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Abstract

Ageing has always been a topical subject for both discussion and exploration. The
nature and evolution have set a natural limit to our lifespan, which is not very long, but we
can do many things to prolong our lives and to improve our health when we are getting older.
To do so even better, we must understand how and why we are ageing, and this knowledge
may help us to discover and develop novel approaches to change it. Until now, there were no
studies about a possible interplay between dynamics of telomere length (TL) and

mitochondrial DNA (mtDNA) during the ageing process in Latvian population.

In my work I have looked into two important factors of ageing: TL and mtDNA. It is a
well-known fact by now that telomeres and mitochondria is, in some level, connected and
possibly drives the ageing process. These pathways are influenced by small differences in our
nuclear or mitochondrial genomes that can lead to accelerated ageing or diseases. For
example, people belonging to mtDNA haplogroup (hg) J have significantly longer telomeres
than non-J carriers but are more prone to Leber's optic atrophy; hg H carriers are more prone
to some cancer types; and mitochondrial heteroplasmy and hgs might influence mtDNA copy
number (CN) in cells, which in turn can, hypothetically, influence longevity. But many details
are not known yet, and in different studies we can see controversial results. During my work I
have confirmed the results shown in other studies that both mtDNA and telomeres-related
factors are indeed connected with our longevity. But I also have shown that this connection of
TL and mtDNA alterations is different and not as clear for the very old or nonagenarians
(people between 90 and 100 years old). During my research I did not see that benign and
small differences of mtDNA are related to the TL, the total amount of mtDNA or age for
individuals in our sample cohort, but some studies have shown such effects and that is why
these could be population specific traits. Large studies in different populations are required to

confirm these findings.



Abstrakts

Novecosanas vienmer ir bijusi aktuala diskusiju un izpétes t€ma. Lai ar1 evoliicija ir
pariipgjusies par to, lai lielakajai dalai dzivnieku dzives ilgums nebiitu parlieku garS, mes
varam daudz ko darit, lai miisu dzivildzi pagarinatu un uzlabotu veselibu novecojot. Lai to
izdaritu péc iesp€jas efektivak, mums ir jasaprot, ka un kadel meés novecojam. Lidz §im nav
veikti petijumi Latvijas populacija, kas aprakstitu teloméru garuma (TG) un mitohondriala

DNS (mtDNS) izmainas, un to iesp&jamo saistibu novecosanas procesa.

Sava darba esmu apskatijusi divus svarigus novecoSanas faktorus: TG variacijas un
mtDNS sekvencu un daudzuma izmainas Latvijas populacija dazadas vecuma grupas, ka ari
So faktoru iesp€jamo mijiedarbibu novecosanas laika. Tas ir jau labi zinams fakts, ka telomeéri
un mitohondriji ir sava starpa saistti un virza izmainas §inu liment gadu gaita. Sie signal-celi,
savukart, var biit atkarigi no nelielam izmainam kodola vai mitohondriala genoma, tadejadi
novedot pie paatrinatas novecosanas vai slimibam. Piem&ram, J mitohondrialas haplogrupas
(hg) nesatajiem ir noveroti garaki teloméri, bet viniem ir lielaka iesp&ja saslimt ar Lebera
parmantoto optisko neiropatiju; H hg nésataji ir vairak paklauti iesp&jai saslimt ar kadu no
véza veidiem; ka arT mitohondriala heteroplazmija un hg var ietekm&t mtDNS kopiju skaitu
Suna, kas var hipotétiski ietekmét dzivildzi, lai ar1 daudzas detalas vél ir nezinamas, un
daudzos pétijumos ir noveérojamas pretrunas. Sava darba ietvaros esmu apstiprinajusi citu
autoru darbu, ka Sie divi Stinu komponenti ir svarigi un ir saistiti ar miisu novecosanos.
Turklat, mani novérojumi liecina, ka ka TG un mtDNS izmainas ir savadakas cilvékiem, kuri
nodzivo pari pa devindesmit gadiem. Es arT paradiju, ka labdabigas vai nelielas mtDNS
sekvencu izmainas neietekmé TG, mtDNS daudzumu asins $tnas vai ilgdzivotibu cilvekiem
misu paraugu kopa. Nemot véra, ka atseviski citu autoru pétijumi ir paradijusi $adu ietekmi,
tas var liecinat, ka So faktoru ietekme varétu but populaciju specifiska. Nakotné biitu svarigi

veikt plaSa méroga pétijumus dazadas populacijas, lai apstiprinatu Sos rezultatus.
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Abbreviations

12S - mitochondrial ribosomal RNA

16S - mitochondrial ribosomal RNA

AD - Alzheimer’s disease

ALE - average life expectancy

AMPK - 5' AMP-activated protein kinase
ANOVA - two-tailed t-test and Analysis of
variance

ATP - adenosine triphosphate

ATPase - adenylpyrophosphatase

bp — base pair

CAD - coronary artery disease

CIJD - Creutzfeldt Jacob disease

CN - copy number
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DCKI - dyskerin pseudouridine synthase 1
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DNA - deoxyribonucleic acid

FECD - Fuchs’ endothelial corneal
dystrophy

FTD-ALS - Frontotemporal dementia —
Amyotrophic Lateral Sclerosis

Gau - Gene Antisense Ubiquitous
HepG?2 cells - liver tissue cell line

hg - mitochondrial haplogroup

HSP1, HSP2 - H-strand transcription
promoters

H-strand - heavy strand

HVS - hypervariable regions

HVS-I - hypervariable segment I

HVS-II - hypervariable segment II

IGF-1 - insulin-like growth factor 1
INK4a/ARF — p16 cyclin-dependent kinase
inhibitor 2A/ADP ribosylation factor
Jak3 - Janus kinase 3

LHON - Leber hereditary optic neuropathy
L-strand - light strand

MEF cells - mouse embryonic fibroblasts
MTATP6, MTATPS - mitochondrial
membrane ATP synthase 6, 8

mtDNA - mitochondrial DNA

mTOR - mechanistic target of rapamycin
NADH - nicotinamide adenine
dinucleotide

NCR - non-coding region

NHP2 - NHP2 ribonucleoprotein

NK - natural killer

NOP10 - NOP10 ribonucleoprotein
NRF1 - nuclear respiratory factor 1

On - origin of heavy strand synthesis

OL - origin of light strand synthesis
OXPHOS - oxidative phosphorylation
p53 - tumour protein P53

PD - Parkinson’s disease

PGC-10/p - peroxisome proliferator-
activated receptor gamma, coactivator 1
alpha and beta

Poly y - DNA Polymerase y

POT]1 - protection of telomeres 1

qPCR - real-time quantitative polymerase
chain reaction

Rap1 - repressor activator protein 1

RC - respiratory chain

PCR-RFLP — polymerase chain reaction-
restriction fragment length polymorphism
ROS — reactive oxygen species

rRNA - Ribosomal ribonucleic acid
SCO2 - cytochrome c oxidase 2

SEM - standard error of the mean

SIRTTI - Sirtuin 1

SNPs - single nucleotide polymorphisms
SSC - saline-sodium citrate buffer
TERC - telomerase RNA component
TERRA - (telomeric repeat-containing
RNA)-like transcripts

TERT - telomerase reverse transcriptase
TFAM - mitochondrial transcription factor
A

TIN2 - TERF1-interacting nuclear factor 2
TL - telomere length

TPP1 - tripeptidyl peptidase 1

TRF1 - telomeric repeat factor 1

TREF2 - telomeric repeat binding factor 2
TRFs - Southern blots of terminal
restriction fragments

tRNA - transfer RNA



Introduction

Population studies have demonstrated that telomere length (TL) displays a great
diversity among different populations and distribution of mitochondrial haplogroups (hgs)
across the globe is a variable trait. Until now, there were no studies that investigated the
variability of TL and mitochondrial DNA (mtDNA) alterations in an ageing Latvian
population. All the controversial findings that associate longevity with specific mtDNA hgs,
heteroplasmy, TL or other mtDNA alterations during ageing require for more studies in field
of population ageing. These observations may be influenced by population diversity,
geographic location, health care and/or specific historic background. It is well known that TL
shortens with age, but there is not as clear picture for mtDNA amount in our cells. While it is
often shown that TL correlates with mtDNA amount in younger people, there have not been
studies in nonagenarians or centenarians about the TL and mtDNA correlation in blood cells.
Nonagenarians and centenarians may have differences in senescence-related pathways and
systems, which may function as a protective mechanism that allows them to live longer. Also,
not always it has been proven that heteroplasmy or other changes in mtDNA is connected

with shorter lifespan, thus more attention from scientists is required.

Importance of this work. As every population is different by its genetical markers
like, for example, mtDNA hgs or environment where it is located, it is important to study as
many populations as possible to understand how different factors influence cell functions
including ageing. For example, there is very high rate of mortality from cardiovascular
diseases in Latvia, which is connected with TL and mitochondrial dysfunction. It is also
important to explore at which point in our lifetime we should focus on maintaining the right
cellular function: for example, when we are young maybe it is TL but with age it could be
more important to convey more energy to mitochondrial maintenance for healthier and longer
lives. From another point of view this work is also important because if there are so many
inconsistent results among laboratories around the world, then, in order to make the right

conclusions, there is a considerable need to do as many research studies as possible.



Aims of the study:

1.

The first aim was to determine telomere length and mtDNA copy number in a Latvian

population to observe any variations in different age groups.

The second aim of this study was to analyse the most prevalent mitochondrial
haplogroups in different age groups in Latvian population and to estimate their
possible associations with telomere length and mtDNA copy number amount and

ageing.

The third aim was to examine the connection between mtDNA alterations and

telomere length in ageing population.

Tasks to reach the aims:

Optimize and validate all necessary methods and experimental approaches.

Determine telomere length and mtDNA amount in samples collected from the Latvian

population.

Determine mitochondrial haplogroups and heteroplasmy in samples from the Latvian

population.

By using statistical methods, find possible links between these cell components in an

ageing Latvian population.



1. LITERATURE REVIEW

1.1 Ageing

Ageing is consequences from the interaction of processes that occur over time and
genetics interacting with various disease states and the individual’s lifestyle. As the
population ages, it is essential to think how to raise the quality and years of healthy life (Peel
et al. 2005). Ageing we can see as the unavoidable passage of time; cell senescence as a
process in which cells stop dividing and undergo distinctive phenotypic alterations. Evidence
shows that the effects of cellular senescence are continuously acquired and that senescent
cells exist in tissues even early in life. From energy point of view having senescent cells is
energy less expensive for tissue than cycling cells (reviewed in Eisenberg 2011; Dimri et al.
1995). There are several hallmarks of cellular senescence: replicative senescence (telomere
attrition); DNA damage-induced senescence (radiation or multiple drugs); oncogene-induced
senescence (activation of oncogenes or inactivation of tumour suppressors); oxidative stress-
induced senescence (oxidizing products of the cell metabolism or oxidative agents);
chemotherapy-induced senescence (anticancer drugs); mitochondrial dysfunction-associated
senescence; epigenetically induced senescence (inhibitors of DNA methylases or histone
deacetylases); and paracrine senescence (senescence-associated secretory phenotype)

(reviewed in Hernandez-Segura et al. 2018).

There are generally accepted nine hallmarks of ageing (Fig. 1): genomic instability
(nuclear, mitochondrial DNA and nuclear architecture alterations); telomere attrition;
epidemiologic alterations (alterations in DNA methylation patterns, posttranslational
modification of histones, and chromatin remodelling and transcriptional alterations); loss of
proteostasis (chaperone-mediated protein folding and stability, proteolytic systems);
deregulated nutrient sensing (the Insulin- and IGF-1-signaling pathway, mTOR, AMPK, and
Sirtuins); mitochondrial dysfunction (reactive oxygen species (ROS), mitochondrial integrity
and biogenesis, mitohormesis); cellular senescence (telomere loss, INK4a/ARF Locus and
p53); stem cell exhaustion; altered intercellular communication (inflammation and other types

of intercellular communication) (reviewed in Lopez-Otin et al. 2013).



Fig.1. Hallmarks of ageing. Picture adapted from Lopez-Otin et al. 2013.

There are also many theories that describe ageing. The theory of programmed ageing,
under which are several sub-theories, establishes that ageing is a result of a sequential
switching on and off of certain genes, with senescence being defined as the time when age
associated deficits are manifested. Endocrine theory says that biological clock is regulated
through hormones and controls the pace of ageing. Immunological theory postulates that the
immune system is programmed to decline, which in turn leads to an increased vulnerability to
infectious disease and thus ageing and death. The damage or error theory emphasizes
influence of environment; there are also several sub-theories under it. Stochastic or “wear and
tear” theory assumes that cells, tissues and organs wear out resulting in ageing. Rate of living
theory predicts that lower energy metabolism and lower oxygen basal metabolism slows
ageing rate. Cross-linking theory, according to this theory, an accumulation of crosslinked
proteins damages cells and tissues, slowing down bodily processes resulting in ageing. Free
radicals or ROS (mitochondria) theory proposes that these chemically active molecules cause
damage to the macromolecular components of a cell that leads to accumulated damage
causing impairment of cells and, eventually, organs, and ageing as an outcome. Somatic DNA

damage theory means that DNA damages take place continuously and accumulate with
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increasing age, causing cells to deteriorate and malfunction. Apart from these, even more
theories of ageing exist: accumulation of undegradable by-product of metabolism, impairment

of regulatory pathways during ageing, and energy restriction and lifespan theories.

The focus for this study is on two well-accepted theories: one involves TL shortening
and, the second involves mtDNA alterations. As there are contradictory studies about these

theories, there is a necessity for more research in the field of ageing.

1.2. Telomeres

Telomeres are the specialized chromosomal DNA-protein structures that cap and
protect the terminal regions of eukaryotic chromosomes (Fig. 2). The sequence of telomeric
DNA in vertebrates, including humans, is (TTAGGG)n; in humans, its length ranges from 5
to 15 kb and varies between different tissues. Each time a cell divides the telomeres get
shorter due to the chromosome end-replication problem. By removal of the RNA primer,
which initiates the last Okazaki fragment, a single-stranded G-rich 3’-overhang is formed
when a replication fork has reached the end of the chromosome’s lagging strand (Makarov et
al. 1997). The telomeric 3'-overhangs are also observed at the end of the leading strand,
although of different size (Chai et al. 2006). As the leading-strand replication generates a
blunt-ended telomere, 5°-end resection by Apollo exonuclease is required to form the single-
stranded 3'-overhang to protect telomeres. Thereby, the telomeric 3'-overhangs are formed by
shelterin-controlled multistep process which is slightly different for each strand (Wu et al.
2012; reviewed in Higa et al. 2017). Human telomeres typically terminate in a 35-600 nt
single-strand 3’ overhang of the G-rich sequence, which are bound by a specific protein
complex termed °‘shelterin’ (telosome) - proteins connected with telomeres. Their main
function is to maintain telomere structure and functions. The main proteins can be divided
into three levels: 1. proteins that directly are connected with telomeres (TRF1, TRF2, POT1),
2. proteins that are connected with the first level proteins (TPP1, TIN2, Rapl). And there are
proteins that are connected with the telomerase (TERT, TERC, NOP10, NHP2, DCKI,
NHP2). Plus, there are many other proteins and enzymes that are connected with telomeres
and their maintenance (Martinez and Blasco, 2011; Lange et al. 2006). Telomerase is a
specific enzyme that extends telomeres, but it is significantly active only in special cells such
as stem cells, gametes, some types of blood cells and most cancer cells (Greider and

Blackburn 1985; Kim et al. 1994; Wright et al. 1996; Kaszubowska 2008; Wu et al. 2017).
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Telomere maintenance and shortening is a complex process which can be affected by
different factors, like stress and genetic background, and is different in diverse tissues,
furthermore the relationship between TL and ageing is not fully clear (reviewed Blackburn et
al. 2015). Telomeres are dynamic structures that become shorter with every cell division until
a critical stage is reached when the cell can no longer divide and enters a phase of senescence.
Telomere attrition causes genomic instability, which is associated with a higher risk of age-
related diseases and cancer, leads to potentially maladaptive cellular changes, and blocks cell
division (Harley et al. 1990; Blackburn 2001; de Lange et al. 2006; reviewed in Samassekou
et al. 2010; Blackburn et al. 2015). They are essential for stabilizing eukaryotic chromosomes
in different ways. One of many functions of telomeres are to prevent the end of the linear
chromosomal DNA from being recognized as a broken end; telomeres are also the “first
responders” to threats to genomic stability and problems with DNA maintenance. They are
located at the nuclear envelope, and their specific association with the spindle pole body is
required for normal recombination, protecting cells from nonhomologous recombination and

broken DNA ends ensuring normal mitosis and meiosis (Blackburn 2001).

nucleus

N As the cell divide overtime (healthy cell)...
/ (-t/;
)
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AACCCCAAR .telomeres shorten untii
cell division stops (senescence).

Fig. 2. Telomeres and their shortening. Picture adapted from University of Liége (reflexions.ulg.ac)

It is widely accepted that TL gradually decreases with age in human cells (except for
the terminally differentiated tissues such as brain and myocardium); and for women,
telomeres shorten more slowly due to oestrogen effects on telomerase (Kyo et al. 1999;

Takubo et al. 2010). Telomere DNA is a target of persistent DNA damage which can induce
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cellular ageing and stress-induced senescence (Hewitt et al. 2012). Shortened blood cells’
telomeres in population studies were associated with higher rates of mortality from different
age-related pathologies, including heart and vascular diseases, diabetes mellitus, Parkinson’s
disease and Alzheimer’s disease, among others (reviewed in Blasco 2007; Jiang et al. 2007;
van der Harst et al. 2007). Several studies have reported that telomeres do not shorten as
quickly in older individuals and TL does not predict mortality in the very oldest. This
observation presumably may be related to a gradual reduction in cell turnover with advancing
years. However, the opinion exists that, at a certain age, telomere maintenance is more critical
than the exact TL (Mondello et al. 1999; Jiang et al. 1992; Shay et al. 2007; Haussmann and
Mauck 2008; Ehrlenbach et al. 2009; reviewed in Simons 2015).

Population studies have demonstrated that TL in blood cells can be quite diverse
among different populations. In a study of people over 60 years old, a French population (an
average life expectancy (ALE) - 82.4 years; the data of life expectancies for populations was
taken from World Health Statistics 2015) contained longer telomeres than an Italian
population (ALE — 82.7 years) (Canela et al. 2007). Individuals with an average age of 22.7
years from Southern Europe (ALE — 81.9 years) possessed shorter telomeres than individuals
from one part of the Baltic region (ALE - 79.3 years), and individuals from the Middle
Europe (ALE - 81.5 years) contained the longest telomeres (Salpea et al. 2008). However,
another report that included fourteen European populations with individuals between ages 18-
28 showed that TL varied among them drastically, with the shortest telomeres observed in an
Italian population (5100 bp (base pairs)) (ALE — 82.7 years) and the longest telomeres
observed in a Belgian population (18,640 bp) (ALE - 81.1 years). For an Estonian population
(ALE - 77.6 years), telomeres were 7340 bp long (Eisenberg et al. 2011). Pronounced
differences in TL were observed for two subpopulations in Finland (ALE — 81.38 years): in an
Oulu-based population, the mean TL was 7620 bp, and in a Helsinki-based population, the
mean TL was 12,280 bp (Eisenberg et al. 2011). The work of Hansen and colleagues also
proved that TL between populations differs. They stated that Europeans (ALE — 71.3-83.4
years) have much shorter telomeres than sub-Saharan Africans (Tanzania) (ALE — 61.8 years)
and Afro-Americans (ALE - 75.6 years) in a long age span of 20-80 years (Hansen et al.
2016). In comparison the TL in the USAs population of age range 19-93 years were longer in
Afro-Americans (ALE - 75.6 years) than in whites (ALE — 79 years), although Afro-
Americans showed a faster rate of TL shortening (Hunt et al. 2008; Chen et al. 2011; data for

13



ALE in USA taken from Kenneth et al. 2016). In a similar study the same research group
again demonstrated that black people have longer telomeres than white people, age range of
19-77 years (Daniali et al. 2013). These differences among populations and ethnicity are
poorly understood. It seems that TL in leukocytes of the reviewed populations not always can
be explained by life expectancies, while, there is a correlation between age and TL in
peripheral blood leukocytes, with correlation coefficient ranged from —0.088 to —0.838 in
different studies (reviewed in Miiezzinler et al. 2013). In most studies, short telomeres in
circulating leukocytes are also associated with high mortality (Cawthon et al. 2003; Rode et
al. 2015). Though, telomere shortening may not affect mortality per se but could be controlled
by progression of senescence that leads to mortality by other mechanisms (Cawthon et al.
2003). Life expectancy also depends on dynamics of TL or how fast telomeres shorten for
each individual as a study on birds has shown (Bize et al. 2009). All these observations of
different TL and life expectancies among populations could be explained by differences in
genetics, sex, ethnicity, nutrition, economic and social status or stress level and health care
systems. It can also be due to lifestyle choices including smoking, alcohol consumption,
physical activities, body mass index, diet and supplement intake and environmental pollution
that can influence the disparity (reviewed in Epel et al. 2004; Lin et al. 2012; Miiezzinler et al.
2013 and Vidacek et al. 2017). For example, Crous-Bou and colleagues showed that women
who practised a Mediterranean diet had longer telomeres than those who did not (Crous-Bou
et al. 2014). There is evidence that famine can also influence TL. For men who have
experienced starvation, TL was shorter than for those who have not. It also seems that men
whose parents had experienced recent starvation before conception had shorter telomeres

(Kobyliansky et al. 2016).

1.3. Mitochondria

Mitochondria (Fig. 3) are very essential organelles of an eukaryotic cell. It has many
functions that ensure differentiation, survival and death of cells. Mitochondria work as factory
for ATP (adenosine triphosphate) and metabolites for the cell survival, and release of
cytochrome ¢ to initiate cell death. Mitochondria work as signalling organelle releasing
proteins, ROS, metabolites or by serving as a scaffold to configure signalling complexes
(reviewed in Chandel, 2014). It also regulates bioenergetics through cytosolic calcium

regulation (Rizzuto et al. 1993). Mitochondria with its providing of ATP and other
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components affect gene expression, chromatin modification related to transcriptional

activation, transcription elongation and even alternative splicing (Guantes et al. 2016).

’
. »
.

Fig. 3. Mitochondria in cells around nucleus, visualized by MitoTracker Red. Pictures from a private collection
of the author.

