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ABSTRACT

The thesis consists of two parts. Analytical solutions of direct problems in eddy current
testing are constructed in the first part of the thesis. It is assumed that the properties of a
conducting medium are functions of one spatial coordinate. Solutions are found for the following
cases: (a) a planar conducting multilayer medium where the magnetic permeability and electrical
conductivity are exponential functions of the vertical coordinate; (b) a cylindrical conducting
multilayer medium where the magnetic peremability and electrical conductivity are power
functions of the radial coordinate; (c¢) a double conductor line above a multilayer medium with
varying properties for the cases of alternating current and step current; (d) a moving planar two-
layer medium with varying properties. All solutions are found by the method of integral
transforms where the corresponding system of ordinary differential equations is solved in terms
of different special functions.

Quazi-analytical solutions are constructed in the second part of the thesis for the case of a
conducting medium of finite size. It is assumed that all properties of the conducting medium are
constant. Three cases of axisymmetric problems are considered: (a) a coil with alternating current
above a conducting cylinder of finite size; (b) a coil with current above a conducting plate with
bottom cylindrical hole; (c) a coil with current above a conducting half-space with a flaw in the
form of a cylinder of finite size. The problems are solved by the method of separation of
variables. The solution procedure includes two steps where numerical methods are used: (1)
calculation of complex eigenvalues without good initial guess for the root and (2) solution of a
system of linear algebraic equations. Results of numerical calculations are presented. Good
comparison between theoretical calculations and experimental data is found.

Keywords: eddy currents, integral transform, special functions, variable conductivity and
permeability, flaw detection, eigenvalues



ANOTACIJA

Promocijas darbs sastav no divam dalam. Darba pirmaja dala konstruéti virpulstravu
nesagraujosas kontroles tieSo problému analitiskie atrisinajumi. Tiek pienemts, ka vadoSas vides
ipasibas ir funkcijas, atkarigas no vienas telpas koordinatas. Atrisindjums atrasts Sadiem
gadijumiem: (a) plakanai vadosai daudzslanu videi, kuras magnétiska caurlaidiba un elektriska
vadamiba ir eksponentfunkcijas no vertikalas koordinatas; (b) cilindriskai vadosai daudzslanu
videi, kuras magnétiska caurlaidiba un elektriska vadamiba ir radialas koordinatas pakapes
funkcijas; (c) divvadu Iinijai virs daudzslanu vaditaja ar mainigam ipasibam gadijumos, kad
divvadu Imija plust mainstrava un l&cienveida strava; (d) plakanai divslanu vadosai videi ar
mainigam 1paSibam, kad vide atrodas kustiba. Visi atrisinajumi atrasti péc integralo
transformaciju metodes, kura atbilstoso parasto diferencialvienadojumu atrisinajumi izteikti ar
dazadam specialajam funkcijam.

Darba otraja dala konstruéti kvazianalitiskie atrisinagjumi gadijjumiem, kad vadoSai videi ir
galigi izméri. Tiek uzskatits, ka visas vadosas vides Ipasibas ir konstantas. Aplikotas tris
problémas: (a) vijums ar maigstravu virs vadoSa galiga izméra cilindra; (b) vijums ar stravu virs
vadoSas plaksnes ar cilindriska veida dobumu; (c) vijums ar stravu virs vadoSas pustelpas ar
defektu galiga cilindra forma. Visos trijos gadijumos vijuma ass sakrit ar atbilstosa cilindriska
kermena asi. Minétas problémas atrisinatas, izmantojot mainigo atdaliSanas metodi. RisinaSanas
procediira satur divus solus, kuros izmantotas skaitliskas metodes: (1) komplekso Tpasvertibu
noteikSana, kad nav zinami labi sakuma saknu tuvinajumi; (2) linearas algebrisko vienadojumu
sist€mas atrisinaSana. Darba veikti skaitliski aprékini. Ir novérota laba teor&tisko aprékinu un
eksperimentalo datu sakritiba.

Atslégas vardi: virpulstravas, integralas transformacijas, specialas funkcijas, mainiga magnétiska
caurlaidiba un elektriska vadamiba, defekta atrasana, Ipasvertibas.
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NOMENCLATURE

List of Latin symbols

A amplitude of vector potential
A vector potential, 4 = e’
A, nonzero component of vector potential in region R,

A induced vector potential intensity in free space

B amplitude of magnetic induction vector

B magnetic induction vector, B = Be'™

D amplitude of electric induction vector

D electric induction vector, D = De’™

E amplitude of electric field vector

E electric field vector, E = Ee’

h height of a single-turn coil above conducting medium
h, height og a coil above conducting medium

h, —h, height of a coil

H amplitude of magnetic field vector
H magnetic field vector, H = He’™
I amplitude current vector

¢ amplitude external current vector
T current vector, 1 = Ie’”

I,(s) modified Bessel function of the first kind of order v

J imaginary unit, j =+/—1




J,(s) Bessel function of the first kind of order v

K, (s) modified Bessel function of the second kind of order v

7, radius of a single-turn coil
7 inner radius of a coil
7, outer radius of a coil

Y, (s) Bessel function of the second kind of order v

Z dimensionless induced change in impedance
zm induced change in impedance
List of Greek symbols

& electric constant

& relative permittivity

y7, relative magnetic permeability
M, magnetic constant

0 charge density

o conductivity

7% scalar electric potential intensity
W electric potential, 7 = we’”

10, frequency



INTRODUCTION

The structure of the thesis

The main objective of the PhD thesis is to develop mathematical models which can be used to
describe nondestructive eddy current testing methods. The thesis consists of two parts. Analytical
solutions of direct problems in eddy current testing are constructed in the first part of the thesis
(Chapters 2 —5). It is assumed that the properties of a conducting medium are functions of one
spatial coordinate. Solutions are found for the following cases: (a) a planar conducting multilayer
medium where the magnetic permeability and electrical conductivity are exponential functions of
the vertical coordinate; (b) a cylindrical conducting multilayer medium where the magnetic
peremability and electrical conductivity are power functions of the radial coordinate; (c) a double
conductor line above a multilayer medium with exponentially varying properties for the cases of
alternating current and step current; (d) a moving planar two-layer medium with varying
properties. All solutions are found by the method of integral transforms where the corresponding
system of ordinary differential equations is solved in terms of different special functions.

Chapter 1 (Introduction) is devoted to the derivation of the basic equations used in the
study. In addition, literature survey is also presented.

In Chapter 2 we construct analytical solutions of eddy current testing problems for the case
of a planar conducting multilayer medium. The magnetic permeability and electrical conductivity
of the layers are assumed to vary with respect to the vertical coordinate. Such a situation takes
place in practice during special treatment of ferromagnetic metals (for example, surface
hardening). Experimental data indicate that a relatively thin layer of reduced magnetic
permeability is formed as a result of surface hardening. Analysis of experimental data shows that
the magnetic permeability can be reasonably well approximated by an exponential function of the
vertical coordinate. It is shown in Chapter 2 that if the magnetic permeability and electrical
conductivity are exponential fucntions of the vertical coordinate then the solution of the system
of the Maxwell’s equations can be found in closed from in terms of improper integrals contating
Bessel functions of complex argument. The solution is obtained for the case of a multilayer
medium. Two special cases (conducting half-space and two-layer medium) are considered in
detail. The change in impedance is computed using software package ,,Mathematica”.

Chapter 3 is devoted to the analysis of a similar problem in cylindrical geometry where a
coil with alternating current is located inside (or outside) a multilayer tube. It is assumed that the
axis of the coil coincides with the axis of the tube. The electical conductivity and magnetic
permeability of one or several conducting layers are power functions of the radial coordinate. It is
shown in Chapter 3 that different analytical solutions can be constructed depending on the
choice of the constants characterizing the power functions. Analytical solutions are derived in
terms of Bessel funnctions and confluent hypergeometric functions. Results of numerical
calculations are presented (calculations are done with ,,Mathematica”).

Chapter 4 is devoted to the solution of an eddy current problem for a planar multilayer
medium with exponentially varying electrical conductivity and magnetic permeability for the
case where an excitation coil is modeled by means of a double conductor line (the coil is formed




by two infinitely long parallel wires). The double conductor line is a sufficiently accurate model
for the case where a rectangular frame with current is located above a multilayer medium under
the assumption that the ratio of the sides of the frame is 1:4 or smaller. In addition, one case
where an excitation current in the coil is not alternating current but is in the form of a pulse is
considered in detail. The corresponding boundary value problem is solved by the method of the
Laplace and Fourier transforms. The inverse Laplase transform is found in closed form for the
case where a double conductor line is located above a conducting half-space with constant
electrical conductivity and magnetic permeability.

In Chapter S the results obtained in Chapter 2 are generalized for the case where an upper
conducting layer is moving with constant velocity ¥ in a horizontal direction. The problem is
solved by means of the double Fourier transform in the two horizontal directions. The
corresponding system of ordinary differential equations is solved analytically in terms of Bessel
functions of complex agrument. The change in impedance is found in closed form in terms of
double integrals. Results of numerical calculations with ,,Mathematica” are presented. Solutions
obtained in Chapters 2 — 5 correspond to the case where a conducting medium is assumed to be
infinite in one or two spatial directions. Integral transofms such as Hankel or Fourier integral
transforms are used to solve the corresponding problems. Such an approach can be used in
practice if a coil is sufficiently smaller than a conducting medium. However, the finite size of a
conducting medium has to be taken into account if the size of the coil is comparable to the size of
the conducting medium.

Chapter 6 is devoted to the analysis of axisymmetric problems where a coil with alternating
current is located above a conducting medium of finite size. Three cases which are important for
applications are considered in detail: (a) a coil above a conducting cylinder of finite size located
in free space (this model is relevant for the analysis of eddy current problem in coin validators),
(b) a coil above an infinite conducting plate with a bottom cylindical hole coaxial with the axis of
the coil (this problem can be used to estimate and model the effect of corrosion) and (c) a coil
above a half-space with a coaxial conducting cylinder of finite size (this model is a sufficiently
accurate model of spot welding where the cylinder represents a cast core which is formed in the
conducting medium during welding process). Mathematical solution is based on the TREE
methodology (TREE stands for ,,TRuncated Eigenfuntion Expansions”, see [60]). The main
assumption in the TREE method is that the vector potential is exactly zero at a sufficiently large
distance from the coils’ center (usual boundary conditions at infinity imply that the vector
potential approaches zero as the geometrical coordinate tends to infinity). Using the TREE
method quasi-analytical solution for all three problems mentioned above is constructed. We use
the term ,,quasi-analytical solution” since the solution is found by the method of separation of
variables, but there are two stages of the solution process where numerical methods should be
used: (a) calculation of complex eigenvalues and (b) solution of the system of linear equations in
order to determine integration constants. A computer program is developed on the basis of the
algorithm described in [43] in order to compute complex eigenvalues without good initial
guesses for the roots. The formula for the change in impedance in all three cases is derived.
Results of numerical computations of the change in impedance using ,,Mathematica” are
presented. Computational values of the change in impedance are compared with experimental
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data for the case where a coil with alternating current is located above a conducting cylinder of
finite size. Good agreement between theoretical and experimental values of the change in
impedance is found.

Importance of the subject

Eddy current method is widely used in practice in order to control properties of electically
conducting materials. Applications include determination of electrical conducticvity or magnetic
permeability of conducting materials, estimation of thickness of metal coatings and analysis of
the properties of coatings, detection of defects (such as voids or cracks) in a conducting medium.
The solution of an inverse problem is usually required in order to solve eddy current testing
problem. At this stage the difference (in some norm) between theoretical model and experimental
data is minimized in order to estimate unknown parameters of the model (such as electrical
conductivity of a conducting plate or parameters of the defect). Thus, in order to solve the inverse
problem one has to have a convenient and reliable mathematical model for the solution of the
direct problem.

Analytical solutions of eddy current testing problems for the case where the properties of the
conducting medium (electrical conductivity and magnetic permeability) are constant are well-
known in the literature. In addition, the conducting medium is assumed to be infinite in one or
two spatial directions. In the thesis we generalize the approach developed for media with constant
properties to the case where the properties of the medium vary with respect to one spatial
coordinate (vertical coordinate for the case of a planar multilayer medium and radial coordinate
for the case of a cylindrical multilayer tube). Analytical solutions are constructed in the thesis for
the cases where the electrical conductivity and magnetic permeability of the medium are
exponential functions of the vertical coordinate and power functions of the radial coordinate for
planar and cylindrical cases, respectively. The solutions are found for different types of coils
(circular coils and coils in the form of a double conductor line).

We also analyze axisymmetric cases where a circular coil is coaxial with cylindrical region of
finite size. The solutions are found by the method of separation of variables where complex
eigenvalues are determined by an efficient algorithm without prior knowledge of the initial
guesses for the roots. Thus, the constructed solutions are ,,quasi-analytical”. The obtained
solutions can be used in practice to develop algorithms for coin validators, to estimate the effect
of corrosion in metal plates and to assess quality of spot welding.

The objectives of the thesis

All the suggested methods for eddy current testing problems analyzed in the thesis can be
divided into two parts: (a) analytical solutions for planar and cylindrical multilayer medium under
the assumption that the magnetic permeability and electrical conductivity of the medium are
functions of one spatial coordinate and the medium is infinite in one or two spatial directions, and
(b) the magnetic permeability and electrical conductivity of the conducting medium are constant
but the medium is of finite size (axisymmetrical problems where the axis of the coil coincides
with the axis of a cylindrical region of finite size).
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The objectives of the work are as follows:

(1) Obtain analytical solutions for eddy current problems where the excitation coil is a circular
coil with alternating current and the properties of planar multilayer conducting medium
(electrical conductivity and magnetic peremability) are exponential functions of the vertical
coordinate;

(2) Construct analytical solutions for the case of a planar multilayer medium with exponentially
varying properties under the assumption that the coil is modeled by a double conductor line
consisting of two parallel infinite wires;

(3) Obtain analytical solutions for the cases where a circular coil with alternating current is
located inside (or outside) a multilayer conducting tube. The coil is coaxial with the tube. In
addition, the properties of conducting layers (the electrial conductivity and magnetic
permeability) are power functions of the radial coordinate;

(4) Develop analytical solution for the case where a double conductor line is located above a
conducting half-space with varying electrical conductivity and magnetic permeability. The
excitation current in the double conductor line is in the form of a pulse. Pulsed eddy current
represent a convenient alternative to traditional eddy current method based on alternating
excitation current;

(5) Obtain analytical solutions for eddy current problem where a coil with current is located
above a moving medium. Two cases of the moving medium are considered: (a) a moving
half-space and (b) a moving two-layer medium where the upper layer is moving but the lower
layer is fixed. The electrical conductivity and magnetic permeability of the moving medium
are exponetial functions of the vertical coordinate;

(6) Construct quasi-analytical solutions for axisymmetric problems where a circular coil is
coaxial with cylindrical region of finite size. Three axisymmetric problems are solved in the
thesis: (a) a coil with alternating current above a conducting cylinder of finite size, (b) a coil
with alternating current above a conducting plate with bottom hole in the form of a cylinder
coaxial with the coil and (c) a coil with alternating current above a conducting half-space with
a flaw in the form of a cylinder coaxial with the coil.

Research methodology

Methods of integral transforms such as Hankel, Fourier and Laplace transforms are used in
Chapters 2 -5 of the thesis in order to construct analytical solutions of eddy current testing
problems in planar and cylindrical cases where the medium is assumed to be infinite in one or
two spatial dimensions. The electrical conductivity and magnetic permeability of the medium are
functions of one spatial coordinate (exponential functions of the vertical coordinate in the case of
a planar medium and power functions of the radial coordinate in the case of a cylindrical
medium). The solution of the corresponding ordinary differential equations in the transformed
space is found in closed form by means of the Bessel functions and confluent hypergeometric
functions. The results are presented in the form of the change in impedance of the coil (for the
case of a single-turn coil and coil of finite dimensions). In addition, analytical solutions are also
constructed for the case of a moving planar medium under the assumption that the magnetic
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permeability and electrical conductivity are exponential functions of the vertical coordinate.
Calculations are performed with “Mathematica”.

Method of separation of variables is used in Chapter 6 in order to solve axisymmetric
problems where a coil is located above a conducting medium which contains a cylinder of finite
size coaxial with the coil. A fast and reliable algorithm for the determination of complex
eigenvalues is implemented in the form of the “Mathematica” code. Note that no initial guess for
a complex eigenvalue is required. The change in impedance is calculated in the form of a
truncated series containing Bessel functions.

Scientific novelty and main results

The following new results are obtained in the thesis.

(1) Analytical solution is obtained for eddy current problem where a single-turn cilcular coil or a
coil in the form of a double conductor line is located above a conducting multilayer medium
with varying electrical conductivity and magnetic permeability. The solution is found by the
method of Hankel integral transform. The change in impedance of the coil is expressed in
terms of improper integral containing Bessel functions. The particular cases of a conducting
medium in the form of a half-space and two-layer medium are considered in detail. The
change in impedance is also obtained for the case where a circular coil of finite dimensions is
located above a multilayer medium. Results of numerical calculations with “Mathematica”
are presented.

(2) Method of the Fourier integral transform is used in the thesis in order to solve the eddy
current problem where a coil with alternating current is located inside (or outside) a
conducting multilayer tube. Analytical solution is found in the form of an improper integral
containing Bessel or confluent hypergeometric functions. The change in impedance is
computed with “Mathematica”.

(3) Analytical solution is also found for the case where the excitation current in a double
conductor line located above a multilayer conducting medium with constant electrical
conductivity and magnetic permeability is assumed to be in the form of a pulse. A double
conductor line is a sufficiently accurate model of a rectangular frame with current provided
the ratio of the sides of the frame is 1:4 or smaller. Solution is found by the method of the
Laplace transform.

(4) Method of the double Fourier integral transform is used in the thesis in order to construct an
analytical solution of the eddy current problem where a coil with alternating current is located
above a conducting half-space or two-layer medium. The half-space (or the upper layer of the
two-layer medium) is assumed to be moving in the horizontal direction with constant velocity
V . The electrical conductivity and magnetic permeability of the moving medium are
exponential functions of the vertical coordinate. The solution is found in closed form in terms
of'a double integral. Calculations of the change in impedance are performed with
“Mathematica”.

(5) Method of separation of variables is used in the thesis in order to construct quasi-analytical
solution for eddy current problem where a circular coil is located above a conducting medium
with constant properties under the assumption that the medium contains a cylindrical region
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of finite size (a finite cylinder in free space, or a cylindrical hole in a conducting plate, or a
cylinder of finite size in a conducting half-space). The axis of the coil coincides with the axis
of the cylindrical region. Calculations show good agreement between experimental data and
theoretical model.

Applications

Analytical and quasi-analytical methods for the solution of direct problems in eddy current
testing developed in the thesis can be used in practice in order to control properties of materials
and devices with the help of eddy current method.

Analytical solutions obtained in Chapters 2, 3, 4 and 5 where the electrical conductivity and
magnetic permeability are functions of one spatial coordinate can be used to analyze
ferromagnetic metal processing methods (such as surface hardening). Experiments show that in
this case a thin layer of reduced magnetic permeability is formed in the upper layer where the
magnetic permeability can be accurately approximated by an exponential function of the vertical
coordinate. Another application where the electrical conductivity varies with respect to the
vertical coordinate is related to diffusion of aluminium in blades of gas turbines exposed to high
temperatures.

Mathematical models developed in the thesis can be used to compute the change in
impedance of the coil where the properties of the conducting medium (electrical conductivity and
magnetic permeability) are exponential functions of the vertical coordinate.

Quasi-analytical solutions constructed in Chapter 6 can be used in order to test quality of
products and materials. The model developed in Section 6.1 (a coil above a finite cylinder
coaxial with the axis of the coil) can be implemented in coin validators. Eddy current method is
one of the methods that can be used to validate coins by analyzing the electrical conductivity of a
metal sample inserted into the validator. Mathematical model analyzed in Section 6.2 (a coil
above a conducting plate with a bottom hole in the form of a circular cylinder coaxial with the
coil) can be used to estimate the effect of corrosion in metal plates. Finally, the model developed
in Section 6.3 (a coil above a conducting half-space with a flaw in the form of a circular cylinder
of finite height coaxial with the coil) can be used to analyze the quality of spot welding. During
welding process a cast core is formed whose properties (electrical conductivity, for example) are
very close to the properties of the surrounding medium. Such a model can be quite useful in order
to determine the properties of the cast core.
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1. BASIC EQUATIONS

1.1 Medium with constant properties

Maxwell’s equations for a homogeneous isotropic medium have the form (see [40]):

oB

curl £ =-=—, (1.1.1)
ot
curlﬁ=7+7€+a—D, (1.1.2)
ot
div B =0, (1.1.3)
div D= 7. (1.1.4)
I =oE, (1.1.5)
B = u pH, (1.1.6)
D=géE, (1.1.7)

where E and D are the electric field and electric induction vectors, respectively; H and B are the

magnetic field and magnetic induction vectors, respectively; 7 and 7 ¢ are the current and
external current vectors, respectively; p is the charge density; o is the electrical conductivity;

H,and g, are the magnetic and electric constants, respectively; w and ¢ are the constant relative

magnetic permeability and relative permittivity, respectively.
System (1.1.1) — (1.1.7) can be rewritten in more convenient form by introducing vector and

scalar potentials of the electromagnetic field. The magnetic vector potential Ais defined by the
relation (see [40]):

curl 4 = B. (1.1.8)
Equations (1.1.1) and (1.1.8) give

curl(E+a—Aj=o. (1.1.9)
ot

It follows from (1.1.9) that there exists a scalar potential of the electromagnetic field, ¥, which is

defined as follows

E+8—A:—grad{/7. (1.1.10)
ot

Using (1.1.6) and (1.1.8) we rewrite the left-hand side of equation (1.1.2) in the form

grad div A —A,A4), (1.1.11)
( )

curl H = curl[ !

Ej: ! curl 4 =
HoH

HoH HoH

where AJ is the Laplacian in three dimensions.

It follows from (1.1.10) and (1.1.5) that
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Tz—a(gradl,;+(z—fj. (1.1.12)

Differentiating (1.1.7) with respect to ¢and using (1.1.10) we obtain

oD oW 0*4
— =—¢,&| grad— + ) 1.1.13
ot ’ (g o o J ( )
Using (1.1.11) — (1.1.13) equation (1.1.2) can be rewritten in the form

- ~ 2
grad div4 — A4 = —,uoyo{gradl,;+%—Ijj—yogoyg(grad%—y;+%}+yome. (1.1.14)

Equation (1.1.14) is derived under the assumption that the properties of a conducting medium
(the electrical conductivity o and magnetic permeability x ) are constant. It follows from (1.1.8)

and (1.1.10) that 4 and ¥ are not uniquely defined (unless additional conditions on the vector
potential A and scalar potential 7 are imposed). These additional conditions are called gauge

conditions (see the discussion on different gauge conditions in [40]).
In particular, the Lorentz gauge has the form

diVZ+/10,um,7+yogoygaa—l'ty=0. (1.1.15)
Using (1.1.14) and (1.1.15) we obtain

~ 0°4 oA ~,
A3A=ﬂogoﬂ5?+ﬂoﬂ05—#oﬂl : (1.1.16)

Since the constants g, and &,are very small (g, =47 107" H/m and ¢, = 8.85-10">F/m,
respectively), the first term on the right-hand side of (1.1.16) (which is usually referrred to as the
displacement current in the literature) is much smaller than the other terms and can be neglected
for frequencies up to 100 MHz. Such high frequencies are not used in eddy current testing (the
depth of penetration decreases with frequency). Thus, for most applications in eddy current
testing for media with constant properties (1.1.16) can be simpified to the following form

~ 04 -
A3A=,uo,ua§—,u0,u[ . (1.1.17)

If the excitation current is periodic with respect to time then all the functions in (1.1.1) — (1.1.10)
are also periodic with respect to ¢:

A=Ae’”, y=ye'”, E=Ee’”, D=De’”,

~ o~ e e L (1.1.18)
B=Be'”, H=He'", [ =1e’”, 1°=1%"",

where @is the frequency.

In this case (1.1.17) reduces to a non-homogeneous Helmoltz equation

AA+ K A=—pul®, (1.1.19)

where k’ = —jou,uoc.
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1.2 Medium with variable properties

1.2.1. Multilayer planar medium with varying electrical conductivity and magnetic
permeability

In this section we consider an air core coil located above a multilayer conducting medium
(see Fig. 1.1)

1
I
H—ﬁ A h2
r ! hy
v Ro(/[ozl’aozo)
A
1 Fig. 1.1 A coil above a multilayer conducting
d, R, (:u 25 O-z) .
v medium.

. - - .

Rnfl(xu n—1» O-nfl)

Rn(ﬂn’o-n)
/S S S

The following parameters characterize the coil: 7, and 7, are the inner and outer radii of the
coil, respectively, #, is the lift-off and 4, — A, is the height of the coil. Each conducting layer
R, i=12,..,n is characterized by the electrical conductivity o, and relative magnetic

1

permeability x . We use a system of cylindrical polar coordinates (r,¢,z) centered at O, the z -

axis is directed upwards. In this case due to axial symmetry the vector potential ;ll. in region R,
has only one non-zero component of the form

A(r,p,2)= A(r,2)e,, i=012,..n (1.2.1)
where ¢, is the unit vector in the azimuthal direction. We assume that the electrical conductivity
o, and relative magnetic permeability x in each layer R,i =1,2,...,n are functions of the vertical
coordinate:

o, =0(z2), u = u(z). (1.2.2)
The subscript i in Zli is omitted in sequel.

Using (1.1.10) and (1.1.18) we obtain

E+ jod=-grady. (1.2.3)
Using (1.1.18), (1.2.3) and (1.2.2) equations (1.1.5), (1.1.7) can be rewritten as follows

I= —O'(Z)(grad v+ ja)gl), (1.2.4)
D= —505(grad v+ ja)zl). (1.2.5)

Equations (1.1.2) and (1.1.18) give
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curl H=1+1¢+ joD. (1.2.6)
The left-hand side of equation (1.2.6) can be rewritten using (1.1.6), (1.1.8), (1.1.18) in the
form

curl H = curl[ curl ;1] = curlcurl 4+ {grad ,curl ;1} =
o i(2) o (2) Ho1(2)
- grad ! = L(— 21 d—’ujéz
IUO/U(Z) ﬂO :Ll (Z) dZ (127)
- o4 ol\rd
ccurl4=—-—%¢, +l(r—"’)éz
0z r or
- 04,
= ! (graddiv A—AA) au .
Hot(2) Mo (Z) dz 62
Using (1.2.4), (1.2.5) and (1.2.7) we transform (1.2.6) to the form
1 d,u 8A
rad div A— Ad+—— = rad y + jowA |+ ¢ —
g parar o (2o (= egrad y + jood )+ pyu=)T (128)
— ja),uogogy z)(gradz//+ ja);l).
Taking the projection of (1.2.8) on the ¢ — axis, imposing the condition
grad div A+ ,uo,u(zIO'(z)+ jowe,slgrady =0, (1.2.9)

using (1.2.1) and the fact that the constants g, and &,are very small (4, = 47107 H/m and
&, = 8.85-107"" F/m, respectively), that is, neglecting the displacement current if the frequency is

not so high, we obtain

. 1 duod .
A - joo (2) pou(2) A~ ——E2 =~y ()1, (1.2.10)
H(z) dz oz

where 1°(r,z) is the amplitude of the external current: 1€ =/ ‘e,
The operator A4in (1.2.10) has the form
A A 2 2
A =Ad, +%a—r——;’= Au :13(ra—“j+i2 0 - 0 -
r-op r or) r°op- 0Oz
2 2
=16A¢,+6 A¢,+6 A4, A
r or or? ozt r?

Finally, using (1.2.10) and (1.2.11) we obtain the following equation for the amplitude of the

vector potential in a conducting region with varying electric conductivity o(z)and relative

E
ner (12.11)

magnetic permeability (z)

0’4 104 (1 1 duod 0°4
+——— —+ oo -_———t = ]e. 1212
or* ror (r J (Z),uo,u(z)j u(z) dz oz 0z’ Hop(2) ( )
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1.2.2. Multilayer cylindrical problems with varying electrical conductivity and magnetic
permeability.

Consider a coil situated inside an infinitely long multilayer tube ( see Fig. 1.2).

Fig. 1.2 A single-turn coil inside a multilayer
tube.

Rn+1 (/u;H = 1’ O-n+1 = 0)
The coil is located inside a multilayer tube where each coaxial layer (region R.) is described

by the inequalities: R, = {z;. <r<r,,05p<2r,—0<z<+0 },i =12,...,n. Here » and r,, are

i i+l
the inner and outer radii of the cylindrical layer, respectively. Regions R, and R ., represent free
space. In particular, R, = {0 <r<n,089<2r,—0<z<+© }and
R, = {r 27,,,089<27r,—0 <z <+0© } Due to axial symmetry the vector potential has only

one nonzero component in each region R, ,i =0,1,2,...,n+1which is the function of » and z only:
A(r,0,2)= A(r,2)8,, i=012,..n+1. (1.2.13)
Suppose that the electrical conductivity o, and magnetic permeability s, in each region
R.,i=12,...,nare functions of the radial coordinate 7 :

o,=0(r), u =u). (1.2.14)
The subscript i in ;li is omitted in sequel.

It follows from (1.1.10) and (1.1.18) that

E+ja)gl:—gradl//. (1.2.15)
Using (1.1.18), (1.2.14) and (1.2.15) equations (1.1.5),(1.1.7) can be rewritten as follows

I= —O'(r)(grad W+ ja);l), (1.2.16)
D= —505(gradl// + ja),zl). (1.2.17)
Equations (1.1.2) and (1.1.18) give

curl H=1+1°+ jwD. (1.2.18)
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The left-hand side of equation (1.2.18) can be rewritten using (1.1.6), (1.1.8), (1.1.18) in the
form

curlcurl 4 + [ grad ,curl ;1}

Mo (1)

curl H = curl(
Ho (1)

curl ;1] =

- grad L 12 d—’ué,—l 12 d—'ué(ﬂ
Mo(r) g (r) dr o pout(r) dr
04 olrd
_(pé'r+l(r—(p)éz
0z r or
- olr4 o\4
eurt ]2l dmdlet), 11 awald),
v pypu”(r) dr or r pou (r) dr Oz

11 dudld,),

r

ccurl A=—

7 yo;ﬂ(r)Z or

curl 4 =

.- 04 1.2.19
(graddiv A-ad)s 1L d—”[A(p ¥ r—"’jéw . (1.219)
Mo (1) r pop”(r) dr or
Using (1.2.16) , (1.2.17) and (1.2.19) equation (1.2.18) can be rewritten as follows

- - 04
graddivA-ads  H Mg L 1 du, o
,u(r) dr or r ,u(r) dr (1.2.20)

— o) erad y + jod )+ puyulr )T - jeou,z,eulr Ngrad y + jood ).

Imposing the condition

grad div 4 + wout(rYo(r)+ joe,elgrady =0, (1.2.21)
using (1.2.13), neglecting the displacement current and taking the projection of (1.2.20) on the

@ —axis we obtain

1 duod (1 1 du . 7
- | —— 4w rlo(r)|A=- r) ¢ 1.2.22
) dr o (r A 1, 4(r o ( )J Hopi(r) (1.2.22)
where 1°(r,z) is the amplitude of the external current: 1€ =/ ‘e,

Finally, using (1.2.22) and (1.2.11) we obtain the following equation for the amplitude of the
vector potential in a conducting region with varying electric conductivity o(r) and relative

magnetic permeability p(r)
2

0’4 (1 1 duod (1 1 du . 0°A .
P +[;—ﬂ(r)d—/:J5—(r—2+rﬂ(r)d—f+]a)0'(r)uou(r)jA+aZ—2:—,uo,u(r)l. (1.2.23)

1.2.3. Multilayer medium with varying electrical conductivity and magnetic
permeability in Cartesian coordinates

A double conductor line in the form of two infinitely long parallel wires is considered in the
thesis as a simple model of a rectangular frame with current located parallel to the surface (we
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assume that the ratio of the sides of the frame is 1:4 or smaller). The vector potential in this case
has the form

A(x,y,2) = A (x,y,2)i + A (x,y,2)]. (1.2.24)
Using (1.1.6), (1.1.8), (1.1.18) we transform the left-hand side of equation (1.2.6) to the form

curl H = curl( curl EJ = ! curlcurl 4+ [grad

,curl ZI} =
Hopi(2)

Hopi(2)
- grad ! =- 12 a’_u];
Hop(z)  pop(2) dz

0A, - - (04 -
yi+8ij+ r_ 04, k
ox Oy

ccurl A=—

4 0z

(1.2.25)
.- 04, - -
= (graddiVA—AA)+ 12 a’_,u( L+ o4, i] :
Hoti(2) Mot (2) dz \ Oz Oz
Using (1.2.4), (1.2.5) and (1.2.25) equation (1.2.6) can be rewritten as follows
.= .~ 1 dufod . 04, . -
graddiv 4A— A4+ | =i +—=j |=—p,ulz)olz)\grad w + jod )+
wz)dz\ oz @z ouleole) ) (1.2.26)
+ ,uo,u(z)(le + Iy]')— ja)yogogy(z)(grad v+ ja)ﬁ).
Neglecting the dispacement current and using (1.2.9) we obtain
- 1 d 5A - aA - . - e -
AA— e S 7 |- jouu(z)o(z)4 = —,uou(z)(lxz +1,j ) (1.2.27)
u(z) dz \ oz 0z

1.3 Literature survey

In this section we present a brief literature survey of the basic methods and models used in
eddy current testing. Detailed references to each particular topic analyzed in the thesis are also
given in the beginning of each chapter.

Methods of nondestructive testing are widely used in practice in order to estimate quality of
products and materials. Eddy current method is one of the popular methods for nondestructive
testing of electrically conducting materials. The method is based on the principle of
electromagnetic induction discovered by M. Faraday in 1831. The idea of the method is as
follows. Suppose that a coil (or any other source of alternating current) is located near an
electrically conducting medium. The electromagnetic field generated by the currents in the coil is
called the primary field. In accordance with the principle of electromagnetic induction eddy
currents (also known as Foucault currents by the name of the French scientist Leon Foucault who
discovered this phenomenon) are induced in the conducting medium. These currents represent the
secondary field. Eddy currents induced in the conducting medium interact with the currents in the
coil changing the primary field. As a result of the interaction the impedance of the coil also
changes. The change in impedance of the coil can be measured experimentally. The following
parameters characterizing the coil and the conducting medium affect the change in impedance:
(a) geometrical size of the coil (the inner and outer radii of the coil, the height of the coil, the
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number of turns and the distance from the bottom of the coil to the conducting medium being
tested, known as the lift-off in the literature), (b) parameters of the medium (electrical
conductivity and magnetic permeability) and (c) the frequency of the excitation current. In
addition, if a conducting medium contains a flaw then the output signal of the coil would also
depend on the properties of the flaw. Physical principles of eddy current testing are described, for
example, in [7].

Mathematical models can also be used in order to compute the change in impedance of the
coil. These models can be divided into two groups: analytical and numerical models. The term
“analytical model” refers to the case where the system of Maxwell’s equations describing the
interaction of the currents in the coil with a conducting medium is solved analytically (that is, the
solution is expressed in closed form in terms of known special or elementary functions).
However, the change in impedance of the coil is usually expressed in terms of improper integral
so that at the last stage of the analysis the integral has to be evaluated numerically. Analytical
models can be developed for the cases where the conducting medium is infinite in one or two
spatial dimensions.

Numerical models are based on direct numerical modeling of the corresponding boundary-
value problems. Finite element methods are widely used to model Maxwell’s equations in a
conducting medium (see, for example, [22]).

Analytical or numerical methods are used in practice for the solution of a direct problem in
eddy current testing. The term “direct problem” is referred to as the solution of Maxwell’s
equations under the assumption that all parameters of the conducting medium (in particular,
electrical conductivity and magnetic permeability) as well as geometrical parameters
characterizing the medium (for example, the thickness of a conducting coating for the case of a
two-layer medium) are known. In practice, however, these parameters may not be known and
need to be determined from the solution of an inverse problem. Examples of inverse problems in
eddy current testing include determination of electrical conductivity of metal plates or the
thickness of metal coatings. Usually unknown parameters are obtained by minimizing the norm
of the difference between measured and computed change in impedance. Thus, efficient and
reliable methods for the solution of direct problems are necessary in order to solve inverse
problems.

Mathematical models for eddy current testing of conducting media with constant electrical
and magnetic properties are well-developed in the literature for the case where the medium is
assumed to be infinite with respect to one or two special dimensions. The main results are
summarized in monographs [3], [59], [60] and in several books published in Russian [17]-[19].
The solution process usually starts with the case where a single-turn circular coil is located above
a conducting medium. Assuming that the Maxwell’s equations are solved for the case of a single-
turn coil, the change in impedance of a coil of finite dimensions can be calculated using the
superposition principle.

The system of Maxwell’s equations for the case where a single-turn coil with alternating
current is located above a conducting half-space with constant electrical conductivity o is solved
in [55]. Later this solution was generalized for the case of a multilayer medium [15]. The
problems in [55] and [15] are solved by the method of the Hankel integral transform. Several
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papers are devoted to particular cases of the problem: a single-turn coil above a two-layer
medium or a plate (the analysis of the corresponding solutions can be found, for example, in
[60]). Different types of eddy current coils which can be used to locate cracks or other defects are
described in [13], [14].

The solutions of direct problems for a multilayer medium are used in practice to solve a series
of inverse problems. Thickness and conductivity of metallic layers are determined in [46].
Similar problem for determination of thickness and conductivity of thin nonmagnetic coatings on
ferromagnetic conductive substrates is solved in [51]. Other applications include hardness testing
of steel [45], [54], estimation of electrical conductivity of alloys [8], [53], thickness
determination of metal plates using multi-frequency eddy current coils [69], [70].

Another geometrical configuration where analytical solutions can be constructed corresponds
to the case where a coil with alternating current is located inside or outside a multilayer tube.
Detailed solution of the problem is given in [16] and [19]. The problem has also important
practical applications. For example, such coils are used to test quality of heat exchanger tubes in
nuclear reactors [10]. Analytical solutions of the corresponding direct problems (under the
additional assumption that the axis of a coil coincides with the axis of the tube) are obtained by
the method of Fourier integral transform with respect to the longitudinal coordinate. The change
in impedance of the coil in this case is obtained in terms of improper integrals containing Bessel
functions.

There are also examples of analytical solutions for the case where a coil is located above a
conducting multilayer sphere [17]. However, these problems have quite limited range of practical
applications and will not be considered in sequel.

