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Abstract 

Ageing has always been a topical subject for both discussion and exploration. The 

nature and evolution have set a natural limit to our lifespan, which is not very long, but we 

can do many things to prolong our lives and to improve our health when we are getting older. 

To do so even better, we must understand how and why we are ageing, and this knowledge 

may help us to discover and develop novel approaches to change it. Until now, there were no 

studies about a possible interplay between dynamics of telomere length (TL) and 

mitochondrial DNA (mtDNA) during the ageing process in Latvian population. 

In my work I have looked into two important factors of ageing: TL and mtDNA. It is a 

well-known fact by now that telomeres and mitochondria is, in some level, connected and 

possibly drives the ageing process. These pathways are influenced by small differences in our 

nuclear or mitochondrial genomes that can lead to accelerated ageing or diseases. For 

example, people belonging to mtDNA haplogroup (hg) J have significantly longer telomeres 

than non-J carriers but are more prone to Leber's optic atrophy; hg H carriers are more prone 

to some cancer types; and mitochondrial heteroplasmy and hgs might influence mtDNA copy 

number (CN) in cells, which in turn can, hypothetically, influence longevity. But many details 

are not known yet, and in different studies we can see controversial results. During my work I 

have confirmed the results shown in other studies that both mtDNA and telomeres-related 

factors are indeed connected with our longevity. But I also have shown that this connection of 

TL and mtDNA alterations is different and not as clear for the very old or nonagenarians 

(people between 90 and 100 years old). During my research I did not see that benign and 

small differences of mtDNA are related to the TL, the total amount of mtDNA or age for 

individuals in our sample cohort, but some studies have shown such effects and that is why 

these could be population specific traits. Large studies in different populations are required to 

confirm these findings. 
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Abstrakts 

Novecošanās vienmēr ir bijusi aktuāla diskusiju un izpētes tēma. Lai arī evolūcija ir 

parūpējusies par to, lai lielākajai daļai dzīvnieku dzīves ilgums nebūtu pārlieku garš, mēs 

varam daudz ko darīt, lai mūsu dzīvildzi pagarinātu un uzlabotu veselību novecojot. Lai to 

izdarītu pēc iespējas efektīvāk, mums ir jāsaprot, kā un kādēļ mēs novecojam. Līdz šim nav 

veikti pētījumi Latvijas populācijā, kas aprakstītu telomēru garuma (TG) un mitohondriālā 

DNS (mtDNS) izmaiņas, un to iespējamo saistību novecošanas procesā. 

 Savā darbā esmu apskatījusi divus svarīgus novecošanās faktorus: TG variācijas un 

mtDNS sekvenču un daudzuma izmaiņas Latvijas populācijā dažādās vecuma grupās, kā arī 

šo faktoru iespējamo mijiedarbību novecošanas laikā. Tas ir jau labi zināms fakts, ka telomēri 

un mitohondriji ir savā starpā saistīti un virza izmaiņas šūnu līmenī gadu gaitā. Šie signāl-ceļi, 

savukārt, var būt atkarīgi no nelielām izmaiņām kodola vai mitohondriālā genomā, tādejādi 

novedot pie paātrinātas novecošanās vai slimībām. Piemēram, J mitohondriālas haplogrupas 

(hg) nēsātājiem ir novēroti garāki telomēri, bet viņiem ir lielāka iespēja saslimt ar Lēbera 

pārmantoto optisko neiropātiju; H hg nēsātāji ir vairāk pakļauti iespējai saslimt ar kādu no 

vēža veidiem; kā arī mitohondriālā heteroplazmija un hg var ietekmēt mtDNS kopiju skaitu 

šūnā, kas var hipotētiski ietekmēt dzīvildzi, lai arī daudzas detaļas vēl ir nezināmas, un 

daudzos pētījumos ir novērojamas pretrunas. Sava darba ietvaros esmu apstiprinājusi citu 

autoru darbu, ka šie divi šūnu komponenti ir svarīgi un ir saistīti ar mūsu novecošanos. 

Turklāt, mani novērojumi liecina, ka ka TG un mtDNS izmaiņas ir savādākas cilvēkiem, kuri 

nodzīvo pāri pa deviņdesmit gadiem. Es arī parādīju, ka labdabīgas vai nelielas mtDNS 

sekvenču izmaiņas neietekmē TG, mtDNS daudzumu asins šūnās vai ilgdzīvotību cilvēkiem 

mūsu paraugu kopā. Ņemot vērā, ka atsevišķi citu autoru pētījumi ir parādījuši šādu ietekmi, 

tas var liecināt, ka šo faktoru ietekme varētu būt populāciju specifiska. Nākotnē būtu svarīgi 

veikt plaša mēroga pētījumus dažādās populācijās, lai apstiprinātu šos rezultātus. 
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Introduction 

Population studies have demonstrated that telomere length (TL) displays a great 

diversity among different populations and distribution of mitochondrial haplogroups (hgs) 

across the globe is a variable trait. Until now, there were no studies that investigated the 

variability of TL and mitochondrial DNA (mtDNA) alterations in an ageing Latvian 

population. All the controversial findings that associate longevity with specific mtDNA hgs, 

heteroplasmy, TL or other mtDNA alterations during ageing require for more studies in field 

of population ageing. These observations may be influenced by population diversity, 

geographic location, health care and/or specific historic background. It is well known that TL 

shortens with age, but there is not as clear picture for mtDNA amount in our cells. While it is 

often shown that TL correlates with mtDNA amount in younger people, there have not been 

studies in nonagenarians or centenarians about the TL and mtDNA correlation in blood cells. 

Nonagenarians and centenarians may have differences in senescence-related pathways and 

systems, which may function as a protective mechanism that allows them to live longer. Also, 

not always it has been proven that heteroplasmy or other changes in mtDNA is connected 

with shorter lifespan, thus more attention from scientists is required. 

Importance of this work. As every population is different by its genetical markers 

like, for example, mtDNA hgs or environment where it is located, it is important to study as 

many populations as possible to understand how different factors influence cell functions 

including ageing. For example, there is very high rate of mortality from cardiovascular 

diseases in Latvia, which is connected with TL and mitochondrial dysfunction. It is also 

important to explore at which point in our lifetime we should focus on maintaining the right 

cellular function: for example, when we are young maybe it is TL but with age it could be 

more important to convey more energy to mitochondrial maintenance for healthier and longer 

lives. From another point of view this work is also important because if there are so many 

inconsistent results among laboratories around the world, then, in order to make the right 

conclusions, there is a considerable need to do as many research studies as possible. 
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Aims of the study: 

1. The first aim was to determine telomere length and mtDNA copy number in a Latvian 

population to observe any variations in different age groups. 

2. The second aim of this study was to analyse the most prevalent mitochondrial 

haplogroups in different age groups in Latvian population and to estimate their 

possible associations with telomere length and mtDNA copy number amount and 

ageing. 

3. The third aim was to examine the connection between mtDNA alterations and 

telomere length in ageing population.  

Tasks to reach the aims: 

1. Optimize and validate all necessary methods and experimental approaches. 

2. Determine telomere length and mtDNA amount in samples collected from the Latvian 

population. 

3. Determine mitochondrial haplogroups and heteroplasmy in samples from the Latvian 

population. 

4. By using statistical methods, find possible links between these cell components in an 

ageing Latvian population. 
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1. LITERATURE REVIEW 

1.1 Ageing 

Ageing is consequences from the interaction of processes that occur over time and 

genetics interacting with various disease states and the individual’s lifestyle. As the 

population ages, it is essential to think how to raise the quality and years of healthy life (Peel 

et al. 2005). Ageing we can see as the unavoidable passage of time; cell senescence as a 

process in which cells stop dividing and undergo distinctive phenotypic alterations. Evidence 

shows that the effects of cellular senescence are continuously acquired and that senescent 

cells exist in tissues even early in life. From energy point of view having senescent cells is 

energy less expensive for tissue than cycling cells (reviewed in Eisenberg 2011; Dimri et al. 

1995). There are several hallmarks of cellular senescence: replicative senescence (telomere 

attrition); DNA damage-induced senescence (radiation or multiple drugs); oncogene-induced 

senescence (activation of oncogenes or inactivation of tumour suppressors); oxidative stress-

induced senescence (oxidizing products of the cell metabolism or oxidative agents); 

chemotherapy-induced senescence (anticancer drugs); mitochondrial dysfunction-associated 

senescence; epigenetically induced senescence (inhibitors of DNA methylases or histone 

deacetylases); and paracrine senescence (senescence-associated secretory phenotype) 

(reviewed in Hernandez-Segura et al. 2018). 

There are generally accepted nine hallmarks of ageing  (Fig. 1): genomic instability 

(nuclear, mitochondrial DNA and nuclear architecture alterations); telomere attrition; 

epidemiologic alterations (alterations in DNA methylation patterns, posttranslational 

modification of histones, and chromatin remodelling and transcriptional alterations); loss of 

proteostasis (chaperone-mediated protein folding and stability, proteolytic systems); 

deregulated nutrient sensing (the Insulin- and IGF-1-signaling pathway, mTOR, AMPK, and 

Sirtuins); mitochondrial dysfunction (reactive oxygen species (ROS), mitochondrial integrity 

and biogenesis, mitohormesis); cellular senescence (telomere loss, INK4a/ARF Locus and 

p53); stem cell exhaustion; altered intercellular communication (inflammation and other types 

of intercellular communication) (reviewed in López-Otín et al. 2013). 
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Fig.1. Hallmarks of ageing. Picture adapted from López-Otín et al. 2013. 

