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Mathematical model for gravitational
cascade separation of pourable
materials at different stages of a
classifier

FEugene Barsky', Maris Buikis?
" Ten-Gurion University of the Negev, lieer-Sheva
and Negev Academic College of Engineering. Israel
? Riga Technical Univorsity

We consider the gravitational cascade separatjion process as an absorbing Markov
chain. We receive here a new method for caleulating a degree of fractional extraction
for any narrow class of pourable material in cascade classifier at different stages and
a few other interesting resunlts.

Key words: Cascade separalion, pourable materials, Markov chains
Mathematics Subject Classification (2000): 60J20

The modern commercial production and international market are associ-
ated with the transfer of vast bulks of diversified pourable materials, often
iransported open, without any package. To such materials. potash and phos-
phate fersilizers could be assigned, as well as various structural materials (sand,
crushed stones, gravel), coal, corn, ete. A distinguishing feature of these ma-
terials is that they contain a considerable amount of fine dust. When such
matcrials arc loaded into vehicles or ships, a vast amount of dust is brought
into the atmospheric air and further into water thus leading to the environment
pollution. To rewove dust from large flows of pourable materials. special ap-
paratuses - scparators - are emploved, where technical and design parameters
should thercfore be properly chosen.

1. Describing of method of gravitational separation

Let us describe the method and the classifier for gravitational cascade separa-
fion.

Given a granular material with grain sizes ranging from ag to a,. our pur-
pose is to separate this material into n components along predetermined bound-
artes ap < @1 < a4z < -+ < Q-1 < 5. LThe first component must contain only
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grains of size from g to a;. the second one, tespectively, from a; to a;, and
the #-the coraponent from a,, 1 to a,. We will call a narrow cluss the portion
of material with grains sized between two neighboring separation boundaries.
Obviously the ideal separation is not possible.

We consider the cascade method of separating pourable materials in a grav-
itational classifier. The classifier consists of z stages counted top-down. The
air flow is fed from below. and the initial material is fed to one of the stages
nurobered %, Heavier grains fall down (we call them coarse product), while
light-weight ones go up (we call them fine product). The structure of each
stage of the classifier is different.

Figure 1 presents a sketch of the cascade classifier. schematically showing
the movement of the material in the separation process.

fxd of ipiddal material v s

Fig. 1.

2. Previous results

The scparasion process is considered at discrete points of time (acts of separa-
tion).

DerINITION 1. Let us call the function &, = ?Lj- an upwerd cocfficient of sepa-
ratton for the narrow class ., where r; ; is the (ﬁmntil v of the material of class
j situated at the stage number 7 at the present moment. and 7, is the quanticy
of the material of class 7 passing to the stage number i — 1 within one moment
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of time. Then 1 — k; is the downward coefficient of separation for the narrow
class 7. that is. for the grains of class j passing from stage i to stage ( + 1.

DEFINITION 2. Let us call funcsion Fr; = :’ L the degree of fractional ertrac-
2

tion to a fine product for a narrow class j. where ry; is the quantity of the

narrow class j output from the classifier to the fine product, and r, ; is the

quantity of the narrow class 7 in the initial material.

Ay stated above. the process is considered at discrete points of time {acts)
with equal spacing. '['he material is fed to the classifier with the same time
interval and equally portioned. {Scheme of the maferial separation inside the
classifier is shown in Fig. 1).

It ts known that the separation results for any narrow class in each stage
of the apparatus are independent of the presence of grains of other classes [6 .
Tor a classifier with identical structure of the stages we have proved in [1], that
the degree of fractional extraction is

1— 0..‘:+17i’ ] _

T ]Uct} if k& #0,05:

F=92 700 wkzos,
0, if k=0

where 1;—" i* is the number of the stage of material feed and k is the coeflicient

of separation of narrow class 7 for each stage of a classifier.

To calculate the quantity of the material of the narrow class § output to
the fine product, we use the formula »y = Fyr,. where ry is the quantity of the
narrow c¢lass j in the initial product.

Using the formula r, = v, — ;. we can obtain the quantity of the narrow
class j in the coarse product.

3. Absorbing Markov chain

The principle of cascade separation of the pourable material of the narrow class
jis presented in Fig. 1. This process is like a random walk of one particle of the
narrow class j with upward transition probability &, {coeflicient of separation
of narrow class 7 in stage number i) and downward transition probability | — ;.
It has two absorbing states. Hence. the motion of a particle of the narrow class
j- in a classifier with =z stages, can be represented by absorbing Markov chain
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with the following transition matrix

1 U 0 0 0 0 0
kh 01—k 0 0 0 0
0 ke 0 L = k2 0 6 G
0 0 . 0 k‘: 1 0 1- kz—-l 0
6 0 e 0 0 k- 0 1-k.
0 0 0 0 0 0 1

This matrix contains = + 2 rows and columns. The first and last states are
outputs to the fine and coarse products. All other states are probabilities of
transition of the particle among the stages of the classifier.

It is convenient to consider the canonical form of this matrix in an aggre-
gated version. We unite all ergodic (absorbing) sets, and all transient sets. We
have z transient states {(according to the number of stages of the classifier). and
two ergodic states (related to fine and coarse products). Thus, the canonical
form is:

1 0 0 0 0 0 \
0 1 0 0 0 0

k 0 [0 1-k o ... 0

0 0 k., 0 1 — ko 0 0

0 0 0 Ky 0 l—ky O 0

0 0 0 0 ks 2 01—k, 0

0 0 0 0 0 k._q 0 1 —k._1
0 1—%,| 0 0 0 0 k. 0

Here the region O consists onlv of zeroes, the = x z submatrix @ is related
to the process as long as the particle stays in the classifier (in the transient
states). the z x 2 submatrix R is related to the transition from the classifier to
one of the two products {the transition from trausient into ergodic states), and
the 2 x 2 matrix I deals with the process after the particle has reached une of
the two products {the crgodic set).

It follows from [4, 5 that in an absorbing MMarkov chain the probability of
reaching one of these states tends to 1. Then we can say that the probability
of a particle to reach one of the two products tends to 1.

From [4. 5] we obtain for any absorbing chaiu that Q@™ tends to zero when
n tends to oo, and I — @ is reversible, so that (I -~ Q) ' =Y QF.

For an absorbing Markov chain we dcefine the fundamental matriz to be

_ % Ak
N=), Q.

We define n; to be the function giving the fotal number of separation acts
(moments of time} with the particle in the stage j during the process. i.e. in
the transient state number j. Hence, according to [4, 5], we assert that the
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expectation of a particle started from the stage i to be in the stage 5 during n;
separation acts is an ij-coordinate of the matrix &, i.c.

(Ei{n)} = N, (1)

This establishes the fact that the expectation of the total number of sep-
aration acts of the particle in a given stage is alwavs finite. and that these
expectations are simply given by N.

Each particle is fed to the classifier through the stage number :*. and using
{1) we can obtain the expectation ol the total number of separation acts ol the
particle in the given stage.

We introduce the following notation:
Ny = N(2Ny, — I} — N,

is z x z matrix, where N, results from NV by setting off-diagonal entries equal
to zero, and N, resnlts from N by squaring each entry {this. of course. will
generally be the same as N2, but D? = Dy, for any diagonal matrix D}:

B=NER

is z x 2 matrix;
T = NE,

£ is a column vector with all entries equal to 1,
T2 = (2N — D)1 — 74q-

Following [4. 3| for absorbing Alarkov chain, we can assert that the variauce of
particle started from the stage ¢ to be in the stage 7 during n, scparation is an
ij-coordinate of Ny . ie..

{Dz-(”_r)}’ =N (2)

Let T be a function giving the total number of separation acts (including
the initial position). during which acts the particle remains in the classifier
before its output to the fine or coarse product. If an absorbing Markov chain
starts in the transient state. then T gives the total number of steps needed to
reach an ergodic set.

According to [4, 5;. we can assert that a for particle started in the stage
nunber ¢, the expectation of the number of separation acts until it reaches the
fine or ¢oarse product in an iy -coordinate of the vector 7, and the variance of
the latter is i;p-coordinate of . i.e.

{Ei(ff)} =T, (3)
{DiT}} =2 {4)

The particle is fed to the classifier through the stage number 7*. and hence,
using (3) and {4) we obtain the expectation and variance of the total number
of separation acts during which the particle is in the classifier.
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Let b,; be the probability for the particle starting in the stage i to reach
the fine or coarse product (j = 1 for the fine product, and j = 2 for the coarse
product).

Heuce, using the resules of (4. 5, we can obtain that for absorbing Markov
chaius the following relationship holds

{b,} - B=NR. (5)

Thus. we can control the probability of reaching the necessary product by
the particle by changing the place of its feeding into the classifier. Then the
probability of reaching the fine product is the degree of fractional extraction
for a narrow class j. when the material feeding at the stage number <.
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Beramu materialu kaskadveida separéSanas procesa analtze ar
absorbgjosu Markova kezu palidabu lietojot  klasifikatoru ar
atSkirigam atdalidanas pakapem

Kopsavilkums

Meés apskatam gravitacijas kaskadveida separacijas procesu ki absorbéjosu Markova
kedi. Tiek piedavata jauna [rakcionalas atdali$anas pakapes aprekindsanas metode
katrai faural beramu materialu klasei klasifikatora ar at§kingam atdalifanas pakapem,
ka ar? vairaki citi interesanti rezuitati.
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Geoeconomical and geopolitical risks:
contemporary problems and solutions

Svetoslav J. Bilchev!, Valery V. Bokov”
' Center of Applied Mathamatics and Informatics, University of Russe, Bulgaria
email: slavy@ami.ru.acad.bg, slavy.bilchev@yahoo.com
“ Scientitic Research Institute of Higher Liducation. Moscow. Russia
email: valery-bokov@mail.ru

We consider some geoeconomical and geopolitical risks associaied with the economical
and political interactions between different countris.  For this aim, the theory of
differential game is applied. Some examples are given.

Key words: geoeconomics. geopolitics, geocconomical and geopolitical risks, differ-
ential game theory

Mathematics Subject Classification (2000): 91A23, 91A80, $1B30

The beginning of the 21%% century was marked with grand changes in the
world geccconomics and geopolitics. The surbulent process of changes affected
not only the developed but also the developing countries, not only the tradi-
tional but also the new spheres of human activities. The re-structuring of the
traditionally preserved systems in these spheres, the disintegration of enormous
regional world structures and the origin of new states, the formation of strategic
unions, and so on — all that raised points before the science about rationalizing
these phenomena. about revealing of the deep reasons and consequences of such
serious changes, with the purpose of getting ready for management of the world
economic systen and including the national socioeconomic structures into the
slobalization process.

There is a very important issue in this situation [1] for seeking completely
new approaches toward the problem about the geopolitical and geoeconomical
risks because the strategic solutions in directions of state developmeoent in the
21% century get complicated by the necessity to operate with trends. not easily
predicted, in the sphere of ccenomics which passed the state boundaries long
ago (in the currency-financial, credit. investment, innovation-reproduction, so-
cial and enltural spheres).

It is necessarv to take into account a great deal of factors by regulating
the geopolitical and geoeconomical risks. which influence simultancously the
forming vector of the national development strategy and hereby using all the
newest accessible scientific approaches in the sphere of the knowledge theory,
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methodology, the newest ideas and ways for mathematical and logistics formal-
ization.

We must mention the risk situations. associated by temporal, territorial
and inter-state prognoses of originating of the new type interanclave social
work division: the appearance of pulsating economic boundaries which do not
coincide with the national (state) ones; forming of stray world international
reproduction nuclei and world income; the role of the high geoeconomical tech-
nologies, etc., as some of the most important problems of the localization of
the geopolitical and geoeconomical risks.

The risks in a geocconomics environment can affect and even affect more
often whole regions, conglomerations of states, nations and peoples. Therefore
the risk regulating in the globalized economy is a very important and responsi-
ble process. The slightest mistake in the prognosis or realization of a scheme for
globalization, not sufficiently developed, can lead to leveling of already achieved
results or to destroying progressive trends.

Effective activity in this direction is expected if the indicated problems are
dealt with by a single authoritative international hody, possessing, firstly, the
ability to react guickly to the slight signals of the international society, to have
effective logistics, gececonomical and geopolitical equipment and, secondly, to
have highly inteilectual. information and communication capacity.

The problems. connected with a deep analysis of the global processes, re-
lating to different spheres of the contemporary world space: geoceconomical,
geopolitical and geostrategical [1° are particularly important. An electronic in-
terface system between the above-mentioned spaces. for accepting solutions, for
processing of risk situations on the basis of a reliable geoeconomical: prognosis
must be developed to meet these aims. The electronic (computer) svstem for
monitoring “geoeconomical climate™ must be based on a corresponding infor-
mation basis, on a permancntly kept reliable information, on the formulating
of a methodology for situational strategic data combination, on the assignment
and solution of different strategic tasks, on the development of model situa-
tional strategic variants (combinations). The accuracy of the geoeconomical
prognosis will depend on the accuracy of the imitation of the strategic tasks,
which the particular national economy sets as a long-term purpose because the
initial circumstances for operating in the geoeconomical space are different for
the different economic systems. But in all cases the general methodological
scherme for development of the geoeconomical prognosis must be more heuristic
than systematic, more logistics than operational.

The methodological approach. connected with the idea for volumetric divi-
ston of the global space into & number of spaces, which on different segments
of the dynamic development. have one or another hierarchic position, is taken
for initial research basis. The leading space into the globalization regime is the
geoeconomical space, which puts on a second place both the geopolitical space
and the militan-strategic space. On the other hand, there can be marked three
important autonomous management spheres in the nucleus of the geoeconom-
ical space:

o Cominodity - monetary;
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s Organizational - economic:

o Contract - interpolational.

The management technology of the risks of the commedity - monetary
sphere is based on the prerequisite that the world market is a combination of
interconnected simple (single} commodity markets, united in a final (closed)
system which is in a dynamic equilibrium. The more accurately we can mould
the world market. the more accurately we can guarantee the whole geocconom-
ical prognosis in this sphere. Every single commodify arket represents an
organically connected unit of the world market, one of the knots of this gigan-
tic pet, placed into the world economic (market) medium. A well-organized
information svstem must exist, such a svstem that all the elementary single
markets to be constantly in the range of vision of the analytic observer.

A combination of definite commodity markets can be aggregated to a sep-
arate system. A main market can be separated in each group. It influences
all single commodity markets in a given group, it effects the trends for their
development. Apart from the mutual influence of separate markets to each
other, as well as the murual influence of groups of similar markets, the whole
market system is influenced by the so called global group in the structure of
the currency-credit market and the market of the labour force. Such a model
of a world market guarantees the opportunity to follow the fluctuations and
the regularity of change of all separate markets, to give a quality and after
that a quantity evaluation of all other interconnected markets (to separate the
zone of distribution of the price impulse, to determine its distribution speed,
the link of the contract prices with “the market of the medium” {the credit
conditions, the rate of exchange, ete.), to evaluate quantitatively the influence
of “the market of the medium”™ of the contract prices.

The organizational-economic sphere has its own peculiarities, the main one
being the process of division of production-technological chains and export-
ing of scparate units outside the national boundaries. In such a wayv, the
organizational-economic structures are arranged into different interconnected
chains. Generally speaking, the system of world economic connections is formed
by single economic structures {organizational — functional model of the world
economic sphere). Also the model of collaboration in the world econoric field
predetermines the division process of production-technological chains and ex-
porting of their separate units outside the national boundaries. And a definire
organizational-functional structure: scientific-rescarch, project-designing. in-
vesting. production, foreign trade and contract, stands behind such an unit.

The contract system must be the first one within sight of the geoeconomical
regulating. This is achieved in the foreign trade practice via the preparation
svstem of memoranda. The forcign trade (the foreign economic) contracts
represent. an important independent level of the foreign economic information.
A pressing task is to form that information level in a given system. to classify
the level by dividing it into priority directions, etc. The quantity evaluation
of the motivations comes from here (for example, according to the type of
the difference between the world price and the price, actually achieved in the
negotiation process and fixed in the contract. etc.).
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A dangerous loss of control over the coniract system appears with the lib-
cralization of the foreign economic activity because the contract prices often
do not reflect the world prices and therefore a svstem of pseudo-world prices is
formed, creating o precedent of a big risk of backdoor contracts.

Therefore the following must be done, the contracts signed at all levels,
including the interstate level. must be transparent. The national economic in-
terests are reflected in one or another way in the signed contracts. In this way
the very serious problem appears for establishing of correlations in the world
prices and additional non-price stimuli, regulating the partners relations. Not
only the value law regulates the coutemporary economic world but a large
system of hidden motivations does that, as well. In other words we have to
deal with a peculiar parallel foreign economic system of world cconomic links.
The contracts. dictated by the national interests. forin new economic bound-
aries. establishing in this way the outlines of the integration and desintegration
processcs at a national, regional, production. financial, integration, political,
military-political level and some other levels.

The geoecononiical and geopolitical risks are intrinsically characteristic of
the contemnporary world economic structure and therefore it is very impor-
tant to learn to regulate them or at least to insure against serious losses and
catastrophes. These risks have already been treated in the developed coun-
tries as success or failure due to using ready schemes for reducing the losses
caused by sudden but prognosticable actions of the governments and the po-
litical state leaders. It hecame obvious that serious analytical research of the
forcign cconomic and political activities and of the foreign trade is necessary for
making prognosis and evaluation of the geoeconomical and geopolitical risks.
Furthermore. the military political methods at an interstate level and a pos-
ieriori media for defence of the companies seemn to be a late reflex which does
not provide effective support to the capitals and the reputation of the state
structures and the business structures.

As it seems. a serious intellectual-information research is required in this
direction because one and the samne political event or action of the government
structures affects the activity of the companies to a different. extent according to
the sphere of their activity and the preventing actions. motivated by the results
of the prognoses and of the economic analysis [12°. For example, the restriction
of the general economic relations between Iran and the United States, caused
by the events of the Islam revolution in 1979 and by the political considerations
in connection with the orthodox clergy that came into power, did not hinder
the sale. not made public, by the United States in Iran of highly technological
military production which alinost led to the impeachment of the President of
the United States, Ronald Raegan.

The difficulties related to the regulating or insurance of the geopolitical
and gececomical risks are connected first with the sphere of activity of the
company and the branch belonging. For example, a building company, which
has short-term contracts. is sufficient to have a prognosis for the political risk
for & period up to one year, while the big gas-oil or air-space companies with a
long production cyvele of the products and realization of the services must have
a quality prognosis for the perspectives within 10 - 12 vears.
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The reading and evaluation of the geopolitical and geoecomical risks rep-
resent the ground on which the whole foreign policy of the stave is based. It
can be considered that the level of the successes of the state structures in this
sphere represents an indicator of civilization of the foreign economic course,
which is led.

In the contemporary controversial and dynamically changing world. the ac-
tions of the government structures can have for the state and the citizens trivial
or, to the contrary, catastrophic consequences. For achieving effectiveness of
the management process of the geopolitical and geoecomical risks, the strategic
government actions must be based on reliable prognoses about the object of risk
protection and ity interactivities with the encirclement, having a short-term or
long-term character.

That is particularly important for protection from the state risk (the default
risk}, or from the macrorisks, whose analvsis and evaluation are necessary for
preventing (or minimization) of possible financial and material losses. caused
by false political solutions of the state structures (for example, about the in-
vestmenty strategy), realized under the pressure of the oppeosition forces. or
appearing as a consequence of deliberate actions of rival encirclement.

The political unstability, originating from the unskilful interaction of the
national governments with the opposition or with the regions, or from the
unability of the state to fulfil its duty commitments in connection with the
foreign investors as a consequence of the aggressive actions of the encirclement
can be found in the basis of the state political risk. Every government strives
for reaching maximal benefit by minimal political compromises, depending on
the encirclement. forming the precedent of the risk.

In fact, all political risks can be generallv divided into two types: political
micro and macro-risks. T'he political unstability of the state structure or the
non-productive actions of the opposition in the country. in which considerable
investinents have been made, is in the basis of the political macro-risk of the
state, which is always discussed at a national level. In this respect. particular
attention must be paid to the analysis of the real and potential ability of the
partuer-state to fulfil its commitments in connection with the forcign investors
by the development of prognoses.

In relation to the political micro-risks, affecting the interests of the economic
agents on the world market. it must be taken into account in advance that the
interests of the business structures and of the exccutive bodies of the authorities
are different. Namely, the governments always try to achieve maximal economic
benefit by minimal political price, while the business structures strive to receive
global and stable economic and political prosperity. Therefore. it is important
for each economic agent to prognosticate “negotiating own and rival force” on
the background of the economic and political situation.

Four criteria have been used for the evaluation of the political macro-risk
since the time of the famous analytics V. Coplin [10. 11! and V. Overholt [18]:

e FEvaluation of the position or orientation by the state factors in that or
another sphere of activity:
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o following this position firmly, proved by the national idea for stable devel-
opment,;

e anthority and infAuence power on this sphere of state and political leaders;

e the importance of the risk aspect for increasing the state stability or the
authority of the state factors. taken into consideration by the partner-state.

These eriteria are used especially successfully in combination with scenario
methods [12. 14, 15] and they have achieved a definite logical formalization
lately. In particular, I. Walter I. 12" developed two general formulae for cval-
uation of the political (state) risk, corresponding to each state scenario to the
salmne extent.

The first of them:
Yty + M(t) = A(t) + X(t),

where Y(t) - is the val national product (VNP) of the country — candidate
for economic partuer interaction; M(#) — is the import of that country; A(t) -
is the infernal consumption, including investment in the production and non-
production sphere; X (t) — is the export. The cconomic point of this equation
is in the fact that by growsh of VNP and preserving the internal consurnption,
radical changes occur at the level and in the structure of M (2} and A (2).

The second, relating to the same country  candidate for economic interac-
tion. looks like:
Xy - M(t) - DSity+ FDJt) + Uit) — K0{(t) = DR(t) - NRB(t),

where
DR(t)y=X(t)+ FDJ{) + Uit); NRB(f)= M)+ DS(t) + K0ir),;

X(t). M(t) arc taken from the first formula; D5(¢) - are payments on foreign
loans: FDJ(#) - is a general volume of direct short investments; U{z) - is a
general volume of gratis credits; K0(t) - is a general sum of the investments
in the bank system of the country: DR({t) - is the quantisy of the foreign
currency, circulating at a given time in the country, equated to a single currency
equivalent; NRB(¢) is a state duty, determined for being paid at a given
moment.

The point of this economic-mathematical expression is in that the negative
balance in the left part can have as a consequence default (refusal for pavment
the foreign duty and a requirement for its restructuring), motivation of the
economy foward an increased foreign duty or toward finding other international
sources for financing. With other words, the situation from the type DR(t) <
NRB(t) presupposes state political risk because the solution for default or
attracting of new foreign investments lies exclusively within the competence of
state and political structures.

Using this economic-mathematical formalism helps for the development of
an optimal scenario for economic interaction between the states, distancing
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from political risks. It is necessary to use “information-intuitive thinking”,
based on experience and analogy, formalized into sotne kind of model for making
solution, so that this scenario will not depend too much on the possible state
cataclysms.

The priorities of the modulated scenario solutions is cxpressed in the pos-
sibility for finding of hidden correlations. capable to drastically change the
effectiveness of the actions in the field of political risks insurance.

The non-risks management scenarios of systems. exposed to political
{geopolitical} and economic {geoeconomical) risks, are generated especially el-
fectively with the help of the developed in 2, 9] market cowmpesitive strategies
(MCS). The idea and implementation of that instrument is based on the theory
of the games and the economic conflict in the tract of G. Stakelbery [3. 21]. In
the final, adapted for practical usage form, MCS are formalized in the following
way

DEFINITION 1. Let us represent some dynamic market foctor () into the form
of u sum of its non-negative components

K(ty=) K1)
(2}

If we enter base strategies Xi(t) = Ki(t)/K(t). numerically equal to the
part of the contribution of each component in K(t). grven at the beginning and
the end of the management intervel 0.7 as

Xi(0) = X0, Xi(1) = Xur,

then MCS: XiV(t), realizing the expressed trend in deferential form K(t) to-
ward decrease,

K()/dt =a K(O)(1 =) Xi¥(t),

i)
are represented (Fig. 1) in the way
XiNiy = { X0 if0 <t < i
max(Xi0. X;7), T >t> 1

Here
i=T —1/a (1 — Xi¥(1))

ig the temporary co-ordinate for switching the strategies:

a=M > (1/(1=Xi¥(T))/T/(M - 1)/ > (1/{1 = Xi™(T))

is rate of the trend realization: M, = const. 1 < My < T, 1s scenario constant.
depending on the expected dynamics of the prognosticable factor K (¢) of [0.T".
If for [0,7° are not prognosed sharp changes of K(t). then it is completely
possible to put My = ¥/2. Otherwise this affix must be given specially.
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Analogically. MCS: Xi¥(t). realizing the expressed trend in diferential
form K'{t) toward iucrease

dR(#)/dt =b K{#) > Xi%(4)
and corresponding to the base strategios Xi(t), are determined in the way:

N X0 ift <
N _ » i
X () = { min{Xi0, X,3) , if T >t ;.

where

o ;=T —1/b XiV(1) isatemporary co-ordinate for switching the strate-
gies (fig. 2):

e b=ALY (/XN(T)?/T/{(Ms — 1)/ 3 (1/XiN{T)) - is rate of the trend

realization:

« Afs is analogical const of M.

If Xi(0) = X, Xi(2) = X are known, then we can easily define 7, y; .
X4¥(t) and via them by using simple quantum on the switching points of the
strategies to solve the deferential equation of the trends and to define K(¢).
after which every compenent of the process K4(t) is determined according to
the formulae: Ki(t) = K(t)- XiV(¢).

In the problems for prognostic economic factors, however, Xi(1'} = X, are
more often a priori not known and then they are determined by some systematic
functional, connecting all or scparate co-ordinates of K (t), i.e. some of their
known proportions or combinations in the future.

The situation with previously unknown terminal values of the market com-
petitive strategies is tvpical for vertically structured hierarchical inanagements
of a regulating market, suggested by the German economist G. Stakelberg ™11.

For using this idea we will practically make a combination of the above-
mentioned formulae in the form of two aggregates

DR(t) =Y (#) = FDJ)+ Ult),
NRB{t) = A{t) + DS(t) + KO(¥)
and we will introduce the following strategies:
X1(t) — Y (#)/DR(t) ; X20t) = FDJY/DR(t) ; X3(t)=U{t)/DR(t) ;
YI(t) = AQR)/NRDB(t) ; Y2(r) = DS(#)/NRB(t) : Y3(t) = KO(t)/NRB(#),

with which based on a famous methodology (see, for example. [2 or [9] we can
turn to market competitive strategies (MCS).

In this case, if DR(t), NRB(t) decrease and

(dDR(t))/dt = al - DR{t)(1 = Y MCS(1)) :
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dNRB(t)/dt = b1 - NRB(t)(1 - Y _ MCS(t)).

the market competitive strategies X1(t). X2(#). X3(t): Y1(t). Y2{¢}, Y3{1)
have a configuration. given on Fig. 1. Otherwise {on Fig. 2):

(dDR(t))/dt = a2 - DR()(>_ MCS(t)) ;

dNRB(f)/dt = b2 NRB(1)(}  MCS(1)).
1f the interval [0. 7] represents an interval for prognosing of the model risk-
less scenario of the economic interaction between two countries, and MCS(T)
are known, then the technical parameters (the switching points of the strate-
gies) of this scenario 7; . p; are determined with the expressions:
7= 1 —1/(al{l = MCSI(T)))., or 7=T-1/(bl(1 - MCSiT1))),
i =1 —1/(a2MCSIT))., or p=T-1/(b2MCSi(T)),

where the quantities "al”. 7517, "a2". "42" are equal to:

allor b1) = M (1/(1 = MCSUTI)?/T/(M — 1)/ Y _(1/(1 — MCSi(T})).

a2(or b2) = M S (}/MCSIT)?/T/(M - 1)/ S (1/(MCSi(T}))),

and G is the above-mentioned scenario constant.