Some industrial applications require the analysis of a moving conducting medium [1], [48].
Examples include steel processing at a metallurgical plant or movement of a coin inside a coin
validator.

In many cases analytical solutions described above are based on the assumption of an infinite
conducting medium. From a practical point of view the medium can be considered infinite in one
or two spatial dimensions if the size of the coil is much smaller than the size of an object of
inspection. However, there are many applications where the size of the coil is comparable with
the size of the object being tested. Solution procedure has to be modified for such cases in order
to take into account finite size of a conducting medium. Recently one quasi-analytical method
(TREE method) is proposed in [60]. The idea of the method is based on a physical assumption
that electromagnetic field can be negligibly small far from the source of alternating current. It is
assumed in a “classical” theory of eddy current testing that the vector potential and its derivatives
approach zero at infinity. In the TREE method the vector potential is assumed to be exactly zero
at a sufficiently large distance from the coil. The corresponding boundary value problem can be
solved by the method of separation of variables. However, the solution procedure includes two
steps which require numerical computations: (a) calculations of complex eigenvalues and (b)
solution of a linear algebraic system. The solution is then represented in the form of a truncated
eigenfunction expansion. In contrast with classical problems of mathematical physics the terms of
the series cannot be represented in closed form, but can be computed provided that steps (a) and
(b) described above are completed.
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2. PLANAR MULTILAYER MEDIA WITH VARYING PROPERTIES

2.1 Introduction

Mathematical models of eddy current testing problems for planar multilayer medium with
constant electrical and magnetic properties are well-developed in the literature [15], [17]-[19],
[3], [59]-[60]. Analytical solutions of direct problems for multilayer medium are usually
constructed by means of integral transforms (such as Hankel or Fourier integral transforms). The
resulting system of ordinary differential equations in the transformed space is then solved
analytically if the properties of each layer of the conducting medium are constant.

Alternative approach is developed in [63] where the magnetic field is assumed to be zero at a
sufficiently large distance from the axis of a coil. Such a method is known as the TREE
(TRuncated Eigenfuction Expansion) method in the literature [60]. In this case analytical and
quasi-analytical solutions to eddy current problems can be constructed in the form of truncated
series expansions.

Since the range of applications of eddy current method is quite wide it is not surprising to
know that in some cases the electrical conductivity and magnetic permeability of a conducting
medium can vary with respect to spatial coordinates. It is shown in [57] and [58] that special type
of treatment of ferromagnetic metals (such as surface hardening) can lead to the presence of a
surface layer with reduced magnetic permeability which varies exponentially with respect to the
vertical coordinate. In order to optimize the performance of gas turbines it is necessary to
increase firing temperatures. As a result, blades are usually protected from the exposure to high
temperatures by layers containing aluminium and chrome in special proportions [41]. The
depletion of aluminimum in this case leads to the variation of electrical conductivity with respect
to the vertical coordinate.

Hence, in order to adequately describe eddy current problems in the above mentioned cases it
is necessary to develop mathematical models which take into account variability of the electrical
conductivity and/or magnetic permeability with respect to one geometrical coordinate (the
vertical coordinate in the case of a planar multilayer medium). Two methods are usually used in
such cases. One method is based on the assumption that the variation of electrical and/or
magnetic properties of the medium can be represented by piecewise constant functions. In other
words, a conducting layer with varying properties is divided into a large number of relatively thin
sub-layers where the electrical conductivity and/or magnetic permeability of each sub-layer are
constant. This approach is used in [41], [66] for a rectangular coordinate system, in [65] for a
cylindrical coordinate system and in [62] for a spherical coordinate system. Note that up to 50
layers are used in [64] and up to 20 layers in [41]. In addition, it is estimated in [41] that the use
of many layers affects computational efficiency by increasing computational time.

Alternative approach is based on the assumption that simple model profiles (for example, in
the form of exponential or power functions) can be used in order to represent variability of the
properties of the conducting medium in one spatial direction (see, for example, [3], [23], [61],
[24], [30], [39]).

In this chapter we construct analytical solutions for the case where a coil with alternating
current is located above a multilayer conducting medium. It is assumed that the electrical
conductivity and magnetic permeability of each layer can vary with respect to the vertical
coordinate. In particular, the electrical conductivity and magnetic permeability in each layer are
assumed to be exponential functions of the vertical coordinate. Some particular cases of the
suggested solutions are considered in detail. Multilayer medium with many conducting layers is
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rather a rare case in practice. In many applications the medium consists of one or two layers.
Thus, the following particular cases of a general model described in Section 2.3 are considered:
(a) a coil above a half-space and (b) a coil above a conducting two-layer medium. Results of
numerical calculations are presented.

2.2 A coil above a multilayer medium with varying properties

Consider an air core coil located above a multilayer medium (see Fig. 1.1). The outer and
inner radii of the coil are 7, and 7, respectively. The height of the coil is 4, — &, , where A, is the
lift-off. The coil is located in free space (region R, ). The thickness of each conducting layer R,is
denoted by d,, i=12,..,n—1.The bottom layer R is assumed to be infinite in the vertical
direction.

Each conducting layer R,,i=1,2,...,nis characterized by the two parameters: the electrical

conductivity o, and relative magnetic permeability z; .

We consider a system of cylindrical polar coordinates (r,¢,z)centered at O, the z-axis is
directed upwards. The coil is carrying alternating current of the form

I°=1,(r,h)e™e,, (2.2.1)
where 1, <r<r,h <h<h,, wisthe frequency, ¢, is the unit vector in the ¢ —direction and the

current density /,(r,/) is constant over the cross-section of the coil:

N , h<r<n,h<h<h,
Iy(r,h) = (r, =) (hy, = hy)
0, otherwise

where [ is constant and N is the number of turns in the coil.

In this case it is natural to assume that the vector potential ;11. in each region R,,i=0,l,...,n has
only one non-zero component of the form

A, = 4,(r,2)e™e,. (2.2.2)
We assume that the electrical conductivity o,and magnetic permeability x4 in each region
R.depends on the vertical coordinate. More precisely, o,and u/ are modeled by the following
relations:

)=t (o), o (2)=07 expla), .
i=12,...n,

where a,, B, 1", 0" are constants.

2.3 A single-turn coil above a multilayer medium with varying properties

The first step in solving the problem is to find the solution for the case where a single-turn
coil of radius r, is located at distance / above a conducting multilayer medium [24]

(see Fig. 2.1).

28



h

Ry(p; =1,0,=0)
T
| 4 s, 0,)
LLLLLLL /////

R, /Un 150, 1 Fig. 2.1 A single-turn coil above
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V4 / V4 / multilayer medium.
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/ /7 7/

Using (1.2.12) with 4 =1, 6,=0 and I°=15(r—r,)5(z—h) we obtain the equation for the
amplitude of the vector potential in region R, :

2 2
aaﬁ() *%%‘%+ aai“ =~ uo18(r =1,)8(z =), @3-1)

where d(x)is the Dirac delta-function.

Using (1.2.12) with =0, u(z) = 4/ (z)and o(z) = o,(z) we obtain the following system of
equations for the amplitudes 4, (r,z) of the vector potential in each region R,,i =1,2,...,n

azfi (104 A, 82/21’ L )24 _ i, (o4 (2)4, =0,

o’ ror & u(z) dz oz (2.3.2)
i=12,..,n.

Using (2.2.3) we rewrite equations (2.3.2) in the form

0’4, L1 104, 4 0’4,

0A.
—ﬁ—+]a)0' Hop'e el +ﬂ')zAi’

ot ror o (2.3.3)
i=12,...,n,
The boundary conditions are

04 1 o4

Ay |.co=4, |._y» O = —L ., 234

0 |z—0 1 |z—0 8Z |z—0 ﬂr(o) 8Z ’z 0 ( )
Ai |z:—d = Az’+1 | :*02, H

1 04, (2.3.95)

7—)1 o4, —ﬁ—l+l| i=12,.,n-1
lLlir _C?i aZ = /Lli}:rl _(';11' aZ B d[, o ,

where c;’,. = de.
k=1
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The following conditions hold at infinity:

04,
Al,a——>0 as ¥ > 00, i=0,..,n, (2.3.6)
r
A, >0 as z >+, 4 — Oas z = —o0. (2.3.7)

In order to solve (2.3.1) — (2.3.8) we use the Hankel integral transform of the form

A,(A2) = [ A (.20, (Ar)dr, i =01,..m. (2.3.8)
0

Using (2.3.6), (2.3.8) we rewrite the left-hand side of equation (2.3.3) in the form (assuming
uniform convergence of the corresponding integrals)

© 2 2
I 0 1;1" + 161_12+a 4, rJ,(Ar)dr j 0 1;1" +lai—A2 (ar) dr+I rJl(lr)dr
\or* ror P o o\ or" ror r
0 A2 27
Ja 4 L], (Ar)d. _d4
. 0z Z*
2 52 a u=rJ(/1r)—>duz(Jl(ﬂr)JrﬂrJl'(/lr))dr
I( 4 li—% J(r)dr=| 524 o4 =
o\ o™ rar r dv=82’dr—>v—a‘
"
o4, Tl
J.J —dr ﬂJrJ (Ar) 8 dr+IJ dr — '([;Jl (Ar)Adr =
u= rJl(/lr) — du :( J(Ar)+ ArJ, (ﬂr))dr
:dVZ%dI"—)V:Ai B
or
: w e 1 1
=—ArJ,(Ar)4| + 2 || J, (4 A J (A dr =
[ 2 G i) )
" - 1
-x=x1r—>J1(x)+—J1(x)——2J1(x)
X x
" 1 ' VZ
e (1L b0 -0 |
V=1—)y=J1(x)
" . 1
Jl(x)+—J1(x)——2J1(x)=—J1(x)
x x
© 2 2 27
j 04 +l%—i+M rJl(/lr)a’rzﬁ—}tzZi , i=01..,n, (2.3.9)
ot ror o dz*

The right-hand side of equation (2.3.1) can be rewritten using (2.3.8) in the form

30



— U lo(z— h)Té'(r —r)rJ, (/lr)dr =—p,lr.J, (ﬂ,rC )5(2 —h)

(2.3.10)

Applying the Hankel transform (2.3.8) to the right-hand side of equation (2.3.3) we obtain

204 dA. ~
| (ﬂ,» aa— + joo! pule " )ZA,»erl (Arydr = %+ joo! e """ 4,
zZ Z

0

i=12,..,n,
Using (2.3.9), (2.3.10) and (2.3.11) we obtain
d*4, .~
= A Ay =~ I J, (Ar,)5(z = h),
dz
d*4, d4, ~
21 B (/12 + ja)o_imﬂoﬂime(aﬁﬁi)z )Ai =0, i=12,..n.
dz dz

Applying the Hankel integral transform (2.3.8) to the boundary conditions we obtain

~ ~ dA 1 dA

Ay o= 4 |95 do .= , ] l.=0>
z u/(0) dz

Az‘ |Z:_,§‘, = Ai+1 |Z=—421 H

1 dd

1 d4, _ .
A —[| 7_5} = = —IH 7_‘} . 1 :1,2,”,]/1—1,
s (_ d, ) dz =% M (_ d, ) dz =%

~ ~

A,—>0 as z—>+4mw, 4 -0 as z > -

(2.3.11)

(2.3.12)

(2.3.13)

(2.3.14)

(2.3.15)

(2.3.16)

In order to solve equation (2.3.12) we consider the following two sub-regions of R,:0<z <h

and z > h. The solutions in these regions are denoted by ZOO and Zm , respectively. Hence,

L~
%—ﬂzz‘l% =0, 0<z<h,
Z
L~
%ég—fAm=Q z>h.
Z

The general solution to (2.3.17) can be written in the form

ZOO =Ce” +C,e”.

The bounded solution to (2.3.18) is

201 =Ce ™.

The functions A4, (1,z) and ZOI(/LZ) satisfy the following condition at z=/:

Aoo |z:h: A01 |z:h .

The condition (2.3.21) reflects the fact that the function ZO (/1,2) is continuous at z=#A.

(2.3.17)

(2.3.18)

(2.3.19)

(2.3.20)

(2.3.21)

The second condition is obtained by integrating (2.3.12) with respect to z from z=h—¢ to

z = h+ ¢ and considering the limit in the resulting expression as & — +0 :
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h+¢e d220 h+e h+e

| S5 dz =2 [ Agdz =yl (Ar,) [ 5(z - hydz
dz h-e h-e

h-¢ ‘
dZ h+e h+e
20 — 12 J.‘ZOdZ = _,u()lrcjl (ﬂ“rc)
dZ h—g h—¢

h+e

e £i£r(}hj-gzodz = 2 lim224,(2,2')=0

h+e

. lim: 0 — dAOl | _ dAOO
20 (7 dz ‘ dz ‘
h—¢ z=h z=h
4 4
ddy | _ddy =—u,Ir.J,(Ar,). (2.3.22)
dz . dz .

Using (2.3.19) — (2.3.22) we obtain
Ce” +C,e™ =Ce™
{— AC,e ™™ —ACe™ + AC,e™ =—p,Ir.J, (xlrc)
Ce”+C,-C,=0

=

=
—Ce? +C,-C, = —%Irg]l (ar)e™

C, = ;‘—;14.11 (Ar)e ™
(2.3.23)
U
C,=C,+ ﬁlchl (A, )™
Using (2.3.23) we rewrite (2.3.19) and (2.3.20) in the following form

ZOO =Ce” +ﬂ[ch1 (/1rC )e”l(h’z)

24 = 4,(,2)=Ce* +;‘—;1ch1 (4 )e i (23.24)
201 =Ce” +§l—/°1]chl (/Irc )e’ﬂ(z’h)

In order to understand the meaning of each of the two terms on the right-hand side of (2.3.24) we
consider the case where a coil of radius 7, centered at the point (0,4) is located in an unbounded

free space. The corresponding component of the vector potential will be denoted by 4 (r,z) .
The equation for 4/ is
62 Aofree 1 a A({ree A ({ree 62 Aoﬁ'ee
7t =t 2
or r or r oz

where d(x)is the Dirac delta-function.

= —u,15(r —1.)5(z — h), (2.3.25)

In addition, 4/ is bounded at » =0 and 4/ is bounded as r — .
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Applying the Hankel integral transform (2.3.8), using (2.3.12) and (2.3.16) we get
dZZofree

FEa WAL = —pyIr.J, (Ar.)5(z = h). (2.3.26)
The bounded solutions in regions R, and R, are :
27 free _
Ry: " ey, z<h,
dz
— Af«(r,1)=Ce*. (2.3.27)
27 free -
R, : d A"; — LA =0, z>h.
dz
— Al“(r,A)=Ce ™, (2.3.28)
Using (2.3.21) and (2.3.22) solutions (2.3.27) and (2.3.28) can be rewritten as follows
Z(_)fgee(r,ﬁ): g_ﬂovbze—i(h—z) (2.3.29)

Zoflree (r,/i) _ &Irce—/l(z—h) (2.3.30)
22
Comparing (2.3.24) and (2.3.29), (2.3.30) we see that the second term on the right-hand side of
(2.3.24) represents the vector potential in an unbounded free space. Thus, the first term of the
right-hand side of (2.3.24) represents the induced vector potential due to the presence of the
conducting medium.
The solution to (2.3.13) can be expressed in terms of Bessel functions (see [50], formula 2.1.3.10,
page 247):

ax Ax Ax
Vet +be +ely=0 = y=ec {cd@ﬁ ]T%(#ezﬂ

Va® —4c

N Biz )T (a[+ﬂi)z 2\/7 (aﬁﬁi)z
4(Az)=e? |C, J, | e 2 |+C Y, | e 2 , i=12,....n—1, (2.3.31)

B +Ax 5 .

. m
where v, = , by=—jou,u’"oc!”,

Lo+ p
and J, ,Y, are the Bessel functions of the first and second kind, respectively.

The bounded solution to (2.3.13) in region R, is

a,+p,

N B i () +5,).
4,(2,z)=C, e * J, e 2| (2.3.32)

Using (2.3.24), (2.3.31), (2.3.32) and the boundary conditions (2.3.14) , (2.3.15) we obtain
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C, + ;’—21ch1 ()™ =C, J, (20 )+ €. 7, (2, ) (23.33)

—AC, + é‘—; Ir,J,(ar)e ™" =

e\ (s & (4 (2.3.34)
27;(71Jv1(201)+\/EJ'V1(ZO,.)J+/1_;(7IYV|(ZOI)+\/EYVVI(201)}
e (s (20))ecy, (=)= 2335
L ey (5 @)ves v (=)
(er,)d
i c{ﬂJ (o ) iie 0 (d))}
e 2
Pz 5 ) (a+)i )
+C5[7Y (z, (@) e 2 v ( (d))}
(2.3.36)
(@ )d
N P T Y A )
e 2
T (@141
B N N S e N )
Pad .
e ? (C4 J (21 (_dnfl))—'_CS ]Ym(zl (_d 1))): (2.3.37)
e (5 d)
(err8.)
s e[ B (o oo )
e 2
a3 (g )i -
o +c5”{%ym(zln] G )i v (2 (ci,,_l))} (2.3.38)
Lol ()i
e B i e )
(45, )d. ,-
where ZO‘:;\J/EB[ Zl,.(‘;'i)zzo,.e_ f c;’i:kz;dk.

Solving the system (2.3.33) — (2.3.38), substituting the values of the constants into (2.3.24),
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(2.3.31) and (2.3.32) we obtain the solution in each region R,in the transformed space. The
solution in each region R, (i =0,l,...,n)is then found by means of the inverse Hankel transform of

the form
A(r,2) = [4,(4,2)A,(A)dA,  i=0,],..n. (2.3.39)
0

The method described above can be used for any finite number of conducting layers. In the next
section we consider one particular case — a single-turn coil above a conducting half-space with
varying electrical and magnetic properties.

2.4 A single-turn coil above a conducting half-space with varying properties

Consider a single-turn coil of radius 7, located at a distance /4 above a conducting half-space
(see Fig. 2.1 in the limit as d; — o) . The geometry of the problem is shown in Fig. 2.2, where
w (z)=u,e’”, o,(z)=0,e" (see [39]).

Z A

Fig. 2.2 A single-turn coil above a
// conducting half-space.

Using the results from Section 2.3 we obtain the solutions in regions R and R, (see (2.3.24) and
(2.3.32)):

dZZO 27
R,: PE -A AO:—yO]rCJl(/lrc)é'(z—h) -
Z
& A(Az)=Ce™ +§‘—21ch1 (ar, e | (2.4.1)
24 A
R;: d - L—(/12+]a)cfm,uo,ume(”“ﬁ)z)A1 =0 —
dz dz
N e (e,
- A4,z)=Ce? J|2be > | (2.4.2)
The boundary conditions are :
~ ~ dA 1 dA
Ay .= 4 |, d_ZO|Z:0:Zd_ZI|Z:O’ (2.4.3)
4,0 as z—>+w, 4 —0 as z—>—m. (2.4.4)
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Using (2.4.1) — (2.4.4) we obtain

G, + ﬂlrc‘]l (ﬂ””c )e%h =C,J, (Zo )a
24 (2.4.5)

R N e (AN I LN
Mo

2./b , B2+ AN
— ,b=—jopu,0,, V="TT—T-—.
a+pf a+pf

It follows from (2.4.5) that

where z, =

-G, = C4JV(ZO)_§_;I’QJ1(M”L~)€_M

’ (_ AC,J, (Zo)+ Holr,J, (ﬂ,rc )e%h ):Um = C4(§Jv (Zo)‘*'\/g'];/ (Zo )J

—Ah
¢, = Hobtulrd\ U J (2.4.6)

[ﬂ”'" R f}a (20)+ B (z1)

In particular, the value of C, is

S (A AN
2){ (lym + ’fjJ (z,)+~bJ . (2, )j

It has been shown in Section 2.3 that the second term in (2.4.1) represents the vector potential
for the case where a single-turn coil is located in an unbounded free space. Thus, the first term in
(2.4.1) is the reaction of the conducting half-space on the current in the coil. This term is usually
referred to as “the induced vector potential”.

C, = (2.4.7)

The induced vector potential in region R, is

A (A,2)=Coe ", (2.4.8)
where C, is given by (2.4.7).

Applying the inverse Hankel transform of the form (2.3.39) to (2.4.8) we obtain

) Ir %
A (r,z) = % [F(, ()0, (2r)e P, (2.4.9)
0

where

(=2 Bo )
[ﬂﬂm N f}/v (2)+ 4B ()

The induced change in impedance of the coil is given by the formula (see [60])

F(1)=

Zm = %§ A (r,z)dl, (2.4.10)
L
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where L is the contour of the coil.
Substituting (2.4.9) into (2.4.10) we obtain

7" (r,2) = omuyr? j[ FQ)] (Ar)e " dA. (2.4.11)
0
Using the following dimensionless parameters (2.4.11) can be rewritten as follows
CAr=u—> =2, B+’
le t 2>V =""—"7—,
. - +
a=ar, f=pr, arp
- 2-jb -
’ b = a)luoﬁlmo-mrc2 2 20 = J" 2 h ZE :
a+p r,
Z"(r,z2)=0r u,r.Z, (2.4.12)
where
D))
Jl(w)e " du. (2.4.13)

z=j| 5 :
[ e i)

Fig. 2.3 plots the change in impedance Z for three different values of ,é =1,2,3 .The other
parameters of the problem are fixed at & = 0,4 =0.05and 4, =5.The calculated points in Fig.

2.3 correspond to different values of b= 1,2,...,40 (from left to right). Computations are done with
“Mathematica” ( see Appendix Fig.Ap.1).

0.4 \"\1\‘\ ’é B
0.35 | A
0.3} p=3
0.25 | Fig. 2.3 The change in impedance Z for
0.05 0.1 Py el ) three different values of f.

It is seen from the graph that the modulus of Z increases as the parameter ,B increases.

All calculations in the thesis are done with software package ‘“Mathematica”. In particular,
integral (2.4.13) is computed using “Mathematica” command NIntegrate. Users can specify
infinity as the upper limit of integration in NIntegrate. However, it is known that computation of
some improper integrals in “Mathematica” can be time-consuming. Similar problem is found in
the thesis for calculation of some improper integrals. As a result, the

0 7
improper integrals in the form j f(x)dx are replaced byj f(x)dx, where the upper limit yis
0 0
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chosen in order to satisfy the desired accuracy of the calculations. Example of such computation
is shown in Table 2.1. It is seen from Table 2.1 that for 1<h <11 and ,3=2 in order to
construct the graph it is more than enough to choose y =60. “Mathematica” code for the
computation of integral in (2.4.13) is shown in Appendix Fig.Ap.2.

b 1 3 5 7 9 1
y
20 0.01283 0.375931 0.03767 0.371501 0.06034 0.363481 0.08022 0.353061 0.09725 0.341281 0.11170 0.328941
40 0.01284 0.38579i 0.03768 0.38136i1 0.06036 0.37335i1 0.08025 0.36292i 0.09728 0.351141 0.11173 0.33880i
60 0.01284 0.38652i 0.03768 0.38209i1 0.06036 0.37408i1 0.08025 0.36365i1 0.09728 0.35187i 0.11173 0.33953i
80 0.01284 0.386581 0.03768 0.382161 0.06036 0.374141 0.08025 0.363711 0.09728 0.351931 0.11173 0.339601
100 0.01284 0.38659i1 0.03768 0.382161 0.06036 0.374141 0.08025 0.363711 0.09728 0.351941 0.11173 0.33960i1
120 0.01284 0.38659i1 0.03768 0.382171 0.06036 0.374151 0.08025 0.36372i1 0.09728 0.351951 0.11173 0.339611
140 0.01284 0.38659i1 0.03768 0.38217i 0.06036 0.37415i1 0.08025 0.36372i 0.09728 0.351941 0.11173 0.339611

Table 2.1
Calculated values of the change in impedance given by (2.4.13) for different values of y and b.

2.5 Coil of finite dimensions

In this section we compute the induced vector potential of a coil of finite dimensions using
solution (2.4.9) for a filamentary coil. The geometry of the problem is shown in Fig.2.4 .
z A

V)

h,
, Ro(/"(; =1,O'0‘— 0)
9 R1(;U1r ) 0-1)

Fig. 2.4 A coil of finite dimensions
above a conducting half-space.

/

Assume that N is the number of turns in the coil. The inner and outer radii of the coil are 7 and
r,, respectively. The distance from the coil to the top surface of the cylinder is denoted by /4, . The
height of the coil is 4, — A,. The induced vector potential in air due to currents in the whole coil is
obtained as follows

ry hy

Apeay (r,2) = .”Aé"d (r,z,r,,h)dr.dh .

nhy

2.5.1)

Substituting (2.4.9) into (2.5.1) and using the formulas
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'Teﬂhdh _ _%(e—ﬂhz e )

hy

(2.5.2)

Iy Ary

1
e (rddr, =| y =2 |=— [, (v)ey

] An

we obtain the induced vector potential in air due to the presence of the conducting half-space
NI

( the current amplitude 7 in this case is replaced by the current density ):
(r, =)y — )
in My NI T F(ﬁ) —Ah vy 7/1/1/”2
A (r,z) = 0 e —e Ar J, (y)dy |[dA, 253
0001[( ) 2(7’2—}"1)(}12—}11){[( /13 ( )/1( )€ l.[ly l(y) y ( )

where
(mm S A RRCTHEN
(zﬂm +§JJV (=) + B (1)

The integral with respect to yin (2.5.2) can be computed in terms of the Bessel and Struve
functions [2] as follows

F(1)=

IZyJI (y)dy = {%y[Jo WH, ) -J,(NH, (y)]} (2.5.4)

An

y=An

The induced change in impedance of a coil of finite dimensions (see Fig. 2.4) is calculated by
means of the following formula [15]:

AR J]—?jﬂﬁfd\/ = J}—?ngoif rdrTAé’Z‘jﬂdz
v 0 hy

n

. 7y hy
Zitr,2) = 20 [ 14 (1. 2, (2.55)
I (r,—r)h,—h)

nhy
Using (2.5.3) and (2.5.5) we obtain the induced change in impedance of the coil in the form

Ary

2
| iwmu,N* F| F(A)( -
Zr (r,z) =—I 2 e =Ty (ndy | |dA. (2.5.6)
v (rz_’"l)z(hz_hl)z‘([ 2 ( )Z ,{[1 1

Using the following dimensionless parameters (2.5.6) can be rewritten as follows

2”’1:”—>ﬂ':1’ ﬂ2+4u2

hotv= —
. ~ a+p
a=an, /B:ﬂria
R W—jb ~ h o~ h .
b= opp, o, 2= NI = = g =D

a+p 5 h h
Zot (r,2) = o7 o1 Z, 2.5.7)
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o 7 . . ur, 2
Z = (h,\ ]\22 ]-!)' F(é’t) (e—uh| _ e—th )Z( J.le (y)dy] du, (258)
2 u

—i -1 ol
and

[uum —g}lo(éo)_ _jl;‘];(éo)
Plu)=

D))

Fig. 2.5 plots the change in impedance Z for three different values of B =1,23 .The other

A

parameters of the problem are fixed at & =0, };2 = 1.6,};l =04,7,=2,N=50and u, =5. The

calculated points in Fig. 2.5 correspond to different values of b=12,..,20 (from left to right).
Computations are done with “Mathematica” ( see Appendix Fig.Ap.3) .

Im z ﬁ |
t\ |
1 i =2

75 \\ A
50 — f=3
25 .\
'\.ﬂ\.\%\‘\‘\ L Re Fig. 2.5 The change in impedance Z

> 3 Z . . N
25 ® © m\\‘?i_\ By X for three different values of f.

2.6 A single-turn coil above a two-layer medium with varying properties

In this section we consider another example of the general theory [30]. Consider a single-turn
coil of radius 7, located at a distance / from a two-layer medium (see Fig. 2.6).
Z A

D E—

h
x Ryl =1,0,= y)
Rl(:ul 70-1)\

v b\
Y
Rz(,uzr , O'z) Fig. 2.6 A single-turn coil above a
two-layer medium.
/)
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where 1 (z)= e, o,(z)=0]"e”,

#(2)=m'.  oy(z)=07.

Formulation of the problem follows from (2.3.1) — (2.3.7) and has the form
Ay 10y Ay, 04,

R, : =—ulo(r—r)o(z—h), 2.6.1
0 arz r 8r rz 8 2 IUO ( c) ( ) ( )
62A 1 04, A4 0? 4 04
R,: 4 — B oo e PR 4 =0, 2.6.2
15 r ar r2 Py B oz JOO | Hy 1 ( )
62A 1 04, A, 0% 4 s m m
R,: A T2 L= jwo) puy' 4, (2.6.3)

6r2 ror 1> oz’
where o¢,"and u, are, respectively, the constant electrical conductivity and relative magnetic
permeability of region R, .

The boundary conditions are

04 1 o4

A |z =0 A |z =0> 0 ’z:OZ r _1|z:0’ (264)
Oz 1 (0) &z

1 o4 1 04

A=A sy o = | (2.6.5)
H (_d) 0z 1y

The following conditions hold at infinity:

4, %i—)() as ¥ —>,1=0,12, (2.6.6)

r
A, >0 as z >+, 4, >0 as z > -0 (2.6.7)

Applying the Hankel transform (2.3.8) to problem (2.6.1) — (2.6.7) we obtain the solution in
regions R, ,i=0,1:

R,: ddA /IZA =—u,Ir.J,(Ar.)5(z—h) —
z
> A,(1,z)=Che g‘; IrJ,(Ar, e " (2.6.8)
dzZ a+f)z \ 5
R, _181__( +jwoy iy e el )A1:0 -

~ LA (a+f), (a+p),
> AAz)=e?|CJ, | 2Le 2 T |+Cy, | 2e 2 |, (2.6.9)

VB +Ar

where b=—jouu’"ocl", v=

a+pf
The solution to (2.6.3) in the transformed space which remains bounded as z — —o0 is
d’ A ~ :
R,: A =0 - A,(L,z)=Ce"”, (2.6.10)
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where ¢, :\//12 + joo; uy ' .

The boundary conditions are :

~ ~ dA 1 dA

Ay |.20= 4 |20 — |z:():_m_l|z:O’
dz u'odz

~ ~ 1 dd 1 dd

Al |z:7d= A2 |z:7d’ r—_l |z:—d= _m_2 |z:—d °
H (_d) dz My dz

~ ~

A4, >0 as z—>+o, A4, >0 as z—> -

Using (2.6.8) — (2.6.13) we obtain

C2 + ;l_;[rcjl (ﬂ,}’c )eiih = C4Jv (ZO )+ CSYV (ZO )’

A0, + 2 g g (e :C—;[ﬁa (20)+¥BJ. (2, )j . C—;[ﬁ Y, (z,)+4BY, (=, )j,
2 H\ 2 m\ 2

q_fnCG —q,d
Hy
5 (s (s
2 _a+ _a+
e Loty o) e Drter e )|
1
(a+p)d 2\/3
where z =ze 2 ,z,= , b=—jou,u’"o!".
a+pf

It follows from (2.6.14) — (2.6.15) that
- C,=C,J,(2,)+CY,(z,)- %IrCJl (Ar)e ™
= AC,J, (ZO)—/”LCSYV(ZO)+%17/CJ1 (Ar)e ™ +%1ch1 (Ar)e ™ =
= (L, )|+ S )
'\ 2 '\ 2
[+ e, e) - .,

(,w;" + f ]JV (z,)+ b, (2,)

C,=-

Similarly, conditions (2.6.16) — (2.6.17) can be rewritten as follows

(Z%*ﬂ)d
Co=e 2 (C4Jv(zl)+C5Yv(zl)) H

(2.6.11)

(2.6.12)

(2.6.13)

(2.6.14)

(2.6.15)

(2.6.16)

(2.6.17)

(2.6.18)
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g e E Y @)J

Gald
/lf"quJV(Zl)Jr\/Zﬂé"e J(z)

(2.6.19)

C,=- ;
(2eﬂ”’ﬂ£"

Constant C; is found from (2.6.18) — (2.6.19) and has the form

op I, Jl(/b"c)e%h(Dl‘]v(Z )+D J'( ))

C.=—
(D, (z)+ DY, (z) Dy (2 )@J;(zo))—(DlJ( )+ D,J,(2,) )\ D,Y, (z,)+ VBY,(z,) )
(2.6.20)
where
D, =§eﬂ"ﬂ§” - 1" qy,
D2:§+/1,ul'",
(B-a)d
D3=\/Z,u£"e :

Using (2.6.19) — (2.6.20) we obtain
i 1.3, Je (DY, (2) + m'(z ))

C, =

(DY, (z,)+ DY (2,) \ D,J, () + /B (2,) ) - (DJ( (z) k.Y, (z,)+ Y, (z,) )
(2.6.21)

In particular, the value of C, is

H L C,=C,J,(z,)+C.Y, (ZO)—;l—;IrCJI(/irc)e & H
¢, = tulrd (dr)e™ B (2.6.22)

24 D

where
B=E(a" =D,V (z,)~NbJ (z,) )- F(2Ang" = D, )Y, (z,)~bY, (2,)), (2.6.23)
D=E(D,J,(z,)+b JV(ZO))_F( DY (z,)+bY, (ZO)) (2.6.24)
E=DY,(z)+DY.(z,), (2.6.25)
F=DJ,(z)+DyJ,.(z) (2.6.26)

and

= A+ jool mly . b=-jouuo!
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(a+p)d

2

2b B +ar

PFo T a+p’ a+p
The induced vector potential in region R, is
A (A,2)=Che ",

where C, is given by (2.6.22).

zZ, =zye

(2.6.27)

Applying the inverse Hankel transform (2.3.39) to (2.6.27) we obtain the induced vector potential

in the form

ind _ /’lOIrc OOE. =A(z+h)
4 r,2) =2 { s (Ar)J, (Ar)e = d,
where B and D are given by (2.6.23) and (2.6.24), respectively.
The change in impedance of the coil is computed using (2.4.10) and (2.6.28):

Z"(r,z) = oxu,r’ ]I% JE(Ar)e M dA.
0

Using the following dimensionless parameters (2.6.29) can be rewritten as follows

ﬂrczu—>/1=l, B+
r. r=>v= —,
a=ar,, ,@=,Brc, *p
b= aou,u'o7r],
: 131 :geﬂh&ﬂ; —4'q, , kur g, :‘\1“2 +Jq » q:wagﬂoﬂ;’rfs
5 . ~ (p-ak
_ b laspl
P e L S R S
v+ B .
E zéle(21)+é3Y&'(21)’ F :DAlJv(él)""DAsJ;?(él) >
) B:E((ZMM _bz &(20)_ _]BJ;(EO))_F((ZM/J{"_éz)yﬁ(éo)_ _][;Yv(
D= E( Dt (&) 4= 51 (6) |- F( DY, () e jBY(2,)

Z"(r,z)=0r u,r.Z,

where

0 é .
VA :jJ-—A-Jf(u)e’Z"hdu.
oD

(2.6.28)

(2.6.29)

(2.6.30)

Fig. 2.7 plots the change in impedance Z for three different values of B =1,23 .The other
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parameters of the problem are fixed at d=02, u" =1, u =100, h=0.05, &=0.

The calculated points in Fig. 2.7 correspond to different values of b= L,2,...,10 (from left to
right). Computations are done with “Mathematica” ( see Appendix Fig.Ap.4) .

f=1
f=2
f=3

Re [z i ini
0.15 0.2 0.5 G [(z] Fig. 2.7 The change in impedance Z for

-0.06 . three different values of ,3 .

\
[ ]

0.1

The solution for a single-turn coil can be easily generalized for the case of a coil of finite
dimensions as it is done in Section 2.5. One can apply the general theory developed in Section
2.3 to other examples with any finite number of layers. The transformed induced vector potential
in free space in any case is given by the first term in formula (2.3.24) where the constant C, 1is
obtained from the boundary conditions (2.3.14) — (2.3.15). The induced vector potential in free
space is given by (2.3.39). The change in impedance of the single-turn coil is computed by
(2.4.10). Finally, the change in impedance of a coil with finite dimensions is computed using
(2.5.1) and (2.5.5).
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3. CYLINDRICAL PROBLEMS FOR MULTILAYER MEDIA WITH
VARYING PROPERTIES

3.1 Introduction

Eddy current methods are widely used in practice in order to control properties of conducting
materials. All problems where eddy current coils are used for inspection of materials can be
divided into the following two categories: (a) estimation of properties and/or other parameters of
conducting media (for example, electric conductivity of a conducting layer or thickness of metal
coatings) and (b) detection of defects (or flaws) in a conducting medium (for example, estimation
of the effect of corrosion or presence of voids or other non-metallic inclusions in the medium). In
both cases theoretical models (with some unknown parameters) are usually compared with
experimental data. Optimization methods (for example, the least squares method) are then used to
estimate unknown parameters of the medium (see, for example, [47], [49]).

Thus, a necessary step for the solution of an inverse problem (determination of unknown
parameters of a medium) is the existence of a mathematical model describing the interaction of
an alternating current in a coil with the conducting medium (direct problem).

Mathematical models for eddy current testing problems of conducting media with constant
properties are well-known in the literature [60], [3]. Analytical solutions are presented in [15] for
the case where a coil with alternating current is located above a multilayer medium. Similar
problems for coils encircling multiple coaxial conductors or coils inside multiple coaxial
conductors are analyzed in [16]. The properties of all media in [16] are assumed to be constant.

Some industrial applications (for example, surface hardening or decarbonization) modify the
properties of a conducting medium (electric conductivity and/or magnetic permeability) which
depend on geometrical coordinates. It is shown in [57], [58] that a thin layer of reduced magnetic
permeability can exist in a medium which undergoes special treatment. In the case of a planar
medium the magnetic permeability of the layer depends on the vertical coordinate.

Thus, in order to analyze such cases in practice one needs to develop mathematical models
where electric conductivity and magnetic permeability of conducting layers depend on
geometrical coordinates. There are at least two methods that can be used in order to take into
account variability of the properties of the medium with respect to one geometrical coordinate.
Regions where the properties of the medium are not constant can be divided into sufficiently
large number of sub-layers where the electric conductivity and magnetic permeability are
assumed to be constant. Therefore, in the whole region of interest the properties of the medium
are piecewise constant functions of, say, depth. For example, up to 50 layers are used in [64] to
model the change in electric conductivity with respect to a vertical coordinate.

Another approach is based on an attempt to use relatively simple electric conductivity and/or
magnetic permeability profiles in order to model the variation of the properties of the medium
with respect to one spatial coordinate. Some analytical solutions for the case where the properties
of the medium depend on the vertical or radial coordinates are presented in [3].