There are also many theories that describe ageing. The theory of programmed ageing, 

under which are several sub-theories, establishes that ageing is a result of a sequential 

switching on and off of certain genes, with senescence being defined as the time when age 

associated deficits are manifested. Endocrine theory says that biological clock is regulated 

through hormones and controls the pace of ageing. Immunological theory postulates that the 

immune system is programmed to decline, which in turn leads to an increased vulnerability to 

infectious disease and thus ageing and death. The damage or error theory emphasizes 

influence of environment; there are also several sub-theories under it. Stochastic or “wear and 

tear” theory assumes that cells, tissues and organs wear out resulting in ageing. Rate of living 

theory predicts that lower energy metabolism and lower oxygen basal metabolism slows 

ageing rate. Cross-linking theory, according to this theory, an accumulation of crosslinked 

proteins damages cells and tissues, slowing down bodily processes resulting in ageing. Free 

radicals or ROS (mitochondria) theory proposes that these chemically active molecules cause 

damage to the macromolecular components of a cell that leads to accumulated damage 

causing impairment of cells and, eventually, organs, and ageing as an outcome. Somatic DNA 

damage theory means that DNA damages take place continuously and accumulate with 



11 

 

increasing age, causing cells to deteriorate and malfunction. Apart from these, even more 

theories of ageing exist: accumulation of undegradable by-product of metabolism, impairment 

of regulatory pathways during ageing, and energy restriction and lifespan theories.  

The focus for this study is on two well-accepted theories: one involves TL shortening 

and, the second involves mtDNA alterations. As there are contradictory studies about these 

theories, there is a necessity for more research in the field of ageing. 

1.2. Telomeres 

Telomeres are the specialized chromosomal DNA-protein structures that cap and 

protect the terminal regions of eukaryotic chromosomes (Fig. 2). The sequence of telomeric 

DNA in vertebrates, including humans, is (TTAGGG)n; in humans, its length ranges from 5 

to 15 kb and varies between different tissues. Each time a cell divides the telomeres get 

shorter due to the chromosome end-replication problem. By removal of the RNA primer, 

which initiates the last Okazaki fragment, a single-stranded G-rich 3′-overhang is formed 

when a replication fork has reached the end of the chromosome´s lagging strand (Makarov et 

al. 1997). The telomeric 3′-overhangs are also observed at the end of the leading strand, 

although of different size (Chai et al. 2006). As the leading-strand replication generates a 

blunt-ended telomere, 5`-end resection by Apollo exonuclease is required to form the single-

stranded 3′-overhang to protect telomeres. Thereby, the telomeric 3′-overhangs are formed by 

shelterin-controlled multistep process which is slightly different for each strand (Wu et al. 

2012; reviewed in Higa et al. 2017). Human telomeres typically terminate in a 35–600 nt 

single-strand 3′ overhang of the G-rich sequence, which are bound by a specific protein 

complex termed ‘shelterin’ (telosome) - proteins connected with telomeres. Their main 

function is to maintain telomere structure and functions. The main proteins can be divided 

into three levels: 1. proteins that directly are connected with telomeres (TRF1, TRF2, POT1), 

2. proteins that are connected with the first level proteins (TPP1, TIN2, Rap1). And there are 

proteins that are connected with the telomerase (TERT, TERC, NOP10, NHP2, DCK1, 

NHP2). Plus, there are many other proteins and enzymes that are connected with telomeres 

and their maintenance (Martínez and Blasco, 2011; Lange et al. 2006). Telomerase is a 

specific enzyme that extends telomeres, but it is significantly active only in special cells such 

as stem cells, gametes, some types of blood cells and most cancer cells (Greider and 

Blackburn 1985; Kim et al. 1994; Wright et al. 1996; Kaszubowska 2008; Wu et al. 2017). 
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Telomere maintenance and shortening is a complex process which can be affected by 

different factors, like stress and genetic background, and is different in diverse tissues, 

furthermore the relationship between TL and ageing is not fully clear (reviewed Blackburn et 

al. 2015). Telomeres are dynamic structures that become shorter with every cell division until 

a critical stage is reached when the cell can no longer divide and enters a phase of senescence. 

Telomere attrition causes genomic instability, which is associated with a higher risk of age-

related diseases and cancer, leads to potentially maladaptive cellular changes, and blocks cell 

division (Harley et al. 1990; Blackburn 2001; de Lange et al. 2006; reviewed in Samassekou 

et al. 2010; Blackburn et al. 2015). They are essential for stabilizing eukaryotic chromosomes 

in different ways. One of many functions of telomeres are to prevent the end of the linear 

chromosomal DNA from being recognized as a broken end; telomeres are also the “first 

responders” to threats to genomic stability and problems with DNA maintenance. They are 

located at the nuclear envelope, and their specific association with the spindle pole body is 

required for normal recombination, protecting cells from nonhomologous recombination and 

broken DNA ends ensuring normal mitosis and meiosis (Blackburn 2001). 

Fig. 2. Telomeres and their shortening. Picture adapted from University of Liège (reflexions.ulg.ac) 

It is widely accepted that TL gradually decreases with age in human cells (except for 

the terminally differentiated tissues such as brain and myocardium); and for women, 

telomeres shorten more slowly due to oestrogen effects on telomerase (Kyo et al. 1999; 

Takubo et al. 2010). Telomere DNA is a target of persistent DNA damage which can induce 
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cellular ageing and stress-induced senescence (Hewitt et al. 2012). Shortened blood cells` 

telomeres in population studies were associated with higher rates of mortality from different 

age-related pathologies, including heart and vascular diseases, diabetes mellitus, Parkinson’s 

disease and Alzheimer’s disease, among others (reviewed in Blasco 2007; Jiang et al. 2007; 

van der Harst et al. 2007). Several studies have reported that telomeres do not shorten as 

quickly in older individuals and TL does not predict mortality in the very oldest. This 

observation presumably may be related to a gradual reduction in cell turnover with advancing 

years. However, the opinion exists that, at a certain age, telomere maintenance is more critical 

than the exact TL (Mondello et al. 1999; Jiang et al. 1992; Shay et al. 2007; Haussmann and 

Mauck 2008; Ehrlenbach et al. 2009; reviewed in Simons 2015).  

Population studies have demonstrated that TL in blood cells can be quite diverse 

among different populations. In a study of people over 60 years old, a French population (an 

average life expectancy (ALE) - 82.4 years; the data of life expectancies for populations was 

taken from World Health Statistics 2015) contained longer telomeres than an Italian 

population (ALE – 82.7 years) (Canela et al. 2007). Individuals with an average age of 22.7 

years from Southern Europe (ALE – 81.9 years) possessed shorter telomeres than individuals 

from one part of the Baltic region (ALE - 79.3 years), and individuals from the Middle 

Europe (ALE - 81.5 years) contained the longest telomeres (Salpea et al. 2008). However, 

another report that included fourteen European populations with individuals between ages 18-

28 showed that TL varied among them drastically, with the shortest telomeres observed in an 

Italian population (5100 bp (base pairs)) (ALE – 82.7 years) and the longest telomeres 

observed in a Belgian population (18,640 bp) (ALE - 81.1 years). For an Estonian population 

(ALE - 77.6 years), telomeres were 7340 bp long (Eisenberg et al. 2011). Pronounced 

differences in TL were observed for two subpopulations in Finland (ALE – 81.38 years): in an 

Oulu-based population, the mean TL was 7620 bp, and in a Helsinki-based population, the 

mean TL was 12,280 bp (Eisenberg et al. 2011). The work of Hansen and colleagues also 

proved that TL between populations differs. They stated that Europeans (ALE – 71.3-83.4 

years) have much shorter telomeres than sub-Saharan Africans (Tanzania) (ALE – 61.8 years) 

and Afro-Americans (ALE - 75.6 years) in a long age span of 20-80 years (Hansen et al. 

2016). In comparison the TL in the USAs population of age range 19-93 years were longer in 

Afro-Americans (ALE - 75.6 years) than in whites (ALE – 79 years), although Afro-

Americans showed a faster rate of TL shortening (Hunt et al. 2008; Chen et al. 2011; data for 
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ALE in USA taken from Kenneth et al. 2016). In a similar study the same research group 

again demonstrated that black people have longer telomeres than white people, age range of 

19-77 years (Daniali et al. 2013). These differences among populations and ethnicity are 

poorly understood. It seems that TL in leukocytes of the reviewed populations not always can 

be explained by life expectancies, while, there is a correlation between age and TL in 

peripheral blood leukocytes, with correlation coefficient ranged from −0.088 to −0.838 in 

different studies (reviewed in Müezzinler et al. 2013). In most studies, short telomeres in 

circulating leukocytes are also associated with high mortality (Cawthon et al. 2003; Rode et 

al. 2015). Though, telomere shortening may not affect mortality per se but could be controlled 

by progression of senescence that leads to mortality by other mechanisms (Cawthon et al. 