‘ﬂcsm ) MCS(0)=Xi(0) or Yi(0) j
A

/ MCS(T)-max(Xi(0),
/ Xi(T)) or MCS(T) =

(_max(Yi( O YiI(TH

\

Fig. 1. General look of MCS for a decrease trend

Based on the above descriptions. the scheme for development of a model
riskless scenaric of the economic interaction between two countries can be the
following:
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MCS(T)= min(Xi(0),
Xi(T)) or MCS(T)=
min(Yi(0), Yi(T))

.

Fig. 2. General look of MCS for an inerease trend

. If DR{I"Y < NRDB(T}, then the economic situation in the country can-

didate for economic interaction is unstable to such an extent that it can
motivate the political circles toward defauls or other firm economic - polis-
ical solutions: i. e. restraining from active economic links is recommended
for avoiding the risk;

If DR{(1Y > NRB(T), then that represents a signal for economic pros-
perity of the partner-country and opportunity for activating the economic
links with it. If, besides, DR(T) > DR(0), then there is a trend of increase
for DR(t).

In this case if DR({0) > NRB(0), active economic interaction can be rec-
ommended immediately after realizing this fact.

More interesting is the situation when DR{0) < NREB(0), showing that a
moment of time ¢ from the interval [0, T] exists, in which DR(t) = N RB(t),
and to whose coming, restraining from active economic interactions is rec-
ommended and immediately after it the cconomic transactions must be
accompanied by active insurance of the deals.

In the case DR({L) > NRB(T), but DR(T) < DR(0) (trend toward de-
crease for DR(t)) and DR(0) > NRE(0), close collaboration can be rec-
ommended.

The same cannot be said about the situation DR(0} < NRB(0). because
there exists point ¢ from the interval [0,7] in which DR{t) = NRBI(t).
and to whose arrival, restraining from active economic interactions is rec-
ommended and immediately after it the economic transactions must be
accompanied by active insurance of the deals.

Principally, there exist four variants of “postponed”™ for time t economic
interaction:
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¢ DR(increasing trend) = NRB(incressing trend);

e DR(increasing trend) = NRB({decreasing trend};

o DR(decreasing trend) = NRB{decreasing trend):
(

e DR{decreasing trend) = NRB(increasing trend).

To process successfully these active situations, we will give the formulae for
calculating of the trajectories DR(t), NRE(r):

(A) Increasing trend:

DR(t) = DR(O)exp{al > [MCSi{0), if t < py;
i-1.2.3
MCSI(0)  p; + MOSUTY (6 — ), if ¢ > '}

(B) Deercasing trend:

DR(t) = DR{0)explasft — Y (MCSi(0) -t ift <7
i=12.3
MOSI0) n + MCS{TY - (t—7) , i £ > 70}

{C) Increasing trend:

NRB(l) — NRB(0)exp{bl > [MCSi(0)-t ift<p,:
i=1.2.3
MCSHD) -, + MCOS TV - (f—p) il E > ]}

(D) Decreasing trend:

NRB(t) = NRB{0)exp{h2[t-— Z MOS0} -t . ift <7
=123

MCSi{0) -7 + MCSi(T - (t — ) . if t > 7}

We will look at the following pattern example. The economic — political
stabilization of a certain country requires the reviving its economic relations
with a hypothetic country {HC). For choosing of an appropriate moment of time
from the time interval 2002,2007] = [0.7]. (" = 5 years) recommendations
are required made bv the top managers. The current and prognostic data.
expressed in symbolic units, are given in Table 1.

It follows according to the above data that as a whole the economy of HC
after the prognosis for 2007 is in a favorable collaboration situation but such
a responsible recommendation can be given only after analyvsis of the situation
DR(#) = NRB(t) and after determining the corresponding moment of time for
the beginning of the collaboration, having in mind that

DR(t) = DR(Oyexp{al Y [MCSi(0)-t . it < g
+=1.2.3

MCSH(0) - s + MCSHT) - (t — ) . if £ > 1, ).
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Factors Moment Strategies Moment MCS
t=0[t=T t=01¢t=T
Y 60 86,7 X1 0.66 0,66 | 0,66
FDJ 20 14,44 X2 0,22 | 011 (0,22; 0.11)
U 10 28.8 X3 0,12 | 0.23 | 0,12
A 23,3 | 3.3 Y1 0,22 [ 066 022
DS 11,7 | 244 Y2 0,11 | 0,22 [ 0,11
K 70 12,22 Y3 0.67 | 0,12 [ (0,67;0,12)
DR 90 130
NRB 105 110

Table 1. The current and prognostic data (the numbers in the brackets repre-
sent the coordinates in the left and right curves of MCS - sce Figures 1 and
2}

NRB(t) = NRB()ezp(bl Y [MCSi(0)-t it < :
i=1.2.3

AICSI0) - g, + MCSI(T) - (£ — ) . if t > ps, |}

from where we get

al > I MCSHOW, i £ < i MOSHOus + MCSHT)(t — pi), i ¢ > pay |
i—1,2.3

b1 > I MCSi(0)t , if < pg MOSi{0)ps + MCSUTHE — ), if £ > iy |
i—1.2.3

= In(N RB(0)/DR(0)).

We find with simple iterations that the favorable collaboration moment of
time is £ = 3, and the real scenario interval of a successful riskless interaction
is (2005, 2007).

Let us discuss another situation. connected with generating of a riskless
management scenario of the political risk following the tyvpe of the modified
method BERI 11. 22,, which requires a svstematic functional for determining

of the MCS.

In this particular case, we will characterize the political risk with the fol-
lowing parameters:

e 5 - regime stability, subject to the following gradation: S — 1 {unstable
regime). 8 = 3 (medium stability), S = 5 (stable);

s B - lack of riots. subject to the following gradation: 8 =1 (strong riots}.
B = 3 (slight riots), B = 5 (there are no riots);

o [ — lack of restrictions of foreign investments, subject to the following
gradation: I =1 (strong restrictions). T = 3 (medium restrictions), I =5
(there are no restrictions):
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o N - lack of restrictions of foreign trade. subject to the following gradation:
N =1 (strong restrictions), ¥ = 3 (slight restrictions), N = 5 (therc arc
no substantial restrictions).

If a total index is used:
P=5+B-T+A.

then the trend for the growth of each component is sequenced with an analogical
trend for P. We introduce basic strategies

X1(t) = S(#)/P(t) , X2(t) = B(+)/P(¢) .
X3(t) = I(t)/P(t) . XA{t) = N(t)/P(t),

which are known at the initial moment of the interval of management:
S5(0)=3, B(0O)=1. I{0)=3. N(0) =1,

and we will make a prognosis for the dyvnamic of the indicator P in a regime
of its growth under the condition that it is recommended to provide minimuin
of the functional at the terminal peint of the changing interval 2003, 2005

F=[N(T)-3.5,

i. c. at a certain free level of the forcign economic business.

The methodology of minimization of that and of similar functionals in the
space MCS has been developed, for cxample in 2. 9], and. thercfore. we ean
give the ready sohition:

S(T)=4.2; B(T)=2,8; I(T)=3.3: N(T) =3.5,

which proves that similar achievement in the sphere of regulating the political
risk is provided by increasing the regime stability. removing the restrictions
of the foreign investinents and decreasing the rate of law breaking. When a
single system of parameter gradation is provided, then the received solution
aives completely a concrete reference point.
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Geoekonomiskie un geopolitiskic riski: misdienu problémas un
risinajumnii

Kopsavilkums

Tiek apskatlti geoekonomiskie un geopolitiskie riski, kurus izraisa valstu ekonoiniska
un politiska mijiedarbiba. 51 merka sasniegSanai izmanto diferencialo speju teoriju
un tiek iztirzati dazi ilustréjosi piemeri.
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1. Introduction

It is well known that elliptic boundary value problems with sufficiently smooth
coefficients have bounded weak solutions. The methods developed in [3], (4, are
applicable to general nonlinear elliptic problems with unbounded coefficients.

Although methods proposed in [3], [4 work well in general situations. the
obtained results are not as strong as it is necessarv for some specific applica-
tions. It is especially in the case when one wants to understand the dependence
of ihe upper and lower bounds of weak solutions on various parameters of the
problem. The estimates of bounds given by general methods are inaccurate
and have complicated dependence on the parameters of the problem.

In this paper we deal with a nonlinear elliptic boundary value problem,
which deseribes combined conductive-radiative heat transfer in a physical sys-
tem. Qur goal is to get accurate estirnates for the upper and lower bounds
for the weak solutions of the problem. Since the equation and the boundary
conditions of the problem in our case include onlv bounded cocfficients, the
desired goal could be achieved by methods similar to those ones which were
used to prove the maximum principle for elliptic boundary value problems [3].
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Let  =10.0 x IT ¢ R® be a bounded cylindrical Lipschitz domain without
holes. i.e. I1 C R? is a bounded Lipschitz domain homeomorphic to the unit
ball B{0.1}) C R2 Let ¥, = [0.{] x OII be the lateral surface and let
be some surface in R?, which is measurable with respect to Lebesgue surface
measiite. Suppose that the boundary value problem is given by the integral
equality

/ (k1 (V(u+ @) - Vi) + kol + &)z, %) du + f Gi{lu + o/ {u + @) ds
Q

:/ Ga{IN3 N ds Vi € Vi,

where the functional space V. the linear operators G : Ls,4(Z4) v = Lgya(Zy),
G2 1 Ls;4(Epe) — Ls/a(Es) and the parameters &y, k2, A, ¢ will be introduced
in the next section. In this paper we show that if u € Vj is a weak solution of
the boundarv problem and if the parameters A, ¢ have appropriate properties,
then the following simple estimate holds:

0< (o +u) <max{|AlL, .- 19llL. @z}

2. Preliminaries

In this section we give formnlation for the boundary value problem and list some
results. It is important to note that here we usc cssentially the methodology
from the paper 3], which deals with similar mathematical models of conductive-
radiative heat transfer.

Let

P,

Yoo 1= {u € R¥ ¢ (@g,xy) € I,
0= {CCER320<;I‘1 (f.(.‘?'-_;,.’]’.‘_';) EH},

where [ is a positive constant and II C R? is a bounded Lipschitz domain
homeomorphic to the unic ball B(0,1) C R?. Let

[ CcR:i=1,.,n}

be a finite set of bounded Lipschitz domains such that

=

=0 i< {1...n},
Q=0 4,5 {1,...n},i #7.
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We introduce the abbreviations

T, = 0.4 x A1,

T = 0ONE,.
»io=lray, o =0k
T, ={r ey im =1}

Eht = U (39,

ic{l...n}
Y=, 0 X

Q, = ( U Q)usz

and use also the following notation further in the text.

Let A ¢ B. Then we denote by x(A. B} the indicator funciion x : B —
{0.1} of the subset A.

We denote by £(X.Y) the space of the linear bounded operators that map
a Banach space X into a Banach space V. Let F stand for the identity operator.

We denote by L,(-) the standard Lebesgue spaces (1 € p < a¢) and by
W3 () the standard Sobolev spaces. Let V5. V; be the Banach spaces:

(V- lllve) o= Ha € WRE) s u L 2y € Li(E)} Il + I esim),
|

(Vs bl o= Qu e Vst lz, = Oh - lwpey + [ ama)-

We suppose that there is a boundary value problem defined on €2:
/(kl(V(u F ) V)« kalu - 6)e,1) di + / Ch(u+ o + 6)) e ds
0 Je,
- / Go(IAPAds Ve e Vs (1)
Z.
where

ky = const > 0, ko = const,
¢S Vi.o>0ae on Ly A€ Ly(Zns).
Gh & £(Lgpa(%). L3ja(E0)). Ga € £{Lsya(En). Ly a(2,))-

We assume that the boundary value problem (1) is derived from the con-
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ductive-radiative heat transfer problem:

f(kl(v(u + ) Vi) + ky(u + 0)z,4) dv +/ guds =0 W els, (2
Q

play— (1 - E(:L‘))/ Ex.yply) ds(y) = e(n)o|qx)Pq(z) ae. 2 €T, (B)

4

2y

Mﬂzﬂ&%:ﬁk@mmwwﬁw&ﬁreEp (4)

gls. cu+d, (5)

@ lsp= (6)
where

k) = const > 0, ka — const,o = const > 0.
q) € ‘/:EJC} 2 O a.c. on Z!nzA < LS(Ehf)a
€€l (Z)eg<e<lae onZ, g = const > 0.
Here the function & : Z, x &, — R from {3). {4) is defined by a mapping

((z.9) € T, x T,) = k{z,y) := wiz. y)b(z.y).
cos (V(x), (y — x)) cos (v{y), (x - y))
e — o :
0a.y) = {1, if {z E.Ra peTe4(l-Ty0<T <3N =0
0, otherwise

wiz,y) =

where vi-) denotes the outward normal of the surface 2. (Note thaty(-) exists
almost everywhere on L. since it is a Lipschitch surface).

The analytical properties of the function k(x.y) and the fact that 3. is
Lipschitz surface allow us by involving the Gauss formula) to get the following
estirmate:

0< /; ko y)ds(y) = hm/z k(x,y)ds(y) =

" \B(z,8)

lim / cos (v (-4),_15?} —z)) ds(y) <laec z<%,. (7)
S (2.8 NQLr.5) w0

=0 foo 14
where
Bhd'—L€R3|—ﬂ<5}
Stz 0y :={z e R%: |z —ul =4 (v(z) - (z — 1)) 2 0},

Qr.d)={zcR SizoxtTyy € DAB(x AT > 0}.

The cylindrical shape of the domain €, and the positive distance between the
surfaces ¥, X, guaranty that there exists a constant 0 < ¢; < 1 such that for
every 4 > 0 and for ae. x € I, the following estimate holds:

mes(SY(z,8) NQ(x.8)) < 2 6%
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This yields the existence of a much stronger local estimate on the surface ¥,
than (7). There exists a constant ¢o < 1 such that:

0 < / klr oy ds{y) <epae € X, {8)
b

The estimate {7) implies that the mapping

(v € Lp(Z,)) — K(u) := / k{w,y)uly) ds(y)
X,
defines the operator K € £(L,(3,), Ly(X-)) and

|I&

Sy S 1 (9)

for every constant 1 < p <t oc ([2]).

Suppose that the mappings

(we Lspa(2:)) v » Ey(u) i= (1 - e)u,
(u € Lsa(Z,)) — Ea(u) 1= eu.

ulz) x €%,
0 .TEEM

u{x) T &€ Zp
we Lsja(She)) - Polu) = 4
(u & Lg;q{Zn)) 2{u) {{) T €L,

(u e Ly4(Es)) — Pi(u)

define the operators Ey € £{Ls5,4{Z). Ly a(Z-)). Ea € £(Lg/(Tr). Lsa(X0)),
Py € L(Lgu(%s ) Ly pa(5,)) and Py € £(Ls;4(Zp:), Ls;4(E,)). As the estunate
(9) holds, it allows us to exclude the variables g, p, ¢ from the svstems (2). (3).

(7). (6}, (4) and to obtain the boundary value problem (1). Then the operators
G, Go from (1) will have the following form {[3]):

8

(u € Ly (5)) — Gr(u) = (o(T = K)(Q_(EVK))EaPi(w)) I,

i=0

(1 € Lepalinel) = Gal) 1= ({1 = K (EVK) ) ExPota) Is.
i~0

Furthermore, if we denote

Hl.—I*& Ho::g,
[2) g
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then the following properties will hold ([5!):

Gr & L(Lp(Ze). Lp(E4)), Go € L(Ly(En,). Lp(2,)) for all 5/4 < p < . (10)
Hy € L(Lp(2,). Lp(Ey)), Ha € L(L,(Zh,). Lp(Xy)) for all 5/4 <p < o, (11)
W[ e,y S foral 5/4<p<oc. (12)
Gi{x(E:, Z.)) — Co{x(Zp, EZm)) 2 0 ne on T,. (13)
ifue (X} and ¥ > 0 ae. on X, then Hy{u) > 0 a.e. on X, (14)
ifueLi(Ty) and u 2 0 ae. on Iy, then Holu) > 0 ae. on B, (15)

REMARK 1. The form
{(u.vr) € Vi x V) —
f (ki (V{u + ) - Vo) + ka(u + @)z, 4) dve + / Gi(lu + ¢ (u + ¢) ) ds
Q L.
defines a pseundomonotone operator. The estimate (8) guaranties that this

operator is also coercitive. Therefore, for fixed A € Lz(¥);) the boundary
value problem (1) has at least one weak solution u € V;,.

3. Lower estimate

THEORLEM 3.1, Suppoese A € Lo (Zp) and 0 < h a.e. on Zpy. Ifuc Vs s the
solution of (1), then
0<({¢d+u) ae on .

Proof. Suppose that incquality 0 < {¢ + u) does not hold a.e. on €.
Then the function
v = min{s + u,0}

must not be equal to zero. Furthermore, as ¢ > 0 a.c. on I;, and u ¢ Vi, then
e Vs,

Frow the properties of the function ¥ € V; it follows that
/ kiiViu + @) V)de = / k' Vo 2de > 0. (186)
0 Ja
In addition. the following equality can be obtained:

/kg(u — &)y 2 dr

4]
N2 2
- [resae= [0 [ Sa an
Q §2 - 4 =

.2 . "9 ,
R [ Lds [ ) Sd
= /;‘z k27 ds - ko 5 ds /Q(kz)rl 5 dv = O,
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Further, since 0 < A a.e. on &y, and & < 0 a.c. on X, from the condition

{13) it follows that:
—/ Go{|AP N wds > 0.
£,

In order to obtain an estimate for the integral
/ Gi{ u—+ ol (u+ o)) ds
3R

we define the function
~ 1= max{d + . 0}.

The propertics of ¢ and + vield that

e+ 6w = @) = e + 7Py
and
vy =0
a.e. on X,

As the operator Gy is linear, the equality (19) implies that

/ Gr(ju = o (u + o)) ds = / G (| 3a)ii ds + / Gr{vPy)v ds.
b Z. L.

From the estimate (12} it follows that
J AR
“o [ ePds— [ Hulrureds
. o

> ol o, — el H 3 e 1ol Lo,

> ol

Latz,) — 0 |HL
H|

TR R e et |51 [N [l FATo:

— a1~

15
2Ly (S Ly (E0p) Ul es sy 20

{18)

(19)

{20

If we take into account the equality (20), the property (14) and the fact

that v > 0. ¢ < 0 a.e. on 2, we get the estimate

/ Gi( ) ds

pe
=o( [ Itveds - [ Hulaltia
X, z.

S / Hy(I7* )¢ ds 2 0.
.

{23)
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The estimates (22), (23) and the formula {21} imply that
/ GrlJu ¢ (u + o)) ds > 0. (24)
.

Now, if we take info account the obtained estimates {16), (17), (18), (24).
then we get

/ (ki {(V(u+ @) Vi + kolu + @)z ¥) dv + / Gi(|u+ ¢\ (u+ &))wds
0 .

[ Ga([ABA) > 0.
S

But this contradicts the equality (1), which must be also valid. o

4. Upper estimate

‘THEOREM 4.1. Suppose ¢ |5, € Loo(Tin): A € Lo(Eh) and A > 0 a.e. on
Yheo Ifu e Vs is the solution of (1), then

(¢ +u) <max{|A L.z 9]0, (5.0} ae on i

Proof. To prove the theorem we will use the technique similar to the one which
was used in the proof of the previous result. Suppose that the inequality

(¢ + u) < max{l|Allr. 5.y 1900 (=0}

does not hold a.e. on Q.
We fix a constant

k= max{{AlL L sn0 10l Ltz } (25)
and functions

v = max{¢ + u — k, 0},
~ = min{e +u — k.0} + k.

As k is defined by the formula (25), then @ € V5 and ¢ could not be equal to
ZeT0.

Then we have the estimates {see {16}, (17)):
f B (V{u+ o) Viidv >0, {26)
o

/ kot + @Plg tdu = 0. {27)
o
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In order to estimate the integral

L (Cr(ut 03w+ ¢)) = GalAPA) - ds

P

we introduce the sets

A={re T, () >0},
B:={rcX;:wir) <0}

The properties of v: and v yield that
u+t+od=v+=<

a.e. on 5,.. Furthermore, as all conditioits of the Theorem 3.1 are satisfied.
then {@ + u) > 0 a.e. on X, and therefore

I 4+u* (o +u) = (@ - u)t = ¢ + 4P + 60297 + 4yt 4 A? (28)
a.c. on 2.

In addition the following estimates hold:

¥ =k ae onthe A, (29)
~ < k a.e. on the B. (30)

As the operator G| is linear, the equality (28) implies that
[ Galus o+ opuds
2.

d
- f Gr{eMy ds + / 4G (v~ ds -1—f 6G (62 )i ds (31)
Z. ¥,

b

+-] 4G, (¥ "‘/ Yods + / G )1, ds.
.

Let us cstimate the expression
/ G~ ds — / Go( AP X2 ds.
. T,

By (29). (30) and (14) we get that Hy (7% < H;(kY) ae. on E,. Therefore

XA 5)G (v e
=ox(A L) - Hiy ) = ox(A Zo)lkle - Hilvhy) (32)
> oy (A V) (B ~ Hi (k1)) = k' (4, 210G (X (5, B

a.e. on .
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In addition. the following equality
X(B.Z)G1 (v =0 (33}
holds a.e. on 2.
Next, if we take into account {15), we get
Gal| AP
= o Ho{ AP < aHa(||A]1 (0,08 (34)
= 1M L 2o G2 X (Ehe: She) i

a.c. on Y.

By means of (32). (33}, (34) we get:

/ (Gr () - GalIAPAY e ds
B (35)
> L (FGL (B0 E01) = IM (e 1 Ga(X(Ene- B e do.

2.,

As k =max{|All; (s, |0l rcs.0 ), then from (10), (35) it follows that

f (G1(7Y) = Ga(|A 3N\ ds =
.

(36)
/ G ({25 25)) — Golx(Zae, Xne) e ds 2 0.
vE.
Next, we have the estimate (see (22))
] Gy (") ds > 0. (37)
.

Let us now estimate the integral

/ 4G (&) ds.

Again. (29). (30} and (14) imply that Hi(v>~) < H(¢?k) ae. on Z,.
Therefore
Gi(uwdy)w
= o(w* — H (g3 y)w) = a(k® — Hy(v35)0) (38)
> ok{vt — H (v*)0))
a.e. on A

In addition. as =0 a.e. on B, it follows that

G1{v %)y = ak(y* — Hi(1P)y) = 0 (39)
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a.e. on B.
Now. by means of the formulas (38). (39) we get:

[ 4G (03¢ ds

b

Zay

2/ dok(0t — Hy(w*)y) ds
X,

- . (40}
> dokliv|g, ) — 4okl H () e ¥,
. o3
Z dak|le ] vy — A0k Hyon, vz o smon @ s o 1l L.
. 4
=dak(l — | |err, nzman Lz 9lL s, 2 00
By using similar considerations we can get:
/ 601(@)2",-2)1,-')‘ ds > 0, {11)
¥,
] 4G, (v ds > 0. (42)
-

‘The estimates (36), (37). (40). {41), {12} and the formula (31) imply that:
[ @rtu+ ol o+ o) = Ga AN pds 2 0 (43)
Now, if we take into account the obtained estimates (26). (27}, {43), we get

f (k1 (V(u+ 0) - V&) = kalu = 0)5,0) dv + f Grilu =~ of*(u 1 0))vds
Q =,

_/ Ga{|A* N ds > 0.

But once again, this coutradicts the equality (1), which must be also valid.

|
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Visparinato atrisindjumu ierobezotiba kadai siltumparneses proble-
mai ar siltuma vadi$anu-izstaroSanu

Kopsavilkuins

Saja raksta tick petits jautajums par kadas nelinearas eliptiskas robeiproblémas
visparinato atrisinajumu ierobefortbu. T rezultata tiek iegilta vienkirsa sakariba,
kas atspogulo to, kada ir visparinato atrisinajumu apakSejas un augiejas robeias
atkariba no problenias parametriem.
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functions), which solve the differential system ﬁg =, ]—3;5 = —x, as well as the
LEmden - Fowler equation z° = —22°. We discuss similarity of the theory of the

lemniscatic functions and that for elementary trigonometric functions und produce a
sct of formulae which are similar to those for sint and cost. The addition theorem
for slt is given in various forms, some of them seem to he new. The theory of the
Jacobian elliptic functions is used.
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26A99, 33105

Let us recall that the usual trigonometric functions can be introduced by
considering the differential system

o

=y,
y’ = = (]-)
x(0)=0, y(0)~1

Multiply the first equation by 2, the second one by 2y and sum up the both
equations. One gets
d(z? + %) =0
or
2 2 :
zH{E) +yr{t) = L, (2)
if taking into account the initial conditions in {1).
The refation {2} shows that the functions « and y define a unit circle.

1t follows from (1) that
™=z (3)

#(0) =0, 2'(0)=1.
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Since the equation {3) is autonomous. any function x{c + ), where a is a
constant. is also a solution of (3). The functions x(¢} and y(t) are lincarly
independent solutions of (3) because the Wronskian

w(t) oyt N _ () oyl N a2y
del.( St g )T det oty —any )T () =y (t)=-1£0.
Then by properties of linear second order differential equations

zia +t) = Crx(t) + Coy(t). (4)

where €1 and C; are some constants to be found. Set t = 0. Then z(a) =
613'(0) - C_QU(OJ = (v-_g. Since

z'la+t)=yla+1)=Crz'{t) + Coy'(t) = Cry(t) — Cax(t),

one obtains that

ylo) = Chy(0) — Cux(0) = Cy.
Thus

wlo + 1) = yloja{t) + o(a)y(l). (3)
The relation (5) is the so called addition theorecm for the function z(t) or

simply the usual formula for a sine of two arguments sin{a + 3) = sinccos 3 =
sin i3 cos .

Any other important property of sin{ and cost can be derived from the
differential system (1) {see [4]. for example).

1. Nonlinear sine-like functions

We wish to use now the scheme of the previous section in order to treat the
nonlinear differential svstem

‘r.’

1 +
]

z Y

%)

. (6)
~y
z() =0, y(0) =1

—

Multiply the first equation by 2z, the second one by 2y and sum up the both
equations. Oue gets then

d@¢u+m%u+ymj:o
or

ln[(l +1%)(1 - yz)}: const,

which. in its turn, gives
Q+z)1+y%) =2,
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taking into account the initial conditions in (6). The latter expression may be
rewritten as

aORENORORSHOESE (7)
It follows from (7} that
72t} = %;8 (3)
and )
¥ {t) = 1:—;8 (9)

The relation (7) defines a closed planar curve and provides an analogue of the
unit circle {(2).

We cannot use arguments of the previous section to deduce an addition
theorem for the functions z(t) and y(t), defined by (6). because the differential
system of (6) is nonlinear and does not allow the representation (4).

2. Lemniscatic functions

Let us rewrite she differential equations in (6) in the form

{ 2 =y (14 2%).

¥ = -x(1+y) (10)

"~

and differentiate the system (10). One obtains by using the relations (10) and
(9) that

2" =y (1+2?) +y-222 = 21+ 2H( + ) + 2xy - 2
= -2z[1-ya]=-2z[1 -4’1 +2?) = -2 [1 - L0+ 2:3)}
= 223,

It follows similarly, by virvue of (10) aud (8), that

y' = -1+ ) -z 2y = —y(l =271 +97) = 20y -y
= -yl +zy]= -2y [l -2}l +4%)] = -2y [1 - =50 ‘~y2)]
= 24

So it turns out that z(¢} and y(t} are solutions of the same nonlinear second
order differential equation
u’ = —2ud, (11)

subject to the initial conditions x(0) = 0 and {0} = 1 respectively.
Solutions of (11) satisfy the relations

u? + u® = const.

