.PN.&OS=PN/8,448,084&RS=PN/8,448,084

53

failed. It also should be checked how it behaves when the current data/ time and/ or data settings

(e.g. format and zone) are changed.

Fig. 2.4. Pull to Refresh Example.78

4) Orientation. The application should be checked in both orientations if applicable [41],

[49], [61], [62].79 Based on the author’s experience, it can occur that UI elements are wrongly

placed on the orientation change, and the application can crash when the user interacts with

misplaced elements (it often occurs with popovers80). The application can also crash when the

device is rotated during the execution of heavy operations. Executing the actions after the

rotation with the rotation lock option enabled is also the subject of interest, because there are

several ways how the device orientation can be checked and how the device orientation change is

detected by the application.79, 81

5) Half Pixels. Sometimes there are half-pixels [61] and other unexpected blurs82 noticed

when using the application. They occur when UI elements are scaled or when their size and

origin are calculated, but not rounded to the whole pixels. The same applies to the fonts. These

UI glitches are more visible on the non-retina displays and are often inspected in practice using

the 3-fingers accessibility zoom83.

6) Localization. The following should be checked in case the application supports

localizations:

• Localized text in images. [61]

• Localized translated text fits the available area. [61]

78 http://www.tapsmart.com/tips-and-tricks/pullrefresh/
79 https://developer.apple.com/library/ios/featuredarticles/View

ControllerPGforiPhoneOS/RespondingtoDeviceOrientationChanges/RespondingtoDeviceOrientationChanges.html
80 https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIPopoverController_class/Reference/Reference.html
81 https://developer.apple.com/library/ios/qa/qa1688/_index.html
82 https://developer.apple.com/library/mac/documentation/userexperience/conceptual/applehiguidelines/IconsImages/IconsImages.html
83 http://support.apple.com/kb/HT5018

http://www.tapsmart.com/tips-and-tricks/pullrefresh/
https://developer.apple.com/library/ios/featuredarticles/View%E2%80%8CControllerPGforiPhoneOS/RespondingtoDeviceOrientationChanges/RespondingtoDeviceOrientationChanges.html
https://developer.apple.com/library/ios/featuredarticles/View%E2%80%8CControllerPGforiPhoneOS/RespondingtoDeviceOrientationChanges/RespondingtoDeviceOrientationChanges.html
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIPopoverController_class/Reference/Reference.html
https://developer.apple.com/library/ios/qa/qa1688/_index.html
https://developer.apple.com/library/mac/documentation/userexperience/conceptual/applehiguidelines/IconsImages/IconsImages.html
http://support.apple.com/kb/HT5018

54

• The same text is localized in exactly the same way when used in different parts of

the application.

• Right-to-left text input and alignment [61] for Arabic and Hebrew languages.

• Native and special characters:

o persistence in a database or a file;

o printing and display [56];

o writing to log;

o handling both by the client and the server.

7) Accessibility. There are plenty of accessibility features available in iOS [57], [60], [61],

[62], [63], i.e. VoiceOver, accessibility zoom, bold text, invert colors, etc.83 They all change the

way how the system and the applications look and respond to the gestures. Thus it should be

checked that enabling the accessibility features of the system does not break the application.

2.2. Other Mobile Operating Systems

2.2.1. Google Android

The fragmentation differs Android from all other mobile platforms. There are four screen

sizes: small, normal, large, and extra-large. Screens can also have different density84:

• low-density (ldpi) screens (~120dpi);

• medium-density (mdpi) screens (~160dpi);

• high-density (hdpi) screens (~240dpi);

• extra-high-density (xhdpi) screens (~320dpi);

• extra-extra-high-density (xxhdpi) screens (~480dpi);

• extra-extra-extra-high-density (xxxhdpi) uses (~640dpi) (for launcher icons);

• televisions (tvdpi) screens (~213dpi).

There are several representatives in each group of size and density combination. According

to the report by OpenSignal [65] there were 24 093 distinct Android devices available on the

market at August, 2015.

There are also plenty of (outdated) operating system versions still in use. There are two

reasons for this:

• device manufacturers release their own tweaks and skins (launchers) on top of the

original Android;

• device manufacturers have to write the updates for drivers.

84 http://developer.android.com/guide/practices/screens_support.html

http://developer.android.com/guide/practices/screens_support.html

55

While Apple forces the updates, the Android device manufacturers are left to their own to

support or not the latest OS updates. That is why users often install custom read-only memory

(ROM), like CyanogenMod by themselves that allows using the features from the latest Android

versions even if there is no official update from the manufacturer.

While Safari is the main browser on iOS, and all other custom browsers can use the limited

functionality of UIWebView from WebKit85, it is not the case on Android. The top 10 Android

browsers are86:

• Chrome Browser

• Chrome Beta

• Opera browser for Android

• Opera Mini mobile web browser

• Mozilla Firefox for Android

• Dolphin Browser for Android

• Ghostery Privacy Browser

• Link Bubble Browser

• Puffin Web Browser

• Mercury Browser for Android

The set of browser to test web app on should be chosen based on their popularity on the

target market. Many of them use their custom engines for rendering the web content.

2.2.2. Microsoft Windows/ Microsoft Windows Mobile

Windows 10 Mobile runs both on ARM and IA-32 (32-bit x86) processors. This is

achieved using Universal Windows Platform (UWP)87. There are three main aspects to consider

when testing Windows apps:

1) The difference between ARM and x86 processors architecture – some mathematics can

work differently.

2) The fragmentation of the screen sizes – as soon as there are lot of vendors doing the

mobile devices running on Windows – the target set of the test devices to be chosen

accordingly.

3) The split screen feature. It should be checked that app is still usable when it occupies

¼, ½, and 3/4 of the screen.

85 https://developer.chrome.com/multidevice/ios/overview
86 http://www.androidcentral.com/10-best-android-browsers
87 https://msdn.microsoft.com/en-us/windows/uwp/get-started/whats-a-uwp

https://developer.chrome.com/multidevice/ios/overview
http://www.androidcentral.com/10-best-android-browsers
https://msdn.microsoft.com/en-us/windows/uwp/get-started/whats-a-uwp

56

2.3. Conclusions

To conclude, straight functional testing of mobile apps cannot differ from testing of web or

desktop applications. The difference mainly occurs in the aspects related to the environmental

multeity.

Variety of operation systems, hardware, operating system versions (often completely

rebuilt from scratch) and modifications, screen sizes, screen resolutions and densities, browsers

and their versions, makes mobile as a separate universe. This makes test team to select the most

covering representatives from the universe to perform testing on. In many cases there are more

representatives to be selected for cross-platform mobile app testing then it is needed for desktop

or web application testing.

Mobile apps usually combine desktop and web applications behavior because they need to

be available both online and offline. They also have more lifecycle states to verify in comparison

to desktop or web applications can have. Online nature of many mobile apps implies checking

their behavior under various network conditions.

Quite limited storage, battery, and processing power resources of the mobile devices leads

to the additional checks to be performed when testing mobile apps under resources shortage

conditions. There are also additional checks to be performed in order to verify that available

resources are used efficiently by the app.

The single smaller touch screen interaction mechanism of mobile devices forces to check

the functional usability of mobile app screens. Improper positioning of UI elements on the screen

and unexpected gesture interference can lead to inability to use the in-app features. The examples

could be: elements position is linked to on-screen keyboard position while only the default

keyboard position is taken into consideration during the design; in-app near the screen border

swipes interfere with system near the screen border swipes that open various system popovers

instead. The smaller screen size and interaction capabilities of mobile device extract mobile web

app testing into separate topic in comparison to the standard web application testing.

57

3. MOBILE APPLICATIONS FUNCTIONAL SECURITY TESTING

3.1. Apple iOS

3.1.1. Introduction

While iOS offers the variety of security enhancement features to be used within the apps,

they are often neglected in favor of time to market rush.

The security basics that should be tested by test specialist are: using of secure network

protocols, encryption of data base, and denying the access to application data when device is

locked with passcode. One of the advanced functional security testing items is a checking of the

development settings file (plist) entries in production app version. [66]

3.1.2. Usage of Secure Network Protocols

Usage of secure network protocols (HTTPS – HTTP over SSL or HTTP over TLS, etc.)

can be ensured by intercepting the network traffic with the apps like Charles88, Fiddler89, etc. It

is also possible to see the encrypted content exchange as a plain data between the mobile app and

the backend with such kind of tools, i.e. to perform manual integration testing.

3.1.3. Data Base Encryption

This is quite a basic, but very important task for test specialist to ensure that data base is

encrypted in productive app version, because it is often kept unencrypted for testing purposes

during development. It is possible to download the application data base directly through

Xcode33, or using such third party apps like iFunBox 90or iPhoneExplorer91. Then it is verified if

encrypted or not by opening data base by any SQLite data base viewer. This also allows

verifying some functional corner cases or data base corruption cases, because data base can be

changed and uploaded back to iPad using the same stack of tools.

3.1.4. Locking the Application Data

iOS allows locking the access to application data on the device locked with passcode.

However, this should be managed by app itself. That is why this feature should be often

rechecked, because data to lock should be explicitly defined. During new functionality

88 http://www.charlesproxy.com/
89 http://www.telerik.com/fiddler
90 http://www.i-funbox.com/
91 https://www.macroplant.com/iexplorer/

http://www.charlesproxy.com/
http://www.telerik.com/fiddler
http://www.i-funbox.com/
https://www.macroplant.com/iexplorer/

58

development this part is often forgotten. In-memory decryption could be another possible

requirement for the high-risk apps, otherwise, currently used data is being kept in unencrypted

way in Cache folder. Even if there is a code block that tries to remove all unencrypted data after

usage, there is a chance that it will be left unencrypted upon app crash or app removing from

memory if another app needs more memory during its execution.

3.1.5. Advanced Functional Security Testing

One of the advanced functional security testing items is a checking of the existence of

development settings file entries (NSUserDefaults) in production app version. The development

settings entries could be: skipping login, using unencrypted database, choosing the advanced

subscription, usage of a feature that should be bought using in-app purchase, unhiding the

features currently under development, advanced debugging, and all other staff that needs some

extensive interaction with app to be achieved. There are different cases how attackers can learn

about those development features:

• Development and test settings files could be left together with production settings

file, but not used (see Fig. 3.1).

• Entry points for development and test settings are left accessible within run-time of

production version.

Fig. 3.1. Example of the development and test settings files in production build.

59

This means that the first action item should be the adjusting of build process to leave only

production settings file for the production build. The second action item should be, respectively,

profiling the application code to disable the entry points for development and test settings for

production build.

 If not, then app settings file could be accessed using the apps mentioned before (Xcode,

iFunBox, iPhoneExplorer), modified, i.e. appropriate development or test settings could be

added, file could be uploaded back to iPad, and attacker could enjoy the benefits.

If the first action item is a self-explanatory, then to understand the severity of the second

action item some more information on how to break the app without accessing the development

and test settings files should be given.

