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Mathematical model for gravitational 
cascade separation of pourable 

materials at different stages of a 
classifier 

Eugene Barsky 1 , Maris Buikis 2 

1 Ben-Gurion University of the Negev, Beer-Sheva 
and Negev Academic College of Engineering. Israel 

2 Riga Technical University 

We consider the gravitational cascade separation process as an absorbing Markov 
chain. We receive here a new method for calculating a degree of fractional extraction 
for any narrow class of pourable material in cascade classifier at different stages and 
a few other interesting results. 
Key words: Cascade separation, pourable materials, Markov chains 
Mathematics Subject Classification (2000): 6 0 J 2 0 

The modern commercial production and international market are associ­
ated with the transfer of vast bulks of diversified pourable materials, often 
transported open, without any package. To such materials, potash and phos­
phate fertilizers could be assigned, as well as various structural materials (sand, 
crushed stones, gravel), coal, corn, etc. A distinguishing feature of these ma­
terials is that they contain a considerable amount of fine dust. When such 
materials are loaded into vehicles or ships, a vast amount of dust is brought 
into the atmospheric air and further into water thus leading to the environment 
pollution. To remove dust from large flows of pourable materials, special ap­
paratuses - separators - are employed, where technical and design parameters 
should therefore be properly chosen. 

1. Describing of method of gravitational separation 

Let us describe the method and the classifier for gravitational cascade separa­
tion. 

Given a granular material with grain sizes ranging from ao to an. our pur­
pose is to separate this material into n components along predetermined bound­
aries Q.Q < ai < a.2 < • • • < an-i < an. The first component must contain only 
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grains of size from an to a\, the second one, tespectively, from a\ to ao, and 
the rz-the component from a „ _ i to an. We will call a narrow class the portion 
of material with grains sized between two neighboring separation boundaries. 
Obviously the ideal separation is not possible. 

We consider the cascade method of separating pourable materials in a grav­
itational classifier. The classifier consists of z stages counted top-down. The 
air flow is fed from below, and the initial material is fed to one of the stages 
numbered i*. Heavier grains fall down (we call them coarse product), while 
light-weight ones go up (we call them fine product). The structure of each 
stage of the classifier is different. 

Figure 1 presents a sketch of the cascade classifier, schematically showing 
the movement of the material in the separation process. 

SKtiattc ace pscsuct 

: ~ s or i ii 1 laa^mataflal 

r_C-

OTsdst to coas2product 

Fig. 1. 

2. Previous results 

The separation process is considered at discrete points of time (acts of separa­
tion) . 

D E F I N I T I O N 1. Let us call the function kt = an upward coefficient of sepa-
r'-j 

ration for the narrow class j . where 7-j.j is the quantity of the material of class 
j situated at the stage number i at the present moment, and r*^ is the quantity 
of the material of class j passing to the stage number i — 1 within one moment 
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of time. Then 1 — ki is the downward coefficient of separation for the narrow 
class j , that is. for the grains of class j passing from stage i to stage i + 1. 

D E F I N I T I O N 2. Let us call function Ffj = T-^-L the degree of fractional extrac­
tion to a fine product for a narrow class j . where rjj is the quantity of the 
narrow class j output from the classifier to the fine product, and rs_j is the 
quantity of the narrow class j in the initial material. 

As stated above, the process is considered at discrete points of time (acts) 
with equal spacing. T h e material is fed to the classifier with the same time 
interval and equally portioned. (Scheme of the material separation inside the 
classifier is shown in Fig. 1). 

It is known that the separation results for any narrow class in each stage 
of the apparatus are independent of the presence of grains of other classes [6]. 
For a classifier with identical structure of the stages we have proved in [1], that 
the degree of fractional extraction is 

r z + i - r 
1 - o 

z + l - i 
z + 1 

z + l 
if k ^ 0 , 0 5 : 

if k ^ 0 ,5 , 

if k = 0 

where i* is the number of the stage of material feed and k is the coefficient 
of separation of narrow class j for each stage of a classifier. 

To calculate the quantity of the material of the narrow class j output to 
the fine product, we use the formula rj = Fjrs. where rs is the quantity of the 
narrow class j in the initial product. 

Using the formula r c = rs — rj, we can obtain the quantity of the narrow 
class j in the coarse product. 

3. Absorbing Markov chain 

The principle of cascade separation of the pourable material of the narrow class 
j is presented in Fig. 1. This process is like a random walk of one particle of the 
narrow class j with upward transition probability k, (coefficient of separation 
of narrow class j in stage number i) and downward transition probability 1 — ki. 
It has two absorbing states. Hence, the motion of a particle of the narrow class 
j , in a classifier with z stages, can be represented by absorbing Markov chain 
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with the following transition matrix 

/ 1 0 0 0 0 0 . . . 0 \ 
ki 0 1 - fei 0 0 0 . . . 0 
0 k2 0 1 - k2 0 0 . . . 0 

0 0 . . . 0 fc2_a 0 l - f c 2 _ i 0 
0 0 . . . 0 0 A-, 0 1 - fc~ 

\ 0 0 0 0 0 . . . 0 1 / 

This matrix contains z + 2 rows and columns. The first and last states are 
outputs to the fine and coarse products. All other states are probabilities of 
transition of the particle among the stages of the classifier. 

It is convenient to consider the canonical form of this matrix in an aggre­
gated version. We unite all ergodic (absorbing) sets, and all transient sets. We 
have z transient states (according to the number of stages of the classifier), and 
two ergodic states (related to fine and coarse products) . Thus, the canonical 
form is: 

1 0 0 0 0 0 
0 1 0 0 0 0 
ki 0 0 1 - fcl 0 0 
0 0 0 1 - k2 0 0 
0 0 0 k3 0 1 - A-3 0 0 

0 0 0 0 kz-2 0 1 - kz-2 0 
0 0 0 0 0 0 
0 1 - kz 0 0 0 0 kz 0 

Here the region O consists only of zeroes, the z x z submatrix Q is related 
to the process as long as the particle stays in the classifier (in the transient 
states), the z x 2 submatrix R is related to the transition from the classifier to 
one of the two products (the transition from transient into ergodic states), and 
the 2 x 2 matrix / deals with the process after the particle has reached one of 
the two products (the ergodic set). 

It follows from [4, 5] that in an absorbing Markov chain the probability of 
reaching one of these states tends to 1. Then we can say that the probability 
of a particle to reach one of the two products tends to 1. 

From [4. 5] we obtain for any absorbing chain that Qn tends to zero when 
n tends to co , and / — Q is reversible, so that (I — Q)~l = Qk• 

For an absorbing Markov chain we define the fundamental matrix to be 
N = E?Qk-

We define n.j to be the function giving the total number of separation acts 
(moments of time) with the particle in the stage j during the process, i.e. in 
the transient state number j . Hence, according to [4, 5] , we assert that the 
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expectation of a particle started from the stage i to be in the stage j during n3 

separation acts is an ^/-coordinate of the matrix N. i.e. 

{E1(n])} = N. (1) 

This establishes the fact that the expectation of the total number of sep­
aration acts of the particle in a given stage is always finite, and that these 
expectations are simply given by N. 

Each particle is fed to the classifier through the stage number i*. and using 
(1) we can obtain the expectation of the total number of separation acts of the 
particle in the given stage. 

We introduce the following notation: 

N2 = N(2Ndg - I ) - Nsq 

is z x z matrix, where Nng results from A" by setting off-diagonal entries equal 
to zero, and Nsq results from N by squaring each entry (this, of course, will 
generally be the same as TV2, but D2 = Dsq for any diagonal matrix D): 

B = NR 

is z x 2 matrix: 
r = NZ, 

£ is a column vector with all entries equal to 1, 

T2 = (2A" - I)T - T S Q . 

Following [4, 5] for absorbing Markov chain, we can assert that the variance of 
particle started from the stage i to be in the stage j during rij separation is an 
i j -coordinate of N2 . i.e.. 

{AKO} = N2. (2) 

Let T be a function giving the total number of separation acts (including 
the initial position), during which acts the particle remains in the classifier 
before its output to the fine or coarse product. If an absorbing Markov chain 
starts in the transient state, then T gives the total number of steps needed to 
reach an ergodic set. 

According to [4, 5], we can assert that a for particle started in the stage 
number i, the expectation of the number of separation acts until it reaches the 
fine or coarse product in an ^ - c o o r d i n a t e of the vector r , and the variance of 
the latter is ^ - c o o r d i n a t e of T 2 , i.e. 

{E,(T)} = r, ( 3 ) 

{A (T ) }= r 2 . (4) 
The particle is fed to the classifier through the stage number i*. and hence, 

using (3) and (4) we obtain the expectation and variance of the total number 
of separation acts during which the particle is in the classifier. 
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Let bjj be the probability for the particle starting in the stage i to reach 
the fine or coarse product (j = 1 for the fine product, and j = 2 for the coarse 
product). 

Hence, using the results of [4, 5], we can obtain that for absorbing Markov 
chains the following relationship holds 

{b.j} = B = NR. (5) 

Thus, we can control the probability of reaching the necessary product by 
the particle by changing the place of its feeding into the classifier. Then the 
probability of reaching the fine product is the degree of fractional extraction 
for a narrow class j . when the material feeding at the stage number i. 
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Beramu materialu kaskadveida separesanas procesa analTze ar 
absorbejosu Markova kezu palidzlbu lietojot klasifikatoru ar 
atskirlgam atdallsanas pakapem 
Kopsavilkums 

Mes apskatam gravitacijas kaskadveida separacijas procesu ka absorbejosu Markova 
kedi. Tiek pieda.va.ta jauna frakcionalas atdallsanas pakapes aprekinasanas nietode 
katrai saurai beramu materialu klasei klasiRkatora ar atskirlgam atdallsanas pakiipem, 
ka an vairaki citi interesanti rezultati. 
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Geoeconomical and geopolitical risks: 
contemporary problems and solutions 

Svetoslav J. Bilchev 1 , Valery V . Bokov 2 

1 Center of Applied Mathamatics and Informatics, University of Russe, Bulgaria 
email: slavySami . ru. acad.bg, slavy.bilchevQyahoo . com 
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We consider some geoeconomical and geopolitical risks associated with the economical 
and political interactions between different countris. For this aim, the theory of 
differential game is applied. Some examples are given. 
Key words: geoeconomics. geopolitics, geoeconomical and geopolitical risks, differ­
ential game theory 
Mathematics Subject Classification (2000): 91A23, 91A80, 91B30 

The beginning of the 2 1 s ' century was marked with grand changes in the 
world geoeconomics and geopolitics. The turbulent process of changes affected 
not only the developed but also the developing countries, not only the tradi­
tional but also the new spheres of human activities. The re-structuring of the 
traditionally preserved systems in these spheres, the disintegration of enormous 
regional world structures and the origin of new states, the formation of strategic 
unions, and so on - all that raised points before the science about rationalizing 
these phenomena, about revealing of the deep reasons and consequences of such 
serious changes, with the purpose of getting ready for management of the world 
economic system and including the national socioeconomic structures into the 
globalization process. 

There is a very important issue in this situation [1] for seeking completely 
new approaches toward the problem about the geopolitical and geoeconomical 
risks because the strategic solutions in directions of state development in the 
2 1 s ' century get complicated by the necessity to operate with trends, not easily 
predicted, in the sphere of economics which passed the state boundaries long 
ago (in the currency-financial, credit, investment, innovation-reproduction, so­
cial and cultural spheres). 

It is necessary to take into account a great deal of factors by regulating 
the geopolitical and geoeconomical risks, which influence simultaneously the 
forming vector of the national development strategy and hereby using all the 
newest accessible scientific approaches in the sphere of the knowledge theory, 

http://acad.bg
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methodology, the newest ideas and ways for mathematical and logistics formal­
ization. 

We must mention the risk situations, associated by temporal, territorial 
and inter-state prognoses of originating of the new type interanclave social 
work division; the appearance of pulsating economic boundaries which do not 
coincide with the national (state) ones; forming of stray world international 
reproduction nuclei and world income; the role of the high geoeconomical tech­
nologies, etc., as some of the most important problems of the localization of 
the geopolitical and geoeconomical risks. 

The risks in a geoeconomics environment can affect and even affect more 
often whole regions, conglomerations of states, nations and peoples. Therefore 
the risk regulating in the globalized economy is a very important and responsi­
ble process. The slightest mistake in the prognosis or realization of a scheme for 
globalization, not sufficiently developed, can lead to leveling of already achieved 
results or to destroying progressive trends. 

Effective activity in this direction is expected if the indicated problems are 
dealt with by a single authoritative international body, possessing, firstly, the 
ability to react quickly to the slight signals of the international society, to have 
effective logistics, geoeconomical and geopolitical equipment and, secondly, to 
have highly intellectual, information and communication capacity. 

The problems, connected with a deep analysis of the global processes, re­
lating to different spheres of the contemporary world space: geoeconomical, 
geopolitical and geostrategical [1] are particularly important. An electronic in­
terface system between the above-mentioned spaces, for accepting solutions, for 
processing of risk situations on the basis of a reliable geoeconomical; prognosis 
must be developed to meet these aims. The electronic (computer) system for 
monitoring "geoeconomical climate" must be based on a corresponding infor­
mation basis, on a permanently kept reliable information, on the formulating 
of a methodology for situational strategic data combination, on the assignment 
and solution of different strategic tasks, on the development of model situa­
tional strategic variants (combinations). The accuracy of the geoeconomical 
prognosis will depend on the accuracy of the imitation of the strategic tasks, 
which the particular national economy sets as a long-term purpose because the 
initial circumstances for operating in the geoeconomical space are different for 
the different economic systems. But in all cases the general methodological 
scheme for development of the geoeconomical prognosis must be more heuristic 
than systematic, more logistics than operational. 

The methodological approach, connected with the idea for volumetric divi­
sion of the global space into a number of spaces, which on different segments 
of the dynamic development have one or another hierarchic position, is taken 
for initial research basis. The leading space into the globalization regime is the 
geoeconomical space, which puts on a second place both the geopolitical space 
and the military-strategic space. On the other hand, there can be marked three 
important autonomous management spheres in the nucleus of the geoeconom­
ical space: 

• Commodity - monetary: 
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• Organizational - economic; 

• Contract - interpolational. 

The management technology of the risks of the commodity - monetary-
sphere is based on the prerequisite that the world market is a combination of 
interconnected simple (single) commodity markets, united in a final (closed) 
system which is in a dynamic equilibrium. The more accurately we can mould 
the world market, the more accurately we can guarantee the whole geoeconom­
ical prognosis in this sphere. Every single commodity market represents an 
organically connected unit of the world market, one of the knots of this gigan­
tic net, placed into the world economic (market) medium. A well-organized 
information system must exist, such a system that all the elementary single 
markets to be constantly in the range of vision of the analytic observer. 

A combination of definite commodity markets can be aggregated to a sep­
arate system. A main market can be separated in each group. It influences 
all single commodity markets in a given group, it effects the trends for their 
development. Apart from the mutual influence of separate markets to each 
other, as well as the mutual influence of groups of similar markets, the whole 
market system is influenced by the so called global group in the structure of 
the currency-credit market and the market of the labour force. Such a model 
of a world market guarantees the opportunity to follow the fluctuations and 
the regularity of change of all separate markets, to give a quality and after 
that a quantity evaluation of all other interconnected markets (to separate the 
zone of distribution of the price impulse, to determine its distribution speed, 
the link of the contract prices with ' the market of the medium" (the credit 
conditions, the rate of exchange, etc . ) , to evaluate quantitatively the influence 
of "the market of the medium" of the contract prices. 

The organizational-economic sphere has its own peculiarities, the main one 
being the process of division of production-technological chains and export­
ing of separate units outside the national boundaries. In such a way. the 
organizational-economic structures are arranged into different interconnected 
chains. Generally speaking, the system of world economic connections is formed 
by single economic structures (organizational - functional model of the world 
economic sphere). Also the model of collaboration in the world economic field 
predetermines the division process of production-technological chains and ex­
porting of their separate units outside the national boundaries. And a definite 
organizational-functional structure: scientific-research, project-designing, in­
vesting, production, foreign trade and contract, stands behind such an unit. 

The contract system must be the first one within sight of the geoeconomical 
regulating. This is achieved in the foreign trade practice via the preparation 
system of memoranda. The foreign trade (the foreign economic) contracts 
represent an important independent level of the foreign economic information. 
A pressing task is to form that information level in a given system, to classify 
the level by dividing it into priority directions, etc. The quantity evaluation 
of the motivations comes from here (for example, according to the type of 
the difference between the world price and the price, actually achieved in the 
negotiation process and fixed in the contract, etc . ) . 
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A dangerous loss of control over the contract system appears with the lib­
eralization of the foreign economic activity because the contract prices often 
do not reflect the world prices and therefore a system of pseudo-world prices is 
formed, creating a precedent of a big risk of backdoor contracts. 

Therefore the following must be done, the contracts signed at all levels, 
including the interstate level, must be transparent. The national economic in­
terests are reflected in one or another way in the signed contracts. In this way 
the very serious problem appears for establishing of correlations in the world 
prices and additional non-price stimuli, regulating the partners relations. Not 
only the value law regulates the contemporary economic world but a large 
system of hidden motivations does that, as well. In other words we have to 
deal with a peculiar parallel foreign economic system of world economic links. 
The contracts, dictated by the national interests, form new economic bound­
aries, establishing in this way the outlines of the integration and desintegration 
processes at a national, regional, production, financial, integration, political, 
military-political level and some other levels. 

The geoeconomical and geopolitical risks are intrinsically characteristic of 
the contemporary world economic structure and therefore it is very impor­
tant to learn to regulate them or at least to insure against serious losses and 
catastrophes. These risks have already been treated in the developed coun­
tries as success or failure due to using ready schemes for reducing the losses 
caused by sudden but prognosticable actions of the governments and the po­
litical state leaders. It became obvious that serious analytical research of the 
foreign economic and political activities and of the foreign trade is necessary for 
making prognosis and evaluation of the geoeconomical and geopolitical risks. 
Furthermore, the military political methods at an interstate level and a pos­
teriori media for defence of the companies seem to be a late reflex which does 
not provide effective support to the capitals and the reputation of the state 
structures and the business structures. 

As it seems, a serious intellectual-information research is required in this 
direction because one and the same political event or action of the government 
structures affects the activity of the companies to a different extent according to 
the sphere of their activity and the preventing actions, motivated by the results 
of the prognoses and of the economic analysis [12]. For example, the restriction 
of the general economic relations between Iran and the United States, caused 
by the events of the Islam revolution in 1979 and by the political considerations 
in connection with the orthodox clergy that came into power, did not hinder 
the sale, not made public, by the United States in Iran of highly technological 
military production which almost led to the impeachment of the President of 
the United States, Ronald Raegan. 

The difficulties related to the regulating or insurance of the geopolitical 
and geoecomical risks are connected first with the sphere of activity of the 
company and the branch belonging. For example, a building company, which 
has short-term contracts, is sufficient to have a prognosis for the political risk 
for a period up to one year, while the big gas-oil or air-space companies with a 
long production cycle of the products and realization of the services must have 
a quality prognosis for the perspectives within 1 0 - 1 2 years. 
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The reading and evaluation of the geopolitical and geoecomical risks rep­
resent the ground on which the whole foreign policy of the state is based. It 
can be considered that the level of the successes of the state structures in this 
sphere represents an indicator of civilization of the foreign economic course, 
which is led. 

In the contemporary controversial and dynamically changing world, the ac­
tions of the government structures can have for the state and the citizens trivial 
or, to the contrary, catastrophic consequences. For achieving effectiveness of 
the management process of the geopolitical and geoecomical risks, the strategic 
government actions must be based on reliable prognoses about the object of risk 
protection and its interactivities with the encirclement, having a short-term or 
long-term character. 

That is particularly important for protection from the state risk (the default 
risk), or from the macrorisks, whose analysis and evaluation are necessary for 
preventing (or minimization) of possible financial and material losses, caused 
by false political solutions of the state structures (for example, about the in­
vestment strategy), realized under the pressure of the opposition forces, or 
appearing as a consequence of deliberate actions of rival encirclement. 

The political unstability, originating from the unskilful interaction of the 
national governments with the opposition or with the regions, or from the 
unability of the state to fulfil its duty commitments in connection with the 
foreign investors as a consequence of the aggressive actions of the encirclement 
can be found in the basis of the state political risk. Every government strives 
for reaching maximal benefit by minimal political compromises, depending on 
the encirclement, forming the precedent of the risk. 

In fact, all political risks can be generally divided into two types: political 
micro and macro-risks. The political unstability of the state structure or the 
non-productive actions of the opposition in the country, in which considerable 
investments have been made, is in the basis of the political macro-risk of the 
state, which is always discussed at a national level. In this respect, particular 
attention must be paid to the analysis of the real and potential ability of the 
partner-state to fulfil its commitments in connection with the foreign investors 
by the development of prognoses. 

In relation to the political micro-risks, affecting the interests of the economic 
agents on the world market, it must be taken into account in advance that the 
interests of the business structures and of the executive bodies of the authorities 
are different. Namely, the governments always try to achieve maximal economic 
benefit by minimal political price, while the business structures strive to receive 
global and stable economic and political prosperity. Therefore, it is important 
for each economic agent to prognosticate "negotiating own and rival force" on 
the background of the economic and political situation. 

Four criteria have been used for the evaluation of the political macro-risk 
since the time of the famous analytics V. Coplin [10, 11] and V. Overholt [18]: 

• Evaluation of the position or orientation by the state factors in that or 
another sphere of activity; 
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• following this position firmly, proved by the national idea for stable devel­
opment; 

• authority and influence power on this sphere of state and political leaders; 

• the importance of the risk aspect for increasing the state stability or the 
authority of the state factors, taken into consideration by the partner-state. 

These criteria are used especially successfully in combination with scenario 
methods [12, 14, 15] and they have achieved a definite logical formalization 
lately. In particular, I. Walter I. [12] developed two general formulae for eval­
uation of the political (state) risk, corresponding to each state scenario to the 
same extent. 

The first of them: 

Y(t) + M(t) = A(t)+X(t), 

where Y(t) - is the val national product ( V N P ) of the country - candidate 
for economic partner interaction: M ( f ) - is the import of that country; A(t) -
is the internal consumption, including investment in the production and non-
production sphere; X(t) - is the export. The economic point of this equation 
is in the fact that by growth of V N P and preserving the internal consumption, 
radical changes occur at the level and in the structure of M(t) and M(t). 

The second, relating to the same country - candidate for economic interac­
tion, looks like: 

X{t) - M{t) - DS(t) + FDJ(t) + U{t) - K0(t) = DR(t) - NRB(t), 

where 

DR(t) = X{t) + FDJ(t) + U(t); NRB(t) = M(t) + DS{t) + A'O(f); 

X(t), M(t) are taken from the first formula; DS(t) - are payments on foreign 
loans: FDJ(t) - is a general volume of direct short investments; U(t) - is a 
general volume of gratis credits; K0(t) - is a general sum of the investments 
in the bank system of the country; DR(t) - is the quantity of the foreign 
currency, circulating at a given time in the country, equated to a single currency 
equivalent; NRB(t) - is a state duty, determined for being paid at a given 
moment. 

The point of this economic-mathematical expression is in that the negative 
balance in the left part can have as a consequence default (refusal for payment 
the foreign duty and a requirement for its restructuring), motivation of the 
economy toward an increased foreign duty or toward finding other international 
sources for financing. With other words, the situation from the type DR(t) < 
NRB(t) presupposes state political risk because the solution for default or 
attracting of new foreign investments lies exclusively within the competence of 
state and political structures. 

Using this economic-mathematical formalism helps for the development of 
an optimal scenario for economic interaction between the states, distancing 
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from political risks. It is necessary to use "information-intuitive thinking'', 
based on experience and analogy, formalized into some kind of model for making 
solution, so that this scenario will not depend too much on the possible state 
cataclysms. 

The priorities of the modulated scenario solutions is expressed in the pos­
sibility for finding of hidden correlations, capable to drastically change the 
effectiveness of the actions in the field of political risks insurance. 

The non-risks management scenarios of systems, exposed to political 
(geopolitical) and economic (geoeconomical) risks, are generated especially ef­
fectively with the help of the developed in [2 , 9] market competitive strategies 
(MCS) . The idea and implementation of that instrument is based on the theory 
of the games and the economic conflict in the tract of G. Stakelberg [3 , 2 1 ] . In 
the final, adapted for practical usage form, MCS are formalized in the following 
way: 

D E F I N I T I O N 1. Let us represent some dynamic market factor (t) into the form 
of a sum of its non-negative components 

K(t) = YtKi(t)-
(0 

If we enter base strategies Xi(t) = Ki(t)/K(t), numerically equal to the 
part of the contribution of each component in K(t), given at the beginning and 
the end of the management interval [0 . T] as 

Xi(0) = Xi0, Xi(T) = XlT , 

then MCS: Xi*'(t), realizing the expressed trend in deferential form K(t) to­
ward decrease, 

dK(t)/dt = a K{t)(l - ^XiN{t)), 

are represented (Fig. 1) in the way 

XiN{t) 
XiO, ifO<t<Ti; 

max(A'iO. XlT), ifT>t>ri. 

Here 

TI = T - 1/a ( 1 - XiN{T)) 

is the temporary co-ordinate for switching the strategies: 

a = Mr £ ( 1 / ( 1 - X z A ' ( T ) ) ) 2 / r / (M 1 - 1 ) / £ ( 1 / ( 1 - Xi"(T))) 

is rate of the trend realization: Mi = const. 1 < M\ < T, is scenario constant, 
depending on the expected dynamics of the prognosticable factor K(t) of [ 0 . T ] , 
If for [0, T] are not prognosed sharp changes of K(t), then it is completely 
possible to put M\ = T / 2 . Otherwise this affix must be given specially. 
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Analogically. MCS: XiN{t), realizing the expressed trend in diferential 
form K(t) toward increase 

dK(t)/dt = b K(t)J2XiN(t) 

and corresponding to the base strategies Xi(t), are determined in the way: 

Yi*'tt\ - / X i 0 > lf f - ^ ' 
* l ( T ) ~ \ mm{XtO,X2T) , if T>t>Hi. 

where 

• [ij = T — 1/6 XiN (T) - is a temporary co-ordinate for switching the strate­
gies (fig. 2) : 

. b = M2 J2(l/XiN(T))2/T/{M2 - l ) / E ( l / A - r v ( r ) ) - is rate of the trend 
realization: 

• M2 is analogical const of M\. 

If Xi(0) = XjQ, Xi(T) = XiT are known, then we can easily define r, /i,- . 
XiN(t) and via them by using simple quantum on the switching points of the 
strategies to solve the deferential equation of the trends and to define K(t), 
after which every component of the process Ki(t) is determined according to 
the formulae: Ki{t) = K(t) • XiN{t). 

In the problems for prognostic economic factors, however, Xi(T) = X^ are 
more often a priori not known and then they are determined by some systematic 
functional, connecting all or separate co-ordinates of K(t), i.e. some of their 
known proportions or combinations in the future. 

The situation with previously unknown terminal values of the market com­
petitive strategies is typical for vertically structured hierarchical managements 
of a regulating market, suggested by the German economist G. Stakelberg [21]. 

For using this idea we will practically make a combination of the above-
mentioned formulae in the form of two aggregates 

DR(t) = Y(t) + FDJ(t) + U{t), 

NRB(t) = A{t) + DS(t) + K0{t) 

and we will introduce the following strategies: 

Xl{t) = Y{t)/DR{t) ; X2(t) = FDJ(t)/DR(t) ; XZ(t) = U[t)/DR{t) ; 

Yl(t) = A(t)/NRB(t) ; Y2{t) = DS(t)/NRB(t) : Y3(t) = K0(t)/NRB(t), 

with which based on a famous methodology (see, for example, [2] or [9] we can 
turn to market competitive strategies ( M C S ) . 

In this case, if DR(t), NRB(t) decrease and 

{dDR{t))/dt = al • DR{t){\ - £ MCS{t)) : 
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dNRB(t)/dt = 61 • NRB{t){\ - £ MCS{t)), 

the market competitive strategies Xl(t). X2(t). X3(t): Yl(t). Y2(t): YZ{t) 
have a configuration, given on Fig. 1. Otherwise (on Fig. 2) : 

{dDR{t))/dt = a2 • DR(t){Y,MCS(t)) ; 

dNRB(t)/dt = 62 • NRB{t){J2MCS{t)). 

If the interval [0. T] represents an interval for prognosing of the model risk-
less scenario of the economic interaction between two countries, and MCS(T) 
are known, then the technical parameters (the switching points of the strate­
gies) of this scenario 7* . are determined with the expressions: 

n = r - l / ( a l ( l -MCSi{T))), or T, = T - 1/(61(1 - MCSi{T))), 

Hi = T-l/(a2MCSi(T)), or m = T - 1/(62 MCSi(T)).. 

where the quantities ' " a l " . " 6 1 " , " a 2 " . "62" are equal to: 

o l ( o r 61) = M £ ( 1 / ( 1 - MCSi{T)))2/T/(M - 1 ) / £ ) ( 1 / ( 1 - MCSi{T))). 

a2(or 62) = M ^{Y/MCSi{T))2/T/{M - 1 ) / ^ { \ / { M C S i { T ) ) ) , 

and G is the above-mentioned scenario constant. 

Based on the above descriptions, the scheme for development of a model 
riskless scenario of the economic interaction between two countries can be the 
following: 
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Fig. 2. General look of MCS for an increase trend 

1. If DR(T) < NRB(T), then the economic situation in the country - can­
didate for economic interaction is unstable to such an extent that it can 
motivate the political circles toward default or other firm economic - polit­
ical solutions: i. e. restraining from active economic links is recommended 
for avoiding the risk; 

2. If DR(T) > NRB(T), then that represents a signal for economic pros­
perity of the partner-country and opportunity for activating the economic 
links with it. If, besides, DR(T) > DR(0), then there is a trend of increase 
for DR{t). 

In this case if DR(0) > NRB(0), active economic interaction can be rec­
ommended immediately after realizing this fact. 

More interesting is the situation when DR(0) < NRB(0), showing that a 
moment of time t from the interval [0, T] exists, in which DR(t) = NRB(t), 
and to whose coming, restraining from active economic interactions is rec­
ommended and immediately after it the economic transactions must be 
accompanied by active insurance of the deals. 

3. In the case DR(T) > NRB(T), but DR(T) < DR{0) (trend toward de­
crease for DR(t)) and DR(0) > A'RB(0), close collaboration can be rec­
ommended. 