Taking into account the initial conditions one gets that z(t) and y(¢) satisfy

the equality
2

u? Fut— 1.
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Then
du

dt
and the functions x{t) and y(¢) can be expressed in the form

Z(t)

ds
T

and
/ d
J— S'
p(d)
i
for t € [0.4). where A = % The functions defined by the integral
0 Ei

relations {12) and (13) are known as the lemniscatic funciions [5, §22.8]. So
z(¢) and y(t) can be identified with slt and c¢l¢ respectively (the notation slt
and clt for the lemniscatic functions was introduced by C.F. Gauss).

REMARK 1. The usual sint and cost functions can be introduced in the same
sint 1

ds . ds

manner, namely, ast= [ 2= andt= | .

a Vi—s? Vi-s?

cusf

3. Jacobian elliptic functions

Let us remind basic properties of the Jacobian elliptic functions. The main
three of them are su(f; k), en{t; k) and duit; k). They can be introduced as
respective solutions of the (nonlinear) differential system

x7 = Ta23,
Th=-—m73, (14)
Tl = —K23a. D < k? <1,

subject to the initial conditions
11(0) = U., .'132(0) = 1, 3::;(0) =1.

The functions sn{t; k) and cn(t; k) are periodic 4 K-periodic and dn(t; &) is
2K -periodic, where

1
i ds
K(k) O/\/(lsz)(lk’-’s?)'

The Jacobian elliptic functions satisfy the following basic relations [1,
Ch. VIL § 1]:
st +en®t =1, Kk sn?t+dn?t=1. {15)
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which. in turn, imply
dn’t — k2 en?t = &3,

k= V1 - k2

‘The functions cn(t; k) and dn(t: k) are even and sn{t; k) is odd.

where

The addition theorems for the Jacobian elliptic functions are known, namely
[3. P. 753-765:

sn(ﬂ +v)=(snumvdne +snvenudnu) (1 - k2 sn?usniv)”
en{u + v) = {enucnv —snudnusnedne) (1 — k*sn usn®v)~?
dn(u 4 v) = {dnudnv — k*snwucnusnvene) (1 — k2sn?usn?v) L

Other useful relations involving the Jacobian elliptic functions are:

nt snt !
sult+ K) = S en(t + K) = -k S da{t+ K) = b 7.

sn(t +2K) = —snt. cn(t +2K) = —cnt,
(snt) =cntdnt, (cnt) = - sntdné, (dnt) = —k?sntcnt.

4. Relations between the Jacobian elliptic functions and
the lemniscatic ones

Other nine Jacobian elliptic functions are introduced as soine ratios involving
the basic functions sn, ¢n and dn . functions above. In what follows we use also
the function sd(t: k) = z;((ii’) It is known {[5, % 22.8]) that the lemniscaclc
functions can be expressed {at least in some neighborhood of t = 0) as 5

3 22.8]

n ¢ t 1

k .
Loelt=ee-. k= —. 16

: - k= (16)

In the sequel we derive the relations (16) on the whole real line R using only the

definitions (11), (14) of the lemniscatic functions and properties of the Jacobian

elliptic functions.

1o k2
7 dn

PROPOSITION 1. slt = ksd and clt =cn ¢ for k=

Proof. Notice that k = k; = —=. Consider the functions h(f) := ksd{ = k2

V2 Tait)

and g{#) := ent = za(t). Tt follows from (14} and (13) that

o (kﬂ) _ ktlrr; 1T _ k(rgr;;):rg — 21 (=k2x125)
Z

2
T3

24 2,0 252
I llatsr) +2k TV = ey (1 Wk "Ll) = kg(l - 1%),
L5

Ty
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g = —mzy = — a2 = Bk 1 k) = 2 (L4 2 = —kA(L + 7).
Ty T3 T3

The functions A and g satisfy also

n(o) = k51O

iy % O =m0 =1

Then the functions h (§) = ksd £ and g (1) = en £ are solutions of the Cauchy
problein (6). Solutions of the initial value problem {6) are unique since the right
sides of the differential equations in (6) are polynomials and satisfy the Lipschitz
condition in any bounded domain containing {(:r.'. izl <1,y < 1}. Hence
the proof. a

The well known properties of slt and clt follow from the basic relations
(16).

COROLLARY 1. The function slt is odd and the function clt is even.

COROLLARY 2. The functions sit and clt are periodic with the minimal period
of 1A, where

1
ds
A= ———. 17
0/ . (1)
COROLLARY 3. The reduction formulae

si{t + A) = cl(t) and cl(t + A) = —sl(t) (18)

are valid.

REMARK 2. Various reduction formulae can be derived for the functions slt
and clt likely as in the case of the elementary functions sint and cost. 4
constant A serves as the substitution for w/2.

Prorosrrion 2. The following relations are valid for any t € R:
sI(8) = (1 +s3(1)),  '(8) = - sl(£)(1 - cl®(6)),
sl sl ) = 1. d?(B) + () =1, sP) +sPP() l¥() + () =1,
St + A) = cl(t), it + A) = —sl{t), where A = fl _a5
0 V1-—si

Proof. Proofs can be found in [6, Propositions 7.4, 7.5 and 7.6, Corolla-
ry 7.3 L 0
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5. Summation results

The addition theorem for the lemuniscatic functions was obtained by L. Tuler
in the integral form (for historical remarks one may consult {2, Sec. 2.3]). Let
us mention that various forms of the sum formulae can be obtained directly
from those for the Jacobian clliptic functions.

ProroOsSITION 3.

sl{a) cl(3) + () sl(3)

sl + 3} = 1—sl(a)sl{3)el(a) ](3)

(19)

PROPOSITION 4.

el(e) cl(3) — sl{a) s1{(3)

1 -3 -
el +3) 1 +slia)sli clia)clid)

For the proofs one may consult. [6.

The alternative forms of addition theorems arc given below. Investigations
of the sum formula for slt go back to Fagnano and L. Euler |2, §42.1.2.2. 2.3
The sum formula was obtained rather i the form

A~ 3) = sl(f.r)\/m = sl(3)4/1 - qu(a) |

B 1+ sl{a)sl?(3)

It was derived from the integral relation (12) and therefore is applicable in
soue vicinity of zero. The formulae (19) and (20) are applicable for any t and
are similar to those for the functions sint and cost.

ProrosiTION 5.

L) sl(3) = ol (e} $1(3)

e =" 0 (a) s (3)
PROPOSITION 6.

sl{a =) == df((? f(éjg(;)(:iggl()zsjll(H) '
PROPOSITION 7.

o~ 3) = sl'(a) el{(:3) + sl{a) cl'(3) .

1+ sl*(a)el*(3)

The proofs are given in [7].
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6. Formulae

We summarize here the main relations for the lemniscatic functions indicating
also their counterparts in the theory of elementary trigonometric functions.
Proofs arc omitted since the formulae are obtained from the basic summa-
tion relations using the same type arguments as those used in the theory of
elementary trigonometric functions.

si{ex) el{3) -+ el(wx) s1{F)

sla £ 59) = 7 siia) SI03) el 1 3)
sin{o = ) = sinwcos, 3k cosasin
S+ §) = sl(a) sl'(3) = sl'(a) s1(3)
' T 1+s%{e) s
sin{a = ) = sinasin’ 3 4 sin” asin g
Ao 8) — _cl{@) el (3) + cl' (@) cl{F)
B 1+ cl(a) e1*(3)
sin{a = 3) - =(cosacos’ 3 £ cos’ avecos )
cl{a) el(3) Fsl{a)sl(F)
W+ 3) =
Mo 3) = T ia) 81(3) el{a) <l(3)
cos(a = J) = cosarcosd Fsinasin 3
sl I - sl 1'{ 3
cla = 3) = sl{a) cl(f) = sl{a) cl(9)

1+ st%{a) c*(3)

cos(a £ 8) =sin’acos 8 Zsinacos’ J

=3 :
sina + sin 8 = 2sin (a 5 ' )sin’ (“:;3)

sl{a) =sl(3) = “2el (ﬁ) ¢! (%)

2
a2 fe+dY 42 =g
1 + cl ( 3 ) ot (T)

+ 3 :
sinn = sinf3 = —2cos’ (ﬂ 5 2 ) cos (a T B)

2
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() ()
cla) +cl{B) = L+ o (#) o2 (a_;hf)

3 -3
cosa — cos,3 = 2 cos (O_: )S-mf ((1 . £ )

2 2

)
= 2sl a+d ol aF 3 1= ¢l (033)
A OHE

+ 5 ;’ 1_".‘:12 E
51(0)i51(,3):‘251(ﬂ ! )cl (“¢3) ( p 8

2

[R]

2 2
1) - _ a+3 w—3 1+s12(#)
c,l(a)+c1(rf)—2cl( 2 )CI( 2 ) 14 52 (%) Clz(%_-;)
%1( .+[5)C1 (Q_g) 1+ g2 (a-z-ﬁ)
o 2 1+4sl? k“;_;’) ¢l? (Q%j)

.1 o 1+ C12 k=3
clfe) - cl(f) = -2l (“‘ t 'j> d (“ *9) () ;

)
2 2 14+ el? (%‘:g &'l';%ﬂ;ﬁ)
3 v — 3 14?22
= —-24l (a;{)sl(OQ ) l+(l'(0££i 5:122(053)
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1 — sl {a) ¢l (x)
sin2a = 2s8inacos o
P .
sl(2a) = M
sl“(a) 4 el*{a)
sin2ex = 2s8inacos o
. !
d(20) 251(a)il (a)
1+ sl*{ar}
sinZa = 2sinasin’ o
A(2a) = 25l(ax) Cl((k)(1l +51%{a))
1 +sl(ax)
sin 20 = 28inaxcos o
—2¢l V
Sl(20) = —2@) ()
1+ el ()
sin 2a = —2cosa cos’
2sl{a) cl{a) (1 — cl?{cx
ey = 2@ @1~ (@)
I+ clM )
sin 200 = 2sinacosa
12 Y
cl(?()) — M
1+ sl a)cl“(x)
cos 20 = cosZ o — sin® o
A(2a) = sl'{a) cl{e) + (?) ()
1 +sl? {a) el (@)
cos 2a = sin’ o cos o + sin e cos’ @
(e - 3) - el{a + 8) 1+ cl*(a)sl?
() 1(3) = cdla-3-cla+3) 1+c (ags (8)
2 I+ cl%{a)
_die-3)—clla+3) L+ sl () e1*(3)
- 2 1+ cl*(3)

cos{a — 3) — cos(a + )
{}

sinasin 3 =
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cla+ 3) + cila — 3) 1+ ¥ {a)s?(3)

J(a)yel{3) =
elle)cli3) 2 1+s3(3)
_cl{ea+ 3) + cl{a = 3) 1 +sI(a) cl*(3)
2 1+ sl°(ex)
os{a + . 0s(a — 3
cos o 008 4 — cos{a + 3} :(Oq((l )
. . Jeen 2oy 21
slie) el(f) = slla+3) +slle—3) 1+l (03 si°(9)
2 1+ sl'(S)
sl + 3) +slla - 8) 1—cl¥(a)cl*(3)
2 1+ cl¥{a)
Sino cos 3 — sin(a - 3) —&)— sin(a — 3)
1+s1%(3) 1+ cl?{a) 14+ sl%{a) 1+ cl*(a)
1+sl(a)sl®(8) 1+ cl?(a)cl?(3) 1=sl'a)  1+di(a)
1+s%(3) 1+ sl*(a) 1+c®(3) 1+ c¥{a)

1+ cl(q)sP(3)  1+sl%(0) () 1+slla)cl(3) 1+ cl{a)sl(d)

REMARK 3. The last four formulae scem to have no analogues in the elemen-
tary trigonometry. They can be proved easily by using the relations

_ 1 —sl%(a)
T +s1%{a)”

1= cl(a)

1t cl¥a) e

sl*(a@)
which follow from the identity sI*(a) + sl*(a) cl*(t) + cl*(t) = 1.
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Pieziines par lemniskatiskajam funkeijam
Kopsavilkums

Uzradita virkne formulu. kas saista Iumu.skatjskds funkcuds st un clt, kuras aproie-

rina deerenczaJ'wenadOJ umy sistému W =y Y= . ki arl Emdena-Faulera
vienadojumu z"” = —2z°. Apskatita lemniskatisko fuukciju teorijas Ikdziba ar ele-

rmentaro trigonometrisko funkeiju teoriju, vzradotl formulas lemniskatiskdr funkeijam
un to analogus funkeijam sint un cosl.  Atrast] vairaki ekvivalenti saskaitiSanas
teorémas formuléjumi funkcijai sl¢, no kuriem dazi skict [idz 5im nav tikusi apskatiti.
Izklasia tiek izsmantota Jakobi eliptisko funkciju teorija.
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On a sorting problem
Artiirs Kanepajs, Rudolfs Kreicbergs
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Raina bulvaris, 8, Riga LV-1050, Latvia

A network sorting problem originated by an All-Union Math Olvmpiad is solved and
generalized.

Key words: mathematical induction. network. sorting
Mathematics Subject Classification (2000): 68PI10

On the 18th All-Union Mathematical Olyinpiad the following problen: com-
posed by A. Andzans was proposed (see 1. p. 6]).
ProprLEM 1. Let’s consider a network of roods consisting of n sequential

branches of parallel seqments containing ky., ka. . . ., ky segments correspondingly
(see Fig. 1withn=3. ki =3, ko =5, ky=4).

Fig. 1. An example of a network

The roads are narrow so overtoking is impossible, but the speed is allowed
to vary. Movement is allowed only from the left to the right. There are N cars
approuching the network at A. For what marimum value of N is it possible for
the cars to leave the network at B in the reversed order?

Solution. It is easy to see that there are W = k| x by % ... x k, wavs to
traverse the network. Clearly the inequality N < W must hold: for N > W
there will be two cars traversing the network in the same way, and these cars
will not change their mutual position. On the other hand. the task is solvable
for W cars. Clearly this holds for n = 1. If it holds for » = m. consider the
network with yn +1 branches. Divide the cars into k| groups, each cousisting of
ko x k3 % ... ke consecutive cars, and at first drive these groups into separate
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segments of the first branch. Then apply the inductive hypothesis and drive out
these groups in the reverse order, reversing each of them in the last n branches.
We have proved that N = W for the networks for the special type described
above.

It is clear that the inequality N < W {where W is the number of ways a
network can be traversed) holds for any network with one entry and one exit,, if
the condition of one-way raovement and non-overtaking is preserved (see, e.g.,
Fig. 2).

Fig. 2. A more sophistical network

Since 1986. the following question has been popular in international
olympiad circles: Does the equality N = W hold for each such network?

In this note we answer this question affirmatively and mention some gener-
alizations of this problem.

THEOREM 1. For each one-way non-overtaking network with one entry and
one exil which can be traversed in W ways. it is possible to rearrange cars
n any order while passing through this network if the number of cars doesnot
exceed W.

Proof. If there are no splitting points points (splitting points are points from
whicl leave more than 1 road} in the network, then W = 1 and only one car
must be rearranged. Suppose that P is the first splitting point with r exits
from P. Clearly, W = W, + Wo + .. 4+ W, where W;, 1 < i < z, is the
number of ways to traverse the network leaving P through the x-th exit. Now
an casy induction on the number of splitting peints in the network solves the
problem. u

The rest of the note deals with the following generalization of the problem.
Let us assume that there are N types of cars (say, Ford, Volkswagen, etc.).
The initial order of them can be arbitrary. At the exit, the cars of the same
type must follow each other in a row (the mutual order of the cars of the same
type is not important}. What is the largest value of N for which any order of
the groups at the cxit can be achieved?
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THEOREM 2. For each one-way non-overtaking network with one entry and one
exit which con he traversed i W ways, any order of groups con be achieved for
an arbitrary initial sequence of cars if the number of groups doesnot erceed .

THEOREM 3. For each one-way non-overtaking network with one entry and n
exits which can be traversed in W (i) ways to the i-th exit, i = 1,2.....n, an
arbitrary order of groups in each exit can be achieved for an arbitrary initial
sequence of cars if less or equal than W(1) groups must appear at the i-th erit,

1=1.2,....n.
Theorems 2 and 3 are proved similarly to Theorem 1: in Theorem 2 the
induction on the number of cars in the groups can be used and in Theorem 3

induction on the number of exits can be used.

THECOREM 4. For each one-way non-everteking network with n entries and one

exit, which can be traversed in W (i) woys from the i-th entry, 1 = 1.2,....n,
arbitrary order of cars at the exit can be achicved if there are no more than
W (i) cars at the i-th entry, i =1.2..... 7.

This theorem was proved by using the isomorphism between networks wich n
cntries and one exit and networks with one entry and n exits (Theorem 3).
Algorithms of arranging cars are opposite and conflicting for the two types of
networks. Therefore a generalization for networks with »n entries and n exits
is impossible by using this method of arranging cars. We have found also an
example (sce Fig. 3) showing that Theorem 4 cannot be gencralized for groups
of cars. The two sequences show the initial positions - the cars are labeled with
numbers, which indicates to which group the car belongs. We can easily see
that the finishing sequence cannot be 4;4:3;3;2;2:1 (group number 1 finishes the
first) by examining possible movements.

Fig. 3. A conterexample to the featured generalization of Theorcm 4
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Par kadu kartosanas uzdevumu
Kopsavilkums

Raksta pieraditas vairakas minimaksa teorémas par speciala tipa kartosanas tikliem.
Apliikotas problémas radusas, visparinot 1984. gada Vissavienibas matematikas olim-
plades uzdevumu.
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Effective method of approximation of a
nonlinear parabolic boundary value
problem

Andris Lasis
Department of Mathematics. University of Strathclvde
26 Richmond Strect, Glasgow G1 1XH. Scotland
email: al@maths.strath.ac.uk

The approximation of a nonlinear parabolic problem is based on the finite volume
method [1]. In the general case the exact finite—difference scheme approximating the
problem in two-point mesh is built. The corresponding integrals are approximated
using different quadrature forinulae. This procedure allows one to reduce the prob-
lemn described by a partial differential equation of parabolic type to an initial value
problem for a svstem of two nonlinear ordinary differential equations of the order
depending on the quadrature formulae used. It allows one to obtain the solution of
the problem on the boundary of the region. Both the non—singilar and singular cases
are investigaled and two applications of this method are prescnted. Nurnerical solu-
tions of the corresponding algorilhms are obtained wsing Maple V' and Mathemation
routines for stiff svstems of ordinary differential equations.

Key words: Boundary value problem, nonlinear PDE of parabolic type. finite vol-
ume method, finite difference scheme

Mathematics Subject Classification (2000): primary 35K355, secondary
35K60, 65M06. 65M60

1. The formulation of the problem

We consider the boundary value problein for a parabolic equation in the fonn

du 1 & N ‘

o = pla) Bz (P(-’E)f “”%) + F{u), € (0,0).t > 0, (1)
w{0.z) = up(x). (2)
du | i .
%H;o - fl(ul): (3)
du
ozl Falua), (4)
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where v = u(t, z) is the unknown function,
f1. fo, F. [ are nonlinear functions and f'(u) > 0,
wy = w1 (#) = u(t,0), up = wp(t) = w(t, 1), f'{uw) = df{u)/ dw.

Usually a full flux p(x)f’(u)@ is specified in the boundary conditions. In

this case we consider that such the form of boundary conditions is alrcady
divided by plz)f'{u), p{z) # 0, i.e. nonlinear functions f; and f, already
contain the factor p(x) f'{w) as a denominator. The case when p(0) = 0 will be
discussed shortly,

There, two cases should be considered:
1. Non-singular case. when p(0) # 0. p(x) > 0.

2. Singular case, when p(0}) = 0,p(xr}) > 0. There we assume that

d 1
—Inple)=0 (— when o — 0.
dz T
Let us write the equation {1) in an open form taking all the derivatives:

du px)du B g Bu\? .
o =r (P S (B) cFe. o

where ¢'(x) = dp/ dzx.

In the singular case it can be easily shown that for the solution to be
bounded. the boundary condition (3) should be in the form of fi(u) = O

du

— =1. 6
o (6)

=0

In the singular case, the behavior of the equation (1) changes when 2 — 0.

| &y
! = (l_a)fl(ul) ] +F(U1) (7}
81: =0 al‘- =0
whoere 6 = const. Is determined by w{lnp(x))’ o
r—

The problem {1 — 4) could describe many of the phyvsical processes. One
of the models could be considered in this case is a heat transfer problem. In
this case, the unknown function w(t.x) describes the dimensionless tempera-
ture distribution in a one—space—dimensional domain. the function f'(u) is the
nonlinear conductivity. F'(u) describes the heat sources (for example, arising
from cherical reactions, or a dissipative function). and the nonlinear functions
JF1. f2 in the boundary conditions describe the radiation from heaters and con-
vection. The nonlinear function p(xr) can be interpreted as follows: p(x) = z°.
Then, for different values of o we obtain the problem in different coordinates:

e o = [} — cartesian coordinate svstern,
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e o« = 1 - cylindrical coordinate system (¢vlindrical domain} with axial
symmetry,

* o =2 —- spherical coordinate system {spherical doniain} with radial svin-
metry.

The problem (1 — 3) in general case is nonlinear and cannot be solved
analvtically and therefore it has to be approximated to solve it numerically.

2. Consistency conditions

We assume the initial condition {2) to be consistent with the boundary condi-
tions (3}, (4) in the form
uh(0) = fa(w(0) ”
ug(l) = falu2(0)) '

Knowing the function ug in the initial condition (2), from (8) we can obtain
the following relations:

U'].(U) = .u'17 U](O) - ,u3 (())
u2{0) = 2, 22(0) = pq
where p;, = const., i =1,4 and 0,2 = dlé;.z

Let us show an exaruple of it.

2.1. Non-singular case We assurne that at the initial moment of time ¢ =0
the function ug(x) takes the following values at the both ends of the interval
[0, {1:

wpl0) = vy, upll) = 19

We assume rhe function wup to have the form of a cubic polynomial:
up{z) = Ar3 + Bx? + Cz + vy (10

Applyving this expression to the consistency conditions (8), we obtain that
C = fi{ry) and the following system of two linear algebraic equations for
the coeflicients A, B:

Ay =2 . )
3AI2 4 2Bl — falvs) — f1(n)

which solves to
1 2
A= 7 I(Vl)*f:’(VQ)‘i'?(VL —Vz)}

(V2 — I/-L) - Qfl(ul) - fl(VZ)]
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Applving (10) to the open form of the equation (53} and taking in account that
u1(0) = ug(0), u2(0) = ue(l), we obtain:

Ul( ):
'Ug( =
1{0) = f’(u) PO 9B 1 pr)C? + Flw)
- o) oo (1)
u2{0) = f'(v3) ((0) (3AI* + 2Bl + C) + 6Al + 2B
F(ve) (3A% + 2B + (7) 24 Fl)

.

2.2. Singular case Iun this cuse the initial value of ug(0)} is meaningless.
Reviewing the physical interpresation given in the section 1, it is clear that it
is physically impossible to measure the temperature in the center of a cylinder
or sphere. The same considerations are right also for other usage cases.

Assuming that at the initial moment of time ug{{} = » it is easily visible
that the expression

= o), (12)

satisfics the consistency conditions (8). Applying it to the open form of the
equation {3} and taking in account the behavior of the equation (1) whenx — 0
(7), we obtain

l
(0} = v - 3_f2(v)
u2(0) = v B
. ] )
02{0) = T2 LN B) - F - f) (3
in(0) = £) o) EPO ) 100 < Pl
Ip{l)
3. Finite Volume method for two—point scheme
Let us rewrite the equation (1} in the form
pl)G(tz) = W(t.7), (14)
where G(t.z) = % — Fl{w) and W(t.x) = p{a)f’ (u)d“

For the numerical approximation. we select only two grid points 27 — 0 and
ro = I.

We will separate both the non-singular and singular cases and review the
Finite Volume method for each of them separately.
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3.1. Non-singular case By integrating the equation {14) from «; to £ =
{/2, we obtain the integral form of the couservation law within the interval
[0.1/2]:

a0
0.5 — W :/ p(z)GE ([t r) dar, (15}

0

where Wy ;5 = W{(t,1/2), Wy = W(t,0).
The function Wy is known from the boundary condition (3): W, =

pl0)f {u)fi{uy). To obtain an expression for Wy 5, we integrate the equa-
gion (14} from z = {/2 to z € {0,[} and then from x| to xs. thus obtaining

W, - fa) —flw) 1 /‘ dx

~a(l) 0 P(I)

- | percie. o

< de

v p(g)
Applying it to (15), we obtain

flue) = flw) dr f*
el Pl PRAULAS

Let us integrate the second part of the integral B, by the partial integralion.

a(lg)]:;jijzp(f)c}(t,g)dg=
l)f {(II (/T%) /I (&)G(t.g)dg} dr =

/ p{r)Gt.z)dx - l)] ()Gt ) dx

2

where a{z) = Note that in singular case this integral is divergent.
' f=] [=)

172 !
-Wy =Ry = / p(:r)G(f,:r)dm-’rL/
0 a(l) Jo

Suwmning both the integrals contained in #;. we obrain the following difference
equafion associated with the point ;) = 0O:

Slug) — flw)
a(l)

a(z)

(1)> pl)G(t. 1) dx.

(16)
By integrating the equation (14) from xr ={/2 to ra, we obtain the integral
form of the conservation law within the interval [{/2.1):

¢
~ p(03f () fulun) = Ry = fo (1

¢
Wy — Wz = / plo)G{t. ) do. (17)

12
where from (4) Wi = W(t,1) = p(l) f/{u2) fa{ua).
As the value of Wy 5 was calculated above, applying it to (17) we obtain

Flug) — fluy) - . N 1 Y de
Pl vwiem= | ctaar- oy [0 (uf OGS &,
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The second part of the integral R. is calculated above. Summing both the
parts, we obtain the difference equation associated with the point zo = [:

flur) = fluy)
O

{ a(l‘)

a(l)

The two—point finlte—difference scheme {16), (18) is exact for a given func-
tion &. Summing both the equations yields

(1) f (ue) faluz) = Ry = '/0 p(r)G{t, x) dx. (18)

i
p) S (up) fa(un) = p(O)f' () [ (1) —fo p(x)G(t,x) dz,

which can be used instead of one of the equations {16), (18). This equation
also follows directly from (14) and the boundary conditions (3}. (4).

3.2. Singular case In this case we have to deal with a different equation (7)
at the point r;. To avoid such a situation, we introduce a small value £ > 0.
Then, by integrating the equation (14) from = 2 to & = /2, we obtain the
integral form of the conservation law within the interval [£.1/2]:

172
o5 = Wy = f p(2)G(t.z) dx, (19)

where W, = W{t,2).

The value of Wy ; was calculated above, Though all zeros in the integrals
should be changed to £, and we obtain

L f(ul) - ua)
wos =SS0 L[ e [ peacegd

where a. (1) = fr and ue = ult, £).

G
Applying it to (19). we obtain

12 ]

flus) ~ Flue) ~ a-(OW: = ) [ Glt,x)da + [ %

The right-hand-side integral can be calculated as shown above. thus yielding

[/
flug) = flu:) —a. (YW, = / (/ p((jf)) plx)G(t, x) dx.