In this chapter we follow the second approach. Analytical solutions are constructed for the case
where a coil is located inside or outside a multilayer tube with varying properties. The electric
conductivity and magnetic permeability are assumed to be power functions of the radial
coordinate. The solution procedure is described for an arbitrary number of conducting layers with
varying electric conductivity and magnetic permeability. Three cases are analyzed in detail: (a)
the case of a coil inside one infinite outer layer, (b) the case of a coil inside a two-layer tube, and
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(c) the case of a coil outside a two-layer tube
3.2 A coil located inside a multilayer medium with varying properties

Consider a single-turn coil of radius 7, with alternating current located inside a multilayer
tube where each coaxial layer (region R,) 1is described by the inequalities:
R = {’”,- <r<r,,08¢9<2r,-0<z<+0 },i =1,2,..,n[31]. Here », and r,, are the inner and
outer radii of the cylindrical layer, respectively. Regions R, and R, , represent free space.

In particular,

R,={0<r<n,0<p<27,~0<z<+wandR,, ={r>r

n+l T n+l 2

0<@<27,—0<z<+0}. The coil

is located in the plane z =z, perpendicular to the axis of the tubes (see Fig. 3.1).

Fig. 3.1 A single-turn coil inside a
multilayer tube.

Rn+1 (IU;H = 1 H O-n+1 = O)
Due to axial symmetry the vector potential has only one nonzero component in each region
R.,i=0,1,...,n+1which is the function of »and z only. We assume that the electric conductivity

o,(r)and magnetic permeability g (r)in region R (i=1,2,..,n)are modeled by the following
relations
w(r) = ot (r) = wort"r" , o (r)=c"r* | i=12,..,n, (3.2.1)
where a,, B, 1", 0" are constants, and g (r)is the relative magnetic permeability of region R,.
Using (1.2.23) where 4] =1, 6,=0 and I° =15(r—r,)5(z—z,) we obtain the equation for the
vector potential in region R, :
0’4, +l%_ﬁ+52Ao
o ror 1 o

where d(x) is the Dirac delta-function.

== lo(r —ry)o(z - z,), (3.2.2)

Using (1.2.23) and I=0 we obtain the following system of equations for the
amplitudes 4, (r, z) of the vector potential in each region R,,i =1,2,...,n:
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2 r 2
04 +(1 | dy/ }% [i+ L du +ja)0'l.(r),u0yl.r(r)JAi Jr—aa 1;1" =0,
z

or* \r u'(r) dr e (r) dr (3.2.3)
i=12,...n.
It follows from (3.2.1) and (3.2.3) that
0° 4, o4 4 0’4, _p oA (B 5

- —+| =+ joo]" o' re " |4,
o ror a2 1 or (r JOOT Mot ’ (3.2.4)
i=12,...n.
Using (1.2.23) with ¢/, =1, 0,,, =0 and /=0 we obtain the equation for the vector potential
inregion R _,:
0’4, 104, A. 0°A.,

n+ - n+l n+ n+ _0 325

or? r or r? oz’ ( )
The boundary conditions are
04 1 04
A |r "o |r "o — |r " r—_1|r=r H (326)
| U ) o
A |r i 1+1 |r:rM’

1 04 1 04 3.2.7
——~ e ] ey > 1=1,2,0m. ( )
lut ( 1+1) ai" lut+l< z+1) a]"

In addition, A4,is bounded at » =0and 4,,, is bounded as r — .
The following conditions hold at infinity:
04,
A a——)O as z—>x0,i=01,..,n (328)
z

Applying the Fourier transform of the form
A 2) = jAl.(r,z)e*ﬂZdz, i=01,.,n+1. (3.2.9)
to the left-hand side of equation (3.2.4) we obtain
T(0°4 4. A 04 ) T(0°A A A 2A
J. g4 IL——2’+8—2’ eiMZdZ=J. 0 2’+la — 7Mzdz+J‘ —Le*dz
- ror r oz s\or” ror r

[ 6 A Jlod 4 d*4, 1dd, 4,

f e dz=

. r or r dr* rdr r

= _jlz d = — ﬂ, _jlzd 0

TN u=e’” >du=—jle’"dz oA oA,

I S-e dz = 0%A OA. =e /" — +]/1I—e' dz =

s 0z dv=""TAdr > y="=L oz |_, ~ Oz

oz’ 4

= jhe 4| + PR [AeFdz=-24,
T(0°4 104, 4 04 24 1dAd 4~

0 k lL__zl 0 i e dz = d o +1L—_21_/12A1 (3.2.10)

or ror r 0z dr rdr r
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Applying (3.2.9) to the right-hand side of equation (3.2.2) we obtain
—yolﬁ(r—rO)J.é‘(z—zo)e_Mzdz =—p,le " 5(r—r,) (3.2.11)
0

Similarly, the right-hand side of equation (3.2.4) is transformed to the form

“ B 04 . ;
J'(ﬁ_l_i_(%_i_ja)o_imﬂoﬂ;nraﬁﬂ; jA[jejﬂde —

‘\r or
~ (3.2.12)
=Eﬁ-ﬁ(%—l—jwalmﬂoﬂimra’JrﬁiJZ,«, i=12,...,n.
r o dr r
It follows from (3.2.10), (3.2.11) and (3.2.12) that
S~ ~
d_fuld_Ao_(LzmjAo — ple (1), (32.13)
dr r dr r
S~ ~
424 U=p)dA (V4B sy 2)i 20, i12,.m, (3.2.14)
dr ro o dr r

where p, =/ jou,u"o" , jis the imaginary unit and o is the frequency of the current in the coil.
The transformed equation in region R is

o~ ~
d A;” +ldA’Hl - L2+/12 A4.,=0. (3.2.15)
dr r dr r

Applying the Fourier transform to the boundary conditions we obtain

ZO |r:r = Zl |r:r H dAO pa— 1 % |r:r > (3216)
S e

;ii ’r:r» ]: Zi+l ‘r:r. 12 r;% r=r; 1: r; dAHl r=r,? l = 1727"’”‘ (3'2'17)
’ () dr T () dr T

In addition, 4, is bounded at » = 0and 4, is bounded as r — o . (3.2.18)

In order to find the solution to (3.2.13) we consider two sub-regions, R, and R, , of
region R,, namely, Ry, ={0<r<r,,0<p<27,~0<z<+wn} and
Ry = {ro <r<n,0<p<2r,—0<z<+0 } The solutions in regions R, and R, are denoted by

ZOO and 201 , respectively. Hence,

d’A, 1dA, (1 ~

Ty droo_(r_2+/12jA00:O’ Osr<n (3.2.19)
-

ddﬁl*%d:fl_(%”z}lmzo’ T (3.2.20)

The solution to (3.2.19) can be expressed in terms of modified Bessel functions:

49



2

Vot ty. —(HV—ZJFO = y=1(x)
X X

. y=y(/1r)—> y; :ﬂy;(ﬂr)
v, =2y, (ar)

7, s 2 ) 2 Jlar)=0
r r

o )+ )14 )= 0y =1, 0)
Ar Ar
The general solution to (3.2.19) can be written in the form
Ay =B, (l”)"' B.K, (’1’”)’
where I,(Ar),K,(Ar)are the modified Bessel functions of the first and second kind, respectively.

The bounded solution to (3.2.19) in region 0 <r <ryis

Ay (r,A)= B I, (Ar). (3.2.21)
The general solution to (3.2.20) can be written in the form

Ay, (r,2)=B,1,(r)+ B.,K,(Ar). (3.2.22)
The functions Zoo (r,A) and Zm (r,/l) satisfy the following conditions at r =7:

Ang |y = Aoy |,y (3.2.23)

The condition (3.2.23) reflects the fact that the function ZO (r,/l) is continuous at » =7.
The second condition is obtained integrating (3.2.13) with respect to » from r =7, —¢ to

r =1, +¢ and considering the limit in the resulting expression as &€ - +0:

ryt+e dZZO 1 dZO 1 )~ i pte
. VOL( o +;?— r—2+/1 A, |dr =—p,le ’bjif(r—ro)dr
dZO npté npte 1 dZO 1 ZJN iz
— ||| 5+ A |4, |dr =—ple
dr| VO'L(r dr [rz 0 Ho
u= l — du = —der
r r
dA ~
dv=—"Ldr ->v=4,
dr
~ |te 1 ~ rp+€ r0+gZ r0+52 nte ‘
ady hl Lo g [ Aog_ 22 =y Jo 0
dr - + p AO - +rOJ‘£ ]/‘2 dl" rOJ-E ]"2 dl" mj.f Aodr - ﬂole
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di,|""  di dA
lim 0 — 01 _ 00
0 dr dr dr
ry—¢ r=ry r=r,
rp+e
A, 1( ~ ~
lim—| =—|4,| -4y =0
-0 p 7 r=ry r=ry
ry—€

L g{fﬁodz = Zlim2a4,(r",2)=0

n—¢&

ddy| _ddw| __ L le (3.2.24)
dr dr

r=r, r=rn,

Using (3.2.21) — (3.2.24) we obtain
31[1(17"0): lel(ﬂ’”o)+B3K1(/1ro)
AB,I,(Ar, )+ AB,K,(Ar, )= ABI, (Ar, ) = —pt,le 7™
K, (/1’”0)
I, (ﬂ"”o)
Ii(ﬂ'ro)Kl (ﬂro) _ﬂlefﬂz”

lell(ﬂro)"'B3K1'(/1”0)_B211'(ﬂr0)_33WZ 1

B, =B, +B,
=

) B3(Il(/1’"o)K1I(/1r0)_If(iro)Kl(l’"o)):_%Ie_woll(ﬂfo)

B, = yorole_jizoll<ﬂro) (3.2.25)
B, =B, + uyr,le " K, (Ar,),
where W{I (z),K, (z)}1is the Wronskian.

It follows from (3.2.21), (3.2.22) and (3.2.25) that

Ay (r,A)= B,I,(Ar)+ pyrde 7 K (Ar, ), (Ar) (3.2.26)

Ay, (r, 2)= B,1,(Ar) + pyryde 7 1 (Ar, K, (Ar). (3.2.27)

In order to understand the meaning of each of the two terms on the right-hand sides of (3.2.26)

and (3.2.27) we consider the case where a coil of radius 7, centered at the point (0, z,)is located

in an unbounded free space. The corresponding component of the vector potential will be denoted

by A (r,z). The equation for A4/ is

82 A Ofree . l a Aoﬁee ~ Adfree . 62 Aoffee
or’ r or r oz’

where d(x)is the Dirac delta-function.

=—u,lo(r—1,)0(z - z,), (3.2.28)
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In addition, 4/ is bounded at » =0and A/ is bounded as r — .

Applying the Fourier transform (3.2.9) and using (3.2.8) and (3.2.13) we get

2 Z free Z free _ .
ddroz +%da?l” _(I’LZ—FAZJAOME =_/uo]eiﬂzo§(r_ro) (3'2'29)

The bounded solutions in regions R ,and R, are :

dP AL 1dAfe (1 ~ e
Ry, : drozo +; a?;’ —(r—2+/12]A0{) =0, 0<r<y
- Nﬁee(r /1)= B,I (ﬂr) (3.2.30)
0 > 471 o L
d*A  1dAr (1 ~
R, : drozl - a?; —(r—2+/12)A0f1 =0, r>,
— Al(r,A)= BK,(Ar). (3.2.31)
Using (3.2.23) and (3.2.24) solutions (3.2.30) and (3.2.31) can be rewritten as follows
AL (r,2) = pyrde ™ K (A, )1, (Ar) (3.2.32)
Al (r, A) = poryle 7 1, (A, )K (A7), (3.2.33)

Comparing (3.2.26), (3.2.27) and (3.2.32), (3.2.33) we see that the second terms on the right-hand
sides of (3.2.26) and (3.2.27) represent the vector potential in an unbounded free space. Thus, the
first term of the right-hand sides of (3.2.26) and (3.2.27) represents the induced vector potential
due to the presence of the conducting medium.

The solution to (3.2.14) can be expressed in terms of different special functions. For example, the
solution to (3.2.14) for the case a, =—1, S, =—1(see [50]) is

2 A 2\~
cil' > +g%_(ﬂz +p_12in =0, i=L2,..,n
r r ar r

2 2

1‘2“y;+(b2+a = }y:o%y(z):zazv(bz)

.yZZ+

-1—2a=2—>a=—l
2

b*=2 >b=jA

1 1
2 2 2 2 / 2
pl l 1 i l l pl

where p, =/ jou,u"o]" .

A(r,2)= %(34[_ 1, (r)+ B, K, (2r)) (3.2.34)
The bounded solution to (3.2.5) is
A,.,(r,2)=B.K, () (3.2.35)

Unknown constants in (3.2.26), (3.2.27), (3.2.34) and (3.2.35) can be found from the boundary
conditions (3.2.16) — (3.2.18). Then the solution in each region R,,i=0,l,...,n+1 can be found
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by means of the inverse Fourier transform of the form

A(rz)= - [4.(r, 2)e"dA. (3.2.36)
27 *

It can be shown that the induced vector potential in free space due to multilayer conducting tubes

has the form (see [3])

00

A (r,z)= i [B,1,(2r)e"dA. (3.2.37)

3.3 A coil inside a cylindrical region

In this section we consider one particular case of the problem analyzed in Section 3.2 where
the tube consists of one unbounded conducting layer [32]. Suppose that a single-turn coil with
alternating current is located inside a cylindrical region R, = {r 2n,0<@p<27,—0<z<40 }

The geometry of the problem is shown in Fig. 3.2,

Ro(ﬂg =1,0, :O)

Fig. 3.2 A single-turn coil inside a
cylindrical region.

where ) (r)=1, o,(r)=0,

w(r)=p'r’, o (r)=alr",
Using the results from Section 3.2 we obtain the following problem :
04y 104 Ay 4,

R, : =—u lo(r—r,)o(z—z,), 33.1

0 ot ror Py 1o ( 0)o( 0) ( )
2 2

R: 0 /21‘ +ﬁ%—(¥+]‘a)ﬂ0y{"d{”rmﬂ}41 + 0 /211 =0. (3.3.2)
or r or r z

The boundary conditions are

04 1 04
AO |r:r1 = Al |r:r1 4 — |r:r] = r — |r:rI H (333)
or H (71) or
In addition, A4,1s bounded at » =0and 4, is bounded as » — .
The following conditions hold at infinity:
A,
Ai,%—>0 as z > 20, i=0,l. (3.3.4)
Z
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Applying the Fourier transform (3.2.9) to problem (3.3.1) — (3.3.4) and using (3.2.26) — (3.2.27),
we obtain the solution in regions R, ,i=0,1:

S~ ~
R0: d /210 +l%_(%+ﬂzjfl0 :—/uolefjizoé‘(l"—ro),
dr r dr r

~ _ —Jj%2o
{Aoo(ra A)=B1,(Ar)+ pory e K (A0, )1, (A7), (3.3.5)

Zm(’"sﬂ“): By, (Ar)+ pyryle™" 1, (A, )K, (2r),
. ~
R: a4 1;11 +—(1 'B)%— —1+2’B +plr® P+ 1* |4, =0.
dr rodr r
This equation has an analytical solution, for example, for the case a =—1, =—-1. The bounded

general solution of the corresponding equation has the form

A(r,2)= \/_B K, (Ar), (3.3.6)

where p, =/ jou"o", V=1f2+p12~

The boundary conditions are
dA 1 d4,
A|rrl: |rr|’ O|I’V|_ r |rr|'
dr " () dr
Using (3.3.5) — (3.3.7) we obtain

(3.3.7)

3211(/1’”1)"' ﬂoroleijﬂzoll(ﬂro)Kl(ﬂ”l) = B, LKv(ﬁ"”l):

(3.3.8)
AB, 1, (/11’1 )+ Augryle 1, (ZVO )K1 (/11’1) = im - ; /1}’1 +— /1 K, (4 J

1 K,(4r)

\/_Iﬂ,rl
A o K (An) K, (Ar) y ,
- Bi——1I,(Ar ) =22 — dpr Ie ™ I (Ar, )T (A o Apgr e I (Ar, K, (Ar) =
5\/71 1( ”1/11(171) Holol€ ( 7”0) ( ”1)11(/171) + Al Le 1( ro) 1( ”1)
1

———— B (KV(/ir1 )-21AK (Ar, ))

20\,

1 !
2ﬂ{”\/7lBs(Kv(ﬁJ’1)(2,ul "Al (/17'1)—1—] (/171)) zﬁlKv(ﬂﬁ)]l(ﬂl’l))=

=/1/uo’”0]eiﬂzo I, (/1”0 )(Kl (/1”1 )]1 (/1”1 ) -1, ()“7”1 )Kl (’1”1 ))
B, = 2" /Uoroleiﬂz0 I, (/1”0) ' , (3.3.9)
I @u i (2n)+ 1,0 K, () - 2r 4K ()1, (4;)

where the formula for the Wronskian W{K (A ),1,(Ar)}= L can be used.

4l

~|

~
—
N—

B, = —pryde* 1 (ftro)

1 (2,

~—
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In particular, the value of B, is

_ ](ﬂ,r) 2u" K(/lr)
B, = le 0 200 1 AV K (Ar)|, 3.3.10
2 = Hiile zl(».n)( & D)~ 2nK, GG ) (310

where D, =2u" AL (Ar )+ 1,(Ar) , v= \/ﬁ’ p = \/W.

The induced vector potential in region R, is

A (r,2) = B,I,(Ar), (3.3.11)
where B, is given by (3.3.10).

Applying the inverse Fourier transform (3.2.36) to (3.3.11) we obtain the induced vector potential
in free space due to the presence of a cylindrical region in the form

. 1%~ L(47) e

AP (r,2) = 200 [ By ()~ e g 3.3.12
o= [ BLGN e : (3:3.12)
where B, = 244 K. an) - K,(2r)

n DK, (Ar)=2n2K (A5 )1,(25)
The induced change in impedance of the coil is given by the formula
A =%§Agﬂd (r,2)dl, (3.3.13)

L
where L is the contour of the coil. Substituting (3.3.12) into (3.3.13) we obtain

[12(17”0)
11(/1’”1)

Using the following dimensionless parameters (3.3.14) can be rewritten as follows

z" = jouyr; | B da. (3.3.14)

u
AR =u > A=—,

r] A 1 A2 A Am Am_ 2
, =>V= Z+Jp1 s " DL A OH O
~ 0

_ m _ ~Am m _ am
"o — B =Hh, O =01,
i

- Dy =241"ul,(u)+1, (u)

2

Z"(r,z) = ou, 2 Z, (3.3.15)
7
Ta Iuh
where Z = ]_jw B, ‘Il((u:;)du (3.3.16)

and

3 21K (1)
B, =— ,
DlKﬁ(“)_2“Ko(”)ll(”)
Formula (3.3.16) is used to compute the change in impedance of the coil. Calculations are
performed with “Mathematica” since it has built-in functions to evaluate modified Bessel
functions of complex order. “Mathematica” program which is used to compute the change in

impedance (3.3.16) is shown in Appendix Fig.Ap.5. The results of computations are shown in

—Kl(u).
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Fig. 3.3 . The calculated points (from top to bottom) for each curve correspond to the following
values of p, =1,2,...,15 .The parameter p, is defined by p, =+lwu, "6’ . The three curves in
Fig. 3.3 (from right to left) correspond to the cases 7, =0.9,0.8, and 0.7, respectively.

A =09
7 =08
A =07

Fig. 3.3 The change in impedance of a
coil for different values of 7 .

It is seen that the modulus of the change in impedance increases as the parameter p, increases

(that is, if the frequency increases). In addition, the change in impedance is larger when the coil is
closer to the cylindrical region.

3.4 A coil inside a two-layer tube

Another example of important problem in applications is considered in this section. Consider
a single-turn coil of radius 7, located inside a two-layer tube [33].

Fig. 3.4 A coil inside a two-layer tube.

w (r)=p'r’, o (r)=alr",
#(r)=p'. o,(r)=07.
The electric conductivity and magnetic permeability of the inner layer are given by formula
(3.2.1) while the electric conductivity o," and magnetic permeability x," of the second layer
(R,) are constants. The outer layer is unbounded in the radial direction (see Fig. 3.4).

Using the results from Section 3.2 we obtain the following equations:
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04y 10d, Ay 4,

R, : =—ulo(r—r,)o(z—z,), 34.1
N N P Hod6(r —ry)o( 0) ( )
0’4, 1-po4 (1+p j 0’4
R,: Ly 2 Py phr® P |4+ =51 =0, 34.2
oot r or ( r P bt ( )
where p, =/ jou,u"o" .
The equation in region R, is
0’4, 104 1 0’4
R.: 2422 | 4 p? |4, +—22 =0, 343
oot roor (1”2 sz 2 e ( )
where p, =/ jou,u,'o; .
The boundary conditions are
04 1 04
AO |r=r1 = Al |r=r1 > _0 |r=r] = ,—_1 |r=r1 > (344)
or " p () or
1 o4 1 o4
Al |r:r2 = A2 |r:r2 > r—_l |r:r2 = _m_2 |r:r2 . (34'5)
Ay (’”2) or JZe
In addition, A4,1is bounded at » =0and 4, is bounded as r — .
The following conditions hold at infinity:
04,
A[,a—’—>0 as z > 100, 1=0,1,2. (3.4.6)
Z

Applying the Fourier transform (3.2.9) to problem (3.4.1) - (3.4.6) we obtain the solution in
region R;:

o ~
R0: d AO +ldﬂ—(i2+ﬂ,2jflo =—/10]efﬂz"5(l”—l’o),

dr*  r dr r

Zoo(rsﬂ“) =By (ﬂ“’")"' Holyle 7 K, (ﬂfo )[1 (/17”)’ (3.4.7)
201(7"91): lel(/lr)_'_ Horyle (ﬂl’b)Kl(ﬂJ"). .
The transformed equation in region R, is
d*4 (1-B)d4d, (1+p ” ~
Re LD p )d—ﬁ‘(—ﬁ O ”Z)A‘ -0
The general solution for the case « =—1, f =—1has the form
S A(rA) =2 (B (4r)+ B, (2r)) (3.4.8)

Jr
where p, = jou,u"oy" V:\/Z"‘pf :

The transformed equation in region R, is

~ ~
R,: a4 +l%—(L+q2jA2 =0,

2 2
dr r dr r
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so that the bounded solution of the above equation as » — oois given by
- Az(rsl): BK, (qr)’
where g=+p;+ 2, p,=+jouucy .
The boundary conditions are
~ dA, 1 dA
:Al |r:r19 |r rl_ r _1|
dr H (rl)
1 d4, | 1 de |
r=r,” ( ) dl" r= r2 m d r=r, *
Using (3.4.7) — (3.4.11) we obtain

4,

r=n r=n>

4

Bot )+ Bk, (),

i

ﬂlell(ﬂrl)"'ﬂ/‘oroleiﬂzo[l(ﬂro)Kl(ﬂrl) 7”( ! j

w'\ o 2nn

(B,(1,(4n) - 2528, (2)+ B(K(41) - 252K, (2;)) )

B,I, (’1’”1 )+ ‘uo’”ole_ﬂz0 I, (/1’”0 )Kl (’1”1 ) =

Bi 1 ()42

i 2K, (),
B, r 1

—SgK, (gr: 2| — :
k)= M{ zf}

( 4( v(/l”z)_zrzil;(/l’”z))"' BS(KV(/’er)_ 2”2/1[(;(17”2)))

BoKl(q”z):

It follows from (3.4.12) and (3.4.13) that
B, 1,(r)  Bs K (/14) i K, (2r)
= - le’™[ (A
2 \/7111(&”1 \/— 1, ﬂ,rl — Hyhyte 1( rO)Il(ﬂ,rl)

B, A1, (Ar) . B, A K,(Ar, )

o) o)

. 1) BL(ar) =220, (25))
Fite )= [ TJ( (K. () 253K (i)
B

o f( 2 AL (A )+ 1,2~ 25 A0 (2 )1, (2 )=

B . ,
=5 (K, (2 Nou 20, (2)+ 1,(20,)) - 252K (20 )1, () ) +

20"\

+ ﬂ'ﬂo’"o]e_ﬂzoh (ﬂ""o )(Kl (/1’”1 )11 (ﬂ’”l )_ I, (ﬂ""l )Kl (ﬂ""l ))

) dsagite 1, ) )

|

(3.4.9)

(3.4.10)

(3.4.11)

(3.4.12)

(3.4.13)

(3.4.14)

(3.4.15)
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K ()2 20,(an) + 1, () = 22K ()1 ()

B, =-B , .
Y L) an () + 1(3n)) - 251, (4 )1, () a6
+2/u1 ﬂorole_jbﬂll(lro) ‘ ’ o
I LR )2u 2 (2 )+ 1,(4n)) - 2628, ()1 ()
where W{K, (i) 1,(4 ) b= -
4
Using (3.4.14) and (3.4.15) we obtain
5 _ B Iv(ﬂ,rz) B; K(/lrz)
° \/_K qr2 \/_K qr2
By ](ﬁ“rz) Bsq K(ﬁ“ ) ‘ B, '
. K qr: K qr. ——=\[ \1Ar, ) -2 Al (Ar,))-
Lo DA ) B )20 )
B, ,
- K (Ar,)-2r,AK (A
2ﬂ1m\/2( v( ’"2) r v( 7’2))
"B, ,}, m(:ugnlv(/b”z)_2’”21#;’1[;(/1”2)"'2ﬂlmqlv(ﬁ“”z)K1(qr2)J:
2" 1y Kl(qrz)
— 5! m(ﬂzK(zrz)—zrzzﬂ:K;wmzquvurz)Kl(q’”z)]
2/11 H Kl(qr2)
B,=—B K qrz)(K 21’2/11( (’12))+2ﬂ1quv(/1r2)K1'(qrz) (3.4.17)
2 L , . 4.
K (g W, (4r3) = 2520, (A0))+ 2447 g1 (2, )K (g1,
Solving equations (3.4.16) and (3.4.17) we obtain
2u" y C
B, =%uorole ()2 (3.4.18)
where
C, = 8K (g N1, () = 220, () + 2487 q1 (203 K (),
D=w'K (qrz)Ds( | —21,AD )+2ﬂ1 qK(qrz)DD—
_2”1}“/1;’1[(1@”2)]1( )(D —2nAD ) 4n " MK(qrz)Il(}“rl)D3
D, =1,(4n)K, ()~ 1,(2r K, (4r,)
D, =1,(4)K, (25)~ 1,(4r )K (4r,)
Dy =1,(2n, )K,(Ar) = 1,(An K, (21, )
D, =1,(An)K, ()~ 1,(Ar )K (4r,)
Dy :21111”'/1[1(/1”1)"'11(2“”1)

The constant B, is found from (3.4.17) and (3.4.18):
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24" y C
B,=—t yrle 1&011(/%)32, (3.4.19)

I

where
¢, = ,u;"Kl(qrz)(Kv(/irz)— zrle'v(/l”z ))"' 2/11quv(ﬂ"2)K1'(qrz )
The value of B, is

B, I,(An) B, K, (i) i K, (4r)
B =2 vV TS ,Ul”lejol(/lr) I\t
Con L) s on(an) T T ()
B, = ,uol’ole_ﬂzo Il(ﬂro) 2" 1 Kl(qrz)(Dl — 214D, )+2/U1 qu(qrz)Dl _Kl(/b”l) _ (3.4.20)
L)\ g D
The induced vector potential in region R, is
A (r,2) = B,I,(Ar), (3.421)

where B, is given by (3.4.20).

Applying the inverse Fourier transform (3.2.36) to (3.4.21) we obtain the induced vector potential
in free space due to the presence of a cylindrical region in the form

Aénd(l’, ) luo 0 _[B I (ﬂ ) ( 0) /l(z Zo)dﬁ (3422)

1,(r)¢

where Ez _ 2" 1(‘]’”2)(D1 _2”2/111))2 )+2ﬂ1qu1'(‘]’”2)D1 _Kl(ﬂ]i)'
h

The induced change in impedance of the coil is given by the formula

7z = JI“’ § 4y (r.2)dl, (3.4.23)
L
where L is the contour of the coil. Substituting (3.4.22) into (3.4.23) we obtain

© 2
z" = jouyr; | B, 1) 1 (3.4.24)

1,(2n)

Formula (3.4.24) can be rewritten as follows

dn=u— A==

1 s
7 [
1 A A2 A mmZ
= V= —+_]p1,'p1: Ll O 1
PO - 4

fo=""s =M'n, o' =0y'n,
1

< 7y =;—2, G=Ju? + jp2, Py =~ ool =Joupuol = p, zi,zfn
1 1 1

'bl :Iﬁ(“fz)Kﬁ(“)_[o(”)Ko(“’;z)a [)2 :IV(“fz)Kﬁ(“)_[o(”)Kv(“Az)

- Dy =1, (u, K, ()~ I, w)K (), D, =1, (ufy )K; () - 1; (u)K; (uy )

D, =24l () + 1, () D, = 1K, (47, \ D, - 2, 1, )

. b7 = 2/}1"1‘}](1'(‘}7?2) A1
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Z"(r,2)= ou, 27 (3.4.25)

du (3.4.26)

§2= _ _ 21[1;”([26"'[)7)A _ 1(u)
DS(D6 +D, )_ 27"#5"](1(‘2’;2 )]1 (”)(D3 —2ur,D, )_ 44" ugK, (éfz )11 (”)D3
Formula (3.4.26) is used to compute the change in impedance of the coil for different values of

the parameters of the problem. Fig. 3.5 plots the real and imaginary parts of the change in
impedance for three different values of 7, : 1.1,1.2 and 1.3.

The curves correspond to the following values of p, =3,4,...,10 (from top to bottom).

The other parameters arey, =1, 4, =6,7,=0.9, 9 s Computations are done with

oy
Mathematica ( see Appendix Fig.Ap.6) . .
Im[z] 7”2 = 1.1
025 03 035 04 \ Re 2] K=12
0.1t \

»

0.2 | / 7=13
03| /

041 e Fig. 3.5 The change in impedance computed

054 — by formula (3.4.26) for three different values

o -
& " of fz .

It is seen from Fig. 3.5 that for higher frequencies (larger values of p, ) the modulus of the change
in impedance decreases. The decrease is related to smaller values of the real part of the change in
impedance. The values of Z for three different values of /,, namely, f, =2,4,6are plotted in

Fig. 3.6. The points on each curve correspond to the following values of p, =3,4,...,10 (from top

to bottom). The other parameters are set at g, =1,7, =1.1,7 =0.9, /% =1.5.
Hy O,
Im[z] A
. =2
Re[z]
0.25 -

0.1} m, =4
02! .
0.3} » &, =06
0.4
-0.5¢ Fig. 3.6 The change in impedance computed
0.6s7 " by formula (3.4.26) for three different values

of f,.
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It follows from Fig. 3.6 that for high frequencies (large values of p,) the calculated points are

very close to one another as the parameter /i, increases.

3.5 A coil outside a multilayer tube

There are many different types of eddy current probes that are used to control the properties
of objects with cylindrical symmetry. Encircling coils are widely used for inspecting cylinders,
rods or tubes. Mathematical models described in the previous sections can also be applied for the
case of encircling coils. Consider a multilayer tube described in Section 3.2. We assume that a
single-turn coil of radius 7, 1s located outside the tube (7, > 7;). The axis of the coil coincides with

the axis of the tube [35] (see Fig. 3.7).

i=12,..,n
Ro@gzlao_o :0)

Fig. 3.7 A single-turn coil outside a
multilayer tube.

The system of equations for the amplitudes of the vector potential in each region
R={r<r<r, ,0<p<2r,~0<z<+w}i=12,.,n is given by (3.2.2), (3.2.4) and (3.2.5)
where 7, (the radius of the coil) is larger than 7 (the radius of the inner cylinder of the tube). The

solution procedure is essentially the same as in Section 3.2 with minor modifications. Applying
the Fourier transform to (3.2.2), (3.2.4) and (3.2.5) we obtain the system of equations in the form

(3.2.13) — (3.2.15). The boundary conditions (3.2.16), (3.2.17) are the same. In addition, ZO is
bounded at r — o and ZH] is bounded as r=0. As a result, the solution in regions R,and
R, . has to be modified. We consider two sub-regions of region R,, namely, R, and R, , which
are defined as follows: R, = {r1 <r<r, ,0S(0S27Z,—oo<z<+oo},

Ry ={r>r,,0<p<27r,~w<z<+w}.The solutions in R,and R, are denoted, as before, by
Zoo and 201 , respectively. Solving (3.2.13) in regions R,and R, we obtain

a~ ~
Ro: d_A0+ldﬁ_(i2+lsz0 z_ﬂole_jboé(r_ro)a (351)

ar’ rdr \r
{%oo(ra/i) = B[,(4r)+ B.K,(4r), (3.5.2)
Am(’”a/I) = B3K1(/1’”)-
The functions ZOO (r,ﬂ,) and ZOl(r,l) satisfy the following conditions at » =7:
Ay ey = Agy |y, - (3.5.3)

The condition (3.5.3) reflects the fact that the function ZO (r,ﬂ,) is continuous at » =7;.
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The second condition is obtained by integrating (3.5.1) with respect to » from r =7, —¢& to
r =1, +¢ and considering the limit in the resulting expression as £ - +0:

dd,|  ddy
dr dr

= —p e (3.5.4)

r=n,

r=r,

Using (3.5.2) — (3.5.4) we obtain
B (/1’”0)"' B,K, (/1”0) =Bk, (/1r0 )a
. , . . =
ABK, (ﬂ'ro ) —AB1, (ﬂro ) - AB,K, (ﬂ'ro) = _zuole_MZO )

B, :BZ+BI—]1(/1FO),
Kl()*’”o) N
: 1,(Ar )K; (A : : y
BZKl(ﬂ’rO)—FBI%_Blll(]'ro)_BZKl(ﬂ’ro)z_%Ie i

‘ Bl(ll(/i”o)Kll(/i’”o)_11'(/1’”0)1{1 (/1”0)): _%]eiﬂzoKl(/b’o)

1

W{Iv(ﬂ“’”o)aKv(/Iro )}: _/1_’"0

{Bl e (3.5.5)

B, = B, + pyryde 7 I (Ar,).
It follows from (3.5.2) and (3.5.5) that
Ay (r A)= B,K,(Ar)+ poryde 7 K (A, )1, (Ar) , (3.5.6)
Ay, (r, )= B,K, (Ar)+ ptgry e I,(Ar, )K, (Ar). (3.5.7)

The solution in other conducting layers can be constructed as in Section 3.2.
For example, if & =—1, f=—1 the solution is

a~ ~
R . d Ai +(1 ﬂl)%_(l-‘rzﬂl +pi2rlli+ﬁi +/12JZI :0,

- k
! dr rodr r

S ()= (8,1, (4r)+ B K, () (3.5.8)

\/; 4iv;
1
where V=1/Z+P,-2» pi=AJjouuo!, i=12,..,n

In region R, we have
d*4,., 1d4 1 ~
R : n+l +— n+l — 4 2 A — 0,
n+l dr2 p dl" (7’2 q j n+1
- A, (r,2)=B.I,(qr), (3.5.9)

where g =yp,,+ A, py=rjouu.o,.

n+l
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Then the solution in each region R,,i=0,l,...,n+1 can be found by means of the inverse Fourier

transform of the form
A(rz)= - [4.(r, 2)e"dA. (3.5.10)
2r 7

It can be shown that the induced vector potential in free space due to multilayer conducting tubes
has the form

A (r,z) = i [B.K ()’ dA. (3.5.11)

As an example we consider the case where a single-turn coil of radius 7,is located outside a
two-layer coaxial conducting tube. The conducting layer (region R,) is defined by the
inequalities: R, = {rl <r<n,08p<2r,—0<z<+0 } . The electric conductivity and magnetic
permeability of region Rare given by (3.2.1). The properties of region
R, = {O <r<n,089<2r,-0<z <40 } ,0,and 4, , are assumed to be constant. (see Fig. 3.8 )

Rz(ﬂzr’o'z)

Ro(ﬂ(: =1,0, :0)

Fig. 3.8 A single-turn coil outside a
two-layer tube.

The solutions in regions R, R, and R, can be written as follows

. {%}o(r,/z) = B.K,(Ar)+ yorole‘%o K, (Ar, )1, (A7), 5512
Ay, (r, A)= BK (Ar)+ pyry e 0 I (Ar, K, (A7),

R: - Ara)= %(Bngp BK, (7)) (3.5.13)

R,: — Ay(r,A)=BI,(qr) (3.5.14)

Using (3.5.12) - (3.5.14) and the boundary conditions we obtain

B,K,(An;)+ pyrTe " K, (An ), (Ar;) = ﬂlv (An)+ ﬁ]g (An), (3.5.15)

a a

/IBzK{ (/17”1 ) + /Luorole_j/lzoKl (ﬂ“ro )Il (’1”1 ) =1L

1
" (_ 24\/2} (3.5.16)

(B,(1,(45) - 2040 (25))+ By(K (2 - 22K (4r;)) )

Byl (qr) =221 (3,)+ 22 K (21, (3.5.17)
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B, _ K| 1 _
y_;"qll(qrz)_ﬂ;"( 2r2\/ZJ (3.5.18)
. (B4 (Iv (/1}’2 ) —2n,AL(Ar, ))+ B, (KV (/1r2)— 21K, (ﬂ,r2 )))

Eliminating B, from (3.5.15) and (3.5.16) we get

(ﬂ“”l )(2:u1m/1K' (/1 1)+ K, (’1”1 ))_ 2”1/11(;(/1”1 )Kl (’1”1) _
I (ﬂ“’"l)(zM%K (/1 1)+Kl(/l’/i))_zriﬂ'];(/lrl)Kl(ﬂ’ri)

B, =-B;

. 3.5.19
2 Horole ™ K, (2r,) ( :
Jn LG N2wr 2K () + K, (4r)) = 2541, (A5 )K, ()
where W{]l(/lrl),Kl(/lrl)}:—%.
1
Eliminating B, from (3.5.17) and (3.5.18) we obtain
B = B, 1(%) B, K(/lrz)
\/_ qrz) \/_ [ qrz
B, [v(/irz)l' Biq K( ) B, '
qr,) qr,)=———=\I (Ar,) =2l (Ar,))-
) 2 ) B 1) -2 0)
B, ,
- K (Ar, )-2rAK (A
2/1;”\/2( v( rz) n v( rz))»
1 m my' m ]v /1 !
: 4ﬂ(ﬂ2Iv(/lrz)_zrzﬂﬁuz[v(ﬂrz)"'z%q (VZ)[l(qrz)]:
20" 1y ]1(qrz)
1 : K (i) ..
o e )2 ) 2 )|
24" 1 I(gn)
B _ B /u2 qrz)(K /1]/'2 21’22]{ (/’i’rz))+2:ul qK (ﬂ’FZ) (qrz) (3 5 20)
2 . S.
1 (qr W1y ) = 20,212+ 2441, (2, )1 (g,
Solving (3.5.19) and (3.5.20) we obtain
2 G
B, =- \/’;_?%Ml MZ°1<(,1r0)D (3.5.21)
where

G :,ug'll(qrz)(lv(ﬂ,rz)—2}’2/11;(2,7’2))4—2y{”q]v(ﬂ,r2)1;(qr2),
D =51, (q7’2 )DS(DI —2nAD, )+ 2/“1’71‘]]; (qrz )D1D5 -
_Z’Eiﬂ;nll(qrz)Kl(/b’l)(Da — 21D, )—4}3;11'"/1q]{(qr2)K1 (/1’"1 )Ds-

<D, =1,(2n)K, (1)~ 1,25 )K (2r,) - D, = 1,(4r, )K (25)— 1, (4 )K,, (2r;)
- D, :Iv(/bﬁz)K;(/lrl)_I;(/l’”l)Kv(ﬂ’rz) - D, :I;(/lrz)K;(/b’l)_I;(l”l)K;(ﬂrz)
- Ds = 2/11m;tK1'(/1’"1)+K1 (’1’”1)
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The constant B, is given by the formula

B, = 21y O i Ie MZ°1<(/1r0)c (3.5.22)
\/71 D
where
¢ = /ugnll(‘]”z)(Kv(lrz)_2’”le;(1’”2))"'2/11,”qu(/1’"2)11'(‘]”2)-
Finally, the value of B, is
_ﬁlv(ﬂ‘r‘l) iKv(/lrl)_ Ie K (A 11(/1”1)
K Kl e G
B, = — o KaUn) 20" 15 1(qr XDy =260 )+ 2u'ahlan)D o] (3503
K (7)) n D

The induced vector potential in region R, is given by
A (r,2) = B.K, (2r), (3.3.24)
where B, is obtained from (3.5.23).