The same cannot be said about the situation DR(0) < NRB(0), because 
there exists point t from the interval [0,T] in which DR(t) = NRB(t), 
and to whose arrival, restraining from active economic interactions is rec­
ommended and immediately after it the economic transactions must be 
accompanied by active insurance of the deals. 

4. Principally, there exist four variants of "postponed" for time t economic-
interaction: 
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• DR(increasing trend) = NRB(increasing trend); 

• DR(increasing trend) = NRB(decreasing trend); 

• DR(decreasing trend) = NRB (decreasing trend): 

• DR(decreasing trend) = NRB(increasing trend). 

To process successfully these active situations, we will give the formulae for 
calculating of the trajectories DR(t), NRB(t): 

( A ) Increasing trend: 

DR(t) = DR(0)exp{al £ [MCSi{0) -t, if t < p%; 
j = 1.2:3 

MCSi(0) • Pi + MCSi{T) • (t - p.,), if t > pl}}: 

(B) Decreasing trend: 

DR(t) = DR(0) e x p { a 2 [t - £ {MCSi{0) • t. if t < T,•; 
i = l,2.3 

MCSi{0) • n + MCSiiT) • {t - n) , if t> r,)] } ; 

(C) Increasing trend: 

NRB{t) = NRB(0) exp{61 £ [ MCSi{0) • t , if t < p2 : 
i = l,2.3 

MCSi(0) • p> + MCSi{T) • {t - p.) , if t > p,•} } ; 

(D) Decreasing trend: 

NRB{t) = NRB{0) exp{b2 [ t - £ MCSi{0) • t , if t < rt: 
1=1,2.3 

MCSi(Q) • n + MCSiiT) • (t - Ti) , if t > r, ]}. 
We will look at the following pattern example. The economic - political 

stabilization of a certain country requires the reviving its economic relations 
with a hypothetic country (HC) . For choosing of an appropriate moment of time 
from the time interval [2002,2007] = [0 .T] , (77 = 5 years) recommendations 
are required made by the top managers. The current and prognostic data, 
expressed in symbolic units, are given in Table 1. 

It follows according to the above data that as a whole the economy of HC 
after the prognosis for 2007 is in a favorable collaboration situation but such 
a responsible recommendation can be given only after analysis of the situation 
DR(t) = NRB(t) and after determining the corresponding moment of time for 
the beginning of the collaboration, having in mind that 

DR(t) = DR{0) exp{al £ [ MCSi{0) • t , if t < p, ; 
i=1.2.3 

MCSi(0) • px + MCSi(T) • (t - pl) , if t > pt ]}, 
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Factors Moment Strategies Moment MCS Factors 
t = 0 t = T 

Strategies 
t = 0 t = T 

MCS 

Y 60 86,7 XI 0.66 0.66 0,66 
FD.J 20 14.44 X2 0,22 0.11 (0,22; 0,11) 
U 10 28.8 X3 0,12 0,23 0,12 
A 23,3 73,3 Yl 0,22 0.66 0,22 
DS 11,7 24.4 Y2 0,11 0.22 0,11 
K 70 12.22 Y 3 0.67 0,12 (0,67; 0,12) 
DR 90 130 
NRB 105 110 

Table 1. The current and prognostic data (the numbers in the brackets repre­
sent the coordinates in the left and right curves of MCS - see Figures 1 and 
2) 

NRB{t) = NRB{0) exp{bl £ [ MCSi(0) • t . if t< m : 
j = 1.2,3 

MCSi{0) • p, + MCSi(T) • (t - p,,) , if t > pu ]}, 

from where we get : 

a l £ [ MCSi(0)t. if t < //,: MCSiKnp, + MCSi(T){t - p2), if t > p, ' 
1 = 1,2,3 

- 6 1 £ [ MCSi{0)t , if t < pf.MCSi(0)p, + MCSi{T){t - pt), if t > p,•] 
1 = 1.2.3 

= ln(NRB(0)/DR(0)). 

We find with simple iterations that the favorable collaboration moment of 
time is t = 3, and the real scenario interval of a successful riskless interaction 
is [2005,2007]. 

Let us discuss another situation, connected with generating of a riskless 
management scenario of the political risk following the type of the modified 
method BERI [11, 22], which requires a systematic functional for determining 
of the MCS. 

In this particular case, we will characterize the political risk with the fol­
lowing parameters: 

• S - regime stability, subject to the follow-ing gradation: S — 1 (unstable 
regime), 5 = 3 (medium stability), 5 = 5 (stable); 

• B - lack of riots, subject to the following gradation: B = 1 (strong riots). 
5 = 3 (slight riots), B = 5 (there are no riots): 

• I - lack of restrictions of foreign investments, subject to the following 
gradation: 1 = 1 (strong restrictions). 1 = 3 (medium restrictions), 1 = 5 
(there are no restrictions): 
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• N - lack of restrictions of foreign trade, subject to the following gradation: 
N = 1 (strong restrictions), N = 3 (slight restrictions), N = o (there are 
no substantial restrictions). 

If a total index is used: 

P = S + B + I + N. 

then the trend for the growth of each component is sequenced with an analogical 
trend for P. We introduce basic strategies 

Xl(t) = S(t)/P(t) , X2(t) = B(t)/P(t) , 

X3(t)=I{t)/P(t) . X 4 ( t ) = A ( r ) / P ( r . ) . 

which are known at the initial moment of the interval of management: 

5 (0 ) = 3 , B(0) = 1 . 1(0) = 3 . A ( 0 ) = 1, 

and w'e will make a prognosis for the dynamic of the indicator P in a regime 
of its growth under the condition that it is recommended to provide minimum 
of the functional at the terminal point of the changing interval [2003, 2005]: 

F = [N(T) - 3 . 5 ] 2 , 

i. e. at a certain free level of the foreign economic business. 
The methodology of minimization of that and of similar functionals in the 

space M C S has been developed, for example in [2. 9] , and. therefore, we can 
give the ready solution: 

S ( T ) = 4, 2 ; B(T) = 2 , 8 ; I{T) = 3 , 3 ; N{T) = 3 , 5 , 

which proves that similar achievement in the sphere of regulating the political 
risk is provided by increasing the regime stability, removing the restrictions 
of the foreign investments and decreasing the rate of law breaking. When a 
single system of parameter gradation is provided, then the received solution 
gives completely a concrete reference point. 
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Qeoekonomiskie un geopolitiskie riski: musdienu problemas un 
risinajumi 
Kopsavilkums 

Tiek apskatlti geoekonomiskie un geopolitiskie riski, kurus izraisa valstu ekonomiska 
un politiska mijiedarblba. ST merka sasniegsanai izmanto dilerencialo speju teoriju 
un tiek iztirzati dazi ilustrejosi piemeri. 
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1. Introduction 

It is well known that elliptic boundary value problems with sufficiently smooth 
coefficients have bounded weak solutions. The methods developed in [3], [4] are 
applicable to general nonlinear elliptic problems with unbounded coefficients. 

Although methods proposed in [3], [4] work well in general situations, the 
obtained results are not as strong as it is necessary for some specific applica­
tions. It is especially in the case when one wants to understand the dependence 
of the upper and lower bounds of weak solutions on various parameters of the 
problem. The estimates of bounds given by general methods are inaccurate 
and have complicated dependence on the parameters of the problem. 

In this paper we deal with a nonlinear elliptic boundary value problem, 
which describes combined conductive-radiative heat transfer in a physical sys­
tem. Our goal is to get accurate estimates for the upper and lower bounds 
for the weak solutions of the problem. Since the equation and the boundary 
conditions of the problem in our case include only bounded coefficients, the 
desired goal could be achieved by methods similar to those ones which were 
used to prove the maximum principle for elliptic boundary value problems [3 ] . 
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Let Q = [0,1} x n C R 3 be a bounded cylindrical Lipschitz domain without 
holes, i.e. II C R 2 is a bounded Lipschitz domain homeomorphic to the unit 
ball £ ( 0 . 1 ) C R 2 . Let E s = [0,/] x dU be the lateral surface and let Eht 

be some surface in R 3 , which is measurable with respect to Lebesgue surface 
measure. Suppose that the boundary value problem is given by the integral 
equality 

J (fci(V(u + 0) • WO + k2(u + <p)Xlip)dv + J Gx{\u + 6\\u + <j>))ibds 

= J G2(\\\3\)ipds VtpeV5, 

where the functional space V5. the linear operators G\ : I / 5 / 4 ( E s ) 1—> L 5 / 4 ( E S ) , 
G2 '• L5/4(Y,i,t) 1—» L 5 / 4 ( E S ) and the parameters fci, k2, A, <p will be introduced 
in the next section. In this paper we show that if u £ V5 is a weak solution of 
the boundary problem and if the parameters A, <p have appropriate properties, 
then the following simple estimate holds: 

0 < O + u) < max{||A|| L ^ ( S ,„) . \\d>\\LxiM\x.)}-

2. Preliminaries 

In this section we give formulation for the boundary value problem and list some 
results. It is important to note that here we use essentially the methodology 
from the paper [5], which deals with similar mathematical models of conductive-
radiative heat transfer. 

Let 

Q x : = { x e R 3 : ( x 2 , x 3 ) e n } , 

n : = {x e R 3 : 0 < xi < I. ( x 2 , x 3 ) G I I } , 

where I is a positive constant and II C R 2 is a bounded Lipschitz domain 
homeomorphic to the unit ball B(0,1) C R 2 . Let 

( ( i , C l 3 : i = 1, . . ,n} 

be a finite set of bounded Lipschitz domains such that 

Qoc nfii = 0 i e {l,...n}. 

QinUj=® i,j e {!,..,n},i j£ j . 
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We introduce the abbreviations 

E s := [0.1] x dU, 

E m := d f i \ E s , 

S m : = { X € S * n : Xl = 0 } . 

£ 2
n : = { x G E m : X i = / } . 

E h ( := ( J Oil,. 
!6{l . . . .n) 

E r := E s U E/,(. 

i€{l , . . .n} 

and use also the following notation further in the text. 

Let A C B. Then we denote by x{A. B) the indicator function \ '• B ^ 
{ 0 , 1 } of the subset A. 

We denote by £(X, Y) the space of the linear bounded operators that map 
a Banach space X into a Banach space Y. Let I stand for the identity operator. 

We denote by Lp(-) the standard Lebesgue spaces (1 < p < oc) and by 
W2

l(-) ^he standard Sobolev spaces. Let V 5 . V5 be the Banach spaces: 

(Vs- Il-llvj := ({u G W}(Sl) : u | E.s G L 5 ( E S ) } ; \\-\\wm + H L S ( E , ) ) , 

ll-llv,) H { « ^ V « | E , „ = 0 } , ||.||u., ( n ) + ||-|U5(E,)). 

We suppose that there is a boundary value problem defined on fl: 

Xv) + k2{u +<p)Xly)dv + j Gi(\u + o\3{u 4- o))vds 

= J G2{\\\3\)tids Vt; G Vs- (1) 

where 

fci = const > 0,k2 = const, 

0 G V 5 . 0 > 0 a.e. on E l 7 1 .A G Z ^ E / ^ ) . 

Gi G £ ( L 5 / 4 ( S S ) . L 5 / 4 ( E S ) ) , G 2 G £ ( L 5 / 4 ( S h t ) . I , 5 / 4 ( S 8 ) ) . 

We assume that the boundary value problem (1) is derived from the con-

/ ( fci (V(u + 0 ) -
JQ 
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Jn 

ductive-radiative heat transfer problem: 

ik1(X{u + <p)-ViP) + k2{u + o)Xly)dv+ gipds = 0 VrpeV5, (2) 

p(x) - (1 - e(x)) J k(x.y)p(y)ds(y) = e(x)o\q{x)\3q(x) a.e. x G E r , (3) 

y(x) = p(x) - J k(x. y)p(y) ds(y) a.e. x G E s , (4) 

q |s..= u + 0 , (5) 
g | s , „ = A , (6) 

where 

fci = const > 0,k2 = const, o = const > 0, 

G V5,d> > 0 a.e. on E m , A G L5(T,ht), 

c € £ c o ( £ r ) . e r j — 6 — 1 a - e - o n ^r ,£o = const > 0. 

Here the function k : S r x E r h-> K from (3) , (4) is defined by a mapping 

( ( x .y ) G E r x E r ) h-> fc(x,y) : = w(x.y)8(x,y). 

_ cos ( t / ( x ) , (y - x)) cos (x - y) ) 
U'^X. J/J • 1 1 9 ' 

7r|x - y\* 

0(x.y) 
1, if { z G R 3 : z = TX + (1 - r)y,0 < T < 1} n Slr 

0. otherwise 

where v{-) denotes the outward normal of the surface E r . (Note thati/(-) exists 
almost everywhere on E r since it is a Lipschitch surface). 

The analytical properties of the function k(x,y) and the fact that E r is 
Lipschitz surface allow us by involving the Gauss formula) to get the following 
estimate: 

0 < / k{x.y)ds{y) = lira / k(x,y)ds(y) = 
Jxr JZr\B(x,5) 

f cos (y (x ) , (y — x ) ) , . . „ . , 
lim / v v hJf — ds(y) < 1 a.e. x G E r , (7) 

5^°Js^(x.S)nQ{x.S) ^° 

where 

B(x.6) := {z G R 3 : \z-x\ < 6}, 

S+(x, 5) := {z G R 3 : \z - x\ = S, (i/(ar) • (z - x)) > 0 } , 

Q(x, S) : = {z G R 3 : z = x + ry: y G T,r\B(x, S), T > 0 } . 

The cylindrical shape of the domain Q.^ and the positive distance between the 
surfaces E s , E^ ( guaranty that there exists a constant 0 < c j < 1 such that for 
every 6 > 0 and for a.e. x G E s the following estimate holds: 

mes (S+ (x , S) n Q(x, 6)) < 2 c i 5 2 . 
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This yields the existence of a much stronger local estimate on the surface E s 

than (7) . There exists a constant c2 < 1 such that: 

0 < J k{x.y)ds(y) < c2 a.e. x G E s . (8) 

The estimate (7) implies that the mapping 

[u G L p ( E r ) ) K(u) := J k(x,y)u{y)ds(y) 

defines the operator K G £ ( L p ( E r ) , L p ( E r ) ) and 

l !K | U ,L„(S r ) .L p (E, .)) < 1 (9) 

for every constant 1 < p < cc ([2]). 

Suppose that the mappings 

{u G L 5 / 4 ( E r ) ) >-> Ei(u) : = (1 - e)u, 

[u G L 5 / 4 ( E r ) ) E2(u) : = ew, 

u(x) x G E s 

( u G i 5 / 4 ( S s ) ) ~ P i ( u ) : = 

(u G L 5 / 4 ( E / l t ) ) ' r P2{u) : = 

0 x G E ft* 

w(x) x G Eht 

0 x G £c 

define the operators Ei G £ ( L 5 / 4 ( E r ) , Z , 5 / 4 ( £ r ) ) . E2 G £ ( L 5 / / 4 ( £ , . ) . £ 5 / 4 ( E r ) ) , 
Pi G £ ( L 5 / 4 ( E s ) : L 5 / 4 ( E r ) ) and P2 G £ ( L 5 / 4 ( £ , , t ) , L 5 / 4 ( £ r ) ) . As the estimate 
(9) holds, it allows us to exclude the variables g, p, q from the systems (2) . (3). 
(5). (6) , (4) and to obtain the boundary value problem (1) . Then the operators 
Gi, G2 from (1) will have the following form ([5]): 

[u G L 5 / 4 ( £ s ) ) ~ G i ( « ) := (<t(I - K)(J2(EiKY)E2Pi(u)) Is,. 

DC 

(« G J L 5 /4(Sh*)) ~ G2{u) : = (or(/ - A - ) ( £ ( £ 1 A ' ) i ) - B 2 P 2 ( u ) ) Is, 
i=0 

Furthermore, if we denote 

Cj 1 Ct9 
Hi := I -.Ho := — 

a a 
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then the following properties will hold ( [ 5 ] ) : 

Gi 6 £ ( I P ( E S ) . L P ( E S ) ) , G 2 G £ ( L p ( E h t ) . L p ( E s ) ) for all 5 / 4 < p < oc, ( 1 0 ) 

Hi G £ ( L P ( E S ) . L P ( E S ) ) , H 2 e £ ( L p ( E h t ) , L p ( E s ) ) for all 5 / 4 < p < oc, ( 1 1 ) 
i I^I IU ( £ I , (S , ) .L I > (S „ ) ) < 1 for all 5 / 4 <p < oc . ( 1 2 ) 

G 1 ( x ( E s , E . s ) ) - G 2 ( X ( E ^ , E h t ) ) > 0 a.e. on E s , ( 1 3 ) 

if u G L i ( E s ) and u > 0 a.e. on E.,. then H\(u) > 0 a.e. on E s , ( 1 4 ) 

if u G L i ( E / l i ) and u > 0 a.e. on E/ j t , then H2(u) > 0 a.e. on E s . ( 1 5 ) 

R E M A R K 1 . The form 

{{u.t>) e v 5 x v5) ^ 

/ ( fci(V(u + ©) • V w ) + k2{u + <p)Xltl>) dv + / Gi{\u + <p|3(w + <p))ipds 
Jq Je„ 

defines a pseudomonotone operator. The estimate ( 8 ) guaranties that this 
operator is also coereitive. Therefore, for fixed A G L 5 ( E / U ) the boundary 
value problem ( 1 ) has at least one w-eak solution u G V5. 

3. Lower estimate 

T H E O R E M 3 . 1 . Suppose A G Lx(T,ht) and 0 < A a.e. on T,ht. If u e V5 is the 
solution of ( 1 ) , then 

0 < [4> + u) a.e. on ft. 

Proof. Suppose that inequality 0 < (4> + u) does not hold a.e. on ft. 

Then the function 
V : = min{<r) + u, 0 } 

must not be equal to zero. Furthermore, as cf> > 0 a.e. on E m and u G V 5 , then 
•U! G V5. 

From the properties of the function •</' G V5 it follows that 

/ fci(V(u + <p) • V 0 ) d v = / k^Vvfdv > 0. ( 1 6 ) 

In addition, the following equality can be obtained: 

k2(u + 6)XlC'dv 
n 

1.2 
j k2VXlipdv= j (k2^—)Xldv - j {k2)x,^-dv (17) 

Jq Jq 1 Jq 1 
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Further, since 0 < A a.e. on Ejh and it? < 0 a.e. on E S , from the condition 
(15) it follows that: 

- j G2(\\\3\)vds > 0. (18) 

In order to obtain an estimate for the integral 

j Gi(\u + (i>\3(u + <p))vds 

we define the function 

7 := ma.x{d> + u. 0 } . 

The properties of xb and 7 yield that 

\u + 4>?(u + cj>) = [ f l f y + | 7 i 3 7 (19) 

and 
V 7 = 0 (20) 

a.e. on E s . 

As the operator G\ is linear, the equality (19) implies that 

f Gi{\u + 4>\3{u + <j>))^ds= j Gl(\ib\3vyibds+ j G^f^wds. (21) 

From the estimate (12) it follows that 

J G^TpfiPH'ds 

= (7{[ \ti\5ds- f HxflvfvK'ds) 
Js, i s , 

> 0-|Mli5(E„) - ^ l l ^ l ( l ^ | 3 V ) l l L 5 / 4 ( E . , ) [ | v | l L r ) ( E . , ) 

> ^II^IILB (E,) - ^ I I^I IU (L 5 / 4 (E S ) ,L 5 / 4 (E. , ) ) I I^ I I 4 L 5 ( S . 0 I I^ ! IL 5 (E, ) 

= a ( l - | | ^ l | | £ ( i . 5 / , ( £ „ ) , L B / 4 ( E , ) ) ) l l ^ l l L ( S , ) ^ °-

If we take into account the equality (20), the property (14) and the fact 
that 7 > 0, ib < 0 a.e. on £ s , we get the estimate 

I G^j^vds 

= o(( | 7 | 3 7 ^ r f s - f H^f-yWds) (23) 
JE., i s . . 
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The estimates (22). (23) and the formula (21) imply that 

J G 1(|u + <^|3(u + 0 ) ) t M s - > 0 . (24) 

Now, if we take into account the obtained estimates (16). (17), (18). (24). 
then we get 

I (kl(V{u + &)-Vrb + k2(u + 0)Xlrl')dv+ / Gi(\u + cp\3{u + d>))i>ds 
Jn •/£., 

- J G 2 ( | A | 3 A ) > 0 . 

But this contradicts the equality (1) , which must be also valid. • 

4. Upper estimate 

Theorem 4 .1 . Suppose cf> |s;„€ L o o ( E i T l ) , A e L 0 0 ( E / l t ) and A > 0 a.e. on 
E/j t . If u £ V-j is the solution of (1) , then 

{6 + u) < m-Ax{\\X\\Lx(Ehl). \\<p\\Lx(X„<)} a.e. on ft. 

Proof. To prove the theorem we will use the technique similar to the one which 
was used in the proof of the previous result. Suppose that the inequality 

(0 + u) < max{||A|| i o e ( E | l l ) l ||<?||l̂ (s,„)} 

does not hold a.e. on ft. 

We fbc a constant 

fc:=max{||A|UDo(Ehl))||0|Uao(ElI.)} ( 25 ) 

and functions 

ip : = max{0 + u — fc, 0 } , 
: = min{0 + u — k. 0 } + k. 

As k is defined by the formula (25), then ip G V5 and it could not be equal to 
zero. 

Then we have the estimates (see (16) . (17) ) : 

f kl{S/(u + 0)-Vilj)dv>O, (26) 
Jn 

/ k2{u + (p)Xlipdv = 0. (27) 
Jn 
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In order to estimate the integral 

j (Gi(|u + o3(u + o)) - G 2 (|A| 3 A))yds 

we introduce the sets 

A := {.r e E s : V(x) > I)}, 

B := {x e E s : v(x) < 0 } . 

The properties of y and 7 yield that 

u + 0 = iv + -> 

a.e. on E s . Furthermore, as all conditions of the Theorem 3.1 are satisfied, 
then (<p + u) > 0 a.e. on E s and therefore 

\<f> + u\3(o + u) = {0 + it)4 = w4 + n ; i - . 4- 6t!- 2 7 2 + 4 y 7
3 + - 4 (28) 

a.e. on E s . 

In addition the following estimates hold: 

7 = k a.e. on the A. (29) 

7 < k a.e. on the B. (30) 

As the operator G j is linear, the equality (28) implies that 

j Gi(\u + 0\3{u + <p))yjds 

G1{ib4)i>ds + j 4G1{y^3
1)xbds + J 6 G i f > V ) t f d s (31) 

+ f 4Gl(vn2}ii>ds+ f di^vds. 

Let us estimate the expression 

f G ^ v d s - f G2{\\\3\)vds. 
i s , J E , 

By (29), (30) and (14) we get that i ? i ( 7 4 ) < Hi(k4) a.e. on E s . Therefore 

X ( A , E S ) G 1 ( 7 4 ) ^ 

= ( T X ( - 4 , S s ) ( 1
4 o - r 7 1 ( 7 4 K 0 = ^ ( - 4 , E s ) ( f c 4 v - H 1 ( 7 4 ) v ) (32) 

> <jX(A, E s ) ( f c 4 y- - H^k4)^) = k4
X(A, E S ) G ! ( X ( E S , E s ) ) ^ 

a.e. on E s . 
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In addition, the following equality 

X ( J B : £ S ) G 1 ( 7
4 ) 0 = O (33) 

holds a.e. on E s . 
Next, if we take into account (15), we get 

G2{\X\3X)il> 

= a # 2 ( | A | 3 A ) ^ < o-H2(\\\\\i^ht))v (34) 

= | | A | | i 5 c ( E , „ ) G 2 ( x ( E h t , S w ) ) ^ 

a.e. on E s . 
By means of (32). (33), (34) we get: 

(35) 
^ ( G i ( 7 4 ) - G2(\X\3X))ipds 

> J ( ^ ( ^ S , ^ , ) ) - ||A||i 3 c ( S h | ) G 2 ( x (E / , t ; E w ) ) )^d S . 

As k = max{||AJj L ^ ( l ; , i t ) , | | 0 | | L 5 o ( S i i i ) } , then from (10), (35) it follows that 

f (G1(1
i)-G2(\X\3X))ibds> 

J * ' (36) 
J A : 4 ( G 1 ( X ( E S . E S ) ) - G 2 ( X ( E ^ , T.ht)))ibds > 0. 

Next, we have the estimate (see (22)) 

J G-,[^)c(ls > 0. (37) 
IE 

Let us now estimate the integral 

j)tp ds. 

Again. (29). (30) and (14) imply that H^i'3-/) < Hi(w3k) a.e. on E s . 
Therefore 

G i ( w 3 7 ) i ' 
= a(-/ip4 - ^ (v3j)V) = a(W'4 - Hx(^3

T)0) (38) 
>ak{vA - H^3)^)) 

a.e. on A. 

In addition, as %• = 0 a.e. on B. it follows that 

G ! ( v 3 7 ) V ! = o-k(p4 - Ihic:()v) = 0 (39) 
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a.e. on B. 

Now. by means of the formulas (38). (39) we get: 

j AG:'•-•)cds 

> f 4crfc(^4 -H!{w3)w)ds 

> tokMUz,) -4^||Hi(V3)||lV3(s„)II^||l.(e.) 
> 4 ^ | | 0 | | 4

j ( S O - 4 a / c | | H 1 | | £ ( L 4 / 3 ( E 0 . L v 3 ( E J ) | | ^ | | | j ( s > ) | i i / ' | | L 4 ( S 0 

= 4<rfc(l - l l ^i lUf^fE, ) .^ , ! : . , ) ) ! ! *^^ , , > 0. 

By using similar considerations we can get: 

J 6 G ! ( y 2 7 2 ) ^ d s > 0, (41) 

4 G i ( t i - 7 3 ) ^ d s > 0. (42) 

The estimates (36), (37), (40), (41) , (42) and the formula (31) imply that: 

{Gi(\u + <p\3{u + ©)) - G 2(|A| 3A))y>ds > 0. (43) 

Now-, if we take into account the obtained estimates (26). (27). (43) , we get 

/ ( fc i (V(u + <p) • V v ) + k2(u• + <p)Xlip)dv + / Gi(|u + 4>\3{u + o))vds 
JQ i s . 

G 2 (|A| 3 A)^ds > 0. 

But once again, this contradicts the equality (1), which must be also valid. 

• 
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Visparinato atrisinajumu ierobezotlba kadai siltumparneses proble-
mai ar siltuma vadlsanu-izstarosanu 
Kopsavilkums 

Saja raksta tiek petlts jautajums par kadas nelinearas eliptiskas robezproblemas 
visparinato atrisinajumu ierobezotlbu. Ta rezultata tiek ieguta vienkarsa sakarlba, 
kas atspogulo to. kada ir visparinato atrisinajumu apaksejas un augsejas robezas 
atkarlba no problemas parametriem. 
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Let us recall that the usual trigonometric functions can be introduced by 
considering the differential system 

x' = y, 
V' = -x, (1) 
x(0) = 0, y(0) = 1. 

Multiply the first equation by 2x, the second one by 2y and sum up the both 
equations. One gets 

d(x2+y2) = 0 

or 
x2(t)+y2(t) = l, (2) 

if taking into account the initial conditions in (1). 

The relation (2) shows that the functions x and y define a unit circle. 

It follows from (1) that 

x" = - i , ( 3 ) 

i ( 0 ) = 0 . x ' (0) = 1. 
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Since the equation (3) is autonomous, any function x(a + t), where q is a 
constant, is also a solution of (3). The functions x(t) and y(t) are linearly 
independent solutions of (3) because the Wronskian 

d e t ( y(t) \ = d e t ( m y(t) \ = _ x 2 , t ) _ 2 { t ) = _2 , 0 

^ x'(t) y'(t) J d e t y(t) -x(t) ) X [ t ) y [t> * U' 

Then by properties of linear second order differential equations 

x(a + t) = C1x(t) + C2y(t), (4) 

where C\ and C2 are some constants to be found. Set t = 0. Then x(a) = 
Cix (0 ) + C2y{0) = C2. Since 

x'(a + t) = y(a + t)= Cxx'(t) + C2y'(t) = ClV(t) - C2x(t), 

one obtains that 
y(a) = ClV(0) - C2x(0) = d . 

Thus 
x{a + t)=y(a)x{t)+x(a)y(t). (5) 

The relation (5) is the so called addition theorem for the function x(t) or 
simply the usual formula for a sine of two arguments sin(a + 8) = sin a cos (3 + 
sin (3 cos a. 

Any other important property of sin t and cos t can be derived from the 
differential system (1) (see |4], for example) . 

1. Nonlinear sine-like functions 

We wish to use now the scheme of the previous section in order to treat the 
nonlinear differential system 

x' 
1 + X* 

y' _ ^ r (6) 
i + y2 ' 
x(0) = 0, 2/(0) = 1. 

Multiply the first equation by 2x, the second one by 2y and sum up the both 
equations. One gets then 

d ( l n [ ( l + x 2 ) ( l + y 2 ) ] ) = 0 

ln[ ( l + x 2 ) ( l +y2)]= const, 

or 
,2 

which, in its turn, gives 
( l + x 2 ) ( l + y 2 ) = 2 , 
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taking into account the initial conditions in (6). The latter expression may be 
rewritten as 

x2(t)+x2(t)y2(t)+y2(t) = l. (7) 

It follows from (7) that 

1 +y(t) 

and 

The relation (7) defines a closed planar curve and provides an analogue of the 
unit circle (2). 

We cannot use arguments of the previous section to deduce an addition 
theorem for the functions x(t) and y(t), defined by (6) . because the differential 
system of (6) is nonlinear and does not allow the representation (4). 

2. Lemniscatic functions 

Let us rewrite the differential equations in (6) in the form 

x' = y{l+x2), , . 
y' = -x(l + y2) {W> 

and differentiate the system (10). One obtains by using the relations (10) and 
(9) that 

x" = y'(l + x2) + y • 2xx' = -x(l + x2)(l + y2) + 2xy • x' 

= -2x [1 -yx']= -2x [l - y2{\ + x2) 

= -2x3. 

It follows similarly, by virtue of (10) and (8), that 

y" = - x ' ( l + y2) - x • 2yy' = -y(l + x2){l + y2) - 2xy • y> 

= -2y [1+x y'} = -2y [l - x2(l + y2)] = -2y 

= - 2 y 3 . 