2003). Life expectancy also depends on dynamics of TL or how fast telomeres shorten for 

each individual as a study on birds has shown (Bize et al. 2009). All these observations of 

different TL and life expectancies among populations could be explained by differences in 

genetics, sex, ethnicity, nutrition, economic and social status or stress level and health care 

systems. It can also be due to lifestyle choices including smoking, alcohol consumption, 

physical activities, body mass index, diet and supplement intake and environmental pollution 

that can influence the disparity (reviewed in Epel et al. 2004; Lin et al. 2012; Müezzinler et al. 

2013 and Vidacek et al. 2017). For example, Crous-Bou and colleagues showed that women 

who practised a Mediterranean diet had longer telomeres than those who did not (Crous-Bou 

et al. 2014). There is evidence that famine can also influence TL. For men who have 

experienced starvation, TL was shorter than for those who have not. It also seems that men 

whose parents had experienced recent starvation before conception had shorter telomeres 

(Kobyliansky et al. 2016).  

1.3. Mitochondria 

Mitochondria (Fig. 3) are very essential organelles of an eukaryotic cell. It has many 

functions that ensure differentiation, survival and death of cells. Mitochondria work as factory 

for ATP (adenosine triphosphate) and metabolites for the cell survival, and release of 

cytochrome c to initiate cell death. Mitochondria work as signalling organelle releasing 

proteins, ROS, metabolites or by serving as a scaffold to configure signalling complexes 

(reviewed in Chandel, 2014). It also regulates bioenergetics through cytosolic calcium 

regulation (Rizzuto et al. 1993). Mitochondria with its providing of ATP and other 
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components affect gene expression, chromatin modification related to transcriptional 

activation, transcription elongation and even alternative splicing (Guantes et al. 2016). 

 
Fig. 3. Mitochondria in cells around nucleus, visualized by MitoTracker Red. Pictures from a private collection 
of the author.  

It has been shown that mitochondria are required for pro-ageing traits of the senescent 

cell phenotype (Correia-Melo et al. 2016). With age mitochondria become more ineffective 

and potentially toxic. And they can induce apotheosis or necrosis that can lead to decrease of 

functions for tissue and the whole body. As oxidative phosphorylation (OXPHOS) takes place 

in the mitochondria it leads to ROS production which oxidize macromolecules in there and 

can lead to mtDNA mutations. During ageing mutations in mtDNA accumulates and 

OXPHOS becomes less effective leading to higher ROS production and that can lead to cell 

senescence and death (Wallace et al. 2010; Green et al. 2011; Mikhed et al. 2015). 

Mitochondria are involved in processes of inflammation and autophagy or mitophagy that 

eliminates dysfunctional mitochondria. Induction of these processes can help to sustain a 

longer life span because it destroys damaged mitochondria and cells and helps to adapt to 

stress for the cell. With age mitophagy and autophagy decreases as a result mutated mtDNA 

and dysfunctional proteins accumulate and cells age (Levine and Kroemer, 2008; Lipinski et 

al. 2010).  
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1.4. Mitochondrial DNA 

Mitochondrion contains its own circular double-stranded DNA and it is maternally 

inherited (Giles et al. 1980). It is 16,569 bp long and encodes only 37 genes (Fig. 4A). 

MtDNA codes the 12S and 16S rRNAs genes, 22 tRNAs, 13 subunits of respiratory chain 

(RC) - seven subunits of complex I (NADH-ubiquinone oxidoreductase, ND1, 2, 3, 4, 4L, 5 

and 6), one subunit of complex III (cytochrome b), three subunits of complex IV (cytochrome 

c oxidase (COX) I, II and III), and two subunits of complex V (ATPase subunit 6 and 8), 79 

subunits are encoded by the nuclear genome (Anderson et al. 1981). 16S also encodes 

humanin peptide and then is transported into intra- and extra-cellular compartments and 

function as mitochondrial-nuclear retrograde signalling (Hashimoto et al. 2001; Lee et al. 

2013). Also, cox1 subunit on the antisense strand possibly encodes a short protein named Gau 

(Gene Antisense Ubiquitous) (Faure et al. 2011). The genome structure of the two strands is 

distinguished by their nucleotide composition - heavy strand (H-strand) is guanine rich, 

compared with the cytosine rich light strand (L-strand), 28 genes are on the H-strand and 9 on 

the L-strand. MtDNA genes lack introns and some genes, like MTATP6 and MTATP8, have 

overlapping regions. Most genes are very close to each other, separated by one or two non-

coding base pairs. MtDNA contains only one major non-coding region (NCR) in which are 

located the displacement loop (D-loop), 1123 bp long, mostly is in a triple-stranded DNA 

configuration and includes hypervariable (HVS) regions. The D-loop contains a site of 

mtDNA replication initiation (OH - origin of heavy strand synthesis) and is also the site of 

both H-strand transcription promoters (HSP1 and potential HSP2). OL is located two thirds of 

the lengths from OH. MtDNA replication is not driven by the cell cycle or cell division and is 

continuously recycled. MtDNA is replicated by DNA Polymerase γ (Poly γ) with a help of 

Twinkle helicase and mtSSB (single-stranded DNA-binding protein). The mitochondrial 

genetic three nucleotide code for amino acids is different from nuclear DNA code 

(Graziewicz et al. 2006; reviewed in Chinnery and Hudson 2013). 
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A B  
Fig. 4. A: Structure of the mtDNA. Picture adapted from Scarpulla, 2008. B: Polymorphisms of mitochondrial 
haplogroups mapped on mtDNA. Picture adapted from Geni (www.geni.com). 

Most of the mammalian cells contains hundreds to more than a thousand mitochondria 

each, and each organelle harbours 2-10 copies of mtDNA (Robin and Wong 1988). The 

mtDNA amount in a cell is heritable, implying genetic regulation of mtDNA levels, and the 

mtDNA CN in peripheral blood cells is higher for women than men (Ding et al. 2015; Knez et 

al. 2016). There are debated results from different studies regarding how mtDNA CN in blood 

cells changes during human ageing. A substantial age-related decline in the abundance of 

mtDNA has been shown between 17 to 93 years of age (Mengel-From et al. 2014; Ding et al. 

2015; Zhang et al. 2017), and low mtDNA content in blood cells was associated with familial 

longevity in a study from the Netherlands. Based on their results, the authors discussed the 

necessity of preserving mitochondrial functions rather than enhancing mitochondrial 

biogenesis via the YY1 transcriptional repressor protein (van Leeuwen et al. 2014). It was 

reported that an increase in the mtDNA CN is associated with elevated oxidative stress in the 

human tissues of aged individuals (Barrientos et al. 1997a; Barrientos et al. 1997b). In 

contrast, He et al. have shown that mtDNA content in blood samples was higher for healthy 

centenarians than for the younger age groups (He et al. 2014), while Moore and colleagues 

have reported that association of mtDNA CN with age was not statistically significant among 

participants of the InCHIANTI study (age range: 29–96) (Moore et al. 2018). High mtDNA 

CN in leukocytes in many studies has been associated with better health, including higher 

cognition and lower mortality (Lee et al. 2010; Kim et al. 2011; Mengel-From et al. 2014; 

Ashar et al. 2015). In a recent study, higher mtDNA was associated with a significantly lower 
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risk of both solid tumours and other diseases, independent of age and sex (Memon et al. 

2017). Centenarians have increased mitochondrial mass and higher ATP level in primary 

cultures of fibroblasts isolated from the skin (have defective mitochondria but a preserved 

bioenergetic competence) indicating that longevity is characterized by a preserved 

bioenergetic function likely attained by a successful mitochondrion remodelling that can 

compensate for functional defects through an increase in mass, i.e. a sort of mitochondrial 

"hypertrophy" (Sgarbi et al. 2014). One reason could be due to compensatory mechanisms in 

centenarians’ cells both for higher mtDNA and ATP level, as a normal level of ATP is 

necessary for a cell to progress through the G1 phase of the cell cycle to proliferate and 

regenerate, which could help the cells to be more fit during ageing by providing energy 

reserves (Mandal et al. 2005; Owusu-Ansah et al. 2008; Moiseeva et al. 2009). On the other 

hand, high mtDNA CN in blood cells was associated with breast, prostate, gastric and 

colorectal cancer risk (Thyagarajan et al. 2013; Zhou et al. 2014; Zhu et al. 2017; Kumar et al. 