It has been shown that mitochondria are required for pro-ageing traits of the senescent
cell phenotype (Correia-Melo et al. 2016). With age mitochondria become more ineffective
and potentially toxic. And they can induce apotheosis or necrosis that can lead to decrease of
functions for tissue and the whole body. As oxidative phosphorylation (OXPHOS) takes place
in the mitochondria it leads to ROS production which oxidize macromolecules in there and
can lead to mtDNA mutations. During ageing mutations in mtDNA accumulates and
OXPHOS becomes less effective leading to higher ROS production and that can lead to cell
senescence and death (Wallace et al. 2010; Green et al. 2011; Mikhed et al. 2015).
Mitochondria are involved in processes of inflammation and autophagy or mitophagy that
eliminates dysfunctional mitochondria. Induction of these processes can help to sustain a
longer life span because it destroys damaged mitochondria and cells and helps to adapt to
stress for the cell. With age mitophagy and autophagy decreases as a result mutated mtDNA
and dysfunctional proteins accumulate and cells age (Levine and Kroemer, 2008; Lipinski et

al. 2010).
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1.4. Mitochondrial DNA

Mitochondrion contains its own circular double-stranded DNA and it is maternally
inherited (Giles et al. 1980). It is 16,569 bp long and encodes only 37 genes (Fig. 4A).
MtDNA codes the 12S and 16S rRNAs genes, 22 tRNAs, 13 subunits of respiratory chain
(RC) - seven subunits of complex I (NADH-ubiquinone oxidoreductase, ND1, 2, 3, 4, 4L, 5
and 6), one subunit of complex III (cytochrome b), three subunits of complex IV (cytochrome
¢ oxidase (COX) I, II and III), and two subunits of complex V (ATPase subunit 6 and 8), 79
subunits are encoded by the nuclear genome (Anderson et al. 1981). 16S also encodes
humanin peptide and then is transported into intra- and extra-cellular compartments and
function as mitochondrial-nuclear retrograde signalling (Hashimoto et al. 2001; Lee et al.
2013). Also, cox! subunit on the antisense strand possibly encodes a short protein named Gau
(Gene Antisense Ubiquitous) (Faure et al. 2011). The genome structure of the two strands is
distinguished by their nucleotide composition - heavy strand (H-strand) is guanine rich,
compared with the cytosine rich light strand (L-strand), 28 genes are on the H-strand and 9 on
the L-strand. MtDNA genes lack introns and some genes, like MTATP6 and MTATPS, have
overlapping regions. Most genes are very close to each other, separated by one or two non-
coding base pairs. MtDNA contains only one major non-coding region (NCR) in which are
located the displacement loop (D-loop), 1123 bp long, mostly is in a triple-stranded DNA
configuration and includes hypervariable (HVS) regions. The D-loop contains a site of
mtDNA replication initiation (On - origin of heavy strand synthesis) and is also the site of
both H-strand transcription promoters (HSP1 and potential HSP2). Oy is located two thirds of
the lengths from On. MtDNA replication is not driven by the cell cycle or cell division and is
continuously recycled. MtDNA is replicated by DNA Polymerase y (Poly y) with a help of
Twinkle helicase and mtSSB (single-stranded DNA-binding protein). The mitochondrial
genetic three nucleotide code for amino acids is different from nuclear DNA code

(Graziewicz et al. 2006; reviewed in Chinnery and Hudson 2013).
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Fig. 4. A: Structure of the mtDNA. Picture adapted from Scarpulla, 2008. B: Polymorphisms of mitochondrial
haplogroups mapped on mtDNA. Picture adapted from Geni (www.geni.com).

Most of the mammalian cells contains hundreds to more than a thousand mitochondria
each, and each organelle harbours 2-10 copies of mtDNA (Robin and Wong 1988). The
mtDNA amount in a cell is heritable, implying genetic regulation of mtDNA levels, and the
mtDNA CN in peripheral blood cells is higher for women than men (Ding et al. 2015; Knez et
al. 2016). There are debated results from different studies regarding how mtDNA CN in blood
cells changes during human ageing. A substantial age-related decline in the abundance of
mtDNA has been shown between 17 to 93 years of age (Mengel-From et al. 2014; Ding et al.
2015; Zhang et al. 2017), and low mtDNA content in blood cells was associated with familial
longevity in a study from the Netherlands. Based on their results, the authors discussed the
necessity of preserving mitochondrial functions rather than enhancing mitochondrial
biogenesis via the YY1 transcriptional repressor protein (van Leeuwen et al. 2014). It was
reported that an increase in the mtDNA CN is associated with elevated oxidative stress in the
human tissues of aged individuals (Barrientos et al. 1997a; Barrientos et al. 1997b). In
contrast, He et al. have shown that mtDNA content in blood samples was higher for healthy
centenarians than for the younger age groups (He et al. 2014), while Moore and colleagues
have reported that association of mtDNA CN with age was not statistically significant among
participants of the INCHIANTTI study (age range: 29-96) (Moore et al. 2018). High mtDNA
CN in leukocytes in many studies has been associated with better health, including higher
cognition and lower mortality (Lee et al. 2010; Kim et al. 2011; Mengel-From et al. 2014;
Ashar et al. 2015). In a recent study, higher mtDNA was associated with a significantly lower
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risk of both solid tumours and other diseases, independent of age and sex (Memon et al.
2017). Centenarians have increased mitochondrial mass and higher ATP level in primary
cultures of fibroblasts isolated from the skin (have defective mitochondria but a preserved
bioenergetic competence) indicating that longevity is characterized by a preserved
bioenergetic function likely attained by a successful mitochondrion remodelling that can
compensate for functional defects through an increase in mass, i.e. a sort of mitochondrial
"hypertrophy" (Sgarbi et al. 2014). One reason could be due to compensatory mechanisms in
centenarians’ cells both for higher mtDNA and ATP level, as a normal level of ATP is
necessary for a cell to progress through the G1 phase of the cell cycle to proliferate and
regenerate, which could help the cells to be more fit during ageing by providing energy
reserves (Mandal et al. 2005; Owusu-Ansah et al. 2008; Moiseeva et al. 2009). On the other
hand, high mtDNA CN in blood cells was associated with breast, prostate, gastric and
colorectal cancer risk (Thyagarajan et al. 2013; Zhou et al. 2014; Zhu et al. 2017; Kumar et al.
2017). Additionally, stress and depression were associated with increased mtDNA amounts in
blood cells (Cai et al. 2015) as well as other health-related factors that were shown to have an
influence on mtDNA quantity in human cells (reviewed in Malik and Czajka 2013). There are
several molecular factors in a cell that can regulate mtDNA CN, such as p53, mitochondrial
transcription factor A (TFAM), Twinkle helicase and ATP synthase (Kulawiec et al. 2009;
Ekstrand et al. 2004; Tyynismaa et al. 2004; Fukuoh et al. 2014; Moraes 2001). It was also
shown that mtDNA CN is regulated by expression of the only mtDNA polymerase y subunit
A (Poly-A) in a cell-specific manner by nuclear DNA methylation (Kelly et al. 2012). Also,
other factors like lifestyle can influence mtDNA amount. Obesity, weight gain and pack years
of smoking were associated with reduced mtDNA CN (Meng et al. 2016). Reduced sleep
duration and efficiency were associated with lower mtDNA amount (Wrede et al. 2015) but
regular exercise for postmenopausal women increases mtDNA CN in leukocytes (Chang et al.

2016).

MtDNA single nucleotide mutations and deletions as well as their accumulation
(especially the 4977 bp deletion) were associated with a normal ageing process in several
studies and have been proposed either as a useful marker of natural ageing in human subjects
or as a factor affecting human longevity (Cortopassi et al. 1992; Meissner et al. 1997; Linnane
et al. 1989; Raule et al. 2014; reviewed in DeBalsi et al. 2017). However, mtDNA mutation

sites, accumulation rate and impact on cell functionality are affected differently in each tissue

18



type and there is a great importance of the individuals® ethnic background (Samuels et al.
2013; Raule et al. 2014). Research on the mtDNA mutation signatures suggest a limited role
for ROS-induced mutation (Kauppila and Stewart 2015), and accumulation of mtDNA
mutations can be related to the down regulation of DNA repair that occurs with cellular
senescence. Mice with defective Poly show aged phenotypes and increased mutational load in
the mtDNA (Trifunovic et al. 2004). Somatic mutations can be unevenly distributed and
accumulated clonally in cells, causing a mosaic pattern of respiratory chain deficiency in
tissues, or accumulation can occur during germline, embryonic or foetal development, in
which case, the distribution of mutations would be even between tissues (Trifunovic et al.

2004, Greaves et al. 2014).

Mitochondrial heteroplasmy is the presence of multiple mtDNA variants with
mutations or SNPs in a single cell or among cells within an individual (Potter et al. 1975).
The frequency of heteroplasmy is the same between women and men (de Camargo et al.
2011; Ding et al. 2015). The highest degree of polymorphisms is concentrated within two
hypervariable segments of the control region: hypervariable segment I (HVS-I) and
hypervariable segment II (HVS-II) (Wilkinson-Herbots et al. 1996). The results of studies
looking on the association between mtDNA heteroplasmy and population ageing are not fully
consistent. Blood cells mtDNA heteroplasmy becomes more common with increasing age
(Ding et al. 2015; Sondheimer et al. 2011; Zhang et al. 2017), and increased mtDNA
heteroplasmy was associated with impaired functioning and increased risk of mortality
(Tranah et al. 2017). MtDNA heteroplasmy at specific DNA sites in platelets was associated
with reduced neurosensory and mobility functions in older people (Tranah et al. 2015).
However, there is also possibility that some mtDNA polymorphisms are selected with age and
can compensate for the defects induced by various types of mtDNA mutations, helping an
individual to survive longer (Ono et al. 2001; Sondheimer et al. 2011; Rose et al. 2007).
Several studies have shown that the total heteroplasmy values and patterns are maintained in
centenarian families (Rose et al. 2007; Giuliani et al. 2014). It was reported that heteroplasmy
can be inherited from a mother with 30% possibility; however, in 70% of cases, a mother does
not pass the mutated site to her children, and heteroplasmic SNP changes can accrue

spontaneously during the lifetime (Sondheimer et al. 2011; Ding et al. 2015).
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In diabetic patients, a correlation between the mtDNA CN and SNPs in mtDNA has
been observed in blood vessels tissue (Chien et al. 2012). Measuring mtDNA CN by shotgun
sequencing, Wachsmuth and collaborators found that there was a correlation between mtDNA
CN with the total number of heteroplasmies in blood and skeletal muscle cells; in the other
tissues, heteroplasmy was correlating with age, indicating that this correlation could be
explained mostly by age and not as much by the increase in the number of heteroplasmic sites
(Wachsmuth et al. 2016). Another study recorded lower mtDNA CN in individuals having
higher numbers of heteroplasmies but posits that decrease of age-related mtDNA CN and

increase of heteroplasmy are independent from one another (Zhang et al. 2017).

The mtDNA sequence is diverse among populations and individuals. There are 9
major mitochondrial hgs found in the human population of Europe (H, I, J, M, T, U, V, W,
and X) (Torroni et al. 1994; Richards et al. 1998). A human mtDNA hg is defined by
differences in mtDNA sequences or SNPs. Previous studies showed that the mitochondrial
genotype, or hg, can be associated with longevity and pathologies that can influence healthy
ageing and mortality; however, the observed results are controversial. It has been detected that
defined mutations in mtDNA which are associated with hgs D, D1, D4 (more abundant in
Asian populations) and H1 (in European populations) are more frequently found among
centenarians, while the frequencies of other hgs such as M9, N9 and B4a (which are more
abundant in Asian populations) decrease in a centenarian group (Tanaka et al. 1998; Tanaka et
al. 2000; Cai et al. 2009). Gender may also play a role in the distribution of hgs among
centenarians (Fernandez-Moreno et al. 2017). In Amish populations, the X hg was associated
with successful ageing whilst hg J had opposite effects (Courtenay et al. 2012). Regarding
European populations, it has been observed that in Italy hg J is more abundant among
centenarians, while hg U frequency decreases (de Benedictis et al. 1999; Rose et al. 2001). A
study that has been performed in Finland showed that hgs H and HV were less frequent
among centenarians than hgs U, J and U8 (Niemi et al. 2003). Nevertheless, in Spain, Pinos et
al. have not identified such observations in relation to hg J and have suggested that longevity
is population-specific (Dato et al. 2004; Pinds et al. 2012). In relation to hgs H and U, other
researchers have not found significant associations with longevity (de Benedictis et al. 1999;
de Benedictis et al. 2000; Pinds et al. 2012). Benn with colleagues also made an assumption
that there are no associations of hgs with mortality and longevity (Benn et al. 2008).

Beckstead et al. indicated that individuals with hg H may live longer in comparison to
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individuals with hg U under calorie restriction (Beckstead et al. 2009). Some researchers say
that human adaptation to the chronic cold and irregular caloric availability, due to changes in
seasons, could influence the evolution and distribution of mitochondrial hgs and longevity,
especially in the North (Wallace 2005; Robine et al. 2012). In various studies, it has been
revealed that hgs are definitely associated with healthy ageing and may have a protective
effect on the occurrence of some diseases and tumours (e.g., Czarnecka and Bartnik 2011).
For example, Hg J is associated with Leber’s hereditary optic neuropathy (LHON), while hg
H has a protective effect on LHON (Torroni et al. 1997; Hudson et al. 2007). In another study,
there was no such observation; although, the lack of observation could be explained by the
rarity of hg J in the population (Aitullina et al. 2013). Hg J shows a protective effect against
the development of osteoarthritis (Ferndndez-Moreno et al. 2017). Rosa et al. found that hg
H1 has a protective effect on ischaemic stroke while hgs HV and U have been involved in
increased risk of it (Rosa et al. 2008). Hg U and its branch U8 could possess protective
properties against Alzheimer’s disease in patients with the €4 allele (Carrieri et al. 2001).
Furthermore, the results of two studies showed the protective properties of hgs U8 and J
against Parkinson’s disease in Italians and Poles, respectively (Ghezzi et al. 2005; Gaweda-
Walerych et al. 2008). In contrast, a newer study from the UK did not find any linkage
between hgs and Parkinson’s disease (PD), Alzheimer’s disease (AD), frontotemporal
dementia-amyotrophic lateral sclerosis (FTD-ALS) or Creutzfeldt Jacob disease (CJD) (Wei
et al. 2017). Hg T is associated with coronary artery disease (CAD) and diabetic retinopathy
(Kofler et al. 2009). Moreover, among different types of tumours, some hgs may play a dual
role of being either protective or not. Vulvar, prostate and renal cancers are associated with hg
U, while hg H is more often represented in individuals suffering from head and neck cancers.
However, hg H is underrepresented in other cancers such as vulvar, breast and endometrial

cancers (Booker et al. 2006; Klemba et al. 2010).

The opinion exists that hgs might play a protective role for a cell against ROS because
of greater heat generation (higher electron transport rates, looser coupling or partially
uncoupled OXPHOS). Haplogroup-defining mutations may affect ATP synthesis because
certain mitochondrial variants are biochemically different (Tanaka et al. 1998; Tanaka et al.
2000; Cai et al. 2009; Fernandez-Moreno et al. 2017). Mitochondrial hgs have different
coupling efficiencies (the percentage of oxygen consumption used for ATP synthesis rather

than heat generation) or mitochondrial production of ROS. Reduced mitochondrial coupling
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in aging tissues has been demonstrated. In addition to the negative consequences of
mitochondrial uncoupling, mild uncoupling has been shown to reduce the generation of ROS
and provide protection against age-related disease. For the cold-adapted hgs, uncoupling
mutations would produce less ATP per calorie consumption, which allows greater heat
generation and more oxidization, and fewer ROS would be formed; for example, hg H has
higher ATP production in comparison to hg J (Mishmar et al. 2003; Baudouin et al. 2005;
Wallace 2005; Brand 2000). Hgs J and U are uncoupled hgs, while hg H is tightly coupled
and therefore produces more ROS and less heat. It has been proven that cybrids of hgs H and
U had different amounts of mitochondria, where hg U had fewer mitochondria than hg H. Hg
U had lower levels of cytochrome » mRNA, rRNA, protein synthesis and mitochondrial inner
membrane potential (MIMP) than hg H (Martinez-Redondo et al. 2010; Gémez-Duran et al.
2010). In another case due to increased binding of TFAM cybrid cells harboring hg J had two-
fold increase of mtDNA amount in comparison with cybrid cells containing hg H (Suissa et
al. 2009). The H hg had higher peroxide and superoxide anion production and apoptosis but
lower oxidative stress than the J hg (Fernandez-Moreno et al. 2017). Martinez-Redondo et al.
have also shown that hg H had higher mitochondrial oxidative damage than hg J. In their
study, hg H showed higher oxygen uptake than other hgs and therefore more ROS production
was observed; the next highest ROS producer was hg V followed by hgs T and U; but the
lowest was hg J (Martinez-Redondo et al. 2010). U3a and J2b subhaplogroups with a C150T
SNP displayed lower ROS production than hgs without the C150T SNP, and this SNP was
associated with longevity (Chen et al. 2012; Zhang et al. 2003). Other research groups found
that hg H had more increased mitochondrial function than hg U in human skeletal muscle
fibres (Larsen et al. 2014). Studying sperm mobility, scientists found that individuals with hg
H had the highest activity of spermatozoids, compared to that of hg V and the lowest activity
of spermatozoids has been detected for hg T, which is directly connected with the

functionality of the OXPHOS system (Ruiz-Pesini et al. 2000).

By using shotgun sequencing, in recent studies no difference has been found in
mtDNA CN among H, U, T, K and J hgs (Wachsmuth et al. 2016; Zhang et al. 2017).
Although in another research, it was showed that hgs USA1 and T2 were significantly
associated with higher mtDNA CN by changing the COXIII and COXI amino acid sequences,
respectively (Ridge et al. 2014). Additionally, the frequency of heteroplasmy among hgs did
not differ in several studies (de Camargo et al. 2011; Ramos et al. 2013), but one study
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claimed that the HV hg had more frequent heteroplasmy while hgs J, T and U8 had less
heteroplasmy (Ding et al. 2015). Previously, Fernandez-Moreno et al. showed that individuals
with hg J had significantly longer telomeres than non-J carriers (Ferndndez-Moreno et al.

2011).

1.5. Interrelation between telomeres and mitochondria

Heap of evidence suggests a crucial role for signalling from the nucleus to
mitochondria in ageing (reviewed in Fang et al. 2016). Telomere theory declares telomere
shortening as the main trigger and the best marker of cellular senescence and ageing, an
adjacent theory is oxidative stress or mitochondrial theory (reviewed in Bernadotte et al.
2016). And for some time, scientists are trying to find a trade that links telomere attrition to
metabolic compromise, which is central in cellular functional decline during ageing.
Mitochondrial dysfunction leads to perturbations on the electron transport chain resulting in
increased ROS generation and reductions in ATP level (Balaban et al. 2005; Moiseeva et al.
2009). Additionally, increased mitochondrial density and biogenesis are associated with
increased ROS production due to an increased number of sites where ROS generation can
occur (Passos et al. 2007; Yoon et al. 2010). This, in turn, can further induce DNA damage,
and it has been shown that oxidative stress is associated with increased telomere attrition (von
Zglinicki 2002; Kawanishi and Oikawa 2004). One of the first studies that reported a
connection between mtDNA mutations causing respiratory chain disorders and telomere
shortening was about mutations in the mtDNA of LHON, mitochondrial encephalomyopathy,
lactic acidosis, and stroke-like episodes (MELS) syndrome patients; the researchers observed
shorter telomeres in patients than in a control group (Oexle and Zwirner 1997). Liu et al., at
the beginning of this century, demonstrated that mitochondrial dysfunction generates ROS
and leads to chromosomal instability through telomere attrition (Liu et al. 2002). The study of
Passos and colleagues also showed connections among TL with mitochondrial genetics and
ROS in later years (Passos et al. 2007). On opposite side, an evidence exists that shortening of
telomeres is a causal factor for mitochondrial dysfunction. Short telomeres, which are sensed
as double-strand breaks and genomic DNA instability, suppress peroxisome proliferator-
activated receptor gamma, coactivator 1 alpha and beta (PGC-10/B, which regulate a vast
number of mitochondrial functions, including mitochondrial replication/transcription,

OXPHOS, oxidative stress and gluconeogenesis (e.g., Wu et al. 1999)) action via the p53
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transcription factor (Chin et al. 1999; Sahin and Depinho 2010; Sahin et al. 2011). Short
telomeres cause increased p53 activity and high levels of apoptosis (Flores and Blasco 2009),
as well as up-regulation of the mTOR and Akt survival pathways and down-regulation of cell
cycle and DNA repair pathways (Schoeftner et al. 2009). Further work by Sahin and
colleagues confirmed that telomere dysfunction is associated with reduced mtDNA content,
while p53 deficiency partially rescues the transcriptional regulation of PGC-1a/B and mtDNA
CN (Sahin et al. 2011). P53 also contributes to the stress-induced activation of subtelomeric
region and TERRA (telomeric repeat-containing RNA)-like transcripts from multiple
chromosomes (Tutton et al. 2016). Subtelomeres are segments of DNA between telomeric
caps and chromatin (Mefford and Trask 2002). TERRA has important roles in the regulation
of telomerase and in arranging chromatin remodelling throughout development and cellular
differentiation. The accumulation of TERRA at telomeres can also interfere with telomere
replication, leading to a sudden loss of telomere tracts (reviewed in Luke et al. 2009). P53-
binding sites in human subtelomeres provide enhancer-like functions that have direct impact
on the local chromatin structure and DNA damage response at subtelomeric DNA (Tutton et

al. 2016).

There are suggestions that p53 influences telomere DNA structure and promotes
telomere DNA stability, and its binding can be induced by numerous stress conditions (Tutton
et al. 2016). In contrast, in mitochondria, p53 plays a direct role in the mito-checkpoint
response and positively regulates mtDNA CN; the loss of p53 leads to the reduction of
mtDNA content in MEF cells (Kulawiec et al. 2009). Consistent with the mtDNA CN
reduction, p53 null cells show a decrease in mitochondrial membrane potential and reduction
in mitochondrial mass, linking p53 to promotion of normal mitochondrial function (Lebedeva
et al. 2009). P53 improves the accuracy of mtDNA synthesis, possibly by providing a
proofreading function for Poly y (Achanta et al. 2005; Bakhanashvili et al. 2008). P53
regulates mitochondrial respiration directly by interacting with synthesis of cytochrome c
oxidase 2 (SCO2) and affects COX complex in the mitochondria (Matoba et al. 2006). In
addition, p53 can act as a pro-oxidant meaning that the loss of p53 results in reduced
mitochondrial superoxide and disrupted cellular ROS homeostasis (Lebedeva et al. 2009).
Safdar et al. have shown that p53 translocates to the mitochondria and facilitates mtDNA
mutation repair and mitochondrial biogenesis in response to endurance exercise in mice.