So it turns out that x(t) and y(t) are solutions of the same nonlinear second 
order differential equation 

« " = - 2 i i 3 , (11) 

subject to the initial conditions x(0) = 0 and y(0) = 1 respectively. 

Solutions of (11) satisfy the relations 

u'2 + u4 = const. 

Taking into account the initial conditions one gets that x(t) and y(t) satisfy 
the equality 

u'2 + u4 = l. 
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Then 
du i 7 

and the functions x(t) and y(t) can be expressed in the form 

x(t) 

and 

v(t) 

l 
for t £ [0,A\. where A := J ^^si • The functions defined by the integral 

relations (12) and (13) are known as the lemniscatic functions [5, §22.8] . So 
x(t) and y(t) can be identified with sit and clr respectively (the notation sii 
and clt for the lemniscatic functions was introduced by C.F. Gauss). 

R E M A R K 1. The usual s'mt and cost functions can be introduced in the same 
sin t 1 

manner, namely, as t= J , and t — 
U cos t 

3. Jacobian elliptic functions 

Let us remind basic properties of the Jacobian elliptic functions. The main 
three of them are sn(t;k), cn(t;k) and dn(£;/c). They can be introduced as 
respective solutions of the (nonlinear) differential system 

c i = x2x3, 
t'2 = -xix3, (14) 
r 3 = -k2xix2, 0 < k2 < 1, 

subject to the initial conditions 

x i ( 0 ) = 0 , x 2 ( 0 ) = l , x 3 ( 0 ) = 1. 

The functions sn(£; k) and cn(t; k) are periodic 4 i f -periodic and dn(t; k) is 
2i\\periodic, where 

The Jacobian elliptic functions satisfy the following basic relations [1, 
Ch. VII. § 1]: 

sn 2 £ + c n 2 f = l , k2 sn 2 t + d n 2 t = 1, (15) 
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which, in turn, imply 
d n 2 f - k2c.n2t = k\, 

where 
Jti = V l - k 2 . 

The functions cn(f.; k) and dn(t: k) are even and sn(t; k) is odd. 

The addition theorems for the Jacobian elliptic functions are known, namely 
;3, P. 753-765]: 

sn(u + v) = ( s n « c n v d n i ' + sn v cnudnu) (1 — k2 sn 2 u s n 2 

cn(u + v) = (cnu cn v — snu d n u snv dn v) (1 — k2 sn 2 u sn 2 v)~1. 
dn(u + u) = (dn u d n v — k2 sn M cn u sn v cnv) (1 — k2 sn 2 u sn 2 

Other useful relations involving the Jacobian elliptic functions are: 

sn(t + K ) = ^ - , cn(t + K) = - f c j ^ - dn(t + A') = fcj -j—r, 
d n t dnt d n i 

sn(t + 2 A ) = - s n t . cn(r. + 2A") = - cn t, 

(snt)' = cntdnt, ( cn f ) ' = — sn t dnt, (dnt)' = —k2 sn tent. 

4. Relations between the Jacobian elliptic functions and 
the lemniscatic ones 

Other nine Jacobian elliptic functions are introduced as some ratios involving 
the basic functions sn, cn and dn . functions above. In what follows we use also 
the function sd(i; k) = ;j^f^y- It is known ([5, §22.8]) that the lemniscatic 
functions can be expressed (at least in some neighborhood of t = 0) as [5. 
§22.8] 

slt = / c ^ 4 . c lt = c n | . k = ~ . (16) 
dn{ k y/2 

In the sequel we derive the relations (16) on the whole real line R using only the 
definitions (11), (14) of the lemniscatic functions and properties of the Jacobian 
elliptic functions. 

PROPOSITION 1. si t = k sd | and' cl t = cn £ for k = ^=. 

Proof. Notice that k = ki =7^5- Consider the functions h(t) := ksdt = ^fyj^y 

and g(t) := cnt = x-2(t). It follows from (14) and (15) that 
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a = — 2 : 1 X 3 = — — x ? = — — (Arx 2, + A;2) = — k2 — (1 - f x 2 ) = —kh(l + g2). 
x 3 x 3 x 3 

The functions h and g satisfy also 

m = k x J M = ° ' 3(0) = x2(0) = 1. 

Then the functions h ( £ ) = /rsd | and g ( £ ) = cn £ are solutions of the Cauchy 
problem (6). Solutions of the initial value problem (6) are unique since the right 
sides of the differential equations in (6) are polynomials and satisfy the Lipschitz 
condition in any bounded domain containing { ( x . y ) : jx| < 1, \y\ < l } . Hence 
the proof. • 

The well known properties of sit and c l t follow from the basic relations 
(16). 

C O R O L L A R Y 1. The function sit is odd and the function c lt is even. 

C O R O L L A R Y 2. The functions sit arid c l t are periodic with the minimal period 
of AA, where 

0 

C O R O L L A R Y 3. The reduction formulae 

sl(t + A) = cl(t) and cl(t + A) = - sl(t) (18) 

are valid. 

R E M A R K 2. Various reduction formulae can be derived for the functions sit 
and c l t likely as in the case of the elementary functions suit and cost . A 
constant A serves as the substitution for TT/2. 

P R O P O S I T I O N 2. The following relations are valid for any t e l : 

sl'(t) = c l ( t ) ( l + s l 2 ( t ) ) , cl ' (t) = - s l ( t ) ( l + c l 2 ( t ) ) , 

s l ' 2 ( t ) + s l 4 ( t ) = 1. c l ' 2 ( t ) + c l 4 ( t ) = 1, s l 2 ( t ) + s l 2 ( t ) c l 2 ( t ) + c l 2 ( t ) = 1. 

fl ds 
s\(t + A) = c\(t). cl(t + A) = - s l ( t ) , where A = / 

Jo v 1 - s J 

Proof. Proofs can be found in [6, Propositions 7.4. 7.5 and 7.6. Corolla­
ry 7.3 ] . • 
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5. Summation results 

The addition theorem for the lemniscatic functions was obtained by L. Euler 
in the integral form (for historical remarks one may consult [2, Sec. 2.3]). Let 
us mention that various forms of the sum formulae can be obtained directly 
from those for the Jacobian elliptic functions. 

P R O P O S I T I O N 3. 

' ' • + » = r r n w r l ' ( 1 9» 
1 — s ! (q ) sl(;i) c1(q) c l (p) 

P R O P O S I T I O N 4. 

, , , c l (q ) c\(p) - s l (a) s\(0) 
C l ( Q + ^ ) = l + s l ( a ) s l ( 3 ) c l ( Q ) c l ( ^ ) - ( 2 0 ) 

For the proofs one may consult [6]. 

The alternative forms of addition theorems are given below. Investigations 
of the sum formula for si t go back to Fagnano and L. Euler [2, §§ 2.1. 2.2. 2.3]. 
The sum formula was obtained rather in the form 

sl(a) JI - s i 4 (3) + sl(3) Jl - s l 4 ( a ) 
S1(Q + p) = ^ , 5—^ . 

V ; 1 + s l 2 ( a ) s l 2 ( 3 ) 

It was derived from the integral relation (12) and therefore is applicable in 
some vicinity of zero. The formulae (19) and (20) are applicable for any t and 
are similar to those for the functions sin t and cos t. 

P R O P O S I T I O N 5. 

P R O P O S I T I O N 6. 

P R O P O S I T I O N 7. 

si ( a + p) 

si ( a + p) 

cl (a + 3) 

sl (a) sl'(,3) + 3 l ' ( a ) sl(/3) 
1 + s l 2 ( a ) sl 2(,3) 

c l / ( a ) c l (3 ) + c l ( a ) c l , ( 3 ) 

1 + c l 2 ( a ) cl 2 ( /3) 

s\'(a)c\(0) +s\{a)c\'(P) 
1 + s l 2 ( a ) cl 2 ( /3) 

The proofs are given in [7]. 
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6. Formulae 

We summarize here the main relations for the lemniscatic functions indicating 
also their counterparts in the theory of elementary trigonometric functions. 
Proofs are omitted since the formulae are obtained from the basic summa­
tion relations using the same type arguments as those used in the theory of 
elementary trigonometric functions. 

S1(Q ± 3) 

S1(Q ± 8) 

sl(a) cl(ff) ± c l (a ) sl(fl) 
l q= S ! (Q ) S\{8) c\(a) d(8) 

s\{a)s\'{8) ±s\'(a)s\{8) 
1 + S1 2 (Q)S1 2 ( /3) 

sin(a ± 8) = sin a cos 8 ± cos Q sin 8 

sin(a ± 8) = sin a sin' 8 ± sin' a sin /3 

c l ( Q ) c l ' ( / 3 ) ± c l ' ( a ) c l ( , 3 ) 
S1(Q ± /?) = =F , , , 2 , , ,2 

cl(a ± 8) 

C1(Q ±p) = 

l + c L ( a ) cV{8) 

sin(a ± 8) = t ( C O S a COS' /3 ± cos ' a cos 8) 

cl (a)cl ( ,3) t s 1 ( q ) s 1 ( / 3 ) 
1 ± S 1 ( Q ) S 1 ( 3 ) c l (a ) c l (5) 

s l ' (a) cl(/?) ± sl (a) c\'{3) 
1 + s l 2 ( a ) cl 2 ( /3) 

cos (a ± /3) = cos a cos p + sin a sin 8 

cos (a ± /?) = sin' a cos 8 ± sin Q COS' /3 

sl(a) ± sl(,3) 
2 s l ( ^ ) s l ' ( ^ ) 

l + s l 2 ( ^ ) s l 2 ( ^ ) 

/ a ± / 3 \ . sin a ± sin p = 2 sin — - — sin 

sl(a) ± sl(0) 
_ 2 c l ' ( s | ^ ) c l ( 2 f 

l + c l 2 ( ^ ) c l 2 ( ^ ) 

sin a ± sin p = — 2 cos — - — cos I — - — 
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cl (a) + cl(P) 
2 c l ( ^ ) s l ' ( g j g ) 

l + c l 2 ( ^ ) s l 2 ( ^ ) 

,'a + ,3\ . , fa -0 
cos a + cos 3 = 2 cos — - — sin 

2c l ' ( 2 1 3 ) si 
c l (a) - c l (3) -

1 + c l 2 ^ s l 2 M 

„ 0 , f a + / A . fa-p 
cos Q — cos 3 = 2 cos — - — sin 

d ( a ) ± s l G J ) = 2 s l [ ' ^ V ' ' Q = F / 3 

l + s l 2 ( ^ ) 

1 + s l 2 ( ^ ) s l 2 < a ~ & 

sin a ± sin 3 = 2 sin 
' a ± / T 

cos 

d ( a ) + d ( « = 2 d [ ' ^ V / r a " ^ 1 + S l 2 ^ 1 + s l 2 ( 2 ± ^ ) c l 2 

l + s i 2 

2 c l [ ^ c l ^ - ^ 1 + b l ^ 
l + s l 2 ( ^ ) d 2 ( ^ ) 

, ' Q + 3\ (a - 3 
cos a + cos 3 = 2 cos — - — cos 

d ( a ) - d ( / 3 ) = - 2 s l — s i 
a + 3\ , / a - / 3 \ l + c l 2 ( * ± * 

1 + cl~ 2 y v 2 

- 2 s l [ ^ V Q - ^ ^ 

2 M ) s l 2 ( ^ ) 

1 + c l 2 ^ 

cos a — cos <3 = — 2 sin I — - — sin — - — 
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sl(2a) 

sl(2a) 

sl(2a) 

sl(2a) 

S1(2Q) 

S1(2Q) 

C1(2Q:) 

C1(2Q) 

2S1(Q)C1(Q) 

1 - S 1 2 ( Q ) C 1 2 ( Q ) 

2S1(Q)C1(Q) 

S1 2 (Q) + c l 2 ( a ) 

2 s l ( a ) s l ' ( a ) 

1 + s l 4 ( a ) 

2 s l ( a ) c l ( a ) ( l + s l 2 ( a ) ) 

1 + s l 4 ( a ) 

- 2 c l ( a ) c l ' (a ) 
1 + c l 4 ( a ) 

2S1(Q)C1(Q)(1 + c l 2 ( a ) ) 

1 + c l 4 ( a ) 

d 2 ( a ) - s l 2 ( a ) 

1 + s l 2 ( a ) c l 2 ( a ) 

sin 2a = 2 sin a cos a 

sin 2a = 2 sin a cos a 

sin 2a = 2 sin a sin' a 

sin 2a = 2 sin a cos a 

sin 2a = —2 cos a cos' a 

sin 2a = 2 sin a cos a 

cos 2a = c os 2 a — sin 2 a 

s l (a)s l(3) 

s l ' ( a ) c l ( a ) + s l ( a ) c l ' ( a ) 

1 + s l 2 ( a ) c l 2 ( a ) 

cos 2a = sin' a cos a + sin a cos' a 

cl (a - ,3) - c l (a + 3) 1 + c l 2 ( a ) sl 2(,3) 

2 1 + c l 2 ( a ) 
cl(a - (3) - c l (a + p) 1 + s i 2 (a ) c\2(,8) 

1 + c l 2 ( /? ) 



A. Gritsans, F. Sadyrbaev. Remarks on lemniscatic functions 4 9 

c l ( Q ) c l ( 3 ) 

s l ( a ) c l ( 0 ) 

cl (a + P) + c l (a - 3) 1 + c l 2 ( a ) si 2 (3) 

2 1 + si 2 (3) 
cl (a + p) + c l (a - 3) 1 + s l 2 ( a ) c i 2 ( 3 ) 

2 1 + si 2 (a ) 

COS Q cos p = 

sl(a + p) + sl(a - 3) 1 + S 1 2 ( Q ) S 1 2 ( / 3 ) 

2 1 + s l 2 (3) 
sl(a + /3) + sl(a - 0) 1 + c l 2 ( a ) c l 2 (3 ) 

2 1 + c l 2 ( a ) 

sin a cos 3 

C O S ( Q + 3) + C O S ( Q - 3) 

sin(a + 3) + sin(a — 3) 

l + s l 2 ( / ? ) l + c l 2 ( a ) l + s l 2 ( a ) 1 + C 1 2 ( Q ) 

l+sV(a)sV{P) 1 + cl-(a)dr03) l + s l 4 ( a ) 1 + C 1 4 ( Q ) 

l + s l 2 ( 3 ) l + s l z ( a ) l + cl z(,3) l + c l - ( a ) 

1 + c 1 2 ( Q ) S 1 2 ( , 3 ) 1 + S 1 2 ( Q ) C 1 2 ( /3 ) 1 + s l 2 ( a ) c l 2 (3 ) 1 + C 1 2 ( Q ) sl 2(/3) 

R E M A R K 3. The last four formulae seem to have no analogues in the elemen­
tary trigonometry. They can be proved easily by using the relations 

s l 2 ( a ) 
c l 2 ( a ) 2 l - s l 2 ( a ) 

l + c l 2 ( a ) ' l + s L ( a ) 

which follow from the identity s l 2 ( a ) + s l 2 ( a ) c l 2 ( i ) + c l 2 ( t ) = 1. 
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Piezimes par lemniskatiskaj am funkcijam 
Kopsavilkums 

Uzradlta virkne formulu. kas saista lemniskatiskas funkcijas s\t un clt, kuras apmie-
rina diferencialvienadojumu sistemu , f = y, , Y ? = —a-, ka an Emdena-Faulera 
vienadojumu x" = — 2x 3 . ApsJcafJta lemniskatisko funkciju teorijas lidzTba ar ele-
mentaro trigonometrisko funkciju teoriju. uzradot formulas lemniskatiskam funkcijam 
un to anaiogus funkcijam s'mt un cost. Atrasti vairaki eA-vivayenti sasJcaitlsanas 
teoremas formulejumi funkcijai si t, no kuriem dazi skiet lldz sim nav tikusi apskatiti. 
Izklasta tiek izmantota Jakobi eliptisko funkciju teorija. 
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On a sorting problem 
Arturs Kauepajs, Rudolfs Kreicbergs 
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A network sorting problem originated by an Ail-Union Math Olympiad is solved and 
generalized. 
Key words: mathematical induction, network, sorting 
Mathematics Subject Classification (2000): 68P10 

On the 18th All-Union Mathematical Olympiad the following problem com­
posed by A. Andzans was proposed (see [1. p. 6]). 

P R O B L E M 1. Let's consider a network of roads consisting of n sequential 
branches of "parallel segments containing k\, k2...., kn segments correspondingly 
(see Fig. 1 with n = 3. k\ = 3. k2 = 5, k3 = 4) . 

Fig. 1. An example of a network 

The roads are narrow so overtaking is impossible, but the speed is allowed 
to vary. Movement is allowed only from, the left to the right. There are. N cars 
approaching the network at A. For what maximum, value of N is it possible for 
the cars to leave the network at. B in the reversed order? 

Solution. It is easy to see that there are W = k\ x k2 x . . . x kn ways to 
traverse the network. Clearly the inequality AT < W must hold: for N > W 
there will be two cars traversing the network in the same way, and these cars 
will not change their mutual position. On the other hand, the task is solvable 
for W cars. Clearly this holds for n = 1. If it holds for n = m, consider the 
network with m +1 branches. Divide the cars into fci groups, each consisting of 
k2 x &3 x . . . km+\ consecutive cars, and at first drive these groups into separate 
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segments of the first branch. Then apply the inductive hypothesis and drive out 
these groups in the reverse order, reversing each of them in the last n branches. 
We have proved that N = W for the networks for the special type described 
above. 

It is clear that the inequality AT < W (where W is the number of ways a 
network can be traversed) holds for any network with one entry and one exit, if 
the condition of one-way movement and non-overtaking is preserved (see. e.g., 
Fig. 2) . 

Fig. 2. A more sophistical network 

Since 1986. the following question has been popular in international 
olympiad circles: Does the equality N = W hold for each such network? 

In this note we answer this question affirmatively and mention some gener­
alizations of this problem. 

T H E O R E M 1. For each one-way non-overtaking network with one entry and 
one exit which can be traversed in W ways, it is possible to rearrange cars 
in any order while passing through this network if the number of cars doesnot 
exceed W. 

Proof. If there are no splitting points points (splitting points are points from 
which leave more than 1 road) in the network, then W = 1 and only one car 
must be rearranged. Suppose that P is the first splitting point wdth x exits 
from P. Clearly, W = Wx + W2 + • • • + Wx, where Wu 1 < i < x, is the 
number of ways to traverse the network leaving P through the x-th exit. Now 
an easy induction on the number of splitting points in the network solves the 
problem. • 

The rest of the note deals with the following generalization of the problem. 
Let us assume that there are A?" types of cars (say, Ford, Volkswagen, etc.) . 
The initial order of them can be arbitrary. At the exit, the cars of the same 
type must follow each other in a row (the mutual order of the cars of the same 
type is not important) . What is the largest value of N for which any order of 
the groups at the exit can be achieved? 
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T H E O R E M 2. For each one-way non-overtaking network with one entry and one 
exit which can be traversed in W ways, any order of groups can be achieved for 
an arbitrary initial sequence of cars if the number of groups doesnot exceed W. 

T H E O R E M 3. For each one-way non-overtaking network with one entry and n 
exits which can be traversed in W(i) ways to the i-th exit, i = 1 .2 , . . . , n , an 
arbitrary order of groups in each exit can be achieved for an arbitrary initial 
sequence of cars if less or equal than W(i) groups must appear at the i-th exit, 
i = l,2,....n. 

Theorems 2 and 3 are proved similarly to Theorem 1: in Theorem 2 the 
induction on the number of cars in the groups can be used and in Theorem 3 
induction on the number of exits can be used. 

T H E O R E M 4. For each one-way non-overtaking network with n entries and one 
exit, which can be traversed in W(i) ways from the i-th entry, i = 1,2,.... n, 
arbitrary order of cars at the exit can be achieved if there are no more than 
W(i) cars at the i-th entry, i = 1, 2 . . . . . n. 

This theorem was proved by using the isomorphism between networks with n 
entries and one exit and networks with one entry and n exits (Theorem 3). 
Algorithms of arranging cars are opposite and conflicting for the two types of 
networks. Therefore a generalization for networks with n entries and n exits 
is impossible by using this method of arranging cars. We have found also an 
example (see Fig. 3) showing that Theorem 4 cannot be generalized for groups 
of cars. The two sequences show the initial positions - the cars are labeled with 
numbers, which indicates to which group the car belongs. We can easily see 
that the finishing sequence cannot be 4;4;3;3;2;2:1 (group number 1 finishes the 
first) by examining possible movements. 

Fig. 3. A conterexample to the featured generalization of Theorem 4 
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Par kadu kartosanas uzdevumu 
Kopsavilkums 

Raksta pieraditas vairakas minimaksa teoremas par speciala tipa kartosanas tikliem. 
Aplukotas probleroas radusas, visparinot 1984. gada Vissavienlbas matematikas olim-
piades uzdevumu. 
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problem 
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The approximation of a nonlinear parabolic problem is based on the finite volume 
method [1]. In the general case the exact finite-difference scheme approximating the 
problem in two-point mesh is built. The corresponding integrals are approximated 
using different quadrature formulae. This procedure allows one to reduce the prob­
lem described by a partial differential equation of parabolic type to an initial-value 
problem for a system of two nonlinear ordinary differential equations of the order 
depending on the quadrature formulae used. It allows one to obtain the solution of 
the problem on the boundary of the region. Both the non-singular and singular cases 
are investigated and two applications of this method are presented. Numerical solu­
tions of the corresponding algorithms are obtained using Maple V and Mathematica 
routines for stiff systems of ordinary differential equations. 

Key words: Boundary value problem, nonlinear PDE of parabolic type, finite vol­
ume method, finite difference scheme 
Mathematics Subject Classification (2000): primary 35K55, secondary 
35K60, 65M06, 65M60 

1. The formulation of the problem 

We consider the boundary value problem for a parabolic equation in the form 

u (O . i ) = u0{x), (2) 

http://ac.uk
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where u = u(t.x) is the unknown function, 
fi- $2, F, / are nonlinear functions and f'(u) > 0, 
ui = ui{t) = u ( r , 0 ) , u2 = u2(t) = u{t,l), f'(u) = d / ( t t ) / d u , 

Usually a full flux p(x)f'(u) — is specified in the boundary conditions. In 
this case we consider that such the form of boundary conditions is already 
divided by p(x)f'(u), p(x) ^ 0, i.e. nonlinear functions / i and f2 already 
contain the factor p(x)f'(u) as a denominator. The case when p(0) = 0 will be 
discussed shortly. 

There, two cases should be considered: 

1. Non—singular case, when p(0) ^ 0, p(x) > 0. 

2. Singular case, when p(0) = 0, p(x) > 0. There we assume that 

lnp (x ) = O (— J when x —> 0. 
dx \x 

Let us write the equation (1) in an open form taking all the derivatives: 

£ = ™ ( ^ ! + £ ) + ™ ( g ) " + ™ . ( 5 ) 

where p'(x) = dp/ dx . 
In the singular case it can be easily shown that for the solution to be 

bounded, the boundary condition (3) should be in the form of = 0: 

du 
dx 

= 0. (6) 
i = 0 

In the singular case, the behavior of the equation (1) changes when x —> 0. 

du 
~dt 0 = ( 1 + q ) / > i ) S + (7) 

i = 0 

where a = const, is determined by x ( l n p ( x ) ) ' > a. 
x—*0 

The problem ( 1 - 4 ) could describe many of the physical processes. One 
of the models could be considered in this case is a heat transfer problem. In 
this case, the unknown function u(t, x) describes the dimensionless tempera­
ture distribution in a one—space—dimensional domain, the function / ' ( i t ) is the 
nonlinear conductivity. F(u) describes the heat sources (for example, arising 
from chemical reactions, or a dissipative function), and the nonlinear functions 
fi, f2 in the boundary conditions describe the radiation from heaters and con­
vection. The nonlinear function p(x) can be interpreted as follows: p(x) = xa. 
Then, for different values of a we obtain the problem in different coordinates: 

• Q = 0 — cartesian coordinate system, 
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• a = 1 — cylindrical coordinate system (cylindrical domain) with axial 
symmetry, 

• Q = 2 — spherical coordinate system (spherical domain) with radial sym­
metry. 

The problem (1 - 3) in general case is nonlinear and cannot be solved 
analytically and therefore it has to be approximated to solve it numerically. 

2. Consistency conditions 

We assume the initial condition (2) to be consistent with the boundary condi­
tions (3), (4) in the form 

"o(0) =/i(«i(0)) 
«o(0 = / 2 ( « 2 (0 ) ) (8) 

Knowing the function UQ in the initial condition (2 ) , from (8) we can obtain 
the following relations: 

wi(0) = Mi. = M3 
1*2(0) = M2, uo(0) = M4 ( 9 ) 

where fa — canst., i = 1, 4 and W1.2 

Let us show an example of it. 

dun 
dt 

2 . 1 . Non—singular case We assume that at the initial moment of time t = 0 
the function UQ(X) takes the following values at the both ends of the interval 
[0,1]: 

u 0 (0 ) = u0(l) = v2 

We assume the function UQ to have the form of a cubic polynomial: 

u0(x) Ax3 + Bx~ + Cx + vi. (10) 

Applying this expression to the consistency conditions (8). we obtain that 
C = fi(vi) and the following system of two linear algebraic equations for 
the coefficients A, B: 

Al2 + Bl V2 - v\ 
I 

2,Al2 + 2Bl = f,{v2)- / i ^ j ) 

which solves to 

/ i ( ^ i ) + h(v2) + y ( ^ i - v2) 

{v2 - v{) - 2fi(ul)- f2(y2) 
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Applying (10) to the open form of the equation (5) and taking in account that 
it i (0) = Mo(0), 112(0) = UQ(1), we obtain: 

' u i (0 ) = 
« 2 ( 0 ) = v2 

< « i ( 0 ) = 

ii 2 ( 0 ) = 

p'(Q) 
p(0) 
P'(0) 
p(0) 

C + 2B /"WC2 + F(Vl) 

(3.4i 2 + 2 5 / + C ) + 6.4/ + 2B 

(11) 

+ 
/ ' > 2 ) ( 3 A / 2 + 2 5 / + C ) " + F ( i ^ ) 

2.2. Singular case In this case the initial value of un(0) is meaningless. 
Reviewing the physical interpretation given in the section 1, it is clear that it 
is physically impossible to measure the temperature in the center of a cylinder 
or sphere. The same considerations are right also for other usage cases. 

Assuming that at the initial moment of time uo(l) = v it is easily visible 
that the expression 

U o { x ) = v ~ ^ r ~ / 2 H ' ( 1 2 ) 

satisfies the consistency conditions (8) . Applying it to the open form of the 
equation (5) and taking in account the behavior of the equation (1) when x —> 0 
(7), we obtain 

u 2 (0 ) = v 

' « i ( 0 ) = ^ / > - ^ M ) / 2 M + n " - 5 / 2 M ) ' ( 1 3 ) 

^ « 2 ( 0 ) = f'(u)f2HlP'il? + P { 1 ) + / » / 2 » + F(v) 

3. Finite Volume method for two-point scheme 

Let us rewrite the equation (1) in the form 

p(x)G(t.x) = W'(t,x), (14) 

du du 
where G(t,x) = F ( u ) a n d W(t:x) = p(x)f'(u) — . 

For the numerical approximation, we select only two grid points x.\ = 0 and 
X2 = /• 

We will separate both the non-singular and singular cases and review the 
Finite Volume method for each of them separately. 
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3 .1 . Non—singular case By integrating the equation (14) from X\ to x = 
1/2, we obtain the integral form of the conservation law within the interval 
[O.Z/2]: 

W0.5-W0= / p ( x ) G ( i . x ) d x , (15) 
Jo 

where W0.d = W(t,l/2). W0 = W{t.O). 

The function W0 is known from the boundary condition (3) : W0 = 
p ( 0 ) / ' ( u i ) / i ( w i ) . To obtain an expression for Wo.Si w e integrate the equa­
tion (14) from x = 1/2 to £ £ (0.I) and then from X\ to x2, thus obtaining 

W a s = l M - { M i / ^ f „ a c | t , « , 

«(0 a(Z) i 0 p (x ) y , / 2 

where a(x) = . Note that in singular case this integral is divergent. 
V I JO o & 

Applying it to (15), we obtain 
f { U 2 ) - f M - W 0 = R l = / ' / 2 p ( x ) G ( t , x ) d x + - i - f *L [* rt)GM6Z. a(0 Jo a(Z) 70 p (x ) 7 ( /2 

Let us integrate the second part of the integral i?i by the partial integration. 

i r dx r 
i(0 io P(^) J(, 

p ( 0 G ( t , 0 ^ = 

/ p ( x ) G ( £ , x ) d x — / a(x)p(x)G(t. x) dx. 
Jili o.{l) J0 

Summing both the integrals contained in R\. we obtain the following difference 
equation associated with the point X i = 0: 

(16) 

By integrating the equation (14) from x = 1/2 to xo, we obtain the integral 
form of the conservation law within the interval [1/2.1]: 

H - ' i - W o . 5 = / p ( x ) G ( t . x ) d x . (17) 
Jl/2 

where from (4) Wx = W(t,l) = p(l)f'(u2)f2(u2). 

As the value of Wo.5 was calculated above, applying it to (17) we obtain 

f M - f ( u 2 ) + W i = R 2 ^ fl
 G { t , x ) 6 x - J L - f * L r p i O G ( t , 0 ^ 

a{l) J1/2 0,(1) J0 p (x ) Jt/2 
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The second part of the integral R2 is calculated above. Summing both the 
parts, we obtain the difference equation associated with the point x2 = I'-

/ ( « l ) - / M , „ w „ w ^ o _ /"'at*) 
«(0 

+ p ( 0 / > 2 ) / 2 ( « 2 ) = J R 2 = / ^ p ( x ) G ( t , i ) d x . 
Jo M) 

The two-point finite-difference scheme (16), (18) is exact for a given func­
tion G. Summing both the equations yields 

p{l)!'(u2)f2{u2) -pWMMvn) = f p{x)G(t,x)dx, 
Jo 

which can be used instead of one of the equations (16), (18). This equation 
also follows directly from (14) and the boundary conditions (3) , (4). 

3.2. Singular case In this case we have to deal with a different equation (7) 
at the point Xi. To avoid such a situation, we introduce a small value e > 0. 
Then, by integrating the equation (14) from x = e to x = 1/2, we obtain the 
integral form of the conservation law within the interval [ e , / / 2 ] : 

W0.s - Ws = J p(x)G(t, x) dx, (19) 

where Ws = W(t,e). 