2017). Additionally, stress and depression were associated with increased mtDNA amounts in 

blood cells (Cai et al. 2015) as well as other health-related factors that were shown to have an 

influence on mtDNA quantity in human cells (reviewed in Malik and Czajka 2013). There are 

several molecular factors in a cell that can regulate mtDNA CN, such as p53, mitochondrial 

transcription factor A (TFAM), Twinkle helicase and ATP synthase (Kulawiec et al. 2009; 

Ekstrand et al. 2004; Tyynismaa et al. 2004; Fukuoh et al. 2014; Moraes 2001). It was also 

shown that mtDNA CN is regulated by expression of the only mtDNA polymerase γ subunit 

A (Polγ-A) in a cell-specific manner by nuclear DNA methylation (Kelly et al. 2012). Also, 

other factors like lifestyle can influence mtDNA amount. Obesity, weight gain and pack years 

of smoking were associated with reduced mtDNA CN (Meng et al. 2016). Reduced sleep 

duration and efficiency were associated with lower mtDNA amount (Wrede et al. 2015) but 

regular exercise for postmenopausal women increases mtDNA CN in leukocytes (Chang et al. 

2016).   

MtDNA single nucleotide mutations and deletions as well as their accumulation 

(especially the 4977 bp deletion) were associated with a normal ageing process in several 

studies and have been proposed either as a useful marker of natural ageing in human subjects 

or as a factor affecting human longevity (Cortopassi et al. 1992; Meissner et al. 1997; Linnane 

et al. 1989; Raule et al. 2014; reviewed in DeBalsi et al. 2017). However, mtDNA mutation 

sites, accumulation rate and impact on cell functionality are affected differently in each tissue 
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type and there is a great importance of the individuals` ethnic background (Samuels et al. 

2013; Raule et al. 2014). Research on the mtDNA mutation signatures suggest a limited role 

for ROS-induced mutation (Kauppila and Stewart 2015), and accumulation of mtDNA 

mutations can be related to the down regulation of DNA repair that occurs with cellular 

senescence. Mice with defective Polγ show aged phenotypes and increased mutational load in 

the mtDNA (Trifunovic et al. 2004). Somatic mutations can be unevenly distributed and 

accumulated clonally in cells, causing a mosaic pattern of respiratory chain deficiency in 

tissues, or accumulation can occur during germline, embryonic or foetal development, in 

which case, the distribution of mutations would be even between tissues (Trifunovic et al. 

2004, Greaves et al. 2014).  

Mitochondrial heteroplasmy is the presence of multiple mtDNA variants with 

mutations or SNPs in a single cell or among cells within an individual (Potter et al. 1975). 

The frequency of heteroplasmy is the same between women and men (de Camargo et al. 

2011; Ding et al. 2015). The highest degree of polymorphisms is concentrated within two 

hypervariable segments of the control region: hypervariable segment I (HVS-I) and 

hypervariable segment II (HVS-II) (Wilkinson-Herbots et al. 1996). The results of studies 

looking on the association between mtDNA heteroplasmy and population ageing are not fully 

consistent. Blood cells` mtDNA heteroplasmy becomes more common with increasing age 

(Ding et al. 2015; Sondheimer et al. 2011; Zhang et al. 2017), and increased mtDNA 

heteroplasmy was associated with impaired functioning and increased risk of mortality 

(Tranah et al. 2017). MtDNA heteroplasmy at specific DNA sites in platelets was associated 

with reduced neurosensory and mobility functions in older people (Tranah et al. 2015). 

However, there is also possibility that some mtDNA polymorphisms are selected with age and 

can compensate for the defects induced by various types of mtDNA mutations, helping an 

individual to survive longer (Ono et al. 2001; Sondheimer et al. 2011; Rose et al. 2007). 

Several studies have shown that the total heteroplasmy values and patterns are maintained in 

centenarian families (Rose et al. 2007; Giuliani et al. 2014). It was reported that heteroplasmy 

can be inherited from a mother with 30% possibility; however, in 70% of cases, a mother does 

not pass the mutated site to her children, and heteroplasmic SNP changes can accrue 

spontaneously during the lifetime (Sondheimer et al. 2011; Ding et al. 2015). 
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In diabetic patients, a correlation between the mtDNA CN and SNPs in mtDNA has 

been observed in blood vessels tissue (Chien et al. 2012). Measuring mtDNA CN by shotgun 

sequencing, Wachsmuth and collaborators found that there was a correlation between mtDNA 

CN with the total number of heteroplasmies in blood and skeletal muscle cells; in the other 

tissues, heteroplasmy was correlating with age, indicating that this correlation could be 

explained mostly by age and not as much by the increase in the number of heteroplasmic sites 

(Wachsmuth et al. 2016). Another study recorded lower mtDNA CN in individuals having 

higher numbers of heteroplasmies but posits that decrease of age-related mtDNA CN and 

increase of heteroplasmy are independent from one another (Zhang et al. 2017).  

The mtDNA sequence is diverse among populations and individuals. There are 9 

major mitochondrial hgs found in the human population of Europe (H, I, J, M, T, U, V, W, 

and X) (Torroni et al. 1994; Richards et al. 1998). A human mtDNA hg is defined by 

differences in mtDNA sequences or SNPs. Previous studies showed that the mitochondrial 

genotype, or hg, can be associated with longevity and pathologies that can influence healthy 

ageing and mortality; however, the observed results are controversial. It has been detected that 

defined mutations in mtDNA which are associated with hgs D, D1, D4 (more abundant in 

Asian populations) and H1 (in European populations) are more frequently found among 

centenarians, while the frequencies of other hgs such as M9, N9 and B4a (which are more 

abundant in Asian populations) decrease in a centenarian group (Tanaka et al. 1998; Tanaka et 

al. 2000; Cai et al. 2009). Gender may also play a role in the distribution of hgs among 

centenarians (Fernández-Moreno et al. 2017). In Amish populations, the X hg was associated 

with successful ageing whilst hg J had opposite effects (Courtenay et al. 2012). Regarding 

European populations, it has been observed that in Italy hg J is more abundant among 

centenarians, while hg U frequency decreases (de Benedictis et al. 1999; Rose et al. 2001). A 

study that has been performed in Finland showed that hgs H and HV were less frequent 

among centenarians than hgs U, J and U8 (Niemi et al. 2003). Nevertheless, in Spain, Pinós et 

al. have not identified such observations in relation to hg J and have suggested that longevity 

is population-specific (Dato et al. 2004; Pinós et al. 2012). In relation to hgs H and U, other 

researchers have not found significant associations with longevity (de Benedictis et al. 1999; 

de Benedictis et al. 2000; Pinós et al. 2012). Benn with colleagues also made an assumption 

that there are no associations of hgs with mortality and longevity (Benn et al. 2008). 

Beckstead et al. indicated that individuals with hg H may live longer in comparison to 
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individuals with hg U under calorie restriction (Beckstead et al. 2009). Some researchers say 

that human adaptation to the chronic cold and irregular caloric availability, due to changes in 

seasons, could influence the evolution and distribution of mitochondrial hgs and longevity, 

especially in the North (Wallace 2005; Robine et al. 2012). In various studies, it has been 

revealed that hgs are definitely associated with healthy ageing and may have a protective 

effect on the occurrence of some diseases and tumours (e.g., Czarnecka and Bartnik 2011). 

For example, Hg J is associated with Leber’s hereditary optic neuropathy (LHON), while hg 

H has a protective effect on LHON (Torroni et al. 1997; Hudson et al. 2007). In another study, 

there was no such observation; although, the lack of observation could be explained by the 

rarity of hg J in the population (Aitullina et al. 2013). Hg J shows a protective effect against 

the development of osteoarthritis (Fernández-Moreno et al. 2017). Rosa et al. found that hg 

H1 has a protective effect on ischaemic stroke while hgs HV and U have been involved in 

increased risk of it (Rosa et al. 2008). Hg U and its branch U8 could possess protective 

properties against Alzheimer’s disease in patients with the ε4 allele (Carrieri et al. 2001). 

Furthermore, the results of two studies showed the protective properties of hgs U8 and J 

against Parkinson’s disease in Italians and Poles, respectively (Ghezzi et al. 2005; Gaweda-

Walerych et al. 2008). In contrast, a newer study from the UK did not find any linkage 

between hgs and Parkinson’s disease (PD), Alzheimer’s disease (AD), frontotemporal 

dementia-amyotrophic lateral sclerosis (FTD-ALS) or Creutzfeldt Jacob disease (CJD) (Wei 

et al. 2017). Hg T is associated with coronary artery disease (CAD) and diabetic retinopathy 

(Kofler et al. 2009). Moreover, among different types of tumours, some hgs may play a dual 

role of being either protective or not. Vulvar, prostate and renal cancers are associated with hg 

U, while hg H is more often represented in individuals suffering from head and neck cancers. 

However, hg H is underrepresented in other cancers such as vulvar, breast and endometrial 

cancers (Booker et al. 2006; Klemba et al. 2010).  

The opinion exists that hgs might play a protective role for a cell against ROS because 

of greater heat generation (higher electron transport rates, looser coupling or partially 

uncoupled OXPHOS). Haplogroup-defining mutations may affect ATP synthesis because 

certain mitochondrial variants are biochemically different (Tanaka et al. 1998; Tanaka et al. 