These results suggest that in cells under certain conditions, more p53 is located in
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mitochondria than in nuclei, and in this way, p53 helps to maintain healthier cells, longer
telomeres, less mtDNA mutations and prevents apoptosis (Safdar et al. 2016). Alternatively,
another study has found that overexpression of p53 negatively affects the mtDNA abundance
in HepG2 cells. They showed that overexpression of p53 negatively affects normal
mitochondrial homeostasis, decreases mtDNA abundance, and enhances sensitivity to
nucleoside reverse transcriptase inhibitors that deplete mtDNA (Koczor et al. 2012). These
studies show how complicated is p53 pathways in a cell and how much is still to find out how
it influences telomeres and mtDNA (reviewed in Park et al. 2016). Pieters et al. showed that
SIRTI also plays a role in the telomere-mitochondrial ageing axis. In their work, TL was
positively correlated with SIRT1, which deacetylates and inactivates pS3 protein, and NRF1
(involved in regulation of mtDNA transcription and replication) and negatively correlated
with p53 expression, while mtDNA content was positively correlated with SIRT1 and NRF1
expression (Pieters et al. 2015). SIRT1 is involved in glucose homeostasis as a modulator of
PGC-10, and it deacetylates p53, leading to reduced apoptosis (Vaziri et al. 2001; Rodgers et
al. 2005); extra expression of SIRT1 enhances mitochondrial function by upregulating
mitochondrial biogenesis and degradation, thus improving oocyte development (Sato et al.

2014).

The first observation of TL and mtDNA CN correlation in peripheral leukocytes in
population studies comes from studies of patients with diseases linked to alterations of these
two cell components such as type 2 diabetes (Monickaraj et al. 2012). A study about
depression found no correlation: the authors reported shortened telomeres but no reduced
mtDNA CN in leukocytes in patients with depressive symptomology (Verhoeven et al. 2018),
while childhood adversity and lifetime psychopathology were each linked to shorter telomeres
but higher mtDNA CN in leukocytes (Tyrka et al. 2016). In a study about cognitive
dysfunction in individuals over 75 years of age authors saw positive relationship between TL
and mtDNA in blood samples after adjustment for age and gender; and for individuals with
conative dysfunction both high TL and high mtDNA CN amount were observed, speculating

that it might be due to increased oxidative stress and inflammation (Lee et al. 2017a).

Data from different tissues are also available. Patients with Fuchs’ endothelial corneal
dystrophy (FECD) had higher mtDNA levels but shorter telomeres in endothelial cells

(Gendron et al. 2016) while in patients suffering mental disorders had shorter telomeres and
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lower mtDNA CN in post-mortem brains of people who had committed suicide (Otsuka et al.
2017). For people with colorectal carcinogenesis, a positive correlation depended on the stage
of the cancer in tubular adenoma and serrated polyp tissue. In normal and cancer tissues, the
correlation was positive, but in precancerous legions, the correlation was not observed,
suggesting that the disturbance of the telomere-mitochondrial axis by ageing or other factors
may be important in the development of carcinogenesis (Lee et al. 2017b). Jung et al. also
showed a sign of dynamic TL and mtDNA CN relationship. They found a positive correlation
in normal tissues and the intestinal type of gastric cancer but not in the diffuse type of the
disease (Jung et al. 2017). In addition, not only was mtDNA CN correlated with TL, but
mtDNA non-silent mutations had a negative correlation with TL in bone marrow and oral

epithelial cells in aplastic anaemia patients (Cui et al. 2014).

As in diverse pathologies and tissues the telomere-mitochondrial relationship can vary,
it is important to look if this connection is evident in general populations during the healthy
ageing process. The use of peripheral blood leukocytes for these studies could be argued as
not the ideal tissue as discussed above. However, this approach is widely used as the evidence
suggests that TL measurement in easily accessible tissues such as blood could serve as a
surrogate parameter for the relative TL in other tissues (Friedrich et al. 2000), and general
population peripheral blood mtDNA content is significantly associated with sex and age
(Knez et al. 2016). One of the first population studies in healthy humans came from Kim et al.
who showed a positive association between leucocyte TL and mtDNA CN in elderly women a
with an average age of 73 years, suggesting that telomere function might influence
mitochondrial function in humans (Kim et al. 2013). Other researchers have confirmed this
association in individuals aged 18 to 64 years (Tyrka et al. 2015) and individuals aged 60 to
80 years, suggesting that telomeres and mitochondria are co-regulated in humans (Pieters et
al. 2015). Additionally, Qiu and colleagues observed a positive correlation between TL and
mtDNA CN in leukocytes of pregnant women after adjusting for age and plasma vitamin B12
(Qiu et al. 2015). A positive association was found in children ages 6—12 (Alegria-Torres et
al. 2016). While the exact molecular mechanism underlying the telomeres-mtDNA
associations is not clear and more studies are required, it is even less know how it is in
nonagenarians (people between 90 and 100 years old) and centenarians (over 100 years old).
Telomere shortening might influence mtDNA amount or vice versa differently; these findings

could be partly explained by different polymorphisms in the mtDNA sequences (e.g., Niemi
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et al. 2005; Takasaki 2008; Guney et al. 2014), the diverse nuclear DNA SNPs and the
healthier lifestyle noted in these individuals compared with individuals who do not live over
90 years of age (e.g., Yashin et al. 2000; Debrabant et al. 2014; Gierman et al. 2014;
Govindaraju et al. 2015).
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2. MATERIAL AND METHODS

2.1. Description of samples from each publication separately

IL.

“Dynamics of telomere length in different age groups in a Latvian population”.
Blood samples were collected from healthy individuals, without any disorders
considered as telomere affecting, in the Latvian population aged from 20 to 100 years
old. In total, 121 individuals were enrolled in this study. These individuals belonged to
mitochondrial haplogroups, as follows: H (45%), U (25%), Y chromosomal Nlc
(40%) and Rlal (40%). All participants provided appropriate written informed
consent to use their phenotypic and genetic data, which were voluntarily provided via
detailed health and heredity questionnaires. The samples were divided into five age
groups: 2040 years (control group, n=32, there is no statistically significant
difference between 20-30 and 31-40 years, P= 0.4209), 60-70 years (n=21), 71-80
years (n=24), 81-90 years (n=19) and over 90 years (centenarians, n=25). Groups 41-
50 years and 51-60 years were not selected, because in the current study our focus of
interest was elderly individuals with age above 60 years due to the highest mortality
rate among the representatives of this age group in the Latvian population. The mean
gender ratios for this study was 64:36 (%) for females:males. The gender ratios
(females:males, expressed as percent) by group were 53:47, 67:33, 54:46, 79:21 and
72:28 for the 20—40 years, 60-70 years, 71-80 years, 81-90 years, and over 90 years
groups, respectively. For PBMC study 21 sample were obtained and divided in two
age groups (20-40 years and 65-85 years).

“Comparison of telomere length between population-specific mitochondrial
haplogroups among different age groups in a Latvian population”.
Blood samples were collected from healthy individuals, without any disorders
considered as TL affecting, in the Latvian population aged from 20 to over 90 years
old. In total, 772 individuals were enrolled in this study. All participants provided
appropriate written informed consent to use their phenotypic and genetic data, which
were voluntarily provided via detailed health and heredity questionnaires. The samples
for mitochondrial hgs were divided into three age groups: 20—45 years (control group,

n=378), 55-89 years (n=271), and over 90 years (centenarians, n=128). For 128
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I11.

samples TL was measured. These samples were divided into the same age groups: 20—
45 years (control group, n=37), 55-89 years (n=67) and over 90 years (centenarians,
n=25). A group 45-55 year was not selected, because in the current study our focus of
interest was elderly individuals with age above 60 years due to the highest mortality

rate among the representatives of this age group in the Latvian population.

“Linkage between mitochondrial genome alterations, telomere length and ageing
population”.

Blood samples were collected from healthy individuals from Latvian population
ranging ages from 20 to 100 years. In total, 210 samples were divided into three age
groups: 20-59 years (n=70, mean age=32 years, females=65%), elderly group (60-89
years, n=70, mean age=73 years, females=73%) and nonagenarians (90-100 years,
n=70, mean age=93 years, females=76%). All individuals were Caucasian. All
participants provided appropriate written informed consent to use of their phenotypic
and genetic data, which were voluntarily and anonymously provided via health and
heredity questionnaires. The samples and information about samples were obtained
from the Genome Database of the Latvian Population (VIGDB,
bmc.biomed.lu.lv/lv/par-mums/saistitas-organizacijas/vigdb/). None of the selected
individuals had reported any severe diseases during the medical examination. Some
individuals from the elderly group and nonagenarians had vision problems, hearing
loss, dizziness, arthritis, osteochondrosis and joint pain, fatigue and sleep disorders,
minor urinary tract or digestive tract disorders. None of the study participants had
Alzheimer’s disease, Parkinson disease or cancer — diseases associated with TL or

mtDNA alterations. No information of smoking and drinking habits was available.

2.2. Extraction of genomic DNA

Genomic DNA was extracted from the peripheral white blood cells using the standard

phenol—chloroform method as described in (Sambrook et al. 1989).

2.3. Southern blots of terminal restriction fragments (TRFs)

The method described in Kimura et al. work was used, with some modifications, to

determine TL. Briefly, a Southern blot of TRFs was conducted using a Telo TAGGG
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Telomere Length Assay kit (Roche, UK). Concentrated DNA (~1 pg) was digested with
restriction endonucleases Hinfl (10 U) and Rsal (10 U) (Kimura et al. 2010). Digested DNA
samples, a DNA size marker (GeneRuler 1 Kb DNA ladder, Thermo Scientific, Lithuania),
and the DIG Molecular weight marker (Roche, UK) were loaded into a 0.8% agarose gel and
run for 20 hours (19 V and 25 mA) to resolve fragment sizes. The DNA in the gel was then
depurinated in 0.25 M HCI for 10 min. Further, the gel with the samples was denatured in 0.5
L of 0.5 M NaOH and 1.5 M NacCl for two 20-min washes. The samples were neutralized in 1
L of 0.5 M Tris-OH containing 3 M NaCl (pH 7.5) for two 20-min washes. The DNA was
transferred to a positively charged nylon membrane (Amersham Hybond™-N*, GE
Healthcare Life Sciences, UK) for 2 hours using a vacuum blotter (VacuGene Pump,
Pharmacia Biotech, Sweden) with a 20x SSC transfer buffer solution that contained 0.3 M
sodium citrate and 3 M NaCl (pH 7.0). DNA was fixed to a membrane using a 30-sec UV
exposure, and the membrane was briefly washed in 2x SSC solution. The subsequent steps
were performed using the manufacturer’s protocol for the Telo TAGGG Telomere Length
Assay kit (Roche, UK). The membrane was visualized on a high performance
chemiluminescence film (GE Healthcare Life Sciences, UK). The film was scanned, and the
TRF signal was detected. DNA migration distances were measured using the Kodak Digital
Science D1 program (Kodak, US); the DIG ladder was used for molecular size reference. The
optical density of the DNA fragments was measured using the ImageJ software (Rasband,
1997-2014). TL was calculated wusing the following equation. mean TRF
length=%(OD1)/Z(ODi/Li), where ODi = optical density at position 1 and Li = TRF length at

position i.
2.4. Relative qPCR SYBR green telomere length quantification assay

Relative TL was measured as telomere repeat copy number relative to single gene
copy number (T/S ratio) using real-time polymerase chain reaction (QPCR) with the Maxima
SYBR green qPCR Master Mix (2X) (Thermo Scientific, USA). The forward and reverse
primers of telomeres for one reaction were as follows: Telol (200 nM), 5'-
GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT-3', and Telo2 (200 nM), 5'-
CCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA-3'". After a denaturation step at
95 °C for 10 min, DNA samples were incubated for 40 cycles at 95 °C for 10 s and 58 °C for

1 min. TL was normalized using the following forward and reverses primers for the B-globin
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gene in a separate run: Beta-globl (300 nM), 5'-GCTTCTGACACAACTGTGTTCACTAGC-
3, and Beta-glob2 (500 nM), 5-CACCAACTTCATCCACGTTCACC-3'. After a
denaturation step at 95 °C for 10 min, DNA samples were incubated for 40 cycles at 95 °C for
10 s and 56 °C for 20 s (Kim et al. 2013). The concentration of the DNA samples was 10
ng/uL in a 10 pL reaction. Each sample was run in triplicate. A no-template control and
duplicate calibrator samples were used in all runs to allow comparisons of the results across
all runs. A melting curve analysis was performed to verify the specificity and identity of the
PCR products. TL was calculated using threshold cycle values and the following equation:

relative TL=2 ACt(ACt=Ctp-globin—Ct telomeres).
2.5. Relative qPCR TagMan mtDNA copy number quantification assay

Relative mtDNA copy number was measured using qPCR with the Maxima
Probe/ROX qPCR Master Mix (2X) (Thermo Scientific, USA). MtDNA copy number amount
was normalized by simultaneous measurements of the nuclear gene Gapdh and the
mitochondrial D-loop. The forward and reverse primers for the Gapdh reaction (1250 nM
each) were GapdhF, 5-GAAGGTGAAGGTCGGAGT-3', and GapdhR, 5'-
GAAGATGGTGATGGGATTTC-3', respectively, and the TagMan probe was GapdhTqM
(250 nM), 5'-CAAGCTTCCCGTTCTCAGCC-3'. The forward and reverse primers (50 nM
each) for the mitochondrial D-loop were FmtMinArc, 5'-CTAAATAGCCCACACGTTCCC-
3’, and RmtMinArc, 5-AGAGCTCCCGTGAGTGGTTA-3’, respectively, and the TagMan
probe was PmtMinArc (250 nM) - 5'-CATCACGATGGATCACAGGT-3" (Phillips et al.
2014). The DNA concentration for the samples was 10 ng/uL in a 15 pL reaction. After a
denaturation step at 95 °C for 10 min, the DNA samples were incubated for 40 cycles at 95 °C
for 15 s, 57 °C for 30 s, and 72 °C for 30 s. Each sample was run in triplicate. A no-template
control and duplicate calibrator samples were used in all runs to allow for comparison of
results across the runs. MtDNA copy number was calculated using threshold cycle values and

the following equation: relative copy number = 2ACt(ACt=CtGapdh—CtD-loop).
2.6. Detection of heteroplasmy

The presence of mtDNA heteroplasmy was determined using the SURVEYOR™
Mutation Detection Kit, which is based on the use of a mismatch-specific endonuclease,

SURVEYOR Nuclease (Transgenomic, USA) (Bannwarth et al. 2006). This kit detects
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heteroplasmy as low as 5% and was our choice having been tested it in our previous work
(Pliss et al. 2011) although there are certain limitations using this kit (Yen et al. 2014). Due
to restricted amount of DNA available for this study only HVS-I region was tested. This
region was chosen due to the possible presence of a higher number of heteroplasmic
polymorphisms (Vigilant et al. 1989, Ngili et al. 2012). The DNA fragment encompassing the
mtDNA HVS-I between nucleotide positions (nps) 16024—16390 was amplified and
sequenced in all samples using forward (F-HVS-I) and reverse (R-HVS-I) primers (200 nM
each) (Vigilant et al. 1989) in final volume of 25.5 pL containing 10-50 ng DNA, 1.5 mM
MgS04, 1x Optimase reaction buffer, 10 mM each dNTP, 1.25 U/uL. Optimase polymerase
(Transgenomic, USA). The amplification conditions: denaturation at 94 °C for 2 min,
followed by 30 cycles at 94 °C for 30 s, 56 °C for 30 s and 72 °C for 90 s, and final
elongation at 72 °C for 5 min. Negative and positive controls were prepared for amplification.
The PCR products were heated to denature the DNA and were then slowly cooled to room
temperature to allow for reannealing of the DNA strands using the following protocol: initial
denaturation at 95 °C for 2 min, followed by a 95 °C to 85 °C (-2 °C/s) gradual temperature
decrease, and then a 85 °C to 25 °C (—0.10 °C/s) temperature decrease. Afterwards, products
were incubated with Surveyor Enhancer S 0.5 pl and Surveyor nuclease S 0.5 uL at 42 °C for
20 min; 1 pL of stop solution was added at the end of reaction. The samples were analysed by

a 6% polyacrylamide gel electrophoresis.
2.7. Mitochondrial genotyping

To confirm the hg affiliation of mitochondrial sequences, hierarchical PCR—RFLP
analysis was performed using 17 restriction endonucleases: Alul, Avall, Ddel, Bsh1236l,
Haelll, Hhal, Hinfl, Mbol, Rsal, Nlalll, Accl, BstOl, Msel, Alw44l, Sspl, Eco471, and BsuRI
(van Oven and Kayser 2009). The classification of hgs was based on their position in the
hierarchy of the mitochondrial phylogenetic tree (www.phylotree.org, van Oven and Kayser

2009).
2.8. Statistical analysis

The statistical significance of the differences between the observed distributions of
mitochondrial hgs in three age groups was evaluated with the G-test using the R 3.1.1 (R Core

Team, 2014) software program. Linear regression and correlation, unpaired two-tailed t-test
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and Analysis of variance (ANOVA) was performed using GraphPad Prism version 5 for
Windows, GraphPad Software (La Jolla California USA, www.graphpad.com). Data were
expressed as means = SEM (standard error of the mean) +SD (standard deviation) and

differences of P<0.05 were considered significant.
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3. RESULTS

I Dynamics of telomere length in different age groups in a Latvian

population

Highlights:
Part of the results from this publication was used in these theses.

1. Telomere length shorten with age as it was expected, and the smallest variability of

telomere length was absorbed in nonagenarian (in this paper referred as centenarian)

group.
2. 20% of the variation in telomere length was associated with ageing.

3. Telomere length was not significantly longer for any of gender.
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Abstract: The shortening of telomeres with ageing is a well-documented observation; however, the reported number of
nucleotides in telomeres varies between different laboratories and studies. Such variability is likely caused by ethnic dif-
ferences between the populations studied. Until now, there were no studies that investigated the variability of telomere
length in a senescent Latvian population of the most common mitochondrial haplogroups, defined as H (45%), U (25%),
Y chromosomal Nlc (40%) and Rlal (40%). Telomere length was determined in 121 individuals in different age groups,
including a control group containing individuals of 20-40 years old and groups of individuals between 60-70 years old,

71-80 years old, 81-90 years old, and above 90 years old. Telomere length was determined using the Southern blot te-
lomeric restriction fragment assay (TRF). Decreased telomere length with ageing was confirmed, but a comparison of cen-
tenarians and individuals between 60-90 years of age did not demonstrate a significant difference in telomere length.
However, significant variability in telomere length was observed in the control group, indicating probable rapid telomere
shortening in some individuals that could lead up to development of health status decline appearing with ageing. Telomere
length measured in mononuclear blood cells (MNC) was compared with the telomere length measured in whole peripheral
white blood cells (WBC) using TRF. Telomere length in MNC was longer than in WBC for the control group with indi-
viduals 20 to 40 years old; in contrast, for the group of individuals aged 65 to 85 years old, measured telomere length was

shorter in MNC when compared to WBC.

Keywords: Ageing, mononuclear cells, telomere length, TRF.

INTRODUCTION

Telomeres are the specialised chromosomal DNA-
protein structures that cap and protect the terminal regions of
eukaryotic chromosomes. The sequence of telomeric DNA is
(TTAGGG)n, and in humans its length ranges from 5 to 20
kb. Telomeres are dynamic structures that become shorter
with every division of a cell until a critical stage is reached
when the cell cannot divide anymore, which is thought to be
a consequence of ageing [1].

However, population studies of blood cells have demon-
strated that telomere length in one age group can be quite
diverse among different populations. Differences have been
observed between the French and the Italian populations,
with the French population containing longer telomeres in
comparison to the Italian population [2]. Analysis of te-
lomere length in different populations has shown that indi-
viduals from southern Europe possess shorter telomeres than
individuals from the Baltic region and that individuals from
the middle of Europe contain the longest telomeres [3].
However, another report that included 14 populations from
Europe showed that telomere length varied among popula-
tions, with the shortest telomeres measured in an Italian
population (5100 bp) and the longest telomeres measured in
a Belgian population (18640 bp). Telomeres were 7340 bp in
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an Estonian population, a geographically proximal popula-
tion to the Latvian population studied in this work. Similar
results were obtained for two subpopulations in Finland: in
an Oulu-based population the mean telomere length was
7620 bp, and in a Helsinki-based population the mean te-
lomere length was 12280 bp [4]. However, until now, there
were no studies concerning the variability of telomere length
in ageing in a Latvian population; the most common mito-
chondrial haplogroups were defined as H (44.5%), U
(25.4%), Y chromosomal Nlc (~38.6%) and Rlal (~39.6%).
Estonians: H (43.5%), U (26.9%), Y chromosomal Nlc
(30.6%) and Rlal (33.5%). Finns: H (40.5%), U (27.9%), Y
chromosomal Nlc (30.6%) and Rlal (33.5%) [e.g. 5, 6].

Peripheral white blood cells (WBC) consist of two cell
types, including mononuclear cells (MNC — T and B cells,
Plasma cells, NK (Natural killer) cells, Dendritic cells and
monocytes) and cells with segmented or granulated nuclei,
also known as granulocytes. WBC lifespan ranges from a
couple of hours, to days, to years for lymphocyte memory
cells, whereas the lifespan of granulocytes can be from a
couple of hours to several days [7]. Previous studies have
reported that telomere length in MNC is longer than in WBC
(9.4% longer) and bone marrow cells (2.7% longer) [8, 9].

The aims of this study were to determine telomere length
and observe any variation in telomere length in a senescent
Latvian population of the most common mitochondrial
haplogroups, defined as H (45%), U (25%), Y chromosomal
Nlc (40%) and Rlal (40%). Analysis of telomere length in
WBC and MNC in different age groups within the Latvian

© 2013 Bentham Science Publishers
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population enabled a comparison of the variability of te-
lomere length in the control group versus the age group con-
taining individuals who were at least 90 years old.

MATERIALS AND METHODS
Samples

Blood samples were collected from healthy individuals,
without any disorders considered as telomere affecting, in a
Latvian population aged from 20 to 100 years old. In total,
121 individuals were enrolled in this study. These individu-
als belonged to mitochondrial haplogroups, as follows: H
(45%), U (25%), Y chromosomal Nlc (40%) and Rlal
(40%). All participants provided appropriate written in-
formed consent to use their phenotypic and genetic data,
which were voluntarily provided via detailed health and he-
redity questionnaires. The samples were divided into five age
groups: 20-40 years (control group, n=32, there is no statis-
tically significant difference between 20-30 and 31-40 years,
P=0.4209), 60-70 years (n=21), 71-80 years (n=24), 81-90
years (n=19) and over 90 years (centenarians, n=25). Groups
41-50 years and 51-60 years were not selected, because in
the current study our focus of interest was elderly individuals
with age above 60 years due to the highest mortality rate
among the representatives of this age group in a Latvian
population. The mean gender ratio for this study was 64:36
(%) for females: males. The gender ratios (females: males,
expressed as percent) by group were 53:47, 67:33, 54:46,
79:21 and 72:28 for the 20-40 years, 60-70 years, 71-80
years, 81-90 years, and over 90 years groups, respectively.