The value of Wo.5 was calculated above. Though all zeros in the integrals 
should be changed to e, and we obtain 

f(u2) - f(uE) 
W0.5 = ~ 7a f ~7~\ I* P(0G(t,0d£, MO Je pO) Jl/2 MO " d ' J JE PKX) JLJ 

where a Ax) = \x -y^r and ue = u{t,s). 

Applying it to (19) , we obtain 

rl/2 fl dx fx 

f(u2)-f(us)-aE(l)WE=a£(l) j G(t,x)dx + J — j p(£)G(t,Z)<i£. 

The right-hand-side integral can be calculated as shown above, thus yielding 

f{u2) ~ f(ue) - as{l)We = j ' ^ £ p(x)G(t,x)dx. 

Assuming that when x —> 0 all the integrals exist and are finite, we obtain the 
following difference equation associated with the point X\ = 0: 

/ M - f(ui) = R3 EE j f ' H ' j p(x)G(t, x) dx. (20) 
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To obtain the difference equation associated with the point x2 = L we 
integrate the equation (14) from x\ = 0 to x2 = I, and taking in account the 
boundary conditions (3 ) . (6) we obtain 

p(l)f'(u2)f2(u2) = R4 = f p(x)G(t,x)dx. (21) 
Jo 

The difference scheme (20), (21) is exact for a given function G. 

Note that a(x) in the singular case is divergent. Both the equations (20). 
(21) were obtained by using this integral, but do not contain it. 

4. Approximation of integrals 

We use the quadrature rule of interpolating type for all integrals Rx. R2, R3 and 
R4 considering only two-point integration formulae involving points xx = 0 and 
x2 = I. There many of different approximation methods can be used: involving 
only the function G, involving first order partial derivative with respect to x 
of G, second order derivative of G. etc. We will show the one involving second 
order derivatives of function G, since all other methods are similar and can be 
easily produced guided by our example. 

Here we would like to remark that in the general case expressions for the 
derivatives of G with the order higher than 3 r d are complicated and very in­
convenient to manipulate. They should be used only in case when the approxi­
mation given below does not satisfy the requirement of the necessary precision. 

As the technique of approximation and calculation of the derivatives is the 
same for the non-singular and singular cases, we will show only the example 
of approximation of the integral R\. 

Let us denote G\ 

dnG 

G{t,0), G2 = G{t.l) and G\ (n) dnG 
dxn 

G 

dxn 

Then from the boundary conditions (3) . (4) follows 

G'fc = Muk)uk - F'(uk)fk(uk), k = 1,2, 

du , .. , 
where ii = -z— and F hi) 

dF 
du 

G'L 
d d2uk 

dt. dx2 
F"(uk) 

duk 

dx. 
1,2. 

d2u 
Let us use the equation (5) to find 

cPu 
dx2 

f'(u. 
p'(x) du 
p(x) dx 

du 
dx 

-F{u) 
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Then, by taking the partial derivative with respect to t from this expression, 
we obtain 

d 32u d2u p'(x) ( .dudu , d2u \ 
V V " __ ± <-> " _ F W rll, L-U . u » \ _ 

dtdx2 f'{u) [dt2 p{x) V 1 ' dt dx 7 1 'dtdx) 
du 
dt dt \dx) J v 'dxdtdx v 1 dt. f'(u) dt 

Inserting those expressions in the G'^ gives us the necessary expression for 

G'k-
Please note that in the singular case when k = 1 the boundary condition 

(6) should be used instead of (3) and the equation (7) instead of (5) . 
Now, let us show the approximation of the integral Rj. 
Substituting £ = x/l, we move to non-dimensional form and thus have two 

grid points £i = 0, £2 = 1- Therefore the integral R\ can be expressed with a 
non—dimensional integral I\ as follows: 

Ri=ih, h = f (i - fjfj) p(Og(0 d£, 

where g(£) = G(t,£l) at the fixed moment o f time t. a(£) = a ( f / ) , p(£) = p(£l). 

Denoting gi = g(0) and g2 = 9 (1 ) , we approximate the integral I\ with the 
expression 

h = A l 9 l + A2g2 + Bl9[ + B2g'2 + Cl9'( + C2& + ^E0g(6)(fi), 

where fj € (0 ,1 ) . 

We postulate that just this approximation integrates polynomials with an 
order as high as possible. 

Presuming g(£) = £ ! . i = 0.5, after the calculation of the right-hand and 
left-hand sides of the approximating expression, we obtain the system of linear 
algebraic equations in the form (g^ = 0) 

h = Ai 01 + A2 + i(Bi O ^ 1 + B2) + i{i - 1 ) ( C X O ^ 2 + C72), i = 035. 

Defining 0° = 1, we can solve this system for the coefficients Ak, B^. Ck, k = 
1,2. There we do not define 0', i < 0, because in this case 0 1 is always multiplied 
by 0, and we assume this expression to b e 0. T h e coefficient Eo by the error 
term can be calculated using the same linear algebraic equation when i = 6. 

Moving backwards from the non-dimensional integral Ii to Ri. one should 
take in account that g(n) = lnG[n). 
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Then the integral R\ is approximated using the following expression of 
Hermitian interpolation: 

fli = / [A^ + A2G2 + I ( B i G ; + B2G'2) + I2 (C,G1' + C 2 G 2 ' ) + r 6 ] , (22) 

/6 d6G(t,T]) 
with the error term r$ = E0 — — — p — . 77 g (0 . / ) . 

6! ox" 

5. System of ODEs for two—point scheme 

Using the following difference equations: 

1. in non-singular case: (16) and (18). 

2. in singular case: (20) and (21) 

and the right-hand side integrals' approximations with neglected error terms 
j"6, the approximate numerical solution for the functions u\(t). u2(t) at every 
time step t > 0 in both the non-singular and singular cases can be found by 
solving the following stiff system of two nonlinear ODEs with initial conditions 
(9) (in particular, (11) for the non-singular case and (13) for the singular case): 

( a\ui + a2u2 + b\u-i + 63 ^ 2 + c\u\ + c2u% = d1 , „, 
\ ajui + a\u2 + b\ui + br>u2 + c\ii\ + c2u\ = d2 ' ^ 

where the coefficients a\, b\, cj, d^, i, j = 1, 2 can be determined directly from 
the integrals' approximation formulae and the difference equations. 

This system can be easily solved by anyone of computer algebra packages 
with such abilities (for example. Mathematica or Maple V), as well as by the 
routines of Fortran or C/C+ + provided by many of independent software man­
ufacturers (in particular, NAG) or documented in [2. 3]. 

During the numerical experiments it was discovered that the time needed to 
solve such a system of two nonlinear stiff ODEs is much more less than solving 
the problem straight-forward using the approximation by the finite-difference 
scheme or using Fourier series when it is possible to build the analytical solu­
tion. 

The next, section shows the example of use of this method and its efficiency 
in solving heat transfer problems in different domains. 

6. Examples and numerical results 

There, we will show two simple examples of usage of this method for the cal­
culation of the temperature distribution in a thin plate (non-singular case) [41 
and in a cylinder (singular case) [5]. 
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6 .1 . Temperature distribution in a thin plate There we consider p(x) = 
1, the equation (1) to be linear: f(u) = u. F(u) = 0 and the functions fi, f2 

in the boundary conditions (3) , (4) in the form 

h(Ul) =Bi1(u4
1-9i

b) + B1(u1-6l), 
/ 2 ( M 2 ) = Bi2 u\) +B2{62 - u 2 ) , 

where B i 2 are Biot numbers, Bi\_2 are radiation Biot numbers, O^.t are the 
dimensionless temperatures of heaters on the bottom and top of the plate 
respectively, # i i 2 are the dimensionless temperatures of the air on the bottom 
and top of the plate respectively. 

There, two symmetry cases are possible: 

1. 1 = 1. f2(T2) = -f1(T1) 

2. I = 0.5, f2(T2) = 0 

We will review the 2 n d symmetry case (I = 0.5). 
Assuming that at the initial moment of time t = 0 the temperature of the 

bottom surface of the plate is uo(0) = T*, and defining the initial condition in 
the form that satisfies (8) : 

u0{x) = T , - (x2 - x ) / i ( T „ ) , 

from (11) we obtain 
ui (0) =Tt 

u 2 ( 0 ) = T , + 0 .25/ i (T . ) 
U ! (0) - -2/ i (r . ) 
u 2 (0 ) = - 2 / i (T , ) 

The difference equations (16) and (18) have the form 

u2 — U\ 

(24) 

= Ri= Si (l " j) G(tx)dx 

Ml - U2 

I 
+ f'(u2)f2(u2) = R2 = Si y G(t,x) dx 

Approximating the integrals R\. R2 as it is described in the previous section, 
we obtain the following svstem of two nonlinear stiff ODEs: 

1 1 
iii + n n . n u2 + 1680 

1 
2240 

2240 

«i + 1680 
Uo + 

A 1 3 ft -
28 + 8 4 0 M l ' 

u\ + —. u2 14 

1 
14 / l ' (u i ) ] Ml + 7^U2 

= 2(u2 - ui 
1 

105 

(25) 

= 2(ux - u2) 

During the numerical experiments, the following two cases were considered: 
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1. Linear boundary conditions: 8X = 82 = 1, Bi\ = Bi2 = 0. Bx = B2 = 
0.9, 77, = 0.3 at the moments of dimensionless time t = O.li, i = 1,10: 

2. Nonlinear boundary conditions: 9^ = 8T = 1, B%\ = B12 = 0.3. B\ = B2 = 
0, 77, = 0.3 at the moments of dimensionless time t = 0.2i, i = 1,10 

The numerical results obtained by solving the Cauchy problem (25). (24) are 
compared to the values of u* obtained by the Fourier series in linear boundary 
conditions case and by the explicit finite difference method with the space step 
h = 0.02 and time step r = h2/6 in nonlinear boundary conditions case. Com­
parison of the values of temperature obtained by different numerical methods 
can be seen in the tables 1 and 2. 

From the results, it is visible that this method gives the precision in at least 
4-5 decimal places. This precision can be heightened using higher derivatives 
of G in the integrals' approximation formulae. 

Table 1. Linear boundary conditions 
t U*2 Ml U2 

0.1 .403253 .264501 .403235 .264493 
0.2 .489467 .370702 .489445 .370687 
0.3 .563203 .461590 .563178 .461570 
0.4 .626290 .539352 .626263 .539329 
0.5 .680264 .605883 .680237 .605858 
0.6 .726444 .662805 .726416 .662779 
0.7 .765953 .711506 .765927 .711479 
0.8 .799756 .753173 .799731 .753147 
0.9 .828677 .788822 .828653 .788797 
1.0 .853421 .819322 .853399 .819298 

Table 2. Nonlinear boundary conditions 
t u\ u* i*i f 2 

0.2 .416928 .343957 .416926 .343957 
0.4 .528474 .458858 .528470 .458856 
0.6 .630758 .566903 .630751 .566898 
0.8 .719987 .664204 .719977 .664196 
1.0 .793779 .747526 .793766 .747515 
1.2 .851813 .815307 .851799 .815295 
1.4 .895552 .867933 .895539 .867919 
1.6 .927435 .907229 .927422 .907216 
1.8 .950106 .935694 .950096 .935683 
2.0 .965945 .955852 .965936 .955842 
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6.2. Temperature distribution in a cylinder Let us review the axial-
symmetric heat transport problem in a cylinder. There we consider p(x) = x, 
/ ( i t ) = u. F(u) = 0. and the function f2 in the boundary condition (4) in the 
form 

Bi-, u%) + B U2); 

where B2 is the Biot number. Bi2 is the radiation Biot number, is the 
dimensionless temperature of a heater, 9a is the dimensionless temperature of 
the air. 

The dimensionless parameter (radius of the cylinder) 1 = 1. 

Assuming that at the initial moment of time f = 0 the temperature of the 
surface of the cylinder is UQ{0) = T , . and defining the initial condition in the 
form that satisfies (8): 

like in (13) we obtain 

UQ(X) = T» 
2 - x 2 

21 / 2(r,), 

U l ( 0 ) = T . - - / 2 ( T , 
u 2 ( 0 ) = T . 
u i (0 ) = 2 / 2 ( T . ) 

I u 2 ( 0 ) = 2 / 2 ( T . ) 

(26) 

The difference equations have the form 

u2 — u\ = I?3 = JQ x I N — G(t, x.) dx 
1 1 X 

f2{u2) =RA = - JQxG(t,x)dx 

Approximating the integrals R3. R4 as it is described in the previous section, 
we obtain the following system of two nonlinear stiff ODEs : 

319 
235200 

1 

" 1 
107 

44100 " 2 
106 
735 " 1 

/ 311 46 
V2940 1575 Uo 

U2 — U\ (27) 

560 H u2 H— iii + / o (uo ) ii2 = f2(u 

210 7 V 14 15 J 2 y ' } J y 

During the numerical experiments, the following two cases were considered: 

1. Linear boundary conditions: 9a = 1, Bi2 = 0, B2 = 0.9, T* = 0.3 at the 
moments of dimensionless time t = 0.1*, i = 1.10: 

2. Nonlinear boundary conditions: 0^ = 1, Bi2 = 0.3. B2 = 0, T» = 0.3 at 
the moments of dimensionless time t = 0.2?, i = 1.10 
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The numerical results obtained by solving the Cauchy problem (27). (26) are 
compared to the values of u* obtained by the Fourier series in the linear bound­
ary conditions case and by the explicit finite difference method with the space 
step h = 0.02 and time step r = h2/6 in nonlinear boundary conditions case. 
Comparison of the values of temperature obtained by different numerical meth­
ods can be seen in the tables 3 and 4. 

From the results it is visble that the method gives the precision of at least 
4-5 decimal places. It can be hightened using the same method as in the 
non-singular case. 

This method has an advantage comparing to the traditional approximation 
with the finite-difference scheme. 

To correctly approximate the problem with the finite-difference scheme in 
the center of the cylinder, it is necessary to take the half of the space step by 
the zero point. It makes the scheme more complicated. 

This method doesn't have such a disadvantage as it is visible from the 
construction of the difference scheme and the results. 

Table 3. Linear boundary conditions 
t « i u*2 U2 

0.1 .110448 .400983 .110403 .400970 
0.2 .228024 .482962 .228003 .482952 
0.3 .331824 .553024 .331813 .553017 
0.4 .422010 .613458 .422002 .613452 
0.5 .500089 .665695 .500083 .665691 
0.6 .567633 .710867 .567628 .710864 
0.7 .626053 .749935 .626050 .749933 
0.8 .676581 .783724 .676579 .783722 
0.9 .720281 .812947 .720280 .812946 
1.0 .758077 .838222 .758076 .838221 

Table 4. Nonlinear boundary conditions 
t u*2 u 1 u2 

0.2 .270010 .416660 .270009 .416659 
0.4 .386560 .527399 .386557 .527388 
0.6 .497798 .628336 .497788 .628316 
0.8 .600100 .715880 .600082 .715851 
1.0 .690086 .788060 .690059 .788024 
1.2 .765647 .844957 .765613 .844919 
1.4 .826416 .888230 .826380 .888190 
1.6 .873533 .920264 .873498 .920232 
1.8 .909019 .943541 .908986 .943513 
2.0 .935160 .960229 .935131 .960206 
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Efektiva aproksimacijas metode nelinearai paraboliskai 
robezproblemai 
Kopsavilkums 

Nelinearas paraboliskas problemas aproksimacija bazejas uz galTgo tilpumu metodi 
[1]. Problemas aproksimacijai vispariga gadijuma var uzbuvet precizo divu punktu 
sablona diferencu shemu. Attiecigie integrant tiek aproksimeti ar dazadam kvadraturu 
formulam. Tas (auj reducet problemu, kuru apraksta paraboliska tipa parcialais dife-
rencialvienadojums, uz Kosi problemu divu nelinearo parasto diferencialvienadojumu 
sistemu, kuru karta ir atkarlga no izmantotam kvadraturu formulam. Tadejadi var 
iegut problemas atrisinajumu uz apgabala robezas. Ir apskatTts gan singulars, gan 
nesingulars gadTjums, ka ari paradlti divi metodes Hetojuma piemeri. AttiecTgo 
algoritmu skaitliskie atrisinajumi ir ieguti, izmantojot programmpakesu Maple V un 
Mathematica procedural parasto diferencialvienadojumu stiegro sistemu risinasanai. 
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The paper considers functions L: 1 " x R" —> R, which are convex with respect to the 
cone A = {0,0 6 1 " x R" (z,£) = 0 } , and subsets M of the set M of all strictly-
convex, coercive and continuously differentiable functions F: R™ —> R. It is shown 
that if L is A-convex and M consists of all F 6 M such that F(-) + F*(-) > L(-, •) 
then M is convex and closed with respect to lamination. 
Key words: convex functions, homogenization, laminate 
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1. Introduction 

A-convexity of functions L: K.m —> R for a linear partial differential operator 
A with constant coefficients 

A : C ° ° ( R n ; M m ) -> C ° ° ( I R " : K d ) , 

appears as a necessary condition for the sequential weak lower semicontinuity 
of functionals 

I = / L(w(x)) dx 
Q 

on the spaces 

W = {w e LP(Q: K m ) | Aw(x) - 0 in the sense of distributions}. 

(For the definition of the characteristic cone A see e.g. Fonseca and Miiller [4] 
or Murat [5]). 

Apart from the most interesting cases A = ( c u r l , c u r l ) or A = 
( d i v , . . . , div) specifically interesting is the case of A-convex functions for 
A = (curl, d iv ) , which arises in relaxation of optimal design problems governed 
by potential elliptic operators. If the state equation is given as 

J2xn,(x)K(Vu(x)) - f(x) O i n f i , ueW^n), u\m=0, (1) 

http://lu.lv
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where Fs: IR" —» R, s = 1, . . . , So- axe strictly convex, coercive and continuously 
differentiable functions and the partition { f i i : • •. ° f ^ plays the role of 
the control, then the relaxation procedure leads to the set of functions 

{F: M.n —> R j F is strictly convex, coercive, continously differentiable , . 
•ernd F(z)+F*{0>L(z,'f) V (z ,£ ) e R " x R " } ( J 

with L being the (curl, div)-quasiconvex envelope of the function LQ, 

Lo(z,$ = min{Fs(z) + F ; ( £ ) } , ( Z , 0 G R " X R n , 

see, for instance, Raitums [7]. Here by F* we denote the conjugate function 
to F. 

For this scalar case the function L in (2) as (curl, div)-quasiconvex is A-
convex with respect to the cone A, 

A = { ( 4 ) e K " x R n | ( ^ ) = 0 } . (3) 

Simple analytical descriptions for A-quasiconvex functions are not known, 
nevertheless some interesting properties of sets of the type (2) can be obtained 
using only A-convexity of the function L. 

One can easily expect that A-convexity is very close related to the proce­
dure of lamination. For instance, the proof of A-convexity for integrands of 
sequentially weakly lower semicontinuous functionals on W p ( f 2 ; R m ) is based 
on laminated structures, i.e. structures that depend only on one direction, see 
Dacorogna [2]. And we will show that for every given coercive A-convex, where 
A is defined by (3 ) , function L the set of the kind (2) is convex and closed with 
respect to lamination (the precise formulation is given in Section 2). 

2. Preliminaries 

Let n > 2 be integer and let Ai be set of all functions F: R n —• R, which 
satisfy the following hypotheses: 

HI . F is continuous and continuously differentiable on R " : 

H2. F is strictly convex: 

H3. F is coercive: 

H4. For every F G M there exist a constant Cf and a continuous strictly 
increasing function - ) p : R —> R such that 

F(z) < cF + lF(\z\)\z\ V : e K " . 

R E M A R K 2.1. The hypothesis H4 can be deduced from HI - H3. 
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Let K C K n be unit cube ( 0 , l)n and let. for 1 < p < oc, H* = {v € 
Lp(K;Wl) \ v = Vu, ue W*{K), u is K - periodic} . 

D E F I N I T I O N 2 . 1 . A function F : R " —> E is said to be laminate (in direction e G 
Rn, \e\ = 1, constructed from {Fi:...: F/v} C Ai in proportions { A i : . . . : A^ r} 
respectively) if there exist R G SO(n) and functions 

( 7 = ( < 7 i , . . . ! a v ) £ l x ( ( 0 , l ) : R A ' ) . 
l 

( 7 i ( * ) = 0 or 1, Jat{t)dt = A,, i = 1 , . . . . N, 
o 

a1(t) + - - - + o N ( t ) = 1 a.e. t G ( 0 , 1 ) , 

such that 
R~le = ( 1 , 0 , . . . , 0 ) , 

r N 

F(z)= inf / ai(xi)Fi(R(R~1 z + v(x)) dx Wz G R " . ( 4 ) 
veH* J ~ 

K l~l 

We recall, see, for instance, Dal Maso [ 3 ] , that if the functions F i , . . . , F^ 
have the standard p-growth ( 1 < p < oo) at infinity then F is the standard 
homogenized (or T-limit) integrand as e —> 0 for the family of integrands 

Fs(x,-) = J2dx Q(z,e)) F ( - ) , 0 < e, 

where a is the ( 0 , l ) -periodic extension of a to the whole R. 
We will show in Section 3 that the function F defined by ( 4 ) belongs to Ai. 

has the representation 

A r 

F(z) = min_ XtF,{z + ate) (5) 
a € 3 M a , A > = 0 ~ { 

and the adjoint function F* has the representation 

N 
F*(0 = mm{J2 A (F,*(^ + a ? ) | a ! G M " , ( a ' , e ) = 0 , i = 1 , . . . , N; 

-i=i 

£ A,-a« = 0 } . 
i=i 

Here and in what follows by F* we denote the adjoint to F function, 

F*(£) = s u p [ ( z , 0 - F ( r ) ] , e e R " , 
z 6 E " 

and A = ( A i , . . . ,A A - ) G E ^ . 
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Consider the differential operator A = (curl .div) . 

A: C ° ° ( R n : R " ) x C 5 c ( K n ; M n ) -> C^i^-^C^1) x C*~ (R n ) . 

The characteristic cone A corresponding to A 

A = {(z.f) e 1 " x I " (z,0 = 0}, 

D E F I N I T I O N 2.2. A continuous function L: R n x R " —• R is said to be K-convex 
if 

L (Az 1 + (1 - \)z2. A^1 + (1 - A)£ 2 ) < \L(z\£l) + (1 - A ) L ( z 2 . £ 2 ) 

whenever ( z 2
T £ 2 ) - (zl,£l) € A and 0 < A < 1. 

D E F I N I T I O N 2.3. A set M c M. \s said to be closed with respect to lamination 
if for every finite number of functions F i , . . . , F/v G M the set M contains all 
laminates F constructed from {Fi,...; F/v} with various directions e G R n and 
proportions { A i : . . . : A.v} according to formula (5). 

Our main results are the following. 

T H E O R E M 2.1. Let M c M be set such that 

(i) M is closed with respect to lamination; 

(ii) there exist functions F^,F+ G M. such that F_ < F < F+ V F G M. 

Then the function L: R n x R " -> R, 

L(z,£)= inf [F(z ) + F*(0], ( 4 ) e R " x R " 

is A-convex. 

T H E O R E M 2.2. Lei L : R " x R n - » R be function such that 

(i) L is continuous; 

(ii) L is coercive; 

(hi) L is A-convex. 

Then the set M C .M ( i / no£ empty), 

M = {F eM\ F(z) + F*(£) < L{z,£) V ( r ; £ ) G R n x R n } 

is 

(a) closed with respect to lamination; 

(b) coAf = M; 

(c) c o { F * j F G M} = { F * | F G A / } . 
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3. Properties of laminates 

A finite number of functions from Ai is equi-coercive and uniformly bounded 
from below, hence, the function F is well defined by (4) on the whole R " 
and is bounded from below. Taking in (4) v = 0 we have that F satisfies 
H4. Since the convex envelope for a finite number of functions from Ai is 
coercive too and since the mean value of v G over K is equal to zero, then 
by Jensen's inequality it follows from (4) that F is also coercive. Furthermore, 
from convexity of the integrand in (4) with respect to the pair (z, f (•)) it follows 
immediately that the function F is convex. 

To prove the representation formula (5) , let us consider the functions 

N 

1=1 

with a = ( a i , . . . , ON) G RN such that 

(75. A) = 0. 

Then, by construction, the elements vQ 

Va(x) = faix^e1 = {ipa(Xi), 0, . . . , 0) 

belong to H#. 

The functional 
N 

I(v) = Yl ^i)Fi(R{R-lz + v(x))) dx, I: H* -> R, 
K 1 = 1 

is Frechet differentiable and 
N 

I'(v)5v= / (Y^i(x1)R-1F;(R{R"lz + v{x))), Sv{x))dx, 
K i = l 

where by F' and V we denote the derivatives of F and I respectively. 
Let Va C be set such that 

Va={vaeH*\aeRN, ( a , A } = 0 } , 

where the relationship between a and A is given in Definition 2.1. 
The functional I on Va has the representation 

1 N 
7 K ) = f^nMFiiRiR^z + VaitWdt 

0 ! = 1 

N N 

= A i F j ^ i J - ^ + a2el) = Y XrFr(z + a>e) 
i=l i=l 
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and. obviously, attains its minimum over Va on a unique vao. From the Euler's 
equation we have 

I'{va„)va = / ( ^ ^ { x ^ R - ' F U R i R - ' z + va„{x)),va{x)} dx = 0 Vu a £ V,. 

(6) 
From here and the fact that the integrand in I'(vQo) = ( / { . . . . , I'n) depends 

only on Xi it follows (v = V u and u is A'-periodic for v £ 

n 

^ ' ( ^ ' A „ ) ^ = / ^2l'j(xi)uXj(x)dx 
K 3 = 1 

1 1 1 

= J I[(xi)^J • • • J uXj (x) d x 2 • - • dx^j dxi (7) 
0 0 0 

1 

= J I[{xi)v{xi) dxi, 
o 

for some integrable function yj with 

l 
j vj{xi) dxi = 0. 

o 

Furthermore, the integrand /{(•) is constant in every supper;, i = l , . . . , A r . 
From here and (6) - (7) it follows immediately that 

I'(vaJv = Q VveH*. 

Since / is convex and I'{van)v = 0 for all v £ the element r a „ e V „ C 
gives the minimum of / over This way, 

N 
F(z) = min = min_ A , F ( z + a ,e ) , (8) 

RACVV A E E * . ( A , A ) = 0 

what gives the representation (5). 
Let us denote 

Ax = {a £ RN\ (a , A) = 0 } , 
A' 

F: R n x / l j ^ I , F ( 2 , a ) = £ A i F ( 2 + a ,e) . 
j=i 

The function F is continuously differentiable with respect to the pair ( z , a ) . 
Let 2 S K n be fixed and let QO be minimizer of J-(z, •) over A\. i.e. 

F (2 ,cTo) = jn in T{z.a) = F(z). 
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In these notations 

F(z + Sz)-F(z) - {F'z{z,a0),8z) 

= _min T(z + dz.a) - !F{z, ao) - {F',(z.a0), 8z) 

< F(z + 6z.a0) - F(z,a0) - (J^iz.ao^dz) = o(\Sz\), 

i.e. the function F is upper semidifferentiable on M n . This property, together 
with convexity of F, gives that F is continuously differentiable on R n , see Ball 
et al [1]. 

From coercivity properties of F i , . . . . F)v € Ai it follows that for a fixed ball 
Bp = {z € M.n \\z\ < p) there exists a convex bounded closed subset Ao C A\ 
such that for z G Bp it holds 

F(z) = _min jF(z.cf) . 
AS-4„ 

Let z'. z" 6 Bp, 2 ' 7^ 2 " , be fixed. Then from strict convexity of F i , . . . , F A 

it follows that for some d > 0 

^ ' + \z», \a' + \a") < \T{z\ a') + \T(Z'\ a " ) - d Va ' , a " 6 A ) . 

Indeed, since AQ is a compact and if 

z + ate IT 1 RT // a ' e , i = l,....N: 

then from ( a ' , A) = 0 and ( a " , A) = 0 it should follow that z' = z". 

That gives 

F ( , ' ) + F ( ; 
mm 

a'eAo, a"€Au 

> min 
a'EA[t. a"eAa 

F{z',a')+F{z",a") 

= m m 
a 6 . 4 „ 

F 

T 

+ . 
.a\+d F 

+ d 

z -\- z 

Therefore, F is strictly convex. 
This way, we have proved the following result. 

P R O P O S I T I O N 3.1. Every laminate F (in direction e constructed from 
{ F i ; . . . ; F v } c Ai in proportions { A i ; . . . : \N}) has the representation for­
mula (5) and belongs to Ai. 

Analogous result for the conjugate functions F* is as follows. 

P R O P O S I T I O N 3.2. If F is a laminate (in direction e constructed from 
{F\;...: F/v} C Ai in proportions {\\ \...; \N}) then 
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(i) F* has the representation 

N 

! = 1 

F*(0 = m i n j ^ A ^ ^ + a ^ i ^ e R " , 
i 

N 

0, i = L , . . . . A ' ; j ^AIA ' = 0 } ( 9 ) 

o ' . e 
I=l 

(ii) F is coercive; 

(iii) F is continuously differentiable. 

Proof. Let J4A be as above and let 

Dx = j d = { d 1 ; . . . ; / } C L " | (<f, e) = 0 , t = 1 , . . . , N; X^d' = °}-

For d £ D\ simple calculations give 

F*(0= sup [ ( z , 0 - min £ A , F ( ~ + Q , -e)] 

A" 

A' 

! = 1 

sup sup < Aj[(z + a,-e,£ + dl) — F,(z + a^e] \ 

sup mf { £ A , [ ( - ^ + rf)-F(zO]) 
j '€R ' « .*=l N d€Dx T = l J 

= mf E A ^ K + d*) 
deDx i-1 

because the convexity and coercitivity of F\,..., F/v ensure the exchange of 
sup inf to inf sup. 

Since F £ M. is strictly convex, coercive and continuously differentiable, 
the the same properties has the adjoint function F*. • 

4. Proof of main theorems 

Let M C A4 be fixed subset closed with respect to lamination and let there 
exist functions F_ , F + £ Ad such that 

F_(z) < F(z) < F+(z) \/zeRn V F e A F ( 1 0 ) 

The relationship ( 1 0 ) ensure that all conjugate functions F*, F £ A/ , are 
uniformly bounded from below, 

FT (0 < F* (0 < FI (0 V£ £ E " V F £ Af. 
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Hence, the function L : M " x K n ^ R , 

L(z,0 = inf \F(z) + F * ( 0 ] , (2-0 e R n x R n , 

is well defined on the whole R n x E n . Besides that. 