2000; Cai et al. 2009; Fernández-Moreno et al. 2017). Mitochondrial hgs have different 

coupling efficiencies (the percentage of oxygen consumption used for ATP synthesis rather 

than heat generation) or mitochondrial production of ROS. Reduced mitochondrial coupling 
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in aging tissues has been demonstrated. In addition to the negative consequences of 

mitochondrial uncoupling, mild uncoupling has been shown to reduce the generation of ROS 

and provide protection against age-related disease. For the cold-adapted hgs, uncoupling 

mutations would produce less ATP per calorie consumption, which allows greater heat 

generation and more oxidization, and fewer ROS would be formed; for example, hg H has 

higher ATP production in comparison to hg J (Mishmar et al. 2003; Baudouin et al. 2005; 

Wallace 2005; Brand 2000). Hgs J and U are uncoupled hgs, while hg H is tightly coupled 

and therefore produces more ROS and less heat. It has been proven that cybrids of hgs H and 

U had different amounts of mitochondria, where hg U had fewer mitochondria than hg H. Hg 

U had lower levels of cytochrome b mRNA, rRNA, protein synthesis and mitochondrial inner 

membrane potential (MIMP) than hg H (Martínez-Redondo et al. 2010; Gómez-Durán et al. 

2010). In another case due to increased binding of TFAM cybrid cells harboring hg J had two-

fold increase of mtDNA amount in comparison with cybrid cells containing hg H (Suissa et 

al. 2009). The H hg had higher peroxide and superoxide anion production and apoptosis but 

lower oxidative stress than the J hg (Fernández-Moreno et al. 2017). Martínez-Redondo et al. 

have also shown that hg H had higher mitochondrial oxidative damage than hg J. In their 

study, hg H showed higher oxygen uptake than other hgs and therefore more ROS production 

was observed; the next highest ROS producer was hg V followed by hgs T and U; but the 

lowest was hg J (Martínez-Redondo et al. 2010). U3a and J2b subhaplogroups with a C150T 

SNP displayed lower ROS production than hgs without the C150T SNP, and this SNP was 

associated with longevity (Chen et al. 2012; Zhang et al. 2003). Other research groups found 

that hg H had more increased mitochondrial function than hg U in human skeletal muscle 

fibres (Larsen et al. 2014). Studying sperm mobility, scientists found that individuals with hg 

H had the highest activity of spermatozoids, compared to that of hg V and the lowest activity 

of spermatozoids has been detected for hg T, which is directly connected with the 

functionality of the OXPHOS system (Ruiz-Pesini et al. 2000).  

By using shotgun sequencing, in recent studies no difference has been found in 

mtDNA CN among H, U, T, K and J hgs (Wachsmuth et al. 2016; Zhang et al. 2017). 

Although in another research, it was showed that hgs U5A1 and T2 were significantly 

associated with higher mtDNA CN by changing the COXIII and COXI amino acid sequences, 

respectively (Ridge et al. 2014). Additionally, the frequency of heteroplasmy among hgs did 

not differ in several studies (de Camargo et al. 2011; Ramos et al. 2013), but one study 
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claimed that the HV hg had more frequent heteroplasmy while hgs J, T and U8 had less 

heteroplasmy (Ding et al. 2015). Previously, Fernández-Moreno et al. showed that individuals 

with hg J had significantly longer telomeres than non-J carriers (Fernández-Moreno et al. 

2011). 

1.5. Interrelation between telomeres and mitochondria 

Heap of evidence suggests a crucial role for signalling from the nucleus to 

mitochondria in ageing (reviewed in Fang et al. 2016). Telomere theory declares telomere 

shortening as the main trigger and the best marker of cellular senescence and ageing, an 

adjacent theory is oxidative stress or mitochondrial theory (reviewed in Bernadotte et al. 

2016). And for some time, scientists are trying to find a trade that links telomere attrition to 

metabolic compromise, which is central in cellular functional decline during ageing. 

Mitochondrial dysfunction leads to perturbations on the electron transport chain resulting in 

increased ROS generation and reductions in ATP level (Balaban et al. 2005; Moiseeva et al. 

2009). Additionally, increased mitochondrial density and biogenesis are associated with 

increased ROS production due to an increased number of sites where ROS generation can 

occur (Passos et al. 2007; Yoon et al. 2010). This, in turn, can further induce DNA damage, 

and it has been shown that oxidative stress is associated with increased telomere attrition (von 

Zglinicki 2002; Kawanishi and Oikawa 2004). One of the first studies that reported a 

connection between mtDNA mutations causing respiratory chain disorders and telomere 

shortening was about mutations in the mtDNA of LHON, mitochondrial encephalomyopathy, 

lactic acidosis, and stroke-like episodes (MELS) syndrome patients; the researchers observed 

shorter telomeres in patients than in a control group (Oexle and Zwirner 1997). Liu et al., at 

the beginning of this century, demonstrated that mitochondrial dysfunction generates ROS 

and leads to chromosomal instability through telomere attrition (Liu et al. 2002). The study of 

Passos and colleagues also showed connections among TL with mitochondrial genetics and 

ROS in later years (Passos et al. 2007). On opposite side, an evidence exists that shortening of 

telomeres is a causal factor for mitochondrial dysfunction. Short telomeres, which are sensed 

as double-strand breaks and genomic DNA instability, suppress peroxisome proliferator-

activated receptor gamma, coactivator 1 alpha and beta (PGC-1α/β, which regulate a vast 

number of mitochondrial functions, including mitochondrial replication/transcription, 

OXPHOS, oxidative stress and gluconeogenesis (e.g., Wu et al. 1999)) action via the p53 
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transcription factor (Chin et al. 1999; Sahin and Depinho 2010; Sahin et al. 2011). Short 

telomeres cause increased p53 activity and high levels of apoptosis (Flores and Blasco 2009), 

as well as up-regulation of the mTOR and Akt survival pathways and down-regulation of cell 

cycle and DNA repair pathways (Schoeftner et al. 2009). Further work by Sahin and 

colleagues confirmed that telomere dysfunction is associated with reduced mtDNA content, 

while p53 deficiency partially rescues the transcriptional regulation of PGC-1α/β and mtDNA 

CN (Sahin et al. 2011). P53 also contributes to the stress-induced activation of subtelomeric 

region and TERRA (telomeric repeat-containing RNA)-like transcripts from multiple 

chromosomes (Tutton et al. 2016). Subtelomeres are segments of DNA between telomeric 

caps and chromatin (Mefford and Trask 2002). TERRA has important roles in the regulation 

of telomerase and in arranging chromatin remodelling throughout development and cellular 

differentiation. The accumulation of TERRA at telomeres can also interfere with telomere 

replication, leading to a sudden loss of telomere tracts (reviewed in Luke et al. 2009). P53-

binding sites in human subtelomeres provide enhancer-like functions that have direct impact 

on the local chromatin structure and DNA damage response at subtelomeric DNA (Tutton et 

al. 2016). 

There are suggestions that p53 influences telomere DNA structure and promotes 

telomere DNA stability, and its binding can be induced by numerous stress conditions (Tutton 

et al. 2016). In contrast, in mitochondria, p53 plays a direct role in the mito-checkpoint 

response and positively regulates mtDNA CN; the loss of p53 leads to the reduction of 

mtDNA content in MEF cells (Kulawiec et al. 2009). Consistent with the mtDNA CN 

reduction, p53 null cells show a decrease in mitochondrial membrane potential and reduction 

in mitochondrial mass, linking p53 to promotion of normal mitochondrial function (Lebedeva 

et al. 2009). P53 improves the accuracy of mtDNA synthesis, possibly by providing a 

proofreading function for Poly γ (Achanta et al. 2005; Bakhanashvili et al. 2008). P53 

regulates mitochondrial respiration directly by interacting with synthesis of cytochrome c 

oxidase 2 (SCO2) and affects COX complex in the mitochondria (Matoba et al. 2006). In 

addition, p53 can act as a pro-oxidant meaning that the loss of p53 results in reduced 

mitochondrial superoxide and disrupted cellular ROS homeostasis (Lebedeva et al. 2009). 

Safdar et al. have shown that p53 translocates to the mitochondria and facilitates mtDNA 

mutation repair and mitochondrial biogenesis in response to endurance exercise in mice. 

These results suggest that in cells under certain conditions, more p53 is located in 
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mitochondria than in nuclei, and in this way, p53 helps to maintain healthier cells, longer 

telomeres, less mtDNA mutations and prevents apoptosis (Safdar et al. 2016). Alternatively, 

another study has found that overexpression of p53 negatively affects the mtDNA abundance 

in HepG2 cells. They showed that overexpression of p53 negatively affects normal 

mitochondrial homeostasis, decreases mtDNA abundance, and enhances sensitivity to 

nucleoside reverse transcriptase inhibitors that deplete mtDNA (Koczor et al. 2012). These 

studies show how complicated is p53 pathways in a cell and how much is still to find out how 

it influences telomeres and mtDNA (reviewed in Park et al. 2016). Pieters et al. showed that 

SIRT1 also plays a role in the telomere-mitochondrial ageing axis. In their work, TL was 

positively correlated with SIRT1, which deacetylates and inactivates p53 protein, and NRF1 

(involved in regulation of mtDNA transcription and replication) and negatively correlated 

with p53 expression, while mtDNA content was positively correlated with SIRT1 and NRF1 

expression (Pieters et al. 2015). SIRT1 is involved in glucose homeostasis as a modulator of 

PGC-1α, and it deacetylates p53, leading to reduced apoptosis (Vaziri et al. 2001; Rodgers et 

al. 2005); extra expression of SIRT1 enhances mitochondrial function by upregulating 

mitochondrial biogenesis and degradation, thus improving oocyte development (Sato et al. 