Acquisition of Mononuclear Blood Cells (MNC)

Mononuclear blood cells (MNC — T and B cells, Plasma
cells, NK cells, Dendritic cells and monocytes) were ob-
tained from 21 samples in two age groups (20-40 years and
65-85 years) using ACCUSPIN System-HISTOPAQUE-
1077 tubes based on the manufacturer’s protocol (Sigma-
Aldrich, Germany). Five ml of fresh whole blood was poured
into the upper chamber of each pre-filled tube, and then cen-
trifuged at 1000 x g, at 18-26°C, for 50 minutes. After cen-
trifugation, the plasma layer was carefully aspirated with a
pipet to within 0.5 cm of the opaque interface containing the
mononuclear cells. The mononuclear band was carefully
transferred with a pipet into a clean centrifuge tube and was
washed by adding 10 ml of isotonic PBS. The cells were
resuspended by gentle aspiration with a pipet and were then
centrifuged at 250 x g, at 18-26°C, for 10 minutes. Samples
were stored at -20 to -70°C.

Extraction of Genomic DNA

Genomic DNA was extracted from the peripheral blood
white cells (WBC) and from MNC using the standard phe-
nol-chloroform method as described in [10].

Southern Blots
(TRFs)

of Terminal Restriction Fragments

Telomere length was detected via a Southern blot of ter-
minal restriction fragments (TRFs) using the Telo TAGGG
Telomere Length Assay kit (Roche, UK) according to the
method of Kimura et al. (2010) with some modifications.
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Seven pul of concentrated DNA (~1 pg) was digested with
restriction endonucleases Hinf I (10 U) and Rsa 1 (10 U) [8].
Digested DNA samples, a DNA size marker (GeneRuler 1
Kb DNA ladder, Thermo Scientific, Lithuania), and the DIG
Molecular weight marker (Roche, UK) were loaded into a
0.8% agarose gel and run for 20 hours with 19 V or 25 mA
to resolve fragment sizes. Afterwards, the DNA in the gel
was depurinated in 0.25 M HCI for 10 min. The gel with the
samples were then denatured in 0.5 M NaOH and 1.5 M
NaCl for 20 min and washed 2x with 0.5 L. Samples were
neutralised in 0.5 M Tris-OH containing 3 M NaCl (pH 7.5)
for 20 min and washed 2X with 1 L. The DNA was trans-
ferred to a positively charged nylon membrane (Amersham,
UK) for 2 hours using a vacuum blotter (VacuGene Pump,
Pharmacia Biotech, Sweden) with a 20x SSC transfer buffer
solution that contained 0.3 M sodium citrate dehydrate and 3
M NaCl (pH 7.0). DNA was fixed to a membrane using a 30
sec UV exposure, and then the membrane was washed in 2x
SSC solution. The subsequent steps were performed based
on the protocol for the Telo TAGGG Telomere Length As-
say kit (Roche, UK). The membrane was visualised on a
high performance chemiluminescence film (Amersham,
UK). The film was scanned, and the TRF signal was digit-
ised. DNA migration distances were measured using a Ko-
dak Digital Science D1 program using the DIG ladder for
molecular size reference. The optical density of the DNA
fragments was measured using the Image] program. Te-
lomere length was calculated by the following equation:
mean TRF length = (£(OD1i)/Z(ODi/Li), where ODi=optical
density at position i and Li is TRF length at position i.

Statistical Analysis

Linear regression and t-tests were performed using
GraphPad Prism version 5 for Windows, GraphPad Software
(La Jolla California USA, www.graphpad.com).

RESULTS

Telomere Length Variation and Distribution in Different
Age Groups in the Latvian Population

Statistically significant differences between the control
group (individuals aged 20-40 years old) and age groups,
containing individuals who were above 60 and 90 years old,
were observed; the results demonstrated an approximate
1037 bp difference in length (14.5%) between the control
group and these age groups. Comparison of the telomere
length variability within an individual age group demon-
strated that that the distribution of telomere length values
was greater in the control group (individuals 20-40 years old)
than in older age groups. The smallest variability of telomere
length values was observed among the centenarian group
(Fig. 1). The same trend was observed in previously reported
studies [11-13]. However, the approximate difference (1.9%)
between the centenarian group (with individuals over 90
years old) and groups with individuals aged from 60 to 90
years old was not significant. Similar observations were
shown in previous studies [14, 15]. There were no statisti-
cally significant differences observed between females and
males among different age groups under the study (Fig. 2).
Among the 121 analysed samples, the mean telomere lengths
for each group were as follows: 7132 bp (control group),
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Fig. (1). Telomere length and distribution of it in different age groups (with grouping procedure). The absolute value of the telomere length
of each individual sample and the mean = SD (standard deviation) are provided for each age group. The P-value of the comparison between
the control group (individuals 20-40 years old) and the 60-90-year-old group is <0.0001. The P-value of the comparison between the 60-70-
year-old age group and 71-80-year-old age group is 0.7015; 60-70 and 81-90 years groups P=0.3684; 60-70 years and centenarian groups
P=0.3299. The P-value of the comparison between the 71-80-year-old age group and the 81-90-year-old age group is 0.6472; 71-80 years and
centenarian groups P=0.6389. The P-value of the comparison between the 81-90-year-old age group and the centenarian group is 0.9476.
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Fig. (2). Comparison of telomere length between
SD, P=0.1193.

6243 bp (60-70-year-old group), 6142 bp (71-80-year-old
group), 6025 bp (81-90-year-old group), and 6038 bp (cente-
narians).

In the current study there was observed a correlation be-
tween age and telomere length (Fig. 3). Linear regression
analysis demonstrated this correlation with P<0.0001, R’=
0.1979. These results confirm that telomeres shorten during
ageing in a Latvian population. The R? value indicates that
20% of the variation in telomere length was associated with
ageing; however, there are also other genetic and/or non-
genetic factors that may have influenced the measured te-
lomere length.

females and males. F-female, M-male. The telomere length values are given as the mean £

Comparison of Telomere Lengths Between MNC and
WBC

Analysis of telomere length for 21 samples derived from
WBC and MNC demonstrated that telomeres from MNC
were longer than telomeres from WBC by 11.5% (Fig. 4).
The results of a t-test showed that the difference between
telomeres from WBC and MNC was statistically significant
(P<0.0001). Similar observations were reported by Sakoff et
al. 2002 [9].

Comparison of telomeres from these cell types in two
different age groups, i.e., the control group with individuals
aged 20-40 years and the group with individuals aged 65-85
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Fig. (4). Differences in telomere length between the peripheral white blood cells (WBC) and the mononuclear blood cells (MNC). The te-

lomere length values are given as the mean + SD, P<0.0008.
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Fig. (5). Differences in telomere length between the peripheral white blood cells (WBC) and the mononuclear blood cells (MNC) in two
different age groups. The telomere length values are given as the mean + SD. A: P< 0.0001; B: P=0.1890.

years old. The group with age 65-85 years was selected due
to the highest mortality rate observed in it suggested that
after 65 years of age telomere length decreases by a smaller
degree in MNC than in WBC (P=0.1890). This difference
was not statistically significant, and in some cases telomere
length in MNC samples was shorter than in samples from
WBC after 65 years (Fig. 5). To confirm or refute the pres-
ence of a statistically significant difference in telomere

length separately in the MNC and separately in the WBC
between the control group (20-40 years old) and the group
with individuals aged 65-85 years old, a t-test was performed
(Fig. 6). The results demonstrated a statistically significant
difference in MNC telomere length by age groups
(P=0.0428), but there was no significant difference in WBC
telomere length by age groups (P=0.7887).
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DISCUSSION

The average telomere length in the Latvian population is
6381 bp, and this study confirmed telomeric shortening with
increasing age. Many studies have shown that telomeres
shorten during ageing [e.g., 16, 17], and the results of the
current research showed the same relationship. Shortened
telomeres due to ageing are associated with higher rates of
mortality from different age-related pathologies, including
heart and vascular diseases, diabetes mellitus, Parkinson’s
disease, and Alzheimer’s disease, and other disorders [e.g.
18, 19]. The observation that centenarians had almost the
same telomere length as individuals from the 60-90-year-old
age groups may be explained by the assumption that at cer-
tain age telomere maintenance is more critical than the exact
telomere length [11, 17, 20]. In some studies were mentioned
that females possess longer telomeres than males but in the
current study this tendency was not observed [e.g. 21]. Our
results showed statically insignificant longer telomeres for
males that could be explained by sample ratio between the
genders, where male individuals formed a smaller proportion
in comparison to females.

Variability in telomere length within an individual age
group may be explained by the “selection hypothesis”, which
proposed that the centenarians harboured very long te-
lomeres, and variation in telomere length reduces with age
due to the selective loss of individuals with shorter telomeres

[11].

The telomere length of geographically proximal popula-
tions to Latvia, such as Estonian and Finish populations,
varied from 7340 bp to 12280 bp [4]. These differences
among populations are poorly understood. The evidence
could be explained by differences in genetics, nutrition, life
expectancies, economic and social status or stress level. This
phenomenon (telomere variation) could be elucidated by
these population differences, as telomere length is only one
important factor that influences ageing, which is a compli-
cated senescence process in humans. Most likely, every
population has its own specific determinants of telomere
length and cellular homeostasis [4, 22]. In Latvia, the aver-
age life expectancy is 72-73 years (78.4 years for females
and 68.8 years for males). In Estonia and Finland, the aver-
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Fig. (6). Comparison of telomere length from MNC and WBC in the control group (individuals aged 20-40 years old) and 65-85-year-old age
groups. The telomere length values are given as the mean + SD. A: P=0.0428 indicates that there was a statistically significant difference
between the 20-40-year-old and 65-85-year-old age groups for telomere length in MNC. B: P=0.7887 indicates that there was no statistically
significant difference between the telomere lengths in WBC for the 20-40-year-old and 65-85-year-old age groups.

age life expectancies are 75 and B0 years, respectively [23,
24]. Heart and circulatory diseases are associated with short-
ened telomeres [25], and there is a high mortality rate from
those diseases in Latvia; for every 100,000 inhabitants, 254.5
cases of heart disease(s) and 479.5 cases of circulatory dis-
eases are diagnosed. In Estonia 204.8 cases of heart dis-
ease(s) and 423.6 cases of circulatory diseases are diagnosed
per 100,000 people, and in Finland, 122.5 cases of heart dis-
ease(s) and 218.1 cases of circulatory diseases are diagnosed
per 100,000 people. Health care and socioeconomic status
are lower in Latvia in comparison to Estonia and Finland
[26]. Telomere length can be affected by lifestyle choices
including smoking and alcohol consumption.

It is not much studied how different haplogroups affect
telomere length but it is shown that there is association with
mitochondrial DNA (mtDNA) halplogrops and longevity
[27]. According to Fernandez-Moreno et al. (2011) study,
individuals with haplogroup J have longer telomeres than
non-J carriers, with explanation that haplogroup J carriers are
less prone to suffer oxidative stress that can affect telomere
length [28].

In this study, as in others by [29, 30], a difference be-
tween the telomere lengths found in WBC versus MNC cells
was reported (Fig. 4). It has been demonstrated that telom-
erase is active in activated T and B lymphocytes. Telomerase
becomes active when these cells perceive antigen. This func-
tion provides for their survival for several years, as well as
their ability to undergo clonal expansion [29, 31].

It is already known that the immune system loses its ef-
fectiveness during ageing. There is clear evidence that leuco-
cytes lose telomere length with age, as noted by Slagboom et
al. (1994) and Takubo et al. (2010) [12, 13]. In the present study,
the telomere length of MNC (including T and B, NK cells)
shortened more rapidly with age than telomeres in WBC
(including all cells: granulocytes and T, B, NK cells etc.)
cells (Fig. 6). One possible explanation could be age-
associated thymic involution theory. Weng et al. (1996)
demonstrated that the most active telomerase is in found
within thymocites (T cells in the thymus gland), and me-
dium-activity telomerase was found in T cells in the tonsil
gland; however, low or undetectable telomerase activity was
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found in quiescent peripheral blood T cells [32]. At birth,
when the thymus gland is fully developed, it weighs ap-
proximately 10 g. By the age of 50, fat accounts for more
than 80% of the total thymic volume. In childhood, tonsillar
involution proceeds at a rate of approximately 3% per year
until middle age; afterwards, it slows to 1% per year, accord-
ing to reports by [33-35]. With increasing age, thymic output
decreases, but as naive T cells are long-lived, this decreased
output does not affect immune system functions for some
time [36]. During ageing, the capacity to maintain telomere
length decreases due to the increasingly rapid rate of te-
lomeric shortening in MNC, which results in a reduction of T
cells clonal expansion.

Naive T cells have longer telomeres than memory and
effector T cells. During the ageing process, the number of
naive T cells decreases, but the number of memory T cells
stays more or less stable in peripheral blood [37, 38]. There-
fore, it may also influence telomere length in MNC cell
group.

With increasing age, NK cells lose telomere length and
telomerase activity [39]. Ageing can affect the rate of te-
lomeric shortening. Telomere length is longer in immature
NK cells than in mature NK cells. The ratio of immature to
mature NK cells in peripheral blood during ageing does not
change dramatically, but a higher number of immature NK
cells are present than mature NK cells [30]. Therefore, we
could suppose that by loosing telomere length during ageing,
NK cells could influence telomere length in MNC group.

Naive B cells and memory B cells have similar telom-
erase activities and similar telomere length in individuals of
the same age. However, during ageing the number of naive B
cells present in peripheral blood decrease, in contrast to the
number of memory B cells, which increase with age [31].
This implies that B cells do not affect the rate of telomere
length shortening during ageing in MNC group.

CONCLUDING REMARKS

Analysis of samples from a Latvian population confirmed
that during the ageing process, telomere lengths shorten but
that this process does not necessarily occur instantaneously
or at a specific age. Among centenarians, the variability in
telomere length is not significantly different from the other
age groups included in this study. The variability in telomere
length observed in the younger control age group may be
explained by the “selection hypothesis”, and this theory
should be further examined, taking into account the ethical

Comparison of two haematopoietic cell types, MNC and
WBC samples, demonstrated that the telomere length is
longer in MNC samples. However, the telomere lengths
measured in the MNC and WBC appear increasingly similar
to individuals within the age group at least 65 years old. In
comparison between two age-groups within a one type of
cells (MNC or WBC) the MNC group shows more rapid
telomere length shortening during ageing than WBC group.
It shows that there are molecular mechanisms that affect
telomere length in mononuclear immune blood cells more
strongly than other immune cell types during ageing.

Current Aging Science, 2013, Vol. 6, No. 3 249

All those mechanisms that are associated with telomere
elongation are lost during ageing in MNC cells, but the MNC
cells are proliferating also when individuals become older;
therefore, telomeres are getting shorter more rapidly, in addi-
tion, the amount of those cells is getting smaller. Other circu-
lating immune cells possess more or less stable telomere
length during ageing because they are not specifically acti-
vated after hematopoiesis for fission (as T and B lympho-
cytes) [40], and it keeps telomere length more constant,
which reflects to WBC group.
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II Comparison of telomere length between population-specific
mitochondrial haplogroups among different age groups in a Latvian

population

Highlights:

1. There was no disparity among mitochondrial haplogroups in different age groups. Hg
H was slightly more abundant among nonagenarians (in this paper referred as

centenarians).

2. There was no significant difference of telomere length among H, U, T, J, V and W

mitochondrial haplogroups.

3. There was also no difference of telomere length among mitochondrial haplogroups

after samples were divided into three age groups (20-45, 55-90 and 90-100).

4. There was no significant correlation among mitochondrial haplogroups, telomere

length and age in the sample cohort.
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Population studies have demonstrated that telomere length (TL) displays great diversity among different
populations. Previously described controversial findings associated longevity with specific mitochondrial
DNA haplogroups (hgs)(e.g., | and U). These observations may be influenced by population diversity, geo-
graphic location, and/or specific historic background. The aims of this study were to identify a specific
hg which correlates with aging in a Latvian populating and to evaluate the possible association of TL
variability with specific mitochondrial hgs. The results show no significant correlation between TL, mito-
chondrial DNA hgs and longevity. A slight increase in frequency was observed among centenarians of
hg H; however, these findings were not statistically significant. TL did not show any statically significant
difference, only hg W had slightly longer telomeres among others. An insignificant increase in TL was
observed in the 55-89 age group of hg W but in the <90 age group for hg | which also had the longest
TL in the 20-45 age group. In conclusion this study indicates that specific mitochondrial DNA hgs do not

have a significant, if any, influence on the variation of TL in Latvians.

© 2015 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Mitochondrial DNA (mtDNA) is maternally inherited, and many
inherited variants of mtDNA, i.g. hgs do exist, that are geograph-
ically distributed. Previous studies have shown that some of hgs
are associated with common complex traits and a possible con-
nection between age-related diseases, longevity, mitochondrial
haplogroup background and population divergences (e.g., Tanaka
et al,, 1998; Czarnecka and Bartnik 2011). A human mitochondrial
hg defines differences in human mtDNA by SNPs (single nucleotide
polymorphisms) which lead to amino acid changes within the
OXPHOS (oxidative phosphorylation) respiratory complexes. There
are 9 major hgs found in Europe (H,1,], M, T,U,V, W, and X) (Torroni
et al., 1997; Kenney et al., 2014). Some researches suggest that
human adoption to chronic cold and irregular caloric availability
due to seasonal changes could influence evolution by disrupting

* Corresponding author. Tel.: +371 67808218; fax: +371 67442407.
E-mail address: egija.zole@biomed.lu.lv (E. Zole).

http://dx.doi.org/10.1016/j.mad.2015.01.002
0047-6374/© 2015 Elsevier Ireland Ltd. All rights reserved.

mitochondrial hgs and also longevity (Wallace 2005; Robine et al.,
2012).Resent findings support the hypothesis that different mtDNA
hgs lineages from different geographic origins might take a part
in diverse susceptibilities to age-related diseases. The large accu-
mulation of SNPs can cause amino acid and functional changes,
while others cause changes in the rates of replication and tran-
scription of the mtDNA. Progressive loss of mitochondrial function
in several tissues is a common feature of aging believed to be influ-
enced by life-long production of reactive oxygen species (ROS) as
by-products of oxidative metabolism leads to the accumulation of
DNA and protein damages (Shigenaga et al., 1994; Bellizzi et al.,
2006; Kenney et al., 2014).

Several conflicting studies have also evaluated the possible asso-
ciation of various hgs with healthy aging. Beckstead et al. indicates
that hg H individuals may live longer when compared to hg U indi-
viduals, under calorie restriction (Beckstead et al., 2009). Numerous
studies have observed that hg | is more abundant among cente-
narians, while hg U decreases among centenarians (de Benedictis
etal, 1999; Rose et al., 2001). Conversely, Pinds et al. have refuted
the observation that hg | is associated with longevity and have
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suggested that longevity is population-specific (Pinos et al., 2012).
On the other hand several other studies have failed to find an asso-
ciation of longevity with hgs H and U (de Benedictis et al., 1999;
de Benedictis et al,, 2000; Pinds et al., 2012). A study by Benn
et al. also concludes that there are no hg associations with mor-
tality and longevity (Benn et al., 2008). It has also been shown, in
a population from Finland, that hgs H and HV are less frequent
among centenarians than hgs U, J and U8 (Niemi et al, 2003).
Beside that, defined mutations in the genes of mtDNA associated
with hgs D, D1, H1 have been described and are more frequently
found among centenarians. These haplogroup-defining mutations
may affect ATP (adenosine triphosphate) synthesis, suggesting that
specific mitochondrial variants are associated with biochemical dif-
ferences(Tanakaetal., 1998; Tanaka et al., 2000). Numerous studies
have described specific hgs as being associated with healthy aging
and having a protective or opposite effect on the occurrence of some
diseases and tumors (e.g., Czarnecka and Bartnik, 2011). In partic-
ular, different hgs were associated with Leber's hereditary optic
neuropathy, ichemic stroke, coronary artery disease and diabetic
retinopathy and osteoarthritis (OA) (Torroni et al., 1997; Hudson
et al,, 2007; Kofler et al., 2009; Rego-Pérez et al, 2008). Other
studies have found an effect of some hgs against ischemic stroke,
Alzheimer disease and Parkinson's disease (Carrieri et al,, 2001; van
der Walt et al., 2003; Ghezzi et al., 2005; Gaweda-Walerych et al.,
2008; Rosa et al., 2008).

Telomere shortening is thought to be a major theory of aging.
Telomeres are specialized chromosomal DNA-protein structures
that cap and protect the terminal regions of eukaryotic chromo-
somes. Telomeres are dynamic structures that become shorter with
every division of a cell. Once a critical length is no longer main-
tained, the cell is not able to divide; this halt in cell division is
thought to be a consequence of aging (Blackburn 2001). However,
to date, only few studies have addressed the possible association of
mitochondrial hgs with TL. Fernandez-Moreno et al. examined TL
in hg J individuals and showed that they have significantly longer
telomeres than non-J carriers(Fernandez-Morenoetal., 2011). Con-
sidering that both cell elements are involved in the process of aging
and longevity, there could be a possible association between mito-
chondrial inherited polymorphisms and the dynamics of TL. The
aim of this study was to identify correlations between distribution
frequencies among different age groups of the most prevalent mito-
chondrial variants (hgs H, U, T, ], V and W) in a Latvian population
and to investigate possible associations of these hgs with TL.

2. Materials and methods
2.1. Samples

Blood samples were collected from healthy individuals,
without any disorders that are known to affect TL, in a Latvian
population from age 20 to over 90 years old. In total, 772 indi-
viduals were enrolled in this study. All participants provided
appropriate written informed consent for the use of their phe-
notypic and genetic data that were voluntarily provided via
detailed health and heredity questionnaires. All samples were

obtained from genome database of the Latvian population (VIGDB,
bmc.biomed.lu.lv/lv/par-mums/saistitas-organizacijas/vigdb/).
Samples from participants in the mitochondrial hg studies were
divided into three age groups: 20-45 years old (control group,
n=374),55-89 years old (middle group, n=271), and over 90 years
old (centenarians, n=127). As only small part of the samples of
DNA was obtained with enough high concentration and quality for
TRF (terminal restriction fragments) assay, the TL was measured
and hgs H, U, T, J, V and W were detected in 221 samples. Samples
were selected with similar percentage frequency of hgs among
age groups as in the whole sample cohort (Table 1). These samples
were divided into the same age groups: 20-45 years old (control
group, n=61), 55-89 years old (n=80) and over 90 years old
(centenarians, n=80). A 45-55 year old group was not included
because this study focuses on elderly individuals, ages 60 and
above. This elderly population has the highest mortality rate
among Latvians.

2.2, Extraction of genomic DNA

Genomic DNA was extracted from the peripheral white blood
cells (WBC) using the standard phenol-chloroform method as pre-
viously described (Sambrook et al., 1989).