Applying the inverse Fourier transform (3.5.10) to (3.5.24) we obtain the induced vector potential
in free space due to the presence of a cylindrical region in the form

. K,\(Ar) e
A (r,z WO B,K, (Ar Kin) ees g, 3.5.25
0 (r,2) = I N omye (3.5.25)
where Ez :_2/11 Hy ]1(qr2)(D1 —2n,AD, )+2:U1mqlll(qrz)D1 _]1(/1],1)
n D
The induced change in impedance of the coil is given by the formula
Zimt =19 LE2§ 4 (r,2)dl, (3.5.26)
[ L
where L is the contour of the coil. Substituting (3.5.25) into (3.5.26) we obtain
: T~ KX(Ar)
Z" = jouyr, | B,———2dA. 3.5.27
J Oty 0'[0 2 K1(ﬂ*r1) ( )

Introducing dimensionless parameters and simplifying the resulting expression we rewrite
(3.5.27) as follows

dr=u— A=Y

1 ’
7 [
1 A A2 ~ Am am_ 2
; V= Z“‘me'pl: Wf Oy 1
LT . A

_ m __ ~m m _ Am
ro‘?a H =Hh, O =01 R,
i

m m

A I" A A A M, O
2 2 2 _ m__m_2 __ m__m __ Va2l
©h s 4 =AU+ jpy, p, —\/a)ﬂoﬂz 0y h \/wﬂo’”l \/ﬂz 0, = o

’”1 Hi O
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Z™(r,2) = wp, 2 Z, (3.5.28)
"
T Kui
where  Z = j@ B, [;l(zlurg)du (3.5.29)
and l%z— 24 (D +D, ) —1,(u).

[)5(156 +157 )_ 27";“5"]1(‘2722)1{1( )(D3 _2”5ﬁ4 )_4/}1”1”511(‘?’;2)K1(”)D3

Results of numerical calculations using formula (3.5.29) are shown in Fig. 3.9. The following

values of the parameters are used for calculations: g, =1,4, =5,7,=0.9, /‘u 207 =1.5.The
ey

points on each curve correspond to the values of p, =1,2,...,10 (from top to bottom). The graphs
in Fig. 3.9 are shown for the following three values of 7, : 1.1,1.3and 1.5. It is seen from Fig. 3.9
that for larger values of 7, the induced change in impedance is weaker: the modulus of

Z decreases as the distance from the coil to the tube increases. Computations are done with
“Mathematica” ( see Appendix Fig.Ap.7).

1
niel _ i=l1
02" R
S '\ A=13
0.06 o0& 0.15 0.2 0.25 0.3 0% F =15
-0.2
0.4+ > / Fig. 3.9 The change in impedance computed
e by formula (3.5.29) for three different values
-0.6 | —— :
-’ of 7.

3.6 Other analytical solutions

Equation (3.2.14) is the second order ordinary differential equation with variable coefficients
that depend on two parameters ¢, and ;. As it is shown in the previous sections the solution to
(3.2.14) for the case a;, =—1, B, =-1 is expressed in terms of the modified Bessel functions

(see (3.2.34)). It is possible to construct closed-form solutions to (3.2.14) for other combinations
of the parameters ¢, and ;.

If ¢, =0, p,=-2 equation (3.2.14) becomes
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d* 4, +§d_21,.+(1—p3

24 =0 i=12,.., 3.6.1
drt r dr 2 ] ! ! " ( )

r
Using formula 132 in [50], page 228, the general solution to (3.6.1) can be written in the form
A(r2)=1(p, 1, (4r)+ D, K, (3r)) (3.62)
A iy

y¥x+ﬁy;+(bx”_2+%Jy=0 =
X X
l-a 2 n 2 n
cy=x1? {CIJ{—\/EJC2J+ CZYV[—\/ZXZJJ
n n

Cy=l (1-a) —4c
n

where n=2, b=-4, c=-p’+1, a=3

V=D, gx/ZXE =—jAr.
n

If o, + 5, =-2 and S, #1 equation (3.2.14) is written as follows

27 _ 1 2 -
dA J-pdh (WEPApy 21720, i=12.n (3.6.3)
dr rodr r
The general solution to (3.6.3) is (see [50], page 228, formula 132):
B
A(r2)=r2(c 1, (&r)+C K, (7)) (3.6.4)

where v, =57 +47, & =1+ 5+ .

In addition, if g, #1, a, + B, =—1equation (3.2.14) reduces to
27 _ ” 2 -

d ‘ji +M%_ 1+_2'&+p_i+/12 A,=0, i=12,..n (3.6.5)
dr rodr

r r
which is a particular form of the confluent hypergeometric equation

2
d f+ a—i—é Q+ c—l—i—i—% y=0
dx x )dx X X

witha=0, b=1-8, c=—-A, d=—p;, e=—1-f, (see [4], page 239).

In this case the solution to (3.2.14) can be expressed in terms of Whittaker functions.

This case is considered in detail in Section 3.7.

Probably, other analytical solutions of equation (3.2.14) can be constructed for other
combinations of the parameters ¢, and £,.

3.7 Solution in terms of confluent hypergeometric function

One-parameter family of analytical solutions of the problem described in Section 3.4 (see
Fig. 3.4) for the case where o =—1— £ is obtained in the present section. Solution to (3.4.1) -

(3.4.6) is sought by the method of the Fourier transform in the form (3.2.9) so that the
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transformed equations are :
o~ ~
d_AO + l% _(iz_,_ /12}40 - —,Llole_ﬂzoé'(l” -7,

R,:
@t rdr r
Zoo(”ﬂ/l) =By, (/1’”)"' Holyle K, (/1”0)11 (/b”)’
201(”=ﬂ)= B, (Ar)+ pyryle™ 1, (ﬂro)Kl(/b’)’
2% ~ 2
R : a4 ’jl +—(1_ﬂ)%—(—1+2ﬂ +p—1+/12}21 =0,
dr rodr r r

where p, =./jou,u’"oy" ,

dzzz _}_ld_ZZ_ L_|_ 2
ar*  r dr r K

S

R,: > 4,=0
- Zz(ra/l): B6K1(qr)’

and g=+p;+ A, p,=+jouulc;.

The boundary conditions are

~ ~ dA 1 dA

AO |r:rl = Al |r:r| > L |r:rl = I —t |r:r] >
dr u (n) dr

~ ~ 1 dA 1 dA

Al ’r:r2 = A2 |r:r2 b ;—_1 ’r:r2 = _m_2 ’r:r2 .
H (”2) dr My dr

Using the substitution

A=r?B

(the details are shown below)

~ B
A=r?*B
.A1r=ﬂ21r23+r23r Alrr }"zBrr—I-(ﬂ—l)l"zBr‘i' 21ﬂ23r23
E,\, HN _ _ EN _ 2 EN ﬁ~
”Brr+(ﬁ—1)r2Br+—1ﬂ 3r23—(ﬁ 1)rue—(ﬂ—l)rZB,—
2 2 2
s,
_(1+2ﬁ’+p1 Mz]r 50
r r
_ 2R 12 n 2
'B,,,+ﬁ LA 322_(ﬁ 1) Ez_ 1+2ﬂ+p1 2lB=0 >
2 2 r 2 r 7 r
2
2 411_(§+1j
B, +X| -1 Tt B=0
r r

(3.7.1)

(3.7.2)

(3.7.3)

(3.7.4)

(3.7.5)

(3.7.6)

(3.7.7)

(3.7.8)
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we transform (3.7.3) to the Whittaker’s equation (see [4], page 237):

1,
~ 1k 4V |5
B +|-——+—+7F—5—|B=0, (3.7.9)
X X

p _B
where x =2Ar, k=—2L v="41.

24 2
Using the substitution
B=e xy (3.7.10)

E = e_gxgy

o x e c 1 - X ¢ 1 1(c* ¢) ¢
‘B =e *x? y+H ——— ‘B .=e x| Y'H —=1ppH —+—5|——=|-—
; (y (Zx 2Jyj S (y (x jy (4 x2(4 2] 2nyJ

equation (3.7.9) can be written in the form

y"+(5—ljy'—3y =0, (3.7.11)
X X

where a:v—k+% and c=2v +1.

General solution to (3.7.11) can be expressed in the form:

v=Byl(a,c;x)+ Bse'w(c—a,c;—x), (3.7.12)
where y(a,c;x)1s the confluent hypergeometric function (see [4], page 241) and B,, B;are
arbitrary constants. Thus, a general solution to (3.7.3) can be written in the form

Zl =Br""e My (a,c;2Ar) + By" ey (c — a,c;-2Ar). (3.7.13)
In order to simplify the notations we define the following functions

o(r)=r""e "y (a,c;2r) (3.7.14)
and

o, (r)=r""e"y(c—a,c;-22r). (3.7.15)
Hence,

4, =B,p,(r)+ By, (). (3.7.16)

Using (3.7.2), (3.7.5), (3.7.16) and the boundary conditions (3.7.6), (3.7.7) we obtain

B, (An)+ pyryle " I, (A, )K,(Ar,) = B,o(r;)+ By, (1;), (3.7.17)

AB,I( A5 )+ Aty le™" 1, (2, )K, (Ar;) = ﬂl;(n) (B, (r)+ B, (1)), (3.7.18)

B.K,(qr,)= B,o,(r,)+ B, (1), (3.7.19)

Ze gKilgn) = ——- (B, () + Bap (1)) (3.7.20)
; w ()
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Using (3.7.17) and (3.7.18) we obtain

B B , (1
By == )+ B 1) st 1y )
1,(4n)

1,(4r) 1,(4r)
L(4r) ¢'(r)j (f(m (p'(r)]
. B 1 1(07"_1r1 =—RB 1 1(01,._2141 +
4{11@4) Kyl i brrmiclCla
bl %)I; (Ar)K,(An) - 1,(An K, (Ar;)
1,(ar)
i (r)= v = ()= ' where " = ' = gl () = 1"
_O_lmzo~_lmrlﬁ’+1

Amo~m

'p12 =JOU L O'h

~m oy —jx
o ' L, —1le 7 I (Ar,
B, = ML Un)p,(n) = 1(An)p () "7 ) (3.721)
AL (AR o () - LA e ()~ AL (An )y (1) — 1, (A% )y ' ()

where W{Kl(/irl),ll(lrl)}=%.

1

Eliminating B, from (3.7.19) and (3.7.20) we get

'B6 :B4 ¢1(V2) +B5 ¢2(I’2)
Kl(qr2) Kl(qr2)

.34(@'(5)_ 4 o) Kl,(%)j:_B{w;(rz)_ a0 g )J

/v‘lr(rz) ' Kl(qrz)
Amn B

()= w1 ()= p'n”, where 1" = 4'n ™ = il () = a7 —

: B4[ﬂ£n¢1'(r2)_ﬁ1m’;2ﬁq (01(1”2) K{(qrz)j:_B{ﬂ;ngoz'(rz)_ﬁlm’ﬁzﬂq ¢2(1”2) K{(qrz)j
Kl(qr2) Kl(qr2)

B, =-B, ﬂ;:%:(rz)Kl(qrz)_ qé{:}?Z%(FZ)Kv{(%)a (3.7.22)
H &y (rz)Kl(qrz)_Qﬂl n ¢’1(r2)K1(qr2)
and
am 1o 7 iz G
By = 'y~ 11, () (3.7.23)
i
where

G = ﬂ;ngolv(rz)Kl(qrz)_q,[‘r’?zﬁq’l(rz)Kll(qrz)’
D =" 117'K, (qrz )[1'(1”1 )Dl + ﬂ“q(,[l{n)zfzﬁKll(qrz )I;(i”l )Dz +
+ 15K, (g1, (2n)Ds + q "7 K (gr )1, (25)D,.

H b :(pl'(rz)(pz(”l)_(ﬂ(’”l) 2'(72) - D, =§01(7’1)(/)2(72)_(P1(’”2)(02(r1)

- D, :¢’1'(’”1)§02'(”2)_¢’1'(’”2)(02'(’”1) - D, :@1(”2)?’2'(”1)_(01'(”1)¢’2(’”2)

71



The constant B, is

B, = _,[llmﬂor_ole_jboll(/bﬁo)ga
n D
where  C, = ,U;n(pz'(rz )Kl (Q’E)_q/}{nfzﬂfoz(rz )Kl'(qrz )
In particular, the value of B, is
1 Amo,om ~mAp !
1(17”0) H Kl(‘]”z)Dl Tau Kl(qrz)Dz _Kl(;u,l) .
L) 5 D

B, = pyrye™

(3.7.24)

(3.7.25)

The induced change in impedance of the coil due to the presence of a conducting tube is given by

the formula
A (r,2) = B,1,(Ar),
where B, is given by (3.7.25).

(3.7.26)

Applying the inverse Fourier transform (3.2.36) to (3.7.26) we obtain the induced vector potential

in free space due to the presence of a cylindrical region in the form

, 17~ 1(Ary) e
4= j Bzzl(zr)—;l(( ﬁ;; e da,

- m Amnp !

where B, _H K Kl(qrz)Dl tqun Kl(qrz)Dz _Kl(;t’"l)
n D

The change in impedance of the coil is given by

zm (r, Z) = iji;Aé”d (r,z)dl,
L

where L is the contour of the coil. Substituting (3.7.27) into (3.7.28) we obtain

; T [2(/11”)
Z"(r,z)= jour’ | B, 5=%dA.
( ) J ,uoo__[O 211(1’/1)
Using following dimensionless parameters (3.7.29) can be rewritten as follows
A =u—> A= i,
h
PO R A o m
Fo=-2, k=2, f=L=1, - p, =\ou i 5",
h h h

A ﬂ+le—uf2

-9, () =e"y(a,c;2u)

-p,() =e"w(c—a,c;-2u)

) lA)z = @1 (1)@2 (fz )_ @1 (fz )@2 (1)
-D, = (‘31 (fz )(2’2'(1)_(51'(1)@2(7;2)

w(a,c;2ur,)
<Py (7) ="y (c - a,c;-2ur,)
) Dl = '(’ﬁz )@2 (1)_ @ (1)@2'(7;2)

’ [)3 = él'(l)¢2'(7;2)_¢1'(;2 Az'(l)

(3.7.27)

(3.7.28)

(3.7.29)
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7™ (r,2) = wp, 2 Z, (3.7.30)

h
T2 z(uf )
where Z= ][O B, III (ug du (3.7.31)
and
5 _ K @)D+ G K GR)D)

D
a Am  m A ! a Al Am oA (A ! a m A a
D =up" 1y K, (qrz)ll(u)Dl +”Q(/u1 ) rzﬂKl(qrz)Il(u)Dz + 1, K, (qrz)ll (u)D3 +
+ 4" K, (‘}’;2 )11 (u)D4.
The results of numerical computations of the change in impedance Z using formula (3.7.31) are
shown in Fig.3.10. The three curves in Fig. 3.10 correspond to three different values of /3,

namely, f=0,—1 and —2 (from bottom to top). The following values of the other parameters are

used for calculations: " =1, 7, =0.8, 7, =1.2. The points on each curve in Fig.3.10 correspond

to different values of the parameter p, = r+/@u,,4" ( p, increases from 1 to 3 from left to right

in Fig.3.10). Calculations are done with “Mathematica” since confluent hypergeometric functions
and Bessel functions are the built-in functions in “Mathematica”. ( see Appendix Fig.Ap.8) .

Im[z]

-0.06 ﬂ — 0
p=-1
Re[z]
0.07 0.1
e B=-2

Fig. 3.10 The change in impedance computed
by means of (3.7.31) for three different values

of 5.

In summary, the idea of using relatively simple model one-parameter electric conductivity and
magnetic permeability profiles allows one to obtain different analytical solutions that can be used
in eddy current testing of objects of cylindrical shapes with varying electric conductivity and
magnetic permeability.

The change in impedance of a single-turn coil with alternating current located inside or outside a
multilayer tube with arbitrary number of conducting layers is obtained in the present section. The
electric conductivity and/or magnetic permeability of each conducting layer are assumed to be
power functions of the radial coordinate. The closed-form solution is expressed in terms of
improper integral containing Bessel functions. It is shown that for some combinations of the
parameters the solution in a conducting layer with variable properties can be expressed in terms
of different special functions (Bessel functions and Whittaker functions). Theoretical model is
developed for an arbitrary number of concentric conducting layers. Three examples are
considered in detail. The first two examples correspond to the case where a coil is located inside
a multilayer tube: (a) the case of an infinite outer conducting layer with varying properties and
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(b) the case of a two-layer tube where the electric conductivity and magnetic permeability depend
on the radial coordinate. In addition, the case of a coil located outside a two-layer tube with
varying properties considered as well.

Results of numerical calculations for all three examples are presented. Calculations are performed
with “Mathematica”.

There are at least two cases where analytical solutions for eddy current testing problems can be
helpful. First, analytical solutions suggested in the present chapter can be used to solve inverse
problems in cylindrical geometry where the electric conductivity and magnetic permeability of
each conducting layer depend on the radial coordinate. Second, analytical solutions are often used
to test numerical algorithms developed for more complicated cases (examples include equations
with variable coefficients where the coefficients depend on more than one variable or nonlinear
equations). If necessary, one can obtain formulas for the change in impedance for a coil of finite
dimensions, as it is done in Chapter 2.
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4. DOUBLE CONDUCTOR LINE ABOVE A PLANAR MEDIUM WITH
VARYING PROPERTIES

4.1 Double conductor line above a multilayer medium with varying electrical and
magnetic properties

Different types of eddy current coils are used in applications: circular coils, rectangular coils,
planar sensors of circular and rectangular shape. It is known [67], [72] that if the ratio of the sides
of a rectangular frame is 1:4 or smaller, then a double conductor line can be considered as a
sufficiently accurate model of the rectangular coil. In this chapter analytical solutions are found
for the case where a double conductor line formed by two infinite parallel wires is located
parallel to a multilayer conducting medium [27]. The electrical conductivity and magnetic
permeability of each layer are exponential functions of the vertical coordinate. The solution is
found by the method of Fourier integral transform. Corresponding system of ordinary differential
equations in the transformed space is solved in closed form by means of the modified Bessel
functions.

Suppose that two infinitely long parallel wires are located above a multilayer conducting medium
shown in Fig. 4.1.

Z A
(vo:h) (k)
O O
X Ro(ﬂ6=1’00= )

X >V
v d, 9 Rl(,ul’,o-l)
7'y

,112 ) 0-2
| ////////////
1 R, ﬂn . ) Fig. 4.1 A double conductor line

\ 4 — / 7 / above a multilayer medium.
// // // /// o)

The coordinates of the wires are (y,,4) and (y,,%), respectively. The current in the wires is

+ le’” where I is the amplitude of the current and w is the frequency. Each conducting layer
R,i=12,..,n in Fig. 4.1 is characterized by the two parameters: electrical conductivity o, and

relative magnetic permeability g . It is assumed that o,and g/ are exponential functions of the
vertical coordinate of the form

y,’(z)zu,.’"eﬂ‘z, O'i(z)zai’"e“‘z, i=12,...n, 4.1.1)
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where «,,f,,u",0/"are constants. The amplitude of the vector potential ;1,. in each region
R,i=0,,...,n has only one non-zero component in the x - direction which is a function of y and

z only. In this case, ;ll. is parallel to the x - asis so that

4= 4(y,2)e,. (4.12)
Using (1.2.10) in Cartesian coordinates with Uy =1, 0,=0 and
I°=15(z—h)5(y-y,)-5(y—y,)) we obtain the equation for the amplitude of the vector

potential in region R, :

e S oG-S0 = )50 ) @13)

where J(x)is the Dirac delta-function.

Using (1.2.10) in Cartesian coordinates with /=0 we obtain the following system of equations
for the amplitudes 4, (r,z) of the vector potential in each region R,,i =1,2,....,n

0’4, 04, 1 duf(z) o4,

—joo\z ( )/Jo:uir (Z)Ai =0,

' 2 ulz) dz @z (4.1.4)
i=12,..,n.
Substituting (4.1.1) into (4.1.4) we obtain
0’ /L 0’ /L 04, RCRTA
i A
o =B T iwol e s @.15)
i= 1,2,...,n.
The boundary conditions are
0 1 04
A |z O_A |z 0> AO |z 0= I — |z 0° (416)
Hy (0) 0z
Ai |z=,(21= A7'+1 |Z_ d,’
1 1 4.1.7
6A1 | _ 814”—1 |Z ‘;,‘, i:l,2,..,l’l—l, ( )
[ ) l+1 [_ d ) aZ l
where a’,. = Zdi.
k=1
The following conditions are satisfied at infinity:
A, %—)O as Jy +z° 5 0,i=0,1,..,n (4.1.8)
4

Problem (4.1.3), (4.1.5) - (4.1.7) is solved by the method of integral transforms. It is convenient to
represent the solution 4, in each region R as the sum of even and odd components of the

form 4,(y,2) = 47" (y,2) + 47 (y,2). (4.1.9)
For this purpose, we represent the right-hand side of (4.1.3) in a similar form

| 02302 02 Al £ ) 0)
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S (y,2)= “0 A Sz =)(8(r=1) =8y = )+ 5+ 1) =5 +3,))
e ”° Ao Sz =) (S =3) =y =yy) =Sy + 1)+ 5y +¥,))

fo(y,2)= fodd(y,z)z%a‘(z—h)(&(y—yn—a‘(y—yo))-

(4.1.10)

The even component of the solution is found by applying the Fourier cosine transform of the form

A7 (4,2) = j A% (v, 2)cos(Ay)dy, i=01,....n.
0
The left-hand side of equation (4.1.3) can be rewritten as follows

a A7even Afzven o0 62 Aeve 2 Aeven
: Ay)dy = A d Ay)d
,([( By 2 P jcos( J7) y 2[ ay COS( y y+_[ cos( y)

2 aZAeven d Aeven

) '([ = cos(Ay )dy = e

o 22 goven u=cos(Ay) = du=~2sin(Ay)dy
i Av)dy = 2 qeven even —

[ cos(ldy=| a4 PR
oy’ oy
© o oven u =sin(Ay) = du = Acos(y)dy
= 147—'(:03(/1)/* + AJ‘ 8147 Sln(ﬂy)dy = aAeven o _

ay 0 0 8}1 dv = ay dy —> V= A7

— ﬂAieven Sln(ﬂyx: _ /IZJ.Aieven COS(/Iy)dy — _/IZJZ[EVE”

0

“ 2 geven 2 geven 2 geven
J‘ 8 147'2 + a Ai2 Cos(iy)dy _ d A . iZAevcn , l — 0,1,.“,”’
0 6y 62 dZ

Applying the transform (4.1.11) to (4.1.3) we obtain
1 R 1
B0z =M (8 =2) =60y = y0) Jeos(y)dy = 2=5(z = ) cos(dy, )~ cos(4r,))
0
Similarly, the right-hand side of equation (4.1.5) is transformed to the form

T A'even . m m a.+p. )z even
J.(ﬂz alz + joo; ty 1, e( ) 4; JCOS(Zy)dy =

0

+ joo! u,u"e , i=12,..,n

14;\’9" . m m (a»+ B )z even
= H ! ! A
" odz l
Using (4.1.12), (4.1.13) and (4.1.14) we obtain

d 2 Zoe'ven
dz*

~ I
~ A7 =52 5(z = ) cos(y,) - cos(in,) )

(4.1.11)

(4.1.12)

(4.1.13)

(4.1.14)

(4.1.15)
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d2 N.even dezven ~
fz -4 /jl ~(# 4 joo! mre VA =0, =12, (4.1.16)
Z Z

Applying the Fourier cosine transform to the boundary conditions we get

N dz(;zven 1 dNeven
e L dd 4.1.17
AO ’ ’z 0 dZ |z—0 ,Ulr(O) dZ |z—0 ( )

1476\&}1 | _ A even

i+1 ’Z ,021_ ’

1 dAieven 1 dA even (4. 1 . 1 8)

i+1

Wld) a ) e

In order to solve equation (4.1.15) we consider the following two sub-regions of R,:0<z <h

i=12,..,n—1,

and z > &. The solutions in these regions are denoted by A% and A" , respectively. Hence,
2 " even
$An" e 0, 0<z<h, (4.1.19)
dz
d 31"6’” 2 gqeven
5 —lAOl =0, z>h (4.1.20)
dz
The general solution to (4.1.19) is
eve" =Ce”+Ce™” (4.1.21)
The bounded solution to (4.1.20) is given by
Ao =Ce”. (4.1.22)

The functions A42"(A, z) and A5 (4, z) satisfy the following conditions atz = 4 :

Ne(\)/en |Z:h: Nelven |z:h9 (4.1.23)
The condition (4.1.23) represents continuity of the function Zoe v (/1, z)at z=h.

One more boundary condition is obtained by integrating (4.1.15) with respect to z from z=h—-¢
to z = h+ ¢ and considering the limit in the resulting expression as & — +0.

h+¢e even h+e h+g
I djo dz — 7 J.Aoe“”’d ﬂol(cos(/lyl) cos(Ay, ) Ié‘(z h)dz
h-¢ Z 2 h-¢
even h+e
B s = 4L ol -cos,)
h—¢ h-¢

h+e

P PL{} J‘Zoevendzz_/?} £if)132&z'fven(ﬂ,z*)=0
h—¢

~ h+e ~ ~
even even even
-lima]A0 _ 4 _ g
e>0  dz ‘ dz ‘ dz ‘
h—-¢ z=h z=h
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~ even
dA;,
dz

Neven
dz

= ﬂ;[ (cos(Ay,)—cos(Ay, ))- (4.1.24)

z=h

z=

Using (4.1.21) — (4.1.24) we obtain
Clelh + Cze”“’ = C3e”1h
—2h Ah —ah _ M ! =
—ACe ™ = ACe™ + AC,e 5 (cos(Ay,)—cos(Ay,))
Ce'"+C,-C,=0

~-Ce’" +C,-C, = /210/1] (cos(Ay,)—cos(Ay, ) )e*
C = ’Zi(cos(/lyo) cos(Ay,) e (4.1.25)

C,=C,+ ZO/{ (cos(Ay, ) - cos(Ay, ) ) (4.1.26)
Using (4.1.21), (4.1.22), (4.1.25) and (4.1.26) we get

A = G £ (cos(, ) cos(i, ) Je

=
A = oo 4 Bl (cos(ar,) - cos{m) e
A (2,2)= Coo + 240 cos( ) coslin) o @127)

The solution to (4.1.16) can be expressed in terms of modified Bessel functions
(see [50], formula 2.1.3.10, page 247):

_ Ax Ax 2
Vitay. + e +cly=0 = y=c 2{Cllv(¥e2j+czl<v(¥ezﬂ, D Lk,

A
ﬂ, z ) (ai+ﬂi)
~ even 2 bl. z
do(2,2)=e 2 {c I, (C ]+C5K[*/; e ? ﬂ (4.1.28)
Ny Ay
i=12,.,n—1, where v, =ﬂ’—, b =—jouu"c!",
i a +ﬂ i 0770 i

and /, ,K, are the modified Bessel functions of the first and second kind, respectively.

The bounded solution to (4.1.16) in region R, can be written as follows

Bz (a,+5.)
A7(1,2)=C, e 2 IV”(ie 2 J (4.1.29)

a,+p

The even component in each region R,,i=0,,...,n can be determined by applying the inverse
Fourier cosine transform of the form

47 () =2 T 474, 2)cos( Ay )dA. (4.1.30)
T 0
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The odd components of the solution, AiOdd (¥,z) can be determined by the Fourier sine transform

A (2,2)= j/g’dd (y,2)sin(Ay )dy (4.1.31)

and the inverse Fourier sine transform
O 2 K ~ .
A (y,2)== j A" (2, z)sin(Ay)dA. (4.1.32)
T 0

The solution to (4.1.3), (4.1.5) - (4.1.8) is then found by formula (4.1.9).

4.2 Double conductor line above a conducting half-space with varying electrical
and magnetic properties

In this section we consider (as an example) the case, where d, —>o(see Fig. 4.1). In other

words, using the technique described above we solve the problem for the case of a conducting
half-space ~ with  varying  electrical and  magnetic  properties [37], where

u(2)=u,e’, o,(z)=0,e"" (see Fig. 4.2).

Z A
( Yo-h ) ( Vish )
O O
X Ro(yg =1, O'O‘:y())
9 Rl(:ulr » 0}
Fig. 4.2 A double conductor line
// above a conducting half-space.

Using the results from Section 4.1 we obtain:

2 even
R,: ddLé — B4 = luTO]é‘(Z - h)( cos(ﬂ%)_ COS(ﬂ*yo )) -
yA
RN Z;ven(/fl, Z)= e*ﬂz Z(j (COS(ﬂyO) Cos(ﬁvyl))e*l‘hfz‘ (4.2.1)
d 2 Z even dz even
R : L L X+ joo Pl g =0
1 de ﬂ dZ ( .] m /,l 0 /,l m )
N Bz

N Aleven (l, Z) — C4€ v a+ﬂ (422)

The boundary conditions are

dZOEVeVl | 1 dNIEVEI‘l

~even — Zeven — ,
AO |z:0 1 |z:09 dZ z=0 ﬂlr (0) dZ |z:0

(4.2.3)
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NCV@H
A

|Z=—€2,= i+1 |Z:_l;i>

~even
Ai
~

even N@V(:‘f’l (4.2.4)
L _ a4 L 44”1 n—,

H; (_ di) dz ) :Uir+1(_ (';11) dz
Using (4.2.1) — (4.2.4) we obtain

C, + 2% (cos(r, )= cos(an ) e = C.1, (=),
44 (4.2.5)
2, + 40 (cosay) - costam)le = 2 L1, ()1 )

m

2\/3 ‘ B +AX
,b:—JC(),UO,umUm, v=—"—r—2

a+p a+p

Solving (4.2.5) we get

C,= 1 paopa, 1(cos(Ay, ) = cos(Ay,) Je ™ (4.2.6)

2 (awszv(zop@z;(zo)

where z, =

The constant C, is

Y ,
ﬂﬁum A IV(ZO)_\/ZIV(ZO)
c;m;‘—juosuyo)cosuyl))w( ;j .
R ANINCACY

Applying the Fourier sine transform we obtain

, (=2 ) )

C;dd = &(Sin(ﬂJ’o)_Sin(ﬂ'yl))e%h .
# (lﬂm +I§j1v(zo)+\/31‘yx(zo)

The induced vector potential in region R is

A (A,z)=(Com + e, (4.2.9)

Applying the inverse Fourier cosine transform (4.1.30) to the even component in (4.2.9) and
inverse Fourier sine transform (4.1.32) to the odd component in (4.2.9) we obtain

4002 =20 [ ) Lol - ) -eoslaly ) M (4210

(4.2.7)

(4.2.8)

where
Ry ACA RN
(% v szv (2,)+vBL(z,)

The induced change in impedance (per unit length) of the double conductor line is calculated by
the formula

F(A)= (4.2.11)
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ing @ in
Zpe(riunit length(y’ Z)=JT§AO d(y: Z)dx' (4212)
C

Substituting (4.2.10) into (4.2.12) we obtain the change in impedance in the form

[e]

2% i (:2) =22 @(1 —cos(Aly, = 3, ))Je " d, (42.13)

per unit length
0

where F(/l) is given by (4.2.11).

Formula (4.2.13) can be also rewritten as follows

Z;:;f unit length (y7 Z): luoa) Z’ (4214)
T
where
[ Jute)- e y
z=j| - (1-cosu e =2 4.2.15)
[ e ) ”

and the dimensionless parameters are defined as follows

W-jb . B +AR ; ~ h
u=r,, b=wouuc,r’, 20=A—]A, VZﬂA—A, a=ar,, p=pr., h=— .
a+pf a+p .

Here r, = y, — y, is the distance between the wires.

A

Fig. 4.3 plots the change in impedance Z for three different values of ,B =1,2,3 .The other
parameters of the problem are fixed at & = 0,/ =0.05and 4, =5.The calculated points in Fig.

4.3 correspond to different values of b=1,2....80 (from left to right). Computations are done with
Mathematica ( see Appendix Fig.Ap.9) .

f=1
f=2
p=3

Fig. 4.3 The change in impedance Z for
three different values of ,3 .

It is seen from the graph that the modulus of Z increases as the parameter ﬁ’ increases.

4.3 Double conductor line above a conducting two-layer medium with varying
electrical and magnetic properties
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Another example is discussed in this section (see [38]). Consider two parallel infinitely long
wires with current located above a two-layer conducting medium (see Fig. 4.4).
A N

(yo’h) (yl’h)
O O

X R(,urzl GOiO)

k >
>\ b\ R (ﬂl ,01)
A 4
Fig. 4.4 A double conductor line

// 2,0 z above a two-layer medium.

We assume that the electrical conduct1v1ty and relative magnetic permeability of the upper layer
are exponential functions of the vertical coordinate of the form

,ulr( ) e, Gl(Z):GlmeaZ- (4.3.1)
In addition,
w(2)=p, o,(z)=07, (43.2)

where o', 1", &, f are constants. The properties of region R, , that is, the electrical conductivity

o, and the relative magnetic permeability ;' are assumed to be constant.
The functions Ay, 4, and 4, satisfy the following system of equations:

o o
Ry: 8;0 8/? 115z~ 8(r—3) 63— ) (43.3)
0’4, 94, Al
R: 57 + ,8——](001 Mol e ( A) A4, =0, (4.3.4)
)y 0z?
0’4, 0’4, . ., .
R,: 6y22 + 6222 — joo o A, = 0. (4.3.5)

where 6(z) is the Dirac delta-function.

The boundary conditions are

04, 1 o4
=l o= o 4.3.6
AO |z—0 1 |z—0 | =0 lLlf(O) aZ |z—0 ( )
1 o4 1 04
Al =gy —— = — . (4.3.7)
H (_d) 0z My 0z
The functions 4,, 4,, A, and their partial derivatives with respect to y tend to zero at
infinity:
0A. T _
A4, a—’—)O as 4y +zm >, i=0,12 (4.3.8)
Y

Problem (4.3.3) - (4.3.8) is solved by means of the Fourier cosine and sine integral
transforms. Representing the solution in the form (4.1.9) and applying the Fourier cosine
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transform (4.1.11) to the even part of the solution (using the results from Section 4.1 ) we obtain
the system of ordinary differential equations and the solutions in regions R, R, and R, in the form

Ry T2 7 <2 5y cos(an ) - costin,)) -

dz*
= A7(Az)=Ce " ’Z‘j(cos(/iyo) cos(Ay,) Je ", (4.3.9)
d 2 Z even dZ even -
R] : l2 _ﬂ 1 _(12 + ja)amﬂoﬂme(a+ﬂ)z) leven — 0 N
dz dz
~ p= (@+p), (a+ﬁ)z
N Aleven(/l,Z) 2 C4[v al/; 2 +CKV i:{; , (4310)
dZZeven N N
R,: dzz —G A" =0 > AY(A,z)=Cpe”’, (4.3.11)
4
/82 + 42/2 . m m . m m
where Vz—ua-i-ﬁ’ b=—jouu'oc/", q, =\//12 + joo] p .
The boundary conditions are :
~ oven ~ oven dN even 1 dZ even
A7 o= AT 2o 1:1;; 0= r—+ .0
/4 w1 (0) dz
~ ~ 1 dNEVEH 1 dNeven
Aeven = Aeven o et te N N :—; . 4312
1 |z— d 2 |z— d ﬂlr(—d) dZ |z— d /LI;’ dZ |z— d ( )
Using (4.3.9) — (4.3.12) we obtain
Co+ 207 (cos{ ) - cos(in ) e = C.1 (2, + CK ) (43.13)
—-AC, + ﬂTOI( cos(ﬂyo)— cos(xiy1 ) )e’ih =
c c (4.3.14)
~ el L e B )|+ 2| B K, ) K )
m\ 2 "\ 2
_pd
Cee ™ =e 2(C,(z)+CK,(z)) (4.3.15)
% C e
My
pd (4.3.16)

Il
~ Q
3 I\)‘
TN
i)
/N
(SN

7(a+ﬁ)d
IV(ZI)+\/Ze ? [lv(Zl)J"' CS(EK

(a+p)d
where z, =ze 2 ,u b=—joumu"oc’.

i)
—_
N
N—
+
S
Q
R
P
=
<h-
—
N
N——
\\._/

Eliminating C, from (4.3.13) — (4.3.14) we obtain
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o __ Gl + BIK,(20) + 24K, (24))- s 1 cos(Av,) - cos(y,) e 43.17)
: @2+ )1 () + 2901 (z,) |

Similarly, using (4.3.15) — (4.3.16) we get

(p-a)d
o[ (Lo - u{"qzij(Zl)h/Eﬂzme o) @318
p s |
( CT /Ulm%j (Zl)+\/_ﬂ 2 1( )
The solution to (4.3.17) — (4.3.18) is

C. =_ ﬂo,ulml( COS(/%J’o)_ COS(iyl))e_M(Dllv (Zl ) + szv (Zl)) (4.3.19)
’ D.D,D, +2/bD D, + D,D,D, + 2J/bD,D,

C,=—

(B-a)d
where Dlzgeﬂdﬂzm—ﬂlqu, D,=\bule * . D,=2Au"+p,

D, = [v(Zo )KV(ZI)_IV(ZI)KV(ZO)’ Dy = [v(Zo)K;(Z1)_I;(21)Kv(zo)>
Dy = [;(ZO)KV(ZI )_ Iv(Zl )K;(Zo), D, = I;(ZO)K;(ZJ_ I;(Zl )K;/(Zo)a
and
L= Holthy ](COS(AJ’O) cos(/lyl))e M(DK (Zl)+D K, (Zl)) (4.3.20)

D\D,D, +2:/bD,D, + D,D,D, + 2\/bD, D,
The value of C, is given by

1 _
C,=CJ1, (Zo)+ CsKv(Zo)_ %(COS(@/O)_ COS(Ayl))e “

' (DD, + D,Dy ) ! j (4.3.21)

Co" = pyI( cos(Ay,)—cos(Ay, ) Je ™ -——
= sl (cos{dr, ) - cos(n)) ( D.D,D, + 23/bD,D; + D,D,D, + 2:/bD,D. 44
Similarly, we obtain

o~y (sinn)— sin( 2 Ve A (DD, + D.D; ) 1 43.22
7 = I (sin(Ay, )= sin(2y,) e (D1D3D4+2\/_D1D5+D2D3D6+2\/ZD2D7 41 ( )

The induced vector potential in region R, is

Zénd (/1, Z) — (Czeven + C;dd k*ﬂz. (4323)
The solution in region R, can be written in the form
— free ind
Ay (y,2) = Al (v,2) + 4 (,2). (4.3.24)

Applying the inverse Fourier cosine and sine transforms (4.1.30) and (4.1.32) to (4.3.23) we
obtain

4, z):ZLﬁ‘)IJ.F(/i)( cos(2(y =y, )) = cos(A(y - ;) Je = d2, (4.3.25)

where
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(/1): ,ulm(DlD4 +D,Dg ) _L'
D.D,D, +23/bD,D; + D,D,D, +2\/bD,D, 4.