F_ ( z ) + F ; ( 0 < L ( z , £ ) < F+(z) + F I ( 0 V ( z , 0 e R " x 

i.e. the function L is coercive. 

Let us fix two points ( z ' . £ ' ) , ( z " . £ " ) eRn xRn such that 

[5z,5£) = (z" - z',£" - £') e A, i.e. {5zJ£,} = 0. 

Let £ > 0, A e (0 ,1) be fixed and let F\, F 2 € M be such that 

L ( / , 0 > Fl(z')+F*(a-e, 

L(z",?') > F2(z") + F*(i")-s. 

Denote 
(20, & ) = ( A / + (1 - X)z", A£' + (1 - A)£" ) . 

Then 

(z',a = (z0,Zo)-(l-X)(5z.60-

{*",£.") = (z0.Z0) + \(6z,6Z). 

Consider the laminate F (in direction 6z/\5z\, constructed from { F i : F 2 } . 
in proportions {A; (1 — A)} ) 

F{z0) + F * ( £ 0 ) = min[AFi(2o " (1 " A)re) + (1 - A ) F 2 ( z 0 + Are)] 

+ min [ A F i ( £ 0 - ( l - A ) t a ) + ( l -A)F 9 *(eo + Ara)] 
t€K <a.e>=0 

(if <52 = 0, we choose e such that (e, <5£} = 0). 
A special choice 

T=\SZ\, t=\6£\, a = 5Um 

L(z0.Zo) < F(z0) + F*(H0)<\F1(z0-(l-\)6z) + (l-\)F2(z0 + \6z) 

+ AFj*(£ 0 - (1 - A)d£) + (1 - A)F 2 *(£ 0 + A<5£) 
= A[F! (z ' ) + F*(0\ + (1 - A ) [ F 2 ( z " ) + F 2*(C"): 
< \L{z',i') + {\-\)L(z".i") + 2e. 

From here and the arbitrarity of e > 0 it follows that L is A-convex. what 
completes the proof of Theorem 2.1. 
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Now, let us assume that we have a function t : R " x 1 " —» R, which is 
defined on the whole R™ x R™. is continuous, coercive and A-convex. Assume 
further that the set M, 

M = {F G M | F{z) + F*{£) > L(z,0 V ( z , ( ) £ 1 " x R n } , 

is not empty. 

Given Fi . F 2 G M, consider the laminate F (in direction e constructed from 
{ F i ; F 2 } in proportions {A; (1 — A ) } ) . Then 

F(z) + F*(0 

min XFi(z - r ( l - A)e) + A F * ( f - (1 - A)o) 
r 6 E (a,e)=0 I 

+ ( l - A ) F 2 ( z + rAe) + ( l - A ) F 2 * ( £ + A a ) } 

> _min { A L ( z - r ( l - A ) e . £ - ( l - A ) a ) + ( l - A ) L ( z + Are .£ + Aa)} 
7-6>. (a ,e )=0 

Since the difference of arguments for L is equal to (re . a) and, by construc­
tion, (re , a) G A, it follows that 

F(z)+F*tt) > min F F A(z - r ( l - A)e) + (1 - A)(z + rAe) , 
r S ? . ( a . e ) = 0 V 

A ( E - ( 1 - A ) a ) + ( 1 - A ) ( £ + Aa)) 

Therefore, every laminate constructed from F\,F2 G M belongs to M , too. 

For a finite number of functions Fx,..., F\- G M the laminate in direction 
e in proportions A i , . . . , A/v respectively is 

N 

F(z) = min VA,-Fi ( z + a,-e) 
( q . a > = o ^-f 

= m i n \ \ i F i ( z + ae ) + (1 - A i ) F 0 (z - a ^\ e 
a€?. I \ 1 — A i 

where 

m i n 

From here, by using simple induction argument over the number N, we have 
that F G M, too. That gives that the set M is closed with respect to lamina­
tion. 
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L E M M A 4 .1 . Let F i , F 2 G M. Then for every fixed {z,£) G R n x R" and 
A G [0,1] there exists a laminate F (in a direction e constructed from { F i ; F 2 } 
in proportions {A; (1 — X)}) such that 

F(z) + F*(0 < XFx(z) + (1 - X)F2(z) + [XFi + (1 - A)F 2 ]* (£) . 

Proof. For fixed proportions {A: (1 - A) } it holds 

min [F(z) + F* (£)] 
eSK" 

= min ( mm\\FAz + t(l - X)e) + (1 - A ) F 2 ( z - fAe) 1 

e6M" I t£K 

+ min [A sup ( (&\£ + ( l - A ) a ) - F^b1)) 
(A,E)=0L B I € E „ V > 

+ ( 1 - A ) sup ((b2,^-Xa)-F2(b2))]} (11) 

< AFi(z) + (1 - A ) F 2 ( z ) + inf sup { ( A 6 1 + (1 - X)b2.0 

+ A ( l - A)(6 J - 6 2 , a ) - [AF^fc 1) + (1 - A ) F 2 ( 6 2 ) ] } . 

Since the mapping 
(b\b2)^XF1(b1) + (l-X)F2(b2) 

is strictly convex and coercive, we can exchange inf sup to sup inf in the right 
hand side of (11). The inner infimum over a G R n gives that b1 =b2. Therefore. 

mm[F(z)+F*(0\ < XF^z) + (1 - X)F2(z) 

s u p [ ( b . £ ) - A F 1 ( 6 ) M l - A ) F 2 ( f o ) ] 
beR" 
XFi(z) + (1 - A ) F 2 ( z ) + [AFi + (1 - A)F 2]*(0. 

• 
From Lemma 4.1 and the fact that the set M is closed with respect to 

lamination, it follows immediately that M contains all convex combinations of 
its elements. 

Exactly the same reasoning as in Lemma 4.1, only now expressing F\, F2 as 
conjugate to F j* ,F 2 functions respectively, gives that for every given F\.F2 € 
M and A G [0,1] and fixed (z. £) G R™ x R™ there exists a laminate F (in some 
direction e constructed from { F 2 : F 2 } in proportions {A; (1 — A) } ) such that 

F ( z ) + F*(0 < [AF; + (1 - X)FiY(z) + AFj* (£) + (1 - A)F 2*(£). 

Therefore, 

c o { F * | F G M} = {F* [ F G A f } , 

what completes the proof of Theorem 2.2. 

We conclude with the following remarks. 
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R E M A R K 4.1. For the vectorial case of linear elliptic equations the passage 
from the initial set of given operators to its convex hull does not, in general, 
preserve the weak closure of the set of solutions of the corresponding family of 
equations, see. for instance, Raitums [6]. Therefore, the last two statements in 
Theorem 2.2 about convexity properties of the set M are a specific feature of 
the scalar case. 

R E M A R K 4.2. There is no a one-to-one relationship between A-convex func­
tions L and closed with respect to lamination sets M . To illustrate this feature 
we present a simple example of a set MQ C M such that 

(i) MQ is closed with respect to lamination; 

(ii) the set 

{F e M | F(z) +F*(£) > inf [F(z) + F*(0] V(z .£) e R " x R 7 1 } 

is larger than Mo. 

Let n = 2 and let MQ consist of functions 

F{z) = ^(Az,z), z G R n ; A G A, 

where 

A = {A G R 2 x 2 | Ais symmetric, X^A) • \2{A) = 1, a < XX{A) < 1} 

and 0 < Q < 1 is fixed. 

The set A is G-closed, hence the set Mo is closed with respect to lamination. 

At the same time, the function FQ, 

Fo(z) = \a\z\2 

does not belong to Mo, but 

F0(Z) + F;(O = \a\z\2 + l-\Z\2 > \{A0z 

where AQ G A is such that XI(AQ) = a, A2(^4o) = 1/cv and the eigenvector, 
which corresponds to XI(AQ), is parallel to z. 
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A-izliektas funkcijas un attieclba pret laminesanu slegtas kopas 
skalaraja gadljuma 
Kopsavilkums 

Raksta aplukotas funkcijas L: R™ x R™ —• R, izliektas attieclba pret konusu A = 
{(z.O 6 R 7 1 x R n | (z,£) = 0 } , un stingri izliektu, koercitlvu un nepartraukti at-
vasinamu funkciju F: R" —> R kopas M. Raksta paradits, ka tad, ja L ir A-izliekta 
un M sasfcav no tadam funkcijam F, ka F(-) + F'(-) > L(-, •), tad kopa M h izliekta 
un slegta attieclba pret laminesanu. 
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This paper considers some intrinsic properties of the category SET(L) of i-subsets 
of sets with a fixed basis L. We recall its definition and then dwell upon some special 
objects and morphisms as well as some standard constructions (e.g.. product and 
coproduct of objects and morphisms) in this category. 
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1. Introduction 

Since the inception of the notion of a fuzzy set in [4] interests of many re­
searchers have been directed to the study of different mathematical structures 
involving fuzzy sets and their generalization £-fuzzy sets (see [1, 2]) or just 
L-sets for short. Among many other problems some authors considered the 
category SET(L) of all L-subsets of all sets X where L is a fixed lattice (see 
1]). In particular in [3] are considered the relations between the category 

SET(L) and the topoi theory. However, as far as we know up to now there 
has been no paper where the intrinsic structure of the category SET(L) would 
be studied. The purpose of our work is to start the systematic study of the 
intrinsic properties of this category as well as its relations to other categories. 
We begin by recalling its definition, mentioning some of its basic properties 
and describing subcategories and related functors. Later on we consider some 
special morphisms (monomorphism. epimorphism, section, retraction etc.) and 
some special objects (initial and final objects, subobject and quotient object 
of an arbitrary object) in the category S E T ( L ) . Finally we discuss some stan­
dard constructions in this category-, i.e.. product and coproduct of objects and 
morphisms. pullback and pushout diagrams. 

A logical continuation of this paper would be an investigation of a more 
general category S E T ( C L A T ) whose objects are i -sets with different lattices 
L. This will be the subject of our forthcoming paper. 
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2. Definition and basic properties 

In this section we will discuss some basic properties of the category SET(L) . 
Let us start by recalling its definition (see [1]). 

Suppose L is a lattice (L, i.e., a partially ordered set such that for every 
two points a, b 6 L the join a V b and the meet a A b are defined and besides 
that there exist two points 0L,1L £ L such that OL ^ a ^ li for all a G L. 
We assume that 0^ ^ 1^, i.e., L has at least two elements. Then the category 
SET(L) can be defined as follows. 

1. The objects of SET(L) are all i -subsets of sets. i.e.. mappings X: X —> L 
where X is an arbitrary set (maybe empty) . Henceforth, the objects of 
SET(L) will be denoted by X. Y or Z and arbitrary sets by X. Y or Z. 
By saying that an object X G Obj SET(L) is given we will always mean 
that A" is a mapping A ' : X —* L. 

2. Given two objects X, Y G Obj SET(L) the set of morphisms from X to Y 
MorsET(i ) (^ . Y) consists of all mappings / : X —• Y such that X^Yof. 

We will continue by recalling a trivial subcategory of the category SET(L) . 
namely, the category SET whose objects are arbitrary sets and morphisms are 
arbitrary mappings between sets. 

P R O P O S I T I O N 1. The category SET is isomorphic to a full subcategory of the 
category SET(L) . 

Now let us see whether the category SET(L) is connected. 

P R O P O S I T I O N 2. The category SET(L) is not connected. 

Proof. To prove the proposition we have to find such two objects X , Y £ 
Obj SET(L) that the set MorsET( i ) (X , V ) is empty. It is easy to see that these 
objects can be every two mappings X = a G L and Y = b G L where a ^ b and 
X , Y are arbitrary nonempty sets. • 

Notice that unlike the category SET. the full subcategory S E T Q ( L ) of the ca­
tegory S E T ( i ) consisting of all non-void i -sets is not connected. 

Lastly we will show some examples of functors related to the category 
SET(L) . ' 

E X A M P L E 1. F: SET(L) — SET: Each object X e Obj S E T ( I ) will corre­
spond to the set A' G Obj SET and each morphism / G MorSET(L) will corre­
spond to the same morphism / G Mor SET. Obviously, F is a functor. 

The next example is more complicated. 
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E X A M P L E 2. F : SET(L) ~~ SET: Each object X £ Obj SET(L) will corre­
spond to the set X x {X} £ Obj SET where X is considered as a point from 
the set Lx of all mappings h: X —> L. Each morphism / £ Mor SET(L){X. Y) 
will correspond to the mapping F(f) : X x {X} —> Y x {Y}, F(f)(x, X) = 
(/(£), Y). Obviously. F is a functor. 

Clearly F ( S E T ( L ) ) is a subcategory of the category SET (not full) and besides 
that the categories SET(F) and F ( S E T ( F ) ) are isomorphic. Thus, the following 
proposition holds. 

P R O P O S I T I O N 3. The category SET(L) is isomorphic to a subcategory of the 
category SET. 

E X A M P L E 3. F : S E T ( I i ) S E T ( L 2 ) : Suppose two categories S E T ( L i ) and 
S E T ( Z 2 ) with isomorphic lattices L\ and L 2 are given. This means that there 
exists an isomorphism ip: L\ —*• L 2 . Then the functor F can be defined as 
follows. Each object X: X —> L\ from Obj S E T ( I q ) will correspond to the 
object ipoX: X —> L 2 from Obj S E T ( L 2 ) and each morphism / G MorSET(Li ) 
will correspond to the same morphism / £ M o r S E T ( L 2 ) because X Y o f 
implies <p o X ^ tp oY o / . Obviously, F is a functor. 

With the help of this example and the fact that if tp: L\ —> L 2 is an isomorphism 
then rp = Lp~l: L 2 —> L\ is also an isomorphism it is possible to construct a 
functor G : S E T ( L 2 ) S E T ( L i ) . One can easily verify that G o F = esET(ti) 
and F o G = esET(i 2 ) w h e r e e is an identity functor. Thus, the following 
proposition holds. 

P R O P O S I T I O N 4. If two lattices L\ and L 2 are isomorphic then their correspon­
dent categories SET(L i ) and S E T ( L 2 ) are also isomorphic. 

In the following two sections we will consider some special morphisms and 
objects in the category SET(L) . 

3. Special morphisms 

Suppose we have two objects X. Y £ Obj S E T ( i ) and an arbitrary morphism 
/ £ Mor SET(L)(X, Y). In the following three subsections we consider some nec­
essary and sufficient conditions for / to be a special morphism in the category 
SET(L) . 

3.1. Monomorphisms , epimorphisms, and bimorphisms 

T H E O R E M 1. A morphism f: X —> Y is a monomorphism iff f is infective. 
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Proof. We will prove the necessity first and therefore assume that / is a mono-
morphism. Then for each object Z £ Obj SET(L) and every two morphisms 
g, h £ Mor SET(L){Z- X) such that / o g = f o h it follows that g = h. 

If / is not injective and there exist two points X i . x 2 £ X. X\ ^ x 2 such 
that / ( x j ) = / ( x 2 ) = yo e Y then let Z = {z0} and Z(z0) = 0 / , . In this case 
every two mappings g, h: Z —• X will be morphisms and thus we can take 
h(zo) = xi and .9 ( 2 0 ) = x 2 . It is easy to see that / c g = f o h but g ^ h. 

The sufficiency is obvious. • 

T H E O R E M 2. A morphism f:X^Y is an epimorphism iff f is surjective. 

Proof. We will prove the necessity first and therefore assume that / is an 
epimorphism. Then for each object Z £ Obj SET(L) and every two morphisms 
g. h £ Mor sET(i)(^: Z) such that ho f = go f it follows that g = h. 

If / is not surjective and there exists such a point yo £ Y that f~1(yo) = 0 

then let us take Z = {zi. 2 2 } and Z(z\) — Z(z'i) = 1L- In this case every two 
mappings g. h: Y —> Z will be morphisms and thus we can take h(Y) = { 2 1 } 

and g(Y\{y0}) = { 2 1 } but g{yo) = 2 2 . It is easv to see that go f = ho f but 

The sufficiency is obvious. • 

From the last two theorems and the definition of bimorphism (notice that a 
morphism is said to be a bimorphism provided that it is both a monomorphism 
and an epimorphism) the following theorem can be derived. 

T H E O R E M 3. A morphism. f: X ^>Y is a bimorphism iff f is bijective. 

3.2. Sections, retractions, and isomorphisms 

This section is devoted to section, retraction and isomorphism in the 
category S E T ( i ) . Notice that although in the category SET these concepts 
are equivalent to accordingly monomorphism. epimorphism and bimorphism. 
in the category SET(L) they are quite different. 

T H E O R E M 4. .4 morphism f:X—>Y is a section iff the following conditions 
are fulfilled: 

1. f is injective; 

2. X = Y O / ; 

3. for each y £ Y there exists such a point, x £ A ' that Y(y) ^ X(x). 

Proof. We will prove the necessity first and therefore assume that / is a section. 
This implies the existence of such a morphism g £ Mor S E T ( L ) ( ^ - X) that go} = 
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ex where e is an identity morphism which is just an identity mapping in the 
category SET(L) . Let us prove that all conditions of the theorem are fulfilled. 

The first condition follows immediately from the existence of g. In order to 
prove the second condition we will notice that the definition of morphism in 
the category S E T ( i ) implies X ^ Y o f and Yof^Xogof. Then, replacing 
go f by ex, we will have that Y o f ^ X and therefore X = Y o f. The third 
condition follows from the fact that Y(y) ^ X o g(y) V y £ Y and thus the 
necessary point x will be just g(y). 

Now let us prove the sufficiency and therefore assume that all conditions of 
the theorem are fulfilled. Then there exists a mapping g such that 

If g £ M o r S E T ( t ) ( ^ X) then the sufficiency is proved because it is easy to see 
that g o / = ex-, therefore let us show that Y(yo) ^ X o g(yo) Vyo £ Y. If 
yo £ f{X) then g(yo) = x0 where f{x0) = yo- From the second condition of 
the theorem it follows that X(XQ) = Y o f(xo) = Y(yo) and then X o g(yo) = 

T H E O R E M 5. A morphism f: X —> Y is a retraction iff for each y eY there 
exists such a point x £ X that f(x) — y and X(x) = Y(y). 

Proof. We will prove the necessity first and therefore assume that / is a re-
tracion. This implies the existence of such a morphism g £ Mor SET( L ) (Y, X) 
that fog = ey. Let us prove that the condition of the theorem is fulfilled. 
Notice that from the condition it follows that / must be surjective, therefore 
the first thing we need to prove is that V y £ Y ^ 0 . The statement 
follows immediately from the existence of g. Further, suppose an arbitrary 
point yo £ Y is given. Then there exists such a point XQ £ X that Xo = g{yo) 
and f(xo) = yo- From the fact that / and g are morphisms we will get that 
X(x0) ^ Y o f(x0) = Y(y0) and Y(y0) < X o g{y0) = X(x0). T w o last 
inequalities will give us the necessary equality X(XQ) = Y(yo). 

Now let us prove the sufficiency and therefore assume that the condition of 
the theorem is fulfilled. Then the necessary mapping can be defined as follows: 

If g £ Mor SET(L)(^I X) then the sufficiency is proved because one can easily see 
that fog = ey , therefore our task now is to show that Y(yo) ^ Xog(y0) VT/Q € 
Y. Suppose an arbitrary point yo £ Y is given. Then X og(y0) = X(xo) where 
xo £ X. From the definition of g it follows that X(XQ) — Y(yo) which implies 

X(x0) = Y{yo). In case of yo £ Y\f(X) the necessary inequality follows from 
the definition of g. • 

g(y) =xe{zeX\ f{z) = y and X(z) = Y(y)}. 

the necessary inequality. • 
T H E O R E M 6. A morphism f: X —> Y is an isomorphism iff the following con­
ditions are fulfilled: 
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1. f is bijective; 

2. X = Y o / . 

Proof. We will prove the necessity first and therefore assume that / is an 
isomorphism. Then / is both a section and a retraction which implies the 
existence of such a morphism g G Mor SET(L) (Y, X) that fog — ey and go f = 
e.\-. Let us prove that all conditions of the theorem are fulfilled. 

The first condition follows immediately from the existence of g. The second 
condition follows from the fact that / is a section. 

Now let us prove the sufficiency and therefore assume that all conditions 
of the theorem are fulfilled. Then the necessary mapping g can be obtained in 
the following wav: 

g(y) =rl(y)- y e Y. 

If g G Mor SET(L)(Y; X) then the sufficiency is proved because it is obvious 
that g o f = ex and fog = ey, therefore we need to prove that Y(yo) ^ 
X o g(yo) Vyo G Y. Suppose an arbitrary point yo G Y is given. Then 
X o g(yo) = X(XQ) where / ( x o ) = Va- From the second condition of the 
theorem it follows that X(XQ) = Yof(xo) = Y(yo) which implies the necessary 
inequality. • 

The last theorem shows the necessary and sufficient conditions for two given 
objects A', Y G Obj S E T ( i ) to be isomorphic. 

T H E O R E M 7. Two objects X, Y G Obj SET(L) are isomorphic iff for every 
a e L. \X-l{a)\ = | y - 1 ( a ) | . 

Proof. We will prove the necessity first and therefore assume that the ob­
jects X and Y are isomorphic. This implies the existence of an isomorphism 
/: X —>• Y. Suppose an arbitrary point a G L is given. In order to prove 
that |A ' _ 1 (a )| = ] y _ 1 ( a ) | we have to show that there exists a bijective map­
ping Y>: X~l(a) —* Y~1(a). Let us prove that ^ = fa = f\x-l(a)- The fact 
that / is an isomorphism implies X(XQ) = Y O / ( x 0 ) Vxo G X and therefore 
fA(X~l(a)) C Y~1(a), besides that fa is injective. Let us show that fa is 
also surjective. Suppose an arbitrary point yo G Y~1(a) is given. From the 
properties of isomorphism we derive that there exists such a point x-o G X that 
f(xo) = 2/0 and X(XQ) = Y O f(x0) = Y(y0) = a G L. But then xo G X~1(a) 
and fa is indeed surjective which implies the necessary equality. 

Now let us prove the sufficiency and therefore assume that \X~l(a)\ = 
Y~1(a)\ Va G L. This gives us a family of bijective mappings { . f A } A E I where 

fa : X~x(a) —> Y~1(a). The necessary mapping / could be obtained as follows: 
/ ( x ) = fa(x). x G X~1(a). It is easy to see that U Q E L ^ " _ 1 ( A ) = X AN<^ 
also U A G L ^ _ 1 ( Q ) = therefore / is bijective. The definition of / implies 
X(x) = Y o / ( x ) Vx G X. From the previous theorem it follows that / is an 
isomorphism and thus the objects A' and Y are isomorphic. • 
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3.3. Constant morphisms and equalizers 

T H E O R E M 8 . A morphism f: X —> Y is a constant morphism iff f(X) = 
{yo} c Y. 

Proof. Let us prove the necessity first and therefore assume that / is a constant 
morphism. Then for each object Z £ Obj SET(L) and every two morphisms 
g, h £ Mor gET(L)(-^7 X) it follows that / o g = / o h. 

If there exist two points_xi, x2 6 X , i i / x2 such that f{x\) = yi ^ 
V2 = f(x2) then let us_take Z = {z0} and Z(z0) = 0 / , . In this case every two 
mappings g, h: Z —> X wiU be morphisms and thus we can take g(zo) = x\ 
and h(zo) = x2. It is easy to see that / o g ^ g o h. 

The sufficiency is obvious. • 

T H E O R E M 9 . A morphism. f: X —> Y is an equalizer iff the following condi­
tions are fulfilled: 

1. f is infective; 

2. X = Y of. 

Proof. We will prove the necessity first and therefore assume that / is an 
equalizer. This implies the existence of such an object Z £ Obj SET(L) and 
such two morphisms g, h £ Morg E-p(L)(F, Z) that the following properties are 
satisfied: 

L hof = gof-

2. for each object W € Obj SET(L) and each morphism m : W —• Y such 
that hom = g o m there exists a unique morphism k: W —> X such that 
f o k = m. 

Let us prove that all conditions of the theorem are fulfilled. 

If / is not injective and there exist two points x\, x2 £ X, X\ ^ x2 such 
that f(x\) = f{x2) = yo £ Y then let us take W = {wo} and W(WQ) = 0^. 
In this case every two mappings k\, k2: W —» X and also m: W —> Y will be 
morphisms and thus we can take m(wo) = yo, but ki(wo) = x\ and k2(wo) = 
x2. Then obviously g o m = h o m and also / o k\ = / o k2 = m but k\ / k2 

which contradicts the definition of equalizer. 

Suppose an arbitrary point Xo £ X is given. We have to prove that X(XQ) = 
Y o f(xo). The fact that / is a morphism implies X(XQ) ^Y O / (xo) . Further, 
let us take W = f(X) and W = Y\j^Xy Then the mapping m such that 
hom = g o m can be defined as follows: m ( x ) = x , V x £ f(X). If so then 
the morphism k will be just f~l. The fact that / _ 1 is a morphism implies 
X o / _ 1 o / ( x 0 ) = X(xo) ^ W o f(xo) = Y o / ( x o ) . The last inequality leads 
to the necessary equality X(XQ) = Y o / ( X Q ) . 
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Now let us prove the sufficiency and therefore assume that all conditions 
of the theorem are fulfilled. We will try to find the necessary object Z G 
Obj SET(L) and two morphisms g. h G MorSET(L) (Y- Let Z = {z\, z0) 
and Z(ZQ) = Z(zx) = 1^. In this case every two mappings g. h: Y —> Z will be 
morphisms and thus we can take h(y) = zx, Y y G Y, but g(y) = 2 1 . y G / ( X ) 
and c/(y) = 2 0 . y G y \ / ( X ) . It is obvious that h o f — g o f. 

If such an object W G Obj SET(L) and such a morphism m: W ^ Y are 
given that o 771 = g o m then there exists a unique mapping k: W —> X. 
k = f~l o m such that / o k = m. Because of X o /r = X o / _ 1 0771 = 
Y o f o f~l o m = Y o m ^ \V k is a morphism. • 

4. Special objects 

In this section we will consider some special objects in the category SET(L) , i.e, 
initial and final objects and also subobject and quotient object of an arbitrary 
object. 

Let us recall basic definitions. An object X is called initial provided that 
for each object Y there exists a unique morphism f:X —• Y. The same 
way an object X is called final provided that for each object Y there exists a 
unique morphism / : Y —• X. Suppose we have two objects X and Y and two 
morphisms / . q: X —* Y where / is a monomorphism and q is an epimorphism. 
The pair (/. X) is called a subobject of Y and the pair (q, Y) a quotient object 
of X. 

The proofs of the following statements are trivial and therefore are omitted. 

P R O P O S I T I O N 5. A mapping I: 0 —» L is an initial object in the category 
SET(L) . 

P R O P O S I T I O N 6. A mapping F: {*} —> L. F(*) = 1L is a final object in the 
category SET(L) . 

Suppose we have two objects X. Y G Obj SET(L) . 

T H E O R E M 10. If the following conditions are fulfilled: 

1. X C Y; 

2. for each x G X it follows that X(x) ^ Y{x); 

then there exists a monomorphism f: X —> Y and hence (/, X) is a subobject 
ofY. 

T H E O R E M 11. If the following conditions are fulfilled: 

1. Y c X: 
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2. for each y e Y it follows that X(y) ^ Y(y): 

3. for each x £ X\Y there exists such a point y £ Y that X(x) ^ Y(y): 

then there exists an epimor-phism q: X —> Y and hence (q. Y) is a quotient 
object of X. 

The following example shows one way of obtaining a quotient object for an 
arbitrary object X £ Obj SET(L) . 

E X A M P L E 4. Suppose an object X £ Obj SET(L) is given. In order to find 
a quotient object (q, Y) for X we will firstly construct the necessary object 
Y. Let Y = {[x]a\a £ X(X)} where [x]a = {x \ x£ X, X(x) = a £ L} and 
F([x ' ] a ) = a, y[x]a £ Y. Then the mapping q: X —* Y can be defined as 
follows: q(z) = [x]x(z): V z £ X. One can easily verify that (q. Y) is a quotient 
object of X. 

Now suppose the lattice L is complete, i.e., for every subset A C L the join 
\J A and the meet /\ .4 are defined, and fix an arbitrary object X £ Obj S E T ( Z ) . 
B}" Ymin and Ymax we will denote such objects from Obj S E T ( i ) that Ymin = 
{*}, Ymm{*) = V { o | o G X(X)} and\Y m a x \ = \X\. Ymax(y) = l L . V y e Ymax. 
Obviously, there exist such morphisms g m , n : X —> Ymin and q m a x : X —> Ymax 

that (qmin, Ymin) a n d {qmax- Ymax) are the quotient objects of X and besides 
that the following proposition holds. 

P R O P O S I T I O N 7. If\/{a\a e X(X)} e X(X) then for each quotient, object 
(q, Y) of X there exist such morphisms fi: Ymin —> Y and f2'-Y —> y m o x that 
( / i , y m i „ ) is a subobject ofY and (f2, Y) is a subobject ofYmax. 

Thus we can say that (qmin, Ymin) and (qmax, Ymax) are in a way the smallest 
and the "biggest" quotient objects of X. 

Notice that for an arbitrary object Y £ Obj SET(L) the existence of such 
two morphisms fi: Ymin Y and f2 : Y —> Ymax that ( / i , Ymin) is a subobject 
of Y and (f2, Y) is a subobject of Ymax does not imply the existence of an 
epimorphism q: X —> Y. 

If we will suppose that V{a | a £ A " ( X ) } ^ X(X) then ( g m a x . y m a r ) will be 
still the "biggest" quotient object of X, however (qmxn. Ymin) will no longer be 
its "smallest" quotient object . 

P R O P O S I T I O N 8. If such an object X e Obj SET(L) is given that V{a J a £ 
X(X)} $ X(X) then it has no "smallest'' quotient object. 

Proof. Suppose there exists such a quotient object (qmin, Ymin) of A' that for 
each quotient object (q, Y) of X there exists a monomorphism / : Ymin Y 
and therefore (/, Ymin) is a subobject of Y. It is obvious that then Ymin = { y 0 } 
and Ymin(y0) ^ V{a|a £ X(X)}. From the fact that (e.y, X) is a quotient 
object of A' we will immediately get a contradiction. • 
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5. Standard constructions 

This section is devoted to some standard constructions in the category SET(Z) 
which are product and coproduct of objects and morphisms. pullback and 
pushout. Let us start by considering product of objects. 