2.3. Southern blots of terminal restriction fragments (TRFs)

The method described in Kimura et al. (2010) was used, with
some modifications, to determine TL. Briefly, a Southern blor of
TRFs was conducted using a Telo TAGGG telomere length assay kit
(Roche, UK). Concentrated DNA (~1 p.g) was digested with restric-
tion endonucleases Hinf | (10 U) and Rsa I (10 U) (Kimura et al,,
2010). Digested DNA samples, a DNA size marker (GeneRuler 1Kb
DNA ladder, Thermo Scientific, Lithuania), and the DIG molecular
weight marker (Roche, UK) were loaded into a 0.8% agarose gel
and run for 20h (19V and 25 mA) to resolve fragment sizes. The
DNA in the gel was then depurinated in 0.25M HCl for 10 min.
Further, the gel with the samples was denatured in 0.5L of 0.5M
NaOH and 1.5M NaCl for two 20-min washes. The samples were
neutralized in 1L of 0.5M tris-OH containing 3 M NacCl (pH 7.5)
for two 20-min washes. The DNA was transferred to a positively
charged nylon membrane (Amersham Hybond™-N*, GE Health-
care Life Sciences, UK) for 2 h using a vacuum blotter (VacuGene
Pump, Pharmacia Biotech, Sweden) with a 20x SSC transfer buffer
solution that contained 0.3 M sodium citrate and 3 M NaCl (pH
7.0). DNA was fixed to a membrane using a 30-s UV exposure, and
the membrane was briefly washed in 2x SSC solution. The subse-
quent steps were performed using the manufacturer's protocol for
the Telo TAGGG telomere length assay kit (Roche, UK). The mem-
brane was visualized on a high performance chemiluminescence
film (GE Healthcare Life Sciences, UK). The film was scanned, and
the TRF signal was detected. DNA migration distances were mea-
sured using the Kodak digital science D1 program (Kodak, US);
the DIG ladder was used for molecular size reference. The optical
density of the DNA fragments was measured using the Image] soft-
ware (Rasband and Image], 1997-2014). TLwas calculated using the

Table 1

Comparison of the all haplogroups found in a Latvian population in the three age groups.
Age groups, years (No) Haplogroups number (%)

H u T I v w i HV X

20-45 (374) 41.7 (156) 27.3(102) 9.9(37) 6.7 (25) 3.5(13) 4.0(15) 43(16) 2.1(8) 0.5(2)
55-89 (271) 42.4(115) 28.8(78) 6.3(17) 63(17) 4.8(13) 41(11) 1.1(3) 48(13) 1.5(4)
<90 (127) 48.8 (62) 21.3(27) 10.2(13) 4.7(6) 6.3(8) 39(5) 1.6(2) 23(3) 0.8(1)
Total 44.6(333) 25.7(207) 8.7 (67) 5.9(48) 4.4(22) 4.0(31) 3.3(21) 2.6(24) 0.9(7)

For hgs H, U, T, J, V and W. Hgs — mitochondrial haplogroups, TL- telomere length, df — degrees of freedom, F - fixation indices.
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following equation: mean TRF length=X (ODi)/ X (ODi/Li), where
ODi=optical density at position i and Li = TRF length at position i.

2.4. Mitochondrial genotyping

To confirm the hg affiliation of mitochondrial sequences, hier-
archical PCR-RFLP analysis was performed using 17 restriction
endonucleases: Avall, Ddel, Bsh1236l, Haelll, Hhal, Hinfl, Mbol, Rsal,
Nlalll, Accl, BstOl, Msel, Alw44l, Sspl, Eco471, and BsuRI (van Oven
and Kayser, 2009) The classification of hgs was based on their
position in the hierarchy of the mitochondrial phylogenetic tree
(www.phylotree.org, van Oven and Kayser, 2009),

2.5. Statistical analysis

All statistical analyses were performed using the R 3.1.1 (Core
Team, 2014) software program. The statistical significance of the
differences between the observed distributions of mitochondrial
hgs in three age groups was evaluated with the G-test. Analysis of
variance (ANOVA) was used to test differences of mean TL values for
age groups and mitochondrial hgs. In this analysis, only hgs H, U and
T were included because they had replicates for each combination
within each age group. A P value equal to or less than 0.05 was
considered significant.

3. Results

3.1. Distribution of mitochondrial haplogroups among different
age groups

Mitochondrial hgs were analyzed among 772 individuals of
three age groups (age 20-45, 55-89, over 90 years) in a Latvian
population (Table 1). Hg H represents 7.1% more of the population
among centenarians than in the control group. Only those individ-
uals bearing hg V showed a gradual growth with increasing age
(1.3% more in the age group 55-89 when compared to the con-
trol group; 2% more in the group >90 age group when compared
to the 55-89 group). Interestingly, hg U, despite being the second
most abundant hg among centenarians, shows a 7.5% decrease com-
pared to the 55-89 age group. Hg T is equally represented both in
the control and centenarian groups but less in the middle group.
Hg I shows an obvious decrease, averaging 2.9%, in both the 55-89
and >90 age groups. Other hgs do not demonstrate a notewor-
thy gradual decrease or increase in distribution frequencies among
the analyzed age groups. A G-test (G=20.53, df=16 un P=0.1971)
emphasizes that none of the hgs investigated show a significant
association with longevity.

8000+
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20004

Telomere length (TRF, bp)

o
I

w T J v H u
Haplogroups

Fig. 1. Variation of telomere length for the hgs H, U, T, J, V and W. TRF-terminal
restriction fragments, bp - base pairs.
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Fig. 2. Comparison of telomere length for the hgs H, U, T, J, V and W in three differ-
ent age groups. 20-45, n=61; 55-89, n=80; <90 n=80. TRF - terminal restriction
fragments, bp-base pairs.

Table 2
Results of dispersion analysis (ANOVA).
TL Hierarchical method
df Sum of squares Mean square F Pvalue
Hgs 5 7840991 1568198 1.637 0.151748
Hgs: age 10 7888462 788846 0.823 0.606487
Residuals 203 194486331 958061 - -

3.2. Association of telomere length with mitochondrial
haplogroups and aging

A comparison of TL among different mitochondrial hgs in all
together studied age groups is shown in Fig. 1. The average TL
for hgs is: H (~6290bp), U (~6130bp), T(~6490bp), | (~6480bp),
V (~6390bp) and ~6840 bp). Consequently, there were a limited
number of samples that were available for TL testing for hgs I, HV
and X. There are no statically significant differences of average TL
among hgs (ANOVA, P=0.1780; F=1.542; R? =0.03461). Individu-
als belonging to hg W have the longest average TL, while those of
hg U have the shortest average TL. Fig. 2 shows a comparison of
the TL of individuals with hgs H, U, T, ], V and W in the three age
groups separately. Hg | shows the longest TL in the control group
and among centenarians. In the middle group hg W has the longest
TL. Hgs T and V do not have obvious difference of TL among age
groups. Results of the ANOVA analyses (Table 2) show that there
are no significant correlations among TL, hgs and age in the Latvian
population.

4. Discussion

Our previous study showed that the most common mitochon-
drial hgs in the Latvian population are H (44.5%), U (25.4%) and T
(9.4%) (Pliss et al., 2006). In the current study none of hgs show
statistically significant correlation with aging and the percentage
varies slightly. The observed frequencies of hgs H, U, T, ], V, I and X
were in stark contrast to those reported in a study from Finland
(Niemi et al.,, 2003). Although Finland is geographically close to
Latvia, hg U and cluster T] were found to be more frequent than
hg H among centenarians. The climate in Finland is only slightly
colder than in Latvia and is considered to be similar. In one study,
it was described that climate has an influence on human longevity
(Robine et al., 2012). Although the climate is warmer, studies from
South Europe showed a similar distribution of hg J to the Finnish
population; however, the current study, along with other studies,
did not support this finding (de Benedictis et al., 1999; de Benedictis
et al.,, 2000; Pinos et al, 2012). Another study had similar obser-
vation regarding to hg U frequency in different age groups as it
was in the current study (de Benedictis et al., 1999). One hypoth-
esis describes a connection between population migration waves
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to the North Europe and hg frequency that could be contributed
to a necessary adaptation to the chronic cold and irregular caloric
availability by varying mitochondrial metabolism (Wallace 2005).
Hgs may play a protective role in colder climates by generating
greater amounts of heat through higher electron transport rates
and looser coupling or partially uncoupled OXPHOS. For the cold-
adapted hgs, uncoupling mutations would produce less ATP per
calorie consumption, which can be used for heat generation; there-
fore, more oxidized and less ROS would be formed (Mishmar et al.,
2003; Baudouin et al., 2005; Wallace 2005). Mitochondrial hgs
have different coupling efficiency (the percentage of oxygen con-
sumption used for ATP synthesis rather than heat generation) and
mitochondrial ROS production (Wallace, 2005). Previous observa-
tion suggests that hg H may not be as suitable as hg U for longevity
in cold environments; however, this study contradicts this hypoth-
esis. The Beckstead' research group showed that due to historic
caloric restriction, longevity is observed in individuals with hg H
compared to hg U, and that this longevity has not been changed dur-
ing periods of caloric abundance (Beckstead et al., 2009). There are
many parameters that can influence the survival of specific hgs in
different environments. Differences of hgs frequencies during aging
in various populations might be explained with diverse historical
events and climate changes. As previously mentioned certain hgs
have varying influences on diverse age-related diseases and tumors
and therefore may slightly affect the frequency of specific hgs in
older age groups.

Sahin et al. have proposed a theory connecting/linking telom-
ere length with mitochondrial genetics. They have shown that
short telomeres, which are sensed by cells as double-strand breaks
and DNA instability, suppress PGC-1«/p (peroxisome proliferator-
activated receptor gamma, coactivator 1 alpha and beta) action
via p53 gene activation. These molecular interactions lead to mito-
chondrial dysfunction, cell senescence, growth arrest and apoptosis
(Chin et al, 1999; Sahin and Depinho, 2010; Sahin er al., 2011;
Rufini et al., 2013). PGC-1«/P regulates a vast amount of mitochon-
drion functions, including mitochondrial replication/transcription,
OXPHOS, oxidative stress and gluconeogenesis, etc. (e.g., Wu et al.,
1999; Lin et al, 2005). These mitochondrial outcomes, due to
reduced electron transport chain efficiency due to chemical or
genetic causes, lead to ROS production that cause a drop in ATP
levels, leading to aging, which may limit lifespan as well as effect
telomere length (Balaban et al., 2005; Moiseeva et al., 2009).

This study/current study demonstrates that the average TL in
all mitochondrial hgs is similar and does not show statically signif-
icant differences among the hgs, however, some similarities with
other studies can be observed. Martinez-Redondo et al. have shown
that hg H has higher mitochondrial oxidative damage than hg J. In
their study, hg H had higher oxygen uptake and therefore more
ROS production than other hgs. The next highest level of oxygen
uptake is found in hg V followed by hgs T and U, with the low-
est level found in hg | (Martinez-Redondo et al., 2010). It has been
shown that oxidative stress is associated with increased telomere
attrition (von Zglinicki 2002; Kawanishi and Oikawa 2004). This
means that TL should be shorter for hgs that produce more ROS,
such as hg H compared to hg U. Similar interrelationship can be
observed in our study for hg H (Fiz. 1), however, it is not sta-
tistically significant. This hypothesis also might explain slightly
longer telomeres for hg f among centenarians in the current/present
study, due to less ROS accumulation during aging. Also previously,
Fernandez-Moreno et al. have shown that individuals with hg |
have significantly longer telomeres than non-| carriers (Fernandez-
Moreno et al, 2011). However, Pinds et al. have found that hg
J and longevity are not related and have proposed that different
findings in previous reports could be due to a population-specific
background (Pinos et al,, 2012). Previously reported conflicting
results related to TL may also be attributed to population-specific

differences (Zole et al., 2013; Eisenberg et al., 2011; Salpea et al.,
2008; Canela et al., 2007).

5. Highlights

Mitochondrial hgs are not significantly associated with
longevity or longer telomere length in a Latvian population. Only
hgJ had slightly longer TL among centenarians. None of the hgs cor-
related with age either. Only hg H shows an insignificant increase
of frequency among centenarians compared to the control group.
Assuming that longevity and TL are either population-specific or
geographically or historically specific, their association can be
influenced by many factors during an individual’s lifespan, envi-
ronmental and genetic background.
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III Linkage between mitochondrial genome alterations, telomere length

and ageing population

Highlights:

1. MtDNA copy number content got slightly higher in nonagenarian group in
comparison to the elderly group (60-89 year age group).

2. Positive correlation between telomere length and mtDNA copy number was

significant only for individuals up to 90 years, but not for nonagenarians.

3. HVS-I region heteroplasmy did not influence telomere length and mtDNA copy

number in the sample cohort.

4. SNPs that determine mitochondrial haplogroups did not influence mtDNA copy

number in the sample cohort.
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ABSTRACT

We studied telomere length (TL) and mitochondrial DNA (mtDNA) copy number variations in individuals
from Latvian Caucasian population in different age groups. We showed a positive correlation between
TL and mtDNA copy number in individuals of up to 90 years of age; however, this correlation was not
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observed in the 90-100 years age group. While TL shortened with age and mtDNA content decreased

with increasing age, in this study it was observed that mtDNA copy number in nonagenarians was
slightly higher than in the 60-89 years age group. The presence of heteroplasmy in the mtDNA HVS-
control region did not correlate with TL and mtDNA copy number. TL and mtDNA values also did not
differ between mitochondrial haplogroups. In conclusion, while both TL and mtDNA are involved in the
aging process and link between these cell components exists, nonagenarians may have differences in
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senescence-related pathways and systems, which may function as a protective mechanism that allows

them to live longer.

Introduction

There are many hypotheses that describe aging, but the
focus of this study is on two theories that are thought to be
central to the cellular senescence process; one involves telo-
mere length (TL) shortening, and the second is associated
with mitochondrial DNA (mtDNA) alterations (reviewed in
Lipsky & King 2015). As there are contradicting results about
these theories, there is a need for more studies addressing
the aging processes (Vina et al. 2013).

Telomeres are specialized chromosomal DNA-protein struc-
tures that cap and protect the terminal regions of eukaryotic
chromosomes. Telomeres are dynamic structures that become
shorter with every division of a cell until a critical stage is
reached, when the cell can no longer divide and it enters a
phase of senescence; the telomere shortening also causes
genomic instability and is associated with a higher risk of
age-related diseases and cancer (Harley et al. 1990; reviewed
in Blackburn et al. 2015). Telomere maintenance and shorten-
ing is a complex process which can be affected by different
factors, such as stress and genetic background, and is differ-
ent in diverse tissues; furthermore, the exact relationship
between telomere length and aging is not fully understood
(reviewed in Blackburn et al. 2015).

There are nine major mitochondrial haplogroups (hgs)
found in the human population of Europe (H, I, J, M, T, U, V,
W, and X) (Torroni et al. 1994). A human hg is defined by dif-
ferences in human mtDNA called single nucleotide polymor-
phisms (SNPs). Accumulation of certain mutations or SNPs

can cause amino acid and functional changes, while others
cause changes in the rates of replication and transcription of
the mtDNA (Bellizzi et al. 2006; Kenney et al. 2014). Another
example of accumulation of mutations or SNPs is hetero-
plasmy which is the presence of multiple mtDNA variants in
a single cell or among cells within an individual (Potter et al.
1975). The highest degree of polymorphisms is concentrated
within two hypervariable segments of the control region:
hypervariable segment | (HVS-l) and hypervariable segment II
(HVS-Il) (Wilkinson-Herbots et al. 1996). There have been stud-
ies claiming that the heteroplasmy of certain polymorphisms
within the control region is associated with longevity,
whereas heteroplasmy of some other polymorphisms is not
(e.g. Sondheimer et al. 2011).

Each mammalian cell contains hundreds to more than a
thousand mitochondria, and each organelle harbors 2-10
copies of mtDNA (Robin & Wong 1988). There have been con-
troversial results from different studies regarding how mtDNA
copy number changes during human aging. A substantial
age-related decline in the abundance of mtDNA has been
shown in various tissues, organs and organisms (Cree et al.
2008; Mengel-From et al. 2014). In contrast, other studies did
not observe any changes (Miller et al. 2003; Frahm et al.
2005). However, He et al. (2014) recently showed that mtDNA
content is higher in healthy centenarians than in younger
age groups. High mtDNA copy numbers were associated with
better general health, including higher cognition and lower
mortality (Kim et al. 2011; Mengel-From et al. 2014). In add-
ition, there are associations between higher mtDNA copy
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number amount and some cancers like head, neck and pros-
tate cancers (Jiang et al. 2005; Zhou et al. 2014).

Passos et al. (2007) has proposed a theory that connects
TL with mitochondrial genetics and reactive oxygen species
(ROS). It was previously shown that short telomeres, which
are sensed by cells as double-strand breaks and DNA instabil-
ity, suppress peroxisome proliferators-activated receptor
gamma, coactivator 1 alpha and beta (PGC-1 «/f3) action via
p53 transcription factor (Chin et al. 1999; Sahin et al. 2011).
Population studies have also shown a connection between TL
and mitochondria. One of the first in vivo studies in humans
came from Kim et al. who demonstrated a positive associ-
ation between TL and mtDNA copy number in elderly women
of an average age of 73years (Pieters et al. 2015). Other
researchers have confirmed this association in individuals
aged 18-64 (Kim et al. 2013), and aged 60-80 that telomeres
and mitochondria are co-regulated in humans (Tyrka et al.
2015).

To our knowledge, so far there have been no studies
about TL and mtDNA copy number correlation in the
Caucasian nonagenarians (individuals that are 90-100 years
old). Literature contains evidence that centenarians have
shorter telomeres but higher mtDNA copy number than per-
sons in the younger age groups, although for the groups
under 90 years of age both the TL and mtDNA copy number
decreased with age. The aim of the present study was to
examine the association between mtDNA alterations and TL
in aging process in Latvian population. First, we explored if
TL shortening and mtDNA alterations come together in nona-
genarians in the same way as in individuals up to 90 years of
age. Second, we looked if different mitochondrial hgs influ-
ence mtDNA copy number amount.

Materials and methods
Samples

Blood samples were collected from healthy individuals from
Latvian population ranging ages from 20 to 100years. In
total, 210 samples were divided into three age groups:
20-59years (n =70, mean age = 32 years, females = 65%), eld-
erly group (60-89years, n=70, mean age=73years,
females =73%) and nonagenarians (90-100years, n=70,
mean age=93years, females=76%). All individuals were
Caucasian. All participants provided appropriate written
informed consent to use of their phenotypic and genetic
data, which were voluntarily and anonymously provided via
health and heredity questionnaires. The samples and informa-
tion about samples were obtained from the Genome
Database of the Latvian Population (VIGDB, bmc.biomed.lu.lv/
Iv/par-mums/saistitas-organizacijas/vigdb/). None of the
selected individuals had reported any severe diseases during
the medical examination. Some individuals from the elderly
group and nonagenarians had vision problems, hearing loss,
dizziness, arthritis, osteochondrosis and joint pain, fatigue
and sleep disorders, minor urinary tract or digestive tract dis-
orders. None of the study participants had Alzheimer's dis-
ease, Parkinson disease or cancer — diseases associated with

TL or mtDNA alterations. No information of smoking and
drinking habits was available.

Extraction of genomic DNA

Genomic DNA for all samples was extracted from the periph-
eral white blood cells (WBC) using the standard phenol-chloro-
form method as previously described (Sambrook et al. 1989).

Relative qPCR SYBR green telomere length
quantification assay

The ACt method using a reference gene was used to measure
TL in the DNA samples. Although quantitative real-time poly-
merase chain reaction (qPCR) will not determine TL in kb (kilo-
bases) but only the abundance of telomeric DNA in a sample, it
is a faster method and requires less DNA than the Southern
blot telomeric restriction fragment assay (TRF) which is consid-
ered the golden standard. gPCR was performed using Maxima
SYBR green qPCR Master Mix (2x) (Thermo Fisher Scientific,
Waltham, MA). The forward and reverse primers of telomeres
for one reaction were as follows: Telol (200nM), 5'-
GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAG-GGT-3/, and
Telo2 (200 nM), 5'-CCCGACTATCCCTATCCCTATCCCTATCCCTAT
CCCTA-3'. After a denaturation step at 95°C for 10 min, DNA
samples were incubated for 40 cycles at 95°C for 10s and
58°C for 1 min. Efficiency =92%. TL was normalized using the
following forward and reverses primers for the B-globin gene
in a separate run: beta-glob1 (300 nM), 5-GCTTCTGACACAACT-
GTGTTCACTAGC-3/, and beta-glob2 (500nM), 5'-CACCAACTT
CATCCACGTTCACC-3'. After a denaturation step at 95°C for
10 min, DNA samples were incubated for 40 cycles at 95°C for
10s and 56°C for 20s (Kim et al. 2013). Efficiency =94%. The
concentration of the DNA was 10ng/ul in a 10 ul reaction. Each
sample was run in triplicate. A no-template control and dupli-
cate calibrator samples were used in all runs to allow compari-
sons of the results across all runs. A melting curve analysis was
performed to verify the specificity and identity of the PCR prod-
ucts. TL was calculated using threshold cycle or C; values and

the following equation: relative TL 2cuf-
glg bin)=Ctitel, meres)

ratiogest/reference)=

Relative qPCR TagMan mtDNA copy number
quantification assay

Relative mtDNA copy number was measured by qPCR using
the Maxima Probe/ROX gPCR Master Mix (2x) (Thermo Fisher
Scientific, Waltham, MA). mtDNA copy number amount was
normalized by simultaneous amplifications of the nuclear
gene Gapdh and the mitochondrial D-loop DNA fragments.
The forward and reverse primers for the Gapdh reaction
(1250nM each) were GapdhF 5'-GAAGGTGAAGGTCGGAGT-3'
and GapdhR 5-GAAGATGGTGATGGGATTTC-3/, respectively,
and the TagMan probe (250nM) GapdhTgM 5-
CAAGCTTCCCGTTCTCAGCC-3'. Efficiency =98%. The forward
and reverse primers (50nM each) for the mitochondrial D-loop
were  FmtMinArc  5-CTAAATAGCCCA CACGITCCC-3'  and
RmtMinArc 5'-AGAGCTCCCGTGAGTGGTTA-3', respectively, and
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the TagMan probe (250 nM) PmtMinArc
5'-CATCACGATGGATCACAGGT-3'  (Phillips et al.  2014).
Efficiency = 95%. The DNA concentration was 10ng/ul in a 15ul
reaction. After a denaturation step at 95°C for 10 min, the DNA
samples were incubated for 40 cycles at 95°C for 15s, 57°C
for 30s, and 72°C for 30s. Each sample was run in triplicate.
A no-template control and duplicate calibrator samples were
used in all runs to allow for the comparison of results across
the runs. mtDNA copy number was calculated using threshold
cycle values and the following equation: relative copy number

ratio, eizzcﬁaapdm—cumoopl_

Detection of heteroplasmy

The presence of mtDNA heteroplasmy was determined using
the SURVEYOR™ Mutation Detection Kit, which is based on
the use of a mismatch-specific endonuclease, SURVEYOR
Nuclease (Transgenomic, USA) (Bannwarth et al. 2006). This
kit detects heteroplasmy as low as 5%, and was our choice
having been tested it in our previous work (Pliss et al.
2011) although there are certain limitations using this kit
(Yen et al. 2014). Due to restricted amount of DNA available
for this study, only HVS-I region was tested. This region was
chosen due to the possible presence of a higher number of
heteroplasmic polymorphisms (Vigilant et al. 1989; Ngili
et al. 2012). The DNA fragment encompassing the mtDNA
HVS-I between nucleotide positions (nps) 16,024-16,390 was
amplified and sequenced in all samples using forward
(F-HVS-l) and reverse (R-HVS-l) primers (200nM each)
(Vigilant et al. 1989) in final volume of 25.5ul containing
10-50ng DNA, 1.5mM MgSO,, 1 x Optimase reaction buffer,
10mM each dNTP, 1.25U/ul Optimase polymerase
(Transgenomic, USA). The amplification conditions: denatur-
ation at 94°C for 2min, followed by 30 cycles at 94°C for
30s, 56°C for 30s and 72°C for 905, and final elongation at
72°C for 5min. Negative and positive controls were pre-
pared for amplification. The PCR products were heated to
denature the DNA and were then slowly cooled to room
temperature to allow for reannealing of the DNA strands
using the following protocol: initial denaturation at 95 °C for
2 min, followed by a 95°C to 85°C (—2°C/s) gradual tem-
perature decrease, and then a 85°C to 25°C (—0.10°C/s)
temperature decrease. Afterwards, products were incubated
with Surveyor enhancer S 05ul and Surveyor nuclease S
0.5l at 42°C for 20min; 1l of stop solution was added at
the end of reaction. The samples were analyzed by a 6%
polyacrylamide gel electrophoresis.