Assuming that when 1 — 0 all the integrals exist and are finite, we obtain the
following difference equation associated with the point z; = 0t

{ oy
Flu) = flur) = Ry :fo (j p?E)) p(c)G(t, x) da. (20}

[ HEGHE) e
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To obtain the difference equation associated with the point a3 = [, we
integrate the equation (14) from x; = 0 to a» = I, and taking in account the
boundary conditions {3), () we obtain

!
p(O)f (un) falun} = Ry = /; p()G(t,x) du. (21

The difference scheme (20, {21) is exact for a given function .

Note that a{z) in the singular case is divergent. Both the equations (20).
(21) were obtained by using this integral. bur do not contain it.

4. Approximation of integrals

We use the quadrature rule of interpolating type for all integrals Ry, K., B3 and
R considering only two—point integration formulae involving points 1 = 0 and
29 = l. There many of different approximation methods can be used: involving
only the function &, involving first order partial derivative with respect to r
of 7, second order derivative of G. etc. We will show the one involving second
order derivatives of function G, since all other methods are similar and can be
casily produced guided by our example.

Here we would like to remark that in the general case expressions [or the
derivatives of G with the order higher than 37¢ arc complicated and very in-
convenient to manipulate. They should be used only in case when the approxi-
mation given below does not satisfy the requirement of the necessary precision.

As the technique of approximation and calculation of the derivatives is the

same for the non-singular and singular cases, we will show only the cxample
of approximation of the integral R;.

n "G n
Let us denote &) = G(t,0), Gy = G(t.1) and G(l Y = o . Jf‘z b=
SALl IS
anG . ..
e . Then from the boundary conditions (3), (4) follows

r=/

G = felug)tne — F'ug) fi(ur), k = 1,2,

. Ou pon dF
where = F and F'(u) = I
Gy = Q5 g (0N p Py
kT ot ax? K1\ or Kgpz N T
2,
Let us use the equation (5) to find p

2

w1 | pe)du L, (PuT
ey [”—f I‘H)ME = f{u) (H_I) — F{u)
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Then. by taking the partial derivative with respect to ¢t from this expression.
we obtain

8P 1 [Pu o) (.,  Ou (')u, 2u
EW'W[W“M(“) ) -

1 8 5 I a 8“ ¥ \a‘ i d
" )ar (a;l) —3 ('“)Ej‘caﬁ;; - Py 5: ?((::)); [_,‘

o @ ou L, fouNt
£ ) o~ 1 w) (g) F(u)H .

Inserting those expressions in the G gives us the necessary expression for
(vH

Please note that in the singular case when & = 1 the boundary condition
{6) should be used instead of (3) and the equation (7} instead of (5).

Now, let us show the approximation of the integral R;.

Substituting £ = x/l, we move to non—dimensional form and thus have two
zrid points & = 0. & = 1. 'I'herefore the integral R, can be expressed with a
non—dimensional integral ) as follows:

Rl:Hh-h—Llo_:%ﬂp@MU

where g(£) = G(1. &1} at the fixed moment of time t. a(&) = a{&l). H(&) = p(&l).

Denoting ¢y = ¢(0) and g5 = ¢(1), we approximate the integral I; with the
expression

~ 1 ~
L=mm+&m+&m+&QTQ£*Q£+5%$W%

where 7 € (0,1).

We postulate that just this approximation integrates polvnomials with an
order as high as possible.

Presuming g{£) = £'. ¢ = 0.5, after the calenlation of the right-hand and
left-hand sides of the approximating expression, we obtain the svstem of linear
algebraic equations in the form {g'® = 0)

L'J‘|

= A0+ A +i(BI 0T B+ (i - D(CL0T ), i =

Defining 0° = 1, we can solve this svstem for the coefficients Ag, By. Cy, k =
1, 2. There we do not define 07, i < 0, because in this case 07 is always multiplied
by 0, and we assume this expression to be 0. The coefficient Ey by the error
term can be calculated using the same linear algebraic equation when ¢ — 6.

Moving backwards from the non—dimensional integral Iy to £y, one should
take in account that ¢ = 1*G™™,
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Then the integral Ry is approximated using the following expression of
Hermitian interpolation:

Ri =1[A1G1 4 A2Ga + [ (ByG) + BaGy) + 2 (CLGY | (5GY) +1¢],  (22)

895G (t.
with the error term rg = EOEQ—%W—), ne (0.0,

5. System of ODEs for two—point scheme
Using the following difference equations:

1. in non-singular case: (16) and (18).

2. iu singular case: (20) and (21)

and the right-hand side integrals’ approximations with neglected error terms
rg, the approximate numerical solution for the functions uy(t), ua(t) at every
time step ¢ > 0 in both the non-singular and singular cases can be found by
solving the following stiff system of two nonlinear QDEs with initial conditions
(9) (in particular, (11) for the non—-singular case and (13) for the singular casc):

a})ﬁi + ajiis + b}]ﬂl - bé ey + c})t'z-:‘f + cé'&.';: = d_t (23)
afiiy + adiix — biiy + By + cfad + cBad = 4°

where the coeficients a{, bi, ¢}, d?. i.j = 1,2 can be determined directly from

the integrals’ approximation formulae and the difficrence equations.

This system can be easily solved by anvone of computer algebra packages
with such abilitics (for example. Mathematica or Maple V'}, as well as by the
routines of Fortran or €/C ++ provided by many of independent software man-
ufacturers (in particular, NAG) or documented in [2. 3]

During the numerical experiments it was discovered that the time needed to
solve such a system of two nonlinear stiff ODEs is much more less than solving
the problem straight—forward using the approximation by the finite-difference
scheme or using Fourier series when it is possible to build the analytical solu-
tion.

The next scction shows the example of use of this method and its efficiency
in solving heat transter problems in different domains.

6. Examples and numerical results

There. we will show two simmple examples of usage of this method for the cal-
culation of the temperature distribution in a thin plate (non-singular case) 4|
and in a cylinder (singular case) [3].
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6.1. Temperature distribution in a thin plate There we consider p(x) =
I, the equation (1) to be linear: f(u) = u. F{u) = 0 and the functions fi, fo
in the boundary conditions (3), (4) in the form

filwr) = Biy(ul = 6;) + By(ur — 61),
fﬂlu) Bh( tl u’_}) +B'__)(92 - U.'_g),

where B| o are Blot numbers, Bi,» are radiation Biot numbers, #,; are the
dimensionless temperatures of heaters on the bottom and top of the plate
respectively, @) o are the dimensionless temperatures of the air on the bottomn
and top of the plate respectively.

There. two symmetry cases are possible:
1L 1=1 fo(T2) = —fi(Th)
2.1 - 0.5, falln) =0

We will review the 2™ symmetry case (I = 0.5).

Assuming that at the initial moment of time ¢ = 0 the temperature of the
bottom surface of the plate is wg(0) = 7., and defining the initial condition in
the form that satisfies {8):

ugla) =T, — (2% — o) F(Ty).

from (11) we obtain

UI(U):

ua(0) = T+025f1( «)

i (0) = —2f1(12) 24)
wa(0) = =2f1(1%)

The difference equations (16) and {18) have the form

Uy — Uy

= fludhiu) =1 = fé (1 - %) G(t.2)dx

LH%'@ + flluzdfolun) = Ra = flj ?GUJ) dr

Approximating the integrals By, B as it is described in the previous section,
we obtain the following system of two nonlinear stiff ODEs:

(1,1 el B Ve e
; 1
Togo 1 T opgp U2t |\ gg T g ltlw) |+ g
) . Tz(uz—ul) — fulun} _ (25)
2240 " " Tem0 2t (ﬁ s fi0m) J @ kg
= 2(u; ~ uz)

During the numerical experiments. the following two cases were considered:



A. Lasts. Approximation of a nonlinear parabolic problem 65

1. Linear boundary conditions: 8, = 83 = 1, Bi;, = Bis = (), By == By =
0.9, . = 0.3 at the moments of dimensionless time ¢ = 0.14, ¢ = 1, 10;

2. Noulinear boundary conditions: 8, =8, =1, Bi;, = Bi, =03. By = By, =
0, T, = 0.3 at the moments of dimensionless time t = 0.2¢, 7 == 1, 10

The numerical results obtained by solving the Cauchy problem (25). (24) are
compared to the valucs of «* obtained by the Fouricer series in linear boundary
conditions case and by the explicit finite difference method with the space step
h = 0.02 and time step 7 = A%/6 in nonlinear boundary conditions case. Com-
parison of the values of temperature obtained by different numerical methods
can be seen in the tables 1 and 2.

From the results, it is visible that this method gives the precision in at least
4- 5 decimal places. This precision can be heightened using higher derivatives
of GG in the integrals’ approximation formulae.

Table 1. Lincar boundary conditions

t %] uy ) U3
0.1 403253 .264501 .403235 264443
0.2 489467 370702 489445 370687
0.3 .563203 .461590 .363178 .461570
0.4 626290 539352 .626263 .539329
0.5 680264 605883 .680237 .GO5858
0.6 .726444 662805 726416 .6627T9
0.7 .7660953 .7T11506 .765927 711479
0.8 799756 .753173 .799731 753147
0.9 828677 .T88822 .B2B6L3 .TRRTOT
1.0 .Bh3421 819322 853399 .819298

Table 2. Nonlinear boundary conditiong

¢ uy 1wy U] o
0.2 416928 343957 416926 .343957
0.4 .528474 458858 528470 458856
0.6 .630758 .566903 630751  .56GR98
0.8 719987 .664204 719977 .664196
1.0 793779 .747526 .793766 .747515
1.2 .851813 815307 8351799 815295
1.4 895552 867933 .893539 .867919
1.6 927435 907229 927422 .9072%6
1.8 950106 .935694 .950096 .935683
2.0 965945 955832 965936 955812
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6.2. Temperature distribution in a cylinder Let us review the axial-
syinmetric heat transport problem in a cylinder. There we consider p(z) = z,
f(u) = u. F{u) = 0, and the funclion fa in the boundary condition (4) in the
form

folua) = Big(()?, - ui) + By(8, — ),

where Bs is the Biot number. Bis is the radiation Biot number, 8, is the
dimensionless temperature of a heater, 4, is the dimensiouless tempcerature of
the air.

The dimensionless parameter (radius of the cylinder) ! = 1.

Assuming that at the initial moment of time ¢+ = 0 the temperature of the
surface of the cylinder is ug(0) = T,. and defining the initial condition in the
form that satisfies (8):

£2 _ .1'2
w(e) =T = — = fo(T.)
like in (13) we obtain
]

n () =T, LR(T)
wa (0} = T. (26)
(0 = 2f2(1.)
@y(0) = 2f2(1.)

The difference equations have the form

us —up = Hz = fO:Lln G(t,z)dx

faluy) = By = i fo rFf 1) dx

Approximating the integrals fl3. Ry as it is described in the previous section,
we obtain the following system of two nonlincar stiff ODEs:

819 . 107 . 106 311 f( )
235200 ** 14100 2 735 “' 7 \ 2940 — 1175 2{ug) | 4o
o — T (27)

1 i 1 1. 5 _ |
% 210?4;+ (14 f_( )) iy = falus)

During the numerical experiments, the following two cases were considered:

1. Linear boundary conditions: 6, = 1, Bi, = 0, By = 0.9. T, = 0.3 at the
moments of dimensionless time ¢ = 0.14, ¢ = 1. 10;

o

Noulinear boundary conditions: 8, = 1, Big = 0.3. B> = 0,7, = (.3 at
the moments of dimensionless time ¢ = 0.27, 1 = 1,10
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The numerical results obtained by solving the Cauchy problem (27). (26) arc
cotpared to the values of u* obtained by the Fourier series in the linear bound-
ary conditions case and by the explicit finite diffcrence method with the space
step A = 0.02 and time step 7 = A%/6 in nonlincar boundary conditions case.
Comparison of the values of temperature obtained by different numerical meth-
ods can be seen in the tables 3 and 4.

From the results it is visble that the method gives the precision of at least
4-5 decimal places. It can be hightened using the same method as in the
non- singular case.

T'his method has an advantage comparing to the traditional approximation
with the finite—difference scheme.

To correctly approximate the problem with the finite—difference scherne in
the center of the cylinder, it is necessary to take the half of the space step by
the zero point. It makes the scheme more complicated.

This method doesn’t have such a disadvantage as it is visible from the
construction of the difference schemne and the resulss.

Table 3. Linear boundary conditions

¢ ul uj w1 %)
0.1 110448 400983  .110403 400970
0.2 .228024 482962 .228003 .482952
(L3 331824 553024 331813  .BL3017
0.4 422010 613458 422002 .613452
0.5 500089 .665695 500083 .665691
0.6 567633 710867 .BGT628  .710864
0.7 .626053 749935 .626050 749933
0.8 676581 783724 .6V637H  .T83T22
0.9 720281 812047 720280 .812046
1.0 758077 838222 758076 .838221

Table 4. Nonlinear boundary conditions

t uj u3 U g
0.2 270010 416660 270009 416639
0.4 386560 527399 386557 .527388
0.6 497798 628336 497788 628316
0.8 .600100 .715880 .6O0082 .715851
1.0 .690086 .788060 .690039 .788024
1.2 765647 844957 765613 .844919
1.4 826416 888230 .826330 .388190
1.6 873533 920264 873498 .920232
1.8 .909019 943541 908986 .043513
2.0 .935160 .960229 935131 .960206
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Efektiva  aproksimacijas  metode  nelinearai  paraboliskal
robezproblémai

Kopsavilkums

Nelinedras paraboliskias problémas aproksimicija bazéjas uz galigo tilpumu metodi
[t]. Problemas aproksimacijai vispariga gadijuma var uzbivét preclzu divu punktu
Sablona diferencu shemu. Attiecigie integrali tick aproksimeli ar dazadam kvadratiiru
formulam. Tas lauj reducét problému, kuru apraksta paraboliska tipa parcialais dife-
rencialvienadojums, uz Ko$i problemu divu nelinearo parasto diferencialvienadojumu
sistému, kuru karta ir atkariga no izmantotam kvadratirn formulam. Tadejadi var
ieglt problémas atrisindjumu uz apgabala robezas. Ir apskatits gan singulars, gan
nesingulars gadijums, ka ari paraditi divi metodes lietojuma piereri.  Atiiecigo
algoritmu skaitliskic atrisinajumi ir iegiiti, izmantojot programmpakedu Maple V un
Mathematica procediras parasto diferencialvienadojumu stiegro sistému risindsanal.
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A-convex functions and lamination
closed sets for the scalar case

Uldis Raitums
Institute of Mathematics and Computer Science, University of Latvia
email: uldis.raitums@mii.lu.lv

The paper considers functions L: B® x R® — K, which are convex with respect to the
cone A = {(z.£) € R® x R" | {z.£) = 0}. and subsets M of the set M of all strictly
convex, coercive and continuously differentiable functions F: ™ — 2. It is shown
that if L is A-convex and M consists of all ' € A such that F(-) + F*(-) = L{-, )
then M is convex and closed with respect to lamination.

Key words: convex functions. homogenization, laminate

Mathematics Subject Classification {2000): 35B27, 498J45

1. Introduction

A-convexity of functions L: BR™ — R for a linear partial differential operator
A with constant coefficients
& O (Rﬂ: Rﬂt) ., C.}C(Rn: Rd),
appears as a necessary condition for the sequential weak lower semicontinuity
of functionals
I= [ L{w(x))dx
0
on the spaces
W= {w & L,(Q:R™) | Aw{x} =0 in the sense of distributions}.

(For the definition of the characteristic cone A sec e.g. Fonseca and Miiller (4]
or Murat [3]}.

Apart from the most interesting cases A = (curl,....curl) or A =
(div....,div) specifically interesting is the case of A-convex functions for
A = {curl. div), which arises in relaxation of optimal design problems governed

by potential elliptic operators. If the state equation is given as
8g

div [ > xo. (@) F{(Vu(x)) - fr)| =0in , uwcWi{Q). ul,, =0, (1)
5 -1
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where F;: R™ — R, s = 1,..., sg. are strictly convex, coercive and continuously
the contraol, then the relaxation procedure leads to the set of functions

{F:R* — R| F is strictly convex, coercive, continously differentiable

and F(z) + F*(£) > L(z,6) V(z,£) € R* x R™} @)

with L being the (curl, div)-quasiconvex envelope of the function Lg,
Lo{2.€) = min{F,(z) + FS{€)}, (2.6) € R x R,

see, for instance, Raitums [7]. Here by F™ we denote the conjugate function
to F.

For this scalar case the function L in {2) as (curl. div)-quasiconvex is A-
convex with respect to the cone A.

A={{z.8)eR" xR*| (z,&) = 0}. (3)

Simple analvtical descriptions for A-quasiconvex functions arc not known,
nevertheless some interesting properties of sets of the tyvpe (2) can be obtained
using only A-convexity of the function L.

One can easily expect that A-convexity is very close related to the proce-
dure of lamination. For instance, the proof of A-convexity for integrands of
sequentially weakly lower semicontinuous functionals on H';(Q:R"‘) is based
on laminated structures, i.e. structurcs thal depend only on one direction, sec
Dacoregna [2]. And we will show that for every given coercive A-convex, where
A 1s defined by {3), function L the set of the kind (2) is convex and closed with
respect to lamination (the precise formulation is given in Section 2).

2. Preliminaries

Let n > 2 be integer and let M be set of all functions F: R* — R, which

satisfy the following hypotheses:

H1. Fis continuous and countinuously differentiable on R™;
H2. F is strictly convex:

H3. F is coercive:

H4. For every F € M there exist a constant ¢y and a continuous strictly
increasing function 7 p: B — R such that

Fzy<eptvyp(lz )zl ¥YzeR™

REMARK 2.1. The hypothesis H4 can be deduced from H1  H3.
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Let K C R” be unit cube (0,1)" and let, for 1 < p < oo, H¥ = {v €
Ly(K;R") v = Vu, uc W(K), uis K — periodic}.

DEFINITION 2.1. A function £: R® — K is said to be Jaminate (in direction e €
R". |} = 1. constructed from {Fi:...: Fx} C M in proportions {A:...: Ax}
lt’bpettl\’el}) if there exist R ¢ SO(n) and functions

o ={o5,....on) € L((0,1):RY),

1
oi{t) =0or 1, fa?-(t)dt =A.i=1,.... N,
T (t) + +0'1\,()7lae t € (0.1),

such that
R '« =(1,0,....0),

F(z)= wf /‘E_‘cri s )F(R(R™ 'z + v(x)) da ¥z € R™. (4)
v€HE
We recall, see, for instance, Dal Maso [3], that if the functions Fy..... Fn

have the standard p-growth (1 < p < o) at infinity then F is the standard
homogenized (or T'-limit) integrand as ¢ — 0 for the family of integrands

Fur,) = éa (%(m.,e)) F(), 0<e.

where & is the (0, 1)-periodic extension of ¢ to the whole R.

We will show in Section 3 that the function F defined by {4) belongs to A,
has the representation

Fiz) = min A Fi{z — o) 3
( ) aERN (@)= (Z'Z ()

and the adjoint function F* has the representation

Here and in what follows by F™* we denote the adjoint to F function,

F*(¢) = sup [{z.€) - F(z}}, £ € R,
zelEn

and A = (A1...., Ax) € RV,
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Consider the differential operator A = {curl. div),

nin—1)

A: C®(R™B") x C*(R™R") — C*(R“:R™7) x C™(R").

The characteristic cone A corresponding to A
A={(=£ € R" x R"|{z,6) = 0},

DErINITION 2.2, A continuous function L: B? xR™® — R is said to be A-conver
if

Lz 11— A agh + (1 — 2)E?) < AL{zheh) — (1 — N L{z%. &%)
whenever (22,62} — (24, €Y eAand 0 < A < 1.

DEFINITION 2.3. A set M C M is said to be cloged with respect to lamination
if for every finite number of functions Fy,.... Fx & M the set M contains all
laminates F constructed from {F);...; Fx} with various directions e € B and

Our main results are the following.
THREOREM 2.1. Let M C M be set such that
(i} M is closed with respect to lamination;
(ii) there exist functions F._, F, e M such that F_. < F < F. VF e M.
Then the function L: B* x R* - R,

Lz, &) = jul F(z)+ F(€)]. (z.£) e R" x R”

ts A-conver.
THEOREM 2.2, Lef L: R™ x B™ — R be function such thaot
(i) L 15 continuous;
(i) L is coercive;
(i} L 43 A-conuer.
Then the set M C M (if not empty),
M={FeM Fz)+ F*&) < L{z,§) ¥(z.£) e R" x R"}
i§
{a) closed with respect to lamination;
(b) coM = M;
(¢) cofF* i Fe My ={F"|Fe M}
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3. Properties of laminates

A finite number of functions from M is equi-coercive and uniformly bounded
from below, hence, the function ¥ is well defined by (4) on the whole R”
and is bounded from below. Taking in (4) v = 0 we have that F satisfies
H4. Since the convex envelope for a finite number of functions from M is
coercive too and since the mean value of v € H f over K is equal to zero, then

by Jensen’s inequality it follows from (4) that F is also coercive. Furthermore,
from convexity of the integrand in (4) with respect to the pair (z,v(-}) it follows
immediately that the function F is convex.

To prove the representation formula (3), let us consider the functions
N
valt) =D aiai(t)
i=1

with @ = (ai,....an) € RY such that

{@ Xy = 0.
Then, by construction, the elements v,

vale) = falrr)e’ = (palerh0,..0)
belong to HE.

The functional
N
Ilv) = /Zai{xl)ﬂ(ﬁ’(}i_lz +u(x)dz, I+ HY SR,
K =1

is Frechet differentiable and
. N
I'{v)dv = /(Z oi(z)RTIF/(R(R™ 'z + v(x))), du(z)) drr,
ik =1
where by F/ and IY we denote the derivatives of F and I respectively.
Let V, C H# be set such that

Vs ={?"n < Hi \aeRN, (H,X) :0}’

where the relationship between ¢ and A is given in Definition 2.1.

The functional I on V,, has the representation

1 n
Hu,) = /Za,-(f)Fi(R(R Latun(t)) dt
5 i=l
N N
= MNE(RR 2+ oe') = Z AiFi(z + aye)
i=1

i=1
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and, obviously, attalns its minimum over ¥, on a unique v,, . From the Euler’s
equation we have

N
I e = /{Z o r VR TFI{R(R 'z i va (£)),ta(x))dzs =0 Vg eV,
x i1

(6)
From here and the fact that the integrand in I'(vg, ) = ({7, .. .. I') depends
only on x, it follows (¢ = Vu and u is K-periodic for v € HX)
n
Ieg o = /Zlg(zl)u%(m) az
K 11
1 I i
= /I;(ql)(// Uy, (2] d.x-z—--rimn) dr {7
0 0 i
1
= /Ii(ﬁ)t (1) dxy,
0

for some integrable function ¢ with

1
/d'(f])dl] = .
]

Furthermore, the integrand I7(-) is constaut in every suppo,, ¢ = 1,...,N.
From here and (6) - (7) it follows immediately that

I'ea Ju=0 Yec HE

Since [ is convex and (v, v =0 for all v € HE, the clement v, € V,, C
H¥ gives the minimum of I over H%. This way,

F{z) = min = mm X Fi(z + ae), 8
(=)= min = min__ Z (8)

what gives the representation (5).
Let us denote
Ay = {@eR¥|{@ ) =0}, '
F:R*x Ay - R, F(z.@) = i‘ A Fz —age).

i=1

The function F is continuously differentiable with respect to the pair (z.a).
Let z < B® be fixed and let @y be minimizer of F(z,:) over A,. Le.

Fiz,@) = min F(z.@) = F(z).

TEAL
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In these notations

F(z -+ dz) — ['(z) - {(F'(z.00). 82}

z

= 5“23? Flz+dz.@) — Flz. @) — (Fi(z.@p), 62)
< F(z < 6a0) — Flz b)) — (Flz.a). 62) = of|6z]),

i.e. the function F, is upper semidifferentiable on R". This property. together
with convexity of F, gives that F is coufinuously differentiable on R". see Ball
et al [1].
From coercivity properties of £1..... Fix € M it follows that for a fixed ball
B, = {z € R" |z < p} there exists a convex bounded closed subset Ay C Ay
such that for z € B, it holds
Fiz) = mi . @).
== i FG-T)
Let 2. 2" € By, z' # 2", be fixed. Then from strict convexity of Fp,.... Fix
it follows that for some d > 0
1 1 1 1 1 1
}"(E;' + 5:", -Q-a' + 5(1"} < 5.7-"(;:’,(1') -~ §f(z",a") —d Vo', € Ap.

Indeed, since Ap is a compact and if

then from (@.X) = 0 and (@"”. A} = 0 it should follow that ' = =".

That gives

ot 4 - :!r zf =Y __ Z” —
Bz + F(z") in [f{ @) - F ,u)}
2 T EAn, T EAy 2

min {

dL 5 7" J
AL FEA, 2 2

:,.f ZH . r ZH
- min[;r(“+ ,a)w]:r*( - >+d.
&E A, 2 2

Therefore. I is strictly convex.

IV

This way, we have proved the following result.

PROPOSITION 3.1. Fvery lominate F (in direction ¢ constructed from

mula (5) and belongs to M.
Analogous result for the conjugate functions F~ is as follows.

ProrosiTION 3.2, If F s o luminale {in direction e constructed from
{F1;...:Fn} © M in proportions {A;. .. An}) then
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(i) F~ has the representation

N
Frey = rmn{z ; a2t e R,
=1 .
{a'.ey=0.¢ = 1,....N;Z,\,-a.‘ =0} (9)
=1

(i) F is coercive;

(iii) £ is continuously differentiable.

Proof. Let Ay, be as above and let

N
Dy={d={d :d"} C R (@) = 0,i=1.....N ’ZAd’—O}

i=1
For d Dy, simple calculations give

F*(&) = sup {z,&) — mm Z M Ei(z + age)]

zeBn S B

sup sup {E Ailiz + aye £+ dY — Fi{z +c1-1c]}
2CEN T A,

inf {ZA [(=.€ + diy — p(~)]}
ye-?.-'.:'—1 ...... N deb, LiZ1

= inf Z MEME+dY)
deD, i=1

I
@
=
o

because the convexity and coercitivity of F,..., Fn ensure the exchange of
sup inf to inf sup.

Since F' ¢ M is strictly convex, coercive and continuously differentiable.
the the same properties has the adjoint function £~. |

4. Proof of main theorems

Let A7 C M be fixed subser closed with respect 10 lamination and let there
exist functions F_, Fy € M such that

F (2) < F(2) < Fy(z) Ve r" VFe M (10)

The relationship (10) ensure that all conjugate functions F*, F € M, are
uniformly bounded froin below,

Fi() < F*' (&) < FI(6) VECR YEF ¢ M.
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Hence, the function L: ™ x R" — R,
L(z,6) = Flg{f [F(z)+ F*(&)], (=& eR" xR",
is well defined on the whole R™ x R®. Besides that,
F(z)+ F2(8) € L(z.§) € Fy(2) + F2(E) W(z.8) € R" x R™,

i.e. the function L is coercive.
Let us fix two points (. £), (2".£”) € B® x R" such that

(82,88) = (2" = ", &" =&Y e A, ie. {62.98) =0.

Let £ > 0, A €{0,1) be fixed and let F}, F> € M be such that

L(2.¢) =2 A+ FE) -,
L(Z”.E”) 2 F {'__.ff' _L F*(Eﬂ) —=
Denote )
(zo, €0) = (A" = (1 — A)z", A&+ (1 — W)™y,
Then

(=.€" (z0.8o) — (1= A){d=. 85).
(z7.€") = (20.60) + A(82,48€).