It is possible to get the run-time properties of the app on the jail-broken device using such

apps available on Cydia App Store like Cycript92, iNalyzer93, etc. These properties are shown in

key-value format, even if they are not set from the current settings file. Then attacker just adds

the desired settings and their values into the settings file and uploads it back to iPad to enjoy the

benefits.

3.1.6. Discussion and Implications

While application security in most cases is tested by the security specialists, it is cheaper to

verify that security mechanisms provided by OS vendor are used as much as possible (if the

nature of the app needs it, of course) before giving the app to them. The suggestions given above

allow decreasing the panic when app is checked for security when it is already in or close to

production. From the author’s experience, it is often the case when product owners rush to

release the app, while outsourced security specialist overloaded schedule does not allow

performing the check before the target date.

3.2. Other Mobile Operating Systems

The usage of the secure network protocols, as well as in-app data base encryption are, of

course, important for Google Android and Windows mobile apps as well. But, in general,

another dimension of security is topic of interest for Google Android – the security of OS itself.

Android is considered less secure than iOS that influence on its market share as an enterprise

solution, especially in Bring Your Own Device (BYOD) case. “The Myths about and Solutions

for an Android OS Controlled and Secure Environment” are studied by the author and colleagues

92 http://www.cycript.org/
93 https://appsec-labs.com/inalyzer/

http://www.cycript.org/
https://appsec-labs.com/inalyzer/

60

in [67]. The solution to improve the security of a mobile environment in general and Android

environment in particular is proposed by the author and colleagues in [68].

The situation of OS security for Windows for mobile is the same as for the Windows on

desktop because of UWP technology87. That means that to ensure the security of Windows on

mobile device the anti-virus software to be installed. But due to the very low market share

Windows on mobile is not a target for malware creators so far94.

94 http://betanews.com/2015/06/11/windows-phone-security-is-top-notch-says-kaspersky/

http://betanews.com/2015/06/11/windows-phone-security-is-top-notch-says-kaspersky/

61

4. MOBILE APPLICATIONS TEST AUTOMATION

4.1. Introduction

As already mentioned in the introductory part of the thesis, in order to reduce the time

needed for the regression testing and to make more time available for the exploratory testing or

just to decrease the costs tests tend to be automated.

Tests could be automated in the various levels. In terms of return on investments including

the maintenance costs the test coverage model depicted in Fig. 1 is thought to be the right one in

the ideal world: the most of the tests are automated on the unit level; the least of the tests are

automated on the UI level; different types of the integration tests lay somewhere in between. The

session based/ exploratory manual testing ensures confidence in automated tests. [17]

While according to this model the tests on UI level have the least coverage, these

automated end to end tests are still very important to give the general confidence that previously

developed app functionality, as well as basic UI interactions are still up and running. Automated

tests from this level are probably even more important for the mobile apps because there are

many gestures like tap, double tap, swipe, drag, etc. to be checked.

4.2. Solutions for Automated UI Testing of iOS Apps

There are several solutions already created/ adapted for mobile UI test automation, in

particular, for iOS apps. The solutions could be divided into several groups based on the origin,

cross-platformance, and the way of executing the automated commands.

The first big clusters are OEM automation tools vs. the third party automation tools. OEM

automation tools come together with the mobile OS manufacturer IDE. All other mobile

automation tools are the 3rd party solutions. The most of the solutions use API-based approach

for recognizing the object on the screen, while there are some solutions that use image-based

approach for the same purpose. API-based solutions can be divided into two more groups:

wrappers above the native automation tools vs. others that have the prerequisite to incorporate

the custom library into the app source code. Some of the solutions offer to run the tests in cloud.

While almost each solution nowadays can run tests both on device and on simulator on premises,

only some solutions support running the tests on the real devices in cloud.

62

4.2.1. OEM Automation Tools

4.2.1.1. Apple UIAutomation and XCTest

UIAutomation tests are written in JavaScript. The framework consists of the most basic

functions for all UI elements available in iOS. [69] The access to some device functions like

sending app to background, changing the volume, setting the location, etc. is also available. If

some custom UI View is used inside the app it can be accessed as UIAElement class – the

superclass for all user interface elements in the context of the UIAutomation.

Starting from XCode 7 Apple added the possibility of writing the UI automated tests on

Swift language and to run them on XCTest framework (it is a unit test style framework for Swift/

Objective-C code) inside Xcode IDE itself. In terms of the functional scope of API both

UIAutomation and XCTest frameworks are on the same level. More thorough comparison, as

well as study of their pros and cons is described in Chapter 5.

Being the frameworks with the powerful set of basic functions, one of the issues for both

of them is that the commonly used test notations from these basic functions are quite wordy.

Several extensions have been created for JavaScript based UIAutomation in order to enable the

ability to write the tests using the less repetitive higher level commands in a style more common

for the testers. Each extension follows the notation style convenient for the creator. Both most

popular extensions are distributed under MIT license. There are no extensions available for

XCTest UI testing framework yet.

Tuneup JS

The main achievement of TuneupJS95 is the creation of the unit test like test runner and

providing the extensive set of assertions. The extension has the image comparator inside that is

based on ImageMagic96 tool. It also consists from the set of the commands that combine several

UIAutomation basic commands into one higher level command making the notation shorter.

mechanic.js

mechanic.js97 is a CSS-style selector engine for UIAutomation. It also allows accessing

UIAElements and executing the commands with a shorter notation.

4.2.1.2. Google Testing Support Library

Google Testing Support Library consists of three main parts98:

• AndroidJUnitRunner: JUnit 4-compatible test runner for Android.

95 http://www.tuneupjs.org/
96 http://www.imagemagick.org/
97 http://www.cozykozy.com/mechanicjs/
98 http://developer.android.com/tools/testing-support-library/index.html

http://www.tuneupjs.org/
http://www.imagemagick.org/
http://www.cozykozy.com/mechanicjs/
http://developer.android.com/tools/testing-support-library/index.html

63

• Espresso: UI testing framework; suitable for functional UI testing within an app.

• UI Automator: UI testing framework; suitable for cross-app functional UI testing

across system and installed apps.

UI Automator functionality on Android is similar to UIAutomation functionality on

iOS, while Espresso could be described as white-box UI test automation tool. Testing

Support Library Tests are written in Java.

4.2.1.3. Microsoft Coded UI Tests

Coded UI Tests is an analogue for UI test automation for Windows apps99. This tool

supports almost all Windows-based platforms, not only mobile ones. It could be even used for

web apps UI test automation. The tests are written in C#.

4.2.2. API-based Tools

4.2.2.1. Appium

Appium100 is an open source test automation framework for use with native, hybrid and

mobile web apps. It drives iOS and Android apps using the WebDriver protocol. Tests can be

written in C#, Java, JavaScript, Perl, php, Python, and Ruby. Native automators (UIAutomation/

UI Automator) are called at the end (see Fig. 4.1). Tests can run on physical devices only locally,

while in Cloud they can run only on simulator/ emulator.

Fig. 4.1. Appium Architecture.101

99 https://msdn.microsoft.com/en-us/library/dd380742.aspx
100 http://appium.io/
101 https://domich.wordpress.com/tag/appium/

https://msdn.microsoft.com/en-us/library/dd380742.aspx
http://appium.io/
https://domich.wordpress.com/tag/appium/

64

4.2.2.2. Xamarin Test Cloud

Xamarin Test Cloud supports UI test automation for iOS and Android. Tests for Xamarin

Test Cloud can be written using two frameworks102:

• Xamarin.UITest – C# tests.

• Calabash – Cucumber (“business language”) notation tests.

Test can be executed in Xamarin Test Cloud on the physical devices. In order to achieve

this Xamarin Test Cloud agent is installed:

• as a separate app on Android;

• as a library built-in to the app under test on iOS.

“Xamarin Test Cloud Agent should only be included in Debug builds of the

application”102 for iOS. Here it is worth to mention that apps can work differently when

they are built in Debug configuration in comparison to the Release configuration. The

architecture of Xamarin Test Cloud Agent for the both platforms is shown in Fig. 4.2 and

Fig. 4.3.

Fig. 4.2. Xamarin Test Cloud Agent in iOS.102

102 https://developer.xamarin.com/guides/testcloud/introduction-to-test-cloud/

https://developer.xamarin.com/guides/testcloud/introduction-to-test-cloud/

65

Fig. 4.3. Xamarin Test Cloud Agent in Android.102

It is also possible to run Appium tests using Xamarin Test Cloud infrastructure from July,

2015103.

4.2.2.3. Tosca Mobile+

Tosca Mobile+104 is on-premises only UI test automation tool for iOS and Android. Tosca

Mobile+ is a part of Tricentis Tosca Testsuite test automation tool. Tosca needs adapted

MonkeyTalk library (now belongs to Oracle105 and is not open source anymore) to be integrated

into the app for iOS case. This means that app under test and the released app have the different

codebase. Tests can be written in VB, C#, VBScript, or through IDE UI. Tosca Mobile+ can also

run tests using image recognition framework called Sikuli106 (see section Sikuli4.2.3.1).

4.2.2.4. Telerik Test Studio Mobile

Telerik Test Studio Mobile107 is a part of a comprehensive Telerik Test Studio solution. It

supports UI test automation for iOS108 and Android109. For both cases custom library to be

103 https://blog.xamarin.com/xamarin-test-cloud-to-support-appium-framework/
104 http://www.tricentis.com/tricentis-tosca-testsuite/tosca-mobile-plus/
105 https://www.oracle.com/corporate/acquisitions/cloudmonkey/index.html
106 https://www.youtube.com/watch?v=o9n15zkXX24
107 http://docs.telerik.com/teststudio/test-studio-mobile/overview
108 http://docs.telerik.com/teststudio/test-studio-mobile/native-applications/configure-your-app/configure-ios
109 http://docs.telerik.com/teststudio/test-studio-mobile/native-applications/configure-your-app/configure-android

https://blog.xamarin.com/xamarin-test-cloud-to-support-appium-framework/
http://www.tricentis.com/tricentis-tosca-testsuite/tosca-mobile-plus/
https://www.oracle.com/corporate/acquisitions/cloudmonkey/index.html
https://www.youtube.com/watch?v=o9n15zkXX24
http://docs.telerik.com/teststudio/test-studio-mobile/overview
http://docs.telerik.com/teststudio/test-studio-mobile/native-applications/configure-your-app/configure-ios
http://docs.telerik.com/teststudio/test-studio-mobile/native-applications/configure-your-app/configure-android

66

inserted into the app. It also needs an agent app to be installed to the device under test.

Furthermore, studio itself runs only on Windows machine 110 . It supports native and web

applications testing, while hybrid apps are not supported111. Communication with web apps on

mobile devices is achieved through Fiddler proxy112. Tests are written through Telerik Test

Studio GUI or in C# using the plugin for Microsoft Visual Studio113.