5.1. Products of objects 

Suppose we have two arbitrary objects A". Y G Obj SET(L) . We will 
try to find their product denoted by A' x Y. According to the definition we 
have to find such an object X x Y G Obj SET(L) and such two morphisms 
Px 6 M°r S E T ( L ) ( X x Y. X) and py G M o r S E T ( L ) ( ^ x Y, Y) that for each 
object Z G Obj SET(L) and every two morphisms / G Mor SET(L)(Z, X) and 
g G Mor S E T ( L ) ( Z ; Y) there exists a unique morphism h G Mor S E T ( L ) (Z, X xY) 

such that the diagram 

Z 

X - X x Y • Y 
Px PY 

commutes. 
We will start by constructing the object A" x Y. Let X x Y = X x Y = 

{ ( x . y) \x G X. y G Y} and X x Y(xzy) = X{x) A Y(y), V ( x . y) G XxY. 
Then the necessary' mappings px and py can be obtained in the following way: 
Px{x- y) = x and py{x. y) = y. V (x, y) G X x Y. Every two given morphisms 
/ and g will correspond to the mapping h(z) = (f{z), g(z)), V z G Z. 

Let us prove that px G M o r S E T ( i ) ( A x Y, X). For each point ( x U ; yo) £ 

XxY it follows that XoPx(x0, y0) = X(x0) > X{x0)AY{y0) = XxY(x0. y0). 
The same way one can prove that py G M o r s E T ( L ) ( ^ X Y. Y). 

Now let us prove that h G MorSET(L){Z , X x Y). For each point ZQ G Z it 
follows that A x Yoh{z0) =XxY(f{z0), g{z0)) = Xof(z0)AYog(z0). The fact 
that / and g are morphisms implies X o f(zo) ^ Z(ZQ) and Y o g(zo) ^ Z(ZQ). 
But then X o /(ZQ) A Y o p(zo) ^ Z(zo) a Q d ft is indeed a morphism. 

One can easily verify that the above-mentioned diagram really commutes. 
The necessary product of objects is found. 

Now let us consider coproduct of objects. 

5.2. Coproducts of objects 

Suppose we have two arbitrary objects A'. Y G Obj S E T ( L ) . We will 
try to find their coproduct denoted by A © Y. According to the definition we 
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have to find such an object A' © Y G Obj SET(L) and such two morphisms 
qx £ Mor S E T ( L ) ( A \ X © Y) and qy £ M o r S E T ( i ) ( Y X © Y) that for each 
object Z £ Obj SET(L) and even- two morphisms / £ M o r S E X ( i ) ( X , Z) and 
g £ M o r S E T ( L ) ( Y , Z) there exists a unique morphism k £ Mor S E X ( L ) ( A ' © Y. Z) 
such that the diagram 

commutes. 

Firstly we will construct the object X © Y. Let X © Y = X |J Y . One can 
easihy assume that X f] Y = 0 , otherwise the sets A' x { 1 } and Y x { 2 } can be 
used instead of the original ones. The mapping .V • Y : X $ Y - /. will be as 
follows: 

A © Y(x) 

Then the necessary mappings q\ and <jy will be such that qx{%) = V i € A 
and qy(y) = y, Vy £ Y. Every two given morphisms / and g will correspond 
to the mapping 

k(x) --

It is clear that qx S Mor S E T ( i ) ( A ; A © Y ) and g y e Mor S E T ( L ) ( Y . A © Y ) . 
Let us prove that k £ Mor$ E x (L ) (A © Y . Z). For each point xo £ X © Y it 
follows that either xo £ X or xo € Y . Suppose xo £ A . Then Z o fc(xo) = 
Z o / ( x o ) ^ A ( x o ) = 1 6 Y ( x o ) . The case xo 6 Y is the same. But then is 
indeed a morphism. 

It is easy to verify that the above-mentioned diagram really commutes. The 
necessary coproduct of objects is found. 

Now let us turn to product and coproduct of morphisms. 

5.3. Products and coproducts of morphisms 

Suppose such four objects A j , Y\ and A 2 . Y 2 from the category SET(Z,) 
are given that the sets M o r S E T ( L ) ( ^ I > ^ i ) and MorSET(L)(A2, Y 2 ) are not 
empty. Let us choose an arbitrary morphism / £ M o r S E T ( L ) ( - ^ I , Y\) and an 
arbitrary morphism g £ Mor S E T ( L ) ( X ? , Y 2 ) . Then the following diagram can 
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be created. 

The definition of product of objects in the category SET(L) implies the exis­
tence of a unique morphism h = f x g, 

f x g(Xl. x2) = (fix,). g(x2)). V ( x , . x2) G X~x~Y 

which makes the diagram commutative and therefore is the product of mor­
phisms / and g. 

If we will use Xi 0 X2 a.nd Y\ g Y2 instead of Xi x X2 and Y\ x Y2 then we 
will get the following diagram. 

Xi Xi s x2 

QX2 Xo 

QYi ° f 9>', ° 9 

Y, Yi & Y2 Yo 
QY2 

The definition of coproduct of objects in the category SET(L) implies the 
existence of a unique morphism k = f ® g, 

f'9g(x) 
f{x), xeXi 

g(x), x G X2 

which makes the diagram commutative and therefore is the coproduct of mor­
phisms / and g. 

In the following section we will consider two last standard constructions 
pullback and pushout. 

5.4. Pullbacks and pushouts 

We will start by considering pullback in the category SET(L) . 

Suppose such three objects X. Y, Z G Obj SET(X) are given that the sets 
Mor/gET(L)(X Y) and Mor S E T ( L ) ( Z , Y) are not empty. Let us choose two ar­
bitrary morphisms / G M o r S E T ( i ) ( X . Y) and g G M o r S E X ( L ) ( Z . Y). We will 
try to find a pullback for these morphisms. According to the definition we 
have to find such an object V G Obj SET(L) and such two morphisms px G 
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MorgET(i)(^; X) and pz G Mor SET(L) (Y. Z) for which g°pz = f °Px that for 
each object U G Obj S E T ( T J ) and every two morphisms hx G Mor S E T ( L ) ( ^ - X) 
and hz G Morg Ex(L)(£A Z) for which g ° hz = f ° ft.v there exists a unique 
morphism ft G MorgET ( L ) ( ^ i ^0 such that the diagram 

commutes. 

Firstly we will construct the object V. Let X x Z D V = { ( x , € A'. : t 
Z and / ( x ) = g ( z ) } . (Notice that in case of V being an empty set the only 
object U which has the required morphisms hx and hz is the object V itself, 
i.e., U = 0 , otherwise there exists some UQ G U such that /oft_\-(uo) = g°hz(uo) 
and therefore (hx (wo), ftz(«o)) G V. Obviously there exists a unique morphism 
h G Mor g E T ( L ) ( L r , V) which makes the above-mentioned diagram commute.) 
Let V(x, z) = X(x) A Z(z), V ( x . z) G V. Then the necessary mappings p\ 
and will be as follows: p x ( x . z) = x and p z ( x , z) = z, V ( x , z) G V. 
Every two given morphisms hx and hz will correspond to the mapping h(u) = 
(hx{u), hz(u)), VueU. 

Let. us prove that px G Mor SET(L)(K X). For each point VQ = (xy, zo) £ ^ 
it follows that X o px{v0) = X o p A - ( x 0 , z 0 ) = X ( x 0 ) ^ X ( x 0 ) A Z ( z 0 ) = 
V'(xo, 2o) = V"(t'o). The same way one can prove that pz G Mor S E T ( i ) (V", Z ) . 

Now let us prove that h G M o r S E T ( L ) ( ^ T - Y). For each point UQ G U the 
point ft(uo) = {hx(uo). hz{uo)) certainly belongs to V because of /°ft.\'(wo) = 
g o hz(uo). Then V o / i (u 0 ) = I o ft.v(uo) A Z o ft,(u0). The fact that ft,\- and 
ftz are morphisms implies X o h\{uo) ^ c7(u 0 ) and Z o hz(uo) ^ C/(urj) a n d 
then X o hx(u0) A Z o ftz(«o) ^ U(u0) therefore ft is indeed a morphism. 

It is easy to verify that the above-mentioned diagram really commutes. The 
necessary pullback is found. 

Now let us consider pushout in the category SET(L) . 

Suppose again we have such three objects X, Y, Z G Obj S E T ( i ) that this 
time the sets Mor SET(L)(Y, X) and M o r S E T ( L ) (Y , Z) are not empty. Let us 
choose two arbitrary morphisms / G M o r g E T(L) (y , X) and g G Mor S E T ( £ ) {Y, Z). 
We will try to find a pushout for these morphisms. According to the definition 
we have to find such an object V G Obj SET(L) and such two morphisms 
qx G M o r S E T ( L ) ( X V) and qz G Mor S E T ( £ ) ( Z , V) for which qz o g = qx o / 
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that for each U e Obj SET(L) and every two morphisms h\ G Mor S E X ( i j ( X , U) 
and hz G M o r S E T ( i ) ( Z . U) for which hz ° g = hx ° / there exists a unique 
morphism k G Mor S E T ( L ) ( V , U) such that the diagram dual to the diagram of 
pullback commutes. 

For simplicity we will assume that / and g are injective. 

Firstly we will construct the object V. Let V = V\ (J V2 (J V3 where \\ = 
X\f(Y),'v3 = Z\g{Y) and V2 = {v\v = (f(y). g(y)), y G Y}, besides that 
V, f] V.J• = 0. 27^ j . The mapping V will be such that 

(X{v), v G V'i 

V(v) = lZ(v), vev3 

[ x ( I ' I ) V 2 ( F 2 ) , U = ( « ! , I> 2 ) G VV 

Then the necessary mappings g.y and qz can be defined in the following way: 

f x , X G A \ / ( Y ) 

\ T - T = ( x , 9 O / - 1 ( x ) ) , X G / ( Y ) 

, , = U z G Z\g(Y) 

\vz = (fog-i(z),z), zeg(Y). 

Every two given morphisms hx and hz will correspond to the mapping 

(hx(v), veV, 

k(v) = I hz(v). v G V3 

[hx(vi) = hz{v2), v = v2) G V2. 

Let us prove that qx G Mor S E T ( L ) (X, V). For each point xo G X it follows 
that either x 0 G X\f(Y) or x 0 G / ( f ) . If x 0 G X\f{Y) then V O g . v ( x 0 ) = 
V ' ( x 0 ) = A" (x 0 ) and if x 0 G f(Y) then V O qx(x0) = V(x0, g O / _ 1 ( x 0 ) ) = 
A ( x o ) V Y O g o / _ 1 ( x o ) ^ A ( x o ) . Therefore qx is indeed a morphism. The 
same way one can prove that qz G Mor SET(L)(-Z V"). 

Now let us prove that k G Mor S E T ( L ) ( Y . U). For each point Vo G V it 
follows that either VQ G VI or v0 G V2 or UN G V3. If U 0 G V\ then U c 
fr(T'o) = U o hx(vo) ^ A"(wo) = ^ ( T ' o ) - In case of T>o G V3 the same way we get 
U o k(vo) ^ V(vo), whereas VQ = (T'io, 2̂0) G V2 it follows that U o k(vo) = 
[ 7 o / I Y ( R 1 0 ) = Uohz(v20). From ( / O F T V ( T ) 1 0 ) ^ A(t>i 0 ) and L V O / I Z ( ^ 2 0 ) ^ Z(v20) 
we derive that [/ O k(vo) ^ A( i / i o ) V Z(v2o) = V(t>o)- Therefore /e is indeed a 
morphism. 

It is easy to verify that the above-mentioned diagram really commutes. The 
necessary pushout is found. 

At the beginning we have supposed that / and g are injective. If they are 
not then all the reasoning will be slightly different. For example the set V2 

will be V2 = {v \ v = (Vx, Vz), VX C A , VZ C Z) and then for each v0 G V2 
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9A- (X) = 

Qz{z) 

x, xe X\f(Y) 
v = (Vx,Vz): x£f(Y) 

k z e 
\v = (Vx,Vz), zeg(Y). 

And lastly if vo G V 2 then fc(i'o) = hx(vio) or fc(i>o) = hz{v2o) where r 1 0 

and V20 are arbitrary points from accordingly Vx„ and Vzlt. All the rest is 
similar to the case when / and g are injective. 
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Dazas piezimes par kategoriju SET(L) 
Kopsavilkums 

Darba ir apskatltas dazas fikseta rezga L L-vertlgu kopu kategorijas SET(L) Ipasibas. 
Ir atgadinata tas definlcija un aplukoti dazi speciali objekti un morHsmi. ka arl dazas 
universalas konstrukcijas (piem.. objektu un morRsmu reizinajums un koreizinajums) 
saja kategorija. 

V(v0) = ( V ^ o £ ~ X ( t ; i o ) ) V ( V i ; ] C ~ Z(v20)) therefore the lattice L must be 
complete. The mappings g.\- and qz will be the following: 
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We introduce a topological-type structure on L-subsets of L-valued sets and con­
sider the coresponding category L-TOP(L) whose objects are L-valued L-topological 
spaces and whose morphisms are naturally defined continuous mappings between 
such spaces. It is shown that L-TOP(L) is a topological category over the category 
L-SET(L) L-SET(L) of L-subsets of L-valued sets (or L-valued L-sets, for short) 
defined in our previous work. 
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Introduction 

The aim of this paper is to introduce the concept of an L-valued L-topological 
space, which is a certain synthesis of the concept of an L-(fuzzy) topological 
space in the sense of Chang-Goguen [1], [3], the concept of an L-subset of a set 
6], [2] and the concept of a many-valued set in the sense of Hohle [4]. To do 

this we start with the concept of an L-subset of an L-valued set studied in our 
previous paper [5] which in its turn is a synthesis of the concept of an L-subset 
of a set in the sense of Zadeh-Goguen [6], [2] (that is a mapping A : X —> L) 
and the concept of a many-valued set in the sense of U. Hohle [4] (that is a 
usual set X equipped with the so called many-valued equality £ : I x I - > I ) . 
In the same paper [5] we introduced the category L - S E T ( L ) of L-valued L-sets 
and investigated some properties of this category. 

As it was said above, in this paper we introduce the concept of an L-valued 
L-topological space which is actually an L-subset of an L-valued set endowed 
with a naturally defined topological-type structure. Such spaces and natu­
rally defined continuous mappings between them form a category L - T O P ( L ) . 
We study some properties of this category. In particular, it is shown that L-
T O P ( L ) is a topological category both over L -SET(L) and over the Goguen's 
category L-SET of L-sets with respect of the forgetfull functor. 
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To make the paper to some extent self-complete, we start with two prepara­
tory sections: Section 1, prerequisities. where basic notions used in the paper 
are recalled, and Section 2 mainly containing basic definitions and results from 
our previous work [5 

1. Prerequisities 

1.1. G L - m o n o i d s Let ( L , < . A , V ) be a complete infinitely distributive lat­
tice, i.e. (L, < ) is a partially ordered set such that for every subset A C L the 
join V A and the meet f\ A are defined and (V A) A a = \J{a A a \ a G A} and 
{/\A) V a = /\{a V a | a G A} for every a G L. In particular, \J L 1 and 
[\L = : 0 are respectively the universal upper and the universal lower bounds 
in L. We assume that 0 ^ 1 . i.e. L has at least two elements. 

A GL—monoid (see e.g. [4]) is a complete infinitely distributive lattice 
enriched with a monotone, commutative and associative binary operation * 
such that 

1. a * 1 = a and a * 0 = 0 for all a G L: 

2. a * (Vj 33) = V ^ Q * 0j) Va G L, y{dj : j G J } C L; 

3. If a < 3, then there exists 7 G L such that a = ,3 * 7. 

It is known that every GL—monoid is residuated, i.e. there exists a further 
binary operation r —> " (implication) on L satisfying the following condition: 

a * 3 < 0 < ^ Q < (3 -> 7 ) V a , 3.7 G L. 

Explicitely implication is given by a —> 8 = V { A G L | a * A < /3}. 

1.2. L -va lued s e t s Following TJ. Hdhle (cf. e.g. [4]) by an L-valued set 
we call a pair (X. E) where X is a set and E is an L-valued equality, i.e. a 
mapping E : X x X —> L such that 

( leq) £ ( x , x ) = l : 

(2eq) E(x,y)=E(y.x) Vx,y e X; 

(3eq) f;(x,j,)*(£?(j,,j/)^£?(3/,z))<£;(x,z) Vx,y,zeX. 

A mapping / : (X.Ex) —> (Y. -Ey) is called extensional if 

£\.- (x,x ' ) < £ y ( / ( x ) . / ( x ' ) ) V x . x ' G A . 

Further, recall that an L-set, or more precisely, an L-subset of a set X is 
just a mapping A : X —> L. In case (A . i?) is an L-valued set. its L-subset A is 
called extensional if 

\J A{x) * £ ( x . x ' ) < A{x') Vx' G X. 
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2. On the category L-SET(L) 

Let L be a fixed GL-monoid. 

D E F I N I T I O N 2.1 . [L-valued L-set] [3]. Let A be a set and A be its L-subset. 
An L-valued equality on A is a mapping E : X x X —> L. such that 

1. E(x,x) = A{x); 

2. E(x, y) < A(x) A A(y) for all x, y G X; 

3. E(x,y) = E{y,x); 

4. E(x,y) * (A(y) -> £?(y,z)) < E{x, z) for all x,y,z G X 

The triple ( X . A, L7) is called an L-valued L-set. 

REMARK 2 .2 . Notice, that if E : X x X —> L is an L-valued equality then 
defining .4 : X —• L by A(x) = E(x.x) for all l e l w e obtain an L-valued 
L-set (X.A). 

D E F I N I T I O N 2.3. [5] B y a mapping / from an L-valued L-set (X.A.EX) into 
an L-valued L-set (Y,B.EY) (in notation / : (X.A.EX) -> {Y.B.EY)) we 
call a mapping / : X —» Y such that A(x) < B(f(x)) and E\(x.x') < 
Ey(f(x),f(x')). 

If / : (X, A, Ex) ( r .B , £ y ) and 5 : (Y,B,EY) — {Z,C.EZ) are map­
pings of the corresponding L-valued L-sets, then obviously their set-theoretic 
composition is a mapping g o } : (X, A, Ex) (Z.C,EZ) of the corresponding 
L-valued L-sets. Besides, the identity mapping idx : X —> X can obviously be 
considered also as the identity mapping id(x,A,E*) '• {X, A, Ex) —> (A', A. Ex). 
From these observation we get 

T H E O R E M 2.4. L-valued L-sets and mappings between them form a category. 
This category will be denoted L-SET(L). 

T H E O R E M 2.5. Given a family £ = {£, ] i G T} of L-valued equalities on an 
L-set (A . A), let E0 : X x A -> L be defined by E0(x, y) = /\{Ej(x. y) | i G T } . 
Then Eo is an L-valued equality on ( A , A ) . 

Proof: The validity of the first three axioms of an L-valued equality on (A . A) 
for EQ is clear. The validity of the fourth axiom follows from the next chain of 
(in)equalities: 

E0{x,y) * (A(y) E0(y,z)) = 

/\(Eiex(x,y)) * [A(y) ^ /\(EieI(y.z))) < 
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< /\(Ei€l(x,y))*(A(y) ^ \f (EieI(y. z)) = 
iei iei 

= f\(EieX{x,y))* /\((A(y) -+EieI{y,z)) < 
iei iei 

< /\(EieI(x,y))*(A(y) - f\(E,eI(y, z))) < 
i€I i£l 

iei 

From the previous theorem we have 

C O R O L L A R Y 2.6. £(X.A) is a complete lattice. Its bootom. element is E* de­
fined by Et(x.y) = 0 if x ^ y and E*(x,x) = A(x) for all x.y € X, and its 
top element is E* defined by E*(x.y) = A(x) A A{y) for all x,y € A". 

Now we can construct initial and final L-valued equalities on L-sets for a 
given family of mappings. Consider any family of mapings 

T {/. : ( . V , . , \ , . L - ) -IY.B)\. 

We start with the case when the family T consists of a single mapping 

f :(X.A.E) (Y.B). 

Let £f be the family of all such L-valued equalities Ej on (Y, B) for which / : 
(X,A,E) —> (Y.B.Ej) is a morphism in L - S E T ( L ) . Then applying Theorem 
2.5 we know that 

f(E) := f\£f •= J\{Ej\Ej e £f} 

is an L-valued equality on (Y.B). Besides it is easy to notice that / : 
( A . A. E) —> (Y, B. EQ) is a morphism in L - S E T ( L ) and that EQ is the weakest 
of all L-valued equalities with this property. 

Coming now to the general case of the family 

F={fi:(Xi;Ai,Ei)^(Y,B)}! 

let fi(Ei) be defined as above and let 

Ey := V ME,) 
>ei 

be the supremum of this family in the lattice £ of all L-valued equalities on 
(Y,B). Then, obviously Ey is exactly the final L-valued equality on (Y.B) for 
the family T. 

We consider now the dual problem, namely the initial L-valued equality for 
a family of mappings. Explicitely, let T := {/, : (X.A) —-> (Yl.Bi.El) \ i € 2 } 
be a family of mappings. Our goal is to find the initial L-valued equality on 
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(X.A) for this family, that is the largest L-valued equality E\ on (X.A) for 
which all / , : (X.A,E.A) —*• (Yt.Bt.Ei) are morphisms in L -SET(L) . 

Again, we start with the case when there is only one mapping in the family 

f:(X,A)-+(Y,B.E). 

Then we define f~1(E) := Ej by the equality: 

EJ(x1,x2) = E(f(xl)J(x2)) V x ! , x 2 £ X. 

It is easy to see that Ef thus defined is an L-valued equality on (V. B) and 
besides it is the largest one for which the mapping / : (X, A, Ej) —» (Y. B. E) 
is a morphism in L -SET(L) . 

Coming now to the general case of a family 

T := {fi : (X.A) ^ (Yi.Bi,Ei) | i € I } , 

we define Ejt = f~l(EA as above. From Theorem 2.5 it follows that 

EA •= A EF, 

is the largest one of the L-valued equalities on (X, A) for which all / , : 
(X.A.EA) —> (Yj.Bi, Ei) are morphisms in L - S E T ( L ) . Thus EA is the initial 
L-valued equality for this family. From here and, taking into account Corollary 
2.6, we obtain the main result of this section: 

T H E O R E M 2.7. Category L-SET(L) is topological over the category L-SET. 

The existence of initial L-valued equalities guarantees that the operation 
of product is well defined in L -SET(L ) while the existence of final equalities 
guarantees that the operation of co-product is well defined in this category. 
The details of definition of these operations are left to the reader. 

3. Category L -TOP(L) 

3.1. Basic definitions 

D E F I N I T I O N 3.1. By an L-valued topology on an L-valued L-set (A', A. E) we 
call a family of L-subsets r = {U, e r ; Vi £ 1} of A , such that L, < A Vi e / 
and 

1. 0 e T; A e T: 

2. if Vz, j € LV£/ , . Uj £ r, then Ut A U3 £ r; 

3. if Vi £ I, WUi £ r then V i e i Ut £ r 
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4. if Vi G I.MU, G T: U, * E(x.x') < U,(x') V x , x ' G X. 

The quadruple ( X , A, E. r) is called an L-valued L-topological space. 

R E M A R K 3.2. The fourth axiom means that every L-subset of an L-set A from 
the family r satisfies the extensionality type condition with respect to the 
L-valued equality E on (X.A). 

D E F I N I T I O N 3.3. By a continuous mapping from an L-valued L-topological 
space (X. A. EA,TA) into an L-valued L-topological space (Y, B, EB,T~B) we 
mean a mapping f : X —*Y such that 

1. A(x) < B(f(x)) Vx G X; 

2. Ex(x,x') < EY(f(x).f(x')) V x . x ' G X; 

3. VVeTB^rl(V)eTA, 

Since composition of continuous mappings is obviously continuous and the iden­
tity mapping / : (X, A, EA, TA) —> (X. A, EA, TA) is continuous, we obtain the 
following 

T H E O R E M 3.4. L-valued L-topological spaces as objects and continuous map­
pings between them as morphisms form a category. This category will be denoted 
L-TOP(L). 

3.2. T h e lattice of L -valued L -topologies. Final and initial structures 
in the categoty L - T O P ( L ) One can easily prove the following 

T H E O R E M 3.5. LetT be a family of L-valued L-topologies on an L-valued L-set 
(X.A, E). Then T is a complete lattice. Its top element is L-valued L-topology 
Ti = L ^ consisting of all extensional L-valued L-subsets of A, and its bottom 
element is the L-valued L-topology TQ, = { A , 0 } . 

Consider a family of L-valued L-topological spaces { ( X , , Aj, E%-, r,)|i G / } , 
an L-valeud L-set (Y,B,EB) and a family of mappings 

$ := : (Xi.AuE^n) ^ (Y.B,EB)}. 

Our aim is to find the final L-valued L-topology for this family. We start with 
the case when the family $ consists of a single mapping 

f :(X,A,EA,rA) ^(Y,B,EB). 

Let L f be the family of all extentional L-subsets of (Y. B, EB), and let 

TB = {VeLE[ I f^WZTA}. 
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Further, let an L-valued L-topology TB := f(rA) be defined by TB as a subbase. 
It is easy to notice that r B is the smallest L-valued L-topology on (Y.B.EB), 
such that the mappig / is a morphism in L - T O P ( L ) and hence it is final for 
this mapping. Consider now to general case of 

$ := {/, : (X^A^EuTi) - (Y,B,EB)}. 

Let for each i / ( t j ) be defined as above, then the subbase of final L-valued 
L-topology TB on (Y, B, EB) will be defined as a join of all L-topologies TB = 
U . j g / / ( T i ) i n the lattice of L-topoloies. Again, this is the smallest L-valued L-
topology on (Y, B, EB). such that all mappings / , are morphism in L - T O P ( L ) . 

We consider now the dual problem, namely the initial L-valued L-topology 
for a family of mappings. Explisily, let 

$:={/: (X.A.EA) -> (1',. B,. E,, t , ) } 

be a family of mappings from an L-valued L-set (X.A,EA) into L-valued L-
topological space ( Y , £?,, E,, Tj ) . Our goal is to find the initial L-valued topo­
logical space for this family. Again we start with the case when there is only 
one maping in the family 

f :(X,A.EA)^(Yt,B1,EL,TL). 

The initial L-valued topology r 4 : = J~1{TB) on (X, A.E A) is defined as 
rL(TB) = {U = f~HV), where V G rB) 

Consider now a family 

$:={/: (X. A,EA) (Y^BuEun)}. 

Let f~1{rBi) be defined as above, then TA will be construct from subbase 

Tx = \Jf-\rBi). 

i€l 

Thus we have established that both final and initial L-valued L-topologies 
for a family of mappings exist in L - T O P ( L ) , and, moreover gave an explicite 
way how they can be constructed. From here it follows that both products and 
co-products and moreover, an explicite way of their construction is presented. 
Besides from here and, taking into account Theorem 3.5, we obtain the following 
fundamental result: 

T H E O R E M 3.6. The category L-TOP(L) is topological over the category L-
SET(L) with respect to the forgetful functor 

5 : L - TOP(L) —> L - SET(L). 

Further, taking into account Theorem 2.7. it follows 

C O R O L L A R Y 3.7. The category L-TOP(L) is topological over the category L-
SET with respect to the forgetful functor 

& : L - TOP(L) - SET 
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Dazas piezlmes par L-vertlgu L-topologisku telpu kategoriju 
Kopsavilkums 

Darba ir deBnets L-vertigas L-topologiskas telpas jedziens, kas visparina L-
topologiskas telpas jedzienu Canga-Gogena nozime daudzvertTgas kopas gadTjumam. 
L-vertigas L-topologiskas telpas un dabiski deBneti so telpu nepartraukti attelojumi 
veido kategoriju L-TOP(L). Ir pieradTts. ka si kategorija ir topologiska virs L-vertlgu 
L-kopu kategorijas. L-SET(L), kuru mes deBnejam iepriekseja darba 
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We consider solutions of the boundary value problem 

x" = f{t,x), x(0) = x ( l ) = 0, / £ C\[0,1] x R,R) 

with respect to their types. The type of a solution £ is defined via local oscillatory-
behavior of neighboring solutions and in the first approximation can be described in 
terms of the respective equation of variations y" = /x(t, £(£)). First we study quasi-
linear equations with a linear part x" + k2x = F(t, x) provided that F is bounded. We 
show that the boundary value problem for quasi-linear equation has a solution £ such 
that the respective equation of variations oscillates like the linear one x ' 4- k2x = 0. 
We rewrite the original equation in the form x" + k2x = k2x + f{t, x) for various k2 

and provide conditions for a priori boundedness of solutions of the modified problem. 
Multiplicity results are established and illustrative examples are analyzed. 

Key words: Types of solutions, multiplicity results, nonlinear boundary value prob­
lems, Schauder principle, a priori bounds, quasi-linear equations 
Mathematics Subject Classification (2000): 34B15 

1. Introduction 

In this paper we consider the boundary value problem 

x" = f(t,x), f € / = [ 0 , l ] , (1) 

i ( 0 ) = 0, x ( l ) = 0, (2) 

or such problem for an equation with a linear part 

x" + k2x = f(t,x). (3) 

Function / is supposed to be continuous together with the partial derivative 
fx in (t,x) £ I x R. Then any extendable to the interval I solution £(t) of 
equations (1) and (3) (and that of the related boundary value problem) can be 
described in terms of the variational equation 

y" = fxMt))v (4) 

mailto:felix@cclu.lv


1 0 8 MATHEMATICS 

or, respectively. 
v" + k2y = Mt.s(t))y- ( 5 ) 

D E F I N I T I O N 1. We will say that a solution £(t) of the B V P ( 1 ) . ( 2 ) (respec­
tively. ( 3 ) . ( 2 ) ) has index i. if a solution y(t) to the Cauchy problem ( 4 ) , 

2/(0) = 0 , j / ( 0 ) = 1 ( 6 ) 

(respectively. ( 5 ) , ( 6 ) ) either has exactly i zeros in the interval ( 0 , 1 ] . 
or it has exactly i zeros in the interval ( 0 , 1 ) and y(l) = 0 . 