Mitochondrial haplogroup determination

To confirm the hg affiliation of mitochondrial sequences, hier-
archical PCR-RFLP analysis was performed using 17 restriction
endonucleases: Alul, Avall, Ddel, Bsh1236l, Haelll, Hhal, Hinfi,
Mbol, Rsal, Nialll, Accl, BstOl, Msel, Alw44l, Sspl, Eco47l, and
BsuRl (van Oven & Kayser 2009). The classification of hgs was
based on their position in the hierarchy of the mitochondrial
phylogenetic tree (www.phylotree.org 2016; van Oven &
Kayser 2009).
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Statistics

Linear regression and correlation, unpaired two-tailed t-test
and analysis of variance (ANOVA) were performed using
GraphPad Prism version 5 for Windows (La Jolla, CA, www.
graphpad.com 2016). Data was expressed as means+ SEM
(standard error of the mean) and differences of p < .05 were
considered significant. For mtDNA copy number assay the
power was 37%, x=0.05, f=0.62943, SM (standard deviation
of means)=0.05, SD (standard deviation)=0.39, n=70 in
each of the three groups. The low power could be due to
small sample cohort and high variance between sample data
which may lead to lower # and higher p values for the
mtDNA copy data. For TL assay the power was 100%, x=0.
05, f=0.00288, SM=0.08, SD=0.22, n=70 in each of the
three groups (Hintze 2008).

Results

Relative mtDNA copy number and telomere length in
the three different age groups

The results show that TL shortens with increasing age, in
accordance with previous studies (Figure 1). The 60-89 years
olds had 18.8% shorter telomeres than in the 20-59 years
age group (p=.0042); 90-100 years old individuals had
10.3% shorter telomeres than the 60-89year age group
(p=.0397) and 27.2% shorter than the 20-59 years age group
(p=.0001) (Figure 1(A)). The mtDNA copy numbers reduced
with increasing age but surprisingly were slightly higher for
nonagenarians; however, the difference was not statistically
significant. The 60-89 age group had 12.4% less mtDNA than
the 20-59 age group (p=.0337); the 90-100 age group had
7.6% more mtDNA than the 60-89 age group (p=.5144) but
5.7% less mtDNA than the 20-59year age group (p=.2956)
(Figure 1(B)).

Correlation between telomere length and mtDNA copy
number

The results showed significant positive correlation between
mtDNA copy numbers and TL (p=.0335 r*=0.0215)
(Figure 2). This correlation means that individuals with longer
telomeres have more mtDNA copies. However, when the cor-
relation between TL and mtDNA copy amount in three differ-
ent age groups was analyzed, the results showed that this
correlation was significant only in individuals of up to 90
years of age (Figure 3). Correlation for mtDNA copy number
and TL was significant both in the 20-59 years age group
(p=.0195, #=0.0799) and the 60-89 years age group
(p=.0352, *=0.0636) (Figure 3(A,B)). For nonagenarians, no
correlation was observed between mtDNA copy number and
TL (p=.6029, r* =0.0040) (Figure 3(C)).

mtDNA copy number and telomere length in samples
with HVS-I heteroplasmy

The percentage of HVS-l mtDNA heteroplasmy in our sample
cohort showed a different trend to that observed previously.
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Figure 1. Telomere length and mtDNA copy number in three different age groups. (A) Telomere length; (B) mtDNA relative copy number. 29-59 year age group,
n=70; 60-89 years age group, n =70; 90-100 years age group, n =70. TL: telomere length; ru: relative units. A p-value equal to or less than .05 was considered to

be significant; data were expressed as means + SEM.

For younger individuals (20-59 years) heteroplasmy was posi-
tive in 17% (12/70) of samples. As expected, the occurrence
of the heteroplasmy increased with increasing age; in our
study, an 189% increase was observed for the 60-89 years age
group, where heteroplasmy was positive in 34% (24/70) of
samples. In contrast, for nonagenarians (90-100 years old),
the proportion of individuals with heteroplasmy decreased by
~11% in comparison with the middle-age group: 16 of 70
nonagenarian samples were heteroplasmy-positive by our
used assay in HVS-l region (23% of the cohort). The results
show that heteroplasmy of the mtDNA control region HVS-I
was not linked to TL in any of the age groups. When hetero-
plasmy-positive and heteroplasmy-negative samples were
compared no statistically significant differences were
observed for the mean TL values (Figure 4(A)). Similarly,
relative mtDNA copy number did not differ significantly
between the heteroplasmy-positive and -negative samples
(Figure 4(B)).

Variation of mtDNA copy numbers in different
mitochondrial haplogroups

A comparison of mtDNA copy number among different mito-
chondrial hgs across all age groups is shown in Figure 5(A).
There were limited numbers of samples available for testing
for hgs J, V, and W; more samples should be tested to reach
a final conclusion; however, trends in mtDNA copy number
can be seen. No hg had a significantly higher or lower
mtDNA copy numbers than any other, ANOVA p=.5788
(Figure 5(A)). A similar observation was made when mtDNA
copy number was compared between different hgs grouped
by age (20-59 years age group: ANOVA p=.2443; 60-89 year
age group: ANOVA p=.6689; and 90-100year age group:
ANOVA p =.0939) (Figure 5(B)).

Discussion

TL is important for a longer lifespan and healthier life and for
capability of reaching nonagenarians age. There are several

p=0.0335
r=0.0215
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Figure 2. Correlation between telomere length and mtDNA copy numbers in all
the samples grouped together. 20-100years old individuals, n=210. TL: telo-
mere length; ru: relative units. A p-value equal to or less than .05 was consid-
ered to be significant.

Relative mtDNA copy number (ru)

known causes for telomere shortening, such as stress and the
presence of ROS, environment and genetic background (Von
Zglinicki 2002; Blackburn et al. 2015). TL is usually the short-
est in nonagenarians but, as previously shown, TL variability
is smallest in this age group (Zole et al. 2013). This probably
means that individuals who reach the nonagenarians or cen-
tenarians age may harbour very long telomeres at birth, and
that variation in TL is reduced with increasing age due to the
selective loss of individual cells with shorter telomeres
(Haussmann & Mauck 2008). However, it was shown that with
increasing age telomeres shorten at a slower pace (Salomons
et al. 2009).

It has been shown that mtDNA copy numbers are higher
in nonagenarians and centenarians than in the Chinese eld-
erly people aged between 50 and 70 (He et al. 2014). In the
current study of Caucasian subjects, similar trend was
observed. Our results show that nonagenarians in Latvian
population did not have significantly lower mtDNA copy
numbers in comparison to the 20-59 year age group; in con-
trast, individuals in the 60-89 year age group had significantly
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Figure 3. Correlation between telomere length and mtDNA copy number in three different age groups. (A) 20-59 years old individuals. (B) 60-89 years old individu-
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less mtDNA than those in the 20-59 years age group. Often,
but not always, high mtDNA copy number was associated
with better physical and mental health (Kim et al. 20171;
Mengel-From et al. 2014). Higher mtDNA copy numbers in
centenarians have been linked to higher adenosine triphos-
phate (ATP) levels and it has been suggested that normal lev-
els of ATP allow a cell to progress through the G1 phase of
the cell cycle to proliferate and regenerate (Mandal et al.
2005; Owusu-Ansah et al. 2008; Sgarbi et al. 2014). This could
indicate that individuals who have had high mtDNA copy
numbers at birth can live longer and healthier lives. This
most likely serves as a ‘selection’ process for individuals with
many mtDNA to survive to nonagenarian and centenarian
age.

The absence of differences in TL and mtDNA copy number
between HVS-1 heteroplasmy-positive and -negative individu-
als in this study advocates that there are no mtDNA mole-
cules with polymorphisms in the HVS-l region which more
likely than others may promote mtDNA replication and/or
influence TL. Similarly, in another study, there was no differ-
ence in mtDNA copy number in samples with heteroplasmy
(Szuhai et al. 2001). However, in diabetic patients, a correl-
ation between the mtDNA copy number and SNPs in mtDNA
has been observed (Chien et al. 2012). In the current study
on nonagenarians, the amount of mtDNA in the hetero-
plasmy-positive samples was slightly higher than in the
60-89 years age group heteroplasmy-positive samples.
Possibly, some mtDNA polymorphisms were selected with
age, and such variants can compensate the defects induced
by various types of mtDNA mutations, helping an individual
to survive longer (Ono et al. 2001; Sondheimer et al. 2011).
Of the cohorts in the current study, nonagenarians have
smaller percentage of heteroplasmy than the 60-89 years age
group (23% versus 34%, respectively). Altogether these results
lead us to propose that individuals without mtDNA hetero-
plasmy or individuals with heteroplasmic SNPs that promote
mtDNA replication are more likely to survive until old age.
However, to draw general conclusions more samples among
nonagenarians must be analyzed and the possible molecular
mechanisms needs to be deciphered. As the heteroplasmy
was detected only in HVS-l region in future, it would be use-
ful to detect heteroplasmy in the whole mitochondrial gen-
ome and to test its effect on these two cell components
because HVS-l represents only a small part of mtDNA and it
may not show the whole picture of the effect of
heteroplasmy.

Mitochondrial hgs affect neither mtDNA copy number, as
can be seen in this work, nor TL, as was shown in our previ-
ous work (Zole et al. 2015). This means that even if hgs are
determined by SNPs within the HVS-l control region, as for
hgs H, V and J, these changes do not influence mtDNA repli-
cation. However, the work of Suissa et al. demonstrated that
in hg-J hybrids, mtDNA content was increased compared
with hg-H in vitro (Suissa et al. 2009). Although some
researchers have found association between hg and longevity
(Tanaka et al. 1998; Rose et al. 2001), other studies failed to
support these associations (Raule et al. 2014; Zole et al.
2015). These observations indicate that the SNPs which deter-
mine hgs are not strongly associated with longevity or

maintenance of mtDNA replication, but rather are population-
and geographic region-specific (Santoro et al. 2006).

The connection between telomeres and mitochondria via
p53, SIRT1 and PCG-1 «/P explains the observed positive cor-
relation indicating that individuals with longer telomeres
have more mtDNA copies, as well as how this correlation is
linked to biological aging (Sahin et al. 2011; Pieters et al.
2015; Tyrka et al. 2015). The same is shown in the present
study. It is unclear, however, why this correlation was not
observed in nonagenarians. As nonagenarians have more
mtDNA copies but shorter telomeres than the 60-89 age
group — and there is no significant correlation between those
two cell components — nonagenarians and centenarians may
have different and balanced mechanisms of protection
against premature death. Mei and coworkers have shown
that at least in cancer cells increased mtDNA copy amount
can prevent cells from apoptosis (Mei et al. 2015). Leading to
an assumption that cells with more mtDNA copies can prob-
ably maintain themselves and these cells do not go into
apoptosis although they have short telomeres and they are
in a senescence state. It appears that telomere shortening
might not influence mtDNA amount or vice versa in cente-
narians as strongly as in younger individuals, which might
result from the different polymorphisms in mtDNA sequences
(Niemi et al. 2004; Takasaki 2008), the diverse nuclear DNA
SNPs and the healthier lifestyles noted in these individuals
compared with individuals who do not live to be 90 years of
age (Debrabant et al. 2014; Govindaraju et al. 2015).

Conclusions

In summary, there is no doubt that both TL and mtDNA are
involved in the senescence process and healthy aging, and
that the two theories of aging are connected. Since the pre-
sent study has demonstrated that the positive correlation
between TL and mtDNA copy numbers is lost in nonagenar-
ians, it might mean that nonagenarians and also centenarians
may have some differences in pathways and systems, which
may function as a protective mechanism allowing them to
live longer. Better understanding of the interactions between
telomere maintenance and mitochondrial processes might
lead to new therapeutic approaches to prevent aging dis-
eases and improve self-sustaining in the elderly. It is also
important to repeat this type of studies between different
populations and laboratories to make more reliable conclu-
sions as the results often are conflicting between different
researches.
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4. DISCUSSION

In the Latvian population, TL is, on average, similar or slightly shorter than in
populations of closely neighbouring countries such as Estonia and Finland but differs from
other European populations where the observed TL is very diverse among different countries.
It is very hard to determine the precise TL in different populations as measurements are
usually performed in different laboratories by using different methods. However, trends can
be identified, and these trends show that TL is very variable and can be influenced by
different factors as described above. Additionally, TL is not a determinant by life span as
shown; for example, Italians, who have longer life spans, on average, have shorter TL in
comparison with other populations in which the life span is not as long (Eisenberg et al.
2011). Rather, it could be more important how fast telomeres shorten or how active the
telomerase is (Spivak et al. 2016). The dynamics or shortening of TL with age in our study is
as expected compared with other studies. TL does not differ between genders in our cohort,
but TL does differ in other studies, suggesting that on average, females have longer telomeres,

but this finding has not been confirmed in some studies (Gardner et al. 2014).

In Latvia, we have all the common mitochondrial hgs as there is in Europe (Richards
et al. 1998). We did not find any of the hgs that are linked with longer life span, although
some researchers claim that there is a connection, such as with hgs J, U and H (Robine et al.
2012; Beckstead et al. 2009; de Benedictis et al. 1999). There are many hypotheses about
what could influence the distribution and connection between life span and hgs. It could be
population specific, different climate and geographical location, life style or historical events,
and of course SNPs could determine whether an hg affects OXPHOS efficiency, ATP
synthesis, ROS production and health and diseases as described above. As a consequence,
these diseases that are associated with some hgs can reduce amount or frequency of theses hgs

in elderly people population.

We showed that mtDNA copy number decreases until a certain age, and then it
slightly increases again in very old individuals or nonagenarians. High mtDNA CN is
inherited from parents to offspring in families with longevity, which might act as a favourable
factor for longevity by guaranteeing adequate energy supply (He et al. 2016a). This result
could indicate that individuals who have had high mtDNA copy numbers from birth can live
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longer and healthier lives. This most likely serves as a “selection” process for individuals with
many mtDNA copies to survive to centenarian age. It appears to be that mtDNA contributes
equally to longevity for both females and males (He et al. 2016b). As our sample cohort is
made of individuals who are not related, we cannot say if they have inherited high mtDNA
CN, and we also cannot identify dynamic change during ageing as the DNA samples were
taken only once from each individual, which means there is a necessity for longitudinal

studies of mtDNA CN dynamics during ageing.

We did not observe that any of the hgs influenced TL or mtDNA copy number at any
age in our cohort. Although, one study claims that individuals with hg J have longer telomeres
because of a low level of ROS produced (Fernandez-Moreno et al. 2011). Based on another
study, hg H produces the most ROS and therefore, should have the shortest telomeres
(Martinez-Redondo et al. 2010); our study for hg H found one of the shortest telomeres,
though the results were nonsignificant. In vitro hg J has more mtDNA than hg H, which was
explained by increased TFAM binding that regulates mtDNA CN in mammals (Suissa et al.
2009; Ekstrand et al. 2004); however, in our cohort, none of the hgs had significantly more
mtDNA than others. We did not find that mitochondrial heteroplasmy influences TL or
mtDNA amount. Additionally, in contrast to other studies (Rose et al. 2007; Ding et al. 2015),
the frequency of heteroplasmy in our cohort in the HVS-1 region determined by the
SURVEYOR™ mutation detection method did not increase in nonagenarians. All these
results may show that mutations that determine hgs or heteroplasmy do not strongly influence

parameters such as TL and mtDNA that can influence life span.

TERT deficiency and telomere dysfunction induces disturbed mitochondrial
biogenesis and function in various tissues (Sahin et al. 2011), and the longer telomeres we
have, the more mtDNA CN we have (Kim et al. 2013; Tyrka et al. 2015; Pieters et al. 2015;
Qui et al. 2015; Alegria-Torres et al. 2016). Not only telomeres influence mitochondrial
function but also actions and dysfunction of mitochondria influences length and “health” of
telomeres (reviewed in Gonzales-Ebsen et al. 2017). We also confirmed a correlation between
TL and mtDNA CN, but this correlation disappeared in the very old or nonagenarian age
group. For nonagenarians and centenarians, can speculate that cells with more mtDNA copies
can maintain themselves and that the cells do not go into apoptosis, although they have short

telomeres and are in a senescent state (Mei et al. 2015). It seems that telomere shortening
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might not influence mtDNA amount or vice versa as strongly in nonagenarians as in younger
individuals. As there has not been this kind of study in nonagenarian and centenarians, this
hypothesis has yet to be confirmed by other laboratories, who may also determine the reason

for this difference between very old and younger age groups.

It is important to maintain healthy life style to have long telomeres and fit mitochondria,
and different factors can influence those two cell components very differently through
lifetime. For example, considerable weight gain in the middle-life may increase late-life TL
shortening, whereas mtDNA CN is likely to be reduced constantly by adiposity over the
lifetime (Hang et al. 2018).

As in diverse pathologies and tissues the telomere-mitochondrial relationship can
vary, it is important to look if this connection is evident in general populations during the
healthy ageing process. MtDNA dynamics vary among studies, but in general population
mtDNA content in peripheral blood was significantly associated with both sex and age; thus,
the possibility was proposed to use it as a biological ageing marker in population studies and
senescence (Knez et al. 2016). Also, variation of TL in different studies is an issue that makes
it difficult to use it as an age and longevity marker for people. Additionally, both for mtDNA
and TL methods and approach used among laboratories differ, which makes it hard to
compare different studies and their results. Studied tissue also affects the results — stem cells
would offer better representation for the ageing research as these cells are responsible for
tissue renewal. Decline in tissue regenerative capacity is associated with age and is believed
to be a result from an exhaustion, and a loss of function of adult stem cells (reviewed in Sui et
al. 2016). Albeit, TL shortening in leukocytes reflects telomere shortening in hematopoietic
stem cells — faster shortening of telomeres in leukocytes during adulthood suggests a faster
telomere shortening in hematopoietic stem cells (Shepherd et al. 2004; Sidorov et al. 2009).
Studies of human population ageing are mostly conducted on easily accessible peripheral
blood leukocytes. Although, TL in peripheral blood leukocytes is not the most representative
indicator of ageing mechanisms in our bodies but there is vast amount of papers that have
proven a strong correlation between age and TL in leukocytes and the possibility to monitor
dynamic changes of TL during ageing in this cell type (e.g. Ehrlenbach et al. 2009). TL is also

synchronised among tissue, meaning that if for one individual telomeres are long (or short) in
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one tissue they are as also long (or short) in other tissues, and TL attrition rate is alike if

compared within an individual (Wilson et al. 2008; Daniali et al. 2013).

There is a lot of work to be done to fully understand ageing in people especially if we
want to expand our health-span and maybe even our lifespan. And we have to continue
research of ageing in populations as it is an opportunity to understand ageing in human bodies

and not only in vitro cells or animal models as there is a great difference among them.
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S. CONCLUSIONS

Telomere length, mtDNA amount and distribution of mitochondrial haplogroups differs

between populations.

Homogeneity of telomere length and higher mtDNA content for nonagenarians might
explained by “selection hypothesis” — bearing longer telomeres or more mtDNA at birth

or they can have protective mechanisms against telomere attrition and mtDNA loss.

There is an interaction between telomeres and mtDNA, but for nonagenarians and

centenarians this interaction weakens, or different mechanisms exist.

Benign SNPs in mtDNA, like haplogroups or heteroplasmy, do not influence telomere
length, mtDNA amount and longevity as strongly in the tested sample cohort as in other

studies.

Optimal mitochondrial maintenance might be more important for healthy ageing than

telomere length loss at nonagenarian and centenarian age.
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1.

6. THESIS

Telomere length, mtDNA amount and distribution of mitochondrial haplogroups are

population specific.

Telomere length and mtDNA CN age-related changes are interconnected during
human ageing, this connection of telomere length and mtDNA CN alterations could be

different in people who reach the nonagenarian or centenarian age.

Mitochondrial haplogroups and mtDNA heteroplasmy directly do not influence
telomere length, mtDNA amount and population ageing.
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Abstract In the last decades, studies about ageing
have become more essential as our population grows
older. The incidence of age-related diseases increases,
which pose challenges both for societies and individ-
uals in terms of life quality and economic impact.
Understanding ageing and ageing-related processes
will help us to slow down or even prevent these
diseases and provide opportunities for healthy ageing;
additionally, we all want to live longer. Ageing is a
consequence of the interaction between processes that
occur over time and genetics interacting with various
disease states and an individual’s lifestyle. There are
several hallmarks of ageing that are generally
accepted, but neither of the theories appears to be
fully satisfactory. The focus of this article is on two
theories of ageing: telomere shortening and mitochon-
drial DNA (mtDNA) alterations and dysfunction. We
discuss characteristic molecular features such as
mitochondrial haplogroups, telomere length, mtDNA
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copy number and heteroplasmy, and how all these
traits come together in the ageing population. The
recent evidence shows the existence of a strong
linkage between these two theories suggesting com-
mon molecular mechanisms and a complicated telom-
ere-mitochondria interplay during the humans’
ageing. However, this relationship is still not com-
pletely understood, which is why it needs more
attention.