(4.3.26)

The induced change in impedance (per unit length) of the double conductor line is computed by

means of the formula
252 s (1:2) = 2§ A 0, 21
Substituting (4.3.25) incto (4.3.27) we obtain the change in impedance in the form
252 v (0:2) =2 [P =cos(aly, = 0 ) e a2

0

where F (/1) is given by (4.3.26).

Formula (4.3.28) can be rewritten in the form

. 4
pl)r::?unit lcngth(yﬂz):MZ’

where

7off| o mBOEDD) U g,

o\ DD, +2y— jbD,D, + D,D,D, + 24— jbD,D, 4

and D=L -y, D=\ jbue * . Dy=2ud+ .

D, =1,(2,)K,(2)- 1,(2))K, (,), Dy = 1,(2,)K;(2) - 1,(2))K, (2,),

Dy = 1,(2,)K,(2) - 1,(2)K, (2,). D, =I(2,)K;(2) - 1,(2)K, (2, ).

The dimensionless parameters are defined as follows

oY) 2
A 2 A 2 . 2 A ﬂ +4/1
u=2Aar,, b=wu'olr, q2=\/u + jOp 01, V=,
a+p
_arp 2 —]5
5 5 2 S
Z,=Zye ,  Zy=m————,
a+p
R ~ ~ h o~ d
ag=ar., f=pr., h=— d=—.
r r
C C

Here 7, = y, — y, is the distance between the wires.

(4.3.27)

(4.3.28)

(4.3.29)

(4.3.30)

The change in impedance given by formula (4.3.30) is computed for different values of the
parameters of the problem using package “Mathematica” since it allows one to calculate improper
integrals and evaluate modified Bessel functions of variable order and complex argument. The

results of calculations are presented in Fig. 4.5.

Fig. 4.5 plots the change in impedance Z for three different values of ,é =1,2,3 .The other

parameters of the problem are fixed at & =0,/ =0.05 ,d =0.05 and 4" =1.The calculated points

in Fig. 4.5 correspond to different values of b= 1,2,...,10 (from left to right). Computations are

done with “Mathematica” ( see Appendix Fig.Ap.10) .
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p=2
p=3
£.08 -0.06 -0.04 ’\:0-02 0.28 Fig. 4.5 The change in impedance Z
\ T for three different values of /3.
\\\ 0_26 L
®

4.4 Pulsed eddy currents a conducting half-space

Theory of an eddy current method for the case where a coil is excited by an alternating
current is well-developed in the literature [15], [60]. Current excitation in the form of a pulse
represents an alternative to traditional eddy current methods. There are two basic methods that
are usually used to analyze non-periodic time-dependent signals in eddy current testing: fast
Fourier transform and Laplace transform. The difficulty in using the Laplace transform is that the
inverse transform is not always available in closed form. However, several authors [68], [9], [11],
[42] have obtained analytical solutions for problems where a single-turn coil or a coil with finite
dimensions is located above a conducing half-space assuming that the excitation current is in the
form of a step current or exponential source current. Analytical solutions are used in practice in
order to estimate thickness and conductivity of metallic layers [56].

In this section we consider transient eddy current problem for the case where an excitation coil is
assumed to be of the form of a double conductor line formed by two infinitely long wires located
parallel to a conducting half-space [29]. The inverse Laplace transform is found in closed form
for the case of an excitation current in the form of a unit step function.

Different types of eddy current coils are used in applications. One example is a coil in the form of
a rectangular frame. If the ratio of the sides of the frame is 4:1 or larger then such a coil can be
modeled by a double conductor line [67], [72] with a relatively small error. Suppose that two
horizontal infinitely long parallel wires are situated above a conducting half-space with electrical
conductivity o and relative magnetic permeability u (see Fig. 4.6)

Z A
(3o:h)  (sh)
O O
RO
X
>y
0 R

Fig. 4.6 A double conductor line above a
% conducting half-space.
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Assume that the current in the wires is
I(t) =+1,0(2)

at the points (y,,4)and (y,,h), respectively, where /;is a constant, and ¢(¢)is the

Heaviside function of the form

)= 1, >0
P00, <0

(4.4.1)

(4.4.2)

We assume that the electric field EO and E,in regions R, ={z>0} and R, ={z<0},

respectively, has only one non-zero component in the x —direction:

E =E (y,zte, i=0,,

(4.4.3)

where e_is the unit vector in the positive x —direction. The system of Maxwell’s equations in

this case can be transformed to one equation for the electric field which has the following form in

regions R, and R;:
0’E, O'E, ol

ot e Mg PE O =) =5 =)
OE,  OE_  nomOE
& Mol O o
where o(&) is the Dirac delta-function.

R,:

=0,

1 -

The boundary conditions are
OF, 1 OF,
A |z:O: T A |z:0
0z u' oz
In addition, the following conditions hold at infinity:

OE, OF
E  E,—%,—L >0 as y’+z> > o,
o

E, |z:0: E, |z:0’

The initial conditions are
Eo |r:o= 0, E1 |t:0: 0.

Applying the Laplace transform to (4.4.4) - (4.4.8) we obtain

0’E, O°FE, _
Ry: S+ = sl (55 = (S(y = 3) =8y = y0)).
O’E, O’E, i
R: ?JfaTzl—ﬂoﬂl o' sk =0,
— — OF, 1 0E
E | _=E|_, 20 = 7 s
0|z—0 1|z—0 62 |z—0 lUlm 62 |z—0
— — OE, OE
0> l,a—o,a—l—>0as y2 +22 —> 0,
Y Y

(4.4.9)

(4.4.5)

(4.4.6)

(4.4.7)

(4.4.8)

(4.4.9)

(4.4.10)

(4.4.11)

(4.4.12)

where F?O,F?l and ] are the Laplace transforms of the functions E,,E and [, respectively, sis

the parameter of the Laplace transform.
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Problem (4.4.9) - (4.4.12) is solved by the method of integral transforms. It is convenient to
represent the solution E, in each region R, as the sum of even and odd components of the form

E(y,2,5)= E™"(y,2,5) + E'(,2,5), i =0,]. (4.4.13)
For this purpose, we represent the right-hand side of (4.4.9) in a similar form

700290~ L [7(029)+ 2 L7020 720 H
) )

fm"(y,z,s)z%(S)&z—h)(é(y—yl)—&(y—yo>+5<y+yl)—a‘<y+yo))
76s) (4.4.14)
F(z.s) = H 2 5= B0y =) =0y = 70) =8+ 1)+ 6+ i)

The following properties of the delta-function are used in order to derive (4.4.14)( see[40] )

0(=y)=96(y)
o(y+y,)=0
{ DHRI=0 e 50, 350, 3,20
5(y+y)=0
reven 7o SI_ S
[ (v.z,8)=f ”’”’(y,z,s)=‘“T()a(z—m(a(y—yl)—é(y -3)) (4.4.15)
The even component of the solution is found by applying the Fourier cosine transform of the form
E"(Az.5) = [ EP(y.z,5)cos(Ay)dy, i=0.1. (4.4.16)
0
The odd component of the solution is found by applying the Fourier sine transform of the form
E(2,2.5) = [ E (p,z.)sin(Ay)dy, i=0.1. (4.4.17)
0

Applying the Fourier cosine transform (4.4.16) to (4.4.9) - (4.4.12) we obtain

Eeven I
R,: dE™ /IZEM" _ HsI(s) 5(z - h)(cos Ay, —cos Ay, ), (4.4.18)

4P 2

d E o 2 17 even 2 m__m

R : = —q E =0, where g =/ A" + g1 0/"s. (4.4.19)

/4
:even :even d:EVel’l 1 d:EVEI’l
EF o= B |, d—OZ |.<0= m aiz e (4.4.20)
In order to solve (4.4.18) we consider two sub-regions, R, = {0 <z < h}and
R, ={z.> h}, of region R,. The solutions to (4.4.18) in R, and R, are denoted by
E;ge" and Eoefe” , respectively.
The general solution to (4.4.18) in R, is
ES(A,2,5) = Cie” + Cpe . (4.4.21)
The general solution to (4.4.18) in R, which is bounded as z — +oo has the form
ES™(A,z,5)=Cie ™. (4.4.22)
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Finally, the general solution to (4.4.19) which remains bounded as z — —cocan be written as
follows

E®(A,z,5) = C,e". (4.4.23)
Since there are four unknown constants in (4.4.21) - (4.4.23) and only two boundary conditions

(4.4.20), we need two additional conditions at z=h. One additional condition represents
continuity of the electric field at z = ~and has the form

ES ., =ES" .., - (4.4.24)

Integrating (4.4.18) with respect to z from 4 — & to s+ ¢ and taking the limit as & — +0
we obtain the second additional condition in the form

dEoelven |Z:h ~ dE()e(;}en |Z:h: IUOSI(S) (COS(/lyl)_ COS(AyO )) (4425)
dz dz 2

Using (4.4.21), (4.4.22), (4.4.24), and (4.4.25) we obtain

Ah —Ah —Ah
Ce”" +Ce ™ =Cie ",

7 =
—ACe ™ = ACe™" + AC,e™ = %(S)( cos(Ay,)—cos(Ay,) ),

Ce"+C,—C, =0

-Ce"+C,-C, = ﬂo;;(s)( cos( Ay, )—cos(Ay, ) Je**

C = ‘Lloi;(s) ( cos(ﬂby0 )— cos(ﬂ»yl ) )e"”’ , (4.4.26)

C,=C,+ %ﬁ(s)( cos(Ay, ) cos(Ay, ) Je™. (4.4.27)
Thus, solutions (4.4.21) and (4.4.22) can be rewritten as follows

i =+ P51 cos(ay,) ol
= =
B =Ce™ +—“°j;(s)(cosuyo)— cos(4y,) e )

2

o

i

l?(fve” =Ce ™+ M) Oi;(s) (cos(Ay, )—cos(Ay,) )e_w'_z‘. (4.4.28)

Using (4.4.20), (4.4.21) and (4.4.23) we obtain
_ 2
Yo" +q

C+(C =C, C,
q
Cl _Cz =/1—mC4

1

C2 — ﬂ“/ul —4q C4,
24"

C, = 5 ;” ‘"fl(s) (cos(Ay, )—cos(y, ) Je ™, (4.4.29)
M +q
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A" —q pos] -
C, = ﬁz}" +Z ’uoiﬁ(s)(cos(/lyo)—cos(/lyl))e o (4.4.30)

Using the inverse Fourier cosine transform of the form

E™"(y,2,5) = 2 j E“"(4,z,5)cos(Ay)dA, i=0,] (4.4.31)
T 0

we obtain the solution EM” (y,z,s)inregions R, , R,
Ryt ES(3,2,8) = Eq (e (1, 2,8) + Eg oy (35 2,8), (4.4.32)
where

even /’lOSI(S) e

B (9:2:8) =22 j (cos(Ay, )—cos(Ay,) )cos(Ay)dA, (4.4.33)

# S](S) /l(z+h)
E(f”fl’;d)(y,z 5)=22 j (cos(/iyo)— cos(ﬂyl))cos(}uy)dﬂ. (4.4.34)
2 /1,u1 +q
z—Ah
R: E™(y,z,8)= ol SI(S)I/1 qm \cos(ﬂuyo)—cos(ﬁyl))cos(/iy)di. (4.4.35)
Vs

Here ES Chee) (152, 8) 1s the even component of the electric field in free space while

Eoe”fl’; . (V> 2,5)1s the even component of the induced electric field due to the presence of the

conducting half-space.
The Fourier sine transform of the form (4.4.17) and the inverse Fourier sine transform

E“(y,z,5)= 2 j E™ (2, z,5)sin(Ay)dA, i=0,1 (4.4.36)
4 0

can be used in order to find the odd components of the solution. It can easily be shown that the
odd components of the solution, E*(y,z,s)and E”dd(y,z,s) are given by (4.4.32) — (4.4.35)
where cosine is replaced by sine.

Finally, the solution to (4.4.9) - (4.4.12) is obtained as the sum of the even and odd components
and can be written as follows

Eo(y,Z,S) = Eo (free)(yazas) + Eo (ind)(%zas)a (4.4.37)

ol Hot, "sl(s)T e (

E, (y.2,5)= [-5——(cos(a(y - y,)) - cos(A(y - 3,)) JdA. (4.4.38)
7 o M +4q

where

. posI() F e

Fu 02 =25 O [ oy, ) -ooslaly 1) i 4439

is the electric field of the double conductor line in free space and

—A(z+h)

,uoSI_(S)J‘/?*M —q¢€
2r A" +q

is the induced electric field in free space due to the presence of the conducting half-space.

Ey uay(7:2,5) = (cos(A(y =y, ))—cos(A(y - y,)) )dA (4.4.40)
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The Laplace transform of the induced electromotive force (EMF) in a double conductor line per
unit length due to the presence of the conducting half-space is given by (see [9]):

v(s) = %S)JEO iy (0> 2,5)dl, (4.4.41)

where C'is the contour of the double conductor line of length one unit in the x —direction.
In order to determine the inverse Laplace transform of (4.4.40) we rewrite the expression

Mintbeform A —4_ 244 —1, where r:M.
A" +q A" +q ,ul’”+\/1+sr A
A —q gy =20 24" _m
A" +q A" +q il 2+ popals " +N1+sT
Consider the case of a step current in the form (4.4.1).
The Laplace transform of (4.4.1) is I(s) = 5 so that
s
T —q 2"

D(A,s)=sl(s)L—F=]| ——F——-1| 4.4.42

(4.5) ()/I,ul'”+q O[yl’”+\/l+sr ( :

The inverse Laplace transform of (4.4.42) can be obtained either by means of “Mathematica”
command InverseLaplaceTransform or using tables of the Laplace transform (see [2], page 810):

m ot (,”lm)zt
cp(z,t)zzLTIOe [\/% _ute | erfc(ﬂ;"\EJ “1,50). (4.4.43)

Using (4.4.40) - (4.4.42) we obtain the inverse Laplace transform of the induced electric
field in region R in the form

0

Loy [ agzen
Ey iy (¥:2:0) =%Ie I (cos(Ay = vy )) = cos(A(y = 1))

0

m t (,u{")zt
2u" —| |t m m |t dA
N N e Y L W TP ecd
. e { 722‘ H e {M . () 2

The induced IMF is obtained from (4.4.41) and (4.4.44) in the form

(4.4.44)

2

© m ot wu' e
v(0) =2 [ e (1= cos(A(, - 3,)) 2o \/%—uf"e : erfC(ﬂ(”\EJ ~s) |

T T A
(4.4.45)
Using (4.4.45) we compute the integral of the EMF with respect to time:
T
V(T)= j v(t)dt. (4.4.46)
0

The integral with respect to time can be computed, for example, by Mathematica command
Integrate. The result is

T da
V()= e eos Ay = y0) = (T2 10 (44.47)

0
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where

24791+ perf r +exp AR erfc| u r
1 T T T T
w(T,r,u)=——+2uerf| .|— |- 5 .
2 T u—1

Integral (4.4.47) is computed by using “Mathematica” (see Appendix Fig.Ap.11) for the
following values of the parameters of the problem: y, —y, =1, # =2, h=0.1and three values of

o,namely, 0 =10"S/m, 0 =5-10'S/mand o =10*S/m..The results are shown in Fig. 4.7.

oc=10"S/m
c=5-10"S/m
oc=10°S/m
‘ Fig. 4.7 The integrated EMF for three
” - —~————————— ¢ different values of o .
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5. MOVING PLANAR MEDIUM WITH VARYING PROPERTIES

5.1 Moving halfspace with varying electrical conductivity and magnetic
permeability

In some cases (for example, during steel processing at metallurgical plants) a conducting
medium is moving with constant velocity in a horizontal direction. Analytical solutions for
moving media with constant properties are presented in [1], [18]. Such solutions can serve as a
basis for the solution of the inverse problems. It is shown, for example, in [48] how to determine
resistivity, permeability and thickness of a moving metal sheet simultaneously using a double coil
method.

In the present section we calculate the change in impedance of a coil located above a
conducting half-space [28]. The half-space is moving with constant velocity in a horizontal
direction. The properties of a conducting half-space (the electrical conductivity and magnetic
permeability) are assumed to vary with depth. In particular, analytical solution is constructed for
the case where both electrical conductivity and relative magnetic permeability are exponential
functions of the vertical coordinate. The problem is solved by the method of a double Fourier
integral transform with respect to the x and y coordinates. The change in impedance of a single-

turn coil is expressed in terms of a double integral containing the parameters of the problem.
Results of numerical calculations are presented.

Consider a single-turn coil of radius 7, located above a conducting half-space moving with

constant velocity ¥ in the x direction (see Fig. 5.1).

Z A
e ;
G L SINE
h
X RO(,u(;' —1,00: 0)
2 Rl(yl’,al)

Fig. 5.1 A single-turn coil located
above a conducting half-space.

/

In this case the vector potential has only two nonzero components of the form
A(x,y,2) = A,(x,y,2)e, + 4,(x,y,2)e,, (5.1.1)
where ¢ and ¢ are the unit vectors in the xand y directions, respectively. The external current

in the coil has the form
I¢=1¢2. (5.1.2)

[

The components of the external current /°can be written in the form
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€. =¢e.cosp,. —¢, sing,
I“=1e +1e =|¢ =¢sing +e,cosp, |=-I,sinpe,+1,c0s9,.¢,. (5.1.3)
I, =I5(z—h)5(r—rc)

It can be shown that the system of the Maxwell’s equations in this case can be transformed to the
form

B N - . N R - . oA
Ad - x - A- =
A e 2t |- o Qe - s ot -

=—pou’ (Z)(]xéx +1e, ),
where the term containing ¥ represents the effect of a moving halfspace.
Projecting (5.1.4) on the xand y axes we obtain

1 du o4, . . , 0A, .
M, - — L joup (2)o(2)A, - ppt (2o (2 = —ppt ()1,
Y7 (z) Oz ox (5.15)
1 du' 04, ) 04 ) o
y (Z) CZ Py — Jop ( )G(Z)Ay —HH (Z)O-(Z)Va_xy = THH (Z)Iy'
The x component of the vector potential in region R, (see Fig. 5.1) satisfies the following
equation:
Ry: ' (z)=1, o(z)=0.
A, = u,I5(z=h)S(r -7, )sing,, (5.1.6)

where o(x)is the Dirac delta-function.

The electrical conductivity o(z)and magnetic permeability x(z)in region R, are assumed to be

of the form

R:u(z)=p,e”, o(z)=0,z)=0,e”. (5.1.7)

The equation for the x component of the vector potential in region R, is

A =L dw A 1 , (5.1.8)

You'(z) dz oz " Ox

where ki = —ja)luo,ulr(z)al (Z)a = HoHy ( )51( )

The boundary conditions are

Ay lom Ay Lo o =T (5.1.9)
% 1z vz oz - M,(O) o "

The following conditions hold at infinity:

Ax,%, oA, —>0as x > +tw, i=0,l. (5.1.10)
" oox Oy

Problem (5.1.6) - (5.1.10) is solved by the method of double Fourier transform with respect to the
variables x and y of the form
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A, (A, y,2) = iji (x,v,2)exp(— jAx)dx, i =0,

Zx,, (4> 4,,2) = J.Zx[ (A.,»,2) exp(— jﬂyy)dy, i=0,1.
Applying the transform (5.1.11) to A4, we obtain

0’4, 0’4, 0’4

AL, (2,,7,2)= T(

ox? "

oy

i —JjA,
- ]e Mtdx =

+
2 aZZ

u=e " >du=—jle’ " dx © a4
=| o4 o4 = A [ e i
dv=—=tdx >v=—= S, Ox
ox ox
u=e " 5du=—jle’ " dx 5 5
o° 0 )
= oA —5t——A A
dv=a—x"dx—>v=Ax_ ay oz’ N
x i

Using (5.1.10), (5.1.12) and (5.1.13) we obtain
A.e’™d d—2 s
I dz’*

Applying the Fourier transforms (5.1.11), (5.1.12) to the right-hand side of equation (5.1.6) we

M, (24,9)= | (

where V=1 +

obtain

2

2

S &

62
2.

a 2

X

I .[ w,I5(z—h)5(r—r,)singp, e’ Us2y) dxdy =

—00 —00

= ” AX+ A,y =Arcosg, cosg, + Arsing, sing, = /bfcos((p/1 —gor)

2

= 1, I5(z — h)J. S(r—r, )rdr J. sin g, e <00 g —

0

2z

0

=2 ju,msing, I15(z — h)IJl(ﬂr)é(r —r )rdr =2 ju,msing, 1J,(Ar)r.5(z —h) =
0

0

k=1

0

k=1

=2 jn,(Ar)sing,

_ ejZCOS(p: JO(Z)+2ijJk(Z)COSk¢ H =

2z

A

82A
8y2

+

azZ“i —
ot

coske, Icos ko sing. do, +

Isin @, JO(— Ar)d@ + 2§:ij,€ (— Ar

0
2z

+sinkg, Jsin ko sing. de,

0

(5.1.11)

(5.1.12)

(5.1.13)

(5.1.14)
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[ [aats(z=m(-—r Jsing, &) dxdy = <2 juesing, 1,(2r. .8z~ h) (5.1.15)

Using (5.1.14) and (5.1.15) we rewrite (5.1.6) in the form

~
~

d*A ~
dZ;o ~ XA, =y5(z-h),

where y ==2jumsing, IJ,(Ar)r. .
The right-hand side of equation (5.1.8) can be rewritten in the form

T 04, _0A, \ . 0% . T
_J.(ﬁa—zl—kf/lxl +V—ax‘ je A gl :ﬁg_ijle T dx—klz_J‘Axle A dx +

(5.1.16)

ROA, o OA, e
+V [ e de=p KA +jAV A
X Oz ! :

—00

of A, o~ o~ ) dd, (., _
[l kA, AV A, e dy = —(k? — jAcosp, V)4, (5.1.17)

Using (5.1.11) and (5.1.14) we transform (5.1.5) to the form

d*A,  dd, =
1 L—gl A4, =0, (5.1.18)

dz* p dz
where g = 2 =kl + jicosg,V , ki =—jouu(2)oi(z), V= pu(2)o ).

Applying the Fourier transform with respect to x and y to the boundary conditions we obtain
PR N AP
xXo 1z=07 “Tx; 12=0° d= z=0"" P d= z=0 *

m

(5.1.19)

The following conditions hold at infinity:

A —0as x—>+0,i=0,l. (5.1.20)

'XI

In order to solve equation (5.1.16) we consider the following two sub-regions of R,: 0 <z <h

and z > h. The solutions in these regions are denoted by me, and me , respectively.

Hence,

dzzx 2 ~

—* =44, =0, 0<z<h, (5.1.21)
dZ 00

A, =

—*+=A4, =0, z>h, (5.1.22)
dZ 01

The general solution to (5.1.21) can be written in the form

A (5.1.23)

A =Ce" +Ce™”.
00

Xy

The bounded solution to (5.1.22) is
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~

A =Ce™. (5.1.24)

Xo1

The functions Zxoo (lx,/iy,z) and ZXOI (&X,/iy,z) satisfy the following conditions at z=/A:
= = de
A 01

00

=. (5.1.25)

X00 |z:h= 14)601 |z:h’ dZ |z:h - dZ |z:h

The first condition in (5.1.25) reflects the fact that the function ZXO (ﬂx,/iy,z) is continuous at

z = h while the second condition in (5.1.25) is obtained integrating (5.1.16) with respect to
zfrom z=h—¢ to z=h+ ¢ and considering the limit in the resulting expression as

&—+0.

Using (5.1.23), (5.1.24) and (5.1.25) we obtain
Ce”+C,-C, =0

Cleﬂh + Cze’”' = C3e’)"h
—Ah Ah ~2h = 24h Yo |
—AC e = ACe” + ACe ™ =y -Cie +C2—C3=ze
C = —Le”“’
24 (5.1.26)
C,=C,—L e
> 22
Hence, solutions (5.1.23) and (5.1.24) can be rewritten as follows
j =Ce” L gili=z)
- 2 = 4, =Ce*-Le (5.1.27)
A =Ce” —le’ﬂ(z’h) 24
oo 24

The solution to (5.1.18) can be expressed in terms of modified Bessel functions (see [50],
formula 2.1.3.10, page 247):

ax Ax Ax
y;x+ay;+(be]“x+c)y=0 = y=e 2{CJ{¥%]+QY{¥€2H
_Wa’—4c

A

< (asp), (a+ﬂ>z
2 2
A, =e?|CJ | 2Le +CY,| 2L .

The bounded solution to (5.1.18) is

- e (a+ﬁ)z
A =e?CJ,|2be 2 7| (5.1.28)

X

N A Y , = .
= ﬂC{T > b = _.]luOlumo—m (a) + ACOS q’l V)’ V = luO/ul (Z)O-l (Z)V

where 1%
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Using (5.1.19), (5.1.27) and (5.1.28) we obtain
v o
G, —ge "= C4Jv(zo)a

(5.1.29)
S A )
2 w1\ 2
24b
where z, =
a+pf
.C, = C4Jv(zo)+§e’”’
A€ )1l =€ B, (a0 )
and
C, = e (5.1.30)
(2811, B )
B A VA CR AN

C2=ﬁe , (5.1.31)
(B o) Vo)

where y ==2jusing, IJ,(Ar, ). .

The induced vector potential in region R, is

AM(A,,4,,2)=Cre ™, (5.1.32)

where C,is given by (5.1.31).

The inverse Fourier transform is defined as follows

1 o0 00 ]
4, (2= A, (j(ax+2,)M2 da, . (5.1.33)
Applying (5.1.33) to Z;"d we obtain
Aind( 1 A, (A’XMyy)d/ﬁt dl = 1% OOC Az j(lxxﬂyy)dl di =
Xy xayaz)_4 ( X y_471'2 II Ze e X y

AX+ A,y =Arcosg, cosg, + Arsing, sing, = Ar cos((o/1 - gor)
V= —ZjﬂoﬂSin (04 IJI (ﬂ’rc )rc

(G pe ) i
AN NS
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© 2z
=l 0, e I Dsing, e """ dg,
4z 0

Consequently,
A;nod (x, y,Z) =

o7 = + ZZ]"J coskgo H

k=1

) 27 0
= _%j]’”c:uoj.*]l (ﬂrc )eil(ﬂh)dﬂ IDSin ?; (Jo (’1”)4' 22 J*J (ﬂr)cos k((”z — )jdqol.
a 0 0 k=1

(5.1.34)
Similarly, using (5.1.3) and (5.1.5) we obtain the equations for the y — components of the vector

potential in regions R,and R,.Equation in region R, has the same form as (5.1.8), where 4, is
replaced by 4, .Equation for the y —component of the vector potential in region R, has the form
(5.1.6) where sin @, is replaced by —cos¢, . The solution of the corresponding problem for the

y —component of the vector potential is obtained by means of the double Fourier transforms

(5.1.11) and (5.1.12). Without repeating the calculations we present only the final result here:
AN (x,y,2) =

© 2z 0
= %ﬂnﬂo [0, )e "5 "d [ Deos %(J o(Ar)+ 23 4T, (Ar)cosk(p, — o, )Ja’(/a-
4 0 0 k=1

(5.1.35)
The induced change in impedance of the coil is given by the formula

A % § A (x,y,z)dl, (5.1.36)
L
where L is the contour of the coil and

A (x,3,2) = A2 (2, 2,208, + 4] (3,3, 2)2,. (5.1.37)
Substituting (5.1.34) and (5.1.35) into (5.1.36) we obtain

Zind Ja) I(Amd cos Q)r Amd Sln ¢, )d§0, _
0 =
2z ©
L | cosg, J.cos (o,,(JO (Ar)+2> j* T (Ar)cosk(p, — @, )jd(o,, +
_Jor. jlu J' J,(2r e Paz [ D 0 kzl
VY 2z =
ssing, [sing, 1)+ 2310, Gr)eosk(o, -, o,
0 =]
2 0 2
==t ! J\(Ar ) d A {21317:1 1 (ir)d%
where

100

do, =



(ﬂ /wm] J,(z,)+bJ,(2,)
(f + /”wijV(ZO)Jr \/EJ;(Zo)'

D=

2z

J, (ﬁr)cos o, Icos p.dp +

0

2z 2z
+2cos¢)ﬂZ] J, /Ir){cosk(pﬂ Icoskgo cosp,dp, +sinke, jsmk(p cosq)rd(p,}

0 0

=2jmcos’ @, J,(Ar)

2

-J, (/7,r)sin ®, J'sin p.dp. +

0

2 2z
+2sing, Z J*J, /1r){cos ko, Icos ko sime de, +sinke, Ism ke, sin (o,d(pr}

0 0

=2jxsin’ @, J,(Ar)

Hence,

. o0 ZH(ﬁ - ﬂ’ﬂm j‘]v (ZO)+ \/ZJ\:(ZO)
VAC— wr’ 1, I JH(Ar )e M dA I
0

do,. (5.1.38)
> o(gwﬂmj@(zowa(zo)

Using following dimensionless parameters (5.1.38) can be rewritten as follows

CAr = =2 _
SR S e
P B ey
rC rC
b =L+ pucose,)- \/_\/— Where{ = rJouu,o,
% P =T pot, 0,V
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Using the previous formula we obtain

7" =oru,Z, (5.1.39)

where

2z

L [/”—uﬂmjwm )
zZ :—iij(u)e’Z“hdu.[
20 0

2
_ do, (5.1.40)

Do e
and the dimensionless parameters are defined as follows
L NB AR A, A .
v =ﬂ—ﬁu b=06; +pucosp,, 8, =r.\oup,c, , P=r.t,0,V .
a+
Formula (5.1.40) is used to compute the change in impedance of a single-turn coil for the
following values of the parameters of the problem:
¢=0,8=2h=005d=0.1r =5 u, =5
The results of the calculations are shown in Fig. 5.2. The points on each graph correspond to

different values of 51 =1,2,...,20 (from left to right).
Computations are done with “Mathematica” ( see Appendix Fig.Ap.12) .

p=5
5=10
p=15

»- Re[Zz]
0.1 0.2 0.3 0.4 05 0.6 0-7}

Fig. 5.2 The change in impedance computed
by formula (5.1.40) for three values of p

5.2 Moving two-layer medium with varying electrical conductivity and magnetic
permeability

Consider the case where an upper layer of a two-layer medium is moving in the horizontal
direction with constant velocity ¥ while the lower half-space is fixed [26] (see Fig. 5.3)).
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X Ro(ﬂg =1,0, :‘(3)
Rl(:ulr ) 0-1)1

N —————
Vs YV
. 0,)
Fig. 5.3 A single-turn coil above a
/ moving two-layer medium.
/

The electrial conductivity and magnetic permeability of the upper layer are exponential functions
of the vertical coordinate:

u(z)=p(2)= w,e”, o(z)=0,(z)=0,¢", (5.2.1)

while the conductivity o, and relative magnetic permeability y, of the lower half-space are

A

=

assumed to be constant.
The components 4, (x,y,z), i =0,1,20f the vector potential in regions R,, R, and R, (see Fig.
5.3) satisfy the following system of partial differential equations:

Ry: A, = u,18(z = h)S(r -7, )sing,, (5.2.2)
o4 _ 04

R:md = A oy g (5.2.3)
Cou(z) dz oz ' ox

where k== jouu(z)o,(2), V =t (2)o (2,
Ry M, =—k2A, (5.24)
where  k; =—jou,u,o, .

The boundary conditions are

A= Ay e | = (525
xg 1z=0" “Tx; 1z=0> aZ z=0"" m (O) 62 z=0° e
4= A, LA, L% (5.2.6)
x) lz=—d ™ “¥x, lz=-d> ﬂl (_ d) 82 z=—d ‘le 82 z=—d "> e

The following conditions hold at infinity:
0A, 0A,
L, ——,———>0as x> t0o, i=0,12. (5.2.7)
Yoox oy
Applying the Fourier transforms (5.1.11) and (5.1.12) to (5.2.2)-(5.2.7) we obtain
dzzx , =
—— - A, =y5(z-h), (5.2.8)

dz?
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dT;l—ﬂ del _q12 Ax, =0, (529)

4. =

d—zz—qz sz = O, (5210)
1z

where

7—_2]/“0”5m§0,11*](/1”)¢ g =4 k2+J1COS¢4V ki = ]wﬂoM( ) ( )
Vv ZIUOIUI(Z)GI(Z)V’ 9, =X _kzza kzz =—JOU 1,0, .

The boundary conditions in the transformed space can be written as follows:

A=A | aZ""I - an1| (5.2.11)
xo 1z=07 “Tx; 1z=0° oz z=0"" i, Oz z=0> il

A " 5 | e 04, 1 04 | 52.12)
x2 z=—d"* 82 z=—d a z=—d * L.

m 2

The following conditions hold at infinity:

~ 8A 6A
- ,—=,—=~—>0as x>+, i=0,1,2
ox Oy
As in Section 5.1, the solution of (5.2.8) in free space is given by (5.1.27) where the term
containing C, represents the induced vector potential in free space due to the presence of a two-
layer conducting medium.

General solution to (5.2.9) can be expressed in terms of modified Bessel functions (see [50],
formula 2.1.3.10, page 247):

ax Ax Ax
y;r +ay;C +(beﬂ” +c)y =0 = y=e? {CJ{%% J—FCZ}’V(#eZ H
Va® —4c

A

~ Bz (0’+ﬁ) (UHﬁ)z
A =e?|Cu |22 " lroy| 2 27 || (5.2.13)

B +aAx
a+pf
The bounded solution to (5.2.10) is

~

where v , b=—juu o, (a) + Acosg, 17), V=puu(z)o,(z)V .

A, =Ce™. (5.2.14)

Using the boundary conditions (5.1.25) and (5.2.11) —(5.2.12) we obtain
C, - %ﬂl =C,J,(z,)+CY.(z,) (5.2.15)
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a6, L =B ) Vo )|+ S L)+ ) (5216

2 Ho Hy,
S _(a+p)d _pd _(a+p)d
Cee ™ =Ce 2J,[zpe > |+Ce 2Y|ze 2 |, (5.2.17)
24b
where z, = .
a+pf

It follows from (5.2.15) and (5.2.16) that

-G, =CJ,(2))+ CSIII/(ZO)+§671I1

A€ e =261 ) = € B0, ) 1, )| € B0 )+ )

I R
. (zym+§ij(zo)+@J;(zo) '

(5.2.18)

4

Using (5.2.17) and (5.2.18) we obtain

P P
Ce ™ =Ce ? JV(ZI)+ Cse 2 Yv(zl)
e% ﬂ 7(a+ﬁ)d ﬂ 7(a+ﬂ)d
G =*‘2—[c{5]v<zl>+ﬁe ) e[ Dnan n‘@)j]
/’lmqZ

_pd _pd
: ﬂqu(céle ? JV(ZI)+ Cie * Yv(Zl)j =

(a+p)d

S L O R O )]

ﬂ ’ (B-a)d '
(Zﬂzeﬂ _:um%jyv(zl)""uz\/ze ? YV(ZI)
C,=-C; 5 =l , (5.2.19)
(2ﬂzeﬁd _lumqZJJv(Zl)—i_ﬂZ\/Ze 2 JV(ZI)
(a+p)d 2\/3
where z, =ze ? , Zy = .
a+p

Eliminating C, from (5.2.18) and (5.2.19) we get
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ﬂ (B-a)d ' ﬁ ,
(B e =g ) e ) (S ) B, ()
.C

(B-a)d

('B,uzeﬁd—,uquJJv(ZlHyZ\/Ee 2 J(z) (ﬂ’ﬂm-i-fij(ZO)-’-\/gJ;(ZO)

—Ah

Vi€

EORE ACRINCVACY

- Cskait = [(g 1" ﬂqujyv(zm wdbe * X )] : ((zum - g}a (20)+ /B (z) | -
([é” e — 1., jJV () ulbe * I )]([zﬂm + gjx(zm bz, )j =
(L - s | 2+ YR ) )

3

(e D udie (GG L ) be () G)

Coauc = ((g e quz}zv ()i mbe T )]((zﬂm R ngv (20)+ 4Bz, )j

Im

1 —ﬂquj D, (2)~ (21 (2) )+

S
C,=yu,e ™ 51, (5.2.20)

where
p (B-ald
Sl:(Eﬂzeﬁd—uquij(zl)Jrﬂz\/Ze > @),

(B-a)d
D:DS(D6D1+\/ED2 )+ﬂ2\/3e 2 (D6D3+\/ZD4 ,
D= @SN D=L e .
D, = e a) =) D=L

Dy =J, (ZO)Y (Zl) J, (ZI)Y (Zo):

14

- D, _JV(ZO)YV(ZI) JV(ZI)YV(ZI)’

The constant C, is given by

C,=—yu,e” % : (5.2.21)
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where
(B-a)d

Sz=(§uzeﬂd—uqujﬂ(zl)+uzx/ze 2 Yi(z).