Consider the laminate F {in direction 6z/ 82|, constructed from {F): Fy}.
in proportions {A; (1 — A)})
Fizo) ~ F*(&) = r:}gi}}[AFl(zg ~ (1= N7e) ~ (1 = A)Fa(zp + Are))

= in ARG — (1 - A)e)+ (1= JFi (g + Ma)
{if 6z = 0. we choose e such that {e¢, d&) = 0).
A special choice

T = |dz|, t = |0€|, a = 8¢/ A€,

gives

Lizo.6) < Flzo)+ F*(60) < AFi(s0 — (1= A)dz) + (1 = M)Falzy + A62)
+ AFI(»sn—( )6 )“‘(1—)\)175(50*)\5&)
= NE() = FY(€)] + (1~ NFa(=") + F3(€")
< AL(E) 4 (f JL(=".€") — 2z

From here and the arbitrarity of € > 0 it follows that L is A-convex. what
completes the proof of Theorem 2.1.
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Now, let us assume that we have a function L: R™ x B® — R, which is
defined on the whole R” x R™, is continuous. coercive and A-convex. Assume
further that the set A,

M={FcM|F)+F (&) > Lz Y(z£cR xR}

is not empty.
Given Fy. Fy, £ M, consider the laminate & {in direction e constructed from
{F;: F,} in proportions {X; {1 — A)}). Then
F(z)+ F(g)
= min {)\Fl(z —7(1 = A)e) + AFT(£ — {1 — Aa)

TEZ (g,et=0
+ (=N The) + (1 - NFHE+ /\a)}
> min - {AL(z —7(1 = Me. £~ ({1 —MNa)+ (1 = NL{z = Are.£1 Aa)}

T {a,eh=0

Since the difference of arguments for L is equal to {7e.a) and, by construc-
tion. (Te.a) € A, it follows that

Fiz)+ F*(¢&) >  min L(,\(z Sl - A)e) (L Azt TAe),

ME = (1-A)a) + (1 - A€+ Aa)
= L{z,&.

Therefore, every laminate constructed from Fi, Fy € M belongs to A, too.

For a finite number of functions Fy.. ... Fy € M the laminate in direction

€ I proporeions Ag,. .., Ay respectively is

N
F(z) = min Az 4+ age)
{a.A)y-0 i—1
= min{ M\ Fi(z 1 - A |z A
= .2161{;1 1 1((.,+Cl’8)—( — A1 )p 4—(‘11_/\]6 .
where

1

= min ‘ELF(" ¥ al {’-I—"ie)\i A 3, =10
- 11X T 1= T 1-x" [

=2

From here, by using simple induction argument over the number N. we have
that £ € M, too. That gives that the sct Af is closed with respect to Jamina-
tion.
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Lemma 4.1, Let Fi,Fo € M. Then for every fired (z.£) € R" x R" and
A € [0, 1] there exists a luminate F (in a direction ¢ constructed from {Fy; Fa}
in proportions {A; (1 — A}}) such that

F(2) + F7(6) S MR() + (1= NPz}~ N + (L= A E: "(€).
Proof. For fixed proportions {A: (1 -~ A)} it holds
min[F(z) + F7(8)]

— min {mingml(z 41— Ae) = (1 — M Falz — the)

egRn | ore
: 1 _ _ 1
+ (ﬂ;r;o[)\ bf‘.gﬂgﬂ ((b JE—(1— X)) — Fi(b ))
1- A b2, & — Aa) — Fa(b? 11
o (1=2) sup (16,6 — Aa) = P ))]} (11)
< AFR{ZY+ (1 = AF{(z)+ inf  sup {(/\bl + (1= A% 6)

aER" bl H2EREN

— M1 =AW =8 a) — AR(BY) 4+ (2 — )\)Fg(b'”')j}.

Since the mapping
(b5,6%) = AR(BY) = (1 — N Fa(b?)

is strictly convex and coercive, we can exchange inf sup to sup inf in the right
hand side of (11). The inner infimum over @ € R™ gives that 6! = 52, Therclore,

win[P(z) = F7(€)] < M(z) + (1- NF()
£ S8 AR - (1= N0
= AR (- NE(() AR - (1 - MBI
[l
From Lemma 4.1 and the fact that the set Al is closed with respect to

lamnination, it follows immediately that Af contains all convex combinations of
its elements.

Exactly the same reasoning as in Lemma 4.1, only now expressing Fy, F; as
conjugate to Fy'. F} functions respectively, gives that for every given F1. Fa €
M and X € 0. 1] and fixed (z.£) € R x R" there exists a laminate £ (in some
direction ¢ constructed from {F1: Fo} in proportions {A: (1 — A)}} such that

F(2) + £7(8) < AFY + (1= NF7 () + AF (€) + (1~ M F3(€).
Therefore,
CO{F“ FEA{}Z{F*iFEIVI},
what completes the proof of Theorem 2.2.

We conclude with the following remarks.



80 MATHEMATICS

Remark 4.1, For the vectorial case of linear elliptic equations the passage
from the initial set of given operators to its convex hull does not. in general,
preserve thie weak closure of the set of solutions of the corresponding family of
equations, see. for instance, Raitums [6]. Therefore. the last two statements in
Theorem 2.2 about convexity properties of the set M are a specific feature of
the scalar case.

REMARK 4.2. There is no a one-to-one relationship between A-convex func-
tions L and closed with respect to lamination sets Af. To illustrate this feature
we present a simple example of a set My C© M such that

(1) My is closed with respect to lamination:

{il) the sex
{EeM|EE)+ F) > Jnf [F(2)+ F()] ¥(2.) c R™ x K7}
is larger than M.
Let n = 2 and let Ay consist of functions
F(z) = %(Az, 23, 2 R Aec A
where
A=1{4eR*? | Ais symmetric, A {A) - Aa(A4) =1, o € X, (4) <1}

and 0 < o <1 is fixed.
The set A is G-closed, hence the set My is closed with respect to lamination.
At the same time, the function Fjp,

does not belong to My, but

. 1 51, . 1, -
Fo(s) = Fy(6) = 5o o2 + 36 2 2(4o,2) = 514576 8),
where 4y € A is such that A;(Ag) = a, Az(Ap) = 1/a and the cigenvector,
which corresponds to A;{4;), s parallel to z.
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A-izliektas funkeijas un attieciha pret lamineSanu slegtas kopas
skalaraja gadijuma

Kopsavilkums

Raksta aplitkotas funkcijas I.: B™ x R™ -- R, izliekias attiectha pret konusu A =

{(z

&) e B* x R™ | {z,&) = 0}, un stingri izliektu, koercitTvu un nepartraukti at-

vasinama funkciju #: R" — R kopas M. Raksta paradiss, ka tad, ja L ir A-izliekta
nn M sastdv no tadam funkcijam F, ka F(-) + F* () = L{-.-), tad kopa M ir izliekta
un slégta attiectba pret laminésanu.
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This paper considers some intrinsic properties of the category SET(L) of L-subsets
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1. Introduction

Since the inception of the notion of a fuzzy set in [4] interests of many re-
searchers have been directed to the study of different mathematical structures
involving fuzzy sets and their generalization L-fuzzy sets (sec '1, 2]) or just
L-sets for short. Among many other problems some authors considered the
category SET(L) of all I-subsets of all sets X where L is a fized lattice (see
1]). In particular in [3] are considered the relations between the category
SET(L) and the topoi theory. Howcver, as far as we know up to now there
has been no paper where the intrinsic structure of the category SE'1(L) would
be studied. The purpose of our work is to start the systematic study of the
intrinsic properties of this category as well as its relations to other categories.
We begin by recalling its definition, mentioning some of its basic properties
and deseribing subcategories and related functors. Later on we consider some
special morphisms (monomorphism. epimorphism, section, retraction etc.) and
some special objects (initial and final abjects. subobject and quotient object
of an arbitrary object) in the category SET{L). Finally we discuss some stan-
dard constructions in this category, i.e.. product and coproduct of objects and
morphisms. pullback and pushout diagrams.

A logical continuation of this paper would be an investigation of a more
general category SET{CLAT) whose objects are L-sets with different lattices
L. This will be the subject of our forthcoming paper.
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2. Definition and basic properties

In this sectiou we will discuss some basic properties of the category SET(L).
Let us start by recalling its definition (see [17).

Suppose L is a lattice (L, £). i.e., a partially ordered set such that for every
two points a, h & L the join a V b and the meet a A b are defined and besides
that there exist two points O, 1, € L such that 0 € a £ 17 for all a € L
We assume that 0g # 1z, ie.. L has at least two elements. Then the category
SET(L) can be defined as follows.

1. The objects of SET(L} are all L-subsets of sets. L.e.. mappings X : X =L
where X is an arbitrary set (mavbe empty). Henceforth. the objects of
SET(L) will be denoted by X. ¥ or Z and arbitrary sets by X. Y or Z.
By sayiug that an object X € O0bj SET(L) is given we will always mean
that X is a mapping X: X — L.

2. Given two objects X, YV € 0bj SET(L) the set_of morphisms from X to Y
Mor ggpiry (X, Y) consists of all mappings f: X — ¥ such that X <Y of.

We will continue by recalling a trivial subcategory of the category SET(L).
namely, the category SET whose objects ave arbitrary sets and morphisms are
arbitrary mappings between sets.

ProposiTiOoN 1. The category SET s isomorphic to a full subcategory of the
category SET(L).

Now let us see whether the category SET(L) is connected.

ProrOSITION 2. The category SET(L) is not connected.

Proof. ‘Lo prove the proposition we have to find such two objects X, Y &
Obj SET(L) thai the set Mor gp (X, YY) is empty. It is easy to sce that these
objects can be every two mappings X =a € Land Y = b £ L where a £ b and
X, ¥ are arbitrary noncimpty sets. 0

Notice that unlike the category SET, the full subeategory SETh(L) of the ca-
tegory SET(L) consisting of all non-vold L-sets is not connected.

Lastly we will show some examples of functors related to the category
SET(L).

Examewr 1. F: SET(L) ~ SET: Each object X € 0bjSET({L) will corre-
spoud to the set X € 0bj SET and cach morphism f € Mor SET'(L) will corre-
spond to the same morphism f &€ Mor SET. Obvicusly. F is a functor.

The next example 15 more complicated.
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Exampre 2. F: SET(L) ~ SET: Each object X & 0bj SEL(L) will corre-
spond to the set X x {X} < 0bj SET where X is considered as a point [rom
the st 1Y of all mappings h: X -» L. Each morphism f € Mor sET(L (X Y)
will correspond to the mapping F(f) : X x {X} - Y x {Y}. F(f}(£, X) =
(f(Z), Y). Obviously, F is a functor.

Clearly F(SET(L)) is a subcategory of the category SET (not full) and besides
that the categories SET (L) and F(SET(L)) are isomorphic. Thus, the following
proposition holds.

ProrosiTioN 3. The category SET(L) is isomorphic to a subcategory of the
category SET.

ExaMPLE 3. F: SET{L;) ~ SET{L,): Suppose two categories SET(L;) and
SET{L,) with isomorphic lattices Ly and Lg are given. This meauns that there
exists an isomorphism »: L; » Lo, Then the functor F can be defined as
follows. Each object X: X — Ly from 0bjSET(L1} will correspond to the
object zoX: X — Ly from O0bj SET(L>) and each morphism f « Mor SET(L,)
will correspond to the same morphism f € Mor SET (L} because X < ¥V o f
implies ¢ 0 X € oY o f. Obviously, F is a functor.

With the help of this example and the fact that if ¢ Ly — L. is an isomaorphism
then ¢+ — ¢~ Ly — Ly is also an isomorphism it is possible to construct a
functor G': SET(Ly) ~~ SET(Ly). One can easily verify that G o F' = eqgpig.)
and F ¢ G = egpr(r,) where € is an identity functor. 'Thus, the following
proposition holds.

ProrosiTiON 4. If twe lattices Ly and Ly are isomorphic then thetr correspon-
dent categories SET(L)) end SET(L,) arc also isomorphic.

In the following two sections we will consider some special morphisms and
ohjects in the category SET(L).

3. Special morphisms
Suppose we have two objects X. Y € 0bj SET(L) and an arbitrarvy morphism
f € Mor geq¢z,(X. Y). In the following three subsections we consider some nec-

essary and sufficient conditions for f to be a special morphism in the category
SET{L).

3.1. Monomorphisms. epimorphisms, and bimorphisms

THECREM 1. A morphism f: X — Y is ¢ monomorphism iff f is injective.
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Proof. We will prove the necessity first and therefore assume that f is a mono-
morphisn. Then for each object £ € 0bj SEL(L) and every two morphisins
g, h e Mor gy (2. X} such that fog = foh it follows that g = h.

If f is not injective and there exist two points x,. w2 € X. 21 5 x such
that fir) = flau) = yo € Y then let Z = {z} and Z(z5) = 0,. In this case
everv two mappings g, fi: Z — X will be morphisms and thus we can take
h{zy) = 71 and g{zg) = x2. [t is easy to sec that fog = foh but g # h.

The sufficiency is obvious. o

TurorEM 2. A morphism f: X — Y is an epimorphism iff [ s surjective.

Proof. We will prove the necessity first and therefore assume that f is an
epimorphism. Then for each object Z € 0bj SET(L) and every two morphisms
g. b T Morepr (Y, Z) such that ho f = go f it follows that g = h.

If [ is not surjective and there exists such a point ys € Y that F ) = &
then let us take Z = {z. 23} and Z(z)) = Z(z2} = 1r. In this case every two
mappings g, h: Y — Z will be morphisms and thus we can take A(Y) = {2}
and g(Y\{yo}) = {1} but glwp) = zo. It is easy to see that go f = ho f but
g #h

The sufficiency is obvious. 0

From the last two theoremns and the definition of bimorphisiu (noiice that a
morphism is said to be a bimorphisin provided that it is both a monomorphism
and an epimorphism) the following theorem can be derived.

THEOREM 3. A morphisn [+ X — Y is o bimorphism ff [ is bijective,

3.2. Sections, retractions, and isomorphisms

This section is devoted to section, retraction and iscmorphism in the
category SET{L). Notice that although in the category SE'L' these concepts
are equivalent to accordingly monomorphism. epimorphism and bimerphisimn.
in the category SE'I{L) they are quite different.

THECREM 4. A morphism f: X - Y s a section iff the following conditions
are fulfilled:

1. f is injective;
2 X=Ycof;
3. for each y € Y there caists such a point v € X that Y(y) < X{x).

Proof. We will prove the necessity first and therefore assume that f is a section.
This implies the existence of such a morphism g € Mor gpp (Y. X) that gof =
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ex where ¢ is an identity morphism which is just an identity mapping in the
category SET(L). Let us prove that all conditions of the theorem are fulfilled.

The first condition follows immediately from the existence of g. In order to
prove the second condition we will notice that the definition of morphism in
the category SET(L) implies X < Yofand Yo f < Xogo f. Then. replacing
go f by ex, we will have that ¥ ¢ f < X and therefore X = Y o f. The third
condition follows from the fact that Y(y) € X o g(y) Yy € ¥ and thus the
necessary point 2 will be just ¢{y).

Now let us prove the sufficiency and therefore assume that all conditions of
the theorem are fulfilled. Then there exists a mapping ¢ such that

= [ W) ye f(x)
9y 7y € X such that Y{y) < X{z,), ye Y\f{X).

If g ¢ Morspry(Y. X 3 then the sufficiency is proved because it is easy to see
that g o f = ex, thercfore let us show that Y (y) € X o glya) Vyo & V. If

€ f(X) then glyp) = =y where f(rg) = yo. From the second condition of
the theorem it follows that X(zq) — Y o f(z0) = Y{yo) and then X o g(yo) =

X(xzg) = Y{(yo). In case of yg € Y\ o lX the necessary inequality follows from
the definition of g. 0

THEOREM 5. A morphism f: X — Y 1s a retraction iff for each y € Y there
erists such a point x € X that f(x) =y and X(x) =Y (y).

Proof. We will prove the necessity first and therefore assume that f is a re-
tracion. This implies the existence of such a morphism g € Mor ggr(, (¥, X)
that. f o g = ey. Let us prove that the condition of the theorem is fulfilled.
Notice that from the condition it follows that f must be surjective, therefore
the first thing we need to prove is that Yy € ¥ f~'(y) # 2. The statement
follows immediately from the existence of g. Further, suppose an arbitrary
point ¢y € Y is given. Then there exists such a point g € X that z¢ = g(vo)
and f(ao) = ywo. From the fact that f and g are morphisms we will get that
X(re) € Vo flz) = Y{yo) and Yiyg) < X o glye) — X(x). Two last
inequalities mll give us the necessary equality X (zo) = Y(yo).

Now let us prove the sufficiency and therefore assume that the condition of
the theorem is fulfilled. Then the necessary mapping can be defined as follows:

gwy=ze{zcX|f(z)=yand X(z) = Y(y)}.

If g € Mor g1y (Y, X) then the sufficiency is proved because one can easily see
that fog = ey, therefore our task now is to show that Y(yo) < Xog{ye) Yy €
Y. Suppme an arbitrary point yp € Y is given. Then X ¢ g(yp) = X (zp) where

e X. From the definition of g it follows that X {(xg) — ¥ {y) which implies
the necessary inequality. 7

THEOREM 6. A morphism f: X — Y is an isomorphism iff the following con-
ditions are fulfilled:
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1. f is bijective;
2.X=Yef.

Proof. We will prove the necessity first and therefore assume that f is an
isomorphistm. Then f is both a section and a retraction which Implies the
existence of such a morphism g € Mor 51 (Y, X) that fog = ey and go f =
€. Let us prove that all conditions of the theorem are fulfilled.

The first condition follows immediately from the existence of g. The second
condition follows from the fact that f is a section.

Now let us prove the sufficiency and therefore assume that all conditions
of the theorem are fulfilled. Then the necessary mapping g can be obtained in
the following way:

g = f . yeY.

If g & Mor gy (Y. X) then the sufficiency is proved because it is obvious
that go f = ex and fog = ey. therefore we need to prove shat ¥Y'{y) <
X oglye) Yyo € Y. Suppose an arbitrary point yp € Y is given. Then
X oglye) = X(xze) where f(zg) = yo. From the second condition of the
theorem it follows that X (xg) = Y o f{zo) = Y(yo) which implies the necessary
inequality. 0O

The last theorem shows the necessary and sufficient conditions for two given
objects X. Y < 0bj SET{L) to be isomorphic.

THrEOrEM 7. Two objects X, Y € 0bj SET(L) are isomorphic iff for every
ac L. X" Ya) = Y i(a).

Proof. We will prove the necessity first and therefore assume that the ob-
jeets X aud Y are somorphic. This implies the existence of an isomorphism
f: X — Y. Suppose an arbitrary point a € L is given. In order to prove
that |X (e} = Y "}a)| we have to show that there exists a bijective map-
ping ¢: X '(a) — Y™(a). Let us prove that £ = f, = flx-1(4)- The fact
that f is an isororphism implics X(xzg) = Y ¢ f(xo) Yo € X and thercfore
F (XY a)) © Y~ Ya), besides that f, is injective. Let us show that f, is
also surjective. Suppose an arbitrary point yo € ¥ ~%(a) is given. From the
properties of isomorphism we derive Lhat there exists such a point ro & X that
flxg) = yo and X{(xg) = Y ¢ f(zy) = Y(y) = a € L. But then xp € X "1(a)
aud f,; s indeed surjective which implies the necessary equality.

Now let us prove the sufficiency and therefore assume that |[X ~l{a)| =
1Y "1{e})| Ya € L. This gives us a family of bijective mappings {f,}azr where
For XY a) = Y=Y a). The necessary mapping f could be obtained as follows:
flz) = fal2). z € X7 Ha). It is easy to see that J,o, X '(a) = X and
also UHELY‘I((I) = Y therefore f is bijective. The definition of f implies
X(x)=Y o fiz) Vv € X. From the previous theorem it follows that f is an
isomorphism and thus the objects X and Y are isomorphic. a
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3.3. Constant morphisms and equalizers

THEOREM 8. A morphism f: X — Y is a constant morphism iff f(_i') =

{yo} Z Y

Proof. Let us prove the necessity first aud therefore assume that f is a constant
morphism. Ther for each chject Z € 0bj SET(L) and every two morphisms
g, € Mor gpr ) (Z, X)) it follows that fog= foh.

If there exist two points xy, 22 < X. 1 # 22 such that flzy) =3 #
ys = flzs) then let us take Z = {z} and Z(zp} = 0;,. In this case every two
mappings g, h: Z — X will be morphisms and thus we can take 9lzn) = 3
and A{zp) = zu. It i1s easy to see that fog # goh.

The sufliciency is obvious. -

THREOREM 9. A morphism f: X — Y s an cqualizer off the following condi-
tions are fulfilled:

1. [ is injective;

2 X=Yof.

Proof. We will prove the necessity first and therefore assume that f is an
cqualiver. This implies the existence of such an object Z € 0bj SET(L) and
such two morphisms g, & € MoT g1 (Y, Z) that the following propertics are
satisfied:

L hof=gof;

2. for ecach object W & 0bj SET(L) and each morphism m: W — Y such
that h ¢ m = g o m there exists a unique morphism k: W — X such that

fok=m

Let us prove that all conditions of the theorem are fulfilled.

If f is not injective and there exist two points 1y, 9 £ X, 71 # x5 such
that flx) = fe2) = wo € V then let us take W — - {wo} and W {two) = 0y,
In this casc every two mappings ki, ka: W — X and also m: W — ¥ will be
morphisms and thus we can take mi{wg) = wp. but &k {wpy) = z; and ka{wy) =

Then obviously gem = hom and also fcky = fecky = m but &y # ko
which contradicts the definition of equalizer.

Suppose an arbitrary peint zg € X is given. We have to prove that X {z,) =
Y o f(ap). The fact that fisa morplnsm implies X(xg} € Y o f{xg). Further.
let us take W = f{X) and W = YIJ‘M)' Then the mapping m such that
hom = gom can be defined as follows: m(x) = x, ¥z £ F{X). If so then
the morphism & will be just f~! The fact that f~! is a morphism implics
Xof Yofize)=X{(zo) 2 Wo flzg) =Y o f{xg). The last inequality leads
to the necessary equality X{xo) = Y o f(zp).
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Now let us prove the sufficiency and therefore assume that all conditions
of the theorem are fulfilled. We will try to find the necessary object Zc

ObiSET(L) and two morphisms g. b € Morgepiny(Y. Z). Let Z = {21, 20}
and Z{zp) = Z(z1) = 1. In this case every two mappings g. h: Y' —Z 1.\111 be
worphisius and thus we can take h{y) = 2, ¥y € ¥, but gly) = 71X

and g(y) = 2, ¥ € YAF(X). It is obvious that Ao f = g f.
If such an object W € 0bj SET{L) and such a morphism m: W — Y arc
ﬂnen that o m = g om then there exists a unique mapping k: W — X,
= flomsuch that fok = m. Because of X ok = Xof lom =
cfoflom=YcmzW kis a morphism.

[

4. Special objects

In this section we will consider some special objects in the category SET(L), i.e,
initial and final objects and also subobject and quoticnt object of an arbitrary
object.

Let us recall busic definitions. An object X is called initial provided that
for each object ¥ there exists & unigue morphism f: X — Y. The same
way an object X is called final provided that for each object Y there exists a
uiique morphisin f: Y — X, Suppose we have two objects X and Y and two
morphisms f. ¢: X -- Y where { is a monomorphism and ¢ is an epimorphism.
The pair (f. X) is called a subobject of ¥ and the pair {g. ¥) a quotient. object.
of X.

The proofs of the following statements are trivial and therefore are omirted.

PROPOSITION 5. 4 mapping I: @ -- L 15 an mitial object in the cafegory
SET(L}.

ProPOSITION 6. A mapping F: {=} — L, F(*) = 1, 1s o final object in the
category SET(L).

Suppose we have two objects X. Y € 0bj SET(L).
TueoreM 10. If the following conditeons are fulfilled:
1. Xcvy:
2. for each x € X it follows that X(z) < Y(z):

then there erists @ monomorphism f: X — Y and hence (f. X) is a subobject
of Y.

THEOREM 11. [If the following conditions are fulfilled:

.Y X
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2. for each y € Y ut follows that X(y) <= Y{y):
3. for cach x € X\Y therc exists such a point y € Y that X(z) € Y(y):

then there exists on epimorphism q: X — Y and hence (9. V) is a guotient
object of X.

The following example shows one way of obtaining a quotient object for an
arbitrary object X € 0bj SET(L).

EXAMPLE 4. Suppose an object X € 0bj SET(L} is given. In order to find
a quotient object (q. Y) for X we will firstly construct the necessary object
Y. Let Y = {z],|ae X(X)} where [z], = {z|z € X, X{z) = a € L} and
Y{[z].) = @, Yz], € ¥. Then the mapping q: X — ¥ can be defined as
follows: q(z) = [r]xcy. V2 & X. One can easily verify that (g, Y) is a quotient
object of X.

Now suppose the lattice L is complete, i.c.. for every subset .4 C L the join
V A and the meet A 4 are defined, and fix an arbitrary object X € 0bj SET(L).
By Yiin and Yiner we will clcnote such objects from Obj SET(L) that },,,m =
{#}. Yiin(*) =v{a a e X(X)}and |}mm| X Yool =1y, Yy € Vinor-
Obviously. there exist such morphisms ¢min: X = Y and gme=x: X - Yier
that (@uin. Ymin) 20d (@maz. Ymaz) are the guotient objects of X and besides
that the following proposition holds.

ProrosiTION 7. If V{a|a € X(X)} ¢ X(X') then for each guotient object
(g, Y) of X there exist such morphisms f1: Youn — Y and fo: Y — Y, that
(1, Yinin) i3 a subobject of Y and (f2, Y) is e subobject of Yinur.

Thus we can say that (gmin, Ymin) 80d (@maz, Yinex) ore in a way the “smallest™
and the "biggest” quotient objects of X.

Notice that for an arbitrary object ¥ « 0bj SET{L) the existence of such
two morphisms f): Ynie — Y and f2: Y — Ve that (f1, Vi) is a subobject
of ¥ and {f2. Y) is a subobject of ¥, does not imply the existence of an
epimorphism ¢: X — Y.

If we will suppose that V{a a ¢ X(f()} ¢ X(X) then (gmer, Yonar) will be

still the "biggest” quotient object of X, howoever (@mn. Ymen) will no longer be
its "srnallest” quotient object.

ProrOSITION 8. If such an object X < 0bjSET(L) is given that V{a|a &
X{X)} & X(X) then it has no “smallest”™ quotient object.

Proof. Suppose there exists such a quotient object (¢,pin. Y ) Of X that tor
cach quotient obje(,t (g, Y) of X therc exists a monomorphism f: ¥, — Y
and thercfore (f. Y, ) is a subobject of ¥, It is obvious that then Y, ;. = {wo}
and Y, () > Via|a € X(X)}. From the fact that (ey, X) is a quotient

object of X we will immmediately get a contradiction. 0
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5. Standard constructions

This section is devoted to some standard constructions in the category SET{L)
which are product and coproduct of objects and morphisms. pullback aned
pushout. Let us start by considering product of objects.

5.1. Products of objects

Suppose we have two arbitrary objects X.Y & 0DbjSET{L). We will
try to find their product denoted by X x V. According to the definition we
have to find such an object X x ¥ & 0bjSET(L) and such two morphisms
Py € Morgpri (X x Y. X} and py € Morypr)(X x Y, Y) that for each
object Z € 0bj SET(L) and every two morphisms [ € Mersgrr,{2, X) and
g € Mor grrpy{Z, Y) there exists a unique morphism h € Mor gpr1y(Z, X xY)
such that the diagram

z
f ! h.\
' "
X XxY Y
Px Py

commutes. )

We will start by constructing the object X x Y. Let XxYy =XxV =
{{z.y) ze X ye¥})and X xY(x,y) = X(z) AY(y), Vix. y) € X<y,
Then the necessary mappings px and py can be obtained in the following way:
pxlz.y) =randpy(z. ) =y. ¥(z. y) € XxY. Every two given morphisms
f and ¢ will correspond to the mapping k(z) = (f(2), g(z)), ¥z €

Let us prove that py € Morgpriry(X x Y, X). For each point (2y. yy) €
X x ¥ it follows that Xopx(xe. wo) = X(xe) 2 X(xo)AY (yo) = X x¥Y (2q, o).
The same way one can prove that py € Morger (X x Y. Y).