2014). 

The first observation of TL and mtDNA CN correlation in peripheral leukocytes in 

population studies comes from studies of patients with diseases linked to alterations of these 

two cell components such as type 2 diabetes (Monickaraj et al. 2012). A study about 

depression found no correlation: the authors reported shortened telomeres but no reduced 

mtDNA CN in leukocytes in patients with depressive symptomology (Verhoeven et al. 2018), 

while childhood adversity and lifetime psychopathology were each linked to shorter telomeres 

but higher mtDNA CN in leukocytes (Tyrka et al. 2016). In a study about cognitive 

dysfunction in individuals over 75 years of age authors saw positive relationship between TL 

and mtDNA in blood samples after adjustment for age and gender; and for individuals with 

conative dysfunction both high TL and high mtDNA CN amount were observed, speculating 

that it might be due to increased oxidative stress and inflammation (Lee et al. 2017a). 

Data from different tissues are also available. Patients with Fuchs’ endothelial corneal 

dystrophy (FECD) had higher mtDNA levels but shorter telomeres in endothelial cells 

(Gendron et al. 2016) while in patients suffering mental disorders had shorter telomeres and 
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lower mtDNA CN in post-mortem brains of people who had committed suicide (Otsuka et al. 

2017). For people with colorectal carcinogenesis, a positive correlation depended on the stage 

of the cancer in tubular adenoma and serrated polyp tissue. In normal and cancer tissues, the 

correlation was positive, but in precancerous legions, the correlation was not observed, 

suggesting that the disturbance of the telomere-mitochondrial axis by ageing or other factors 

may be important in the development of carcinogenesis (Lee et al. 2017b). Jung et al. also 

showed a sign of dynamic TL and mtDNA CN relationship. They found a positive correlation 

in normal tissues and the intestinal type of gastric cancer but not in the diffuse type of the 

disease (Jung et al. 2017). In addition, not only was mtDNA CN correlated with TL, but 

mtDNA non-silent mutations had a negative correlation with TL in bone marrow and oral 

epithelial cells in aplastic anaemia patients (Cui et al. 2014).  

As in diverse pathologies and tissues the telomere-mitochondrial relationship can vary, 

it is important to look if this connection is evident in general populations during the healthy 

ageing process. The use of peripheral blood leukocytes for these studies could be argued as 

not the ideal tissue as discussed above. However, this approach is widely used as the evidence 

suggests that TL measurement in easily accessible tissues such as blood could serve as a 

surrogate parameter for the relative TL in other tissues (Friedrich et al. 2000), and general 

population peripheral blood mtDNA content is significantly associated with sex and age 

(Knez et al. 2016). One of the first population studies in healthy humans came from Kim et al. 

who showed a positive association between leucocyte TL and mtDNA CN in elderly women a 

with an average age of 73 years, suggesting that telomere function might influence 

mitochondrial function in humans (Kim et al. 2013). Other researchers have confirmed this 

association in individuals aged 18 to 64 years (Tyrka et al. 2015) and individuals aged 60 to 

80 years, suggesting that telomeres and mitochondria are co-regulated in humans (Pieters et 

al. 2015). Additionally, Qiu and colleagues observed a positive correlation between TL and 

mtDNA CN in leukocytes of pregnant women after adjusting for age and plasma vitamin B12 

(Qiu et al. 2015). A positive association was found in children ages 6–12 (Alegría-Torres et 

al. 2016). While the exact molecular mechanism underlying the telomeres-mtDNA 

associations is not clear and more studies are required, it is even less know how it is in 

nonagenarians (people between 90 and 100 years old) and centenarians (over 100 years old). 

Telomere shortening might influence mtDNA amount or vice versa differently; these findings 

could be partly explained by different polymorphisms in the mtDNA sequences (e.g., Niemi 
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et al. 2005; Takasaki 2008; Guney et al. 2014), the diverse nuclear DNA SNPs and the 

healthier lifestyle noted in these individuals compared with individuals who do not live over 

90 years of age (e.g., Yashin et al. 2000; Debrabant et al. 2014; Gierman et al. 2014; 

Govindaraju et al. 2015).  
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2. MATERIAL AND METHODS 

2.1. Description of samples from each publication separately 

I. “Dynamics of telomere length in different age groups in a Latvian population”. 

Blood samples were collected from healthy individuals, without any disorders 

considered as telomere affecting, in the Latvian population aged from 20 to 100 years 

old. In total, 121 individuals were enrolled in this study. These individuals belonged to 

mitochondrial haplogroups, as follows: H (45%), U (25%), Y chromosomal N1c 

(40%) and R1a1 (40%). All participants provided appropriate written informed 

consent to use their phenotypic and genetic data, which were voluntarily provided via 

detailed health and heredity questionnaires. The samples were divided into five age 

groups: 20–40 years (control group, n=32, there is no statistically significant 

difference between 20-30 and 31-40 years, P= 0.4209), 60-70 years (n=21), 71-80 

years (n=24), 81-90 years (n=19) and over 90 years (centenarians, n=25). Groups 41-

50 years and 51-60 years were not selected, because in the current study our focus of 

interest was elderly individuals with age above 60 years due to the highest mortality 

rate among the representatives of this age group in the Latvian population. The mean 

gender ratios for this study was 64:36 (%) for females:males. The gender ratios 

(females:males, expressed as percent) by group were 53:47, 67:33, 54:46, 79:21 and 

72:28 for the 20–40 years, 60-70 years, 71-80 years, 81-90 years, and over 90 years 

groups, respectively. For PBMC study 21 sample were obtained and divided in two 

age groups (20-40 years and 65-85 years). 

II. “Comparison of telomere length between population-specific mitochondrial 

haplogroups among different age groups in a Latvian population”. 

Blood samples were collected from healthy individuals, without any disorders 

considered as TL affecting, in the Latvian population aged from 20 to over 90 years 

old. In total, 772 individuals were enrolled in this study. All participants provided 

appropriate written informed consent to use their phenotypic and genetic data, which 

were voluntarily provided via detailed health and heredity questionnaires. The samples 

for mitochondrial hgs were divided into three age groups: 20–45 years (control group, 

n=378), 55-89 years (n=271), and over 90 years (centenarians, n=128). For 128 
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samples TL was measured. These samples were divided into the same age groups: 20–

45 years (control group, n=37), 55-89 years (n=67) and over 90 years (centenarians, 

n=25). A group 45-55 year was not selected, because in the current study our focus of 

interest was elderly individuals with age above 60 years due to the highest mortality 

rate among the representatives of this age group in the Latvian population. 

III. “Linkage between mitochondrial genome alterations, telomere length and ageing 

population”. 

Blood samples were collected from healthy individuals from Latvian population 

ranging ages from 20 to 100 years. In total, 210 samples were divided into three age 

groups: 20–59 years (n=70, mean age=32 years, females=65%), elderly group (60-89 

years, n=70, mean age=73 years, females=73%) and nonagenarians (90-100 years,  

n=70, mean age=93 years, females=76%). All individuals were Caucasian. All 

participants provided appropriate written informed consent to use of their phenotypic 

and genetic data, which were voluntarily and anonymously provided via health and 

heredity questionnaires. The samples and information about samples were obtained 

from the Genome Database of the Latvian Population (VIGDB, 

bmc.biomed.lu.lv/lv/par-mums/saistitas-organizacijas/vigdb/). None of the selected 

individuals had reported any severe diseases during the medical examination. Some 

individuals from the elderly group and nonagenarians had vision problems, hearing 

loss, dizziness, arthritis, osteochondrosis and joint pain, fatigue and sleep disorders, 

minor urinary tract or digestive tract disorders. None of the study participants had 

Alzheimer’s disease, Parkinson disease or cancer – diseases associated with TL or 

mtDNA alterations. No information of smoking and drinking habits was available. 

2.2. Extraction of genomic DNA 

Genomic DNA was extracted from the peripheral white blood cells using the standard 

phenol–chloroform method as described in (Sambrook et al. 1989). 