Finally, the value of C,is

H -G, = C4JV(ZO)+ CSYV(ZO)+§e_/M

(B-a)d
2ﬂﬁum(D5D1_:u2\/Ze ? D3j

(6-a)d ’

(p,p,+oD,)

C = A .
24

1)5(061)l ++/bD, )+ w~be

where y =2 ju,zsing, IJ,(Ar.)r.

The induced vector potential in region R, is
Z‘izd (/1( H /1y b Z) = CZe_AZ b

where C,is given by (5.2.22).

Applying the inverse Fourier transform in the form
4, (x,y,z) =

to (5.2.23) we obtain

2,,2)expj(Ax + 4,y A, dA,

0

A (x,y,2) = A’”d( 2/ ap dp, =
1 T 1 as i(axeay)
- | jcze e/ WG dA, =
(p-a)d
24u,,| DsD, _:Uz\/ze > D,
.C=1-

(p-a)d

D(D,D, +4bD, )+ \be > (DD, ++bD, )

=| - Ax+A4,y=Arcosp, cosp, + Arsing, sing, = Arcos(p, —(0,) =

-y =2jpysing, 1,2,

0 2z
—ijlrc,uon1 (xirc)e"i(”h)d}t'[Csin ®, ej““’s("’f‘”")d(pl =
0 0

e =J, (Z)"' 2ijk']k (Z)COS ke H -

k=1

(5.2.22)

(5.2.23)

(5.2.24)
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0

0 27
= _%Jj”cﬂoj’]l (/1’2 )e%(ﬁh)d/%_[csm ?; (Jo (ﬂ,r)+ zzjkjk (ﬁr)cos k((”/l — 9, )jd¢/1
7 0 0

k=1
Thus, the x —component of the induced vector potential is
Ajc);d (xa y,Z) =

) 2 o0
G Csing [ 1ar) 23 19,2 eoskl, 0, i,
4 0 0 k=1

The y—component of the induced vector potential can be found similarly and has the form

Amd (x, y,Z) —

Yo

(5.2.25)

1 2 27 (5.2.26)
= 4—]‘[;/0#0‘[]1 (Ar, )e"’l(“h)dxl J.Ccosgo{ J,(Ar)+ 22] J,(Ar)cosk(p, — o, )]a’%
4 0 0
The induced change in impedance of the coil is given by the formula
AR %i;;lé"d (x,y,2)dl, (5.2.27)
L
where L is the contour of the coil, and
A7 (x,y,2) = A2 (03,208, + 4] (3,208, (5.2.28)
Substituting (5.2.25) and (5.2.26) into (5.2.27) we obtain
Zind ]a) J.(Amd cos ¢, Amd Sln q)r }l@, —
0 i
2z )
jor .. | cosg, [cos ¢,(Jo(ir)+ 2> ", (ar)cosk(p, — o, )jdcor +
. —A(z+h) 0 k=1 _
il jJ (ar, ) "da [ . do, =

* | +sin ?; ISin (Dr[']() (/1")“' 22 i, (ﬂr)COS k((p/l — o, )jd(Pr
0 k=1
2z

-Jy (ﬂr)cos @, Icos p.dp +

0

2 2
+2COS(0/IZ] J, lr){coskgoi Icoskgo cos@p.dp. +sinkg, Ismkgor cosq)rd(pr}

0 0
=2jmcos’ ¢, J,(Ar)
27

-Jy (xlr)sin @, Isin p.dp +

0

2z 2z
+2sin (pﬂZ] Jy ﬂr){cosk% J-coskqo sing.dop, +sinke, J-smkgor sin (prd(pr}

0 0

=2jzsin’ ¢, J,(Ar)
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2 © 2r
== i, [ 1,0 )e N A [ €270, (2 Mg,
0

dr " 7y

r,
h

Hence, the induced change in impedance of the coil is given by
. © 2z
zZm = —éa)rf o[ I3 (2 )e " dA [ Cdg,. (5.2.29)
0 0
where

(B-a)d
2/1,um(D5Dl - ,UZ\/Z e ? D3]
C=1-

(-a)d ’
D,(D,D, +bD, )+ wNbe > (DD, ++bD,)

- D, :JV(ZO)YV(ZI)_JV(Zl)YV(ZO)’ - Dy :gﬂzeﬂd — M9,
D, =L a) - ) D=L

- D, :JV(ZO)K;(Z1)_J;(21)X/(ZO)’

- D, :J;(ZO)Y\/'(ZI)_J\V/(ZI)YV'(ZI)’

Using the following dimensionless parameters (5.2.29) can be rewritten as follows

~/1rc=u—>/1:£, _
T. :N;:w/ﬂz+4u2
p=L. a
r Te
: \/Zzl\/—j(A2+/3ucos¢i):E\/z, where {51 = TN O T
Te Te

1 A
p = rcluOIUmeV

1 — 1 ) . . _(0?+,BA'§R A 2] — Z;
.q2:_Vu2+j522 =—q,, ;=2 °* aZo:A—JA

p r a+p

N a o
where 5, :r“‘/w'uo'%o-Z =rc\/a),u0 \//120'2 =0 \/ ,thtlzo'z )
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Finally, the induced change in impedance of the coil can be rewritten as follows

7" =oru,Z, (5.2.30)
where
. 0 N 2z .
z =—é [ 7w du [ Cde,., (5.2.31)
0 0
C=1— ZMIUm(Asbl_]i A3)

Formula (5.2.31) is used to compute the change in impedance of a single-turn coil for the
following values of the parameters of the problem:

a=0, /Af =2, h= 0.05,d =0.1, r, =5, u,, = 5.The results of the calculations are shown in Fig.

5.4. The points on each graph correspond to different values of 31 =1,2,...,10 (from left to right).
Computations are done with “Mathematica” ( see Appendix Fig.Ap.13) .

Im[z] — p=l
3l 53
-3.5¢ Hh=5
/7 £

Re[z]

08 0.7 06 05 -0.4 <03

Fig. 5.4 The change in impedance computed
by formula (5.2.31) for three values of p
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6. AXISYMMETRIC PROBLEMS FOR MEDIA OF FINITE SIZE

6.1 A single-turn coil above a conducting cylinder of finite size

Mathematical models of eddy current testing problems developed in the previous chapters are
based on the assumption that a conducting medium is infinite in one or two spatial dimensions.
Analytical solutions of the corresponding equations for the vector potential can be obtained in
such cases by the method of integral transforms (for example, Fourier or Hankel integral
transforms).

Recently a quasi-analytical approach for the solution of eddy current testing problems is
suggested in [63]. The authors use the abbreviation TREE (TRuncated Eigenfuction Expansion)
method. The main idea of the TREE method is that the vector potential is assumed to be exactly
zero at a sufficiently large radial distance » = b from eddy current coil (provided that there are no
other sources of alternating current). Note that in the problem formulation described in the
previous chapters (for the case of an unbounded medium) the vector potential approaches zero at
infinity. From a physical point of view the assumption of the TREE method (the vector potential
is equal to zero at a large distance from the coil) is quite reasonable. Recommendations on the
selection of the value of b are given in [60].

Thus, a solution of an eddy current problem with the TREE method is expressed in terms of a
series (rather than integrals). This is the reason the term “TRuncated Eigenfuction Expansion” is
used in order to describe the method. The main advantage of the TREE method in comparison
with other analytical methods used for infinite domains is that with the TREE method one can
also construct quasi-analytical solutions for the cases where a conducting medium has a finite
size. Such models are quite important for applications since one can also model the presence of
inhomogeneities (flaws) of finite size in a conducting medium.

In the present section we construct a quasi-analytical solution for the problem shown in Fig
6.1. Suppose that a conducting cylinder of a finite radius cis located below a single-turn coil
carrying alternating current. The axis of the coil coincides with the axis of the cylinder. The
radius of the coil is 7,and the distance between the coil and the cylinder is equal to /4 (see Fig.

6.1). Such a problem has an important practical application for coin validators. Many coin
validators use eddy current method in order to compare the conductivity of an object inserted in
the validator with the conductivity of a “typical” coin. The cylinder shown in Fig. 6.1 can
represent a coin.

W70

b

=

Fig. 6.1 A single-turn coil with
alternating current above a
conducting cylinder.
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Consider the following three regions in a three-dimensional space (see Fig. 6.1):
R,={z>0}, R, ={-d <z<0}and R, ={z <—d}, where d is the thickness of the cylinder. The

vector potential (due to azimuthal symmetry) has only one nonzero component in the ¢ -direction
in each of the regions R, R, and R, (the nonzero components of the vector potential in regions
R,,R, and R, are denoted by 4,, 4, and 4, , respectively). Since region R, is not homogeneous in
the radial direction we use the notations 4" and 4" in order to determine the solutions in
regions 0 <r<cand c<r<b,respectively. The system of equations for the functions A4, 4, and
A, 1s obtained from (1.2.12) for the case where the conductivity o is constant (note that o =0 in

region R, where ¢ <r <)) and the relative magnetic permeability x is equal to one and has the

form
Ry: ulz)=u =1, o(z)=0, 1°=15(r —1,)5(z—h),
A 16A AZ 6A =—ulo(r—r))o(z—h), (6.1.1)
r o r
R ‘0<r<c z)=yl’=l, o(z)=0, 1=0
Vo lesr<h wz)=py =1, o(z)=0, 1=0
0°A 16A 4 0’4,
' 4 L=0, 6.1.2
8r r o /O T oz ( )
Ry: ulz)=uw =1, o(z)=0, I=0
2 2
oA, 104, 4 04 _, (6.1.3)

o ror r’ 0z*
where the current in the coil is assumed to be of the form
I°=1Ie'"¢,. (6.1.4)

4
Following the basic assumption in the TREE method we assume that the functions 4, 4, and

A, are equal to zero at r =b:

A1,_,=0, i=0,2, Al“"’ |_,=0. (6.1.5)
Continuity conditions are imposed at r =c:
) 6Acon aAa[r

Acon _):Amr . 1 = 1 . 616

1 |r7c 1 |rfc al’ |r7c 8]’ |rfc ( )
The conditions at z=0and z = —d are

04 04
A |z =0~ A |z =0 a_ZO|z:0:a_Zl|z:0’ (61'7)
0A 04

Al =4, e (6.1.8)

oz = e
Conditions (6.1.6)-(6.1.8) follow from the physical conditions of continuity of the tangent
components for the intensity of electrical and magnetic field.
Let us consider the solution of the corresponding homogeneous equation (6.1.1) by the method of
separation of variables. Assuming that

A,(r,z)=R(r)Z(z) (6.1.9)
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we rewrite equation (6.1.1) with zero right-hand side in the form

R'Z +1R'Z—%RZ+RZ" =0. (6.1.10)
r r

Dividing (6.1.10) by RZ and separating the variables we obtain
R 1R 1

?‘}‘;E—r—z-i'/,iz:o, (6111)
27—/1%0, (6.1.12)

where A is the separation constant.

Equation (6.1.11) can be rewritten in the following form
R"+1R'+(/12 —LQJR:O, (6.1.13)
r r

2

y"+§y' +(/12 —%]y =0 y=J, () H

General solution to (6.1.13) is

R(r)=C,J,(Ar)+C,Y,(Ar), (6.1.14)
where J,(Ar)and Y,(Ar) are the Bessel functions of order one of the first and second kind,
respectively.

Thus, bounded solution to (6.1.14) at » =0 is

R(r)=C,J,(Ar). (6.1.15)

General solution to (6.1.12) can be written in the form
Z(z)=D,e* + D,e”. (6.1.16)

Using (6.1.9), (6.1.15), (6.1.16) and the boundary condition 4, |,_,=0 we obtain

J(Ab)=0, i=12,. A, :% ‘ (6.1.17)
where A, are eigenvalues and ¢, i =1,2,...are the roots of the equation
J(a;)=0. (6.1.18)

In order to construct the solution to (6.1.1) we consider two sub-regions of region R, namely,
Ry, ={0<z <h}and R, ={z> h}, respectively. The solutions in R, and R, are denoted by

Ay, and A, respectively. The right-hand side of (6.1.1) is equal to zero in R, and R, . Using the
principle of superposition we represent the solutions of (6.1.1) in R, and R, in the form

Ry i Ay (r,2) =Y Dy J (A1), (6.1.19)

i=1
Ryt Ay(r,z) = (Dye™" + Dye™)J, (A1), (6.1.20)
i=1

where D,;,D,;and D;,are arbitrary constants.
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The vector potential is continuous at z =/ :
Agy |y = Aoy |- - (6.1.21)

z=h

Integrating (6.1.1) with respect to z from /4 —e& to A+ ¢ and considering the limit as & — +0 in
the resulting equation we obtain

o4 o4
O~ =—u, I5(r —1,). (6.1.22)
Oz
It follows from (6.1.19)-(6.1.22) that
D> Dy " J (Ar) =Y (Dye " + Dy, (Ar), (6.1.23)
D ADye " T (Ar) + Y (~ADye " + 4Dy ") (A1) = pI5(r —1y). (6.1.24)

i=1 i=1

Multiplying (6.1.23) by #J, (/1_/.1’) , integrating the resulting equation with respect to » from 0 to

b and using the orthogonality condition

b 0, i#j
! (2, V(A =1 b b} i (6.1.25)
2
the following equation is obtained
D,e*" =D, e"" +D,.e"" (6.1.26)
H _ 24,k
Applying the same procedure to (6.1.24) we obtain
2
(D" =D, e " + D, ™" );Lj%J;(;ij) Iy J (A, (6.1.27)
Using (6.1.26) and (6.1.27) we get
Ir,J, (A7,
| = Falo i A%) (6.1.28)
A:b°J5(A;b)
Substituting (6.1.26) and (6.1.28) into (6.1.19) and (6.1.20) we obtain
S 2 Ir J ()

A (r2) =S D,e T (Ar)+ ”0 0 0) o hh=2) g (4 6.1.29

o0 );21 () + Z/IJ(/Ib) (A1), ( )

i . Ir, (A1) aen

Ay, (r2) =Y Dye g, (Ar) + 2o V) oI g (Ar 6.1.30

0(r,2)= 2Dy, (Ar) bz;MW)) (A1), (6.130)

It can be shown (see [60] that the second term in (6.1.29), (6.1.30) represents the vector
potential of a single-turn coil located in an unbounded space (no conducting medium is present).
The first term in (6.1.29), (6.1.30) represents the induced component of the vector potential due
to the presence of a conducting cylinder (see Fig. 6.1).

Let us now construct a solution to (6.1.2) in the conducting cylinder (0 < r < ¢) by the method of
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separation of variables. Assuming the solution in the form
A7 (r,2) = R(NZ(2)

we transform (6.1.2) as follows

R 1R 1

- +g* =0, 6.1.31

R rR r 1 ( )
1 1

|7 e

z . )

7—](00‘/10—q =0, (6.1.32)

H A —(q2 +ja)o;uO)Z =0 H

where ¢ is the separation constant.

Solution to (6.1.31) which is bounded at » = 0 has the form

R(r)=C,J,(gr). (6.1.33)
General solution to (6.1.32) is

Z(z) = Dye” + D,e 7, (6.1.34)
where

p=4q’+ joou,.

Using (6.1.33), (6.1.34) and the superposition principle the solution to (6.1.2) in region
0 < r < ccan be written in the form

A7 (r,2) = 3 (Dye™ + Dye "), (q,), (6.1.35)

i=1
where ¢, are unknown eigenvalues and p, = wlqiz + joou, .

In the non-conducting region (¢ <r <b)of R, equation (6.1.2) has the form
aZAlair +l a 1a[r B Alair N aZAlair _

or* r or r’ oz’
Representing the solution to (6.1.36) in the form 4" (r,z) = R(r)Z(z)and solving it by the
method of separation of variables we obtain

0. (6.1.36)

‘RZ +1R'Z—i2RZ+RZ" =0|:RZ
r r

R IR 1 Z

—t+——=-—=+—=0

R rR r Z

R 1R 1 zZ
—+————+ joou, — joou, +— =0. 6.1.37
R 7R J OO, — JWOOLL, 7 ( )

Note that the parameter o in (6.1.37) is equal to the conductivity of the cylinder (see Fig. 6.1).
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IR 1
————2+ja)0',uo+q2 =0,
r

R
—+
R rR

H R +1R'+(p2—LZJRZO—)R(r):55J1(pr)+56Yl(pr)
7 r

AR )
——jwou,—q- =0,
7 JOOH, —¢

H Z' -pZ=0- Z(z)zﬁsepz +56e"pz

where g is the separation constant and p’ =q° + jwou,.

Using the principle of superposition we represent the solutions of (6.1.36) in R, (c <r <b)as
follows

4 (r.2) = Y (Do, (pir)+ DY (i) )" (Do, (pir)+ DY (pir) Je 77 (6.1.38)

i=1

The solution to (6.1.3) in region R, which is bounded as z — —oo and satisfies the zero boundary

condition at ¥ =b1is

Ay (r,2) =) Dye™ J, (A7), (6.1.39)
i=1

Using the zero boundary condition (6.1.5) for the function 4" and linear independence of the

functions e””and e " the following system is obtained from (6.1.38):

D¢ J,(p;b)+Dy;Y,(p;b) =0, (6.1.40)

Dy J\(p;b) + Dy, Y, (p;b) =0. (6.1.41)

Eliminating D,,and D, from (6.1.40) and (6.1.41) we obtain

=Dy D), (6.142)
Y (p;b)

D, =-p, 1P (6.1.43)
Y (p;b)

Applying the first condition (6.1.6) to (6.1.35) and (6.1.38) gives

0

Z[D4ie”"2 +Dge "7 1J,(g,c) =
= (6.1.44)

= S {IDe T (pi0) + Dy Y (p,)le? +[ Dy, (pic) + Dy Y (pie)le ™ |.
i=1

Now it becomes clear why do we need the transformation in (6.1.37): add and subtract jwoy, . In

this case we obtain the same structure of the z -dependence of the solutions in regions
0<r<cand ¢ <r<b.Equating coefficients in front of ¢”“and e ”"in (6.1.44) the following
two equations are obtained
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D,J\(q,c) = Dg.J,(pic)+ D, Y (pc), (6.1.45)

Dy,J\(q,¢) = D;,J,(pic) + Dy Y (pic)- (6.1.46)
Using (6.1.42) and (6.1.43) we rewrite (6.1.45) and (6.1.46) in the form

D,; = Dg[J,(p,0)Y,(pb)— J,(p.D)Y, ()], (6.1.47)
Dy, = Dy[J,(p,0)Y,(pb)—J,(p:b)Y, (p,0)], (6.1.48)
where

A Déi f) DSi

Dy, = ’ 8~ 1. v v
J1(q:0)Y (p,b) J1(q;:0)Y,(pb)
It follows from (6.1.47), (6.1.48) and (6.1.35) that

A (r,2) = i[)& [J,(p,0)Y(p,b)—J,(p,b)Y(p,c)]e” J,(q,r)+
(6.1.49)

3 DL ()Y (P 5) T (P DY (p.e)le ", (g,r).

Similarly, using (6.1.42) and (6.1.43) we transform (6.1.38) to the form

A7(r.2) = Y Do (g0 (pir)Y (p)~ T, (p )Y (Pl +
= (6.1.50)

+ il’j&“]l (g.0lJ (p;r)Y(pb)—J, (pb)Y(p,r)]e .

Introducing the notation

Ti(pic) = J(po)Y,(pb) - Ji(pb)Y (pic), (6.1.51)

I(pr)=J(pr)Y (pb)-J,(pb)Y,(pr), (6.1.52)

we rewrite (6.1.49) and (6.1.50) in a more compact form

A7 (r2) = 2 (g T (po)Dye™ + Dye ™), (6.1.53)
i=1

4" (r,2) = ZJI(%‘C)TI (pir)(béiepiz +DA8teipiZ)- (6.1.54)

i=1

Differentiating (6.1.53) and (6.1.54) with respect to » and evaluating the derivatives at » = ¢ we
obtain

a A con 0
1

o o= Zqi*]{(ql‘c)z (pic)(béiep[Z + bgie_piz)- (6.1.55)
i=1
o4 3 ' 5 ot 4 By ob
or e = Zpi‘jl (g,0)T, (p,c)(Dge™ + Dyge "7), (6.1.56)
i=1

It follows from (6.1.55) and (6.1.56) and the second boundary condition in (6.1.6) that
i (Qic)z-'ll(pic) = qz'J{ (qic)Tl (pic)' (6.1.57)
Equation (6.1.57) is used to determine the eigenvalues p,and related values ¢, .
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The relationship between p,and g,is p, = \/ql.z + joou,.
Thus, the solution in regions R, R, and R,is given by (6.1.29), (6.1.30), (6.1.53), (6.1.54) and
(6.1.39). The four sets of constants in these formulas, namely, D,,D,,, D, and D,,, can be

obtained from the boundary conditions (6.1.7) and (6.1.8).
Using the first condition in (6.1.7) we obtain

© -A:h 0
D, )+ 05 5 ﬂ(i“()jb) () =S @ AT(peXDy +Dy). 0<r<e, (6.158)
= i=1 i=1

o [ © /1 =A:h © n A
3 D,y + 20 S IERE Gy S T (i By 4 Dy), c<r<h (6.1.59)
b & AT

In order to determine the coefficients D, and Dj, the following procedure is used. First, equations

(6.1.58) and (6.1.59) are combined into one equation where the right-hand side of the resulting
equation is given by different expressions on the intervals 0 <r <cand ¢ <r <bh. These
expressions are defined by the right-hand sides of (6.1.58) and (6.1.59), respectively. Second, the
obtained equation is multiplied by rJ,(4,r) and the resulting equation is integrated with respect

to 7 from 0 to b . Third, we use the following orthogonality condition (6.1.25)

0, i#j
rJ\(A,r)J (Ar)dr = b? ..
-! J ; Ab), i=].
The result is
2 0
Dzj%Jz(ﬂ b)+ﬂ°/11r°J(/1 Z Dﬁl +D81)aﬂ, (6.1.60)
g i=1
where
a; = T1(pic)aji + Jl(qic)aj[' (6.1.61)
The coefficients a; can be computed using the following formulas from [2]:
J‘(k2 —I*)J, (kt)J (It)dt = t{kJ, (kt)J, (It) — L], (kt)J , (It)], (6.1.62)
J‘(k2 — )], (kt)Y, (It)dt = t{kJ, (kt)Y,(It) - 1], (kt)Y, (It)]. (6.1.63)

Thus, using (6.1.62), (6.1.63) and (6.1.52) we obtain

'aﬁ = j’"Jl (ﬂ’jr)ll (qi”)d" = ﬁqz(ﬂ’j‘lz (ﬂ’jc)Jl (qic)_qi-jl (/1_/0)12(%6))

J i

(=}

b

rJ (ﬂr)T prdr— IrJ(/lr)./ pr)dr J.rJ /lr dr:

c

. bpiJl(/Ijb)[ l(pib) 2(pib) (p b) (pl )]"’
= PE 2 +C/ljjz(/ljc)[']1(pib)Yl(pic)_Jl(pic) l(pib)]

.ajz =

O C—

;P +cp,J, (ﬂvjc)[Jz (pic)Yl (pib)_Jl (pib)Y2 (pic)]
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Applying the same procedure and using the second condition in (6.1.7) we obtain

b’ I, iy © N
4Dy = () + ”“2 I (Are " =3 (Dy = Dy)pa,. (6.1.64)

Multiplying (6.1.60) by 4, and adding with (6.1.64) gives

z[(ﬂj + pi)béi +(4; - pi)[)si la; = puolryJ, (ljro)eil/h- (6.1.65)
)

Two additional equations are obtained if the same procedure is applied to (6.1.53), (6.1.54) and
(6.1.39) using boundary conditions (6.1.8). The result is shown below

2
Dy b Jz(/I b) = 2(06,e ‘+Dye’)a,, (6.1.66)
—-A;d b2 2 A pid
A,Dy e J (A;b) = Z(D e —Dye"\pa,. (6.1.67)
Multiplying (6 1.66) by ( ) and adding with (6.1.67) we obtain
Y [(A = pe "Dy + (4, + p)e Dyla,, = 0. (6.1.68)
i=1

The four sets of equations for the unknown coefficients Dzj,]ﬁ&,DAgi and D, are given by

(6.1.60), (6.1.65), (6.1.68) and (6.1.66). The solution of the system is obtained as follows. First,
we consider only a finite number of terms 7 in (6.1.60), (6.1.65), (6.1.66) and (6.1.68).
Recommendations on the selection of the value of » are given in Section 6.3. Second, the

coefficients 1561.,1581. can be computed solving the system

z[(ﬂ’j + pi)aji[)éi +(4, - pi)ajibSi] = HolryJ, (/Ijro)e%/h > (6.1.69)
i=1
S, = p)a,e "Dy + (A, + p)a,e’ Dy 1=0. (6.1.70)

i=1
where n 1s the number of eigenvalues p, . The system (6.1.69)-(6.1.70) can be written in the
matrix form

AX =B (6.1.71)
where the coefficient matrix A4is
A= (A“ n J (6.1.72)
4y A4y

and the block matrices 4,,, 4,,, 4,,and A4,,are

(j’l + D )all (j’l +p2)a12...(/11 +D, )aln (11 4 )an (ﬂﬂ _pz)alz-“(ﬂ'l — P, )aln

_ Py ) Py )y, - P, ), _ — D )ay, TPy )y -\ TPy ),
e (e e | || (e (= el =)
1= 12 =
(ln +pl )anl (ln +p2 )anZ"'(ln +pn )ann (ln _pl )anl (/1/1 _pZ )anZ "‘(ﬂn _pn )ann
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(]*1 4 )aneip]d (ﬂ“l _pz)alzede (ﬂ’l _pn)alne_pnd
4 = (/12 4 )azleipld (/12 —-P )azzeipzal ---()*2 — P, )azneip"d
21

(/11 + P )anepld (ﬂ1 +D, )alzemd (/11 +p, )alnepnd
(/12 +p )azlepld (/12 +p2)a223_p2d ---(}“2 +Dp, )aznep"d

(ﬂ’n + pl )anlepld (/171 + p2 )anZepzd "'(ﬂ'n + pn )annepn

4y, =

d

The matrices X and Bin (6.1.71) are

atisat
i< B=l?], (6.1.73)
X, 0

where
1561 D81 ﬂolrojl(ﬂ'lro)e%h

po|Da | g | Do, o] Al | (6.1.74)
lA)én [jgn /’l()[ro‘ll(/?’nro )67171,1

Hence, (6.1.71) can be written in the form
A“ffl i A”;fz =5 (6.1.75)
A, X, +4,X,=0

Solving (6.1.75) we obtain all the coefficients ﬁéi and ﬁgi (i=12,...,n). Then D,, (j=12,.,n) 18

calculated using

. Y
D,; = W;aﬁ (D + D) - ﬂirj];];((]j;"(rz; . (6.1.76)
The induced change in impedance of the coil is given by the formula
VA jTa’z;zroAg”d(ro,h), (6.1.77)
where
A () =3 Dy e T (), (6.1.78)

j=1
Formula (6.1.77) is used to compute the change in impedance of the coil. Calculations are
performed with “Mathematica”. The program which is used to compute the change in impedance
(6.1.77) is shown in Appendix Fig. Ap.14. The following parameters of the problem are

selected: g, =4- 1077z, 0=9.6Ms/m, ¢ =19.75/2 mm, rp=45mm, h=0.2mm, d =1.93 mm,
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b =60 mm. The change in impedance is computed for the following five frequencies:
f =1125,1598, 2270, 3224 and 4579 Hz.

The results of calculations are shown in Fig. 6.2.The calculated points (from top to bottom)
correspond to the five frequencies (from smallest to largest). The upper limit of the summation
index in (6.1.78) is fixed at n = 68. Comparison of the computational results obtained for other
values of n showed that the chosen value of 68 is quite satisfactory in terms of calculation
accuracy. More detailed analysis of convergence is presented in Section 6.3.

Several computational steps are necessary in order to calculate the induced change in impedance.
First, the set of eigenvalues A, has to be calculated. This can easily be done in “Mathematica”
using a built-in routine BesselZeros. Second, a set of complex roots of (6.1.57) should be
computed. Calculations are based on the method described in Section 6.3. Third, several systems
of linear equations have to be solved in order to determine expansion coefficients. Finally, the
change in impedance is computed using (6.1.71) - (6.1.78).

Im[z]

. Re [z]
060002 0.00004 0.00006 0.00008

LN

-0.00002 -
-0.00003 \
-0.00004

-0.00005
-0.00006

-0.00001

Fig. 6.2 The change in impedance
of the coil for five frequencies.

6.2 A coil of finite dimensions above a conducting cylinder of finite size

The solution for a single-turn coil found in the previous section can be used to construct the
vector potential due to a coil of finite dimensions. Consider a coil located above a conducting
cylinder (see Fig. 6.3). Let N be the number of turns in the coil. The inner and outer radii of the
coil are r and r,, respectively. The distance from the coil to the top surface of the cylinder is

denoted by z,. The height of the coil is z, —z,.

2
<L
Zmm
Ry = z, OE c
R, %//////////////////ﬂ d Fig. 6.3 A coil of finite dimensions
R i b . above a conducting cylinder.
2 ' i

It can easily be shown that the second term in (6.1.29) and (6.1.30) represents the vector potential
of a single-turn coil located in an unbounded free space. In addition, the first term in (6.1.29) and
(6.1.30) is the induced vector potential in air due to the presence of a conducting cylinder:
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A (roz, 1 h) = 3 Dy e T (A0), (6.2.1)
j=1

where

2 u A A wodr,J (Ar)e "
D2j=Tzaji(D6i+D8i)_ — ; 2] -
b"Jy(A,0) = AT (A,b)
and the series are truncated at i =n .
The induced vector potential in air due to currents in the whole coil is obtained as follows

A58, (r,2) = [ [ 4 (. 2,7y, Wy (6.2.2)
There is an important difference between the calculations for a single-turn coil and coil of finite
dimensions. For the case of a single-turn coil (Section 6.1) the geometrical parameters of the coil
(ryand h') are constants and the numerical values of 7,and % can be used to solve the system

(6.1.75). If a coil has finite dimensions then one needs to integrate the solution with respect to
ryand /. Thus, numerical values to the parameters 7 and 4 in (6.1.75) cannot be assigned. In this

case, in order to obtain the induced vector potential of a single-turn coil we need to solve (6.1.75)
in matrix form. Solving the second equation in (6.1.75) we obtain

X, = 4,4, X,. (6.2.3)
Substituting (6.2.3) into the first equation in (6.1.75) gives
(All - A12A;21A21)X1 =b. (6.2.4)

It follows from (6.2.3) and (6.2.4) that

— _ _1 -
{)fl = (An - A12A221A21) b . (6.2.5)
X, = _AgzlAzl(A11 - A12A£21A21) b
Equation (6.1.76) should be written in matrix form:
D, =Yb, (6.2.6)
where
DZI
N D B _ -1
Dz = z ’ Y= Bll(E - A221A21XA11 - A12A221A21) - Cdiag > (6-2'7)
DZn
2a,, 2a,, 2a,, 1 00
I (Ab) BI(A) T BT (Ab) AT (Ab)
2a,, 2a,, 2a,, 1
— - - 0 —55/7-—00..0
B, =| b*J;(4b) b*J5(b) T T3 (Ab) |, Crp =|  AD7T;(AD) : (6.2.8)
2a,, 2a,, 2a,, 00..0 1
b2J02 (ﬂ/ﬂb) sz; (ﬂlﬂb) N szg (ﬂlﬂb) ; ﬂlﬂszg (/’i’nb)

and b is given by (6.1.74).
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Formula (6.2.1) for the induced vector potential of a single-turn coil can be rewritten in the form
Ay (r,z,n,h) = D; f, (6.2.9)
where
J (Ar)e
- | J(Ar)e
e
J (A, r)e

Substituting (6.2.9) into (6.2.2) and using the formulas

z

) J%efijhdh _ _%(eijzz _ eilfz‘ )

5 j

']%rojl(ﬂ’jro)droz‘ 52/11-”0 ‘: J.éi]l

n l A;n

(6.2.10)

we obtain the induced vector potential in air due to the presence of the conducting cylinder ( the
NI

r,=n)z,—2z) )
ind /UONI -z -1 22 Airy
Ao (r,2) = e, _Zl);f; f g—i lfrléll(f)df. (6.2.11)

The integral with respect to &in (6.2.10) can be computed in terms of the Bessel and Struve
functions [2] as follows

current amplitude / in this case is replaced by the current density

Airy E=Air,
[&7.&)ae = { E (O H (&)~ (OH, (5)]} (62.12)
Ain S=Ain

The induced change in impedance of a coil of finite dimensions (see Fig. 6.3) is calculated by
means of the following formula [15]:

Ocoil

Zim = fl—?ﬂ Aldv = J}-?Tdﬁ rdrjA""’ dz
v 0

)

; 2@
A lwl (r,z)drdz. (6.2.13)
1 (rz_rl)(zz_zl);[;[ !

Using (6.2.11) and (6.2.13) we obtain the induced change in impedance of the coil in the form

A o N2 n -4z —ﬂ.z Ajr ~hn Az Airz
zm = SJOTAT Y (e ) [& (5)de Y, Ke—e) [ern©de (6214
(7'2 —l’i) (ZZ - Zl) Jj=1 2’] A /11' Ainy

Formula (6.2.14) is used to compute the change in impedance of the coil. Calculations are
performed with “Mathematica”. Program which is used to compute the change in impedance
(6.2.14) is shown in Appendix Fig. Ap.15. The following parameters of the problem are
selected: p, =4- 1077z, 0=9.6Ms/m, ¢=19.75/2mm, b=60mm, d =1.93 mm, r, =6mm,

=3mm,z, =0.39mm, z, =0.06 mm, N =100.
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The results of calculations are shown in Fig. 6.4.The calculated points (from top to bottom)
correspond to the following values of f =1125, 1598, 2270, 3224 and 4579 Hz.

The upper limit of the summation index in (6.2.14) is fixed at n = 68 . Comparison of the
computational results obtained for other values of » showed that the chosen value of 68 is quite
satisfactory in terms of calculation accuracy.

Several computational steps are necessary in order to calculate the induced change in impedance.
First, the set of eigenvalues A, has to be calculated. This can easily be done in “Mathematica”

using a built-in routine BesselZeros. Second, a set of complex roots of (6.1.57) should be
computed. Calculations are based on the method described in Section 6.3. Third, several systems
of linear equations have to be solved in order to determine expansion coefficients. Finally, the
change in impedance is computed using (6.2.14). Details of the numerical aspects of the
procedure are given in Section 6.3.

Im[z)]

® 02 0.4 0.6
0.1} N

0.2}

0.3}

ol Fig. 6.4 The change in impedance of a

coil (calculations are done using
(6.2.14)).

0.5+
-0.6 ¢

Calculated change in impedance of the coil is compared with experimental data. Experiments are
performed at Tallinn University of Technology as a part of the work for the project “Increasing
EU citizen security by utilizing innovative intelligent signal processing systems for euro-coin
validation and metal quality testing” in the framework of FP7 program for the period from 2010
till 2012. Measurement results are also published in [20].

The results of comparison are shown in Fig.6.5 for the same five frequencies as in Fig. 6.4. The
parameters of the coil and conducting cylinder (coin) are the same as specified for Fig.6.4. The
larger points on the graph are experimental points while the smaller points represent theoretical
calculations. As can be seen from the graph, good agreement is found between experimental data
and theory.

Im[z]

0.2 ¢

0.4}

-0.6 ¢

o8l Fig. 6.5 Comparison of theoretical

calculations with experimental data.
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6.3 Computational aspects

The procedure for calculating the change in impedance of the coil by means of the formula
(6.2.14) includes several computational steps. In this section we discuss each of the steps in
detail.

The first decision has to be made with respect to the choice of the parameter » where the
vector potential is assumed to be exactly zero (recall that b is the radial distance from the center
of the coil). Recommendations on the selection of the parameter b are presented in [60] where it
is recommended to choose b in the form b = s, , where r, is the outer radius of the coil and the
factor s should be at least five. Larger values of s can be considered as well (in general, the
choice of s is directly related to the desired accuracy of the calculations).

Next, we need to truncate the series in (6.2.14). In any realistic case the summation index
i varies from 1 to some pre-specified value n = N . For example, N_from 50 to 200 is used in
[60] in order to compute the induced change in impedance for the case where a coil of finite
dimensions is located above a conducting half-space. We have to pay the attention of the reader
to the fact that the choice of the value of N also depends on the computational accuracy.

The third step includes computation of eigenvalues A,,i =1,2,..., N,. The eigenvalues are
computed by means of (6.1.17), where «,,i =1,2,..., N_are the roots of the equation (6.1.18). The
roots ¢, can be easily computed with “Mathematica”. The corresponding “Mathematica” script is

shown in Fig. 6.6 where the first ten zeros of (6.1.18) are shown

<< NumericalVMath BesselZeros™

Ns = 10; alfa = BesselJZeros[1, Ns]
Fig. 6.6 “Mathematica” code for the

{3.83171, 7.01559, 10.1735, 13.3237, 16.4706, .
computation of the zeros of (6.1.18).