Now let us prove that b € Mor gir(g){Z, X x ¥'). For each point 2o € Zit
follows that X x Yoh{z) = X xY (f(zp), g(z0)) — Xof(z)AY og(zg). The fact
that f and ¢ are morphisms implies X ¢ fi(zp) 2 Z{z0) and Y o g(z¢) = Z{z).
But then X o f(zp) A Y 0 g(z0) = Z(z) and h is indeed a morphism.

One can easily verify Lhat ihe above-mentioned diagram really commutes.
‘1I'he necessary product of objects is found.

Now let us consider coproduct of objects.

5.2. Coproducts of objects

Suppose we have two arbitrary objects X.Y € 0bjSET(L). We will
try to find their coproduct denoted by X =Y. According to the definition we
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have to find such an object X Y & 0bjSE1T(L) and such two morphisms
gy € MorSET(L)(Xv xXo Y) and qyv < HOI‘SET(L)(}'F. X3 }’) that for each
cbject Z € ObjSET(L) and every two morphistns f € Mor sprry (X, Z) and
g € Mor gprry(Y. Z) there cxdsts a unique morphism £ € Mor g (X &Y. &)
such that the diagram

/N

Firstly we will construct the object X &Y. Let",i:_-i\gi;’ = f(_U Y. One can
easily assume that X (Y = @, otherwise the sets X x {1} and ¥ x {2} can be

commutes.

used instead of the original ones. The mapping X =Y : X &V — L will be as

follows:
X =y(a) = X(J) .'L'E{i,
Yi{z), €Y.

Then the necessary mappings ¢x and ¢y will be such that ¢gx(x) =z, Vo < X
and gy (y) =y, Yy € Y. Every two given morphisms f and ¢ will correspond
to the mapping

iy
Al
Il
p——
D
—
&
-
8 R
m
B

It is clear that gy € Mor SET(L)(X~ X Y) and gy € Mor g, (L)(Y. X% }’)
Let us prove that & € Morggriny(X =Y. Z). For cach point g € XoY it

follows that either zp € X or xg € ¥. Suppose 2o C X. Then Z o kirg) =
Zo flxe) = X(zo) = X = Y(zq). The case xp £ Y is the same. But then £ is

indeed a morphisin.

It is casy to verify that the above-mentioned diagram really commutes. The
necessary coproduct of objects is found.

Now let us turn to product and coproduct of morphisms.

5.3. Products and coproducts of morphisms

Suppose such four objects X;,Y) and X,. Y, from the category SET{L}
are given that the sets Mor SET(L)(XI'- Y']) and MOISET(L) (X_g, }g) are not
empty. Let us choose an arbitrary morphism f € Mor gpey(1,(X 1. Y1} and an
arbitrary morphism g € Mor spr(r) (X2, ¥2). Then the following diagram can
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be created.

Xy e PO X1 x X; 2 X;
! Lopy, ko 9o g
4 \
¥ Y1 =¥, ¥y
by, Py,

The definition of product of objects in the category SET(L) implies the exis-
tence of a unique morphism A = f x g,

fxogler, za) = (flz) glae)). V{z,. 22) e X x ¥
which makes the diagram commutative and therefore is the product of mor-
phisms f and g.

If we will use Xy T X, and Y7 2 Y5 instead of X x Xy and Y7 x ¥, then we
will get the following diagram.

X, 9%, X1 5 Xpe—m— 2 %,
\ ! //
f mqo{\\ K gy g
\\\ M /
Y1 - Y, Y, - Yo
qy, 4y,

The definition of coproduct of objects in the category SET{L) implics the
existence of a unique morphism & = f & g,

fw), weX
g(z). =€ X

f@g(ﬂf)={

which makes the diagram commutative and therefore is the coproduct of mor-
phisms f and g.

In the following section we will consider two last standard constructions
pullback and pushout.

5.4. Pullbacks and pushouts

We will start by considering pullback in the category SET(L).

Suppose such three objects X, Y, Z € 0bj SET(L) are given that the sets
Mor gporiry (X, Y) and Mor sprypy(Z, Y) are not empty. Let us choose two ar-
bitrary morphisms f € Mor gpp(X. ¥} and g € Morgpr(1,{Z. ¥'). We will
try to find a pullback for these morphisms. According to the definition we
have o find such an object ¥V € GbjSET{L) and such two morphisms py €
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Mor ser(ry (V. X) and pz € Mor gy ¢y (V. Z) for which gepz = fopx that for
each object U € 0bj SET(L) and every two morphisius hx € Mor gy (1) (U. X)
and hz € Morgpy(,(U. Z) for which go hy = fohy there exists a unique
morphism b € Mor ey (L, V) such that the diagram

53
h hz
NI

V VA
by Pz
\ Px g
X Y

commutes.

Firstly we will construct the object V. Let XxZ >V = {{x, 5} |r e X. ze
Z and f(z) = g{z)}. (Notice that in case of ¥ being an empty set the only
object I/ which has the required morphisms Ay and Ay is the object V' itself.
i.e., U — @, otherwise there exists some ug € U such that fohx{up) = gohz(ug)
and therefore (hy (ug), hz(ug)} € V. Obviously there exists a unique morphism
h € Mor gprepy{U. V) which makes the above-mentioned diagram commute.)
Let V(z, z) = X(x) A Z(z), ¥(x.2) € V. Lhen the necessary mappings py
and pz will be as follows: px(x.z) = 2 and pz(x.z) = z, V(z, z) € V.
Every two given morphisms Ay and bz will correspond to the mapping h{u) =
(hx(u), hz(u)), Yu e U.

Let us prove that px € Mor ggrz, (V. X}. For each point vp = (x¢, 20) € Vv
it. follows that X o px(w) = X ¢ px(xo, 20) = X{(xo) 2 X{zo) A Ziz) =
V(xg. z0) = V(z). The same way one can prove that pz € Moz g, (V. Z).

Now ler us prove that h € Morzgrr,(U. V). For each point up € U the
point h{ug) = (hx(uo}. hz (1)) certainly belongs to ¥ becanuse of fehy(ug) =
gohz(ug). Then V s h{up) = X o hx(ug) A Z 0 hy{ug). The fact that Ay and
hz are morphisms implies X o hy(uo) 2 Uluy) and Z o hz(ug) 2 U(ug) and
then X o hx{up) A Z c h (ug) = U(wg) therefore h is indeed a morphism.

It is sasy to verify that the above-mentioned diagram really commutes. The
necessary pullback is found.

Now let us consider pushout in the category SET(L).

Supposc again we have such three objects X, Y. Z < 0bj SET{ L) that this
titne the sets Mor gpriry(Y, X) and Morgpy(r (Y, Z) are not empty. Let us
choose two arbitrary morphisms feMor g1, (Y. X} and geMor ggr1y (Y, Z).
We will try to find a pushout for these morphisins. According to the definition
we have to find such an object V' € 0bj SET(L) and such two morphisms
gx € Mot SET(L)(X: V) and gz € Mor SET(L)(Zs V) for which gy 09 = gx ¢ f
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that for each U & 0bj SET(L) and every two morphistus by € Mor gy (X, U
and hy € Morgpryr)(Z, U) for which hyz o g = hy o f there exists a unique
morphism k € Mor gy zy [V, U7) such that the diagram dual to the diagram of
pullback comnutes.
For simplicity we will assume that f and g are injeclive.

) F irstly we wi_ll construct the object V. Let V = V) U v, u Vs where V7 -
X\F(Y), Vo = Z\g(Y) and Vo = {v|v = (f(y). g{y)). ¥ € Y}, besides that
¥V, MV, =@. i+ j. The mapping V" will be such that

X (’U), T 1}1

Vi{r) = ¢ Z{v). v ey
X(u)V Z(ua), v - (v, w) € Va.

Then the necessary mappings ¢y and gz can be defined in the following way:

{x, x e X\f(Y)

W= o — (g0 f ), e F(T)

-y

s S Z\g(Y)
gz(z) = {?'_: =(fog'{z), z), zcg(V)

Lvery two given morphisms hy and hy will correspond to the mapping

oy

Ax (1), veW
k(vy = { hy(). veVy
hx(t) = hz(r2). v =(v1, 1) € Va.

Let us prove that gx < Morggy (X, V). For each point 2 € X it follows
that either 2 € X\f(Y) or o € f(¥). Tf ¢ € X\F(V) then V o gx(z0) =

Vien) = X(xo) and if 75 € f(¥) then Vo gx(ry) = V{zo. go f 2g) =
Xiag)vYogo f~Hx) 2 X(rg). Therefore gqx is indeed a morphism. The

samc way one can prove that gz € Mor gpr(ry(Z, V).

Now let us prove that & £ Mor semr)(V. U). For each point vg € Vit
follows that either vg € V] or g € Vaor vg € Vi, If vg € V) then U ¢
k{vg) = U e hx(rg) = X{uvg) = V(vg). In casc of vy € V3 the same way we get
U o k(vg) 2 Viv), whereas g = (vyg, vp) € Vs it follows that U o k{vo) —=
Ushx(vig) = Uchglvy). From Uchx(vie) 2 X(v1g) and Uohiz(vag) = Z(vag)
we derive that U o k{vg) 2 Xivie) V Z{va) = V(vg). Therefore & is indeed a
morphism.

It is easy to verify that the above-mentioned diagram really commutes. The
necessary pushout is found.

As the beginning we have supposed that f and g are injective. If they are
uot then all the reasoning will be slightly different. For example the set 15
will be Vs = {u|v = (V. Vz), Vx € X, Vz ¢ Z} and then for cach vy € Va
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Viw) = (V“mg—/,‘—\_-‘:X(vm)) v (une‘-;;‘-;-'Z(-c-zn)) therefore the lartice L must be

complete. The mappings ¢y and g will be the following:

[ T, e -
ax(z) = {t, = (Vy. Vz), z € f(V)

dr(s) = {:\ € D\g(Y)

n = ({;, i:;:l zC Q(Y)
And lastly if v ¢ 17-2 then }il('UO) = h,\'('ULD) or k(voj = hz{va) where vy

and g arc arbitrary points from accordingly Vx, and Vg,. All the rest is
similar to the case when f and g are injective.
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Dazas piezimes par kategoriju SET(L)

Kopsavilkums

Darba ir apskatitas dazas fikseta rezga L L-vertigu kopu kategorijas SET(L) ipagtbas.
Ir atgadinéta tas definicija un aplikoti daZl specidli objekti un morfismi. ka ari dazas
universalas konstrukcijas (piem., ohjektu un morfisruu reizinajums un koreizinajums)
gaja kategorija.
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We introduce a topological-tvpe structure on FT~subsets of L-valued sets and con-
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Introduction

The aim of this paper is to introduce the concept of an L-valued L-topological
space, which is a certain synthesis of the concept of an L-{fuzzy) topological
space in the sense of Chang-Goguen 11, [3!, the concept of an L-subset of a set
6]. [2] and the concept of a many-valued set in the sensc of Hoble [4]. To do
this we start with the concept of an L-subset of an L-valued set studied in our
previous paper 5 which in its turn is a synthesis of the concept of an L-subset
of a set in the sense of Zadch-Goguen [6], [2] (that is a mapping 4 : X — L)
and the concept of a many-valued set in the sense of U. Hohle [4] (\hat is a
usual set X equipped with the so called many-valued equality £: X x X - L}.
In the same paper [5] we introduced the category L-SET(L) of L-valued L-scts
and investigated some properties of this category.

As it was said above, in this paper we introduce the concept of an L-valued
L-topological space which is actually an L-subset of an L-valued set endowed
with a naturally defined topological-tvpe structure. Such spaces and natu-
rally defined continuous mappings between them form a category L-TOP(L).
We study some properties of this category. In particular, it is shown that L-
TOP(L) is a topological category both over I-SET(L) and over the Goguen’s
category L-SET of L-sets with respect of the forgezfull functor.
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To make the paper to some extent. self-complete, we start with swo prepara-
tory sections: Section 1. prerequisities. where basic notions used in the paper
are recalled, and Section 2 mainlv containing basic definitions and results from
our previous work [5

1. Prerequisities

1.1. GL-monoids Let {L,<,A.V) be a complete infinisely distributive lat-
tice, Le. (L, <) is a partially ordered set such that for every subset 4 © L the
join Y/ A and the meet A A are detined and (V A)ra=V{aeArn|ae A} and
(Ad)va=Aava|ac A} for every o € L. In particnlar, \/ L -=: 1 and
AL =: D are respectively the universal upper and the universal lower bounds
in L. We assume that 0 # 1. i.e. L has at least two elements.

A GL- monoid (see e.g. 4]) is a complete infinitely distributive lattice
enriched with a monotone, commutative and associative binary opcration =
such that

l.asl=acandax0=0forall a ¢ L;
2.0V, 3) = V,la*8;) YacL v{3:jcJ}cCL:
3. If a < 3, then there exists v € L such that o = 3 = .

It is known that every ¢ L—monoid is residuated, L.e. there exists a further
binary operation © — * {implication) on L satisfving the following condition:

axJ<n —=a<(I—7) Ya.,3,v€ L.
Explicitely implication is given by ¢ = 3 = VA e L|a* X < 3}
1.2. L-valued sets Following U. Hohle (¢f. e.g. 4]) by an L-valued sef

we call a pair (X, E) where X is a set and F is an L-velucd cguelity. 1.e. a
mapping £ : X x X — L such that

(teq) E{z.x)=1
(2eq) E({x.y)= E(y.x) VYa,ye X;
(3eq) El{z,y)=(E(y.y) — E(y.2)} < E{z.z) Va.yze X
A mapping f: (X.Ex) — (Y. Ey) is called cetensional if
Ex(z.a’) < Ey (f(z). f(z)) Vz.2" € X.

Further, recall that an L-set, or more precisely, an L-subset of a set X is
just amapping 4 : X — L. In case (X.E) s an L-valued set, its L-subset 4 is
called extensional if

\ Alx)<Blr.a) € A(x)) vi'e X

TEXN
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2. On the category L-SET(L)
Let I be a fixed GL-monoid.

DeriNiTioN 2.1, | L-valued L-set] [3]. Let X be a set and A be its LZ-subset.
An L-valued equality on A is a mapping E : X x X — L. such that

1. E(x,r) = Alx);

2. E(z.y) < Aiz) A Aly) forall z.y € X;

3. E(z,y) = E(y.7);

4. E(x,y)* (Aly) - - E(y,z)) < E(z,2) forall x,y.z € X.

The triple (X, A. E} is called an L-valued L-set.

REMARK 2.2. Notice. that if £ : X x X — L is an L-valued equality then
defining A : X — L by A(z) = E{z.x) for all + £ X we obtain an L-valued
L-sot {X. A).

DeFIxIrtoN 2.3. [5) By a mapping f from an L-valued L-set (X. 4. Ex) into
an L-valued L-sct (Y, B.Ey) (in notation f : (X, A, Ex) — (Y. B, Ey)) we
call & mapping f : X — Y such that A(x) € B(f(z)) and Ex(r.2") <
Ey{f(«) f(£).

If Ff:(X,A.Ex) > (Y.B,FEy)and g: (Y.B.Ey) — (Z,C.Ez) arc map-
pings of the corresponding L-valued I-sets, then obviously their set-theoretic
composition is a mapping go f: {X, A, Ex) (Z.C, Ez) of the corresponding
L-valued L-sets. Besides, the identity mapping idx : X — X can obviously he
considered also as the identity mapping id; v a g,y 1 (X A Ex} — (X, A. Ly).
From these observation we get

TneEoREM 2.4. L-valued L-sets and mappings between them form o category.
This category will be denoted L-SET{L).

THEOREM 2.5. Given a family € = {E; ' i € I} of L-valued equalities on an
L-set (X.A), let g : X x X — L be defined by Ey(z.y) = A{E (e y)1i 2T}
Then Ey is an L-valued equality on (X, A).

Proof: The validity of the first three axioms of an L-valued equality on (X, 4)
for Ey is clear. The validity of the fourth axiom follows from the next chain of
{in)equalities:

Ey(r.y) = (A(y) — Eoly. 7)) =

/\ (Eiez(r.y)i= (Aly) = /\[Evez(y-i))) <

€T icT
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< N\ Bzl y)) » (A(y) — \(Eiezly.2)) =

= ez

= A(Eezlz)) > A(AQW) -+ Eerly, ) <

ieT i
< N (Biez(z.v)) + (Aly) = N(EBiez(y.2)) <
e T i€T
< N(Eiez(x,2)).
it T
Frow the previous theorem we have
COROLLARY 2.6. £{X. A} is a complete lattice. [ts bootom clement is F, de-

fined by E.(x.v) = 0ifu #yand E(x,x) = Alx) for ol 2,y € X, and ils
top element is E* defined by E™(x.y) = Alz) A Aly) for all w,y € X.

Now we can construct initial and final L-valued equalities on L-sets for a
given family of mappings. Consider any family of mapings

F={fi:(Xs.ALE) — (Y.B)}.
We start with the case when the family F consists of a single mapping

fi(X.AE) - (Y.B).

Let £5 be the family of all such L-valued equalities £; on (Y. B) for which f :
(X,AE) — (Y.B.L,) is a morphism in L-SET(L). Then applving Theorem

2.5 we know that

FIEY = N& = NIEJE; € &}
is an L-valued equalitv on (Y. B). Besides it is easy to notice that f :
(X.A.F) - (Y,B. Fy) is a morphism in L-SET(L) and that Fj is the weakest
of all L-valued equalities with this property.

Coming now to the general casc of the family
F={fi (Xs 4. Ey) — (Y, B)}.
let fi{E;) be defined as above and let
Ey = \/ filE.)
ieT

be the supremum of this family in the lattice £ of all L-valued equalities on
(Y, B}. Then, obviously Ey- is exactly the final L-valued equality on (Y, B) for
the family F.

We consider now the dual problem. namely the initial I-valued equality for
a family of mappings. Explicitely, let F = {f, : (X.A) — (Y. B,. E)} i« I}
be a family of mappings. Our goal is to find the initial L-valued equality on
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(X.A) for this family, that is the largest L-valued equality £ 4 on (X. 4) for
which all f;: (X. A, Ea) — (Y,. B,. E;) are morphisms in L-SET(L).

Again, we start with the case when there is only one mapping in the family

F:

F: (X, A) = (Y,B.E).
Then we define f~'(£) := F; by the equality:
Ef(zy,x2) = E{(f(%1). f(z2)) V21,22 € X.

It is easy to see that Ey thus defined is an L-valued equality on (Y. 12} and
besides it is the largest one for which the mapping f: (X. A, Ef) — (Y. B. E)
is a morphism in L-SET(L}.

Coming now to the general case of a family
Fo={fi:(X.A) — (Y. B,E) i€T},
we define Er = f; '(E;) as above. From Theorem 2.5 it follows that
Ea:= /\ Eyp,
icT

is the largest one of the L-valued equalities on (X, A) for which all f; :
(X.A. Ea) — (Y,.B,. E,) are morphisms in L-SET(L). Thus E4 is the initial
L-valued equality for this family. From here and, taking into account Corollary
2.6, we obtain the main result of this section:

THEOREM 2.7. Calegory L-SET(L} is topological ovcr the category L-SET.

The existence of initial L-valued equalities guarantees that the operation
of product is well defined in L-SET(L) while the existence of final equalities
guarantees that the operation of co-product is well defined in this caregory.
The details of definition of these operations arc left to the reader.

3. Category L-TOP(L)
3.1. Basic definitions

DEerINTIION 3.1. By an L-valued topology on an L-valued L-set (X, 4. E) we
call a family of L-subsets v = {l/; € 7:¥i € I} ofX. such that U, € AVig ]
and

l.0erAeT;
2. o Vi3 e VU, Ujer, thenlU; AU; €7y

3. if YicI,YU;erthen \/_ U, €7

H=3)
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4. W Viel Vil er Uy E{x. 2"y < Uilz’y Vo, 2 = X.

The quadruple (X, A, E.7) is called an L-valued L-topological space.

REMARK 3.2. The fourth axiom means that every L-subsct of an L-set A from

the family 7 satisfies the extensionality tvpe condition with respect to the
L-valued equality E on {X. 4).

DEFINITION 3.3. By a continuous mapping from an L-valued L-topological
space (X A FEa,74) into an L-volued L-topological space (Y,B,Ep,T5) we
mean @ mapping f: X — Y such that

1. Alz) < B{f(x)) Vx € X;
L Ex(z.2") € Ev(f(x). flz")) Vea' € X;

3 YV erg = fTYV) € ra

%t

Since composition of continuous mappings is obviously continuous and the iden-
tity mapping f : (X, A, Eq,74) — (X, A, E4,74) is continuous, we obtain the
following

THEOREM 3.4. L-valued L-topologicul spaces as objects and continuous map-
pings betweern them as morphisms form a category. This category will be denoted
L-TOP({L).

3.2. The lattice of L-valued I-topologies. Final and initial structures
in the categoty L-TOP{L) One can easily prove the following

THEOREM 3.5. LetT be a family of L-valued L-topologies on an L-valued L-set
(X.A E). Then T is a complete lattice. Its top element is L-valued L-topology
= L"é consisting of all extensional L-valued L-subsets of A, and its bottomn
clement is the L-valued L-topelogy 7o = {4, 0}.

Consider a family of L-valued L-topological spaces {(X,, Ay, E5, 7} i € T},
an L-valeud L-set (Y, B. Eg) and a family of mappings

D= {f? : (.X;‘.Az',E.i.’Tz‘) —r (Y B._ EB)}

Our aim is to find the final L-valued L-topology for this famnily. We start with
the case when the family ® consists of a single mapping

f 4 (){, A. EA,‘T_.;) i (Y, B, EB).
Let L be the family of all extentional L-subsets of (Y, B, E). and let

Tg={VeLB|fHV)cra).
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Further. let an L-valued L-topology 75 := f(74) be defined by I’y as a subbase.
It is easy to notice that 7 is the smallest L-valued L-topology on (Y. B, E;),
such that the mappig f is a morphism in I-TOP(L) and hence it is final for
this mapping. Consider now to general case of

D= {f'l : (-Y,‘, A:t.-Ei~,T1‘) —* (Y,B,EB)}

Let for cach @ f(m;) be defined as above. then the subbase of final L-valued
L-topology 75 on (Y, B, Eg) will be defined as a join of all L-topologics Ty =
Lier f{7,)in the lattice of L-topoloies. Again, this is the smallest L-valued L-
topology on (Y, B, Ep). such that all mappings f; are morphism in L-TODP(L).

We consider now the dual problem, namely the initial L-valued L-topology
for a family of mappings. Explisilv. let

@ :={f:(X.AEq) = (Y Bi, By, 1)}
be a family of mappings from an L-valued L-set (X, A. E4) into L-valued L-
topological space (Y;. B;. Es, ;). Our goal is to find the initial L-valued topo-
logical space for this family. Again we start with the case when there is only
one maping in the family &:

F (XA EN—- (Y, B E.1).
The initial L-valued topology 74 = Ff~'(mg) on (X, A, E,) is defined as
[~Yrg) = {U = f~4V), where V € 75}
Consider now a family

S:={f:(X.4,Es) »(Yi. By, Ei. i)}

Let f~'(7p.) be defined as above, then 74 will be construet from subbase
Ty = J ')
igf

Thus we have established that both final and initial L-valued L-topologies
for a family of mappings exist in L-TOP{L}, and, moreover gave an explicite
way how they can be constructed. From here it follows that both products and
co-products and moreover, an explicite way of their construction is presented.
Besides from here and, taking into account Theorem 3.5, we obtaiu the following
fundamental result:

T'HEOREM 3.6. The category L-TOP(L) is topological over the category L-
SET(L) with respect to the forgetful functor

§:L-TOP(L)— L—-SET(L).
Further, taking into account Theorem 2.7, it follows

COROLLARY 3.7. The cateqory L-TOP(1) is topological over the category L-
SET unth respect to the forgetful functor

&:L-TOP(L) — L - SET
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Dazas piezimes par L-vertigu L-topologisku telpu kategoriju
Kopsavilkums

Darbi ir definéts L-veértigas L-topologiskas telpas jedziens, kas visparina L-
topologiskas telpas jédzienu Canga-Gogéna nozimeé daudzvértigas kopas gadijumam.
L-vertigas L-topeologiskas telpas un dabiski defineti 3o selpu nepartraukti attelejumi
veido kategoriju L-TOP({L). Ir pleradits, ka ST kategorija ir topologiska virs L-vertigu
L-kopu kategorijas. L-SE'T(L), kuru més definéjam iepriekieja darbé
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We consider solutions of the boundary value problem
' = f(t,x), =0 ==z(1)=0, feC'([0.1]x R.R)

wilh respect to their types. The type of a solution £ is defined via local oscillatory
behavior of neighboring solutions and in the first approxitnation can be described in
terms of the respective equation of variations y" = f(t. £(¢)). First we study quasi-
linear equations with a linear part &” +k*x = F(¢, r) provided that £ is bounded. We
show that the boundary valie problem for quasi-linear equation has a solution £ such
thal the respective equation of variations oscillates like the lincar one = + &%z = 0.
We rewrite the original equation in the form ' + k%x = k% + f{¢.z) for various k?
and provide conditions for a priori boundedness of solutions of the madified problew.
Multiplicity results are established and illustrative examples are analvzed.

Key words: Types of solutions, multiplicity results. nonlinear boundary value prob-
lems. Schauder principle, a priori bounds, quasi-linear equations

Mathematics Subject Classification (2000): 34B15

1. Introduction

In this paper we consider the boundary value problem
" =flt.x), tel=|[0,1, (1)
z{0) =0, =z(1)=0, (2)
or such problem for an equation with a linear part
" k% = f(t, ). (3)

Function f is supposed to be continuous together with the partial derivative
frin (t,2) € T x R. Then auy extendable to the interval I solution £(¢) of
equations {1) and (3) (and that of the related boundary value problem) can be
described in terms of the variational equation

v’ = f ()Y {4)
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or, respectively,

v Ky = f (L E). (5)

DEFINITION 1. We will say that a solution £(t) of the BVP (1). (2) (respec-
tively. (3). (2)) has index 7. if a solution y(t) to the Cauchy problem (4),

y(U) =0, yl(O) =1 (6)

(respectively. (5), (6)} either has exactly 7 zeros in the interval (0,1].
or it has exactly ¢ zeros in the interval {0.1) and (1) = 0.

Consider the examples. Suppose that r(x} is continuously differentiable
function such that s(x) =1 for z| <1, w(z) =0 for |z| > 2and 0 < k(x) < 1
for 1 < |«] < 2. The nonlinear boundary value problem (with bounded right
side)

_y
e — (5) k(x)r, z(0)=0, 2z(1)=0 (M
has onlv the trivial solution £(t) = 0 and the index of £ is zero, since the Cauchy
probhlemn
I 7?2 '
' == (3) v w@=0 ¢ =1

2
i

has the solution y(t) = = sin 52, which has no zeros in the interval (0.1].

T'he trivial solusion of the quasi-linear problem

T."+(3;)2;—5(3;)((%’)zm—@*)gm): #0)=0. #(1)=0 (&)

has index 2 sinee the Cauchy problem

y'=- (?) vy =0, y(0)=1

has the solution y(t) = = sin (%t) . which vanishes twice in the interval (0.1)

]

and is not zero at ¢t = 1. It follows from the results below that this problem

3r 2
has also a solution of index one, induced by the linear part =" + (377') z of the
equation.