Consider the examples. Suppose that K(X) is continuously differentiable 
function such that K ( X ) = 1 for |x| < 1, « ( x ) = 0 for |x| > 2 and 0 < K ( X ) < 1 
for 1 < |xj < 2. The nonlinear boundary value problem (with bounded right 
side) 

x" = - (J^j K ( X ) X , X ( 0 ) = 0 , x ( l ) = 0 ( 7 ) 

has only the trivial solution £(£) = 0 and the index of £ is zero, since the Cauchy 
problem 

y" = - ( f ) % , y(o) = O, 2/'(O) = i 

has the solution y(t) = ^ sin f t, which has no zeros in the interval ( 0 . 1 ] . 
The trivial solution of the quasi-linear problem 

i ' ' + ( t ) 2 x = k ( s ) ( ( t ) 2 z " ( t ) 2 : b ) ' i ( 0 ) = 0 ' x ( 1 ) = 0 ( 8 ) 

has index 2 since the Cauchy problem 

y" = - ( Y J y, y(O) = O, y'(0) = l 

has the solution y(f) = ^ sin (^-t) , which vanishes twice in the interval ( 0 . 1 ) 
and is not zero at t = 1. It follows from the results below that this problem 
has also a solution of index one, induced by the linear part x" + (4f-)~ x of the 
equation. 

REMARK 1 . 1 . The above definition suits for the purposes of this paper. How­
ever, one might think of a solution £(r) of the boundary value problem ( 1 ) , 
( 2 ) such that a respective y(t) has its i-th zero at t = 1. Then either index i. 
or index i + 1 can be assigned to £(£). Let us mention that we use the above 
definition in contexts which do not allow for ambiguities. 

Our intent in this paper is to study quasi-linear boundary value problems 
with respect to solutions of different indices. We show that the linear part 
in ( 3 ) has influence on the index of possible solution. If different linear parts 
can be extracted from some equation of the form ( 1 ) , then the boundary value 
problem (1). ( 2 ) admits multiple solutions. 
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We mention several papers on the relevant subject, namely, [5. 6. 7, 9]. 
It was shown in [5], for example, that under certain conditions the B V P (1) , 
(2) possesses a solution £(£) such that the equation (4) is disconjugate in I. 
Recall that the linear second order equation is called disconjugate in some 
open interval, if the only solution with more than one zero in this interval, is 
the trivial one. In the terminology of Definition 1 a solution £ has index zero. 

2. Quasilinear boundary value problems 

Consider the problem 

x " + k2x = f(t.x), (9) 

i ( 0 ) = x ( l ) = 0, (10) 

where the following conditions are satisfied: 

( A l ) / eC{Ix R,R) and fx G C ( I x R,R); 
( A 2 ) sup {| / ( i , x )| : 0 < t < 1, - o o < x < + 0 0 } = M < +oc; 
( A 3 ) the coefficient k belongs to one of the intervals 

( 0 , T T ) , (7T ,27r ) , . . . , (27r , ( i + l ) 7 r ) , . . . (11) 

Since k ^ iri, the problem (9) , (10) is non-resonant, that is, the linear 
homogeneous B V P 

x" + k2x = 0, (12) 

(10) has only the trivial solution and the respective Green function Gk(t.s) 
exists. 

L E M M A 2 .1 . The Green function of the problem (12), (10) is given by 

sin k(s — 1) • sin kt 

Gk{t,s) = { 

and satisfies the estimate 

k sin k 

sin k(t — 1) • sin ks 
k sin k 

. 0 < t < s < 1. 
(13) 

0 < s < t < 1 

\Gk(t.s)\ < r k 
1 

k • I sin fcl 
(14) 

L E M M A 2 .2 . A set S of all solutions of the BVP (9), (10) is non-empty and 
compact in C[0,1] ) . 

Proof. Rewrite the problem (9). (10) in the integral form 

1 

:(t) = J Gk(t,s)f(s,x(s))ds, 



110 MATHEMATICS 

where Gk(t,s) is the Green function given by (13). Consider the mapping 
T : C(I) — C(I) given by 

(Tx) ( t ) = / Gk(t,s)f(s,x(s))ds. (15) 

In order to show that T is completely continuous consider the ball = {x G 
C{I) : ||x|| < A ' } . One has, by virtue of the condition ( A 2 ) and (14), that 

\\(Tx)(t)\\CU) < 
M 

fc] sin k\ 

for any x G C(I). Choose N so that 

Tk • M < N. 

T F C • M (16) 

(17) 

Then T{BN) C BN. 
Let us show that the Arzela - Ascoli criterium is verified and T(BK) is 

therefore a compact set. Uniform boundedness of the set T(B^) follows from 
(16.) To prove equicontinuity take £ > 0. Let us find 5 > 0 such that 

\{Tx)(t2) - {Tx)(tx)\ < £, 

if |t2 - fil < o\ for any functions {Tx)(t) G T(BP). One has that 

l 

\(Tx)(t2) - (Tx)(tl)\ <' (Gk(t2,s)-Gk(t1.s))f(s,x(s))d3 

< M • (Gk(t2,s)-Gk(t1,s))da 

It follows from (13) that 

i 

(Gk(t2.s) -Gk(t1;s))ds 
4 . k . , t 2 - t i . /,ti+t2 k 

< 
k • \t2 - i i | 

fc2 • | sin k\ 

whence 

, • sin — • sin fc 
k2 sin fc 2 2 

• 1*2 " i l l 

sin fc 

fc • I SIN fc! 

]{Tx)(t2) - (Tx){ti)\ < 
2M- |r2 - * i | 

] f c • SIN fc| 

Thus the appropriate choice of 6 for a given e > 0 is 

e • | fc • sin fc | 
6 = 2M • 

(18) 

; i9) 
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It follows from the arguments above that there exists a fixed point X = X(t) 
of (15), which solves the boundary value problem (9). (10). Notice that a fixed 
point X satisfies the estimate 

\\*k(t)\\C,. < TKM. 

L E M M A 2.3. A set S is compact also in Cl(I). 

Proof. Consider the integral equation 

At) - J dGk(t,s) 
dt. 

f(s.x(s)) ds 

and verify that the Arzela - Ascoli criterium is fulfilled for the set S' = {x'(t) : 
X e S}. Consider the ball B*N = {X(t) e C1^)} : ]jx(£) ||c> (/) < N}. W e have 
from (13) that 

dGk{t,s) 
dt 

sin k(s — 1) • cos kt 
sin k 

cos k(t — 1) • sin ks 
sin k 

0 < t < s < 1. 

. 0 < s < t < 1. 

(20) 

and 

max|x'(f)| < 
[0.1] 

< 
, 1 / I r 

sin A; 

M 

sin k\ 

{ max / cos k(t 
V [o.i] \J 

1) • sin ks ds + max 
[0.1] 

f 

I cos kt • sin k(s — 1) as 

cos kt + 11 
+ 

-1 + cos k(t - 1) 
< 

4 • M 

k • I sin k\ 

Then 

max x ' 0 < . 
[o.i] A; • | smk\ 

(21) 

It follows from (16) and (21) that 

\\(TX){t)\\CIM = m a x | ( T x ) ( r ) | + max|a;'(0] < 5 • FK • M. 

Thus T(B*N) C S ^ , if AT = 5 • FK • M. In order to show the compactness of the 
set T(BN) in Cl(I) let us prove the equicontinuity of the set of derivatives of 
functions y(t) = (TX)(t). 
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In order to estimate the difference \y'{to) — y'(*i)|. one has 

\y'(t2)-y'(h)\< 

M 
sin fc1 

J cosk(t2 — 1) • sill ks ds + J cos kto • sin k(s — 1) d s -

J cos k(t i — 1) - sinksds — J coskti • s'm k(s — 1) ds (22) 

AM k 
k sin k\ sin - sin k sin k\ 2 

< 
2M 
sin A 

fc(t2 -h) 
cos 

fr(f2 

< 

1*2 - ri 

Set 

Si 
sin A-

2 M 
(23) 

and choose the minimal of 5 and <5i (defined by (19) and (23) respectively^ 
that is 

. .£ • tfcsinfcl c • | sin , 
6 = mini — : — — \. 

2 M 

If |*2 — *i] < 6*, then both inequalities 

\(Tx)(t2) - (Tx ) ( t i )| < c, 

2M 

|j/'(f 2) - y '(*i)| < e 

hold for any function y G T(B^r) and this proves that T(BN) G C 1 ^ ) is 
equicontinuous. • 

L E M M A 2.4. >U/ solutions of (9) are extendable to the interval [0.1] anrf are 
uniquely defined by the initial data. 

Proof. The first assertion follows from ( A 2 ) . Notice that since the continuous 
partial derivative fx exists, equation (9) satisfies the Lipschitz condition in any 
compact subdomain of [0,1] x R. Then solutions of (9) are uniquely defined by 
the initial data and continuously depend on the initial data. • 

L E M M A 2.5. There are elements x*(t.) and x*(t ) of S, which possess the pro­
perties: 

x*'(0) = max{a; ' (0) : x G 5 } 
x . ' ( 0 ) = min {x ' (0 ) : x G S}. 

Proof. If S consists of one element x then x* = x » = x. If 5 contains at 
most finite number of elements, then the assertion is obvious. Suppose that 
there are infinitely many elements in S. Since S is compact in Cl(I), the set 
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Si = { x ' ( 0 ) : x G S } is bounded. Then there exists sup S i . Consider a solution 
x( f ) of ( 9 ) . which is defined by the initial data 

x ( 0 ) = 0 , x ' ( 0 ) = : supS i . 

By definition of sup there exists a sequence {xn} of elements of S sucli that 
x N ' ( 0 ) -> x ' ( 0 ) . One can prove, using the compactness of S. that x G S. Thus 
x* = x. 

The proof for x* is analogous. • 

Denote by x ( f ; a ) a solution of the Cauchy problem (1) (or (3)) . 

x ( 0 ) = 0 . X ' ( 0 ) = Q . ( 2 4 ) 

Consider equation ( 9 ) with the initial conditions ( 2 4 ) . 

L E M M A 2.6. Suppose that k in (9) satisfies 

in < k < (i + 1)TT 

for some i = 0 , 1 . . . . . Let £(t) be any element of S. 
Then for a —• ± o c the difference u(t: a) = x(t: a) — has exactly i zeros 

in the interval ( 0 , 1 ) and u(l:a) ^ 0 . 

Proof. Notice that both x(t:a) and £(f) satisfy equation ( 9 ) . Then u(t: a) is a 
solution of the initial value problem 

u"+k2U = f(t.x(t))-f(t.m): 

u(0) = 0 , u'{0) = a• - C'(O). 

Introduce a new variable v by v : = r~r- Then v(t: a) satisfies 
a - f ' ( 0 ) 

v „ ^ k-2v _ f(t,x(t))-f(tqt)) 

r ( 0 ) = 0 , v'{0) = l. 

In view of ( A 2 ) the right side in ( 2 5 ) tends to zero if a —> ± o c . Then by 
continuous dependence on the right side v(t: a) tends to a solution of the ho­
mogeneous initial value problem z" + k2z = 0 . z(0) = 0 , z'(0) = 1. Since v(t: a) 
and u(t: a) have the same zeros, the assertion of lemma follows. • 

L E M M A 2.7. Suppose the conditions ( A I ) and ( A 2 ) are satisfied. Let £(f) be 
any element of S. 

Zeros tl(a) of the function u(t: a) = x(t: a ) — £(t) are continuous functions 
of a in intervals of existence. If for some QO £ ' ( 0 ) U ( L Q 0 ) = 0 , then the 
respective X ( L Q O ) G S. 

Proof. T h e first assertion follows from continuous dependence of solutions of 
( 9 ) on initial data and from the fact that u(t\a) cannot have double zeros. 
Indeed, if this were the case, then x(t;a) = £(t) and x ' ( f ; n ) = £'(£) at some 
point t e l . Then x = £, by the uniqueness of solutions of the Cauchy problem 
for ( 9 ) . 

Suppose that u(t:a0) = 0 for some Q 0 ^ ^ ' ( 0 ) . Then X ( 1 : Q 0 ) = 5(1) = 0 
and hence x ( f : a 0 ) is a solution of the B V P ( 9 ) . ( 1 0 ) . • 
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3. Main results 

T H E O R E M 3.1. Suppose that the conditions ( A l ) . ( A 2 ) and ( A 3 ) are fulfilled. 
Suppose that k in (9) satisfies 

iir < k < (i + l)n 

for some i = 0,1 
Then the both solutions x*(t) and .T»(r). defined in Lemma 2.5. have index 

i. 

Proof. Let £ := x* £ S. Consider the respective variational equation (5) to­
gether with the initial conditions (6) . Let y(t) stand for a solution of (5) . (0). 
If the index of £ is not equal to i. then 

either: (1) y(t) has less than i zeros in (0,1] ; 
or (2) y(t) has more than i + 1 zeros in (0 ,1 ] . 
Consider the difference u(t:a). where a > £ ' (0 ) . In case (1) u(t:a) has at 

most i — 1 zeros in ( 0 .1 ) , if a is close to £ ' (0 ) . On the other hand, if a —> + o c , 
then u(t; a) has exactly i zeros in (0 .1 ) . An extra zero appears, if a varies from 
£'(0) to + o c . for some Qo > £ ' (0) . Then, by Lemma 2.7, x(t; OLQ) is a solution of 
the B V P (9) , (10). Since x'(0:ao) = a0 > £ ' (0 ) . this contradicts the definition 
o f£ ( r ) . 

In case (2) u(t: a) has at least i + 1 zeros in (0 ,1 ) . If a —• + o c . then u(t: a) 
has exactly i zeros in (0 ,1 ) . An extra zero appears, if a varies from + o c to 
£ ' (0) . for some Qo > £ ' (0 ) . Then the contradiction is obtained as above. 

Proof for xt is similar. • 

C O R O L L A R Y 3.1. / / a solution x of the problem (9). (10), where in < k < 
(i + is unique, then its index is i. If there are multiple solutions of the 
problem (9). (10), then at least two of them have indices i. 

T H E O R E M 3.2. Suppose that f in (1) satisfies the condition ( A l ) and there 
exist kj such that 

ijiv < kj < (ij + l)7r, j = 1,... ,m, 

the inequalities 
Ykj • Mkj < Nkj 

hold, where 

Y ^ = k ] l ^ n k j l - ^ n,ax{A-:,- • fU.x) : 0 < t < 1. xj < Nkj}. 

Then the problem (1), (2) has at least rn solutions £ i £ m such that the 
index of £j is ij. 

Proof. To be definite, consider the case of j = 1.2: 0 < ki < ir, ir < k2 < 2TC. 
Consider the quasi-linear equations 

x" + k\x = p\{x)[k\x + fit, x)}. (26) 
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x" + k\x = V " 2 (x ) [ f c jx + f(t.x)\, (27) 

where $j(x) are C°°(I) functions such that ^j(x) = 1 for |x| < Nkj. ^j(x) = 0 
for |x| > Nkj +Sj and 0 < (?jix) < 1 f ° r remaining x (for construction of ^ see 
Example 1 in the next section). The choice of £j will be discussed later. By 
Theorem 3.1 the problems (26). (10) and (27). (10) have solutions £i and £•> 
respectively. The index of £i is zero and the index of £2 is one. 

Let us show that £1 solves the original problem (1) . (2). Denote the right 
side of (26) by Fi and set 

M i = m a x { | F i ( t x ) | : 0 < t< 1. - o c < x < + o c } . 

Evidently. Mi —» Mkl as sx —+ 0 and the inequality TKL • Mi < Nkl holds for 
some £1 > 0. A solution £1 satisfies the integral equation 

1 

£(i) = y Gkl(t,s)F1(s.£(s))ds 

and therefore the estimate ||£||c(/) < Tfe, • A/j < A'kl holds. Since equation 
(26) reduces to (1) on the set := {{t,x) : 0 < t < 1. |x| < A " f c l } , £1 solves 
also the problem (1) , (2) . Its index with respect to equation (1) is zero, since 
the equations of variations with respect to £1 for the nonlinear equations (26) 
and (1) on the set Q.x are identical. 

A solution £2 can be treated similarly. So both solutions £1 and £2 solve the 
problem (1) . (2) and their indices are respectively zero and one. 

We complete the proof by showing that £1 and £2 are different solutions of 
(1). (2) . Consider the respective equations of variations 

BF 
y" + k(y = ^(t.£l(t))y. 

which reduce to 

r)F 
y" + k\y = ^ { t , U m -

y" = ^(t.£i(t))y, (28) 

2 / " = (29) 

on the sets fii and Q2. Denote by ti and T\ respectively the first zeros of 
solutions yi and y2 in the interval (0 .1 ] , where yx and y2 are solutions of the 
Cauchy problems (28), (6) and (29), (6) respectively. It may happen that tx = 1 
and Ti = 1 also. Suppose that £1 and £2 are identical. Then £J(0) = £ 2 ( 0 ) = : QO-
Consider solutions x(t:a) of the initial value problem (1) . (24). Suppose that 
Q > QO- We will show that X ( 1 : Q ) > 0 for a close enough to QO- Indeed, if the 
difference a — QO > 0 is small enough, functions x(t: a) solve the equation (26) 
also. By Lemma 2.6. solutions x(t: a ) of (26), (24) for large values of a are 
such that the difference x(t: a) - £i(£) does not vanish in the interval (0 ,1 ] . If 
X ( 1 ; Q ) < 0 for some a > QQ. then by the continuous dependence of solutions 
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on initial data there exists Q i > cio such that x ( l ; Q i ) = 0 and hence x(t;ai) 
is a solution of the boundary value problem (26), (2) , which contradicts the 
choice of £i( f ) as a solution of the same problem with a maximal value of x ' (0 ) . 

On the other hand, one can show similarly, by analyzing the equation (26) in 
some vicinity of £ o ( 0 , that solutions x(t: a) of the initial value problem (1) , (24) 
for a > ao and close to ao satisfy the relation x(l:a) > 0. The contradiction 
obtained proves that £i and £2 are different solutions of the problem (1). (2) . 

• 

4. Examples and applications 

E X A M P L E 1. Consider the problem 

x" = - ^ ( X ) T T 2 X . x (0 ) = x ( l ) = 0, (30) 

where ^ (x ) is a C°° function such that p is equal t o 1 for |x| < 1. p is zero for 
ix| > 2 and 0 < ^ ( x ) < 1 for 1 < ]x| < 2. 

For instance. 

' i- V\ < i-

0, |x| > 2. 

, e x p ^ f ^ - j - 2 < x < - 1 . 

The problem (30) has solutions of the form .4sin7rt, where \ A\ < 1. Consider 
solutions x(t; a) of the initial value problem 

x" = - y ( x ) 7 r 2 x , x (0 ) = 0. x ' (0 ) = a. 

Let t-i(a) be the first zero of x(t; a ) in the interval (0, + o c ) . Obviously ti(a) = 1 
for |Q| < 1. For jx| > 1 the function / ( x ) := ^ ( X ) T T 2 X grows slower than the 
linear one l(x) : = 7 r 2 x . Thus t-i(a) > 1 for \a\ > 1. Since / ( x ) is equal to zero 
for |x| > 2, solutions x(t:a) for \a\ large enough d o not vanish in the interval 
( O . + o c ) . 

Evidently x*{t) = sinirt and x*( f ) = — s i n 7 r t . Since 

f'(x) = 7 T 2 ^ ( x ) + 7 T 2 X Y 3 / ( x ) = 7T2 for [x| < 1, 

the equation of variations for x*(t) is y" + fx(x*(t))y = 0 or simply 

y"+*2y = 0. 

Therefore index 0 may be assigned to both solutions x*( f ) and x*(i ) of the 
problem (30). 
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E X A M P L E 2. Consider the boundary value problem 

x" = -a2 • |x ; p s ignx, x (0) = x ( l ) = 0. (31) 

where a > 0 , p > 0, 1. 
The equivalent problem is 

x" + k2x = k2x — a2 • |x| psignx. x(0) = x ( l ) = 0, (32) 

where k satisfies 

in < k < (i + 1)TT 

for some i (i = 0 , 1 . . . . ) . Define 

Fk(x) := k2x — a2 • |x| psignx. 

This function is odd. Let us consider it for nonnegative values of x. Since 

F'k{x) = k2 - a2 -p-xp-\ 

a positive point of extremum (maximum point for p > 1 and minimum point 
for p < 1) xo is 

Set 
1-2 N -

Mk = \Fk(x0)\ = { — y - I P - I J - Q ^ T . 

and choose Nk so that 

V(Lx) : t G [0,1], |x| < Nk => |F t (x)| < M f c . 

A constant Nk can be computed solving the equation 

F f c (x ) = - F f c ( x o ) , 

or. equivalently, 

fc2x - a 2 x p = ^ — J " 1 • (1 -p) - Q 1 ^ 

with respect to x. Computation gives 

where a constant ,8 is to be found from the equation 

0P = j3+(p-l)-Ptt. (33) 

Equation (33) has a root j3 > 1 for any positive p. 
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In order to apply Theorem 3.2 one needs to verify the inequality 

rk-Mk < Nk. 

It can be written for the case under consideration as 

k \ THTT /k-\—i 

k • j sin A: I V p 

7T 
To simplify calculations, take k = — (2n — 1). where n = 1. 2, then | sin A: = 
l.| The inequality above after simplification can be written as 

k<)3--^—-p^. (34) 
\P~ l\ 

P i 
Since 3 > 1 and lim - -p'—1 = +oc. the right side in (34) tends to oc 

P - i \p- 1| 
as p —> 1. The inequality (34) is satisfied therefore for arbitrarily large values 
of k= - ( 2 n - l ) . 

2 
Computations show that for p £ [0.5,1) U (1.2] there exist at least two 

values of A; 
I, - n u _ 3 ? r 

which satisfy (34). 
For instance, consider the problem (31) for p = 2. The function Fk(x) := 

k2x — a2x2 has its positive maximum at the point XQ = TJ^T- vanishes at x\ = ^ 
and a solution to the equation Fk(xo) = —Fk(x) is Nk = l+

2^2~ • . Define 
Mk = Fk(xo) = j • Consider the quasi-linear equation 

x" + k2x = fk{x), 

where fk = Fk for |x| < Nk and fk is smooth. Evidently, fk tan be constructed 
so, that the estimate 

sup| / f c ( i )| < Mk +£ 
R 

is valid for an arbitrarily small positive e. The inequality Yk • (Mk + e) < Nk 

writes as 
1 A J c 4 \ 1 + Y/2 k2 

k \la2 + £) < 2 a2' 

It is satisfied for fco = § and fci = 4f, if e is small, since 

4 

and 

1 '-3 ~ 0.969 < 1 +S^k'o « 2.978 

-fc? « 26.162 < 1 + ^ki « 26.806. 
4 1 2 1 
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Therefore at least two solutions £o and £ t of the boundary value problem are 
expected, the first one of index zero, and the second one of index one. 

The trivial solution £ 0 = 0 has index zero. A solution E,i{t), which has 
no zeros in the interval ( 0 .1 ) , attains its maximum at the point t = ^ and 

^ ( 1 ) = 6 -^1, where J 2 : = - 0 ^ « 1.402. One has that 

c 6J| 11.794 1 / 3 T T \ 3 26.162 
max£i ( t ) = — f « 5— < Ta, • A/a . = — — « — . 
[0.1] a 2 Q 2 2 4 a 2 V 2 / O: 

P R O P O S I T I O N 4.1. For any p £ [0.5,2], 1 i/iere exist at least two values 
7T 

of k of the form, k = 7^(2^ — 1), n = 1 , 2 , . . . , which satisfy the inequality 

(34)-
Therefore there exist at least two solutions (of different types) of the problem 

(31). which satisfy the estimates \xk{t)\ < Nk-
P R O P O S I T I O N 4.2. For any positive integer m there exists z > 0 sttch that if 
p / 1 satisfies the inequalities 

1-£<P<1+S, 

then k = %(2n — 1), n = 1 . 2 , . . . ,m, satisfy the inequality (34). Therefore 
there exist at least m. solutions (of different types) of the problem (31). 

Represent p in the form p — 1 H—. if p > 1. or in the form p = 1 
s s + 1 

if 0 < p < 1 (in any case s > 0 ) . 
Calculation shows that the number of appropriate values of A* for the prob­

lem (32) changes by unity if s changes by unit} -. 
Indeed, if 

3 1 2 
1) s € [1; 2 ) , then p G (—; 2] or p e [-; —) and the appropriate values of k (those 

which satisfy the inequality (34)) are 

ko = ^ , fci = — ; 

3 2 3 
2) s £ [2; 3 ) , then p e ( - ; — ] or p £ [-; —) and the appropriate values of k are 

3 2 3 4 
fcn = ~ • k\ = —. ko = —: u 2

 1 2 2 

5 4 3 4 
3) s £ [3; 4 ) . then p £ ( - : —] or p £ [7: - ) and the appropriate values of k are 

4 3 4 5 

Ao - 7T, A,i - — , fc2 - — • K 3 - — 

and so on. 
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P R O P O S I T I O N 4.3. If s e [n: n + 1) . n = 1,2 , then there exist exactly n + 1 
appropriate values of k of the form k = § (2 i + 1) , i = 0 . 1 , . . . , n. 

Therefore the problem (31) has n + 1 solutions £fc;(0 with indices i = 
0,1.... .n, and these solutions satisfy the estimates \xk, I < A'/t,• 
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Saudera princips un vairaku nelinearo robezproblemu atrisinajumu 
eksistence 
Kopsavilkums 

TieJc petita robezproblema x" = f(t.x), x(0) = x(l) = 0. Atrisinajuma tips 
tiek definets lineara variaciju dilerencialvienadojuma terminos. Ir apskatlti ekvi-
valentie diferencialvienadojumi ar izdalltu linearu daju. PieradTts, ja modiBcetai 
robezproblemai ir speka atrisinajumu apriorie novertejumi, tad sakotnejai problemai 
eksiste noteikta (atkariba no k izveles) tipa atrisinajums. 



ACTA UNTVERSITATIS LATVIENSIS. 2 0 0 5 . Vol. 6 8 8 . Mathematics, pp. 1 2 1 - 1 2 8 1 2 1 

Complete infinitely distributive lattices 
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Every lattice we consider is supposed to be a lattice of subsets of a set with the natural 
partial order (notice that every lattice is isomorphic to at least one lattice of that 
kind). It is well-known that every topology forms a complete infinitely distributive 
(cid) lattice, while the converse may not hold. We prove that every cid lattice is 
an i-topology (or a topology modulo an ideal), i.e., that every cid lattice is closed 
under arbitrary i-unions and finite ^-intersections. Moreover, we provide an example 
of a complete completely distributive lattice (which is. then, a cid lattice) that is not 
closed under arbitrary i-intersections. 
Key words: complete lattice, generalization, ideal, infinitely distributive lattice, 
pseudocomplemented lattice, topological space 
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Preliminaries 

Throughout this paper we use the common notations V and A (or V and /\ in 
case of a family of elements) for. respectively, the supremum and infimum in 
a complete lattice. 

A collection T of subsets of a set X is called an ideal if it is closed under finite 
unions, contains all subsets of all its elements and does not contain X itself. 
An ideal I naturally generates a preorder on the family of all subsets of X. 
Indeed, defined as follows, the relation ~i is reflexive and transitive: U ;< V 
iff U \ V e J , for every U, V C X. 

We refer a reader to [1] for the further standard definitions of Lattice Theory. 

Z-emptiness. 
Equivalent forms of the infinite distributive law 
Let L be a complete lattice, and < be its partial order. With the respect to 
some fixed element z in L, we say that an element a of L is z-empty if a < z. 
and z-nonempty in any other case. If the converse is not stated, we always 
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assume that some z in L is fixed. The following easy lemma is an immediate 
corollary from the completeness of the lattice L. 

L E M M A 1. The suprernum of a family of z-empty elements of L is z-empty. 

The following proposition provides the equivalent form of the infinite dis­
tributive law for complete lattices to which we are going to refer in the proof 
of Lemma 5. 

P R O P O S I T I O N 2. Let L be a complete lattice, and < be its partial order. The 
following are equivalent: 

(i) The lattice L is infinitely distributive, that is. for every b in L 
and every subfamily ACL, 

b a\J A = \J {b A a \ a e A} ; 

(ii) For every b and z from L and every subfamily ACL, if b is 
z-nonempty and b <\J A then there exists a* £ A such that bAa* 
is z-nonempty. 

Proof. To show that (i) implies (ii) , apply Lemma 1. Let us prove the converse 
implication. Assume (ii); fix b in L and a subfamily A of L. It holds that b A 
V A < V A. Clearly, (b A V A ) A a is equal to b A a for every a £ A. Since 
for every a. £ A it holds that bAa < \J { b A a \ a £ A } , by (ii) we conclude 
that b A V A < V {b A a j a £ A}. The converse inequality holds in every 
complete lattice. The lemma is proved. • 

We are going to call a complete lattice infinitely trivially distributive if it 
satisfies the condition (ii) of the previous proposition for z = 0 . Let us prove 
some equivalent forms of trivial distributivity. 

P R O P O S I T I O N 3. Let L be a complete lattice. The following are equivalent: 

(i) The lattice L is infinitely trivially distributive; 

(ii) For every b in L and every subfamily ACL. if b A a = 0 holds 
for all a in A then b A \J A = 0; 

(iii) The lattice L is pseudocomplemented. 

Proof. The proof of that (i) and (ii) are equivalent is the trivial case of the proof 
of the previous proposition. Let us prove the other implications. Let L 
be pseudocomplemented. Consider an element b of L and a subset ACL 
with b A a = 0 for all a in A. By the definition, a < b* holds for every a in A. 
Therefore. \J A < b*. and hence bA\J A = 0. Conversely, let L be infinitely triv­
ially distributive. Consider an element a in L. Then a* = \J {b £ L | 6 A a = 0 } 
is the pseudocomplement of a. Thus, we proved the equivalence of (ii) and (iii). 
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Main theorem 

In what follows, we assume that a set A" and a complete infinitely distributive 
lattice (£ , C ) of its subsets, that contains the empty set and the whole A , are 
fixed. Unless specified, every subset or set will be supposed to be a subset 
of A . We use the notation £ for the lattice instead of the notation L, which we 
used above, and the upper case letters for the elements of the lattice instead of 
the lower case letters on purpose to emphasize that all the objects we consider 
now are sets. 

A set A is going to be said to be sup- or inf-generated by the family II of 
elements of £ if, respectively, A = {\J U) \ (\JU). or A = (C]U) \ {f\U) for 
finite II. The family of all subsets of the set A that might be represented as 
such differences will be denoted £ . All the following results might not hold if 
we include in £ the sets generated by the infinite infimums (see Example 9). 
We are going to make use of the ideal I generated by the family £ and ex­
ploit the preorder ^ generated by this ideal. We will prove that this preorder 
happens to be a partial order on £ . 