19.6159, 22.7601, 25.9037, 29.0468, 32.1897}

The most complicated step of the procedure includes computation of complex eigenvalues
p;»i=12,...,N_and the related values of ¢,,i =1,2,..., N from equation (6.1.57). It is well-known
that the most difficult step in calculating complex roots of an analytic function is to find a good
initial approximation to the root. If a good initial approximation is known the value of the root
with high accuracy can be easily computed by means of the Newton’s method. In order to locate
the roots we follow the procedure described in [60] for other application of the TREE method.
The method for finding complex roots of an analytic function is based on the two papers
published in 1967: [12] and [43] and uses the Cauchy’s theorem. First, it is known from the
theory of complex variables that the number of zeros, s,, of an analytic function ¢(z)inside a

closed contour C'is equal to the following contour integral

5, = LiZMdz (6.3.1)
27 7. ¢(z)

Another interesting result from the theory of complex variables is the following [12]. If Cis a

closed curve in the complex plane which does not pass through a zero of ¢(z)and G is the

interior of C, then
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¢9'(2)
5, = 2m§ ¢(Z)d Zg (6.3.2)

where £,i=1,2,...,k are all zeros of ¢(z)which lie in G and n =1,2,...,k. A multiple zero is
counted according to its multiplicity in (6.3.2). Using (6.3.2) we can construct a polynomial of
degree k which has the same zeros ¢,i =1,2,...,k as the function ¢(z). Note that in this case the
polynomial is not an approximation to ¢(z), it simply has the same roots as the function ¢(z). At
this stage several possible strategies are available in order to find ¢£.If the domain G is small
enough and there is only one zero of ¢(z)inside C, then k =1and the value s, from (6.3.2) gives
us the only zero, ¢, of the function @(z)inside C. However, if there is more than one root of
#¢(z)inside C then a polynomial is constructed using (6.3.2) and the roots of this polynomial can
be calculated (for example, by means of “Mathematica” command Roots). As mentioned before,
the roots of the corresponding polynomial are exactly the same as the zeros of ¢(z)inside C. It is
known that the roots of higher order polynomials can be quite sensitive to the variation of the
coefficients of the polynomial. Thus, the number of zeros of ¢(z)inside C should not be too large
(& should not exceed 5). As a result, if £ > 5then the domain G should be divided into smaller
sub-domains so that the number of zeros of @#(z)in each sub-domain be smaller than 5.

The next practical issue is the shape of the contour C . Two basic shapes are recommended
for calculations in [12]: circles and rectangles. The choice of the shape of the contour C'is
dictated by calculation of the contour integrals in (6.3.1) and (6.3.2). It is known that contour
integrals can be conveniently calculated if C is a circle or rectangle. We choose rectangle as the
basic shape of C since any rectangle can be easily sub-divided into smaller rectangles. Consider a
rectangular contour 4BCD (see Fig. 6.7)).

If ¢(z)is an analytic function inside C (where C represents the contour 4BCD shown in Fig. 6.7)

then

X, Y2
$o(2)dz = [[Cx+ jv) = lx+ jy)ldx+ j [[PCx, + jv) —p(x, + jv)]dy. (63.3)
C X M
y
», Dﬁxnyz) C'(xzan)
\ y
M ® °
A xl,yl) B x23y1) Fig. 6.7 Contour of integration.
Xy Xy X

In order to find eigenvalues p, and the corresponding values ¢, from equation (6.1.58) we define
the function F(p)by the formula (see (6.1.57)):

F(p) = pJ,(qo)T, (pe)—qJ,(qe)T, ( pe). (6.3.4)
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Here p = x+ jy is an eigenvalue and ¢ =/ p° — jwoy,. Calculating the derivative of (6.3.4) with
respect to p we obtain

F (p) =[J,(po)Y(pb) = J,(pb)Y, (po)][J,(ge) + p*eq T (gc)]

+ pJi(qe) e, (pe)Y,(pb) +bJ (pe)Y, (pb) —bJ,(pb)Y; (pc) —cY; (pe)Jy(pb)]

, . (6.3.5)
—[J,(pe)Y,(pb)— J,(pb)Y,(pc)llpg'J,(qc) + pe, (gc)]
—gJ,(qo)[cJ (pe)Y,(pb) +bJ,(pc)Y, (pb) —bJ (pb)Y,(pc) —cY, (pc)J,(pb)]
Let ¢(p) = % Then the number of zeros of @(p)inside C is given by (6.3.1) where the
p

contour integral is computed by means of (6.3.3). If there is only one zero, ¢, of F(p)inside
C'then it is calculated as follows (see (6.3.2))

100,
Sl—mi YNl (6.3.6)

An example of numerical calculation of complex eigenlavues p;, is shown in Fig. 6.8.

Computations are done with “Mathematica” ( see Appendix Fig.Ap.16 ) .The parameters of the
cylinder correspond to 10c euro coin (the outer radius of the coil is 10 mm). The algorithm is
implemented for the case where there are at most two eigenvalues inside a rectangle. The
program then subdivides the rectangle (if necessary) so that only one eigenvalue is inside a
smaller rectangle. The precise value of the root is then found by means of the formula (6.3.6).

Im[z]
4
3
/ Fig. 6.8 The first five eigenvalues p, .
2 rd
=i ‘ ‘ ‘ Re (2]
60 80 100 120 140 160
iB

The first five zeros of F(p)are shown in Fig. 6.8.

As soon as all eigenvalues p,,i =1,2,..., N_are calculated we can proceed to the next step of the
procedure where the system of linear equations (6.1.72) - (6.1.75) is solved (note that
the upper summation index in (6.1.72) - (6.1.75) is equal N ).

Finally, the change in impedance of the coil is computed by means of the formula (6.2.14).
Several calculations are done in order to estimate the effect of the parameters band n = N, on the
calculation accuracy. The parameters of the problem are as follows: o =
4Ms/m, ¢=8mm, 7, =3mm, 7, =6mm, z, =0.1mm, z, =3.1mm, d =2mm. The first table shows
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the change in impedance of the coil calculated by means of the formula (6.2.13) for the frequency
f = 1kHz for the case where the number of eigenvalues is 7 = 68 and four different values of b,

namely, b =5r,, 10r,, 15r,,and 20r, are chosen. The results show that b =10z, is sufficient in
order to calculate the induced change in impedance with the accuracy of three decimal places.

This value of bis used in all other calculations in the thesis.

b 5r, 10r, 157, 207,

n

68 | 0.174015 -0.0124184i | 0.176349 -0.0126594i | 0.176578 -0.0126837i | 0.17664 -0.0126913

Table 6.1

The second table shows the calculated induced change in impedance for different values of nand
five different frequencies. The value of b is fixed at b =10r,. As can be seen from the table,

n =68 gives quite accurate value of the change in impedance. Convergence of the method is
clearly seen from the table.

f 1000 2000 3000 4000 5000
n
11 | 0.171115 -0.0128815i | 0.673776 -0.101349i | 1.47762 -0.332801i 2.53722 -0.760574i 3.79826 -1.41964i
19 0.17675 -0.012734i | 0.695895 -0.100212i | 1.52589 -0.329288i 2.61954 -0.752716i 3.92057 -1.40577i
27 | 0.176433 -0.0126717i | 0.694685 -0.0997248i 1.52338 -0.3277i 2.61556 -0.74913i 3.91522 -1.39916i
34 | 0176345 -0.0126615i | 0.694348 -0.0996455i | 1.52266 -0.327444i 2.61439 -0.748559i 3.91354 -1.39813i
47 0.17634 -0.0126593i | 0.694329 -0.0996289i 1.5263 -0.327392i 2.61435 -0.748446i 3.91353 -1.39793i
68 | 0.176349 -0.0126594i | 0.694366 -0.0996297i | 1.52275 -0.327392i 2.6145 -0.748455i 3.91377 -1.39795i
102 | 0.176348 -0.0126592i | 0.694362 -0.0996281i | 1.52274 -0.327385i 2.61449 -0.748443i 3.91376 -1.39793i
137 | 0.176348 -0.0126592i | 0.694363 -0.0996281i | 1.52275 -0.327385i 2.6145 -0.748444i 3.91377 -1.39793i
171 | 0.176348 -0.0126592i | 0.694363 -0.099628i | 1.52274 -0.327385i 2.6145 -0.748443i 3.91377 -1.39793i
240 | 0.176348 -0.0126592i | 0.694363 -0.099628i | 1.52274 -0.327385i 2.6145 -0.748443i 3.91377 -1.39793i
309 | 0.176348 -0.0126592i | 0.694363 -0.099628i | 1.52274 -0.327385i 2.6145 -0.748443i 3.91377 -1.39793i
377 | 0.176348 -0.0126592i | 0.694363 -0.099628i | 1.52274 -0.327385i 2.6145 -0.748443i 3.91377 -1.39793i
Table 6.2

6.4 A coil above a conducting plate with a flaw in the form of a circular cylinder

In this section we consider a mathematical model of eddy current problem which can be used
to model corrosion. Consider a coil of radius 7, located at a distance & above a conducting plate
(see Fig. 6.9). The plate has a cylindrical hole of height d, and radius c. The thickness of the
plateis d, +d,.
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E’"o;§
°

2 %////////M// / %j Fig. 6.9 A single-turn coil above a

conducting plate with a flaw in the
form of a circular cylinder.

R,

We use the TREE method to solve the problem (the solution based on the layer approximation is
given in [52]). The system of equations for the components of the vector potential in regions
R.,i=0,1,2,3has the form
Ry u(z)=p =1, o(z)=0, 1°=15(r—r,)5(z—h)
0’4, 104, A, 0°4
20 +__0__§+ 20 =—fyl6(r —1,)6(z—h), (6.4.1)
or ror r 0z
R: ulz)=u =1, o(z)=0c, 1=0

0’4, 104, A 0’ A
T N A Wy 6.4.2
o* ror r Ot oz’ ( )
R 0<r<c ulz)=u =1, o(z)=0, 1=0
o c<r<b ,u(z)z,uzrzl, U(Z)ZO', 1=0
0’4, 104, A, . 0’ A
+——2-"2— joou,A, +—=* =0, 6.4.3
o’ ror r @M% oz’ ( )

R: wuz)=u =1, o(z)=0, 1=0
2 2
d /213 +l%—i§+—a ‘33 =0, (6.4.4)
or ror r 0z

where 4, is the solution in region R,,i =0,1,2,3 (note that o =0 in region R, where 0 <r <c).

As in Section 6.1 we use the notations 4;" and A;”"in regions 0<r <c and ¢ <r <b,
respectively. The boundary conditions are

4,1.,=0, i=013,  A4™"]_=0, (6.4.5)
d _ o4,
Ay |.20= 4 | A° |0 . — . 07 <, (6.4.6)
Al |z=—d1 = A;[r |Z=,d1 , % |z=—d1 = 8—2 |z=—d1 . 0 <r< C, (647)
0z 0z
con aA aAcun
4 |z:—dl =4, ’z:—dl , — |z:—d1 = |z:—d] , ¢<r<b, (6.4.8)
0z 0z
air 8 air aA
Ay = Ay s a—; 0= a_; g OSr<c, (6.4.9)
con a con aA
A oy 0= Ay ey, 8—22 a0, = a_; bda,, CSTED, (6.4.10)
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0A;™ = OAS"

AZC(m |r=c: A2mr |r=c’ 67' r=c 8}’ |r=c .

(6.4.11)

Solution to (6.4.1) is obtained as in Section 6.1 and is given by (6.1.29) and (6.1.30) in regions
Ry ={0<z <h}and R, ={z> h}, respectively.

Using the method of separation of variables we obtain the general solution to (6.4.2) in region
R, in the form

A(r,z) =Y (Dye"" + Dye ") J, (A1), (6.4.12)
i=1

where p, =X + joou,.

General solution to (6.4.3) can be written in the form (see the details in Section 6.1):

A" (r,z) = Z[Déiepfz +Dye 1, (pir), (6.4.13)
i=1
A (r,2) = Y {[Dyd (q,7) + Dy Y, (qr)le” +[Dyd (q,r) + Dy Y, (gi)]e ™ |, (6.4.14)

i=1

where p, =+/q] + joou,.

General solution to (6.4.4) which is bounded as z — —oois written as follows

Ay(r,z) =) Dye* J (A7) (6.4.15)

i=1

Using (6.4.14) and the last boundary condition in (6.4.5) we obtain the following two equations
Dy, J,(g,6) + Dy, Y (g;0) = 0, (6.4.16)

Dy J1(q;0)+ Dy, Y, (g;0) = 0. (6.4.17)

Eliminating D,,and D,,; from (6.4.16) and (6.4.17) we obtain

g = —D, /(45) : (6.4.18)
Y (q,b)
Dy, =-D,, CACLIN (6.4.19)
Y (qib)

Using continuity of the functions 45" and A;”"at r = c (the first condition in (6.4.11)) we get

Z[Déie""z +D,e ", (p,c) =
i=1

" (6.4.20)
= > {0y, (g,0)+ Dy i (g,)le” +1Dy0), (g,)+ Dy Yy (gie)le ™ .
i=1
The following two relationships are obtained from (6.4.20):
Dy, J\(p,c) = Dy, J,(q,0)+ Dy, Y (q;0), (6.4.21)
D, J\(p;c) =Dy J,(q,0)+ D, ;Y (g,¢). (6.4.22)
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Combining equations (6.4.18) and (6.4.21) we obtain
Dy, = Dy[J,(g,0)%(4b) = J ()Y, (4,0)], (6.4.23)

where

) Dy, (6.4.24)

Y L(poY(gb)
It follows from (6.4.19) and (6.4.22) that
Dy, = Dy, [J,(q,0)Y,(g.p) - J,(¢:6)Y,(q.0)], (6.4.25)
where

) Diy (6.4.26)

DlOi = o,
J(p0)Y (gq;b)

Solutions (6.4.13) and (6.4.14) can be rewritten in the following form (here we use the
relationships (6.4.18), (6.4.19), (6.4.23) and (6.4.25)):

A" (r,2) = Y T(q,0)[Dye” + Dyye " 1, (p,r), (6.4.27)
i=1

A" (r,2) =Y. J (p)[Dye™ +Dye " 1T (q,7), (6.4.28)
i=l

where

T(gr)=J,(g)Y (q,0) - J,(qb)Y (q,r), (6.4.29)

T\(g,0) = J,(g,0)Y,(g,0) - J,(g:b)Y,(g;0)- (6.4.30)

Differentiating (6.4.27) and (6.4.28) with respect to » and evaluating the derivatives at
r =c we obtain

aAair © ' . B . .
5 o= 2 P (PO)T (q,0)(Dgie"* + Dye ), (6.4.31)
i=1
aAzcon © . . be . o
o = 207 (4.0),(p)Dye" + Dye ). (6.4.32)
i=1

It follows from (6.4.31) and (6.4.32) and the second boundary condition in (6.4.11) that
) (pO)T(g.0) = q.T, (q.0)J,(pic). (6.4.33)

Equation (6.4.33) is used to determine the eigenvalues p, and related values ¢, .

The relationship between p.and g,is p, =+/q,” + jwou, .

Thus, the solution in regions R, R, R, and R,is given by (6.1.29), (6.1.30), (6.4.12),
(6.4.27), (6.4.28) and (6.4.15). The six sets of constants in these formulas, namely,
D,,D,;,D,, ﬁgi,ﬁIOi and D,,, can be obtained from the boundary conditions (6.4.6) —

(6.4.10).

Using the condition (6.4.6) we obtain
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®© ) —Aih 0
> D,J (Ar) + “0”0 3 ;?f%fb) J, (A7) = Y (D, + D)) J,(A), (6.4.34)
i=1 i=1 i j i=1

-3 AD G+ Eil 5 H (;Z) () =Y pu(Dy — D) (A). (6.4.35)
i=1 i=1 0 i i=1

The obtained equations are multiplied by rJ,(4,r) and the resulting equation is integrated with

respect to 7 from 0 to b . Using the orthogonality condition (6.1.25) we obtain

2 2
D, b (A,0)+ 4 1 (4 e = (D, + D, j)b—Jg()L.b), (6.4.36)
2 22, 2 O
b? I, -1, b’
4,0y, T3 (Ab)+ “02 2 g, (An)e " = p,,(D,, - D, j)7J§(,1jb). (6.4.37)
From (6.4.36) we find
D,, =D, +Ds, - 1, L " (6.4.38)
T T S T T by -

We multiply (6.4.36) by 4,and add the resulting equation to (6.4.37):

2u,0r,J,(A.r,)e "
(ﬂ’j + plj)D4j + (/11‘ _plj)DSj = - boz.]lz(/,/{ (;)) (6.4.39)
o\t

Using the first conditions in (6.4.7) and in (6.4.8) we obtain

Z(Dzue_p“dl + DSiephd] ) (A4r) =

. ) (6.4.40)

= Zﬂ(qic)Jl(pir)(ﬁgie_pfd‘ + ﬁlOiepfd‘ ), 0<r<ec,
i=1
D (Dye " + Dye” ") (Ar) =
‘ (6.4.41)

=>"T(qr)J,(pe)(Dye " + Dy e”™), c<r<b.
i=1

In order to determine the coefficients ﬁgi and 15101. the following procedure is used. First,

equations (6.4.40) and (6.4.41) are combined into one equation where the right-hand side of the
resulting equation is given by different expressions on the intervals 0 <7 <cand ¢ <r <b. These
expressions are defined by the right-hand sides of (6.4.40) and (6.4.41), respectively. Second, the
obtained equation is multiplied by rJ,(4,r) and the resulting equation is integrated with respect

to 7 from 0 to b . Third, we use the orthogonality condition (6.1.25) and formulas (6.4.29),
(6.4.30), (6.1.62) and (6.1.63).

The result is

0

b bJ(,wZ

_Pi'd pdr —pd p;id
e D, et '+ D" )a (6.4.42)

Ji2
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where a, =T,(¢,0)d, +J,(pc)a,. (6.4.43)
Thus, using (6.1.62), (6.1.63) and (6.4.29) we obtain

'aﬁ = erl (’1,1"”)/1 (pir)dr = f%pZ(lsz (ﬂ“jc)“ll (pic)_ y2u (ﬂ“_/c)“lz(pic))

0 i i

—j.rJ1 dr— J.rJ ﬂr qr dr J(qib) rJl(ﬂ r)Yl( )d =

o <z b)m b>}< D)1 (gb 0 (g8)]+
= +C/1J(/1 C)[J( Db (g.c)-J (g (gb)]+
1

1 +C%J1(/1jc)[‘]2( )i(g,b)=J (b)Y (g.c)

Using the same procedure and applying the second condition in (6.4.7) and in (6.4.8) we obtain

Py (D e —Dsjep”d')— . —lA)lol.ep"d‘)ajl.. (6.4.44)

b Jz(/l b)zpz( 81
We multiply (6.4.42) by p,; and add the resulting equation to (6.4.44)

pl/‘dl 0

Du = m;{((ﬂj P )e_p‘d' D, + (plj - pi)ep‘d] Dy, Ja, } (6.4.45)

We multiply (6.4.42) by (— 12 j.) and add the resulting equation to (6.4.44)

e*Pljdl 0

i WZ {((Plj P )e_pid' D, + (plj P )ep"d1 D, )aﬁ } (6.4.46)
J

i=1
Two additional equations are obtained if the same procedure is applied to (6.4.27), (6.4.28) and
(6.4.15) using boundary conditions (6.4.9) and (6.4.10). The result is shown below

2
Ad3b

Dy e Jz(ﬂ, b) = Z(D e’ 4 D" a (6.4.47)

ji?

(6.4.48)

Ji?

~4;ds > ~Pid3 > 3
A;Dyy e ™ ‘?Jg(/ijb) :Z:,Pi(Dsie P — Dy )a

where d, =d, +d,
Similarly, multiplying (6.4.47) by ( )and adding the resulting equation to (6.4.48) we obtain

LA, = p)e " Dy +(4; + p)e” " Dyl = 0. (6.4.49)
i=1
Thus, using (6.4.45), (6.4.46) and (6.4.39) we obtain
= Pi ) 1+ A
((}“j + pu)(plj + p[)e(p oh (ﬂj _Puxpu —p,-)e e )a,, Dy, +
+((/1j +p1jxplj _pi)e(l?uﬁrp;)d. +(/1j _pljxplj +pl Pu :)du r DlOz (6.4.50)
=2p, ol J, (xljro)e_i’h
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The six sets of equations for the unknown coefficients D, ;, D, ;, D; D,,,D,,;and D, are given

J’
by (6.4.38), (6.4.45), (6.4.46), (6.4.49), (6.4.50) and (6.4.47). The solution of the system is
obtained as follows. First, we consider only a finite number of terms 7 in (6.4.38), (6.4.45),
(6.4.46), (6.4.47), (6.4.49) and (6.4.50). Recommendations on the selection of the value of » are

given in Section 6.3. Second, the coefficients D,,, D, can be computed solving the system

< ((lj + plj Xplj +p; )e(p]j_pl )dl + (/11‘ _pljxplj — D )e_(pl’/+pi)d] Ji DAgi + B

=T ((’11 +p oy —p )e(plj+p' i (=M, + P, )e_(P” ok )aﬁ Dy (6.4.51)
=2p, ;101 J, (/Ijro)e%’h

SIA, = p)e " Dy + (A, + p)e” Dy la, =0. (6.4.52)

i=1

where 7 is the number of eigenvalues p, . The system (6.4.51)-(6.4.52) can be written in the

matrix form

AX = B (6.4.53)
where the coefficient matrix A4 is
A, A
A= ( o j (6.4.54)
AZl A22

and the block matrices 4,,, 4,,, 4,,and 4,,are

((A + Py, Xpll + pl)e(p“ i (11 -p, Xpll -p )e_(p“”" g )a“ .............................
4 = ((/12 +p, Xplz + pz)e(p‘2 e (/12 -, Xplz —pz)ef(p‘“m)d' )c122 ........................

((/L +p, Xpll - P )e(p“ A (/11 -p, Xp1l +p, )e_(P“ ik )a” .............................
£ = ...((/12 +py, Xplz —pz)e(p'2+p2)d' + (/12 - D, Xplz + pz)e_(p‘z_m)d' )a22 ........................

(ﬂ'l P )eip]dsan (/11 P k7p2d3a12 ......... (Z,I -p, )e’Pudz a,
4, = (12 —h )e_pld3a21 (ﬂz P )e_p2d3a22 ........ (ﬂz -p, )€_p"d3a2n
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, Dlol 21711/10[’”0]1(117‘0)3_11}7

)_(;12 82 ) A_}QZ D102 5 EZ 2[712/1017'0.]1(227”0)@%2}[ .

A A

Dgn Dl()“ 2p1n ILIOIFOJI (j’nFO)e_l”h
Hence, (6.4.53) can be written in the form
A X, +A4,X,=b
A, X, + 4, X, =0

Solving (6.4.57) we obtain all the coefficients ﬁgi and ﬁlm (i=12,...,n). Then
D,; and Dy, (j=1,2,.,n) are calculated using

D, = Z{ [ e ey o n=p ), D, J}

p P b5 (A,b) ¥ pib* 5 (A;b)
~ n (plj _pi)e*(l’lﬁrpi)dl aﬁ . (plj + pikf(l’ljfpi)dl aﬁ .
DS/_Z 2 72 D8i+ 2 12 DlOi .
' i=1 pljb Jo (/,{’jb) pljb o (//i’jb)

The system (6.4.58)-(6.4.59) can be written in the matrix form
{D4 =B, X, +B),X,
Ds =B, X, + B, X,

The matrices B,,, B,,, B,;and B,, are

(pll + P )e(p“_pl)d' ay, (Pl1 + P )e(p"_m)dlan (ph + P, )e(p"_p" )dlaln

b5 (Ab) pbJs () T p bRIS(Ab)
(p12 +p, )e(plz —p )y a, (p12 +p2)e(mz —p2 Jd, a,, (plz +p )e(plz —pu )y a,
B, = p12b2J§(lzb) p12b2J02(ﬁ“2b) p12b2J§(12b)

(6.4.55)

(6.4.56)

(6.4.57)

(6.4.58)

(6.4.59)

(6.4.60)

(6.4.61)
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(p, —p " " Ha, (p, = p, ) M, (p, - p, e 74,

p,b*J; (Ab) p b7 (ab) p,b>J; (Ab)
(plz 2 )e(plz 1 )d‘ a,, (plz - D )e(plz i )dl ay (plz _pn )e(plz o )dl azn
B,=|  p,bJ;(4b) P05 (4,h) P05 (4,h)
(b~ p " " 0, (o, = p " " Ma,, (o~ p k"N
p, b5 (2,b) p b (A0) T p b JAAD)

(pll P )e_(pll b ay (171l - P )e_(p” e a, (ph — P )e_(p” g a,

AT p b2 (Ab) T p b J(Ab)

(plz - D )e_(p]2+p] by ay (plz - P )e_(p12+p2)d1 ay (p12 — P, )e_(plﬁp")dl a,,

By=|  p,bJ;(4b) pbs(Ab) T p bg(A)

(pl,, b )e_(p]" s a, (p1,, - P )e—(p.n ekt a,, (P1n e )e_(p]” P a

nn

P b*J5(4,b) p. b5 (4,b) P, b*J5(4,b)

(pll TP )e_(p” b ay (pl1 + D )e_(pl' ikt ap (p11 + D, )e_(pl' el a,

P b T (A4b) b5 (Ab) T p b (Ab)

(pl2 TP )e_(p12 ki ay (p12 +p, )e-(mz e ay (pl2 +p, )e-(mz p a,,

By, = plzbz*]oz(ﬂ“zb) plzszg(ﬁ“zb) plzszg(lzb)

(pl,, + D )e—(m,, nki ay (pln +p, )e_(pl” i) a, (pl,, + P, )e_(pln nu i

nn

plnbz‘]()z(ﬂ“nb) pl,,szg(ﬂ’ b) plnsz()z(,inb)

Solving (6.4.60) we obtain all the coefficients ﬁ4 ;and ﬁs ; (J=L2,...,n).

Then D,, is calculated using

J(An)e "

D, =D, +D, — I, """
MO T A b (Ab)

The induced change in impedance of the coil is given by the formula

zZm = %2;%/15"0’(%,}1)

where 4 (r,,h) =YD, e " J (A1)
=

(6.4.62)

(6.4.63)

(6.4.64)

(6.4.65)

(6.4.66)

(6.4.67)

Formula (6.4.66) is used to compute the change in impedance of the coil. Calculations are
performed with “Mathematica”. The program which is used to compute the change in impedance
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(6.4.66) is shown in Appendix Fig. Ap.17. The following parameters of the problem are
selected: x4, =4- 1077z, o =3Ms/m, ¢=2.2mm, ry,=4.5mm, h=1.4mm, d, =0.7 mm,

d, =0.3mm, b =55mm. The change in impedance is computed for the following seven
frequencies: f =1000, 2000, 3000, 4000, 5000, 6000, and 7000 Hz.The results of calculations

are shown in Fig. 6.10.The calculated points (from top to bottom) correspond to the seven
frequencies (from smallest to largest). The upper limit of the summation index in (6.4.67) is fixed
at n =62 . Comparison of the computational results obtained for other values of n showed that
the chosen value of 62 is quite satisfactory in terms of calculation accuracy. More detailed
analysis of convergence is presented in Section 6.3. Several computational steps are necessary in
order to calculate the induced change in impedance. First, the set of eigenvalues A, has to be

calculated. This can easily be done in “Mathematica” using a built-in routine BesselZeros.
Second, a set of complex roots of (6.4.33) should be computed. Calculations are based on the
method described in Section 6.3. Third, several systems of linear equations have to be solved in
order to determine expansion coefficients. Finally, the change in impedance is computed using
(6.4.53) -(6.4.67) .

Im[z)]

-2-107°
-4,107° N
-6-107°
-8-107°
-0.00001
-0.000012

Fig. 6.10 The change in impedance
of the coil for seven frequencies.

6.5 A coil of finite dimensions above a conducting plate with a flaw in the form of
a circular cylinder

Consider the model shown in Fig. 6.11. The inner and outer radii of the coil are r,and r,,
respectively. The bottom of the coil is located at the distance z, from the conducting plate. The

height of the coil is z, —z,and the number of turns is N .

Fig. 6.11 A coil of finite dimensions above
a conducting plate with a cylindrical hole.
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It can easily be shown that the second term in (6.1.29) and (6.1.30) represents the vector potential
of a single-turn coil located in an unbounded free space. In addition, the first term in (6.1.29) and
(6.1.30) is the induced vector potential in air due to the presence of a conducting cylinder:

A" (r,z,ry,h) = ZDzje
j=1

-z

I Jl(/ljr), (6.5.1)
where

J, (ﬂjro)e_i"h

l)2j = l)4j + l)Sj — /10176 ji—z;z:;5121—2;5:
J 0 \7%)

The induced vector potential in air due to currents in the whole coil is obtained as follows

(r,z) = j j A" (7, 2,1y, h)drydh . (6.5.2)

n oz

A ind

0coil

There is an important difference between the calculations for a single-turn coil and coil of finite
dimensions. For the case of a single-turn coil (Section 6.4) the geometrical parameters of the coil
(ryand ') are constants and the numerical values of 7,and % can be used to solve the system

(6.4.57). If a coil has finite dimensions then one needs to integrate the solution with respect to
ryand /4. Thus, numerical values to the parameters 7, and 4 in (6.4.57) cannot be assigned. In this

case, in order to obtain the induced vector potential of a single-turn coil we need to solve (6.4.57)
in matrix form. Solving the second equation in (6.4.57) we obtain

X, =—4,)4,X,. (6.5.3)

Substituting (6.5.3) into the first equation in (6.4.57) gives

(All - AIZA;;AZI)XI =b. (6.5.4)

It follows from (6.5.3) and (6.5.4) that

— _ 1 —

{Xl = (All - A12A221A21) b (6.5.5)
o _ _ ]~ .
X, = _A221A21(A11 - A12A221A21) b

Using (6.4.60) - (6.4.64) equation (6.4.65) should be written in matrix form:

D, =Yb, (6.5.6)

_ _ -1
where Y = (Bll +B, - (Blz +B,, )A221A21XA11 - A12A221A21) - Cdiag ’ (6.5.7)
1 > 000 ...0
D 2p1, Ab°J, (21[7)
2]
1
~ D 0 00 ..0
D,=| 7|, Cup=| 2P,AbT5(4b) (6.5.8)
Dzn ...................... 1
00..00 5
:Zlyln’%nZ) ‘]6 (’lnl7)

and b is given by (6.4.56).
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Formula (6.5.1) for the induced vector potential of a single-turn coil can be rewritten in the form
A (r,z,n,h) = D; f, (6.5.9)
where

J(Are

F| e |

J (A e

Substituting (6.5.9) into (6.5.2) and using the formulas

.J'e—ﬂjhdh —%(e 4,2, —e_lle)

i ! (6.5.10)
) ﬂrz e
'J”o']l(/q“jro)d’"o :‘ § =4 ‘: J.éi]l

n l A;n

we obtain the induced vector potential in air due to the presence of the conducting cylinder ( the
current amplitude 7 in this case is replaced by the current
NI

r,=1)z,—2z) )
G p——L 203, r =) T e 6.5.11)

(7’2 _”1)(22 - j 1 i=1 /11‘ A

density

The integral with respect to £in (6.5.10) can be computed in terms of the Bessel and Struve
functions [2] as follows

At E=4in
[, - { (O H(E) -, (OH, (5)]} (65.12)
e i

The induced change in impedance of a coil of finite dimensions (see Fig. 6.11) is calculated by
means of the following formula [15]:

74 =9 [[[ v =12 Tag e | 42
Vv 0

Ocoil

)

2@ A
: (rz—rl)(zz—zl)l j md(r,z)drdz. (6.5.13)

Zind _

Using (6.5.11) and (6.5.13) we obtain the induced change in impedance of the coil in the form

e
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Formula (6.5.14) is used to compute the change in impedance of the coil. Calculations are
performed with “Mathematica”. Program which is used to compute the change in impedance
(6.5.14) is shown in Appendix Fig. Ap.18. The following parameters of the problem are
selected: p, =4- 1077, 0 =3Ms/m, c=2.2mm, 7, =5.5mm, 7, =3.5mm, z =0.3mm,

z, =2.6mm,d, =0.7mm, d, =0.3mm, b=55mm, N =400. The change in impedance is
computed for the following seven frequencies: f =1000, 2000, 3000, 4000, 5000, 6000, and

7000 Hz.The results of calculations are shown in Fig. 6.12.The calculated points (from top to
bottom) correspond to the seven frequencies (from smallest to largest). The upper limit of the
summation index in (6.5.14) is fixed at n = 62 . Comparison of the computational results obtained
for other values of n showed that the chosen value of 62 is quite satisfactory in terms of
calculation accuracy. Several computational steps are necessary in order to calculate the induced
change in impedance. First, the set of eigenvalues A, has to be calculated. This can easily be done

in “Mathematica” using a built-in routine BesselZeros. Second, a set of complex roots of (6.4.33)
should be computed. Calculations are based on the method described in Section 6.3. Third,
several systems of linear equations have to be solved in order to determine expansion
coefficients. Finally, the change in impedance is computed using (6.5.14). Details of the
numerical aspects of the procedure are given in Section 6.3.

Im[z]
o= Re
e e 2 3 4 5 2]
05| \l\\
-1l
Fig. 6.12 The change in impedance of a
15| coil (calculations are done using
formula (6.5.14)).
2t

6.6 A coil above a conducting half-space with a flaw in the form of a circular
cylinder

In this section we consider a mathematical model of eddy current problem which can be used
for quality control of spot welding [5], [6], [21], [71]. In this case metal parts are welded only at
separate points (not along the whole surface of contact). Spot welding of two metal pieces
produces cast core whose electrical conductivity is close to the conductivity of the surrounding
medium.
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* 7 >

Consider a coil of radius 7, located at a distance / above a conducting plate (see Fig. 6.13).
The plate has a cylindrical hole of height d, and radius c. The thickness of the plate is
d, +d,.We use the TREE method to solve the problem [25]. The system of equations for the

components of the vector potential in regions R;,i = 0,1,2,3has the form

R,y: ,u(z)z,ug =1, 6(2)20, 16215(1’—1’0)5(2—}1)
04y 104, A 4 _
or* ror r* 0z°

R: ulz)=p =1, olz)=0,, 1=0

U Lo(r —1,)0(z—h), (6.6.1)

0’4, 104, A4 0’4
T P L. 6.6.2
or* ror 1 OO oz’ ( )
R 0<r<c wuz)=u =1, olz)=0,-0,, 1=0
’ c<r<b wulz)=u =1, o(z)=0,, 1=0
0’4, 104, A, 0’4
+——2-2_ jwou, A, +—==0, 6.6.3
or* ror 1 OO oz’ ( )
R ulz)=p =1, ofz)=0,, 1=0
0’4, 104, A, A
——= -2 joo,uyd, +—> =0, 6.6.4
or* ror r JOT % oz’ ( )

where 4;is the solution in region R,,i =0,1,2,3 (note that 0 =0, — o, and o =0, in region

R,where 0 <r <c and ¢ <r<b, respectively).

The boundary conditions are
41.5,=0, i=013, 4"]_=0, (6.6.5)

04, oA
-0 A =0° ~ =0~ —1 =09
AO |270 1 |270 62 |270 62 |270

%| 04

cc
=2 |
oz T e T

0<r<b, (6.6.6)

Al g =4 0<r<c, (6.6.7)
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04 DAL

Al |z=—d = AZCM |z=—d s — |z=—d == |z=—d b c S r S b’ (668)
‘ "0z ' oz ‘
ce 04;° 04
A gt = A i gy S ety = o a0 <, (6.6.9)
oz oz
con aACOH aA
A" gt = A ity g, = o iy, €STSD, (6.6.10)
oz Oz
aACOl’l a cc
A=A, | == .. 6.6.11
2 ’r c 2 |)—c 6r ’r—c 0}’ |)—c ( )
Here we used the abbreviations “cc” and “con” in region R, with the reference to
conducting cylinder (cast core) and homogeneous conducting region, respectively.
Solution to (6.6.1) is obtained as in Section 6.1 and is given by (6.1.29) and (6.1.30) in
regions Ry, ={0<z<h}and R, ={z > h}, respectively.
Using the method of separation of variables we obtain the general solution to (6.6.2) in
region R, in the form
A(r,z) =) (De"* + Dye ") J (Ar), (6.6.12)
i=1
where p, = A + joo,u,.
General solution to (6.6.3) can be written in the form (see the details in Section 6.1):
Ay (r,z) = Z[DIOiep“z +Dy,e " 1, (pyt), (6.6.13)
i=1
A7 (r,2) = Y AIDG (@) + D Yi(g e +1Dyy(g,r) + Dy Y (gr)le ™ | (6.6.14)
i=1
where p,; = v q[Z + OOy 5 Dy =4 q12 + JOo, M.
General solution to (6.6.4) which is bounded as z — —oois written as follows
Ay(r,2) =D D™ T, (Ar). (6.6.15)
i=1
Using (6.6.14) and the last boundary condition in (6.6.5) we obtain the following two
equations
Dy J\(q;0)+ DY (q;0) =0, (6.6.16)
Dy, J,(q:0) + Dy, Y, (q;b) = 0. (6.6.17)
Eliminating D,,and D,, from (6.6.16) and (6.6.17) we obtain
7i = —Dg; Lq"b), (6.6.18)
Yi(g:b)
, =D, @) (6.6.19)
Yi(¢,0)
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Using continuity of the functions 4,°and 4;”" at r = ¢ (the first condition in (6.6.11)) we

[Dye” + Dye™ 1, (pyc) =

M 8

{[Déi']l (g,0)+ D, Y, (ql‘c)]ep“z +[Dy;J,(q;0) + DY, (qic)]e_phz }

M

1

The following two relationships are obtained from (6.6.20):
D,y J\(py¢) = Dy J (g,0) + Dy, Y (g,0),

D, ,,J,(pyi¢) = Dy J (g,¢) + Dy, Y, (g,0).

Combining equations (6.6.18) and (6.6.21) we obtain
Dy, = D [J,(4,00%(4,0) =, (,0)Y,(¢,0)],
where
Dy=—BPa
J(p20)Y(q:b)
It follows from (6.6.19) and (6.6.22) that

Dy, = Dy [J,(:0)Y,(q:0) ~ J,(g,b)Y,(g,0)],
where
A D

8i

Y (py0)Y(gb)

Solutions (6.6.13) and (6.6.14) can be rewritten in the following form (here we use the
relationships (6.6.18), (6.6.19), (6.6.23) and (6.6.25)):

AL (r,2) = Y. T,(q,6)J, (pyr)[Dge” + Dye 71,

im1

A" (r,2) = Y T(q,7), (py,0)[ D™ + Dye ],
im1

where

Tl(%r) = J1 (qir)Yl (q[b) _Jl (qib)Yl (Qir)-

Ti(q;c) = J,(q:.0)Y,(q,b)— J,(q;D)Y,(q,c)

Differentiating (6.6.27) and (6.6.28) with respect to r and evaluating the derivatives at
r =c we obtain

04y’ ", T S P 1 [ o P
or o= szi‘]1 (P2:0)Ti(q,c)(Dge™” + Dge ™),

=1
aA;on 0 . n iz A
o |r:czzqiﬂ (9,0)J,(pyic)(Dge™ + Dge ™).
i=1

It follows from (6.6.31) and (6.6.32) and the second boundary condition in (6.6.11) that
pziJ; (pzic)Tl (qz‘c) = Qiz—i'(Qic)Jl (pZic)'

(6.6.20)

(6.6.21)

(6.6.22)

(6.6.23)

(6.6.24)

(6.6.25)

(6.6.26)

(6.6.27)

(6.6.28)

(6.6.29)
(6.6.30)

(6.6.31)

(6.6.32)

(6.6.33)
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Equation (6.6.33) is used to determine the eigenvalues p,, and related values g, .