ReEMaRK 1.1. The above definition suits for the purposes of this paper. How-
ever, one might thiuk of a solution £{t) of the boundary value problem {1),
{2) such that a respective y(t) has its i-th zero at t = 1. Then either index i,
or index ¢ + 1 can be assigned to £(t). Let us mention that we use the above
definition in contexts which do not allow for ambiguities.

Our intent in this paper s to study quasi-linear boundary value problems
with respect to solutions of different indices. We show that the linear part
in {3) has influence on the index of possible solution. If different linear parts
can be extracted from some equation of the form (1). then the boundary value
problem (1), (2) admits multiple solutions.
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We mention several papers on the relevant subject, namely, [5. 6. 7, 9].

Tt was shown in [B], for example, that under certain conditions the BVP (1),
(2) possesses a solution £(t) such that the equation (4) is disconjugate in I.
Recall that the linear second order equation is called disconjugate in some
open interval, if the only solution with more than one zero in this interval, is
the trivial one. In the terminology of Definition 1 a solution £ has index zero.

2. Quasilinear boundary value problems

Consider the problem
"kl = f(i.x), (9
z{0) = xz(1) =0, (10)

where the following conditions are satisfied:

(A1) f ¢ C(I x R,R) and f, € C(I x R.R);
(A2) sup{/f{t,z)]: 0 <t <1, —x <u < +x} =M < tox:
(A3) the coefficient & belongs to one of the intervals

(0,7), (m2x), ..., @G¢, i+ 7). .. {(11)

Since & # wi, the problem (9), {10) is non-resonant, that is, the lincar
homogeneous BVD ‘
o+ k' =0, (12)
{10) has only the trivial solution and the respective Green function Gi(t. s)
exists.

LemsaA 2.1, The Green function of the problem (12), (10) is given by
sin k(s —.l)-smkt G<t<s<l,
ksink ' ' .
Gylt,s) = (13)

smk(t—.l)ﬁmks’ Des<t<i
ksink

and satisfies the estitnate

1

Tt sy <y = ———
[Glt-s) < T =

(14)

LesmMa 2.2, A sct S of all solutions of the BVP (9), {10} is non-empty and
compact in C[0,1]).

Proof. Rewrite the problem (9), (10} in the integral form

1
z{t) = /Gk(t,s),f(s.:c(s))ds.
o
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where G}.{t,s) is the Green function given by (13). Consider the mapping
T:C() — C{I) given by

J..
_ / Gult ) f(s.x(s)) ds. (15)
0

In order to show that T is comnpletely continuous consider the ball By - {2 «
CI) - |z]] £ N} One has, by virtue of the condition (A2) and {14}, that

| oM ,
HTe) (W)l < m =T%-M (16)

for anv x € C'{I). Choose N so that
Tp-M <N (17)

Then T(Byx) C By
Let us show that the Arzela - Ascoll criterium is verified and T(Bx) is

therefore a compact sct. Uniform boundedness of the set 7' (B ) follows from
{16.) To prove equicontinuity take € > 0. Let us find & > 0 such that
(Tuw){tz) — (Tx)(ty)] < <,
if [t — ) < &, for any functions (T2){t) € T(B,). One has that
|

KTx)(ta) — (Tu)t), / (Grlts. s) - Gelty. ) f(s.2(s)) ds

< M- '/‘[‘G ta, s C;\[fl 9))

It follows from (13) that

1
k x —t t ta
‘./(Gk(f‘_’--‘i)_Gk(fl:s))dh‘ = Im 91113 smk 5 L sin (k ]—g = —
0
= %7 sink| 2 Tk sinkl 2T
whoence 2AL |ty - b
(1a)(ts) — (Ta)(h)] € 22 13
(1)) = i) £ = (13
‘Thus the appropriate choice of é for a given £ > 0 is
-1k -sink

2M
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[t follows from the arguments above that there exists a fixed point £ = 2(t)
of (15), which solves the boundary value problem (9). (10). Notice that a fixed
point r satisfies the estimate

lzx (2]l 7y < T M.

LEmaa 2.3, A set S is compact also in CH(I).

Proof. Consider the integral equation

1
20— [P s, 2(0) s
[H]

and verify that the Arzela  Ascoli criterium is fulfilled for the set 8" = {2(¢) :
z € S}. Consider the ball By, = {z(t) € C'()}: |xc(t)| iy € N} We Lave
from (13) that

sink(s — 1) - cos kt

0<t<s<].

9C (1 sin k ’ =
X cosk(t — 1) -sinks D<s<t<
. ™~ N
sin k - T T

and
max [ {) <
[0.1] ‘ (} -
i t

< fs-inlfk ‘ (I[Iéf}}]n/cos k(t—1) sinksds

; f
/('05 kt-sink(s — 1) ds )

HE '

4+ 1ax
(0.1

Af ( —coskt + 1 N -1+ cosk(t — 1)‘) < 4.7
= |sink| \, k ‘ k ~ k- |sink|
Then

4. M

g .ft <
ma:\|1()|_k‘

{21}
j0.1]

sink|’

It follows from (16) and {21} that

L)) cry = mas(E(E), + masl(6), €3 T M

Thus £{By) ¢ By, if N =5-T-M. In order to show the compactness of the
set T(B3) in C'(I) let us prove the equicontinuity of the set of derivatives of
functions y(t) = {Tr)(¢).
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In order to estimate the difference jy'if:} — y'(t)]. one has
Y (h2) -y {11)] €

t 1

:u

\
M
ey lj(osk {to — 1) -sinksds + j cos kty - sink(s — 1) ds—
D
t 1
- / cosk(t; — 1) -sinksds — fcos ktq-sink(s — Dds| = (22)
0 L3
JM k o k(ts - fl)l k(teg + 1t — 1)
T |ksink } 3 2 I €08 2 =
2M
< [t — ¢
T | sink]| 2 !
Sot -
6 =5 | sin &| (23)

271

and choose the minimal of 4 and d; (defined by (19) and (23) respectively),
that is
~iksinkl = sink

0" = ; .
min{ay o)
If {f2 — t1| < 8™, then both inequalities
[(Ta){tz) — (Tx)(tr)| < 2. w'(t) —y'(t) <=
hold for any function y € T(BY) and this proves that T(Bg) ¢ CYI) is
equicontinuous. 0

LumMa 2.4, All solutions of (8) ere extendable to the intervel 0.1 and are
winquely defined by the dnitial data.

Proof. The first assertion follows from (A2). Notice that since the continuous
partial derivative f, exists, equation (9) satisfies the Lipschitz condition in any
compact subdomain of [0.1] x B. Then solutions of (9) are uniquely defined by
the initial data and contiuucusly depend on the initial data. |

LEMMA 2.5, There are elements 27(t) and 1.(t) of S, which posscss the pro-
perties:

<'{0) = max{s'(0) : = € S}

r. (0 = min{z'(0}: = € §}.

Proof. If § consists of ene element x then z° = z, = z. If § contains as
most finite number of elements, then the assertion is obvionus. Suppose that
there arc infinitely many clements in S. Since § is compact in CY(I), the set
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Sy ={z'(0) : x € S} is bounded. Then there exists sup §;. Consider a solution
a{t) of (9). which is defined by the initial data

2(0) =0, {0} =supS.

By definition of sup there exists a sequence {z,} of elements of S such that
o (0) — 27{0). One can prove. using the compactness of S, that £ € 5. Thus

*

" = I
The proof for z. is analogous. d
Denote by x(t: o) a solution of the Cauchy problem (1) {or (3)).
() =0 2’ () =a. (24)
Consider equation (9) with the initial conditions (24).
LEMMA 2.6. Suppose that k in (9] satisfies
in < k< (i +lm

for some 1 =0,1..... Let £(t) be any element of S.
Then for o — Loc the difference u{t; o) = x(t:ia) — E(t) has exactly { zeros
m the itervel (0,1) and w(l:a) # 0.

Proof. Notiece that both «{t:e) and £{t) satisfy equation (9). Then vt n) is a
solution of the initial value problem

u” + kPu = f(tz(t)) - f(t 51,
w(0) =0, w'(0)=a- - £(0).

Introduce a new variable » by v = n+¢"((J) Then v{t; «) satisfies
v e L) = (L&) o5,
a—£'(0) ’ '

#(0) =0, o' (0)=1.
In view of {A2) the right side in (25) tends to zero if &« — =oc. Then by
continuous depeundence on the right side v{f:a) tends to a solution of the ho-
mogeneous initial value problem z” — &%z = 0. z(0) = 0. 2°{0) = 1. Since (#:a)
and u(t: ) have the same zeros. the assertion of lenuna follows. a

LEMMA 2.7. Suppose the conditions (Al) and (A2) are salisfied. Let £(t) be
any clement of S.

Zeros L (o) of the function w(f: o) = x(t: a) — £(t) are continuwous functions
of o in intervals of existence. If for some ap # §'(0)  ult:ay) =0, then the
respective 2(t.ap) € S.

Proof. The frst assertion follows from continucus dependence of solutions of
(9) on initial data and from the fact that u(t:a) cannot have double zeros.
Indeed. if this were the case, then x{t; ) = £(t) and x'(£; 0} = £'(t) at some
point t € I. Then ¢ = £, by the uniquenecss of solutions of the Cauchy problemn
for (9).

Suppose that u(t:ay) = 0 for some ag # £(0). Then x{l;a0) = E(1) =0
and hence x(t: ap) is a solution of the BVP (9). {(10). dJ
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3. Main results

THEOREM 3.1, Suppose that the conditions (A1). {A2) and (A3) are fulfilled.
Suppose that k in (9) satisfies

ir<k<(i— 1w

for some = 0,1.....
Then the both solutions x*(t) and x.{t). defined in Letnma 2.5, have index
i

Proof. Let £ := 1* € S. Consider the respective variational equation (5) to-
gether with the initial conditions (6). Let y(#) stand for a solution of (3), (6).
If the index of £ is not cqual to 1. then

either: (1) y(#) has less than ¢ zeros in (0, 1];

or {2) y{t) has more than ¢ + 1 zeros in (0, 1].

Consider the difference u(t: o). where a > {0}, In case (1) u(t:n) has at
most 7 — 1 zeros in (0.1). if a is close to £'(0). On the other hand, if n — +x¢,
then w(f; @) has exactly ¢ zeros in (0.1}, An extra zero appears, if o varies from
£(0) to —-oc, for some ag > €(0). Then, by Lemmma 2.7, z(t; ag} is a solution of
the BVP (9), (10}, Since 27(0: ay) = ap > £(0). this contradicts the definition
of &(f).

In case (2) w(t: ) hag at least i — 1 zeros in (0,1). Tf . — - oc. then u(t: a)
has exactly i zeros in (0,1}, An extra zero appears. if o varies from +oc to
£'(0). for some ay > £(0). Then the contradiction is oblained as above.

Proof for x, is similar. O

CoOROLLARY 3.1. If a solution 1 of the problem (8). (10), where in < k <
(¢ + V)7, 15 unique, then its index is i. If there are multiple solutions of the
problem (9). (10), then at least two of them have indices i.

THEGREM 3.2, Suppose that f in (1) satisfies the condition (A1) end there
erist k, such that
r<ky <{i; + 1w j=1..... e
the inequalities
l—k]. . JVIr;‘-J < ;'\"1‘-'
hold, where
1

= m. A"f;” = IHEL\C{ kfl“i’f(tl‘)\ 0 <t < 1. :E‘ < .)\rk’}.

I,
Then the problem (1). (2) hes at least m solutions &).. ... & such that the
index of £ 451,

Preoof. To be definite, consider the case of 7 = 1,2, 0 < k) <7, m < ky < 2.
Consider the quasi-linear equations

w4kl = sk ft ) {26)
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2" 4+ kyr = ga(T)kir - fito)l, (27)

where i, (x) are C®(I) functions such that ;(x) = 1 for |z < Ny . z;(2) — 0
for x| 2 Ny, +2; and 0 < ;(x) < 1 for remaining z (for construction of ;> see
Example 1 in the next section). The choice of £, will be discussed later. By
Theorem 3.1 the problems (26). (10) and (27}. (10) have solutions &, and £,
respectively. The index of & s zero and the index of £, is onc.

Let us show that £ solves the original prablem {1). (2). Denote the right
side of (26) by F) and set

My =max{|Fi(t.7)|: 0<¢t<l, —x <z < +x}]

Evidently. Ad; — M, as 21 — 0 and the inequality Ty, - My < Ny, holds for
some 7 > 0. A solution £; satisfies the integral equation

1
g(t) — /le(ts)ﬂ(s.{(s))ds
0

and therefore the estimate ||&] ¢y, < Ty, - M1 < Ny, holds. Since equation
(26} reduces 1o {1} on the set @y := {(t,2): 0 << 1. |& < Ny, }. & solves
also the problem {1}, (2). Its index with respect to equation (1) is zero. since
the equations of variations with respect to £; for she nonlinear equations {26)
and (1) on the set £ are identical.

A solution £, can be treated similarly. So both solutions £; and &2 solve the
problew {1). (2) and their indices are respectively zero and one.

We complete the proof by showing that & and &> are different solutions of
{1). {2). Consider the respective equations of variations

oF;

vt kly = E(L{l(f))y-
) OF;,
Y+ ky = 5= (L La(l)y.
which reduce to .
TR 25)
y = DI 151 Y, l\
¢
y' = %(Mz(t))y (29)

on the sets ) and 3. Denote by #y and 7y respectively the first zeros of
solutions y; and yo in the interval (0,1, where y, and y are solutions of the
Cauchy problems (28), (G) and (29}, (G) respectively. It may happen that ¢, =1
and 1, = | also. Suppose that & and £, are identical. Then £){0) = £5(0) =: ay.
Consider solutions z(#: &) of the initial value problem (1). (24). Suppose that
a > ap. We will show that z(1:a) > 0 for o close enough to ag. Indeed. if the
difference @ — g > 0 is small enough. functions «{t: o) solve the equation (26)
also. By Lemma 2.6. solutions «{¢: ) of (26), (24) for large values of n are
such that the difference z{t: @) — £:(t) does not vanish in the interval {0.1,. If
r{1; @) < 0 for some a > ap, then by the continuous dependence of solutions
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on initial data there exists a; > ap such that x{1; 0.} = ¢ and heuce x(¢; ¢y )
is a solution of the boundary value problemn (26), (2), which contradicts the
choice of £,(#) as a solution of the same problem with a maximal value of &/ (0).

Oun the other hand, one can show similarly, by analyzing the equation (26) in
some vicinity of £:(t), that solutions (¢ «) of the initial value problem {1). (24)
for o > g and close to ap satisfv the relacion x(1: @) > (1. The contradiction
obtained proves that £; and &5 arc different solutions of the problem {1). {2).

]

4. Examples and applications

ExaMpLe 1. Cousider the problem
2" = —p(rin’s. x{0) ==2(1) =0, {30)

where s(x} is a O function such that - is equal to 1 for |z < 1, 2 is zero for
] 2 2and O < p{r) < lforl <'er < 2,
For instance,

r 1. T:r! <1,
0. x| > 2,
P = CKP% 1< <2,
Lexp(x%ﬁé -2 << -1

The problem (30} has solutions of the form Asin 7t, where |A] < 1. Consider
solutions x(#; o) of the initial value problem

" = —g(r)r’z, z(0) =0. 2'(0) = a.
Let £1(ct) be the first zero of x(#:a) in the interval (0. +2¢). Obviously £;(a) =1
for |a| < 1. For |z| > 1 the function f(2) := z(a)7%r grows slower than the
linear one I(x) ;= =%x. Thus t;{cr) > 1 for yo' > 1. Since f{x) is equal to zero

for |z > 2. solutions z{t:a) for ja| large encugh do not vanish in the nterval
(0. ).

Evidently z™(t) = sinwt and x.(#} = — sinwt. Since
o) = m2pla) + n e (@) = n? for 2| <1,
the equation of variations for x*{¢} is y” + f.(z*(¢))y — O or simply
v+ 7ty = 0.

Therefore index 0 may be assigned to both solutions & () and z.(t) of the
problem (30).
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Examrerk 2. Consider the boundary value problem
" = o’ |rPsignz, z(0)=2{1) =0, (31)

where a >0, p>0. p# L
The equivalent problermn is

" k% = k%2 —of - |r|Psigne. 2(0) = r(1) =0, (32}

where & satisfios
in<k<(i+1)w

for some 7 (i = 0,1....). Detine
Fiu(x) := K’z - o |z Psigna.
This function is odd. Let us consider it for nonnegative values of x. Since
Fl{z) =k —o? - p-zP,
a positive point of extremum (maxirmum point for p > 1 and minimum point

for p< 1) xg is
o — ( K2 )r_ll
¢ = sz .

My = |Fi(zo)) = (%) i

Set

1

p=1]- aTEE
and choose Ny so that
V(t.r): 1201, jr| <Ny = |Fr)) < M.
A constant Vi can be computed solving the equation
Fi(x) = = Fi(1:0).
or. equivalently,

P

k2' 2.0 k'z ;’Jj—l =
ca—atr =(;) (l-p}-aTr

with respect to z. Computation gives

K ) ”T'l_‘,a.

2

e

a
where a constant 3 is to be found from the equation
F=3+(p—1) pTr. (33)

Equation (33) has a root 3 > 1 for any positive p.
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In order Lo apply Theorem 3.2 one needs to verify the inequality
T - My < Ny,

It can be written for the case under consideration as

1 By . 2 Ky
g () et < (55)7

To simplify calculations, take &k = %(Qn —1). wheren = 1.2,..... then |sink =

1.| The inequality above after simplification can be written as

k<3 peT (34)

p—1

Sinee ;3 > 1 and lini L 1 ..p_..+| = 4, the right side in (34) tends to x
Pl D —
as p — 1. The inequality (34) is satisfied therefore for arbitrarily large values

of k="1{2n—1).
S(en )

Computations show that for p < [0.5,1) L (1,2] there exist at least two

values of & 3
w ¥iy
k - - k‘ 2 —
0 2 3 1 2 7

which satisfy (34).
For instance, consider the problem (31} for p = 2. The function Fi(z) :

:I‘*'» i

k?r —a?z” has its positive maximum at the point 2g = k' .vanishes at @, .
. . . 2 L2
and a solution to the equation Fp{rg) = —Fg(x) is Nk - % . 57- Define

-4 - . T -
M = Fi(xo) = jT : ﬁ"f Consider the quasi-lincar equation
> 2
Y kT = fiiz),

where fi. = Fi for |z| < Ny and fi is sinooth. Evidently. fi can be constructed
s0. that tie estimate
sup |Filx)] < M 42

is valid for an arbitrarily small positive . The inequalisy Uy - iMy + 2) < Ny

wriles as
1 (lk“ ) L+v2 K
+e

k \1a? 2 a?

It is satisfied for kg = % and &) = % if £ 15 small, since

1+\/_

]

1 .
Zk-gﬁ:s().%é) kg = 2.978

and

—Ad 26,162 < ‘-}—2‘/—_.&- ~ 96.806.
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Therefore at least two solutions £ and £; of the boundary value problemn are
expected. the first one of index zero, and the second one of index one.

The trivial solution £ = 0 has index zero. A solution &;(t). which has

no zeros in the interval {0.1). attains its maximum at the point ¢ = % and
£1(}) = 6- 3. where Jp := J; & = 1.402. Onc has that
6J3 11794 U /3 26162
F: f = = Rz - < r?_hr J’LI = — _ o —
I[léfjﬁ{&( )= a? FOE T 2 ( 2 ) a?

PROPOSITION 4.1. For any p€ 0.5,2], p# 1 there erist at least fwo velues
T . .
of k of the form k = 2( n—1), n=1.2..., which sotisfy the inequality
(34).
Therefore there exist at least two solufions (of different types) of the problem
{31), which satisfy the estimates |xp(t} < Ny

PROPOSITION 4.2, For any positive integer m there exists = > O such that if
p # 1 satisfies the incqualities

—z<p<] -0z,
then k = Z(2n—1), n = 1,2,....m. satisfy the inequality {34). Thercfore
there exist at least m solutions (of different types) of the problem (31).
. 1 . . 1
Represent p in the form p =1+ - if p>1 orinthe formp=1- wh
: 5

if0<p=<1{(inany case s > (} ).

Caleulation shows that the number of appropriate values of k for the prob-
lemn (32) changes by unity if s changes by unity.
Indeed. if

12
1} s € [1: 2}, then p € ( o} 2] orpe o 3) and the appropriate values of k (those
which satisfy the inequality {31)) are
T 3
ko = — k —_ —
6= 5 RM=5
13 23
2) s€|2:3). then p e (5 5 0rp € 3 1) and the appropriate values of & are
T 37 hw
ko==. ki=—. ko=":
0Ty T M T

. 5 4 34
3yse 34).thenpe (1) §] orp e 'Z E) and the appropriate values of k are

3T

A AT
A?(): kl:? kz;T k\;‘——Q—

w
9 :

and so on.
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PrOPOSITION 4.3. If s € [mun— 1), n =1.2...., then there exist exactly n + 1
appropriate values of k of the form k= 5(2i - 1), i=0.1,....n

Therefore the problem {81) has n + | solutions xj, (¥} with wndices 1 =
0.1..... n, and these solutions satisfy the estimates |y, | < Ny,.
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Saudera princips un vairaku nelinearo robezproblemu atrisinajurmu
cksistence

Kopsavilkuins

Tiek petita robezproblema »’ = f{t.z), z(0) = z(l) = 0. Atrisindjuma tips
tiek definéte lincdra variaciju diferencialvienadojuma terminos. Ir apskatiti ekvi-
valentie diferenciglvienadojumi ar izdalitu linedru dalu. Pieradits, ja modificétai
robeiproblémai ir spéka atrisinajumi apriorie novertejumi, tad sakotnejai problemai
eksiste noteikta {atkartha no k izveles) tipa alrisinajums.
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Fvery laltice we consider is supposed Lo be a4 lattice of subsets of a sel wilth the nalural
partial order (notice that every latlice is isomorphic to at least one lattice of that
kind). It is well-known thal every topology forms a complete infinitely distributive
(cid) latiice, while the converse may not hold. We prove that cvery cid lattice is
an i-topology (or a topology modulo an ideal). ie., that every cid lattice is closed
under arbitrary i-unions and finite i-intersections. Moreover. we provide an example
of a complele completely distributive lattice {which is. then, a cid lattice) that is not
closed under arbitrary f-intersections.

Key words: complete lattice, generalization, ideal, infinitely distributive lattice,
pseudocomplemented lattice, topological space
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Preliminaries

Throughout this paper we use the common notations Vv and A {or Y and A in
case of a family of elements) for, respectively, the supremum and infimum in
o complete lattice.

A collection T of subsets of a set X is called an ideal if it is closed under finite
umdons, contains all subsets of all its elements and does not contain X itself.
An ideal T naturally generates a preorder on the family of all subsets of X.
Indeed, defined as follows. the relation < is reflexive and transitive: U7 2V
fU\V eI forevery UV CX.

We refer a reader to (1] for the fusther standard definicions of Lai tice 'T'heory.

Z-emptiness.
Equivalent forms of the infinite distributive law

Let L be a complete lattice, and < be its partial order. With the respect to
some fixed element = in L, we say that an element ¢ of L is z-emptyif a < 2.
and :-nonempty in any other case. If the couverse is not stated, we always
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assume that some z in L is fixed. The following casy lemma is an immediate
corollary from the completeness of the lattice L.

Levmma 1. The supremum of a family of z-empty elements of L is z-empty.

The following proposition provides the equivalent form of the infinite dis-
tributive law for complete lattices to which we are going to refer in the proof
of Lemma 5.

Proposition 2. Let L be o complete lattice. and < be its partial order. The
following are equivalent:

(i) The lattice L is infinitely distributive, that 1s. for every b in L
and every subfamily A T L,

tA\A=\/{bralac4);

(i) For crery b and = from L and every subfamily A T L, if b is
z-nonempty and b <\ A then there exists a™ ¢ A such that bAa*
is z-nonemply.

Proof. To show that (i} implies (ii}, apply Lemma 1. Let us prove the converse
implication. Assumec (ii): fix b in L and a subfamily A of L. It holds that & A
VA<VYA Clearly, (bAV A) A e is equal to b A a for every a € A, Since
for everv @ € 4 it holds that bAa <\ {bAa,ae A}, by (ii) we conclude
that bA Y A < \V{bra,eec A}. The converse inequality holds in every
cotmplete latsice. The lemina is proved. X

We are going to call a complete lastice infinitely triviofly distrebutive if it
satisfies the condition (ii} of the previous proposition for z = 2. Let us prove
some equivalent forms of trivial distributivity.

ProrositioN 3. Let L be a complete lattice. The following are equivalent:

(1) The lattice L is infinitely trivially distributive;

{ii} For cvery b in L and every subfamily A C L. if bAa = 0 holds
foralla in A then bAN A =0;

(1)) The lattice L is pseudocomplemented.

Proof. The proof of that {i) and (ii) arc cquivalent is the trivial case of the prool
of the previous proposition. Let us prove the other implications. Let L
be pseudocomplemented. Cousider an element b of I and a subset A C L
with b A a =0 for all @ in 4. By the definition. a < b* holds for every a in 4.
Therefore. Y 4 < b*. and hence bAY 4 = 0. Conversely. let [ be infinitely triv-
ially distributive. Counsider an element a in L. Thena® = \/{be L |bra=10}
is the pseudocomplement of a. Thus, we proved the equivalence of (ii) and (ii1).
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Main theorem

In what follows. we assume that a set X and a complete infinitely distributive
lattice (£, <) of its subsets, that contains the empty set and the whole X . arc
fixed. Unless specified. every subset or set will be supposed to be a subset
of X. We use the notation £ for the lattice instead of the notation L. which we
used above, and the upper case letters for the elements of the lattice instead of
the lower case letters on purpose to emphasize that all the objcects we constder
now are segs.

A set 4 is going to be said to be sup- or inf-generated by the family U of
elerents of £ if, respectively, A = (VU (JU). or A= (UYL (AU for
finite Y. The family of all subsets of the set X rhat might be represented as
such differences will be denoted €. All the following results might not hold if
we include in & the sets generated by the infinite infinums (see Example 9).
We are going to make use of the ideal T generated by the family £ and ex-
ploit the preorder < generated by this ideal. We will prove that this preorder
happens to be a partial order on £.

LEMMA 4. Let U = {U, Uz, ..., Uy} be a family of elements from £ and V
be a Z-nonempty element from £ such that it is a subset of Uy. Then there
erists a Z-nonemply W in £ that satisfies W C V' and one of the following

coniditions:

(i) W AU:
(ii) there ds U, in U such that W AU, is Z-empty.
Proof. Let us define a sequence V = { V7. V5, .. ..V, | as follows:
A=Vand V=V, Al forie{1.2,....k}.

By the terms of the considered lattice, V is a decreasing chain and at least one
its element is Z-nonempty, since Vi = V. Put W = V;_. where V)| is the last
Z-nonempty clement of the chain. Clearly, it holds that 7 C V. There are
two possibilities for 4, either . < k and then W AU, 41 is Z-empty, or 1. = &
and then W € AU. The lemma is proved. B

LEMMA 5. Let ¥ ¢ £ be Z-nonemptly und sebisfy Y\ Z2 C JA for some
subfamily A = { A\, Az...., Aq } of £ Then there extst Z-nonempty W in £
and A;, lying in A that satisfy W CY and W 4;, — @.

