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The usual definition of “true” formulas in first-order arithmetic (inductively, by structure of formulas)
provokes Platonist illusions (see [ 1]) that any closed formula must be either “true” or “false”™. But it is
impossible to verify a formula like (4x)C(x) empirically. This can be done only theoretically, i.e., using
some fixed system of axioms.

Simular illusions are connected with the categoricity theorem for second-order arithmetic. This
theorem can be proved within ZF: however, it does not yield that any closed formula of arithmetic can
be proved or disproved in ZF.

The latter illusion is connected with some features of Gédel’s proof (see [2]) of his incompleteness
theorem: Godel’s formula G(T), constructed for some theory T, “is true, but not provable™. But the truth
of G(T) can be established only by postulating the consistency of T, and since Con(T) — G(T) can be
proved (for any T') in first-order arithmetic, we should not speak about the “informal truth” of G(T).

The real meaning of the incompleteness theorem is the following: any serious theory based on a fixed
system of principles cannot be made perfect—it inevitably contains either contradictions or undecidable
problems. The mere postulating of the excluded middle (F A —1F) in some theory T does not yield the
decidability of all closed formulas F in T,

Any theory (in mathematics, science, or other branches of intellectual life) is essentially a construction
involving inevitably many elements of fantasy (even the arithmetic of natural numbers contains such
clements: see [3]). The incompleteness theorem says that no fantastic construction can be designed
“logically™ enough to ensure the decidability of all definite statements of it.
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