Keywords Population ageing - Mitochondrial
haplogroups - Heteroplasmy - mtDNA copy number -
Telomere length

Introduction

Ageing is a consequence of the interaction between
molecular processes that occur over lifespan and
genetics interacting with various disease states and an
individual’s lifestyle. We can view ageing as an
unavoidable passage of time and as a cell replicative
senescence, which is a process when cells stop
dividing and undergo distinctive phenotypic alter-
ations. Evidence shows that the effects of cellular
senescence are continuously acquired and that senes-
cent cells exist in tissues even early in life (Eisenberg
2011; Dimri et al. 1995).
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As the human population ages, it is essential to
think about how to increase the quality and years of
healthy life (Peel et al. 2005). Deciphering the
molecular senescence processes and the complicated
interplay of various factors may lead us towards
effective strategies of healthy ageing and long life in
the future. There are nine hallmarks of ageing that are
generally accepted: genomic instability (nuclear,
mitochondrial DNA (mtDNA) and nuclear architec-
ture alterations); telomere attrition; epigenetic alter-
ations (alterations in DNA methylation patterns,
posttranslational modification of histones, and chro-
matin remodelling and transcriptional alterations);
loss of proteostasis (chaperone-mediated protein fold-
ing and stability, proteolytic systems); deregulated
nutrient sensing (the insulin- and IGF-1-signalling
pathways, mTOR, AMPK, and sirtuins); mitochon-
drial dysfunction (reactive oxygen species (ROS),
mitochondrial integrity and biogenesis, mitohorme-
sis); cellular senescence (telomere loss, INK4a/ARF
locus and p53); stem cell exhaustion; and altered
intercellular communication (inflammation and other
types of intercellular communication) (reviewed in
Lopez-Otin etal. 2013). The emphasis of this review is
on two of the theories of ageing: one involves telomere
length (TL) shortening, which leads to cellular
replicative senescence, and the second involves
mtDNA alterations and progressive mitochondrial
malfunction and apoptosis. While these hypotheses
were initially separated, the evidence suggests the
existence of direct molecular links between telomere
and mitochondrial dysfunction (reviewed in Jin 2010;
Lipsky and King 2015; Sergiev et al. 2015; Sahin and
Depinho 2010).

Thus far, to our knowledge, there is no review
article available with a focus on population studies
analysing mitochondrial and telomeric hallmarks such
as mitochondrial haplogroups (hgs), mitochondrial
DNA copy number (mtDNA CN), heteroplasmy and
TL:

Telomeres

Telomeres are the specialized chromosomal DNA—
protein structures that cap and protect the terminal
regions of eukaryotic chromosomes. The sequence of
telomeric DNA in vertebrates is (TTAGGG),: in
humans, its length ranges from 5 to 15 kb and varies
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between different tissues. Human telomeres typically
terminate in a 35-600 nt single-strand 3’ overhang of
the G-rich sequence. which are bound by a specific
protein complex termed ‘shelterin’ (proteins con-
nected with telomeres). Telomeres are dynamic
structures that become shorter with every cell division
until a critical stage is reached when the cell can no
longer divide and enters a phase of senescence.
Telomere attrition causes genomic instability, which
is associated with a higher risk of age-related diseases
and cancer, leads to potentially maladaptive cellular
changes, and blocks cell division (Harley et al. 1990;
Blackburn 2001; de Lange et al. 2006; reviewed in
Samassekou et al. 2010; Blackburn et al. 2015).
Telomeres are essential for stabilizing eukaryotic
chromosomes in different ways. The main functions
of telomeres are to prevent the end of the linear
chromosomal DNA from being recognized as a broken
end; telomeres are also the “first responders” to
threats to genomic stability and problems with DNA
maintenance. Telomeres are located at the nuclear
envelope, and their specific association with the
spindle pole body is required for normal recombina-
tion, protecting cells from nonhomologous recombi-
nation and broken DNA ends ensuring normal mitosis
and meiosis (Blackburn 2001).

Each time a cell divides the telomeres get shorter
due to the chromosome end-replication problem. By
removal of the RNA primer, which initiates the last
Okazaki fragment, a single-stranded G-rich 3'-over-
hang is formed when a replication fork has reached the
end of the chromosome’s lagging strand (Makarov
et al. 1997). The telomeric 3'-overhangs are also
observed at the end of the leading strand, although of
different size (Chai et al. 2006). As the leading-strand
replication generates a blunt-ended telomere, 5'-end
resection by Apollo exonuclease is required to form
the single-stranded 3’-overhang to protect telomeres.
Thereby, the telomeric 3’-overhangs are formed by
shelterin-controlled multistep process which is
slightly different for each strand (Wu et al. 2012;
reviewed in Higa et al. 2017). Telomerase is a specific
enzyme that extends telomeres, but it is significantly
active only in special cells such as stem cells, gametes,
some types of blood cells and most cancer cells
(Greider and Blackburn 1985; Kim et al. 1994; Wright
et al. 1996; Kaszubowska 2008; Wu et al. 2017). The
catalytic subunit of telomerase, the telomerase reverse
transcriptase (TERT), is also found in mitochondria
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and binds to mtDNA to protect it from oxidative
damage (Santos et al. 2004; Haendeler et al. 2009).
Telomere maintenance and shortening is a complex
process that can be affected by different factors, such
as stress and genetic background, and occurs slightly
differently in diverse tissues; furthermore, the rela-
tionship between TL and ageing is not fully under-
stood (reviewed in Blackburn et al. 2015). It is widely
accepted that TL gradually decreases with age in
human cells (except for the terminally differentiated
tissues such as brain and myocardium) and for women,
telomeres shorten more slowly due to oestrogen
effects on telomerase (Kyo et al. 1999; Takubo et al.
2010). For men, in sperm cells, telomeres elongate
with age (Kimura et al. 2008). There are claims that
TL is paternally inherited (Nordfjdll et al. 2005),
although some studies suggest a strong maternal or an
X-linked inheritance pattern of TL (Nawrot et al.
2004; Broer et al. 2013). Under the hypothesis that
inheritance of TL is stronger linked through the
maternal than paternal lineage is association with the
mitochondrial genome during embryonic and fetal
development and TL (reviewed in Aviv 2018). In
addition, it seems that TL depends more on the age of
parents at which a child has been conceived and that
older fathers pass on longer telomeres, possibly
because of the paternal age-dependent germ stem cell
selection process, where sperm cells with longer
telomeres are more successfully selected because they
are more age-resistant (Njajou et al. 2007; Hjelmborg
et al. 2015). Telomeric DNA is a target of persistent
DNA damage which can induce cellular ageing and
stress-induced senescence (Hewitt et al. 2012). Short-
ened blood cells’ telomeres in population studies were
associated with higher rates of mortality from different
age-related pathologies, including heart and vascular
diseases, diabetes mellitus, Parkinson’s disease and
Alzheimer’s disease, among others (reviewed in
Blasco 2007; Jiang et al. 2007; van der Harst et al.
2007). Several studies have reported that telomeres do
not shorten as quickly in older individuals and TL does
not predict mortality in the very oldest. This observa-
tion presumably may be related to a gradual reduction
in cell turnover with advancing years. However, the
opinion exists that, at a certain age, telomere mainte-
nance is more critical than the exact TL (Mondello
et al. 1999; Jiang et al. 1992; Shay and Wright 2007;
Haussmann and Mauck 2008; Ehrlenbach et al. 2009;
reviewed in Simons 2015). Our studies confirmed that

telomeres do not necessarily shorten instantaneously
or at a specific age; the higher variability in TL among
nonagenarians (90-100 years old individuals) is not as
pronounced as in the age group between 60 and
90 years old and in younger age groups (Zole et al.
2013). The variability in TL for the group of younger
individuals may be explained by the *“selection
hypothesis”, which proposes that the nonagenarians
and centenarians harboured very long telomeres, and
variation in TL reduces with age due to the selective
loss of individuals with shorter telomeres (Haussmann
and Mauck 2008; Halaschek-Wiener et al. 2008).
Population studies have demonstrated that TL can
be quite diverse among different populations. In a
study of people over 60 years old, a French population
(an average life expectancy (ALE) 82.4 years; the data
of life expectancies for populations was taken from
World Health Statistics 2015) contained longer telom-
eres than an Italian population (ALE 82.7 years)
(Canela et al. 2007). Individuals with an average age
of 22.7 years from Southern Europe (ALE 81.9 years)
possessed shorter telomeres than individuals from one
part of the Baltic region (ALE 79.3 years), and
individuals from the Middle Europe (ALE 81.5 years)
contained the longest telomeres (Salpea et al. 2008).
However, another report that included fourteen Euro-
pean populations with individuals between ages 18-28
showed that TL varied among them drastically, with
the shortest telomeres observed in an Italian popula-
tion (5100 bp (base pairs)) (ALE 82.7 years) and the
longest telomeres observed in a Belgian population
(18,640 bp) (ALE 81.1 years). For an Estonian pop-
ulation (ALE 77.6 years), telomeres were 7340 bp
long (Eisenberg et al. 2011). Similar results were
obtained in a geographically proximal region: for a
Latvian population (ALE 74.6), the average TL was
7132 bp for individuals up to 40 years old and
6112 bp for individuals older than 60 years of age
(Zole et al. 2013). Pronounced differences in TL were
observed for two subpopulations in Finland (ALE
81.38 years): in an Oulu-based population, the mean
TL was 7620 bp, and in a Helsinki-based population,
the mean TL was 12,280 bp (Eisenberg et al. 2011).
The work of Hansen and colleagues also proved that
TL between populations differs. They stated that
Europeans (ALE 71.3-83.4 years) have much shorter
telomeres than sub-Saharan Africans (Tanzania) (ALE
61.8 years) and Afro-Americans (ALE 75.6 years) in
along age span of 20-80 years (Hansen et al. 2016). In
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comparison the TL in the USAs population of age
range 19-93 years were longer in Afro-Americans
(ALE 75.6 years) than in whites (ALE 79 years),
although Afro-Americans showed a faster rate of TL
shortening (Hunt et al. 2008; Chen et al. 2011; data for
ALE in USA taken from Kenneth et al. 2016). In a
similar study the same research group again demon-
strated that black people have longer telomeres than
white people. age range of 19-77 years (Daniali et al.
2013). These differences among populations and
ethnicity are poorly understood. It seems that TL in
leukocytes of the reviewed populations not always can
be explained by life expectancies, while, there is a
correlation between age and TL in peripheral blood
leukocytes, with correlation coefficient ranged from
— 0.088 to — 0.838 in different studies (reviewed in
Miiezzinler et al. 2013). In most studies, short
telomeres in circulating leukocytes are also associated
with high mortality (Cawthon et al. 2003; Rode et al.
2015). Though, telomere shortening may not affect
mortality per se but could be controlled by progression
of senescence that leads to mortality by other mech-
anisms (Cawthon et al. 2003). Life expectancy also
depends on dynamics of TL or how fast telomeres
shorten for each individual as a study on birds has
shown (Bize et al. 2009). All these observations of
different TL and life expectancies among populations
could be explained by differences in genetics, sex,
ethnicity, nutrition, economic and social status or
stress level and health care systems. It can also be due
to lifestyle choices including smoking, alcohol con-
sumption, physical activities, body mass index, diet
and supplement intake and environmental pollution
that can influence the disparity (reviewed in Epel et al.
2004; Lin et al. 2012; Miiezzinler et al. 2013; Vidacek
et al. 2017). For example, Crous-Bou and colleagues
showed that women who practised a Mediterranean
diet had longer telomeres than those who did not
(Crous-Bou et al. 2014). There is evidence that famine
can also influence TL. For men who have experienced
starvation, TL was shorter than for those who have not.
It also seems that men whose parents had experienced
recent starvation before conception had shorter telom-
eres (Kobyliansky et al. 2016).

As TL is only one important factor among others
that influences ageing, it is not surprising that TL
differs even among subpopulations. Variation is an
issue that makes it difficult to use TL as an age and
longevity marker for people. Additionally, methods
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used among laboratories differ, which makes it hard to
compare different studies and their results. Studied
tissue also affects the results—stem cells would offer
better representation for the ageing research as these
cells are responsible for tissue renewal. Decline in
tissue regenerative capacity is associated with age and
is believed to be a result from an exhaustion, and a loss
of function of adult stem cells (reviewed in Sui et al.
2016). Albeit, TL shortening in leukocytes reflects
telomere shortening in hematopoietic stem cells—
faster shortening of telomeres in leukocytes during
adulthood suggests a faster telomere shortening in
hematopoietic stem cells (Shepherd et al. 2004;
Sidorov et al. 2009). Studies of human population
ageing are mostly conducted on easily accessible
peripheral blood leukocytes. Although, TL in periph-
eral blood leukocytes is not the most representative
indicator of ageing mechanisms in our bodies but there
is vast amount of papers that have proven a strong
correlation between age and TL in leukocytes and the
possibility to monitor dynamic changes of TL during
ageing in this cell type (e.g. Ehrlenbach et al. 2009).
TL is also synchronised among tissue, meaning that if
for one individual telomeres are long (or short) in one
tissue they are as also long (or short) in other tissues,
and TL attrition rate is alike if compared within an
individual (Wilson et al. 2008; Daniali et al. 2013).

Mitochondria

A mitochondrion, a very essential organelle of an
eukaryotic cell, has many functions that ensure
differentiation, survival and control of death of cells.
The mitochondrion works as a factory for ATP
(adenosine triphosphate) and metabolite supplies for
cell survival and releases cytochrome c to initiate cell
death. It works as a signalling organelle by releasing
specific proteins, ROS and metabolites, or by serving
as a scaffold to configure signalling complexes
(reviewed in Chandel 2014). It also regulates the
bioenergetics of the cell through cytosolic calcium
regulation (Rizzuto et al. 1993). By providing ATP
and other vital components, mitochondria affect gene
expression, transcriptional activation-related chro-
matin modification, transcription elongation and even
alternative splicing processes (Guantes et al. 2016).
It has been shown that mitochondria are required
for pro-ageing traits of the senescent cell phenotype
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(Correia-Melo et al. 2016). Progressive loss of mito-
chondrial function in several tissues is a common
feature of ageing believed to be influenced by the life-
long production of ROS as by-products of oxidative
metabolism (Shigenaga et al. 1994; Bellizzi et al.
2006; Kenney et al. 2014). With age, mitochondria
become less effective and even potentially toxic.
Furthermore, they can induce apoptosis or necrosis
that can lead to a decrease in the functions of tissues
and the whole body. As oxidative phosphorylation
(OXPHOS) occurs in the mitochondria, it leads to
ROS production, which in turn oxidizes macro-
molecules and can lead to mtDNA mutations. During
ageing, mutations in mtDNA accumulate and
OXPHOS becomes less effective, leading to higher
ROS production, which further leads to cell senes-
cence and death (Wallace et al. 2010; Green et al.
2011; Mikhed et al. 2015). Mitochondria are also
involved in processes of inflammation and autophagy
or mitophagy. It was hypothesized that cells can adapt
to stress by the induction of these processes, which can
help to sustain a longer life span due to the elimination
of dysfunctional mitochondria and damaged cells.
During the time mitophagy and autophagy decreases,
dysfunctional proteins accumulate and cells age
(Levine and Kroemer 2008; Lipinski et al. 2010).

Mitochondrial DNA

The mitochondrion contains its own circular double-
stranded DNA which is maternally inherited (Giles
et al. 1980). mtDNA is ~ 16,569 bp long and
encodes only 37 genes: 22 tRNAs, 13 subunits of the
respiratory chain (79 subunits are encoded by the
nuclear genome), and 125 and 16S rRNAs genes
(Anderson et al. 1981). The 16S gene also encodes
humanin peptide and is then transported into intra- and
extra-cellular compartments and functions in mito-
chondrial-nuclear retrograde signalling (Hashimoto
et al. 2001; Lee et al. 2013). Additionally, the cox/
gene on the antisense strand possibly encodes a short
protein named Gau (Gene Antisense Ubiquitous)
(Faure et al. 2011). The genome structure of the two
strands is distinguished by their nucleotide composi-
tion—the heavy strand (H-strand) is guanine-rich,
compared with the cytosine-rich light strand (L-
strand). mtDNA genes lack introns. Most genes are
located very close to each other, separated by only one
or two non-coding base pairs, and some genes, such as

ATP6 and ATPS8, have overlapping regions. mtDNA
has only one major non-coding region (NCR), that
contains the displacement loop (D-loop) and hyper-
variable (HVS) regions. The D-loop contains a site of
mtDNA replication initiation (Oy—origin of heavy
strand synthesis) and is also the location site of both
H-strand transcription promoters (the first heavy-
strand promoter (HSP1) and a potential, second distal
heavy-strand promoter (HSP2). The origin of the light
strand synthesis (Op) is located two-thirds of the
lengths from the Oy. mtDNA replication is not driven
by the cell cycle or cell division and is continuously
recycled (reviewed in Chinnery and Hudson 2013).
Accumulation of certain mtDNA mutations or single
nucleotide polymorphisms (SNPs) can cause amino
acid and functional changes of OXPHOS respiratory
complexes, while others cause changes in the rates of
replication and transcription of the mtDNA (Shige-
naga et al. 1994; Bellizzi et al. 2006; Kenney et al.
2014).

mtDNA copy number

Most of the mammalian cells contains hundreds to
more than a thousand mitochondria each, and each
organelle harbours 2—10 copies of mtDNA (Robin and
Wong 1988). The mtDNA amount in a cell is heritable,
implying genetic regulation of mtDNA levels, and the
mtDNA CN in peripheral blood cells is higher for
women than men (Ding et al. 2015; Knez et al. 2016).
There are debated results from different studies
regarding how mtDNA CN in blood cells changes
during human ageing. A substantial age-related
decline in the abundance of mtDNA has been shown
between 17 and 93 years of age (Mengel-From et al.
2014; Ding et al. 2015; Zhang et al. 2017), and low
mtDNA content in blood cells was associated with
familial longevity in a study from the Netherlands.
Based on their results, the authors discussed the
necessity of preserving mitochondrial functions rather
than enhancing mitochondrial biogenesis via the YY1
transcriptional repressor protein (van Leeuwen et al.
2014). It was reported that an increase in the mtDNA
CN is associated with elevated oxidative stress in the
human tissues of aged individuals (Barrientos et al.
1997a, b). In contrast, He et al. have shown that
mtDNA content in blood samples was higher for
healthy centenarians than for the younger age groups
(He et al. 2014), while Moore and colleagues have
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reported that association of mtDNA CN with age was
not statistically significant among participants of the
InCHIANTI study (age range 29-96) (Moore et al.
2018). Our recent findings corroborate that elderly
group’s individuals (60-90 years of age) had signif-
icantly lower mtDNA CN in blood cells in comparison
with a younger age group; in contrast, nonagenarians
did not have significantly less mtDNA CN in com-
parison with the younger age group (Zole et al. 2017).
High mtDNA CN in leukocytes in many studies has
been associated with better health, including higher
cognition and lower mortality (Lee et al. 2010; Kim
et al. 2011; Mengel-From et al. 2014; Ashar et al.
2015). In a recent study, higher mtDNA was associ-
ated with a significantly lower risk of both solid
tumours and other diseases, independent of age and
sex (Memon et al. 2017). On the other hand, high
mtDNA CN was associated with breast, prostate,
gastric and colorectal cancer risk (Thyagarajan et al.
2013; Zhou et al. 2014; Zhu et al. 2017; Kumar et al.
2017). Additionally, stress and depression were asso-
ciated with increased mtDNA amounts in blood cells
(Cai et al. 2015) as well as other health-related factors
that were shown to have an influence on mtDNA
quantity in human cells (reviewed in Malik and Czajka
2013). There are several molecular factors in a cell that
can regulate mtDNA CN, such as p53, mitochondrial
transcription factor A (TFAM), Twinkle helicase and
ATP synthase (Kulawiec et al. 2009; Ekstrand et al.
2004; Tyynismaa et al. 2004; Fukuoh et al. 2014,
Moraes 2001). It was also shown that mtDNA CN is
regulated by expression of the only mtDNA poly-
merase y subunit A (Poly-A) in a cell-specific manner
by nuclear DNA methylation (Kelly et al. 2012). Also,
other factors like lifestyle can influence mtDNA
amount. Obesity, weight gain and pack years of
smoking were associated with reduced mtDNA CN
(Meng et al. 2016). Reduced sleep duration and
efficiency were associated with lower mtDNA amount
(Wrede et al. 2015) but regular exercise for post-
menopausal women increases mtDNA CN in leuko-
cytes (Chang et al. 2016).

Centenarians have increased mitochondrial mass
and higher ATP level in primary cultures of fibroblasts
isolated from the skin (have defective mitochondria
but a preserved bioenergetic competence) indicating
that longevity is characterized by a preserved bioen-
ergetic function likely attained by a successful mito-
chondrion remodelling that can compensate for

@ Springer

functional defects through an increase in mass, i.e. a
sort of mitochondrial “hypertrophy” (Sgarbi et al.
2014). One reason could be due to compensatory
mechanisms in centenarians’ cells both for higher
mtDNA and ATP level as a normal level of ATP is
necessary for a cell to progress through the G1 phase
of the cell cycle to proliferate and regenerate, which
could help the cells to be more fit during ageing by
providing energy reserves (Mandal et al. 2005;
Owusu-Ansah et al. 2008; Moiseeva et al. 2009).
High mtDNA CN from birth for centenarians could
also provide healthier lives and longer life span. This
most likely serves as a “selection” process for
individuals with many mtDNA CN to survive to
centenarian age. Apart from possible heterogeneity of
studied populations and analytical factors which may
affect measurements of mtDNA CN, associations
between mtDNA CN and ageing phenotypes are
influenced by complicated interplay between
unknown hereditary factors and exposures affecting
biological pathways associated with mitochondrial
function, DNA damage, oxidative stress and senes-
cence. A considerable amount of research is still
needed to fully understand mtDNA replication mech-
anisms and the regulation of mtDNA CN, as well as
the possible roles of these processes in human ageing.
Other interesting questions are whether the mtDNA
CN is population-specific and whether mtDNA
amounts can be inherited through the maternal line.

Heteroplasmy

mtDNA single nucleotide mutations and deletions as
well as their accumulation (especially the 4977 bp
deletion) were associated with a normal ageing
process in several studies and have been proposed
either as a useful marker of natural ageing in human
subjects or as a factor affecting human longevity
(Cortopassi et al. 1992; Meissner et al. 1997; Linnane
et al. 1989; Raule et al. 2014; reviewed in DeBalsi
et al. 2017). However, mtDNA mutation sites, accu-
mulation rate and impact on cell functionality are
affected differently in each tissue type and there is a
great importance of the individuals’ ethnic back-
ground (Samuels et al. 2013; Raule et al. 2014).
Research on the mtDNA mutation signatures suggest a
limited role for ROS-induced mutation (Kauppila and
Stewart 2015), and accumulation of mtDNA muta-
tions can be related to the down regulation of DNA
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repair that occurs with cellular senescence. Mice with
defective Poly show aged phenotypes and increased
mutational load in the mtDNA (Trifunovic et al.
2004). Somatic mutations can be unevenly distributed
and accumulated clonally in cells, causing a mosaic
pattern of respiratory chain deficiency in tissues, or
accumulation can occur during germline, embryonic
or foetal development, in which case, the distribution
of mutations would be even between tissues (Tri-
funovic et al. 2004, Greaves et al. 2014).