2.3. Southern blots of terminal restriction fragments (TRFs) 

The method described in Kimura et al. work was used, with some modifications, to 

determine TL. Briefly, a Southern blot of TRFs was conducted using a Telo TAGGG 
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Telomere Length Assay kit (Roche, UK). Concentrated DNA (~1 μg) was digested with 

restriction endonucleases HinfI (10 U) and RsaI (10 U) (Kimura et al. 2010). Digested DNA 

samples, a DNA size marker (GeneRuler 1 Kb DNA ladder, Thermo Scientific, Lithuania), 

and the DIG Molecular weight marker (Roche, UK) were loaded into a 0.8% agarose gel and 

run for 20 hours (19 V and 25 mA) to resolve fragment sizes. The DNA in the gel was then 

depurinated in 0.25 M HCl for 10 min. Further, the gel with the samples was denatured in 0.5 

L of 0.5 M NaOH and 1.5 M NaCl for two 20-min washes. The samples were neutralized in 1 

L of 0.5 M Tris-OH containing 3 M NaCl (pH 7.5) for two 20-min washes. The DNA was 

transferred to a positively charged nylon membrane (Amersham HybondTM-N+, GE 

Healthcare Life Sciences, UK) for 2 hours using a vacuum blotter (VacuGene Pump, 

Pharmacia Biotech, Sweden) with a 20x SSC transfer buffer solution that contained 0.3 M 

sodium citrate and 3 M NaCl (pH 7.0). DNA was fixed to a membrane using a 30-sec UV 

exposure, and the membrane was briefly washed in 2x SSC solution. The subsequent steps 

were performed using the manufacturer’s protocol for the Telo TAGGG Telomere Length 

Assay kit (Roche, UK). The membrane was visualized on a high performance 

chemiluminescence film (GE Healthcare Life Sciences, UK). The film was scanned, and the 

TRF signal was detected. DNA migration distances were measured using the Kodak Digital 

Science D1 program (Kodak, US); the DIG ladder was used for molecular size reference. The 

optical density of the DNA fragments was measured using the ImageJ software (Rasband, 

1997-2014). TL was calculated using the following equation: mean TRF 

length=Σ(ODi)/Σ(ODi/Li), where ODi = optical density at position i and Li = TRF length at 

position i.  

2.4. Relative qPCR SYBR green telomere length quantification assay 

Relative TL was measured as telomere repeat copy number relative to single gene 

copy number (T/S ratio) using real-time polymerase chain reaction (qPCR) with the Maxima 

SYBR green qPCR Master Mix (2X) (Thermo Scientific, USA). The forward and reverse 

primers of telomeres for one reaction were as follows: Telo1 (200 nM), 5′-

GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGAGGGT-3′, and Telo2 (200 nM), 5′-

CCCGACTATCCCTATCCCTATCCCTATCCCTATCCCTA-3′. After a denaturation step at 

95 °C for 10 min, DNA samples were incubated for 40 cycles at 95 °C for 10 s and 58 °C for 

1 min. TL was normalized using the following forward and reverses primers for the β-globin 
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gene in a separate run: Beta-glob1 (300 nM), 5′-GCTTCTGACACAACTGTGTTCACTAGC-

3′, and Beta-glob2 (500 nM), 5′-CACCAACTTCATCCACGTTCACC-3′. After a 

denaturation step at 95 °C for 10 min, DNA samples were incubated for 40 cycles at 95 °C for 

10 s and 56 °C for 20 s (Kim et al. 2013). The concentration of the DNA samples was 10 

ng/µL in a 10 µL reaction. Each sample was run in triplicate. A no-template control and 

duplicate calibrator samples were used in all runs to allow comparisons of the results across 

all runs. A melting curve analysis was performed to verify the specificity and identity of the 

PCR products. TL was calculated using threshold cycle values and the following equation: 

relative TL=2ΔCt(ΔCt=Ctβ-globin−Ct telomeres). 

2.5. Relative qPCR TaqMan mtDNA copy number quantification assay  

Relative mtDNA copy number was measured using qPCR with the Maxima 

Probe/ROX qPCR Master Mix (2X) (Thermo Scientific, USA). MtDNA copy number amount 

was normalized by simultaneous measurements of the nuclear gene Gapdh and the 

mitochondrial D-loop. The forward and reverse primers for the Gapdh reaction (1250 nM 

each) were GapdhF, 5′-GAAGGTGAAGGTCGGAGT-3′, and GapdhR, 5′-

GAAGATGGTGATGGGATTTC-3′, respectively, and the TaqMan probe was GapdhTqM 

(250 nM), 5′-CAAGCTTCCCGTTCTCAGCC-3′. The forward and reverse primers (50 nM 

each) for the mitochondrial D-loop were FmtMinArc, 5′-CTAAATAGCCCACACGTTCCC-

3′, and RmtMinArc, 5′-AGAGCTCCCGTGAGTGGTTA-3′, respectively, and the TaqMan 

probe was PmtMinArc (250 nM) - 5′-CATCACGATGGATCACAGGT-3′ (Phillips et al. 

2014). The DNA concentration for the samples was 10 ng/µL in a 15 µL reaction. After a 

denaturation step at 95 °C for 10 min, the DNA samples were incubated for 40 cycles at 95 °C 

for 15 s, 57 °C for 30 s, and 72 °C for 30 s. Each sample was run in triplicate. A no-template 

control and duplicate calibrator samples were used in all runs to allow for comparison of 

results across the runs. MtDNA copy number was calculated using threshold cycle values and 

the following equation: relative copy number = 2ΔCt(ΔCt=CtGapdh−CtD-loop). 

2.6. Detection of heteroplasmy  

The presence of mtDNA heteroplasmy was determined using the SURVEYOR™ 

Mutation Detection Kit, which is based on the use of a mismatch-specific endonuclease, 

SURVEYOR Nuclease (Transgenomic, USA) (Bannwarth et al. 2006). This kit detects 
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heteroplasmy as low as 5% and was our choice having been tested it in our previous work 

(Pliss et al. 2011) although there are certain limitations using this kit (Yen et al. 2014).  Due 

to restricted amount of DNA available for this study only HVS-I region was tested. This 

region was chosen due to the possible presence of a higher number of heteroplasmic 

polymorphisms (Vigilant et al. 1989, Ngili et al. 2012). The DNA fragment encompassing the 

mtDNA HVS-I between nucleotide positions (nps) 16024–16390 was amplified and 

sequenced in all samples using forward (F-HVS-I) and reverse (R-HVS-I) primers (200 nM 

each) (Vigilant et al. 1989) in final volume of 25.5 µL containing 10–50 ng DNA, 1.5 mM 

MgSO4, 1× Optimase reaction buffer, 10 mM each dNTP, 1.25 U/µL Optimase polymerase 

(Transgenomic, USA). The amplification conditions: denaturation at 94 °C for 2 min, 

followed by 30 cycles at 94 °C for 30 s, 56 °C for 30 s and 72 °C for 90 s, and final 

elongation at 72 °C for 5 min. Negative and positive controls were prepared for amplification. 

The PCR products were heated to denature the DNA and were then slowly cooled to room 

temperature to allow for reannealing of the DNA strands using the following protocol: initial 

denaturation at 95 °C for 2 min, followed by a 95 °C to 85 °C (−2 °C/s) gradual temperature 

decrease, and then a 85 °C to 25 °C (−0.10 °C/s) temperature decrease. Afterwards, products 

were incubated with Surveyor Enhancer S 0.5 µl and Surveyor nuclease S 0.5 µL at 42 °C for 

20 min; 1 µL of stop solution was added at the end of reaction. The samples were analysed by 

a 6% polyacrylamide gel electrophoresis. 

2.7. Mitochondrial genotyping 

To confirm the hg affiliation of mitochondrial sequences, hierarchical PCR–RFLP 

analysis was performed using 17 restriction endonucleases: AluI, AvaII, DdeI, Bsh1236I, 

HaeIII, HhaI, HinfI, MboI, RsaI, NlaIII, AccI, BstOI, MseI, Alw44I, SspI, Eco47I, and BsuRI 

(van Oven and Kayser 2009). The classification of hgs was based on their position in the 

hierarchy of the mitochondrial phylogenetic tree (www.phylotree.org, van Oven and Kayser 

2009).  

2.8. Statistical analysis 

The statistical significance of the differences between the observed distributions of 

mitochondrial hgs in three age groups was evaluated with the G-test using the R 3.1.1 (R Core 

Team, 2014) software program. Linear regression and correlation, unpaired two-tailed t-test 
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and Analysis of variance (ANOVA) was performed using GraphPad Prism version 5 for 

Windows, GraphPad Software (La Jolla California USA, www.graphpad.com). Data were 

expressed as means ± SEM (standard error of the mean) ±SD (standard deviation) and 

differences of P<0.05 were considered significant. 
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3. RESULTS 

I Dynamics of telomere length in different age groups in a Latvian 

population 

 

Highlights: 

Part of the results from this publication was used in these theses. 

1. Telomere length shorten with age as it was expected, and the smallest variability of 

telomere length was absorbed in nonagenarian (in this paper referred as centenarian) 

group. 

2. 20% of the variation in telomere length was associated with ageing. 

3. Telomere length was not significantly longer for any of gender. 
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II Comparison of telomere length between population-specific 

mitochondrial haplogroups among different age groups in a Latvian 

population 

 

Highlights: 

1. There was no disparity among mitochondrial haplogroups in different age groups. Hg 

H was slightly more abundant among nonagenarians (in this paper referred as 

centenarians). 

2. There was no significant difference of telomere length among H, U, T, J, V and W 

mitochondrial haplogroups. 

3. There was also no difference of telomere length among mitochondrial haplogroups 

after samples were divided into three age groups (20-45, 55-90 and 90-100). 