4.2.2.5. DeviceAnywhere

DeviceAnywhere is a test automation solution for iOS and Android apps that allows

running the tests on the physical devices in the Cloud. DeviceAnywhere testing lab is depicted in

Fig. 4.4. Tests can be written using IDE GUI or using Java API. It is also possible to run Appium

tests using their infrastructure. The solution allows taking the video records of the test

execution.114

Fig. 4.4. DeviceAnywhere Testing Lab.114

According to the guide on the vendor’s website DeviceAnywhere agent together with some

other 3rd party apps to be installed from Cydia store in order to onboard the physical iOS device

and take it under the control115. It means that tests run on jail-broken device. This fact has many

drawbacks:

1) Unpredicted behavior of the app – there is no warranty that app will run in the same

way as on a jailed device, but the most users will use the jailed devices.

110 http://docs.telerik.com/teststudio/test-studio-mobile/overview-mb/native-applications
111 http://docs.telerik.com/teststudio/test-studio-mobile/native-applications/installation/agent-app-installation
112 http://docs.telerik.com/teststudio/test-studio-mobile/web-applications/configuration/certificate
113 http://www.telerik.com/teststudio/visual-studio-testing-plugin-benefits
114 http://www.keynote.com/solutions/testing/mobile-testing
115 http://www.keynote.com/go/product-documentation/iOSDeviceOnboardingGuide.pdf

http://docs.telerik.com/teststudio/test-studio-mobile/overview-mb/native-applications
http://docs.telerik.com/teststudio/test-studio-mobile/native-applications/installation/agent-app-installation
http://docs.telerik.com/teststudio/test-studio-mobile/web-applications/configuration/certificate
http://www.telerik.com/teststudio/visual-studio-testing-plugin-benefits
http://www.keynote.com/solutions/testing/mobile-testing
http://www.keynote.com/go/product-documentation/iOSDeviceOnboardingGuide.pdf

67

2) It is a requirement in many enterprises to add the check if device is jail-broken. The

apps do not start if so. Verification if Cydia app is installed is a part of such check. It

means that special app version without such check to be produced for test automation

purposes.

3) It always takes a time for hackers to jail-brake the new iOS version. It means that it is

not possible to run the tests on the latest iOS version (that is very important in the

mobile world) till jail-break is released and till the vendor has updated the agent

version to be compatible with the latest OS.

4.2.2.6. Ranorex

Ranorex can automate iOS and Android apps. It “instruments” the apps to make them

available for automation. In case of iOS it means that additional code is added to the app binary

and app is resigned afterwards. The following note can be found at the framework website:

“Because the Ranorex automation lib uses non-public APIs, make sure that you do not submit a

Ranorex instrumented app to the app store as your app might be rejected and you might be

banned from submitting apps to the app store for a period of time.”116 Another note is added on

Android app instrumentation: “…When disabling "Tree simplification", UI-trees will remain

unchanged. This means no post processing will take place, resulting in larger UI-trees. Disabling

this option decreases the apps startup performance but might be useful when automating 3rd

party controls.”117 All this is quite risky because of two facts:

1) The first already known issue that productive app and app under test has different code

based.

2) The second issue is that using of non-public APIs and post processing the UI tree can

delay the adoption of the test framework for new OS version. It will also need the

adoption of the test infrastructure if tests to be run on different OS versions.

Tests can be recorded through IDE or written/ adjusted in C# or VB.Net.118

4.2.2.7. SeeTest

SeeTest supports automated testing of iOS, Android, Windows Phone 8.0/ 8.1, and

BlackBerry apps. It requires adding the custom library into iOS app under test.119 It supports not

only native/ web object recognition, but also can identify object using image recognition and

using OCR technologies to recognize the objects containing the text.

116 http://www.ranorex.com/support/user-guide-20/instrumentation-wizard/ios.html
117 http://www.ranorex.com/support/user-guide-20/android-testing.html
118 http://www.ranorex.com/test-automation-tools.html
119 https://docs.experitest.com/display/public/SA/Manually+Instrumenting+iOS+Applications

http://www.ranorex.com/support/user-guide-20/instrumentation-wizard/ios.html
http://www.ranorex.com/support/user-guide-20/android-testing.html
http://www.ranorex.com/test-automation-tools.html
https://docs.experitest.com/display/public/SA/Manually+Instrumenting+iOS+Applications

68

The solution enables the creation of the own onsite test lab that could be accessed through

internet. The tests can be written in IDE GUI, C#, Java, Perl, Python, Ruby. The environment is

also prepared to run the tests using Appium.

4.2.3. Image Recognition Based Tools

4.2.3.1. Sikuli

Sikuli used to be an open-source project for test automation using image recognition

technologies. The tests can be written in Python, Ruby, JavaScript, and Java (Java API is the

core of the solution). It is platform independent tool, so it is applicable for mobile automation as

well.120 However, in order to automate the tests on the physical device its screen to be projected

on the machine’s screen where the tests are run from. It is possible for Android to connect to it

through VNC viewer. But there are no official VNC servers available for iOS that can run

exactly on the device without jail-breaking it. Right now the project development continues (as

SikuliX), but they do not consider to develop the mobile testing anymore.121

4.2.3.2. eggPlant

eggPlant is a cross-platform image comparison based test automation tool. iOS Gateway

installed on a Mac machine is used as a mobile VNC server to connect eggPlant framework with

iOS device. Custom Springboard application (iOS home screen) is provided by eggPlant to get

the control on the device.122 The iOS Gateway network architecture is depicted in Fig. 4.5.

Fig. 4.5. iOS Gateway Network Architecture.122

120 http://www.sikuli.org/testing.html
121 http://www.sikulix.com/quickstart.html
122 http://docs.testplant.com/ePF/using/epf-getting-started-ios-gateway.htm

http://www.sikuli.org/testing.html
http://www.sikulix.com/quickstart.html
http://docs.testplant.com/ePF/using/epf-getting-started-ios-gateway.htm

69

4.2.4. Summary

The market players with characteristics they posses are summarized in Table 4.1., Table

4.2, and Table 4.3. All of the solutions have record/ play capabilities. That is why this option is

excluded from the comparison tables. Each solution also supports the CI setup.

Table 4.1.
OEM Solutions for Mobile UI Test Automation

Name Scripting
Languages

Native/
Hybrid

Web Cloud
Support

Apple UI Automation/
XCTest

JavaScript,
Swift

X +/-
(need to wrap the

website into
native app)

-

Google Testing Support
Library

Java X +/-
(need to wrap

the website into
native app)

-

Microsoft Coded UI Tests C#, VB.Net X X -

Table 4.2.

Cross-platform Solutions for Mobile UI Test Automation - Clustering

Name Wrapper API-
based

Image-
based

3rd Party Library
in Use (If Not

Own)

3rd Party Library
Integration into

Source Code (for
iOS)

Appium X X Implements
Selenium

WebDriver

Xamarin Test
Cloud

 X Calabash X

Tosca Mobile+ X Modified
MonkeyTalk,

Sikuli

X

Telerik Test
Studio Mobile

 X X

DeviceAnywhere X X

Ranorex X X

SeeTest X X

Sikuli X

EggPlant X

70

Table 4.3.

Cross-platform Solutions for Mobile UI Test Automation - Characteristics

Name Device
Support

Cloud Support Scripting
Languages

Native/
Hybrid

Web Costs

Appium X +/- (Simulator
only)

Java, Ruby,
Python,
PHP,

JavaScript,
C#

X X
(comes

with
wrapper)

Free/
pay
for

cloud

Xamarin
Test

Cloud

X X (can run
Appium)

C#, Ruby X +/-
(need to
wrap the
website

into
native
app)

Paid

Tosca
Mobile+

X X (private cloud
with

deviceConnect123
by MobileLabs)

Through
IDE, VB,

C#,
VBScript

X X
(comes

with
wrapper)

Paid

Telerik
Test

Studio
Mobile

X X Through
IDE, C#

+/- (hybrid
are not

supported)

 Paid

Device
Anywhere

X X (can run
Appium)

Through
IDE, Java

X Paid

Ranorex X X Through
IDE, C#,
VB.Net

X Paid

SeeTest X X (can run
Appium)

Through
IDE, C#,

Java, Perl,
Python,
Ruby

X Paid

Sikuli iOS -
simulator

only

- Java,
Python,
Ruby,

JavaScript

X X Free

EggPlant X X SenseTalk,
Java, C#,

Ruby

X X Paid

123 http://mobilelabsinc.com/products/deviceconnect/

http://mobilelabsinc.com/products/deviceconnect/

71

The difference between them all lays in the progression described below:

• OEM automation tools are the most robust one between the API-based tools. They

come with a sufficient set of functions to build the commonly used test patterns, but

in case of Apple UIAutomation the scripting is too wordy. They also are limited to

the one platform.

• Wrappers are cross-platform solutions. Appium tool is the only wrapper so far. The

vendors of the several other tools have adopted their cloud testing labs (with real

devices) to run Appium tests. Wrappers add some additional weak points per

platform, per script language, per environment. It means that if something does not

work then the issue could be related exactly with the code that does wrapping,

while the same command would work in the OEM automation tool.

The solutions that need the 3rd party library integration into the source code have the same

pros and cons as wrappers do. But there are two additional weak points:

• The code of the app under tests is changed in comparison to the release version. It

increases the probability of app working differently when it is built for the

automated testing purposes. Of course, the same applies for all automation

solutions, because they all interfere into the app under test in some way. But there

is more trust that this interference is properly handled when the OEM solution is

used.

• It is not possible to access the system modal windows/ popovers and device

functions from these libraries. Test framework can access them only by calling the

methods of OEM automation API.

Image based tools can simplify the recognition of UI object in a short term, however,

having them as the only solution has the following cons:

• Early automation is hardly possible – with agile software development approach it

is very possible that image slices are not yet available, while functionality is

already there.

• UI can vary not only per platform, but also per device type (phone vs. tablet). In

case of image based tools it will increase the test creation and maintenance costs.

• Adjusting/ refreshing UI up to new OS guidelines most probably will trigger more

test maintenance effort than it would be needed for API-based solutions.

To conclude, tests written using the tools that are using image pattern recognition of the UI

object are quite fragile in comparison to API-based solution, while having the image comparison

for assertion in some cases is the only way to go for UI level tests.

72

5. TTAP EXTENSION FOR APPLE UIAUTOMATION

5.1. Apple UIAutomation Capabilities and Limitations

Before choosing UIAutomation as a target test automation tool more deep analysis of its

capabilities and limitations was performed. The identified functional blocks were divided into

several levels: application level, OS level, device level, device/ OS level combined, and

framework level. [70]

5.1.1. Application Level

On application level UIAutomation is capable to interact with all native UI elements, as

well as interact with custom developed UI elements that either extend or customize the native UI

elements or are totally custom designed UI elements that extend the top UI elements – UIView

or UIViewController.

The tool also supports all native gestures, however the native pinch to zoom gesture does

not work on simulator starting already from iOS 7. The support of custom gestures is quite

limited. Custom gestures can be simulated only if they can be performed with a single drag

between two points. It also is not possible to simulate the complex drag gesture between more

than two points. So, if it is needed to simulate the drawing of a curve, this could be achieved

only by performing a large set of drag gestures, finishing each of them as if the finger was taken

out from the device screen. Even if result will look mostly the same (the circle is drawn), this is

achieved with completely different internal logic.