L E M M A 4. Let U = { U\, E / 2 , . . . , Uk } be a family of elements from £ and V 
be a Z-nonempty element from £ such that it is a subset ofU\. Then there 
exists a Z-nonempty W in £ that satisfies W C V and one of the following 
conditions: 

(i) W C /\ It; 
(ii) there is Uj_ in U such that W A Uj, is Z-empty. 

Proof. Let us define a sequence V = { V\. V 2 , • • • -Yk } as follows: 

\\ = V and VT = V,.L A U2 for i G { 1 . 2 , . . . , k }. 

By the terms of the considered lattice, V is a decreasing chain and at least one 
its element is Z-nonempty, since V'i = V. Put W = VIM. where Vlw is the last 
Z-nonempty element of the chain. Clearly, it holds that W C V. There are 
two possibilities for Z» : either ?'* < k and then W A is Z-empty, or i* = k 
and then W C /\tt. The lemma is proved. • 

L E M M A 5. Let Y E £ be Z-nonempty and satisfy Y \ Z C \JA for some 
subfamily A = {Ai, A2, • •., A„ } of E. Then there exist Z-nonempty W in £ 
and A,-, lying in A that satisfy W CY and W n .4,-, = 0 . 

Proof. For every Ai lying in .A, we are going to denote by 11, the corresponding 
family of elements from £ by that A , is sup- or inf-generated. First, we define 
the common family i l l as follows: 

Uj = { Z } U { U | U € U,-for some ? G { 1 , 2 n}}. 

It holds that Y C \JHi. By Proposit ion2, we conclude that Vx = Y AU is 
Z-nonempty for some U G Hi. Clearly, it cannot be V\ C Z. Thus, without 
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loss of generality, we assume that \'\ C U £ IXi. There are two possibilities 
for A\\ either A\ is sup-generated and then \\ n .4! = 0 . we put W = V\ 
and the proof is complete, or A\ is inf-generated and then, applying Lemma 4 
for Hi and Vu we obtain the set Wx <ZVX. If Wx C then W\ n Ax = 0 : 
we put W = W\ and the proof is complete. In the other case, we possess 
the set U\ from 111 such that \\\ A Ui is Z-empty. We repeat the whole process 
from the beginning. Define the common family U2 as follows: 

U 2 = { Z } U { Ui } U { U I U £ Ui for some i e { 2 , 3 , . . . , n } } , 

It holds that W\ C \] il2. Hence. I-2 = W"i A U is Z -nonempty for some U £ 
Uo. We observe that neither V2 C Z , since V2 is Z-nonempty, nor V2 C L i , 
since V 2 Q and Wi AL\ is Z-empty, hold. Let us assume that V2 C [7 6 lU-
Again, there are two possibilities for ^ 9 : either .42 is sup-generated and then 
W = V2 satisfies the conditions of the theorem, or A2 is inf-generated and 
we apply Lemma4 for IX2 and V2 and obtain the set W2 C V2. If it holds 
that W2 C F\U2 then W = W2 is the one we need. In the other case, we 
possess the set U2 from l l 2 such that W2 A L2 is Z-empty. We continue in 
the same way as above, defining the common family H3. 

Through the process, we obtain the decreasing chain of the Z-nonempty 
sets Y D V~i 3 Wi 5 V2 D .... If the process stops at some W = Vt or W = Wi, 
where i £ { 1. 2 , . . . , n — 1 } , it means that the proof is complete. Let us consider 
the other case. That is, we assume that we possess the chain Y 2 Wi 2 W2 D 

• • • D Wn-i. Then Wt AUt is Z-empty for every i e { l , 2 , . . . , n - l } . As above, 
we define the common family ! ! „ : 

= { Z } U { b\ } U { C72 } U • • • U { Un-i } U Un. 

It holds that W n _ i C \F Hence, Vn = A U is Z-nonempty for 
some U £ Un- The only possibility for U is to be an element of the fam­
ily Un. If An is sup-generated then we put W = Vn and stop the proof. 
In the other case, applying Lemma 4 for U „ and V„. we obtain the set Wn C Vn. 
If Wn C [\Un then we take W = Wn and the proof is complete. The other case 
is impossible. Indeed, if we assume that there exists Un in Un such that Wn AUn 

is Z-empty then \Yn C where 

iL„+1 = { z } u {r/i} u { u 2 } u • • • u { } u { u n } . 

Hence, by Proposition 2 there exists U in iln+i such that W„AU is Z-nonemptj". 
But such U does not exist. T h e proof is complete. • 

Recall that by < we denote the preorder on £ generated by the ideal J . We 
are going to show now that < is equivalent to the partial order C and, hence, 
is a partial order itself. 

P R O P O S I T I O N 6. For every Y, Z in £ , it holds that Y ^ Z iffY C Z. 
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Proof. Fix two elements Y, Z in £ . If Y C Z then Y" \ Z = 0 e 2 and Y <Z. 
Let us consider the other case when Y •< Z , i.e., when Y \ Z e 2 . Assume 
that Y \ Z ^ Qi. Then there exists a subfamily A = {AX.A2 An} C £ 
such that V \ Z C [J^l. Then by Lemma 5 there exists a chain of Z-nonempty 
elements of the lattice Y D Wx D W2 2 • • • 3 Wn satisfying W, n A, = 
0 for every i e { 1. 2 , . . . . n } . Clearly, Wn n ( I J - ^ ) = 0 - Since W „ C Y 
and V \ Z C (J^l, we conclude that Wn C Z . that is. W„ is Z-empty. But 
a set cannot be both Z-nonempty and Z-empty! Therefore, we conclude that 
our assumption Y \ Z / 0 is wrong and, hence. Y < Z implies Y \ Z = 0 . 
that is, y C Z . The proof is complete. 

• 

T H E O R E M 7. For every complete pseudocomplemented lattice ( £ . C) of subsets 
of a set X, that contains the empty set and the whole X, there exists an ideal T 
on X that possesses the following properties: 

(1) For allli C £ , there exists A e l such that 

(Ijlt) U . 4 e £ ; 

(2) For all {V1,V2...., Vn } C £ , there exists B e l such that 

{ V I n v2 n • • • n vn) \ B e £; 

(3) l n £ = { 0 } . 

If the lattice ( £ , C) is infinitely distributive then, in addition, it holds that 

(4) The relation ^ generated by F is a partial order on £; 

(5) The lattices ( £ , C) and (£. •<) are isomorphic. 

Proof. We generate an ideal J by the family of all sup- and inf-generated 
subsets of X. Then, clearly. (1) and (2) are satisfied. To prove (3), we need to 
apply Proposition 6 for Y, Z e £ where Z = 0 . Indeed, if there lies Y e £ n 1 
then it holds that Y < 0. By Proposit ion6, it follows then that Y = 0 . 
The result of Proposition 6 for Z — 0 follows from Lemma5 for Z = 0 . but to 
prove Lemma 5 for Z = 0 we only need the lattice £ to be trivially distributive. 
In assumption that the lattice £ is infinitely distributive, the statements (4) 
and (5) easily follow from Proposition 6. • 

R E M A R K 1. The assumption that the lattice £ contains the empty set and 
the whole X is not a strong restriction. Indeed, let us consider a complete 
lattice ( £ ' , C) that consists of sets. Since £ ' is a complete lattice, there exist Ao 
and Ai in £ ' such that A0 C A C Ax holds for every A € £ ' . Then we 
put £ = { A\ AQ I A e £ ' } , that is, we just cut out the common part from 
each set in £ ' . The new family £ together with the partial order of inclusion 
is a complete lattice of subsets of a set A' = A\ \ AQ and it contains the empty 
set and the whole A . Clearly, the lattices ( £ ' . C) and ( £ . C) are isomorphic. 



126 MATHEMATICS 

R E M A R K 2. For distributive lattices we can prove the corresponding theorem 
similar to the previous one. That is, the results of the previous theorem hold 
if we substitute a complete lattice for a lattice: infinite distributivity for finite 
distributivity-; a pseudocomplemented lattice, first, for a infinitely trivially dis­
tributive (see Propos i t ions) , and then for its finite analogue: arbitrary unions 
for finite unions. 

Since the theorem is proved, we call every lattice £ that satisfies the condi­
tions of the theorem an i-topology on X (or a topology modulo an ideal) and say-
that it is closed under arbitrary i-unions (supremums) and finite i-intersections 
(infimums). 

We do not provide any examples since the objects we consider are com­
plete infinitely distributive lattices that are widely presented in many sources. 
Though, we believe that the following example is worth to be mentioned here. 
Commonly, the lattice we are going to consider is checked to be a complete 
lattice and is not checked to be infinitely distributive. W e are going to meet 
the lack. 

P R O P O S I T I O N 8. For every distributive lattice L, the family Id (L ) of all its 
ideals together with the partial order of inclusion is a complete infinitely dis­
tributive lattice. 

Proof. Since L in an element of Id (L ) , and for every family { I s | s G 5 } of 
ideals of L the intersection f] {Is \ s G S } is an ideal, we conclude that Id(L) 
is a complete lattice with respect to C. Let us prove that it is infinitely dis­
tributive. Fix an ideal J of L. and a family { I s | s G S } of ideals of L: assume 
that J C V {I s | s G S } . Then it holds that V { J A h I s G S } C J. Let us 
verify the converse inclusion. If a G J then a G V { h I s £ S } , and hence 
there exists a finite subset So C S such that a = V { as \ as G Is and s 6 Sq }. 
Since J is an ideal, and a G J, we conclude that as G J holds for every s G So-
Hence, a G\ \J {J A Is \ s E S}. Finally, it is clear that J A Is C J holds for 
all s G S. Therefore, by Proposition 2 the lattice Id(L) is infinitely distribu­
tive. • 

Counterexample 

T h e following example provides the set X and the complete completely distrib­
utive lattice of its subsets such that there exist two inf-generated sets the union 
of that is the whole A'. 

E X A M P L E 9. Let us consider the set X and the family T of its subsets that 
are defined as follows: 

X = A ' i ( l ) U A / , ( l ) and T = { N^k) U N2(l) U e N } u { 0 } , 

where Nn{k) = {n} x {k,k + I.... , x} for n € { 1, 2 } and k G N. 
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It is easy to check that 1 is a topology on A . Hence. ( J . C ) is a com­
plete lattice satisfying the infinite distributive law. Moreover, this lattice is 
completely distributive. Let us show that. We have to prove that, for every 
family { N\ ( KT)J )U N2( L,J ) | j G J{I) and I G / } of subsets of A", the follow­
ing holds: 

A { V { ( k * - j ) u N? ( j ) I i e j w } i e 1 } = 

= \j{/\{^(KL,AL))UN2(LL^L))\IEL} | ^ G $ } . 

where $ = T\ { J{I) I I G I} is the family of choice functions. Let the left 
and right sides of the equivalence be denoted WL and WR, respectively. It is 
sufficient to show that WL C WR. Assume that WL is nonempty. Then there 
exist natural numbers fc» and I, such that WL — N\ ( f c , ) U f t ( l , ) . We are 
going to consider two special functions P and 7 from <3? that satisfy A"i ( K^3 ) C 
NI (^i.p(i) ) a n d N2 (H,J ) Q N2 (H.-y(i)) f ° r a u 3 e a n d * G I. One can 
easily verify that such functions exist. Furthermore, fc* = max { fcj ^(,) | « G / ) 
and Z» = max { i G I } . To complete the proof we consider two sets A 
and B that are defined as follows: 

A = l\{NL{K^(,))YJN2{LL^L))\IEI}. 

B = /\{NL( KIMI) )UN2( L I M I ) ) I I G I } . 

Clearly, WL C A U B C IT(R. Thus, the proof is complete. 

Now, we are going to show that there exist two inf-generated subsets of A 
the union of that is equal to the whole A . W e construct two special subfamilies 
of T in the following way: 

N : = { A x ( l ) U N2(L) I / G N } and Nf2 = { NX (K) U A r
2 ( l ) | K G K } . 

Then f l ^ i = NX{1) U { ( 2 . o o ) } and H ^ 2 = { ( L o o ) } U A r
2 ( l ) . It follows 

that both and [\Nf2 are equal to the empty set. Hence, the union of 
two subsets of A' that are inf-generated by the families ~NX and N 2 is equal to 
the whole A . 
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Pilnie bezgaligi distributivie rezgi ka topologijas ar precizitati hdz 
idealam 
Kopsavilkums 

Mes aplukojam rezgu klasi, kura katrs rezgis sastav no kadas kopas apakskopam 
(dazadiem rezgiem tas kopas var atskirties) un veido rezgi attieclba pret dabisko 
ieklausanas da\ejo sakartojumu (interesanti, ka katrs rezgis ir izoinorfs vismaz vienam 
tada tipa rezgim). Ir labi zinams, ka katra topologija kopa ar iekjausanas dajejo 
sakartojumu veido pilnu bezgaligi distributlvu (pbd) rezgi, tomer minetaja klase ek-
siste pbd rezgi. kas nav topologijas. Mes pieradam, ka katrs pbd rezgis no dotas klases 
veido i-topologiju, t.i., ir slegts attieclba pret patvapTgam i-apvienojuma un galigam 
i-skeluma operacijam. Pat vairak: mes konstruejam pilnu pilnigi distributlvu rezgi 
(tatad pbd rezgi). kurs nav slegts attieclba pret patva/fgiein i-skelumiem. 
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I n t r o d u c t i o n . International Congresses of Mathematicians (ICM) have 
long history. The first one was held in 1897 in Zurich (which was the venue 
of three I C M ) . Since 1900 ICM took place every four years. At the Congress 
in Paris in 1900 D. Hilbert has formulated his famous problems, which con­
siderably defined directions of mathematical research in XXth century. The 
venues of ICM were acknowledged centers of mathematical activity in Europe 
and North America. In 1990 for the first time ICM was organized in Asia (Ky­
oto, Japan). Then followed Zurich (1994) and Berlin (1998) and new meeting 
with Asia. The first ICM in new millennium and in XXIst century was held in 
the capital of People Republic of China the city of Beijing. Below follows some 
remarks and reminiscences of a participant of ICM-2002. 

I M U . This abbreviation means International Mathematical Union. Among 
other objectives, one of the purposes of this organization is to help mathe­
maticians from developing countries, Eastern Europe and other 'less favorite 
regions'" t o participate in the work of International Congresses of Mathemati­
cians. The objectives of IMU are "to promote international cooperation in 
mathematics", "support and assist the International Congresses of Mathemati­
cians'" etc . Countries can be adhered to IMU through adhering organizations, 
which may be its principal academies, mathematical societies, research institu­
tions or government agencies. IMU provides requirements for ICM organizers, 
both financial and thase with respect to infrastructure. According to these re­
quirements, a potential host country may consider a budget of about 1.5 million 
US dollars, of which only about 0.6 million US dollars might be raised through 

http://felixfflcclu.lv
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registration fees. The host country is expected to lodge freely definite number 
of participants from developing countries, which get their trips paid by IMU 
through special funds. The officers of IMU preselected during the preceding 
ICM coordinate and supervise preparations to the next ICM. One can imagine 
what a huge work was done by members of a Program Committee, the mem­
bers of which by tradition were kept secret. We know now that the Program 
Committee was a team of 11 prominent mathematicians with Y. Manin as a 
Chairman. 

First impression. The McDonnell Douglas jet of Finnair brought me 
over Finnish Gulf, St-Petersburg. lake of Ladoga, darkness and golden spots of 
Russian cities to distant China. Early in the morning misty mountains emerged 
suddenly and landing in Beijing's International Airport followed soon. After 
the pass control has been finished we were brought by bus to downtown to 
the registration place. BICC (Beijing International Convention Centre) is a 
nice modern building facing the newly created architectural complex named 
Beichen (Northern Star). Nearby are Beijing Stadium and bulky Catic ho­
tel. One have to cross the street where red lights, as explained local student 
volunteer, "'recommend" vehicles to stop, and you arrive to the group of local 
"skyscrapers" where many of ICM participants had their lodging. 

Opening Ceremony. The opening ceremony was held at the Great Hall of 
People in the very center of the city. The trip from B I C C to Tian An Men (Way 
to Heaven) square took about forty minutes and one started to have impression 
of how this city is big. A lot of nice modern buildings are the evidences of new 
times and open policy of Chinese government. Great Hall of People was almost 
filled by participants of the congress. The President Jiang Zemin attended the 
ceremony. It was a surprising compliment to the mathematical community. 
Followed speeches of the President of IMU Jacob Palis, Vice Premier of the 
P.R. China Li Langing, President of the ICM-2002, Mayor of Beijing. Jacob 
Palis emphasized in his speech that this congress is the first in X X I century 
and it is taking place in the fastest growing country in the world. Great party 
followed the official ceremony. People were arranged by 12 and occupied seats 
at the round tables. The central part of the table was rotating and waiters 
changed dishes. It was the first meeting with Chinese cuisine for many of the 
guests. 

Fields Medalists and the Rolf Nevanlinna prize winner. Laurent 
Lafforgue from I.H.E.S.. Bures-sur-Yvette. France, has been awarded the Fields 
Medal for his proof of the Langlands correspondence for the full linear groups 
GLr over function fields. A global field is either a number field or a function field 
of characteristics p > 0 for some prime number p. T h e conjectural Langlands 
correspondence relates two fundamental objects, which are naturally attached 
to a global field. The Langlands correspondence embodies a large part of 
number theory, arithmetic algebraic geometry and representation theory of 
the groups. Small progress made towards the conjectural correspondence has 
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already amazing consequences the most striking of them being the proof of 
Fermat's last theorem by Andrew Wiles. 

Vladimir Voevodsky has studied at Moscow State University and now he is 
Professor at the Institute for advanced Study in Princeton. He was awarded the 
Fields Medal for his achievements in algebraic K-theory. Namely, he defined 
and developed motivic cohomology and the Al -homotopy theory of algebraic 
varieties; he proved the Milnor conjectures on the K-theory of fields. 

The 2002 Rolf Nevanlinna's prize was awarded to Madhu Sudan. Associate 
Professor of Electrical Engineering and Computer Science, MIT, for his con­
tribution to many areas of computer science theory including computational 
complexity theory, the design of efficient algorithms, algorithmic coding the­
ory, and the theory of program checking and correcting. Complexity theory 
is concerned with how many resources are required to perform computational 
tasks. Examples of a computational task axe finding a proof for a mathematical 
theorem and automatic verification of the correctness of a given mathematical 
proof. A large body of Sudan's work addresses the latter issue. Brief descrip­
tion of Madhu Sudan's work, especially of that on probabilistically checkable 
proof, was given by Shafi Goldwasser, Weizmann Institute of Science and MIT. 

P l e n a r y l e c t u r e s . Each day the work has started with the plenary lec­
tures. It was very traditional, just like as at the congress in Berlin. The scope 
of lectures was different however. Let me remind some of them. 

Discrete Mathematics: Methods and Challenges by Noga Allon, Tel Aviv 
University The lecture was devoted to combinatorics as a fundamental mathe­
matical discipline. The author focused on the tight connection between discrete 
mathematics and theoretical computer science. A survey of two of the main 
general techniques of modern combinatorics was given: algebraic methods and 
probabilistic methods. 

Differential Complexes and Numerical Stability by Douglas Arnold, Uni­
versity of Minnesota. The lecture was devoted to differential complexes, which 
have recently come to play an important role in analysis of numerical methods 
for partial differential equations. Consider a boundary value problem in par­
tial differential equations as an operator Lu = f in some space X. A numerical 
method discretizes this problem and defines an approximation solution uh by 
the equation Lh uh = fh. The well-posedness of a problem means that for a 
given right side f a unique solution u exists, and small changes in f induce small 
changes in u. The analogous question for the numerical method is the ques­
tion of stability of the numerical method. The so called differential complexes 
associated with partial differential equations are very effective in establishing 
the stability of numerical methods. 

Hyperbolic Systems of Conservation Laws in One Space Dimension by Al­
berto Bressan, S.I.S.S.A., Trieste. A specific system of the first order partial 
differential equations has been considered. Systems of this type express the 
balance equations of continuum physics, when small dissipation effects are ne-
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glected. A basic example is provided by the equations of non-viscous gases. 
The main focus was on the uniqueness and stability of entropy weak solutions 
and on the convergence of vanishing viscosity approximations. 

Non Linear Elliptic Theory and the Monge-Ampere Equation by Luis A. 
Cafarelli, University of Texas at Austin. The main trust of the talk was to 
show "how the Monge-Ampere equation links in some way the ideas coming 
from the calculus of variations and those of fully non linear equations." 

Emerging Applications of Geometric Multiscale Analysis by David L. 
Donoho. Stanford University. The lecturer has pointed out the unreasonable 
effectiveness of harmonic analysis, which was created in X l X t h century as a tool 
for understanding of the equations of mathematical physics but has been ap­
plied in ways the inventors could not have anticipated. Further development of 
harmonic analysis has led to the classical multiscale analysis based on wavelets, 
which has a number of successful applications. The lecturer has mentioned that 
wavelets, however, are adapted to point singularities, and many problems in 
several variables exhibit different kind singularities, such as edges, filaments 
and sheets. The lecturer has discussed various attempts in order to replace 
the wavelet analysis in several applications by multiscale analysis adapted to 
intermediate-dimensional singularities. 

Knotted Solitons by Ludwig D. Faddeev, St. Petersburg Department of 
Steklov Mathematical Institute. The author has traced the history of the no­
tion of soliton in applied mathematics He pointed out that "the value of solitons 
for the particle physics consists in the possibility of going beyond the paradigm 
of the perturbation theory." He pointed out that soliton solutions are en­
tirely nonlinear phenomena, and they disappear in their linearized form. Basic 
ideas about solitons was understood in the middle of 1970's and the developed 
methods were applicable only in 1 + 1 dimensional space-time. Further inves­
tigations showed that many features of 1 + 1 dimensional systems could not 
be generalized to 3 + 1 dimensions. The existence of "one-particle" soliton 
solutions was not excluded, however. In his talk the author described some 
3 + 1 dimensional system, allowing solitons. First the model was introduced, 
then the description of the numerical treatment followed and, finally, several 
applications were discussed. 

Mathematical Foundations of Modern Cryptography: Computational Com­
plexity Perspective by Shafi Goldwasser, Weizmann Institute, Israel and MIT. 
This talk was devoted to the development of modern cryptography, the math­
ematics behind secret communications and protocols. The relations between 
cryptography and classical mathematics, as well as that between cryptogra­
phy and information theory, were discussed first. The conventions and ter­
minology were explained. A survey of the complexity theory underlying the 
cryptographic tasks of encryption followed. A constructive theory of pseudo 
randomness, including pseudo-randomness number generators and functions, 
was discussed. In the last section interactive protocols, interactive proofs, and 
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zero knowledge interactive proofs were considered. The professional design of 
this presentation should be mentioned. 

Singularities in String Theory by Edward Witten, Institute for Advanced 
Study, Princeton. The subject of this very interesting and energetic lecture 
was the string theory in a quantum theory. It "reproduces the results of gen­
eral relativity at long distances but is completely different at short distances. 
Mathematical basics of string theory are of geometrical nature, and reduce to 
ordinary differential geometry when the curvature is asymptotically small. The 
author has described the results, which ' ;were obtained about the behavior of 
string theory in spacetimes that develop singularities.'' 

Undoubtedly, many interesting lectures are left beyond the scope of these 
notes. 

Short communications. Short communications presentation was orga­
nized in parallel sessions. Each talk lasted about twenty minutes including 
discussion. Rooms in B I C C were equipped not only with projectors but even 
with alarm clocks and a bottle of drinking water for each speaker. 

Leisure hours. The city of Beijing is a splendid exotic recreation itself, 
especially for those who are new in Far East. One has to be cautious however. 
The first day I came to have an evening stroll I recognized cars turning to left on 
the red light. Next day local people taught me that red traffic lights in Beijing 
are recommendations for car drivers not commands to stop. One could easily 
travel in Beijing using the map where public transport lines with starting and 
final points were depicted. The only problem, as people mentioned, was that 
you know which line to use but you hardly could escape the transport mean at 
the right stop. Younger people in Beijing however often can communicate in 
English and generally one can get advice. The better transportation mean in 
Beijing probably is taxi. They are many, the price is very moderate and if you 
can explain were to go then you have no problems usually. 

Footloose tours. Organizers took care of participants in the form of re­
cruiting young people volunteers who accompanied visitors and showed them 
sightseeing absolutely free. One had the opportunity to visit nice places like 
Beijing university campus, parks and gardens, museums and pagodas, local 
computer companies and so on. It was a lovely place Beijing Botanic Garden 
where a piece of live exotic nature could be seen and not too many people were 
walking around. The only cat (the white one), so numerous in other places I 
have seen in Beijing lived just in Botanic Garden. It was a pity that I forgot 
to buy the collection of dried gigantic butterflies of bright colors that were sold 
by Chinese women at the entrance. 

Excursions. A very special attraction of Beijing and China is the Great 
Wall. Some day buses took us and delivered after about forty minutes run to 
the so called pass. Imagine giant about 5000 miles wall crossing the country 
and several passages from South to North. The day was hot and rare person 
could climb the segment of the wall till the very top of the hill. Even from the 
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upper point almost nothing was seen (almost nothing approx. 2 km) because 
of the intensive mist of unknown nature. The impression was deep but one 
could imagine also of the run along this road to unknown. 

Welcome party. Imagine the lawn in front of the luxurious hotel over­
crowded with people of different origins, speaking different languages, but 
mostly in English. By the perimeter of the lawn a chain of tables, some of 
them filled with food and drinks and some bearing lots of souvenirs, handi­
crafts, paintings in Chinese style, toys and adornments. In the hot atmosphere 
highlighted buildings forming this special region of Beijing stood around. 

Beijing opera. Visit to renowned Chinese opera was scheduled to Sunday. 
I failed to book the ticket timely and decided to postpone this visit to some 
working day. It was surprising that evening performance at Wednesday was 
easily accessible and the hall was far from being filled. One hardly could follow 
the scenario of the tale but the show was so bright, dynamic and reach of effects 
that one scarcely needed to understand what happened on the scene. 

Information and computer services. Every morning the newsletters 
were issued containing information on actualities, schedules of events and sur­
prising facts. Look, for example, at the "ancient Chinese paradox." The person 
from the State Chu sold both shield and spear. He characterized the shield as 
"no spear can pierce my shield." He talked about his spear as "no object is my 
spear cannot pierce through." An audience reasonably asked: "What about 
using your spear to pierce your shield?" A hall on the ground floor was used 
for computer activity. It was permanently full. E-mail connection and Internet 
were Ok. In case of difficulties consultants were on duty and ready to help. 

Bookstores and exhibitions. It is a tradition of ICM to arrange multiple 
bookstands of renowned publishing houses. This type of activity has attracted 
a lot of participants. Most of all people cluster at the stands of Springer, AMS 
and the local Higher Education Press stand. The latter could be explained 
by the fact that a lot of books originally printed by, say, Springer, were per­
mitted to be republished (on the occasion of ICM-2002 in China) by the local 
publishing house. One could buy books at a relatively moderate price. For ex­
ample, the "Variational Methods 2nd edition" by M. Struwe could be bought 
for approx. 7.5 US dollars. 

Closing ceremony. The closing ceremony usually is a most exciting mo­
ment of ICM. Let me recall the same moment at ICM-1998 in Berlin where 
thousands of colleagues, sitting even on the floor in passages, some of them 
with little children in spinning wheels, in strained silence attended to speak­
ers. It was so evident that despite geographical and menthol differences we 
all are one nation - the mathematicians. The representative of the Organiz­
ing Committee of ICM-2002 without any words have shown slides describing 
China and Beijing. But now it was Madrid turn. The day before booklets with 
transportation schemes in Madrid, maps and relevant tourist information were 
distributed, and the delegate of the Spanish IMLT Committee Carles Casacu-
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berta has red the words of invitation to the next ICM, to be held in Madrid 
in 2006. The newly elected president of IMU for 2003-2006 John Ball have 
promised that new Executive Committee and IMU Committees will work hard 
and that "we will have some progress to report on when we meet again in Spain 
in 2006.'" 

F ina l i m p r e s s i o n . The last glimpse at Beijing from the board of the air­
craft and one could see the thin line of the Great Wall running to the west 
towards high mountains. Green hills of China were replaced by yellowish Mon­
golian plains and after an 8 hour long flight the plane has landed in Helsinki 
where the stop was planned on the way to native Riga. It was calm and relaxing 
evening in the Finnish capital. 

C o n c l u s i o n . Some figures and exhaustible information about the ICM-
2002 could be found at h t t p : / / w w w . i c m 2 0 0 2 . o r g . c n . Proceedings of the 
ICM-2002 were published by Higher Education Press in 3 volumes. The 
first one contains plenary lectures and ceremonies. The CD is attached 
containing 324 MB mpg-file with description of the events during the 
Congress. An electronic version of the Proceedings of ICM-2002 will be 
available freely at the sites h t t p : / / f r o n t . m a t h . u c d a v i s . e d u / I C M 2 0 0 2 / and 
h t t p : / / w w w . c g t p . d u k e . e d u / I C M 2 0 0 2 / as well as at a number of mirror sites 
worldwide. 

The role, the ICM-2002 will play in the history of mathematics, will be clear 
in the distant future. One thing is evident just now, however. As Jacob Palis 
has said in his speech at the Opening ceremony, "this is in many ways very 
special Congress." He has remarked that mathematics has become more and 
more international and interaction among mathematicians both at a national 
and international level was the clear road for its development. The fact that 
the ICM was for the first time taking place in a developing country and in fact 
in the fastest growing country in the world, makes the ICM more inclusive and 
this meets the basic principle of IMU. 

The Congress in China was special also in other ways. Two new prizes for 
mathematicians were founded. The first, in honor of Abel, will be awarded 
every year by the Norwegian Academy of Sciences. The second, called the 
Gauss Prize for Applications of Mathematics, is to be awarded jointly by IMU 
and the German Mathematical Society once every four years. 

It is to the point to complete these notes with words from the announcement 
of the establishment of the Gauss prize: "Mathematics is an important and 
ancient discipline - no one doubts it. However, it seems that only the experts 
know that mathematics is a driving force behind many modern technologies. 
The Gauss prize has been created to help the rest of the world realize this 
fundamental fact." 

http://www.icm2002.org.cn
http://front.math.ucdavis.edu/ICM2002/
http://www.cgtp.duke.edu/ICM2002/
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