4. There was no significant correlation among mitochondrial haplogroups, telomere 

length and age in the sample cohort. 
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III Linkage between mitochondrial genome alterations, telomere length 

and ageing population 

 

Highlights: 

1. MtDNA copy number content got slightly higher in nonagenarian group in 

comparison to the elderly group (60-89 year age group). 

2. Positive correlation between telomere length and mtDNA copy number was 

significant only for individuals up to 90 years, but not for nonagenarians. 

3. HVS-I region heteroplasmy did not influence telomere length and mtDNA copy 

number in the sample cohort. 

4. SNPs that determine mitochondrial haplogroups did not influence mtDNA copy 

number in the sample cohort. 
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4. DISCUSSION 

In the Latvian population, TL is, on average, similar or slightly shorter than in 

populations of closely neighbouring countries such as Estonia and Finland but differs from 

other European populations where the observed TL is very diverse among different countries. 

It is very hard to determine the precise TL in different populations as measurements are 

usually performed in different laboratories by using different methods. However, trends can 

be identified, and these trends show that TL is very variable and can be influenced by 

different factors as described above. Additionally, TL is not a determinant by life span as 

shown; for example, Italians, who have longer life spans, on average, have shorter TL in 

comparison with other populations in which the life span is not as long (Eisenberg et al. 

2011). Rather, it could be more important how fast telomeres shorten or how active the 

telomerase is (Spivak et al. 2016). The dynamics or shortening of TL with age in our study is 

as expected compared with other studies. TL does not differ between genders in our cohort, 

but TL does differ in other studies, suggesting that on average, females have longer telomeres, 

but this finding has not been confirmed in some studies (Gardner et al. 2014). 

In Latvia, we have all the common mitochondrial hgs as there is in Europe (Richards 

et al. 1998). We did not find any of the hgs that are linked with longer life span, although 

some researchers claim that there is a connection, such as with hgs J, U and H (Robine et al. 

2012; Beckstead et al. 2009; de Benedictis et al. 1999). There are many hypotheses about 

what could influence the distribution and connection between life span and hgs. It could be 

population specific, different climate and geographical location, life style or historical events, 

and of course SNPs could determine whether an hg affects OXPHOS efficiency, ATP 

synthesis, ROS production and health and diseases as described above. As a consequence, 

these diseases that are associated with some hgs can reduce amount or frequency of theses hgs 

in elderly people population. 

We showed that mtDNA copy number decreases until a certain age, and then it 

slightly increases again in very old individuals or nonagenarians. High mtDNA CN is 

inherited from parents to offspring in families with longevity, which might act as a favourable 

factor for longevity by guaranteeing adequate energy supply (He et al. 2016a). This result 

could indicate that individuals who have had high mtDNA copy numbers from birth can live 
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longer and healthier lives. This most likely serves as a “selection” process for individuals with 

many mtDNA copies to survive to centenarian age. It appears to be that mtDNA contributes 

equally to longevity for both females and males (He et al. 2016b). As our sample cohort is 

made of individuals who are not related, we cannot say if they have inherited high mtDNA 

CN, and we also cannot identify dynamic change during ageing as the DNA samples were 

taken only once from each individual, which means there is a necessity for longitudinal 

studies of mtDNA CN dynamics during ageing.  

We did not observe that any of the hgs influenced TL or mtDNA copy number at any 

age in our cohort. Although, one study claims that individuals with hg J have longer telomeres 

because of a low level of ROS produced (Fernández-Moreno et al. 2011). Based on another 

study, hg H produces the most ROS and therefore, should have the shortest telomeres 

(Martínez-Redondo et al. 2010); our study for hg H found one of the shortest telomeres, 

though the results were nonsignificant. In vitro hg J has more mtDNA than hg H, which was 

explained by increased TFAM binding that regulates mtDNA CN in mammals (Suissa et al. 

2009; Ekstrand et al. 2004); however, in our cohort, none of the hgs had significantly more 

mtDNA than others. We did not find that mitochondrial heteroplasmy influences TL or 

mtDNA amount. Additionally, in contrast to other studies (Rose et al. 2007; Ding et al. 2015), 

the frequency of heteroplasmy in our cohort in the HVS-1 region determined by the 

SURVEYOR™ mutation detection method did not increase in nonagenarians. All these 

results may show that mutations that determine hgs or heteroplasmy do not strongly influence 

parameters such as TL and mtDNA that can influence life span.   

TERT deficiency and telomere dysfunction induces disturbed mitochondrial 

biogenesis and function in various tissues (Sahin et al. 2011), and the longer telomeres we 

have, the more mtDNA CN we have (Kim et al. 2013; Tyrka et al. 2015; Pieters et al. 2015; 

Qui et al. 2015; Alegría-Torres et al. 2016). Not only telomeres influence mitochondrial 

function but also actions and dysfunction of mitochondria influences length and “health” of 

telomeres (reviewed in Gonzales-Ebsen et al. 2017). We also confirmed a correlation between 

TL and mtDNA CN, but this correlation disappeared in the very old or nonagenarian age 

group. For nonagenarians and centenarians, can speculate that cells with more mtDNA copies 

can maintain themselves and that the cells do not go into apoptosis, although they have short 

telomeres and are in a senescent state (Mei et al. 2015). It seems that telomere shortening 
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might not influence mtDNA amount or vice versa as strongly in nonagenarians as in younger 

individuals. As there has not been this kind of study in nonagenarian and centenarians, this 

hypothesis has yet to be confirmed by other laboratories, who may also determine the reason 

for this difference between very old and younger age groups.  

It is important to maintain healthy life style to have long telomeres and fit mitochondria, 

and different factors can influence those two cell components very differently through 

lifetime. For example, considerable weight gain in the middle-life may increase late-life TL 

shortening, whereas mtDNA CN is likely to be reduced constantly by adiposity over the 

lifetime (Hang et al. 2018). 

As in diverse pathologies and tissues the telomere-mitochondrial relationship can 

vary, it is important to look if this connection is evident in general populations during the 

healthy ageing process. MtDNA dynamics vary among studies, but in general population 

mtDNA content in peripheral blood was significantly associated with both sex and age; thus, 

the possibility was proposed to use it as a biological ageing marker in population studies and 

senescence (Knez et al. 2016). Also, variation of TL in different studies is an issue that makes 

it difficult to use it as an age and longevity marker for people. Additionally, both for mtDNA 

and TL methods and approach used among laboratories differ, which makes it hard to 

compare different studies and their results. Studied tissue also affects the results – stem cells 

would offer better representation for the ageing research as these cells are responsible for 

tissue renewal. Decline in tissue regenerative capacity is associated with age and is believed 

to be a result from an exhaustion, and a loss of function of adult stem cells (reviewed in Sui et 

al. 2016). Albeit, TL shortening in leukocytes reflects telomere shortening in hematopoietic 

stem cells – faster shortening of telomeres in leukocytes during adulthood suggests a faster 

telomere shortening in hematopoietic stem cells (Shepherd et al. 2004; Sidorov et al. 2009). 

Studies of human population ageing are mostly conducted on easily accessible peripheral 

blood leukocytes. Although, TL in peripheral blood leukocytes is not the most representative 

indicator of ageing mechanisms in our bodies but there is vast amount of papers that have 

proven a strong correlation between age and TL in leukocytes and the possibility to monitor 

dynamic changes of TL during ageing in this cell type (e.g. Ehrlenbach et al. 2009). TL is also 

synchronised among tissue, meaning that if for one individual telomeres are long (or short) in 
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one tissue they are as also long (or short) in other tissues, and TL attrition rate is alike if 

compared within an individual (Wilson et al. 2008; Daniali et al. 2013).  

There is a lot of work to be done to fully understand ageing in people especially if we 

want to expand our health-span and maybe even our lifespan. And we have to continue 

research of ageing in populations as it is an opportunity to understand ageing in human bodies 

and not only in vitro cells or animal models as there is a great difference among them.  



61 

 

5. CONCLUSIONS 

1. Telomere length, mtDNA amount and distribution of mitochondrial haplogroups differs 

between populations. 

2. Homogeneity of telomere length and higher mtDNA content for nonagenarians might 

explained by “selection hypothesis” – bearing longer telomeres or more mtDNA at birth 

or they can have protective mechanisms against telomere attrition and mtDNA loss. 

3. There is an interaction between telomeres and mtDNA, but for nonagenarians and 

centenarians this interaction weakens, or different mechanisms exist. 

4. Benign SNPs in mtDNA, like haplogroups or heteroplasmy, do not influence telomere 

length, mtDNA amount and longevity as strongly in the tested sample cohort as in other 

studies. 

5. Optimal mitochondrial maintenance might be more important for healthy ageing than 

telomere length loss at nonagenarian and centenarian age.  
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6. THESIS 

 

1. Telomere length, mtDNA amount and distribution of mitochondrial haplogroups are 

population specific. 

2. Telomere length and mtDNA CN age-related changes are interconnected during 

human ageing, this connection of telomere length and mtDNA CN alterations could be 

different in people who reach the nonagenarian or centenarian age. 

3. Mitochondrial haplogroups and mtDNA heteroplasmy directly do not influence 

telomere length, mtDNA amount and population ageing. 
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