Mitochondrial heteroplasmy is the presence of
multiple mtDNA variants with mutations or SNPs in
a single cell or among cells within an individual
(Potter et al. 1975). The frequency of heteroplasmy is
the same between women and men (de Camargo et al.
2011; Ding et al. 2015). The highest degree of
polymorphisms is concentrated within two hypervari-
able segments of the control region: hypervariable
segment I (HVS-I) and hypervariable segment II
(HVS-II) (Wilkinson-Herbots et al. 1996). The results
of studies looking on the association between mtDNA
heteroplasmy and population ageing are not fully
consistent. Blood cellss mtDNA heteroplasmy
becomes more common with increasing age (Ding
etal. 2015; Sondheimer et al. 2011; Zhang et al. 2017),
and increased mtDNA heteroplasmy was associated
with impaired functioning and increased risk of
mortality (Tranah et al. 2017). mtDNA heteroplasmy
at specific DNA sites in platelets was associated with
reduced neurosensory and mobility functions in older
people (Tranah et al. 2015). However, there is also
possibility that some mtDNA polymorphisms are
selected with age and can compensate for the defects
induced by various types of mtDNA mutations,
helping an individual to survive longer (Ono et al.
2001:; Sondheimer et al. 2011; Rose et al. 2007). In our
study, mtDNA heteroplasmy was observed more often
in elderly individuals comparing with centenarians
(Zole et al. 2017), and several studies have shown that
the total heteroplasmy values and patterns are main-
tained in centenarian families (Rose et al. 2007;
Giuliani et al. 2014). It was reported that heteroplasmy
can be inherited from a mother with 30% possibility;
however, in 70% of cases, a mother does not pass the
mutated site to her children, and heteroplasmic SNP
changes can accrue spontaneously during the lifetime
(Sondheimer et al. 2011; Ding et al. 2015).

In diabetic patients, a correlation between the
mtDNA CN and SNPs in mtDNA has been observed

in blood vessels tissue (Chien et al. 2012). Measuring
mtDNA CN by shotgun sequencing, Wachsmuth and
collaborators found that there was a correlation
between mtDNA CN with the total number of
heteroplasmies in blood and skeletal muscle cells; in
the other tissues, heteroplasmy was correlating with
age, indicating that this correlation could be explained
mostly by age and not as much by the increase in the
number of heteroplasmic sites (Wachsmuth et al
2016). Another study recorded lower mtDNA CN in
individuals having higher numbers of heteroplasmies
but posits that decrease of age-related mtDNA CN and
increase of heteroplasmy are independent from one
another (Zhang et al. 2017). In blood cells, no
differences for mtDNA CN between HVS-1 hetero-
plasmy-positive and heteroplasmy-negative individu-
als have been found (Zole et al. 2017). Altogether
these results may indicate that individuals without
mtDNA heteroplasmy or individuals with specific
heteroplasmic SNPs or patterns are more likely to
survive to old age. Similar to the differences in TL,
some population-specific or health-related factors may
exist as well. However, in order to draw general
conclusions, more studies should be conducted.

Mitochondrial haplogroups

The mtDNA sequence is diverse among populations
and individuals. There are 9 major mitochondrial hgs
found in the human population of Europe (H, L, J, M,
T, U, V. W, and X) (Torroni et al. 1994; Richards et al.
1998). A human mtDNA hg is defined by differences
in mtDNA sequences or SNPs. Previous studies
showed that the mitochondrial genotype, or hg, can
be associated with longevity and pathologies that can
influence healthy ageing and mortality; however, the
observed results are controversial. It has been detected
that defined mutations in mtDNA which are associated
with hgs D, DI, D4 (more abundant in Asian
populations) and H1 (in European populations) are
more frequently found among centenarians, while the
frequencies of other hgs such as M9, N9 and B4a
(more abundant in Asian populations) decrease in a
centenarian group (Tanaka et al. 1998, 2000; Cai et al.
2009). Gender may also play a role in the distribution
of hgs among centenarians (Ferndndez-Moreno et al.
2017). In Amish populations, the X hg was associated
with successful ageing whilst hg J had opposite effects
(Courtenay et al. 2012). Regarding European
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populations, it has been observed that in Italy hg J is
more abundant among centenarians, while hg U
frequency decreases (de Benedictis et al. 1999; Rose
et al. 2001). A study that has been performed in
Finland showed that hgs H and HV were less frequent
among centenarians than hgs U, J and U8 (Niemi et al.
2003). Nevertheless, in Spain, Pinds et al. have not
identified such observations in relation to hg J and
have suggested that longevity is population-specific
(Dato et al. 2004; Pin6s et al. 2012). In relation to hgs
H and U, other researchers have not found significant
associations with longevity (de Benedictis et al.
1999, 2000; Pinds et al. 2012). Similarly, our research
in a Latvian population corroborates that certain hg
abundance in older age groups is not associated with
longevity and is population specific (Zole et al. 2015).
Benn with colleagues also made an assumption that
there are no associations of hgs with mortality and
longevity (Benn et al. 2008). Beckstead et al. indicated
that individuals with hg H may live longer in
comparison to individuals with hg U under calorie
restriction (Beckstead et al. 2009). Some researchers
say that human adaptation to the chronic cold and
irregular caloric availability, due to changes in
seasons, could influence the evolution and distribution
of mitochondrial hgs and longevity, especially in the
North (Wallace 2005; Robine et al. 2012). In various
studies, it has been revealed that hgs are definitely
associated with healthy ageing and may have a
protective effect on the occurrence of some diseases
and tumours (e.g., Czarnecka and Bartnik 2011). For
example, Hg J is associated with Leber’s hereditary
optic neuropathy (LHON), while hg H has a protective
effect on LHON (Torroni et al. 1997; Hudson et al.
2007). In another study, there was no such observa-
tion; although, the lack of observation could be
explained by the rarity of hg J in the population
(Aitullina et al. 2013). Hg J shows a protective effect
against the development of osteoarthritis (Fernandez-
Moreno et al. 2017). Rosa et al. found that hg H1 has a
protective effect on ischaemic stroke while hgs HV
and U have been involved in increased risk of it (Rosa
et al. 2008). Hg U and its branch U8 could possess
protective properties against Alzheimer’s disease in
patients with the €4 allele (Carrieri et al. 2001).
Furthermore, the results of two studies showed the
protective properties of hgs U8 and J against Parkin-
son’s disease in Italians and Poles, respectively
(Ghezzi et al. 2005; Gaweda-Walerych et al. 2008).
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In contrast, a newer study from the UK did not find any
linkage between hgs and Parkinson’s disease (PD),
Alzheimer’s disease (AD), frontotemporal dementia—
amyotrophic lateral sclerosis (FTD-ALS) or Creutz-
feldt Jacob disease (CJD) (Wei et al. 2017). Hg T is
associated with coronary artery disease (CAD) and
diabetic retinopathy (Kofler et al. 2009). Moreover,
among different types of tumours, some hgs may play
a dual role of being either protective or not. Vulvar,
prostate and renal cancers are associated with hg U,
while hg H is more often represented in individuals
suffering from head and neck cancers. However, hg H
is underrepresented in other cancers such as vulvar,
breast and endometrial cancers (Booker et al. 2006;
Klemba et al. 2010).

The opinion exists that hgs might play a protective
role for a cell against ROS because of greater heat
generation (higher electron transport rates, looser
coupling or partially uncoupled OXPHOS). Hap-
logroup-defining mutations may affect ATP synthesis
because certain mitochondrial variants are biochem-
ically different (Tanaka et al. 1998, 2000; Cai et al.
2009; Fernandez-Moreno et al. 2017). Mitochondrial
hgs have different coupling efficiencies (the percent-
age of oxygen consumption used for ATP synthesis
rather than heat generation) or mitochondrial produc-
tion of ROS. For the cold-adapted hgs, uncoupling
mutations would produce less ATP per calorie
consumption, which allows greater heat generation
and more oxidization, and fewer ROS would be
formed; for example, hg H has higher ATP production
in comparison to hg J (Mishmar et al. 2003; Baudouin
et al. 2005; Wallace 2005). Hgs J and U are uncoupled
hgs, while hg H is tightly coupled and therefore
produces more ROS and less heat. It has been proven
that cybrids of hgs H and U had different amounts of
mitochondria, where hg U had fewer mitochondria
than hg H. Hg U had lower levels of cytochrome
b mRNA, rRNA, protein synthesis and mitochondrial
inner membrane potential (MIMP) than hg H (Marti-
nez-Redondo et al. 2010; Gémez-Durin et al. 2010).
In another case due to increased binding of TFAM
cybrid cells harboring hg J had two-fold increase of
mtDNA amount in comparison with cybrid cells
containing hg H (Suissa et al. 2009). The H hg had
higher peroxide and superoxide anion production and
apoptosis but lower oxidative stress than the J hg
(Fernandez-Moreno et al. 2017). Martinez-Redondo
et al. have also shown that hg H had higher
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mitochondrial oxidative damage than hg J. In their
study, hg H showed higher oxygen uptake than other
hgs and therefore more ROS production was observed,;
the next highest ROS producer was hg V followed by
hgs T and U; but the lowest was hg J (Martinez-
Redondo et al. 2010). U3a and J2b subhaplogroups
with a C150T SNP displayed lower ROS production
than hgs without the C150T SNP, and this SNP was
associated with longevity (Chen et al. 2012; Zhang
et al. 2003). Other research groups found that hg H had
more increased mitochondrial function than hg U in
human skeletal muscle fibres (Larsen et al. 2014).
Studying sperm mobility, scientists found that indi-
viduals with hg H had the highest activity of sperma-
tozoids, compared to that of hg V and the lowest
activity of spermatozoids has been detected for hg T,
which is directly connected with the functionality of
the OXPHOS system (Ruiz-Pesini et al. 2000).

By using shotgun sequencing, in recent studies no
difference has been found among H, U, T, K and J hgs
and mtDNA CN (Wachsmuth et al. 2016; Zhang et al.
2017), by using gPCR method, neither did we among
H, U, T, 1, Vor W hgs, nor when compared among
different age groups (Zole et al. 2017). Although in
another research, it was found that hgs USA1 and T2
were significantly associated with higher mtDNA CN
by changing the COXIII and COXI amino acid
sequences, respectively (Ridge et al. 2014). Addition-
ally, the frequency of heteroplasmy among hgs did not
differ in several studies (de Camargo et al. 2011;
Ramos et al. 2013), but one study claimed that the HV
hg had more frequent heteroplasmy while hgs J, T and
U8 had less heteroplasmy (Ding et al. 2015). Previ-
ously, Fernandez-Moreno et al. showed that individ-
uals with hg ] had significantly longer telomeres than
non-J carriers (Fernandez-Moreno et al. 2011), but our
study showed that average TL is influenced very little
by a hg and mitochondrial heteroplasmy (Zole et al.
2015).

There are many parameters that can influence the
survival of individuals with specific hgs in different
environments and populations, as well as the coexis-
tence of other mutations that do not determine a hg,
however, any of these parameters has the potential to
be the most significant in particular settings. As there
is the evidence that certain hgs have been associated
with certain age-related diseases, this association may
affect the frequency of specific hgs in the older age
groups. In general, these studies showed that there is a

possibility of some connection of mtDNA hgs with
age-related diseases and longevity in humans, mito-
chondrial hg backgrounds and divergence of
populations.

Interrelationship between mitochondria
and telomeres

Heap of evidence suggests a crucial role for signalling
from the nucleus to mitochondria in ageing (reviewed
in Fang et al. 2016). Telomere theory declares
telomere shortening as the main trigger and the best
marker of cellular senescence and ageing, an adjacent
theory is oxidative stress or mitochondrial theory
(reviewed in Bernadotte et al. 2016). And for some
time, scientists are trying to find a trade that links
telomere attrition to metabolic compromise, which is
central in cellular functional decline during ageing
(Fig. 1). Mitochondrial dysfunction leads to perturba-
tions on the electron transport chain resulting in
increased ROS generation and reductions in ATP level
(Balaban et al. 2005; Moiseeva et al. 2009). Addi-
tionally, increased mitochondrial density and biogen-
esis are associated with increased ROS production due
to an increased number of sites where ROS generation
can occur (Passos et al. 2007; Yoon et al. 2010). This,
in turn, can further induce DNA damage, and it has
been shown that oxidative stress is associated with
increased telomere attrition (von Zglinicki 2002;
Kawanishi and Oikawa 2004). One of the first studies
that reported a connection between mtDNA mutations
causing respiratory chain disorders and telomere
shortening was about mutations in the mtDNA of
LHON, mitochondrial encephalomyopathy, lactic
acidosis, and stroke-like episodes (MELS) syndrome
patients; the researchers observed shorter telomeres in
patients than in a control group (Oexle and Zwirner
1997). Liu et al., at the beginning of this century,
demonstrated that mitochondrial dysfunction gener-
ates ROS and leads to chromosomal instability
through telomere attrition (Liu et al. 2002). The study
of Passos and colleagues also showed connections
among TL with mitochondrial genetics and ROS in
later years (Passos et al. 2007). On opposite side, an
evidence exists that shortening of telomeres is a causal
factor for mitochondrial dysfunction. Short telomeres,
which are sensed as double-strand breaks and genomic
DNA instability, suppress peroxisome proliferator-
activated receptor gamma, coactivator 1 alpha and
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Fig. 1 Connection of
telomere-mitochondrial axis
of ageing. SIRTI NAD-
dependent deacetylase

sirtuin-1, p53 tumor decreased SIRT1 activity

short telomeres

/ seen as DNA damage\

suppressor protein p33,

PGC-1o2/f peroxisome l
proliferator-activated
receplor gamma coactivator
l-alpha/beta, NRFI nuclear
respiratory factor 1, ROS
reactive oxygen species,

suppressed NRF1 activity

increased p53 activity

suppressed PGC-a activity

lower mtDNA amount -
ATP adenosine triphosphate.

The scheme adapted from
Sahin and Depinho (2010),
Moiseeva et al. (2009),
Sahin et al. (2011), Pieters
et al. (2015)

increased ROS production,

PGC-B

/

increased mitochondrial
dysfunction

low ATP level

oxidative stress

beta (PGC-1a/B, which regulate a vast number of
mitochondrial functions, including mitochondrial
replication/transcription, OXPHOS, oxidative stress
and gluconeogenesis (e.g., Wu et al. 1999) action via
the p53 transcription factor (Chin et al. 1999; Sahin
and Depinho 2010; Sahin et al. 2011). Short telomeres
cause increased p53 activity and high levels of
apoptosis (Flores and Blasco 2009), as well as up-
regulation of the mTOR and Akt survival pathways
and down-regulation of cell cycle and DNA repair
pathways (Schoeftner et al. 2009). Further work by
Sahin and colleagues confirmed that telomere dys-
function is associated with reduced mtDNA content,
while p53 deficiency partially rescues the transcrip-
tional regulation of PGC-1a/P3 and mtDNA CN (Sahin
et al. 2011). There are suggestions that p53 influences
telomere DNA structure and promotes telomere DNA
stability, and its binding can be induced by numerous
stress conditions (Tutton et al. 2016). In contrast, in
mitochondria, p53 plays a direct role in the mito-
checkpoint response and positively regulates mtDNA
CN; the loss of p53 leads to the reduction of mtDNA
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content in MEF cells (Kulawiec et al. 2009). Consis-
tent with the mtDNA CN reduction, p53 null cells
show a decrease in mitochondrial membrane potential
and reduction in mitochondrial mass, linking p53 to
promotion of normal mitochondrial function (Lebe-
deva et al. 2009). Safdar et al. have shown that p53
translocates to the mitochondria and facilitates
mtDNA mutation repair and mitochondrial biogenesis
in response to endurance exercise in mice. These
results suggest that in cells under certain conditions,
more p53 is located in mitochondria than in nuclei, and
in this way, p53 helps to maintain healthier cells,
longer telomeres, less mtDNA mutations and prevents
apoptosis (Safdar et al. 2016). Alternatively, another
study has found that overexpression of pS3 negatively
affects the mtDNA abundance in HepG2 cells (Koczor
etal. 2012). Pieters et al. showed that SIRT1 also plays
a role in the telomere-mitochondrial ageing axis. In
their work, TL was positively correlated with SIRT1,
which deacetylates and inactivates p53 protein, and
NRF1 (involved in regulation of mtDNA transcription
and replication) and negatively correlated with p53
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expression, while mtDNA content was positively
correlated with SIRT1 and NRF1 expression (Pieters
et al. 2015). SIRT1 is involved in glucose homeostasis
as a modulator of PGC-1a, and it deacetylates p53,
leading to reduced apoptosis (Vaziri et al. 2001;
Rodgers et al. 2005); extra expression of SIRTI
enhances mitochondrial function by upregulating
mitochondrial biogenesis and degradation, thus
improving oocyte development (Sato et al. 2014).
The first observation of TL and mtDNA CN
correlation in peripheral leukocytes in population
studies comes from studies of patients with diseases
linked to alterations of these two cell components such
as type 2 diabetes (Monickaraj et al. 2012). A study
about depression found no correlation: the authors
reported shortened telomeres but no reduced mtDNA
CN in leukocytes in patients with depressive sympto-
mology (Verhoeven et al. 2017), while childhood
adversity and lifetime psychopathology were each
linked to shorter telomeres but higher mtDNA CN in
leukocytes (Tyrka et al. 2016). In a study about
cognitive dysfunction in individuals over 75 years of
age authors saw positive relationship between TL and
mtDNA in blood samples after adjustment for age and
gender; and for individuals with conative dysfunction
both high TL and high mtDNA CN amount were
observed, speculating that it might be due to increased
oxidative stress and inflammation (Lee et al. 2017a).
Data from different tissues are also available.
Patients with Fuchs® endothelial corneal dystrophy
(FECD) had higher mtDNA levels but shorter telom-
eres in endothelial cells (Gendron et al. 2016) while in
patients suffering mental disorders had shorter telom-
eres and lower mtDNA CN in post-mortem brains of
people who had committed suicide (Otsuka et al.
2017). For people with colorectal carcinogenesis, a
positive correlation depended on the stage of the
cancer in tubular adenoma and serrated polyp tissue.
In normal and cancer tissues, the correlation was
positive, but in precancerous legions, the correlation
was not observed, suggesting that the disturbance of
the telomere-mitochondrial axis by ageing or other
factors may be important in the development of
carcinogenesis (Lee et al. 2017b). Jung et al. also
showed a sign of dynamic TL and mtDNA CN
relationship. They found a positive correlation in
normal tissues and the intestinal type of gastric cancer
but not in the diffuse type of the disease (Jung et al.
2017). In addition, not only was mtDNA CN

correlated with TL, but mtDNA non-silent mutations
had a negative correlation with TL in bone marrow and
oral epithelial cells in aplastic anaemia patients (Cui
et al. 2014).

As in diverse pathologies and tissues the telomere—
mitochondrial relationship can vary, it is important to
look if this connection is evident in general popula-
tions during the healthy ageing process. The use of
peripheral blood leukocytes for these studies could be
argued as not the ideal tissue as discussed above.
However, this approach is widely used as the evidence
suggests that TL measurement in easily accessible
tissues such as blood could serve as a surrogate
parameter for the relative TL in other tissues
(Friedrich et al. 2000), and general population periph-
eral blood mtDNA content is significantly associated
with sex and age (Knez et al. 2016). One of the first
population studies in healthy humans came from Kim
et al. who showed a positive association between
leucocyte TL and mtDNA CN in elderly women from
Korea with an average age of 73 years, suggesting that
telomere function might influence mitochondrial
function in humans (Kim et al. 2013). Other
researchers have confirmed this association in indi-
viduals aged 18-64 years from the USA (Tyrka et al.
2015) and individuals aged 60-80 years from Bel-
gium, suggesting that telomeres and mitochondria are
co-regulated in humans (Pieters et al. 2015). Addi-
tionally, Qiu and colleagues observed a positive
correlation between TL and mtDNA CN in leukocytes
of pregnant women in the USA after adjusting for age
and plasma vitamin B12 (Qiu et al. 2015). A positive
association was found in a Mexican population for
children ages 6-12 (Alegria-Torres et al. 2016). Our
own study shows that nonagenarians from Latvia losta
correlation between TL and mtDNA CN in compar-
ison with younger age groups, which indicates that an
abundance of mtDNA does not mean that nonagenar-
ians and centenarians might have longer telomeres,
and, instead, they may have different and more
balanced protection against premature death (Zole
et al. 2017). While the exact molecular mechanism
underlying the telomeres-mtDNA associations is not
clear and more studies are required, it seems that in
nonagenarians and centenarians, telomere shortening
might not influence mtDNA amount or vice versa as
strongly as in individuals who do not reach such old
age; these findings could be partly explained by
different polymorphisms in the mtDNA sequences
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(e.g.. Niemi et al. 2005; Takasaki 2008; Guney et al.
2014), the diverse nuclear DNA SNPs and the
healthier lifestyle noted in these individuals compared
with individuals who do not live over 90 years of age
(e.g., Yashin et al. 2000; Debrabant et al. 2014;
Gierman et al. 2014; Govindaraju et al. 2015).

In summary, the results of population studies have
shown that TL is gradually shortening, and mtDNA
amount is gradually decreasing during the humans’
ageing process. However, the studies in centenarians
have pointed out the possible existence of protection
mechanisms which may affect the “standard™ cellular
senescence processes. Both population and experi-
mental studies have highlighted the existence of
telomere-mitochondria interplay, as well as a dynamic
nature and complexity of this interaction. TL shorten-
ing is a generally accepted factor for causing cell
replicative senescence and ageing, which also may
have an effect on the mitochondria dysfunction.
However, the evidence suggest that this process is
not strait forward, and many factors, including mito-
chondria-related processes, can affect the TL in cells
in turn. Only few studies have shown mitochondrial
hgs as one of genetical markers which influences
ageing, TL or mtDNA amount; while the possible
mechanism beyond is not clear, the results suggest that
specific hgs are prone or protective towards some age-
related diseases. Also, when looking into mtDNA
heteroplasmy, there are no clear answer if it is a cause
or a consequence of ageing, while mtDNA damage per
se could be causative of ageing process. One more
ageing-related factor which is addressed in population
studies is mtDNA CN. Different studies have shown
that mtDNA amount decreases with age, while others
have reported that for the very old it is similar or even
higher comparing with people in a younger age
groups. Depending on which population we come
from and what heredity we have, our background can
influence our longevity and health not only by social,
health care or environmental factors, but also by
genetic hallmarks that are diverse in different popu-
lations. There are a lot of controversial and unclear
data about the topic, but it is important to understand
and clarify, for example, at which point in our lifetime
we should focus on maintaining the right cellular
function. In a young age, it could be TL which could
be positively influenced by exercise and stress-reduc-
tion, but with age it could be more important to convey
more energy to mitochondrial maintenance for
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healthier and longer live. Meanwhile, before clear,
science-based recommendations and strategies are
available, it is important to continue research in the
exciting field of bio-gerontology to improve human
healthspan and prolong lives.
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