It is possible to change the app settings (stored in setting property list file) during the test

run. However, if it is needed to change the setting before the test run (e.g. the setting that is

applied when the application starts), then the setting should be adjusting during the build process

or app to be restarted after setting is changed during the first run. Restarting the app is possible

only by stopping the current test run and by starting another one.

There is an option to simulate memory warnings when app runs on the simulator. However

this function is not accessed in UIAutomation out of the box.

UIAutomation understands UIWebView structure, so it is possible to interact with the web

content. However, web apps to be built in into the native app to test them using UIAutomation.

The tool is not supposed to run the default Safari browser (and any other built-in app), that is

why there is a very basic custom web browser app with a single web view is created by the

community to test the web apps on iOS. The issue is that if web app has complex JavaScript

73

inside then web view should also implement much more functionality than a single default web

view.

5.1.2. OS Level

On OS level the tool is able to send the app to background for a definite amount of time.

However, it is not possible to switch between the apps, even if they both are custom built.

Switching between apps could be useful, for example, if there is an intention to check how Open

In works for the app under test. It is not possible to manipulate with push notifications as well.

5.1.3. Device Level

On device level it is possible to perform the orientation change of the device. This is very

important feature for mobile UI tests. There is also an ability to simulate the pressing of device

buttons to change volume, lock and unlock the device (without the passcode), simulate as if it is

being shaken.

5.1.4. Device/ OS Level

On the combined device/ OS level the tool allows to manipulate with the location services,

i.e. to set the latitude, longitude, altitude, course, moving speed, etc. However, the tool is missing

the support of switching on/ off the WiFi connection, as well as the ability to change the

connectivity speed. The tool is also missing the ability to manipulate with the restrictions,

privacy settings, and region formats. Simulating the interruptions like receiving the phone call or

SMS is also not possible.

Often there is also a need to add and/ or remove the images from Photo app and contacts

from Contacts app to create different preconditions for test execution or to perform the cleanup

before or after the test. It is not possible to perform such actions out of the box. However, there

is a possibility to execute the tasks on the host Mac machine that from which tests are executed.

5.1.5. Framework Level

On framework level UIAutomation is missing unit test style notations test runner. It also is

not able to search for the element within the whole element tree. It searches only within the first

level children out of the box. There is a set of functions to check some basic conditions like if

element is present, however there are no out of the box wait statements, as well as more complex

conditions are needed to check if the tool can interact with the element.

74

The tool is capable to take a screenshots while the test being executed. But there is no built

in comparison inside it. Typing on the keyboard also fails from time to time when characters

from the different keyboards are being typed in (e.g. letters and numbers and/ or special symbols,

letters in capital and in narrative).

5.1.6. Summary

To summarize, Apple UIAutomation can perform the most of the basic functions that can

be executed on the iOS device. However, there are still several limitations in terms of

functionality and framework usability. The described capabilities and limitations of the tool are

aggregated in Table 5.1 and Table 5.2.

Table 5.1.
The Capabilities of Out of the Box Apple UIAutomation

Capabilities

Application

Interact with all built-in UI elements

Interact with custom developed UI elements

Support for all built-in gestures

Web-views

Changing app settings

OS

Sending app to background/ foreground

Device

Simulating device buttons pressing (i.e. volume, etc.)

Orientation change

OS/ Device

Manipulation with location services

75

Table 5.2.
The Limitations of Out of the Box Apple UIAutomation

Limitations

Application

Support for custom developed gestures

Support for complex dragging gesture (more than two points)

Low-memory warnings
OS

Switching between apps

Open app from push notification

Device

-

OS/ Device

Switching on/ off WiFi connection

Changing the connectivity speed

Restrictions and Privacy Settings

Region Formats

Interruptions

Add/ remove images from Photos app

Add/ remove contacts from Contacts app

Framework

Unit test style notation

Limited assertions capabilities

Searching within the whole UI elements tree

Image comparison

Wait conditions

Robustness of keyboard typing

Limited logging/ debugging capabilities

76

5.2. Choosing the Right Tool for the Environmental Context

To choose the tool to automate UI tests with, we have done the following:

• Investigated each solution from Table 4.1.

• Took into account the weak points set of each solution described in Chapter 4.

• Took into account the particular environmental options within our company.

The environmental context can be described as:

• There is no need for cross-platform support in our case, because the majority of the

apps we produce are iOS native apps (while we already are creating them using the

cross-platform Xamarin124 tool taking into account the possible future requests). It

is so, because this is what enterprise clients currently need, as shown by the

statistics.

• We want to limit the investigation time of searching which of the components has

failed if something does not work.

• We want to decrease the probability of something does not work after the

consecutive update of the tool and/ or native automator.

The image-comparison based tools are quite powerful solutions, but due to the very agile

nature of mobile apps development, at least in our company, when UI and UX can change

dramatically in a couple of weeks we have excluded this option due to the probable maintenance

effort.

The arguments above led to choosing native Apple UIAutomation as a target solution to

automate UI tests. When choosing the tool we have acknowledged the limited debugging

capabilities of UIAutomation due to the own, non standard JavaScript environment where tests

are executed. When we were considering the options, Apple XCTest was not available yet.

5.3. The Rise of tTap

5.3.1. Introduction

When doing the first proofs of concepts in UIAutomation we took a look at both of the

extensions mentioned in section 4.2.1.1. We decided to take Tuneup JS as a core extension,

because CSS-style of mechanic.js did not seem convenient for us with Java background. We

have also made a study of what is missing in the original UIAutomaiton framework (see section

5.1). During the extensive test automation process it appeared that we need the different sets of

124 http://xamarin.com/

http://xamarin.com/

77

commands in comparison to Tuneup JS to make the test automation process more convenient.

That is why we started to cut, rewrite, and extend Tuneup JS extension that resulted into new

extension creation that we call tTap125 – target tap.

The main reason for this title is that almost all actions within the extension are executed in

absolute coordinates of the device while still operating on the UIAElements (UIView and

UIViewController) level. The device (or simulator) is called target in UIAutomation context.

The decision to work in absolute coordinates was made to overcome several issues that we will

describe in a course of this chapter. It is worth mentioning that tTap extension is distributed

under MIT license126.

5.3.2. Solution Details

The goal of tTap is to overcome the limitations of the original UIAutomation aggregated in

Table 5.2. The details on overcoming each limitation are described below. Overcoming of

limitations on the application level, OS level, and device level is achieved through triggering the

execution of AppleScripts to manipulate the built-in OSX application that can interact with an

iOS device on the host machine (the machine to which iOS device is connected during the test

execution). On framework level the limitations are overcome through triggering the execution of

shell scripts to perform, for example, image comparison, etc. New JavaScript functions are

written to extend and enhance the existing framework as well.

5.3.3. Application Level

The end to end support for custom developed gestures could not be achieved at all. The

only option is to integrate the custom library inside the application under test that will call the

same method execution as if custom gesture is performed. However, this is a big overhead,

because normally there should be the way to use the same functionality using the simple tap,

long press, or swipe gesture. The support for complex dragging gesture (more than two points)

can also be achieved through the custom library integration into the application under test. But,

again, there should be very strong argument for doing so.

It is possible to simulate low-memory warnings when app runs on simulator. This could be

achieved through calling the respective function from the simulator menu (see Fig. 5.1.). To do

this in automatic way tTap contains function that runs AppleScript that “clicks” this menu item

using the hotkeys.

125 https://github.com/ivans-kulesovs/tTap
126 http://opensource.org/licenses/MIT

https://github.com/ivans-kulesovs/tTap
http://opensource.org/licenses/MIT

78

Fig. 5.1. Triggering low-memory warning on the simulator.127

5.3.4. OS Level

It is not possible to switch between the apps from UIAutomation framework. The issue is

that even if another app is opened by calling it through URL schema, UIAutomation does not see

it. It can be attached only to one application during the test run.

Quite often apps perform some internal navigation when they are opened from push

notification. In general, it is possible to manipulate with alerts from UIAutomation. However to

make such test repeatable is very hard, because the notification is sent through Apple Push

Notification Network in real time. That is why the time when the notification arrives to the

device is unpredictable.

5.3.5. Device/ OS Level

There is no way to switch on/ off WiFi connection or any other connection through

UIAutomation. However, it is possible to share the WiFi connection from Mac machine and use

it on iOS device where tests are executed. In such case, the shared WiFi could be switched on/

off by using one of the tools from Apple Developer toolset called LinkConditioner (see Fig. 5.2).

There is also an option to simulate the connection speed of different connection types like

EDGE, 3G, etc., as well as to simulate the bad network conditions or to create custom network

conditions (see Fig. 5.3).

127 http://stackoverflow.com/questions/5323515/unable-to-simulate-invoking-applicationdidreceivememorywarning

http://stackoverflow.com/questions/5323515/unable-to-simulate-invoking-applicationdidreceivememorywarning

79

Fig. 5.2. Switching on/ off WiFi connection via LinkConditioner.

Fig. 5.3. Creating new network conditions profile.

80

AppleScript to manipulate the LinkConditioner tool from UIAutomation is a part of tTap

framework. The AppleScript contains the functions to run/ close LinkConditioner, to select the

definite network condition profile, and to switch the selected profile on/ off.

There are several ways how to deal with the initial set of photos and/ or contacts for the

automatic test presetup. One way is to use tTap commands that run specific AppleScripts to

manipulate with photos and contacts. It is possible to open such OSX apps as Photos and

Contacts and use their functionality to add/ remove data from the device. This presetup is

especially important in case of there are several apps being tested on the same device. Another

way is to build and install the custom app that adds/ removes such kind of data from the device.

In general, it is possible to simulate the different types of interruptions like phone call,

receiving of SMS, etc. However, this is not needed, because it is up to operating system, not up

to the app how to deal with such kind of interruptions. Receiving of the phone call for the app is

the same as switching it to background, nothing more.

It is impossible to manipulate with restrictions and privacy settings within the app. The

permissions to the photos and contacts can be asked by the app only once. Afterwards OS

prevents app from asking them again, even if user uses the functionality of the app where these

permissions are needed. User can change the restrictions only manually in app or OS settings

after giving the response on the first prompt. These security features of OS make it impossible to

automatically check the app behavior when there are some restrictions set for the app, because it

limits the testing of positive cases afterwards without a manual intervention.

To have a constant automatic check of app behavior under different regional and time

setting is possible only if tests run on the multiple devices with different regional and time

settings being preset.

5.3.6. Framework Level

The modified test runner from Tuneup JS is used to run the tests. Tests follow the unit tests

style convention. The test suite is wrapped into JavaScript function. There is a separate file

where these “test suite” functions are called in the definite order. We have extended the test

runner with the possibility to ignore the definite tests and make some tests dependant from

another tests result (e.g. not to run the test if the precondition is not achieved). The advanced

assertions capabilities are taken from Tuneup JS without modification.