Proof. For every 4; lying in A, we are going to denote by U, the corresponding
family of elements from £ by that A, is sup- or inf-generated. First. we define
the common family Uy as follows:

t={ZYu{U|UcU, forsomeis {1,2..... n}l.

It holds that Y C \/il;. By Proposition 2, we conclude that ¥V, = ¥ AL i
Z-nonempty for some 7 € i1,. Clearly. it cannot be V7 € Z. Thus. without
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loss of generality, we assume that V7 C U € U,. There are two possibilities
for A;: either A) is sup-generated and then Vi M 4; = @, we put W = 1)
and the proof is complete, or Ay is inf-generated and then, applying Lemma 4
for Uy and V1. we obtain the set W; C V1. If W, € AU, then W, M A = &
we put W = W, and the proof is complete. In the other case, we possess
the set U from U, such that Wi Al is Z-empty. We repeat the whole process
from the heginning. Define the common family s as follows:

W ={Z}{h} A{U| Vel forsomeic{23,....n}},

It holds that Wy C VW ia. Hence. 15 = W A U is Z-nonempty for some U €
Ha. We observe that neither V5 C Z, since V5 is Z-nonempty. nor Vo C Uy,
since ¥V, C W, and W) AT s Z-empty, hold. Let us assume that Vo C U € Uy,
Again. there are two possibilitios for Ag: either 45 is sup-generated and then
W = V5 satisfies the conditions of the theorem. or As is inf-generated and
we apply Lemmad for Us and 15 and obtain the set Wy C V5. If it holds
that Wu C AU then W = W5 is the one we need. In the other case, we
possess the set Us from Us such that Wi A Us is Z-empty. We continue in
the same way as above. defining the common family ;.

Through the process, we obtain the decreasing chain ol the Z-nonempty
sets Y 2V O W, D V5 O ..., Ifthe process stops at some W = V,or W = W7,
whered € {1,2....,n 1}, it means that the proofis complete. Lel us consider
the other case. [hat s, we assume that we possess the chain ¥ 2 W, 2 Wy O
-+ D Wy_1. Then WiAU; is Z-empty forevery 1 € {1.2,....n — 1 }. Asabove,
we define the common family L,:

t={Z}u{UYu{Uz}L-- - {Un1 )} Un.

It holds that Wy € Vi, Hence. V, = W,_1 A U is Z-nonempty for
some [/ ¢ iL,. The only pessibility for I/ is to be an element of the fam-
ily Un. If A, is sup-generated then we put W — Vi, and stop the proof.
In the other case. applying Lemma 4 for U, and V.. we obtain the set W, T V,.
If W, € AU, then we take W = ¥, and the proof is complete. The other case
is impossible. Indeed, if we assume that there exists U7, in U, such that W, AU,
is Z-empty then W, C Vi, ,. where

W r={Z2Yu{thu{thic - iU, tull,}.

Hence, by Proposition 2 there exists &7 in 4,45 such that W, AL/ is Z-nonempty.
But such I7 does not exist. 'The proof is complete. 3

Recall that by =< we denote the preorder on £ generated by the ideal 7. We
are going to show now that < is equivalent to the partial order C and. hence,
is a partial order itsclf.

PROPOSITION 6. For every Y, Z in £, it holds that Y < Z iff Y C Z.
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Proof FPix two elements ¥V Zin £ HY C ZthenY\Z =0 e TandY X Z.
Let us consider the other case when ¥ < Z, i, when Y\ Z £ T. Assume
that ¥\ Z # @. Then there exists a subfamily A = {4,.A,. ... A} CE
such that Y\ Z C | JA. Then by Lemma 5 there exists a chain of Z-nonempty
elements of the lattice Y 2 W), 2 Wh 2 .- O W, satisfving W, © 4; =
@ for every 1 € {1.2,....n}. Clearly. W,, 2 ([JA) = 2. Since W,, C YV
and Y\ Z C | JA, we conclude that W, € Z. that is. W, is Z-empty. But
a set cannot be both Z-nonempty and Z-empty! Therefore. we conclude that
our assumption ¥\ Z # @ is wrong and, hence. Y < Z implies Y\ Z — 2.
that is, ¥ C Z. The proof is cornplete.

0

THEOREM 7. For cvery complete pseudocomnplemented lattice (£.C) of subsets

of a set X, that contains the empty set and the whole X, there exists an wdeal T
on X that possesses the following properties:

(1) For all U C £, there exists A € T such that

(Uu)raes
(2) For all {1, Va.... .V} C £, there exists B € T such that
(it -V )\Be &
M IL={o})
If the lattice (£.CQ) is infinitely disiributive then, in addition, it holds that

(4) The relation =< generated by T is a partial order on L:
(5) The lattices (£,C) and (£, =} are wsomorphic.

Proof. We generate an ideal T by the family of all sup- and inf-generaied
subscts of X. Then, clearly. (1) and {2} are safistied. T'o prove (3), we need to
apply Proposition6 for ¥, Z € £ where Z = @. Indeed, if there lies Y € £ 7
then it holds that ¥ = 2. By Proposition6, it follows then that ¥ = 2.
The result of Proposition 6 for Z = @ follows from Lemmab for Z = @. bur to
prove Lenima 5 for Z = @ we only need the lattice £ to be trivially distributive.
In assumption that the lattice £ is infinizely distributive, the statements (4)
and (5) easily follow fromn Proposition 6.

O

REMARK 1. The assumption that the lattice £ contains the empsy set and
the whole X is not a strong restriction. Indeed. let us consider a complete
lattice (£, C) that consists of sets. Since £' is a complete lattice. there exist Ag
and A; in £/ such that 45 € A4 C A; holds for everv 4 € £ Then we
put £ = {A\A;' A& L} that is, we just cut out the cornmon part from
each set in £, The new family £ fogether with the partial order of inclusion
is a complete lattice of subsets of a set X = 4\ 4y and it contains the empty
set and the whole X . Clearly. the lattices (£/. C) and (£. <) are isomorphic.
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ReEMARK 2. For distributive lattices we can prove the corresponding theorem
similar to the previous one. That is, the results of the previous theorem hold
if we substitute a complete lattice for a lattice; infinite distributivity for finite
distributivity; a psendocomplemented lattice. first. for a infinitely trivially dis-
tributive {sce Proposition 3}, and then for its finite analogue: arbitrary unions
for finite unions.

Since the theorem is proved, we call every lattice £ that satisfies the condi-
tions of the theorem an i-tepology ou X {or a topology modulo an ideal) and say
that it is closed under arbitrary i-unions (supremums) zod finite {-interseetions
(infimums).

We do not provide any examples since the objects we consider are com-
plete infinitely distributive lattices thar are widely presented in many sources.
Though, we believe that the following example is worth to be mentioned here,
Corumenly, the lattice we are going to consider is checked to be a complete
lattice and is not checked to be infinitely distributive. We are going to meet
the lack.

PROPOSITION 8. For cvery distributive lattice L, the family 1d(L) of all its
ideals together with the partial order of inclusion ts ¢ comnplete infinitely dis-
tributive lattwe.

Proof. Since L in an element of Id(L), and for every family {J, |se S} of
ideals of L the intersection ({7, | s € §} is an ideal, we conclude that 1d(L)
is a complete lattice with respect to €. Let us prove that it is infinitely dis-
tributive. Fix an ideal J of L. and a family {I; | 5 € §} of ideals of L: assumc
that J € \V{/l.| s € §}. Then it hoids that \/ {J AT, |s€ S} CJ. Let us
verify the converse inclusion. If ¢ ¢ J then o € \V{I;| 55 .5}, and hence
there exists a finite subsct Sy © 5 such thata =\ {a; | as €1, and s € 5 }.
Since J is an ideal, and @ € J, we conclude that ag € J holds for every 5 € 5.
Hence. a € \/{J A 1,1 5e 5} Finally, it is clear that J A1, € J holds for
all 5 ¢ §. Therefore. by Proposition 2 the lattice Td{L) is infinitely distribu-
five. 3

Counterexample

The following example provides the set X and the complete completely distrib-
utive lattice of its subsets such that there exist two inf-generated sets the union
of that is the whole X.

ExaMPLE 9. Let us consider the set X and the family T of its subsets thar
are defined as follows:

X = Ny(1) L No(1) and T = { Ny (k)L Na(l) | k.l e NYU {2},

where N,(B) = {n}x{kk+1.....x} fornec {12} and ke N,
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It is easy to check that T is a topology on X. Hence. (7.C) is a com-
plete lattice satisfving the infinite distributive law. Moreover, this lattice is
completely distributive. Let us show that. We have to prove that. for every
family { N, (k, ;YU N2 (L, ) | j€ JE)and i £ T} of subsets of X, the follow-
ing holds:

/\{\/{-'Vl(’ff.j)UNz(fs.j) IJ’EJ(?')}i-iEI}:
:\/{/\{Nl(ki.diJ)JNz(li.,o(i;)]'EEI}|,:’—;<I>}.

where & = [[{.J(i)|ie I} is the family of choice functions. Let the left
and right sides of the equivalence be denoted Wy, and Wy, respectively. It is
sutHcient to show that W, C Wg. Assume that W, is nonempty. Then there
exist patural numbers k. and [, such that W = Ny (k) U N (). We are
golng to consider two special functions .z and ~ from ® that satisfy & (k) C
Ny {kipgy ) and Na (L) € Na (L ) for all j € J{i) and i € I. One can
easily verify that such functions exist. Furthermore, £, = max { ki s 11}
and {, = max { iy 1€ } To complete the proof we consider two sets A
and B that are defined as follows:

A= /\{ ]\-"1 (k"w-?f”) I“Jj\'rﬁ (Ea.,:{z)) ‘ 1C I}_

B = AN{ N (ki) I N2 (g ) i€ 1}
Clearly, W, £ AU B C Wy. Thus, the proof is complete.

Now, we are going to show that there exist two inf-generated subsets of X
the union of that is equal to the whole X. We construct two special subfamilies
of T in the following way:

Ny = { Ni(1) O Na(D)

[N} and Na = {N (k) UN2(1) [ ke N}

Then NN, = Nf1) L {i{2.%x)} and (N2 = {i{1,2)} U Np(1). Tt follows
that both ANy and ANz are equal to the empty set. Henee, the union of
two subsets of X that are inf-generated by the families N and N is equal to
the whole X.
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Pilnie bezgaligi distributivie rezgi ka topologijas ar precizitati iidz
idealam

Kopsavilkums

Meés aplukojamn reigu klasi, kura katrs rezgis sastav no kadas kopas apakskopam
(dazadiem rezgiem tas kopas var atskirties) un veido rezgi atlieciha pret dabisko
feklausanas dalgjo sakartojumu (interesanti, ka katrs rezgis ir izowmorfs vismaz vienatn
tada tipa reigim). Ir labi zinams, ka katra topologija kopa ar iekJauianas dajejo
sakartojurmu veido pilnu bezgaligi distributIva {pbd) rezgi, tomer minetaji klasé ck-
sisté pbd rezgl. kas nav topologijas. Mes pieradam. ka katrs pbd rezgis no dotas kiases
veido i-topologiju, (.., ir slegts atticctba pret patvaligdm i-apvienojuma un galigam
i-3k¢luma operacijam. Pat vairik: més konstrugjam pilnu pilnigi distributivu reZgi
(tatad pbd rezgi). kurs nav slégts attieciba pretl patvaligiem 1-skelumiern.
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Introduction. International Congresses of Mathematicians (ICM) have
long history. The first one was held in 1897 in Zurich (which was the venue
of three ICM). Since 1900 ICM took piace every four years. At the Congress
in Paris in 1900 D. Hilbert has formulated his famous problems, which con-
siderably defined directions of mathematical research in XXth century. The
venues of ICM were acknowledged centers of mathematical activity in Europe
and North America. In 1990 for the first time ICM was organized in Asjia (Kv-
oto, Japan). Then followed Zurich (1994) and Berlin (1998) and new meeting
with Asia. The first ICM in new millennium and in XXIst century was held in
the capital of People Republic of China the c¢ity of Beijing. Below follows some
remarks and reminiscences of a participant of ICM-2002.

IMUJ. This abbreviation means International Mathematical Union. Among
other objectives. one of the purposes of this organization is to help mathe-
maticians from developing countries. Eastern Europe and other “less favorite
regions” to participate in the work of International Congresses of Mathewati-
cians. The objectives of IMU are “to promote international cooperation in
mathematics™, “support and assist the Intcernational Congresses of Mathemati-
cians” otc. Countries can be adhered to IMU through adhering organizations,
which may be its principal academies, mathematical societies, research institu-
tions or government agencies. IMU provides requirements for ICM organizers.
both financial and those with respect to infrastructure. According to these re-
quirements, a potential host country may consider a budget of about 1.5 million
US dollars, of which only about 0.6 million U5 dollars might be raised through
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registration fees. The host country is expected to lodge freelv definite number
of participants from developiug countries, which get their trips paid by IMU
through special funds. The officers of IMU preselected during the preceding
ICM coordinate and supervise preparations to the next ICAL Oune can imagine
what a huge work was done by members of a Program Commiittee. the mem-
bers of which by tradition were kept secret. We know now that the Program
Committee was a team of 11 prominent mathematicians with Y. Manin as a
Chairman.

First impression. The McDonnell Douglas jet of Finnair brought me
over Finnish Gulf, St-Petershurg. lake of Ladoga, darkness and golden spots of
Russian cities to distant China. Early in the morning misty mountains emerged
suddenly and landing in Beijing’s International Airport followed soon. After
the pass control has been finished we were brought by bus to downtown to
the registration place. BICC (Beijing International Convention Centre) is a
nice modern building facing the newly created architeciural complex named
Beichen (Northern Star). Nearby are Beijing Stadinm and bulky Catic ho-
tel. One have to cross the street where red lights. as explained local student
volunteer. “recomumend” vehicles to stop. and you arrive to the group of local
“skyserapers” where many of ICM participants had their lodging.

Opening Ceremony. The opening ceremony was held at the Great Hall of
People in the very center of the city. The trip from BICC to Tian An Men (Way
to Heaven) square took about forty minutes and one started to have impression
of how this city is big. A lot of nice modern buildings are the evidences of new
times and open policy of Chinese government. Great Hall of People was almost
filled by participants of the congress. The President Jiang Zemin attended the
ceremorly. [t was a surprising compliment to the mathematical cominunity.
Followed speeches of the President of IMU Jacob Palis. Vice Premier of the
PR. China Li Langing, President of the ICM-2002. Mayvor of Beijing. Jacob
Palis emphasized in his speech that this congress is the first in XXI century
and it is taking place in the fastest growing country in the world. Great party
followed the official ceremony. People were arranged by 12 and occupied seats
at the round tables. The central part of the table was rotating and waiters
changed dishes. It was the first meeting with Chinese cuisine for many of the
ruests.

Fields Medalists and the Rolf Nevanlinna prize winner. Laurent
Lafforgue from L.ILE.S., Bures-sur-Yvette, France, has been awarded the Fields
Medal for his proof of the Langlands correspondence for the full linear groups
GLr over function fields. A global field is either a number field or a function field
of characteristics p > 0 for some prime number p. The conjectural Langiands
correspondence relates two fundamental objects, which are naturally attached
to a global field. The Langlands correspondence embodies a large part of
number theorv. arithinetic algebraic geometry and representation theory of
the groups. Small progress made towards the conjectural correspondence has
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already amazing consequences the most striking of them being the proof of
Fermat’s last theorem by Andrew Wiles.

Vladimir Voevodsky has studied at Moscow State University and now he is
Professor at the Institute for advanced Study in Princeton. He was awarded the
Ficlds Medal for his achievements in algebraic K-theory. Namely, he defined
and developed motivic cohomology and the Al-homotopy theory of algebraic
varieties; he proved the Milnor conjectures on the K-theory of fields.

The 2002 Rolf Nevanlinna's prize was awarded to Madhu Sudan. Associate
Professor of Electrical Engineering and Computer Science. MIT, for his con-
tribution to many arcas of computer science theory incliding computational
complexity theory, the design of efficient slgorithms, algotithmic coding the-
ory, and the theory of program checking and correcting. Complexity theory
is concerned with how many resources are required to perform computational
tasks. Examples of a computational task are finding a proof for & mathematical
theorem and autormnatic verification of the correctness of a given mathematical
proof. A large body of Sudan’s work addresses the latter issue. Brief descrip-
tion of Madhu Sudan’s work, especiually of that on probabilistically checkable
proof, was given by Shafi Goldwasser, Weizmann lustitute of Science and MIT.

Plenary lectures. Each day the work has started with the plenary lec-
tures. It was very traditional, just like as at the congress in Berlin. The scope
of lectures was different however. Let me remind some of then.

Discrete Mathematics: Methods and Challenges by Noga Allon, Tel Aviv
University. The lecture was devoted to combinatorics as a fundamental mathe-
matical discipline. The author focused on the tight connection between discrete
mathernatics and theoretical computer science. A survey of two of the main
general techniques of modern combinatorics was given: algebraic methods and
probabilistic methods.

Differential Complexes and Numerical Stabiiitv by Douglas Arnold, Uni-
versity of Minnesota. The lecture was devoted to differential complexes, which
have recently come to play an important role in analvsis of nimerical methods
for partial differential equations. Consider a boundary value problem in par-
tial differential equations as an operator Lu = f in some space X. A numerical
method discretizes this problem and defines an approximation solution uh by
the equation Lh uh = fh. The well-poseduess of a4 problem means that for a
given right side f a unique solution u exists, and small changes in f induce small
changes in u. The analogous question for the numerical method is the ques-
tion of stability of the numerical method. The so called differential complexes
agsociated with partial differential equations are very effective in establishing
the stability of numerical methods.

Hyperbolic Systems of Conservation Laws in One Space Dimension by Al-
berto Bressan, 5.1.5.5.A., Triestc. A specific system of the first order partial
differential equations has been considered. Svstems of this type express the
balance equations of continuum physics. when small dissipation effects are ne-
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glected. A basic example is provided by the equations of non-viscous gases.
The main focus was on the uniqueness and stability of entropy weak solutions
and on the convergence of vanishing viscosity approximations.

Non Linear Elliptic Theory and the Monge-Ampere Equation by Luis A.
Cafarelli, University of Texas at Austin. The main trust of the talk was to
show “how the Monge-Ampere equation links in some way the ideas coming
from the caleulus of variations and those of fully non linear equations.”

Emerging Applications of Geometric Multiscale Analysis by David L.
Donohao. Stanford University. The lecturer has pointed out the unreasonable
effectiveness of harmonic analysis, which was created in XIXth century as a tool
for understanding of the equations of mathemarical physics but, has been ap-
plied in ways the inventors could not have anticipated. Further developrent of
harrnonic analysis has led to the classical multiscale analysis bused on wavelets.
which has a number of successful applications. The lecturer has mentioned that
wavelets, however, are adapted to point singularities, and many problems in
several variables exhibit differont kind singularities, such as edges. filaments
and sheets. The lecturer has discussed various attempts in order to replace
the wavelet analysis in several applications by multiscale analvsis adapted to
intermediate-dimensional singularities.

Knotted Solitons by Ludwig D. Faddeev, St. Petersburg Department of
Steklov Mathematical Institute. The author has traced the history of the no-
tion of soliton in applicd mathematics He pointed out that “the value of solitons
for the particle physics consists in the possibility of going beyvond the paradigm
of the perturbation theory,” He pointed out that soliton solutions are en-
tirely nonlinear phenomena, and they disappear in their linearized form. Basic
idcas about solitons was understood in the middle of 1970’s and the developed
methods were applicable only in 1 + 1 dimensional space-time. Further inves-
tigations showed that many features of 1 + 1 dimensional systems could not
be generalized to 3 + 1 dimensions. 'The existence of “cne-particle” soliton
solutions was not excluded, however. In his talk the author described some
3 + 1 dimensional system, allowing solitons. First the model was introduced.
then the description of the numerical treatment followed and, finally, several
applications were discussed.

Mathematical Foundations of Modern Cryptography: Computational Com-
plexity Perspective by Shafi Goldwasser, Weizmann Institute, Israel and MI'T.
"I'his talk was devoted to the development of modern eryptography, the math-
ematics behind sccret communications and protocols. The relations between
crvptography and classical mathematics, as well as that between cryptogra-
phy and information theory, were discussed first. The conventions and ter-
minology were explained. A survey of the complexity theory underlying the
crvptographic tasks of encryption followed. A constructive theory of pscudo
randomness, including pseudo-randomness number generators and functions.
was discussed. In the last section interactive protocols, interactive proofs, and
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zero knowledge interactive proofs were considered. The professional design of
this presentation should be mentioned.

Singularities in String Theory by Edward Witten, Institute for Advanced
Study, Princeton. The subject of this very interesting and energetic lecture
was the string theory in a quantum theory. It “reproduces the results of gen-
eral relativity at long distances but is completely different at short distances.”
Mathematical basics of string theory are of geometrical nature, and reduce to
ordinary differential geometry when the curvature is asymptotically simall. The
author has described the results, which “were obtained about the behavior of
string theory in spacetimes that develop singularities.”

Undoubtedly, many interesting lectures are left bevond the scope of these
notes.

Short communications. Short communications presentation was orga-
nized in parallel sessions. Each talk lasted about twenty minutes including
discussion. Rooms in BICC were equipped not only with projectors but even
with alarm clocks and a bottle of drinking water for each speaker.

Leisure hours. The city of Beijing is a splendid exotic recreation itself.
especially for those who are new in Far East. One has to be cautious however.
The first day I came to have an evening stroll [ recognized cars turning vo left on
the red light. Next day local people taught me that red traffic lights in Beijing
are recommendations for car drivers not commands to stop. One could easily
travel in Beijing using the map where public transport lines with starting and
final points wore depicted. The only problem, as people mentioned. was that
vou know which line to use but you hardly could escape the transport mean at
the right stop. Younger people in Beijing however often can communicate in
English and gencrally one can get advice. The better transportation mean in
Beijing probably is taxi. They are many, the price is very moderate and if vou
can cxplain were to go then vou have no problems usually.

Footloose tours. Organizers took care of participants in the form of re-
cruiting voung pcople volunteers who accompanied visitors and showed them
gightseeing sbsolutely free. One had the opportunity to visit nice places like
Beijing university campus. parks and gardens, museumns and pagodas. local
coniputer companies and so on. It was a lovely place Beijing Botanic Garden
where a picce of live cxotic nature could be scen and not too many peoaple were
walking around. The only cat (the white one). so numerous in other places I
have seen in Beijing lived just in Botanic Garden. It was a pitv that [ forgot
to buy the collection of dried gigantic butterflies of bright colors that were sold
by Chinese women at the entrance.

Excursions. A very special attraction of Beijing and China is the Great
Wall. Some day buses took us and delivered after about forty minites run to
the so called pass. lmagine giant about 5000 miles wall crossing the country
and several passages from South to North. The day was hot and rare person
could climb the segment of the wall sill the very top of the hill. Even from the
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upper point almost nothing was seen (almost nothing approx. 2 ki) because
of the intensive mist of unknown nature. The umpression was decp but one
could imagine also of the run along this road to unknown.

Welcome party. Imagine the lawn in front of the hnxurious hotel over-
crowded with people of diffierent origins. speaking different languages, but
mostly in English. By the perimeter of the tawn a chain of tables, some of
them filled with food and drinks and some bearing lots of souvenirs, handi-
crafts, paintings in Chinese stvle, toys and adornments. In the hot atmosphere
highlighted buildings forming this special region of Beijing stood around.

Beijing opera. Visit to renowned Chinese opera was scheduled to Sundayv.
I failed to book the ticket timely and decided to postpone this visit to some
working day. It was surprising that evening performance at Wednesday was
easily accessible and the hall was far from being filled. One hardly could follow
the seenario of the tale but the show was so bright. dynamic and reach of effects
that one scarcely needed to understand what happened on the scene.

Information and computer services. Every morning the newsletters
were issued containing information on actualities, schedules of events and sur-
prising facts. Look. for example, at the “ancient Chinese paradox.” I'he person
from the State Chu sold both shield and spear. He characterized the shield as
“no spear can pierce my shield.” He talked about his spear as “no object is my
spear cannot plerce through.” An audience reasonably asked: “What about
using vour spear to pierce vour shield?” A hall on the ground floor was used
for computer activity. [t was permanently full. E-mail connection and Internet
were Ok. In case of difficulties consultants were on duty and ready to help.

Bookstores and exhibitions. It is a tradition of ICM to arrange multiple
bookstands of renowned publishing houses. This type of activity has attracted
a lot of participants. Most of all people cluster at the stands of Springer, AMS
and the local Higher Education Press stand. The latter could be explained
by the fact that a lot of books originally printed by, say, Springer. were per-
mitted to be republished {on the occasion of ICM-2002 in China) by the local
publishing house. One could buy books at a relativelv moderate price. For ex-
ample, the “Variational Methods 2nd edition” by M. Struwe could be bought
for approx. 7.5 US dollars.

Closing ceremony. The closing ceremony usually is a most exciting mo-
ment of ICM. Let mnte recall the same moment at ICM-1998 in Berlin where
thousands of colleagues, sitting even on the floor in passages. some of them
with little children in spinning wheels. in strained silence attended to speak-
ers. It was so evident that despite geographical and menthol differences we
all are one nation — the mathematicians. The representative of the Organiz-
ing Committee of ICM-2002 without any words have shown slides describing
China and Beijing. But now it was Madrid turn. The day before booklets with
transportation schemes in Madrid, maps and relevant tourist information were
distributed. and the delegate of the Spanish IMU Committee Carles Casacu-
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berta has red the words of invitation to the uext ICM, to be held in Madrid
in 2006. The newly elected president of IMU for 2003 2006 John Ball have
promised that new Fxecutive Committee and IMU Committees will work hard

and that “we will have some progress to report on when we meet again in Spain
in 2006."

Final impression. The last glimpse at Beijing from the board of the air-
craft and one could see the thin line of the Great Wall running to the west
towards high mountains. Green hills of China were replaced by yellowish Mon-
zolian plaing and after an 8 hour long flight the plane has landed in Helsinki
where the stop was planned on the way to native Riga. It was calm and relaxing
evening in the Finnish capital.

Conclusion. Some figures and exhanstible information about the ICAL-
2002 could be found at http://www.icm2002.0rg.cn. Proceedings of the
T1CM-2002 were published by Higher Education Press in 3 volumes. The
first one contains plenary lectures and ceremonies. The CD is attached
containing 324 MDB ipg-file with description of the cvents during the
Congress. An clectronic version of the Proceedings of ICM-2002 will be
available freely at the sites http://front.math.ucdavis.edu/ICM2002/ and
http://www.cgtp.duke. edu/ICM2002/ as well as at a number of mirror sites
worldwide.

The role, the ICM-2002 will play in the history of mathenaties, will be clear
in the distant future. One thing is evident just now. however. As Jacob Palis
hag said in his speech at the Opening ceremony, “this is in manv ways very
special Congress.” He has remnarked that mathematics has become more and
wore international and interaction among mathematicians both at a national
and international level wus the clear road for its development. T'he fact that
the ICM was for the first time taking place in a developing countryv and in fact
in the fastest growing country in the world, makes the ICM more inclusive and
this meets the basic principle of IMU.

The Congress in China was special also in other wavs. Two new prizes for
mathematicians were founded. 'The first. in honor of Abel, will be awarded
every year by the Norwegian Academy of Sciences. The second, called the
Gauss Prize for Applications of Mathematics. is to be awarded jointly by IMU
and the German Mathematical Society once every four vears.

It is to the point to complete these notes with words from the announcement
of the establishient of the Gauss prize: “Mathematics s an important and
ancient discipline - no one doubts it. However. it seems that only the experts
know that mathematics is a driving force behind many modern technologies.
The Gauss prize has been created to help the rest of the world realize this
fundamental fact.”
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