UIAutomation allows searching for the element only within one node of the UI elements

tree. tTap implements the recursive search by accessibility identifier from the root node or from

the definite parent. The idea is taken from [71].

81

As already mentioned, almost all actions are made on device (target) level. This is the

closest way how touches occur in reality. Gestures are executed on the target using the calculated

center point of UIAElement in absolute coordinates. iOS recognizes the object at these

coordinates and go through the responder chain searching the element that executes the actions

responding to the definite gesture, as shown in Fig. 5.4. This solves the following:

• There are cases when UIAutomation does gesture on the wrong coordinates if the

command is called exactly from the UIAElement. It more often occurs with the

system windows like email controller or some context menu, especially if app is

created using some cross-platform solutions like Xamarin. We have not searched

for the reason, but this workaround works perfectly.

• By default UIAutomation does tap at (0, 0) point of UIAElement, while the real

user tends to tap to the center of the object in the most cases.

• This led to the idea of creation such convenient and often used function as

UIAElement1.tDragAndDrop(UIAElement2) where the object on top of which to

drop the current object is set as a parameter.

Fig. 5.4. The examples of responder chain in iOS. [72]

UIAutomation has quite limited logging capabilities that, taking into account the

JavaScript object nature of UI elements, is not sufficient for proper debugging. We refer to

debugging here, because there is no other way to debug than doing extensive logging in

UIAutomation environment. There is more extensive logging mechanism available in tTap

extension.

82

tTap framework comes with a set of different wait conditions like waiting for the ability to

tap the element, waiting till it is visible, waiting till it reaches the specific position on the screen,

etc.

We have adjusted the default inter key delay of the keyboard from 0.03 seconds till 0.2

seconds that makes typing more robust, because it constantly failed when switching between the

keyboard types (e.g. numeric, capital letters), especially when running tests on CI machine, and

even more often when run on simulator.

The author and colleagues have improved the image comparison solution that comes with

Tuneup JS. It used to fail when there were some tens of files on the desktop, because the

screenshots temporary were stored there. We also have rewritten it to perform the comparison of

images with an option to set the similarity threshold. Now its robustness does not rely on the

number of files on the desktop. It is worth mentioning that UIAutomation itself allows only

capturing the screenshot.

5.3.7. Summary

All identified UIAutomation limitations were thoroughly examined during the rise of tTap

extension. Majority of the limitations where workaround is possible are solved in tTap, for some

of the limitation there is a clear way how to deal with, however the solution is not reliable

enough (i.e. can have the issue with tests repeatability) due to the objective infrastructure

limitations (e.g. opening app from Push Notification), or such tests are not needed at all because

they can be compensated with other tests (e.g. testing of interruptions). Some of the limitations

can be solved by setting up the advanced infrastructure (e.g. running tests on multiple devices

with different regional and date/ time settings). There are also limitations left not solved, because

of OS or UIAutomation restriction by purpose (e.g. changing the restrictions, privacy settings,

etc.). Various of the framework limitations like unit test style notations, advanced assertions,

logging, and debugging capabilities are solved after ability of creating UI tests has been added to

Xcode 7 itself in XCTest framework. The status of overcoming Apple UIAutomation limitations

is shown in Table 5.3.

To summarize, in comparison to OEM Apple UIAutomation, with tTap extension during

automated tests execution it is possible:

• To switch on/ off the connectivity to the WiFi shared from the automated tests

execution host that allows checking how app works in offline, as well as to

simulate the network interruption during the online activity.

83

Table 5.3
The Status of Overcoming Apple UIAutomation Limitations

Limitation Status in XCTest Status in tTap

Application

Support for custom developed gestures

Support for complex dragging gesture
(more than two points)

Low-memory warnings (on simulator only)
OS

Switching between apps

Open app from push notification

Device

-

OS/ Device

Switching on/ off WiFi connection

Changing the connectivity speed

Restrictions and Privacy Settings

Region Formats (can run tests on multiple
devices)

Interruptions Not needed

Add/ remove images from Photos app

Add/ remove contacts from Contacts
app

Framework

Unit test style notation

Limited assertions capabilities

Searching within the whole UI
elements tree

Image comparison

Wait conditions

Robustness of keyboard typing

Limited logging/ debugging
capabilities

84

• To perform the image-based comparison of the whole screen or its part with an

etalon. Sometimes, it is the only way to perform the assertion. In other cases it

could be less complex to make such kind of assertion than the logical one.

• To add images and contacts from/ to Photos and Contacts apps. This allows making

the repeatable test data of such type before test execution and to clean up test data

in test tear down block.

Other than that several improvements to the framework that simplifies it or makes it more

robust have been developed. They are:

• unit test style notations;

• advanced assertion capabilities;

• searching within the whole UI elements tree;

• various wait conditions;

• improved keyboard typing robustness;

• advanced logging/ debugging capabilities.

In order to perform a stress testing tTap also allows simulating low-memory warning,

however only on simulator, not on the real device.

5.4. Practical Usage Experience

5.4.1. Connectivity

For many of the mobile apps being online is treated as a default behavior. tTap allows to

switch the connectivity to the WiFi shared from the automated tests execution host. Here are the

examples of test scenarios that could be automated exclusively using tTap:

• App startup and usage in offline:

o check that online functionality is not available;

o check that invoking online functionality does not break the app;

o check that appropriate error messages are shown when the online

functionality is invoked.

• Losing the connection during the online activity:

o check that corrupted data is not stored;

o check that appropriate error message is shown;

o check that online data can be retrieved after connection is reactivated.

85

5.4.2. Image Comparison

There are some situations when there is no other chance to test the functionality without

using the image comparison, while this solution is thought to be less robust and should not be

used without the real need. In our practice we used image comparison in such straight-forward

cases:

• When drawing the annotations, i.e. most of the OpenGL activities could be checked

like this. The example is depicted in Fig. 5.5.

• When testing the functionality of the special area bookmarks on the large space, i.e.

the exact viewport of the definite position and zoom level should be shown when

user taps on the bookmark. The examples are depicted in Fig. 5.6 and Fig. 5.7.

Fig. 5.5. Image comparison example of OpenGL activities.

Fig. 5.6. Image comparison passed test example of viewport bookmark functionality.

a) Original bookmarked
viewport.

b) Zoomed out
view.

c) View after navigating via
bookmark.

d) Comparison result between 1 and 2.
The difference is shown in bright red.

Small delta is allowed.

a) Start drawing annotations. b) Drawn annotations.

c) Comparison result.

86

Fig. 5.7. Image comparison failed test example of viewport bookmark functionality.

Fig. 5.8. Image comparison testing: the example of comparison with background technique.

a) Original bookmarked
viewport.

b) Zoomed out
view.

c) View after navigating via
bookmark.

d) Comparison result of 1 and 2. The
difference is shown in bright red.

a) App overview with properly drawn
chart.

b) Example when chart is not drawn,
but app’s logic or HighCharts library

has caught the error.

c) Example when chart is not drawn, but neither app’s logic, nor HighCharts library has
not caught the error. Only comparison of chart area with background does.

87

The image comparison can also be used to check that there is something else on the screen

than just the background. For example, we have created the app that draws some financial charts

per some client and other filters using the HighCharts128 JavaScript library. The app is integrated

with the server through REST JSON services that convert the data from database to the expected

format, while the same data is used for same purpose in some legacy desktop systems. There are

already many historical data inside the database. The main goal of the automated testing was to

verify that some meaningful charts or the table representation of the same data is shown on the

screen. The more we check – the more confidence is in our solution. We did this using two

hooks:

• displaying and checking the status that is made visible by the system if app itself or

HighCharts library has determined some exception when trying to parse or to

display the incoming data;

• comparing the chart or table area with background and logging the warning when

the area screenshot is close to background for more than 95% percents; it allowed

catching more than 10 defect categories when chart or table was not displayed on

the screen while the app logic or chart library did not catch the error.

The example is depicted in Fig. 5.8. The test script was iterating through the different

clients, options, filters, etc.

5.4.3. Test Data Setup and Cleanup

Many apps work with images and contacts as data entities. In most cases data is imported

from Photos and Contacts app (see Fig. 5.9). To make the tests repeatable the same test data

should be available in theses apps during the test setup. This can be achieved only if it is possible

to add/ remove images and contacts from Photos and Contacts apps within the automated test

execution. tTap provides such capability. Usually all data is being cleaned up from above

mentioned apps and then only the test data is added during the test setup. Depending on the other

test scenarios related to the same functionality test data could be also cleaned up in each test tear

down.

128 http://www.highcharts.com/

http://www.highcharts.com/

88

Fig. 5.9. Import from Photos app example.

5.4.4. Framework

Usage of wait conditions and searching for UI element within the whole UI elements tree

are framework level features worth demonstrating. There are two most needed wait conditions:

• wait until element is visible – usually is used when screen change happens (see Fig.

5.10);

Fig. 5.10. Wait until element is visible example.

• wait until element has reached the specific position – usually is used when opening

some menu, because it can happen that menu is already initialized, but its position

a) Space selection screen. b) Selected space is opened. Wait until the
specific space element is visible condition is

used to increase autotests robustness.

89

is outside of the screen and it appears in the viewport with some delay due

animation (see Fig. 5.11).

Fig. 5.11. Wait until element has reached the specific position example.

In the original UIAutomation we would need to provide the whole path till side panel

buttons (for example till Back button of side menu in Fig. 5.11) during test design. This path is

not very stable due to hierarchy can change during the future development.

With tTap we can search for the side panel element and then to search the button element

inside:
getContentBrowser: function(){

var contentBrowser = searchByName(SPACE_CONTENT_BROWSER);
if (contentBrowser instanceof UIAElementNil) return null;
else return contentBrowser;

};

getBackButton: function(){

return searchByName(SPACE_CONTENT_BROWSER_BUTTON_BACK, this.getContentBrowser());
};

function searchByName(name, startElement){

var predicate = predicateWithFormat("name = %@", name);
return searchWithPredicate(predicate, startElement);

};

It will always found the right element irrespectively of the UI changes (unless side menu and

buttons inside it are still present). Definition of function searchWithPredicate(predicate,

startElement, fDelay) can be found in Appendix D.

5.4.5. Device vs. Simulator

During the test framework adaption for the real enterprise needs we faced some issues that

resulted into decision to run daily or nightly tests only on the real device. The simulator should

be used only for test design. First of all, there are a couple of things that just does not work on

a) Side menu is closed. b) Side menu is opened. Wait until the menu
element reaches the specific position condition is

used to increase autotests robustness.

90

simulator, e.g. pinch to zoom inside the scroll view. This was broken starting from iOS7. We

have reported this to Apple, but they said that our bug is a duplicate. Now it is iOS 9, but pinch

to zoom inside the scroll view still does not work on a simulator. There is also a case when

buttons on the system modal windows, e.g. native email controller, responded to the automation

on simulator only after they were tapped manually for the first time. Of course, such issues are

not acceptable for the continuous integration (CI). The usage of Xamarin cross-platform solution

could be the reason for unresponsive buttons, but the same works properly on a device.

Another issue with running tests on simulator in CI environment is that execution time and

simulator responsiveness depends on the load on the CI machine. Running tests on CI machine

under load on simulator will result into the unrepeatable test failures for sure.

The app under test can crash on the device easier than on the simulator due to the memory

management things. It is good when memory leaks are found during the long test runs. However,

app can also crash or stall during the test execution because of the internal networking queue on

the device (test commands are sent to the device through the internal Bonjour networking

server). Execution of some gestures by UIAutomation (e.g. swipe gesture) is more memory

consuming then the manual one (we have performed the experiment where swiping of photos by

UIAutomation crashed the app after 10-15 swipes, while the same could not be achieved during

the manual test run). That is why it is a good idea to split tests into smaller (e.g. 5 minutes) test

suites, if possible, and to restart the app between two different test suites execution. This helps to

decrease the number of unrepeatable test failures.

It is worth mentioning, that UIAutomation speed decreases during the long test runs and it

can fail unexpectedly at the end (when collecting and saving the test run data) when they are

executed through the UI of the tool, while we have not experienced such unexpected failures

when running the tests from the command line. However, as mentioned earlier, splitting the test

to the smaller test suites can help to fix this issue as well.

The great difference between device and simulator is that device has ARM processor,

while simulator runs on machine with x86 processor. For example, displaying the formatted

HTML text and using of OpenGL on simulator works in the freezing manner, while the same

works fine on the device. Another example could be the difference in precision of epsilon value

on different architectures. Epsilon is the smallest positive float value. [73], [74] There are much

more differences when running app in the environments with different architecture. That is why

the results of the tests can just be different in some particular case, but we focus, of course, on

the apps to work properly on the real device.

91

5.5. Ideal Cross-Platform Mobile UI Test Automation Tool Proposal

The analysis of the mobile UI test automation tools from the fourth chapter, the analysis of

the possibilities and limitations of the out of the box Apple UIAutomation, and creating the

solutions for these limitations united in tTap frameworks resulted into the proposal of the ideal

cross-platform mobile UI test automation tool creation. The device control is achieved with

EggPlant image-based tool instrument –custom Springboard. More matured Appium tool (that

being a wrapper on top of native automators has the best concept for cross-platform support) is

used for test automation itself. Its part for iOS apps automation is extended with the solutions

united in tTap framework. Android UIAutomator and Microsoft Coded UI Tests capabilities and

limitations still to be investigated and solved if possible. Even Appium wraps only iOS and

Android native automators, there already a project called Winium129 started that wraps Coded UI

Tests as well. The proposal is schematically depicted in Fig. 5.9.

Fig. 5.12. The ideal cross-platform mobile UI test automation tool architecture.

Using custom Springboard from EggPlant to control the device is cleaner and most

efficient way in case of iOS. Jail-break is a no go for device control at all. Using wrapping

concept is the cleanest way possible for cross-platform UI test automation solution.

129 https://github.com/2gis/Winium.StoreApps.CodedUi

https://github.com/2gis/Winium.StoreApps.CodedUi

92

CONCLUSIONS AND DISCUSSIONS

The thesis consists of five main parts. Each part adds value to the software testing field in

general and to the field of the mobile software testing in particular.

The first part concentrates on the inventory and structuring of testing ideas and terms. It

has resulted into discovering of eight classes of the testing ideas. Initiation of such process has

helped to understand the need of making the clear definition of such terms as testing approach,

testing method, and testing techniques that has been achieved using the solution made by

Anthony in the field of language teaching. Testing methods and techniques have been united

under black box, white box, and in-operational testing approaches. Structuring of the ideas have

also made it possible to schematize and visualize the software testing on meta-level, defining the

relation between such concepts as testing strategy, testing tactics, testing schools, testing

mission, testing vision, different (organizational and project-wide) contexts, testing approach,

testing method, testing technique, testing plan, etc. Uniting various software testing processes

under software testing tactic term has been made for the first time. The visualization of the

relation and clustering of the software testing ideas and terms has been done for the first time as

well.

In the second part the aspects of mobile applications functional testing are investigated.

iOS was chosen as a target platform for investigation, because it is the current market leader in

the enterprise world. The literature review of both academic and multivocal literature was

performed. The majority of the sources selected for the review, both academic and multivocal,

were published during the last five years period.

The results of SLR are mostly related to general mobile applications testing aspects like

limited resource utilization, orientations, localizations, etc., while the results of MLR provided

the needed details of iOS application testing aspects (like definite restrictions and privacy

settings, iOS accessibility features, etc.), as well as identified some new aspects like IAP, date/

time settings, etc. The identified aspects were divided between 4 large clusters: Environment,

Application Lifecycle, Inside the Application, and (functional or performance aspects of) UI/ UX.

The details of each aspect were discussed based on the selected sources and the author’s

professional experience giving the appropriate references to Apple Developers Library3 and

other credible sources. Some aspects that were not identified through literature reviews, but are

known to the author (iAd, update of Xcode, AirDrop, etc.) were discussed as well.

The author concludes that the study eliminates the gap that existed in the academic world

in regards to the identification and detailed description of iOS application testing aspects. Some

of the information on a single aspect is available, however there is no comprehensive

93

systematization with explanation performed before, especially using the systematic literature

review as a research method. These details should also be useful for practitioners who want to

make their iOS testing strategy more solid and complete.

The third part looks into the functional security testing of mobile applications. While

application security in most cases is tested by the security specialists, it is possible and is much

cheaper to verify that security mechanisms provided by OS vendor are used as much as possible

(if the nature of the app needs it, of course) before giving the app to them. This often is neglected

in favor of time to market rush. These mechanisms are usage of the secure network protocols,

data base encryption, and locking the application data. Another functional security testing part is

to check and eliminate the leftovers of development and testing activities in the productive build

of the app. The examples of leftovers are settings files and code that reads them or performs the

action based on the setting value. This issue is not discussed in the literature at all. The author

got the details through the own studies while breaking the apps.

The solutions for mobile UI test automation are discovered and categorized in the fourth

part. These solutions can be divided into three parts: OEM tools, API-based tools, and image

comparison based tools. API-based tools can also be divided into two groups: wrappers (tools

that wrap the native automators) and tools that need 3rd party library integration into the

application code. All non OEM tools are cross-platform tools.

Tests written using the tools that are using image pattern recognition of the UI object are

quite fragile in comparison to API-based solution, while having the image comparison for

assertion in some cases is the only way to go for UI level tests.

The study of the (mobile) automation tools available on the market has been performed by

practitioners many times, for sure. However, most of them are not publically available, but those

who are do not provide any thorough categorization of the tools. It is worth mentioning that term

wrapper (for Appium like architecture) is introduced by the author. There is also no discussion

has been held before why integrating the 3rd party library to the app code to enable automation is

not a way to go.

The rigorous study of the capabilities and limitation of Apple UI Automation has been

done for the first time. This is reflected in the fifth chapter. These capabilities are divided among

several levels: application, OS, device, and OS/ device. UIAutomation capabilities are: interact

will all built-in UI elements; interact with custom developed UI elements; support for all built-in

gestures; web-views; changing app settings; sending app to background/ foreground; simulating

device buttons pressing (i.e. volume, etc.); orientation change; manipulation with location

services. Out of the box UIAutomation limitations are: support for custom developed gestures;

support for complex dragging gesture (more than two points); low-memory warnings, switching

94

between apps; open app from push notification; switching on/ off WiFi connection; changing the

connectivity speed; restrictions and privacy settings; region formats; interruptions; add/ remove

images from Photos app; add/ remove contacts from Contacts app; unit test style notation;

limited assertions capabilities; searching within the whole UI elements tree; image comparison;

wait conditions; robustness of keyboard typing; limited logging/ debugging capabilities.

All limitations were analyzed and solutions were provided for those that do not require to

jailbreak device or perform any other hacking of the OS or device. These solutions are united in

tTap framework – the extension for Apple UIAutomation. The following limitations are solved

in tTap framework: low-memory warnings (on simulator only); switching on/ off WiFi

connection; changing the connectivity speed; add/ remove images from Photos app; add/ remove

contacts from Contacts app; unit test style notation; limited assertions capabilities; searching

within the whole UI elements tree; image comparison; wait conditions; robustness of keyboard

typing; limited logging/ debugging capabilities. The overcoming of these limitations enabled

tTap to be used for iOS apps test automation in C.T.Co software development company.

The practical usage experience of the framework is summarized in the fifth chapter as well.

The examples of conditions where image comparison is the only or the most efficient way for

assertion are given. The examples of the most used wait conditions and test scenarios where

change of connectivity is needed are provided as well. Other examples including the test setup/

teardown with such data entities as images and contacts from Photos and Contacts app are also

described. The benefit of improvement that allows searching for UI element within the whole UI

elements tree is shown. The arguments why testing should be performed mostly on the real

devices are summarized – most of them are related to the difference between ARM (real device)

and x86 (simulator) processors architecture and to the difference in the memory management and

consumption.

The investigations, analysis, and tTap solution creation from the fourth and fifth chapters

led to the ideal cross-platform mobile UI test automation tool proposal. The device control is

achieved with EggPlant image-based tool instrument – custom Springboard. Appium tool

(together with Winium spin off for Windows) as a wrapper concept is used for test automation

itself. Its part for iOS apps automation is extended with the solutions united in tTap framework.

To conclude, the author makes a step forward in software testing terminology through

providing the clear definition of such terms as testing approach, testing method, and testing

techniques using the solution made by Anthony in the field of language teaching. This is also the

fact, that the mobile applications field is not mature enough yet. It is even less mature in terms of

testing. The author investigations on the mobile testing aspects, mobile functional security

aspects, and mobile UI test automation, including the creation of tTap framework and making

95

the proposal of the ideal cross-platform mobile UI test automation tool, focuses on this issue and

makes the field a bit more mature.

96

REFERENCES

[1] J. Goodenough and S. Gerhart, "Toward a Theory of Test Data Selection," IEEE

Transactions on Software Engineering, vol. 1 (2), pp. 156-173, 1975.

[2] J. Barzdin, J. Bicevskis and A. Kalninsh, "Construction of Complete Sample Systems for

Program Testing," Ucenye Zapiski Latv. Gos. Univ., vol. 210, pp. 152-188, 1974.

[3] J. Barzdin, J. Bicevskis and A. Kalninsh, "Automatic Construction of Complete Sample

System for Program Testing," in IFIP Congress, 1977.

[4] G. Myers, The Art of Software Testing, 2nd ed., Hoboken, NJ: John Wiley & Sons, Inc.,

1979/ 2004.

[5] B. Beizer, Software Testing Techniques, 2nd ed., New York: Van Nostrand Reinhold Co.,

1990.

[6] B. Beizer, Black-Box Testing: Techniques for Functional Testing of Software and

Systems, New York: John Wiley & Sons, Inc., 1995.

[7] C. Kaner, J. Falck and H. Nguyen, Testing Computer Software, 2nd ed., John Wiley &

Sons, Inc., 1999.

[8] C. Kaner, J. Basch and B. Pettichord, Lessons Learned in Software Testing: A Context-

Driven Approach, New York: John Wiley & Sons, Inc., 2001.

[9] B. Pettichord, "Schools of Software Testing," 2007. [Online]. Available:

http://www.prismnet.com/~wazmo/papers/four_schools.pdf.

[10] R. Black, Advanced Software Testing – Vol.1, Santa Barbara, CA: Rock Nook Inc., 2009.

[11] Research and Markets, "Mobile Cloud Market by Application(Gaming, Entertainment,

Utilities, Education, Productivity, Business & Finance, Social Networking, Healthcare,

Travel & Navigation), & By User(Enterprise User, Consumer)-Worldwide Market

Forecast and Analysis(2014 - 2019)," 2014. [Online]. Available:

http://www.researchandmarkets.com/research/7pj4cv/mobile_cloud. [Accessed 21

February 2016].

[12] Markets and Markets, "Heterogeneous Mobile Processing & Computing Market by

Component (processor, GPU, DSP, connectivity), Technology Node (45NM-5NM),

Application (Consumer, Tele-communication, Automotive, MDA, Medical), & Geography

- Forecast & Analysis to 2014 – 2020," 2014. [Online]. Available:

http://www.marketsandmarkets.com/Market-Reports/heterogeneous-mobile-processing-

97

computing-market-173926586.html. [Accessed 21 February 2016].

[13] Citrix, "Citrix Data Reveal New Global Trends in Consumer and Enterprise Mobility,"

2015. [Online]. Available: http://www.citrix.com/news/announcements/feb-2015/citrix-

data-reveal-new-global-trends-in-consumer-and-enterprise-.html. [Accessed 21 February

2016].

[14] Good Technology, "Good Technology™ Mobility Index Report Q4 2013," 2013. [Online].

Available: https://media.good.com/documents/rpt-mobility-index-q413.pdf. [Accessed 21

February 2016].

[15] Crittercism, "Mobile Experience Benchmark," 2014. [Online]. Available:

http://pages.crittercism.com/rs/crittercism/images/crittercism-mobile-benchmarks.pdf.

[Accessed 21 February 2016].

[16] T. Eston, "Android vs. Apple iOS Security Showdown," 2012. [Online]. Available:

http://pittsburgh.issa.org/Archives/Android-vs-iOS-MayUpdate.pdf. [Accessed 21

February 2016].

[17] A. Scott, "Introducing the software testing ice-cream cone (anti-pattern)," 2012. [Online].

Available: http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-

cone/. [Accessed 21 February 2016].

[18] I. Kuļešovs, V. Arnicane, G. Arnicans and J. Borzovs, "Inventory of Testing Ideas and

Structuring of Testing Terms," Baltic J. Modern Computing, vol. 1, no. 3-4, pp. 210-227,

2013.

[19] A. Kalninsh and J. Borzovs, Inventarizacija idej testirovanija programm, Riga, Latvia:

Latv. Gos. Univ., 1981.

[20] ISTQB, "Standard glossary of terms used in Software Testing," 2012.

[21] G. Arnicans, D. Romans and U. Straujums, "Semi-automatic Generation of a Software

Testing Lightweight Ontology from a Glossary Based on the ONTO6 Methodology," in

Frontiers in Artificial Intelligence and Applications. Databases and Information Systems

VII: Selected Papers from the Tenth International Baltic Conference, vol. 249, IOS Press,

2013, pp. 263-276.

[22] G. Arnicans and U. Straujums, "Transformation of the Software Testing Glossary into a

browsable Concept Map," in International Conference on Engineering Education,

Instructional Technology, Assessment, and E-learning (EIAE 12); International Joint

Conferences on Computer, Information, and Systems Sciences, and Engineering (CISSE

12), 2012.

98

[23] D. Hoffman, "A Taxonomy for Test Oracles," Quality Week, 1998.

[24] ISO, ISO/IEC 25010:2011, 2011.

[25] P. Amman and J. Offutt, Introduction to Software Testing, Cambridge: Cambridge

University Pres., 2008.

[26] R. Pressman, Software Engineering: A Practitioner's Approach, 6th ed., Singapore:

McGraw-Hill.

[27] J. Sommerville, Software Engineering, 8th ed., Harlow, Essex: Pearson Education

Limited, 2007.

[28] B. Kumaravadivelu, Understanding Language Teaching: From Method to Postmethod,

Mahwah, NJ: Lawrence Erlbaum Associates, Inc., 2006.

[29] G. Hall, Exploring English Language Teaching: Language in Action., New York:

Routledge, 2011.

[30] L. Copeland, A Practitioner's Guide to Software Test Design, Norwood, MA: Artech

House, Inc., 2003.

[31] K. Tatsumi, "Test Case Design Support System," in Proceedings of International

Conference on Quality Control (ICQC), Tokyo, 1987.

[32] R. Hamlet, "Random Testing," in Encyclopedia of Software Engineering, Chichester,

Wiley, 1994, pp. 970-978.

[33] P. Jorgensen, Software Testing: A Craftsman’s Approach, 3rd ed., Boca Raton, FL:

Auerbach Publications, 2008.

[34] Z. Bicevska, J. Bicevskis and I. Oditis, "Smart technologies for improved software

maintenance," in Federated Conference on Computer Science and Information Systems

(FedCSIS), Lodz, Poland, 2015.

[35] J. Bicevskis, Z. Bicevska and I. Oditis, "Self-management of information systems," in 12th

International Baltic Conference on Databases and Information Systems, Riga, 2016.

[36] K. Rauhvarger and J. Bicevskis, "Towards a Semantic Execution Environment Testing,"

Scientific Papers, University of Latvia, vol. 733, pp. 38-52, 2008.

[37] E. Diebelis and J. Bicevskis, "Software Self-Testing," Frontiers in Artificial Intelligence

and Applications, vol. 249: Databases and Information Systems VII, pp. 249-262, 2013.

[38] I. Oditis and J. Bicevskis, "Asynchronous Runtime Verification of Business Processes:

Proof of Concept," International Journal of Simulation - Systems, Science & Technology,

vol. 16, no. 6, pp. 1-11, 2015.

99

[39] I. Oditis and J. Bicevskis, "Asynchronous Runtime Verification of Business Processes," in

Proceedings - 7th International Conference on Computational Intelligence,

Communication Systems and Networks, Riga, 2015.

[40] H. Muccini, F. Di Antonio and P. Esposito, "Software testing of mobile applications:

challenges and future research directions," in Proc. IEEE 7th Int. Workshop Automation of

Softw. Test, Zurich, 2012.

[41] V. Dantas, F. Marinho, A. da Costa and R. Andrade, "Testing requirements for mobile

applications," in Proc. 24th Int. Symp. Comput. and Inform. Sci., Guzelyurt, 2009.

[42] J. Gao, B. Xiaoying, T. Wei-Tek and T. Uehara, "Mobile application testing: a tutorial,"

IEEE Computer, vol. 47, no. 2, pp. 46-55, 2014.

[43] D. Franke, C. Elsemann, S. Kowalewski and C. Weise, "Reverse engineering of mobile

application lifecycles," in Proc. 18th Work. Conf. Reverse Eng., Limerick, 2011.

[44] D. Franke, S. Kowalewski, C. Weise and N. Prakobkosol, "Testing conformance of

lifecycle-dependent properties of mobile applications," in Proc. 5th Int. Conf. Softw.

Testing, Verification and Validation, Montreal, 2012.

[45] R. Ogawa and B. Malen, "Towards rigor in reviews of multivocal literatures: applying the

exploratory case study method," Review of Educ. Research, vol. 61, no. 3, p. 265–286,

1991.

[46] I. Kulesovs, "iOS Applications Testing," in Environment. Technology. Resources.

Proceedings of the 10th International Scientific and Practical Conference., Rezekne,

Latvia, 2015.

[47] E. Tom, A. Aurum and R. Vidgen, "An exploration of technical debt," Journal of Systems

and Software, vol. 86, no. 6, pp. 1498-1516, 2013.

[48] B. Kitchenham and S. Charters, Guidelines for performing Systematic Literature Reviews

in Software Engineering, EBSE Tech. Rep., 2007.

[49] D. Franke, S. Kowalewski and C. Weise, "A mobile software quality model," in Proc. 12th

Int. Conf. Quality Softw., Xi'an, Shaanxi, 2012.

[50] H.-K. Kim, "Mobile applications software testing methodology," Commun. in Comput.

and Inform. Sci., vol. 342, pp. 158-166, 2012.

[51] E. H. Marinho and R. Resende, "Quality factors in development best practices for mobile

applications," in Proc. Computational Sci. and Its App., Salvador de Bahia, Brazil, 2012.

[52] D. Amalfitano, A. Fasolino, P. Tramontana and N. Amatucci, "Considering context events

100

in event-based testing of mobile applications," in Proc. IEEE 6th Int. Conf. Softw. Testing,

Verification and Validation Workshops, Luxembourg, 2013.

[53] K. Haller, "Mobile testing," ACM SIGSOFT Softw. Eng. Notes, vol. 38, no. 6, pp. 1-8,

2013.

[54] H. Khalid, "On identifying user complaints of iOS apps," in Proc. 35th Int. Conf. Softw.

Eng., San Francisco, CA, 2013.

[55] D. Franke and C. Weise, "Providing a software quality framework for testing of mobile

applications," in Proc. 4th Int. Conf. Softw. Testing, Verification and Validation, Berlin,

2011.

[56] App Quality Alliance, "Testing Criteria for iOS Apps," 22 October 2013. [Online].

Available:

http://www.appqualityalliance.org/files/AQuA_testing_criteria_for_iOS_for_v1.0%20final

%2022_oct_2013.pdf. [Accessed 23 February 2016].

[57] P. Pound, "Tips For Accessibility Testing Of iOS Apps," 24 May 2013. [Online].

Available: http://patstapestry.wordpress.com/2013/05/24/tips-for-accessibility-testing-of-

ios-apps/. [Accessed 23 February 2016].

[58] Nearsoft, "Testing iOS Apps for Tough Network Conditions," 20 October 2013. [Online].

Available: http://nearsoft.com/blog/testing-ios-apps-for-tough-network-conditions/.

[Accessed 23 February 2016].

[59] TestElf, "We Find These Common Bugs When Testing iOS Apps," 24 July 2013.

[Online]. Available: http://blog.testelf.com/post/56341438836/we-find-these-common-

bugs-when-testing-ios-apps. [Accessed 23 February 2016].

[60] uTest, "The Essential Guide to iPhone & iPad App Testing," October 2013. [Online].

Available: http://qawiki.devsmm.com/wp-

content/uploads/2014/10/uTest_Whitepaper_The_Essential_Guide_to_iOS_App_Testing.p

df. [Accessed 23 February 2016].

[61] Neglected Potential, "iOS Testing mind map 1.2 – Now with more stuff," 8 October 2013.

[Online]. Available: http://www.neglectedpotential.com/2013/10/ios-testing-mind-map-1-

2/. [Accessed 23 February 2016].

[62] D. Addey, "iOS Devices," 22 September 2013. [Online]. Available:

http://daveaddey.com/postfiles/AgantReleaseChecklist2013.pdf. [Accessed 23 February

2016].

[63] R. Land, "iOS Accessibility - A Useful Guide For Testing," 2 September 2013. [Online].

101

Available: http://www.rosiesherry.com/2012/09/02/ios-accessibility-a-useful-guide-for-

testing/. [Accessed 23 February 2016].

[64] SmartBear, "Testing iOS Applications," 12 March 2014. [Online]. Available:

http://blog.smartbear.com/mobile/testing-ios-applications/. [Accessed 23 February 2016].

[65] OpenSignal, "Android Fragmentation Visualized," 2015. [Online]. Available:

http://opensignal.com/reports/2015/08/android-fragmentation/. [Accessed 26 March 2016].

[66] I. Kulesovs, J. Borzovs, A. Susters, V. Arnicane, G. Arnicans, K. Keiduns and J. Skutelis,

"The Multi-Edge Approach for iOS Applications Testing," in New Perspectives from User

Interfaces and Semantic Web: Information Quality, Advanced Interdisciplinary

Applications and Combination of the Technologies Challenges, Bergamo, Italy, Blue

Herons, 2015, pp. 77-107.

[67] I. Gorbans, I. Kulesovs, J. Buls and U. Straujums, "The Myths about and Solutions for an

Android OS Controlled and Secure Environment," in Environment. Technology.

Resources. Proceedings of the 10th International Scientific and Practical Conference.,

Rezekne, 2015.

[68] J. Buls, I. Gorbans, I. Kulesovs and U. Straujums, "The Adaptation of Shamir’s Approach

for Increasing the Security of a Mobile Environment," Baltic Journal of Modern

Computing, vol. 4, no. 1, pp. 51-58, 2016.

[69] Apple Developer, "UI Automation JavaScript Reference for iOS," 19 September 2012.

[Online]. Available:

https://developer.apple.com/library/ios/documentation/DeveloperTools/Reference/UIAuto

mationRef/. [Accessed 25 February 2016].

[70] I. Kulesovs, A. Susters, K. Keiduns and J. Skutelis, "Automated Testing of iOS Apps: tTap

Extension for Apple UIAutomation," in 3rd International Conference on Horizons for

Information Architecture, Security and Cloud Intelligent Technology: Programming,

Software Quality, Online Communities, Cyber Behaviour and Business (HIASCIT),

Sanremo, Italy, 2015.

[71] J. Penn, Test iOS Apps with UI Automation: Bug Hunting Made Easy, Dallas, Texas: The

Pragmatic Bookshelf, 2013.

[72] Apple Developer, "Event Handling Guide for iOS," 2 February 2015. [Online]. Available:

https://www.hitpages.com/doc/6281807121088512/1. [Accessed 25 February 2016].

[73] MSDN, "Single.Epsilon Field," [Online]. Available: https://msdn.microsoft.com/en-

us/library/system.single.epsilon(v=vs.110).aspx. [Accessed 25 February 2016].

102

[74] MSDN, "Double.Epsilon Field," [Online]. Available: https://msdn.microsoft.com/en-

us/library/system.double.epsilon(v=vs.110).aspx. [Accessed 25 February 2016].

[75] L. Zhifang, "Test Automation on Mobile Device," in Proc. Proceedings of the 5th

Workshop on Automation of Software Test, 2010.

103

APPENDIX A: THE FULL LIST OF MULTIVOCAL LITERATURE

The full list of the reviewed multivocal sources with indicating the exclusion phase can be

found here: https://dspace.lu.lv/dspace/bitstream/handle/7/2739/iOS Applications
Testing - Multivocal Sources.pdf

https://dspace.lu.lv/dspace/bitstream/handle/7/2739/iOS%20Applications%20Testing%20-%20Multivocal%20Sources.pdf
https://dspace.lu.lv/dspace/bitstream/handle/7/2739/iOS%20Applications%20Testing%20-%20Multivocal%20Sources.pdf

104

APPENDIX B: TTAP SOURCE CODE

tTap source code can be found here: https://github.com/ivans-kulesovs/tTap.

https://github.com/ivans-kulesovs/tTap

105

APPENDIX C: LINKCONDITIONER USAGE APPLESCRIPT

--> Srart conditioner app

on activateConditioner()

 tell application "System Preferences"

 activate

 set the current pane to pane id "com.apple.Network-Link-Conditioner"

 end tell

end activateConditioner

--> enable for UIAutomation

on activatePreferencesForAutomation()

 tell application "System Events" to tell process "System Preferences"

 set frontmost to true

 delay 1

 end tell

end activatePreferencesForAutomation

on activateConditionerForAutomation()

 activateConditioner()

 activatePreferencesForAutomation()

end activateConditionerForAutomation

-->change the preset

on selectPreset(presetName)

 tell application "System Events" to tell process "System Preferences"

 tell window "Network Link Conditioner" to tell group 1 to tell pop up
button 1

 click

 delay 1

 tell menu 1

 menu item presetName click

 end tell

 end tell

 end tell

end selectPreset

-->switch ON

on switchOn()

 tell application "System Events" to tell process "System Preferences"

 tell window "Network Link Conditioner"

 button "ON" click

 end tell

 end tell

106

end switchOn

-->Switch OFF

on switchOff()

 tell application "System Events" to tell process "System Preferences"

 tell window "Network Link Conditioner"

 button "OFF" click

 end tell

 end tell

end switchOff

107

APPENDIX D: SEARCH WITH PREDICATE FUNCTION

function searchWithPredicate(predicate, startElement, fDelay) {
 if (!fDelay) fDelay = 1;
 var target = UIATarget.localTarget();
 var timeoutInMillis = fDelay * 1000;
 var start = new Date();

 function recursiveSearch(predicate, startElement) {
 target.pushTimeout(0);
 var elements = startElement.elements();
 var found = elements.firstWithPredicate(predicate);
 target.popTimeout();

 if (found.isValid()) return found;

 for (var i = 0; i < elements.length; i++) {
 var element = elements[i];
 found = recursiveSearch(predicate, element);
 if (found) return found;
 }
 return null;
 };

 if (typeof startElement == "undefined") {
 //log("search predicate: " + predicate + ", startElement undefined - use
default!");
 startElement = target.frontMostApp().mainWindow();
 } else if (startElement == null) {
 //log("search predicate: " + predicate + ", startElement null - won't
search!");
 return null;
 } else {
 //log("search predicate: " + predicate + ", startElement: " +
startElement.name());
 }

 do {
 var now = new Date();
 var found = recursiveSearch(predicate, startElement);
 target.delay(0.1);
 } while(!found && now - start < timeoutInMillis);

 return found;
};

	Introduction
	The Aim and Tasks of PhD Thesis
	Theses of PhD Thesis
	Research Methods
	Scientific Novelty
	Practical Value
	Approbation of PhD Thesis
	1. Inventory of Testing Ideas and Structuring of Testing Terms
	1.1. Inventory of Testing Ideas
	1.2. Software Testing Review on Meta-level
	1.3. Software Testing Dichotomies
	1.4. Testing Schools
	1.5. Testing Strategy
	1.5.1. Testing Oracles
	1.5.2. Quality Characteristics
	1.5.3. Testing Levels

	1.6. Testing Tactics
	1.6.1. Testing Artifacts
	1.6.2. Systematization of Testing Terms: Approach, Method, and Technique
	1.6.3. Black-box Testing
	1.6.4. White-box Testing
	1.6.5. In-Operational Testing

	2. Mobile Applications Testing Aspects
	2.1. Apple iOS
	2.1.1. Introduction
	2.1.2. Research Methodology
	2.1.2.1. Systematic Literature Review
	2.1.2.2. Multivocal Literature Review

	2.1.3. Results
	2.1.3.1. Summary of Reviews
	2.1.3.2. Aspects of iOS Applications Testing

	2.1.4. Discussion and Implications
	2.1.4.1. Hardware
	2.1.4.2. Operating System
	2.1.4.3. Resources
	2.1.4.4. Connectivity
	2.1.4.5. Internalization
	2.1.4.6. Application Lifecycle
	2.1.4.7. Inside the Application
	2.1.4.8. (Functional Aspects of) UI/ UX

	2.2. Other Mobile Operating Systems
	2.2.1. Google Android
	2.2.2. Microsoft Windows/ Microsoft Windows Mobile

	2.3. Conclusions

	3. Mobile Applications Functional Security Testing
	3.1. Apple iOS
	3.1.1. Introduction
	3.1.2. Usage of Secure Network Protocols
	3.1.3. Data Base Encryption
	3.1.4. Locking the Application Data
	3.1.5. Advanced Functional Security Testing
	3.1.6. Discussion and Implications

	3.2. Other Mobile Operating Systems

	4. Mobile Applications Test Automation
	4.1. Introduction
	4.2. Solutions for Automated UI Testing of iOS Apps
	4.2.1. OEM Automation Tools
	4.2.1.1. Apple UIAutomation and XCTest
	4.2.1.2. Google Testing Support Library
	4.2.1.3. Microsoft Coded UI Tests

	4.2.2. API-based Tools
	4.2.2.1. Appium
	4.2.2.2. Xamarin Test Cloud
	4.2.2.3. Tosca Mobile+
	4.2.2.4. Telerik Test Studio Mobile
	4.2.2.5. DeviceAnywhere
	4.2.2.6. Ranorex
	4.2.2.7. SeeTest

	4.2.3. Image Recognition Based Tools
	4.2.3.1. Sikuli
	4.2.3.2. eggPlant

	4.2.4. Summary

	5. tTap Extension for Apple UIAutomation
	5.1. Apple UIAutomation Capabilities and Limitations
	5.1.1. Application Level
	5.1.2. OS Level
	5.1.3. Device Level
	5.1.4. Device/ OS Level
	5.1.5. Framework Level
	5.1.6. Summary

	5.2. Choosing the Right Tool for the Environmental Context
	5.3. The Rise of tTap
	5.3.1. Introduction
	5.3.2. Solution Details
	5.3.3. Application Level
	5.3.4. OS Level
	5.3.5. Device/ OS Level
	5.3.6. Framework Level
	5.3.7. Summary

	5.4. Practical Usage Experience
	5.4.1. Connectivity
	5.4.2. Image Comparison
	5.4.3. Test Data Setup and Cleanup
	5.4.4. Framework
	5.4.5. Device vs. Simulator

	5.5. Ideal Cross-Platform Mobile UI Test Automation Tool Proposal

	Conclusions and Discussions
	References
	Appendix A: The Full List of Multivocal Literature
	Appendix B: tTap Source Code
	Appendix C: LinkConditioner Usage AppleScript
	Appendix D: Search with Predicate Function