The relationship between p,, and q,is p,, =+lq,” + joo,u,.

Thus, the solution in regions R,,R,,R,and R, is given by (6.1.29), (6.1.30), (6.6.12), (6.6.27),

(6.6.28) and (6.6.15). The six sets of constants in these formulas, namely, D,., D,,, Ds;, Dy;, D;,
and D,,, can be obtained from the boundary conditions (6.6.6) — (6.6.10).
Using the condition (6.6.6) (see the details in Section 6.4) we obtain
J(Ar) _
D, =D, + D, - Hulf AT o (6.6.34)
' ' b A; Ji(4b)
2u,IrJ, (Ar)e "
(A + 2Dy + (A = p)Ds; = ——— = : (6.6.35)

b2 JE(A,b)

where

Py =4+ joou,. (6.6.36)

Using the first conditions in (6.6.7) and in (6.6.8) we obtain
2 (Dye" 4 Dye" )] (4,r) =

i=1

o (6.6.37)
= ZTl(%C)Jl (Pzir)(ﬁéie_plfd‘ + ﬁgie”“'d‘ ), 0<r<e,

i=1

> (Dye " + Dyeh ), (Ar) =

= ) (6.6.38)
= T,(qr)J,(pye)(Dye " + Dye’™ ™), c<r<b,
i=1
In order to determine the coefficients lA)m and lA)gi the following procedure is used. First,

equations (6.6.37) and (6.6.38) are combined into one equation where the right-hand side of the
resulting equation is given by different expressions on the intervals 0 <7 <cand ¢ <r <b. These
expressions are defined by the right-hand sides of (6.6.37) and (6.6.38), respectively. Second, the
obtained equation is multiplied by rJ,(4,r) and the resulting equation is integrated with respect
to 7 from 0 to b . Third, we use the orthogonality condition (6.1.25) and formulas (6.6.29),
(6.6.30), (6.1.62) and (6.1.63).

The result is

2 > (Dge ™" + Dye" M a,, (6.6.39)

D, e’ + D" ="
K N AT b

where a, =T,(¢,0)d, +J,(p,0)d,. (6.6.40)

Thus, using (6.1.64), (6.1.65) and (6.6.29) we obtain
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= ]rJl pzl dr = /ﬁt_—;(/ljjz (/1;0)]1 (pZic)_ Pad) (ﬂ’jc)IZ (pZiC))
jir er Ar ( jirJ /Ir =
bq,J (ﬂv b)[J( b)(g0)=J,(qb)¥ (q.0) |+
e ) e
T rea(re)l (g elab) - (g b)i(ge)]

Using the same procedure and applying the second condition in (6.6.7) and in (6.6.8) we
obtain

i i 2 114y 114y
(e =Dy’ )P.f‘mZpl,( we " = DyeMya,, (6.6.41)

Two additional equations are obtained if the same procedure is applied to (6.6.27), (6.6.28) and
(6.6.15) using boundary conditions (6.6.9) and (6.6.10). The result is shown below

_,a bJ; Ab) &
Dy ( z e + Dye” " a,, (6.6.42)
=1
-p;d b2 Jo(Ah) & pud d
Dy,;pe " ’T"—Z pu(Dge " = Dye” " a,, (6.6.43)
i=1
where d, =d, +d,.
Multiplying (6.6.39) by p; and adding with (6.6.41) we obtain
P/dl 0
e —pid; dy N
D =—— +p. e’ D +\p. —p. " D . ¢ 6.6.44
4) p,bz-]g(l/b);{((pj plt)e 6i (pj plz)e 8i }7/1 } ( )
Multiplying (6.6.39) by (- p,) and adding with (6.6.41) we obtain
*del 0
e A A
D, =——M—— —p e D+ p. +p D . ¢ 6.6.45
5j p]szg(/l/b)lZI:{((pj plz)e 6i (pj plzk 8i }1]1 } ( )

Thus, using (6.6.44), (6.6.45) and (6.6.35)we obtain

= (2, + 0, Mo, + )" M+ (2~ 0, Yo, —Pu)e e )%1561 +
S+ 2 Mo, — ™ ¥ (3, = p, Xp, + puJe Y B, (6.6.46)
=2p, Iy (A;1,)e g

Multiplying (6.6.42) by (- p,) and adding with (6.6.43) we obtain
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i((pj - pli)eip”d3 aﬁ[)m + (pj + Pli)ep”d3 ajiDASi ): 0 (6.6.47)

i=1

The six sets of equations for the unknown coefficients D, ;, D, ;, D; D,.,D,and D, ;are given by

J’
(6.6.34), (6.6.44), (6.6.45), (6.6.46), (6.6.47) and (6.6.42). The solution of the system is obtained
as follows. First, we consider only a finite number of terms 7 in (6.6.34), (6.6.44), (6.6.45),
(6.6.46), (6.6.47) and (6.6.42). Recommendations on the selection of the value of » are given in

Section 6.3. Second, the coefficients ﬁéi,ﬁgi can be computed solving the system

< ((ﬂj + ijPj + pli)e(pﬁp“)dl + (/11. _pjxpj - pli)ei(pﬁp“)dl ji l’jél- +

i+ Py )y —\pj—pii Jd, A N
= +((’1f +P,-)(P,f _pn)e(p] ! "‘(’11 —P_/)(pj ke ) )aﬂ.Dgi (6.6.48)
=2p el J, (ljro)e%/h
Z[(pj - Pu)e_p“d3 ajila&' +(p; + pu)ep“d3 ajz'DASi] =0, (6.6.49)
i=1
where 7 is the number of eigenvalues p,,. The system (6.6.48)-(6.6.49) can be written in the
matrix form
AX =B (6.6.50)
where the coefficient matrix 4 is
A, A
A:( ! ”] (6.6.51)
A21 AZZ

and the block matrices 4,,, 4,,, 4,,and A4,,are

((ﬂ1 + P )(p1 +p, )e(p‘_p“ Moy (4 - p, )(p1 -p, )e_(p‘”’“ 2 )a“ .............................
4 - ((2,2 + P, )(p2 +py, )e(prplz ey (4, - p, )(p2 -, )ef(pﬁp‘z g }122 ........................

11—

12 =

(pl 4t )eip”d}an (p1 — Dy, )ej’lzd3 ST RER (p1 — D, )ewl"d3 a,

4, = (P " ay (p=po " g eps = 1, e " "a,
21
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(Pl +p, )epl,dsa“ (P1 + P, )ep12d3a12 --------- (pl +p, )epl,,dsaln

P43 Pids P, d3
(pz + pll)e ay, (pz + plz)e Py (pz + pl,,)e ay,

4y, =

where
D Dy, 2pypadnyd, (Aryye ™
v - Dy, s Dy, = 2p, 111, J, (A1 )e ™ .
D, D, 2p, 10T (A1) "

Hence, (6.6.50) can be written in the form
A, X, + 4, X, =b
{Aﬂfq +4,X,=0
Solving (6.6.54) we obtain all the coefficients 156[ and 158i (i=12,...,n). Then
D,; and Dy, (j=1,2,.,n) is calculated using

D4j = Zn:{[ (p/ + pli k(pj _p”)dl ajl DA6[ + (pj _ pli k(pj - )dl a/l bSi J})

p pb*J5(A,b) pb*Js(A,b)
D. = ; (pj _pli)ei(pﬁp”)dlaﬁ D (pj +p1i)ei(pf7p“)d]aﬁ D
5_1_2 bZJZ /be 6i+ b2J2 ﬂ,b 8i .
i=1 p; o ( i ) p; o( ' )

The system (6.6.55)-(6.6.57) can be written in the matrix form
{D4 = Bll)?l + BIZ)?Z
Ds =B, X, + B, X,

The matrices B,,, B,,, B,;and B,, are

(pl + Py )e(p] o ap (pl + Py, )e(pl Pl a, (pl + D, )e(plipl” k a,,

p1b2J§ (ﬂ'lb) p1b2J§ (ﬂ'lb) plszoz (ﬂ,,b)

(pz + D, )e(pz_p]] b ay (pz + Dy, )e(pz—p.2 )d]azz (pz + D, )e(prp]n b Ay

B, = szz‘]oz(ﬂ'zb) pzszg(ﬂzb) pzszoz(/lzb)

( ) 4_pll)e(p,rpl1 )dlanl ( ) +p12)e(p"7p‘2 ), a, (Pn “p, )e(pn—pln )dlann

p,b*J5(4,b) p,b*J5(4,b) p.b*J5(4,b)

(6.6.52)

(6.6.53)

(6.6.54)

(6.6.55)

(6.6.56)

(6.6.57)

(6.6.58)
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(p1 - P, )e(p1+p11 g ap (p1 - P, )e(pl+p12 d a,

(pl — b, )e(p]+p]" )dlam

pib*J; (Ab) pb*J; (A4b) pb*J; (Ab)

(-2 e "y (o= p " May, (o p "M,
pzsz(? (ﬂzb) p2b2J02 (ﬂ“zb) pzsz(? (ﬂzb)

(b= 2 " P10y (o= p Ve (= M,
p.b*J;(A,b) p.b*J;(A,b) p,b*J;(4,b)

(p1 — P )ei(p] o a;, (p1 — Dy, )ei(pl o b a, (p1 — D, )e_(pl oo b a,,
pb*J; (Ab) b T (Ab) pb*J; (Ab)

(=2 e 0y (py=p " ey, (- p e M,
pb*J; (A,h) pb*J; (A,h) pb*J; (A,h)

(.= p e a, (o, =p k" e, (p,—p ",

(])l + p1] )e*(Pl’Pll )dl Cl“ (pl + P12 )e*(PﬁPlz )dl 6112 (pl + pln )e—(Pl —Pi, )dl aln
pib*Js(A4b) pb*Js (4b) pib*Js (4b)

(pz + D, )ei(p2 “rkh ay (pz + D, )ei(prplz by ay (pz + P )e_(pz_pl" by Ay
p:b*J; (A,h) pb*J; (A,h) p:b°J; (A,h)

(pn + Py, )ei(pn o a, (pn + D, )ei(p” ru a,,

p.b*J5(4,b) p,b>J5(4,b)

(p, + 1, )ef(”" iy

p.b*J;(A,b)

Solving (6.6.57) we obtain all the coefficients lA)4j and 155 ; (J=L2,...,n).

Then D,, is calculated using

D,; = D,; + Ds; — uln,

J, (/ljro)e%’h
Ab* T (Ab)

The induced change in impedance of the coil is given by the formula

Zind _

%27”0,4;;"‘1 (ry,h)

where 47" (r,h) =Y. D, e " (4,1,

J=1

(6.6.59)

(6.6.60)

(6.6.61)

(6.6.62)

(6.6.63)

(6.6.64)

Formula (6.6.63) is used to compute the change in impedance of the coil. Calculations are
performed with “Mathematica”. The program which is used to compute the change in impedance

(6.6.63) is shown in Appendix Fig. Ap.19. The following parameters of the problem are

selected: 4, =4-10" 7, o,=18.5Ms/m, o, =3Ms/m, ¢ =2.2mm, 7, =4.5mm, h =1.4mm,
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d, =0.7mm, d, =0.3mm, b =55mm. The change in impedance is computed for the following
seven frequencies: f =1000, 2000, 3000, 4000, 5000, 6000,and 7000 Hz. The results of

calculations are shown in Fig. 6.14.The calculated points (from top to bottom) correspond to the
seven frequencies (from smallest to largest). The upper limit of the summation index in (6.6.64)
is fixed at n = 62 . Comparison of the computational results obtained for other values of

n showed that the chosen value of 62 is quite satisfactory in terms of calculation accuracy. More
detailed analysis of convergence is presented in Section 6.3. Several computational steps are
necessary in order to calculate the induced change in impedance. First, the set of eigenvalues

A, has to be calculated. This can easily be done in Mathematica using a built-in routine

BesselZeros. Second, a set of complex roots of (6.6.33) should be computed. Calculations are
based on the method described in Section 6.3. Third, several systems of linear equations have to
be solved in order to determine expansion coefficients. Finally, the change in impedance is
computed using (6.6.50) - (6.6.64).

Im[z]
Re [z]
%‘.(ﬂpl 0.00002 0.00003 0.00004
~0.00002 -
\\. ]
-0.00004 e
-0.00006 \b\
Fig. 6.14 The change in impedance
\ of the coil for seven frequencies.

6.7 A coil of finite dimensions above a conducting half-space with a flaw in the
form of a circular cylinder

Consider the model shown in Fig. 6.15. The inner and outer radii of the coil are #and r,,
respectively. The bottom of the coil is located at the distance z, from the conducting plate. The

height of the coil is z, —z,and the number of turns is N .

| 7
R, 2z
% 0
K 00
R, %
R3 ,,,,,,,,,,,
Fig. 6.15 A coil of finite dimensions
above a conducting plate.
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It can easily be shown that the second term in (6.1.29) and (6.1.30) represents the vector
potential of a single-turn coil located in an unbounded free space. In addition, the first term in
(6.1.29) and (6.1.30) is the induced vector potential in air due to the presence of a conducting
cylinder:

A (ro 2,1 h) = 3 Dy e T (A7), (6.7.1)
j=1

where

J,(Ar )e%"h
1 "0

DZ_/‘ = D4j + DSj —IUOII/'O W

The induced vector potential in air due to currents in the whole coil is obtained as follows

A, = [ [ 43 o2,y Wydrydh. (6.7.2)
There is an important difference between the calculations for a single-turn coil and coil of finite
dimensions. For the case of a single-turn coil (Section 6.6) the geometrical parameters of the coil
(ryand h) are constants and the numerical values of 7,and % can be used to solve the system

(6.6.57). If a coil has finite dimensions then one needs to integrate the solution with respect to
ryand /. Thus, numerical values to the parameters 7 and 4 in (6.6.57) cannot be assigned. In this

case, in order to obtain the induced vector potential of a single-turn coil we need to solve (6.6.57)
in matrix form. Solving the second equation in (6.6.57) we obtain

X,=-4,4,X,. (6.7.3)

Substituting (6.7.3) into the first equation in (6.6.57) gives
(An - A12A2_21A21)*)_(.1 =b. (6.7.4)

It follows from (6.7.3) and (6.7.4) that

— _ 1 —

{Xl = (An - A12A221A21) b (6.7.5)
o _ _ ]~ .
X, = _A221A21(A11 - A12A221A21) b

Using (6.6.57) - (6.6.61) equation (6.6.62) should be written in matrix form:

D, =Yb, (6.7.6)

_ _ 1

where Y = (Bll +B, - (Blz +B,, )A221A21XA11 - A12A221A21) - Cdiag (6.7.7)

+ 000 ...0

D, 2p b J, (ﬂqb)

- D22 0 21 > 00 ...0

D, = > Clig = 2p,A4,b°J, (/.Lzb) (6.7.8)
00..00 -
anﬂ'nb JO (/?'nb)

and b is given by (6.6.53).

150



Formula (6.7.1) for the induced vector potential of a single-turn coil can be rewritten in the form
A (r,z,n,h) = D; f, (6.7.9)
where

J(Are

F| e |

J(Are

Substituting (6.7.9) into (6.7.2) and using the formulas

Zp

-J:e_ﬂfhdh _/%(e 27 _e—zjzl)

i ! (6.7.10)
) ﬂrz ol
'Iro']l(/ijro)d’"o :‘ § =4 ‘: J.éill

n l A;n

we obtain the induced vector potential in air due to the presence of the conducting cylinder ( the
current amplitude 7 in this case is replaced by the current
NI

r—n)z,—z) )
A r2) = — . ;?ZU_ ZfZ ﬁ;—f) [& e 6.7.11)

The integral with respect to &in (6.7.10) can be computed in terms of the Bessel and Struve

density

functions [2] as follows

Airy E=Air,
[&7.&)ae = { (O H (&), (OH, (5)]} (6.7.12)
Ain S=Ain

The induced change in impedance of a coil of finite dimensions (see Fig. 6.15) is calculated by
means of the following formula [15]:

Zind :JI_CZ’)” Aldv = Id(ﬂj‘l’dl’j Agadz
14

rzy

zmi Z2H j [, r,2)drdz. (6.7.13)

1 (FZ_”I)(Z2_Zl n oz

Using (6.7.11) and (6.7.13) we obtain the induced change in impedance of the coil in the form

i 2jomN? i(e e ng (§)d§ZY ;e) [en@de 6719

2 2
(n,—n)(z,—z) 73 2{/ i A A

Formula (6.7.14) is used to compute the change in impedance of the coil. Calculations are
performed with “Mathematica”. Program which is used to compute the change in impedance
(6.7.14) is shown in Appendix Fig. Ap.20. The following parameters of the problem are
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selected: u, =4- 1077, 0, =185Ms/m,0, =3Ms/m, ¢ =2.2mm, r, =5.5mm,  =3.5mm,
z,=03mm, z, =2.6mm,d, =0.7mm, d, =0.3mm, b =55mm, N =200. The change in
impedance is computed for the following seven frequencies:

f =1000, 2000, 3000, 4000, 5000, 6000, and 7000 Hz.The results of calculations are shown in
Fig. 6.16.The calculated points (from top to bottom) correspond to the seven frequencies (from
smallest to largest). The upper limit of the summation index in (6.7.14) is fixed at n =62.
Comparison of the computational results obtained for other values of n showed that the chosen
value of 62 is quite satisfactory in terms of calculation accuracy. Several computational steps are
necessary in order to calculate the induced change in impedance. First, the set of eigenvalues

A, has to be calculated. This can easily be done in “Mathematica” using a built-in routine

BesselZeros. Second, a set of complex roots of (6.6.33) should be computed. Calculations are
based on the method described in Section 6.3. Third, several systems of linear equations have to
be solved in order to determine expansion coefficients. Finally, the change in impedance is

computed using (6.7.14). Details of the numerical aspects of the procedure are given in Section
6.3.

Im[z]

‘ ‘ ‘ ‘ ‘ ‘ . Re[z]
®%5 05 075 1 125 1.5 175

~

05"
-1 e
1.5 \.
21 )
25t
-3¢ Fig. 6.16 The change in impedance
35] of the coil for seven frequencies.
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CONCLUSIONS

The thesis is devoted to the development and analysis of mathematical models of eddy
current testing problems. Eddy current method is widely used in practice in order to control
properties of conducting materials. The idea of the method is based on the principle of
electromagnetic induction and can be explain as follows. Suppose that a coil with alternating
current is located above an electrically conducting medium being tested. The currents in the coil
induce eddy currents (or Foucault currents) in the conducting medium. The eddy currents, in turn,
interact with the currents in the coil and change the impedance of the coil. By monitoring the
change in impedance of the coil one can make conclusions with respect to the quality of the
conducting medium. In particular, parameters of the medium (such as the electrical conductivity
and magnetic permeability) can be estimated. In addition, if the medium contains defects (or
flaws) then eddy current method can be used to estimate the parameters of the flaw (geometrical
size or electrical conductivity).

The determination of unknown parameters of the conducting medium requires the solution of
the inverse problem. Usually in such cases theoretical model is compared with experimental data
and the difference between theoretical model and experimental data is minimized (in some
norm). Thus, in order to solve the inverse problem one needs to have an accurate and reliable
mathematical model for the solution of the direct problem. The thesis is devoted to the
development and analysis of direct problems that occur in eddy current testing.

Two major groups of problems are analyzed in the thesis. The first group deals with the case
where a coil with alternating current is located in the vicinity of a conducting medium. It is
assumed that the properties of the conducting medium are not constant but vary with respect to
one spatial coordinate. Such a situation often occurs in applications. One important example is
metal processing (such as surface hardening) at metallurgical plants. It is known that surface
hardening can produce a thin upper layer of reduced magnetic permeability. In this case models
based on the assumption of constant properties of the conducting material (for example, electrical
conductivity) do not work. Another example is related to the electric industry where the thermal
efficiency of gas turbines can be considerably improved by increasing firing temperatures. In this
case blades of gas turbines have to be protected from hot corrosion and high temperature
oxidation. This is achieved using protective coatings containing aluminium and chrome.
However, operation under extreme conditions may lead to loss of aluminium in the coating and
may result in blade failure. Experiments show that in this case the electrical conductivity of the
alloy varies with depth. Thus, the two above mentioned problems demonstrate the necessity of
developing mathematical models where the electric conductivity and magnetic permeability are
functions of one spatial coordinate. Two different geometrical configurations are considered in
the thesis: (a) a coil with alternating current located above a conducting multilayer medium
where the electrical conductivity and magnetic permeability of the upper layer are exponential
functions of the vertical coordinate and (b) a coil inside or outside a conducting multilayer tube
where the conducting layer closest to the coil has varying electrical conductivity and magnetic
permeability (in particular, the electrical conductivity and magnetic permeability are power
functions of the radial coordinate). Two different types of excitation coils are considered in part
(a): a circular coil of finite cross-section and a double conductor line consisting of two infinitely
long parallel wires. Analytical solutions of the above mentioned problems are constructed in the
thesis. The methods of integral transforms (such as Hankel or Fourier integral transforms) are
used to reduce the problem to the system of ordinary differential equations with variable
coefficients. The solutions of the corresponding ordinary differential equations are found in
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closed form in terms of different special functions such as Bessel functions or confluent
hypergeometric functions. The change in impedance of the coil is computed in closed form in
terms of improper integrals containing special functions. Thus, solution of direct eddy current
testing problems for media with varying electrical conductivity and magnetic permeability is
obtained in closed form. There is another advantage of using analytical solutions for media with
varying properties. These solutions can be used as benchmark for more complicated problem
where the solution can be found by numerical methods such as finite element method. Often
analytical solutions are used to test numerical algorithms developed for more complicated cases
where both electrical conductivity and magnetic permeability are functions of several spatial
coordinates. In Chapter 5 eddy current problems analyzed in Chapter 2 (multilayer planar
conducting medium) are generalized for the case where the conducting medium is moving in the
horizontal direction with constant velocity. Analytical solutions are found for the case where the
electrical conductivity and magnetic permeability of the upper layer are exponential functions of
the vertical coordinate and the layer is moving in the horizontal direction with constant velocity.
The change in impedance is found in closed form in terms of double integrals.

The second group of problems analyzed in the thesis is related to the solution of axisymmetric
problems for the case of a circular coil located above a conducting medium with constant
properties containing a cylinder of finite size whose axis coincides with the axis of the coil. Three
problems are considered in the thesis: (i) a circular coil above a conducting cylinder of finite
radius and height, (ii) a circular coil above an infinite conducting plate with a bottom cylindrical
hole and (iii) a circular coil above a conducting half-space with a flaw in the form of a circular
cylinder of finite height. All three problems have important practical applications. Problem in
part (i) is relevant to coin validators. One of the principles which is used in coin validators is
based on the comparison of the electrical conductivity of a conducting sample inserted into the
validator (“fake coin”) with the electrical conductivity of real coin (such as Euro coin, for
example). The model analyzed in part (i) can be used to compute the change in impedance of a
coil in cases where the size of the coil is comparable to the size of a conducting sample (such as
coin). Problem described in part (ii) can be used in order to estimate the effect of corrosion of
metal plates (in this case the parameter of interest is the height of the cylindrical hole). Finally,
problem analyzed in part (iii) can be used to test the quality of spot welding. In spot welding,
metal pieces are welded only at separate points (not along the whole surface). A cast core is
formed as the result of welding process. The properties of the cast core are of great interest to
engineers since the quality of welding process can be directly assessed by analyzing the size of
the core and its electrical conductivity. Solution developed in the thesis can be served as the
solution for the direct problem which is used to model spot welding and assess its quality.

Mathematical basis for the second group of problems is so-called TREE method (“TRuncated
Eigenfunction Expansions”) suggested by Prof. T. Theodoulidis. In any “classical” eddy current
problem the vector potential approaches zero as the distance from the coil tends to infinity
(assuming that there are no other sources of current except the current in the coil). “Classical”
eddy current problems are usually solved by means of integral transform method (such as Fourier
or Hankel integral transform). The idea of the TREE method is that one assumes that the vector
potential is exactly zero at a sufficiently large distance from the coil. As a result, the solution is
sought in finite domain and the corresponding eddy current problem can be solved by the method
of separation of variables. Thus, the solution (for example, the change in impedance) is
constructed in terms of series. There are several numerical aspects of the procedure which need to
be taken care of in the TREE method. First, the distance b (usually the radial distance) from the
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coil where the vector potential is zero should be specified. The choice of b depends on the
accuracy desired and can be controlled by the user. Second, a set of eigenvalues (in many cases,
complex eigenvalues) should be computed. As a result, one needs a fast and reliable procedure
for calculation of eigenvalues. In addition, nothing is usually known about initial guesses for the
roots. Thus, Newton’s method for the calculation of eigenvalues cannot be used. An algorithm is
implemented in the thesis which is based on theory of complex variable. Using well-known
argument principle we can compute the number of zeros of an analytic function inside a contour
of integration (usually rectangle with sides parallel to the coordinate axes). If the number of roots
inside the contour is larger than one then a smaller contours of integration are considered. Finally,
if there is only one root of an analytic function inside the contour, then explicit formula (in terms
of contour integral) can be used to compute the root with any desired accuracy. A computer
program in “Mathematica” is developed in the thesis which can be used to locate and compute
the roots in case where the number of roots inside the contour is at most two. Third, constants of
integration are obtained solving the corresponding linear system of equations. Finally, the change
in impedance of the coil is computed in the form of a series where the number of terms in the
series is equal to the number of complex eigenvalues (this number can be adjusted, that is,
increased, if higher accuracy is desired). As one can see, the TREE method can be called quasi-
analytical since the solution is obtained in the form of a series expansion but there are some
elements of the procedure which require the use of numerical methods (computation of complex
eigenvalues and solution of the system of linear equations). The author believes that the TREE
method has high potential for solving eddy current problems since the class of problems which
can be solved by the TREE method is much wider than the class of problems which can be solved
by the method of integral transforms.
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APPENDIX.

Fig. Ap.1 ( Section 2.4 ) “Mathematica” program for numerical calculation of the change in
impedance Z for three different values of ,3 .

Remove ["Global %]
c=0.0;,B=1;h=0.058; um=>5;
DD[
{po|
[tfn =1, {r1-1, r2 -0, 3 - 0},
If[n=2, {rl=0,r2=1,r3=0}, {rl=0, r2=0, r3 =13}1]"
Sqri[f 2 + 4 +x" 2]

v[x 1=
[ —] o+ f
sqrtb = Sqrt[-i+b]
2 th
z0[x ] := i
- o+ f3
D1l[x_] :=

Mm% X + —
2

D2[x | :=pum*x - E

Jz0[x_] : = BesselJ[v[x], z0[x]]/

Jz01[x ]| :=BesselJ[v[x] +1, z0[x]]
B v[x]
z0[x]
skait[x | :=D2[x] *Jz0[x] - sqrtb +JIJz0pr [x];
sauc[x ]| :=D1[x] +Jz0[x] + sqrtb +J=z0pr [x];

JzO0pr([x_ | := -Jz01[x] + *»Jz0 [x]

skait [x]
saunclIxl '
Z = i*HIntegrate[f[x], {x, 0, 100}, MaxRecursion = 50, WorkingPrecision - 8],

datal[b] =Re[Z]
data2[b] = Im[z]}, (b, 1, 40}];
data = Table[If[m =1, datal[k], data2[k]], {k, 1, 40}, {m, 1, 2}]
grl[n] = ListPlot [data, PlotStyle - {PointSize[0.02], RGBColor|[rl, r2, 3]},
AxesLabel - {Re[z], Im[z]}, DisplayFunction = Identity]
gr2[n] = ListPlot [data, BxesLabel - {Be[z], Im[z]}, PlotJoined = True,
PlotsStyle - RGBColor|[rl, r2, r3], DisplayFunction —+ Identity], g =8 + 1},
{n, 1, 3]] ; Show|[grl[1l], gr2[1], grl[2], gr2[2], grl[3], gr2[3],
DisplayFunction - $DisplayFunction]

flx ] := (BesseldJ[1, x]) " 2%Exp[-2+x+h] *
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Fig. Ap.2 ( Section 2.4 ) “Mathematica” program for the selection of the upper limit of
integration in (2.4.13).

Remove ["'Global ™ *"]
a=0.0; 8=2; h=0.05; um=5;
Do|[
{oo[
{1F[n=1, {r1=1,r2=0, r3=0},
If[n=2, {rl=0,r2=1,r3=0}, {r1=0,r2=0, r3=1}11;

SQre[BR2 + 4 XN2]

a+f 7
sqrtb = Sqrt[-i*b];
2+Sgrt[-1xb] _

V[x_ ] :=

zO[x_] := P ;
D1 : B .

[x_] -=um*x+§,
D2 [x ] :=um*x—§;

Jz0[x_] :=BesselJ[v[x], z0[x]];
Jz01[x_] :=BesselJ[v[x] +1, z0[X]]:
V[X]
z0[Xx]
skait[x_] :=D2[x] *Jz0[x] - sqrtb *Jz0pr[X];
sauc[x ] :=D1[x] *Jz0[X] +sqrtb «Jz0pr [X];

JzOpr[x_] :=-Jz01[X] + *JZO[X];

skalt[x] _
sauc [X]
Z =1 xNIntegrate[f[Xx], {X, O, kk}, MaxRecursion -» 50, WorkingPrecision » 12];
datal[b] =Re[Z];
data2[b] = Im[Z]}, {b, 1, 11, 2}];
data = Table[If[m =1, datal[k], data2[k]], {k, 1, 11, 2}, {m, 1, 2}];
Print[data]; B = B}, {kk, 20, 140, 20}]

f[x ] := (BesselJ[1, X])"2*EXp[-2*X*xh] *
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Fig. Ap.3 ( Section 2.5 ) “Mathematica” program for the calculation of the change in impedance
Z by means of (2.5.8) for three different values of ,l? .

Remove["Global ™ *"]

a=0.0;8=1;22=1.6;2z1=0.4;rr2=2;

um=5; nConst =50;

Do|

{Do|
{1f[n=1, {r1=1, r2=0, r3 =0},
Ifn==2, {rl1=0,r2=1,r3=0}, {r1=0,r2=0, r3=1}]11;
SArt[BN2 +4 % x"2]

VIX_] := ;

[x_] a+f3
sqrtb = Sqrt[-i«b];
2 xsqrtb

zZ0[x ] 12— —;

a+f3

B

DI[X_] i=um*X+ —;
2
B

D2[X ] = um*X - —;
[x_1 um % >

Jz0[x_] :=BesselJ[Vv[X], z0[X]];
Jz01[x_] :=BesselJ[v[x] +1, z0[x]];

*Jz0[X];

Jz0pr[X i=-Jz01[Xx v
prix_] = - []+ZO[X]

skait[x_] :=D2[X] *Jz0[X] - sqrtb = Jz0pr[X];
sauc[X_] :=D1[x] *Jz0[X] +sqrtbJz0pr[x];
gint[y_] =
n/2xYy* (Besseld[0, y] = StruveH[1, y] -BesselJ[1, y] =StruveH[O0, Y]);
gintl[x_] = (gint[X*rr2] -gint[x])"2;
£ . skalt[X] » (EXp[-X*Zz1] -EXp[-X%2Z2]) "2 x+gintl[X]
[x_] == sauc[x] * X6 ’
Z1 = i xNIntegrate[f[Xx], {X, 0, 100}, MaxRecursion - 50,
WorkingPrecision - 8] ;
nConst”2
(2 -1)"2% (22-z1) "2
datal[b] = Re[Z];
data2[b] = Im[Z]}, {b, 1, 20}];
data = Table[If[m==1, datal[k], data2[k]], {k, 1, 20}, {m, 1, 2}];
grl[n] = ListPlot[data, PlotStyle » {PointSize[0.02], RGBColor[ri, r2, r3]},
AxesLabel » {Re (z), Im (z)}, DisplayFunction - ldentity];
gr2[n] = ListPlot[data, AxesLabel - {Re (z), Im (z)}, PlotJoined - True,
PlotStyle -» RGBColor([rl, r2, r3], DisplayFunction - ldentity]; B =8+ 1},
{n, 1, 3}]; Show[gr1[1], gr2[1], gri[2], gr2[2], grl[3], gr2[3],
DisplayFunction - $DisplayFunction]

Z1;
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Fig. Ap.4 ( Section 2.6 ) “Mathematica” program for the calculation of the change in impedance
Z for three different values of ,B .

Remove ["'Global ™ %"]

a=0.0;8=1; h=0.05;d=0.2; ul =1; u2 =100; koef=1.5;

Do[{Do[{If[n=1, {r1=1,r2=0, r3=0}, If[n=2, {r1=0, r2=1, r3 =0},
{r1=0,r2=0,r3=1}11;

SqQre[B"2 + 4 xX"N2]

V[X_] ==

a+f
sqrtb = Sqrt[-1xb];
ZO[X_] - = m-

a+f3

z1[x_] :=zO[x]*Exp[—a;B «d];
D1[x_] := g*Exp[B*d]*u2—ul*\/x’\2+i*b*koef;
D2[x_] :=ul*x+§;

/3;0( *d];
JzO[x_] -=BesselJ[v[x], zO[x]];
Jz01([x_] :=BesselJ[v[x] +1, z0[x]];
V[Xx]
z0[x]
YzO[x_] :=BesselY[v[x], zO[x]];
Yz01[x_] :=BesselY[v[x] +1, zO[x]];
VI[X]
z0[x]
Jz1[x_] -=BesselJ[v[x], z1[x]];
Jz11[x_] :=BesselJ[v[x] +1, z1[x]];
V[Xx]
z1[x]
Yz1[x_] -=BesselY[v[x], z1[x]];
Yz11[x_] :=BesselY[v[x] +1, z1[x]];
V[Xx]
z1[x]
R[x_] =D1[x] *Yz1[x] +D3[x] *Yzlpr[X];
F[x_] =D1[X] *Jz1[X] +D3[X] *Jzlpr[X];
skalt[X_] :=R[X] * ((2*X*%ul -D2[X]) *Jz0[X] - sqrtb * Jz0pr[x]) -
FIX] % ((2*X*ul -D2[X]) *YzO[X] -sqrtb = YzOpr[x]);
sauc[X_] :=R[X] * (D2[X] *Jz0[x] +sqrtb *JzOpr[x]) - F[x] » (D2[X] *YzO[X] +sqrtb = Yz0pr[x]);
skait[x] _
sauc [X]
Z =1 xNIntegrate[f[x], {X, 0, 100}, MaxRecursion -» 50, WorkingPrecision - 8];
datal[b] =Re[Z];
data2[b] = Im[Z]}, {b, 1, 10}];
data = Table[I1f[m =1, datal[k], data2[k]], {k, 10}, {m, 1, 2}];
grl[n] = ListPlot[data, PlotStyle » {PointSize[0.02], RGBColor[rl, r2, r3]},
AxeslLabel -» {Re[z], Im[z]}, DisplayFunction - ldentity];
gr2[n] = ListPlot[data, AxesLabel » {Re[z], Im[z]}, PlotJoined » True,
PlotStyle » RGBColor[rl, r2, r3], DisplayFunction -» ldentity]; B =B+ 1}, {n, 1, 3}] :
Show[grl[1], gr2[1], grl[2], gr2[2], gr1[3], gr2[3], DisplayFunction -» $DisplayFunction]

D3[X_] :=pu2 »sqrtb «Exp|

JzOpr[x_] :=-Jz01[X] +

*Jz0[X];

YzOpr[x_] :=-Yz01[x] + *Yz0[X];

Jzlpr[x_] :=-Jz11[x] +

*Jz1[X];

Yzlpr[x_] :=-Yz11[X] + *Yz1[X];

F[x_] := (BesselJ[1l, X])"2+xEXp[-2*X*h] %
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Fig. Ap.5 ( Section 3.3 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (3.3.16).

Remove ["'Global " *""]
r0=0.9; ul1 =1;
Do|[
{Do[{1f[n=1, {r1=1,r2=0,r3=0},
If[n=2, {rl1=0,r2=1,r3=0}, {r1=0,r2=0, r3=1}11;
v=Sqrt[l/4 +ixplN2];
Kv[x_ ] :=BesselK[v, X];
Kvl[x ] :=BesselK[v+1, X];

Kvpr[x_] = -Kv1[X] + X * KV [X];
X

I11[x_] z=Bessell[1, X];
12[x_] z=Bessell [2, X];

1
I1pr[x_] := 12[X] + ;* 11[X];

I11rO[x_] :=Bessell [1, X% r0];
K1[x_ ] :=BesselK[1, X];
D1[X_ ] :=2%ulxXx*11pr[x] + 11[X];
skalt[X_ ] :=2»ulxKV[X];
sauc[x_] :=D1[X] *KV[X] - 2% X*Kvpr[x] = I1[X];
11ro[x]"2 skait[x]
* ( —Kl[x]);
11[x] sauc[x]
Z =i xNIntegrate[f[x], {x, 0.0001, 100}, MaxRecursion - 50,
WorkingPrecision - 8] ;
datal[pl] = Re[Z];
data2[pl] = Im[Z]}, {p1, 1, 15}];
data = Table[I1f[m==1, datal[k], data2[k]], {k, 15}, {m, 1, 2}];
grl[n] = ListPlot[data, PlotStyle » {PointSize[0.02], RGBColor([rl, r2, r3]},
AxesLabel » {Re[z], Im[z]}, DisplayFunction - ldentity];
gr2[n] = ListPlot[data, AxesLabel » {Re[z], Im[z]}, PlotJoined - True,
PlotStyle - RGBColor[rl, r2, r3], DisplayFunction - Identity];
ro=r0-0.1}, {n, 1, 3}];
Show[grl[1l], gr2[1], grl[2], gr2[2], grl[3], gr2[3],
DisplayFunction -» $DisplayFunction]

f[X_] o=
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Fig. Ap.6 ( Section 3.4 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (3.4.26).

Remove [""Global ™ %]
ro=0.9;r02=1.1; ul=1; u2 =6; koef = 1.5;
Do|[
{bo[
{1f[n=1, {r1=1,r2=0,r3=0}, If[n=2, {r1=0, r2=1, r3=0},
{r1=0,r2=0, r3=1}11;
p2 = pl * koef;
q[X_] =SQrt[xX"2 + i *»p272];
v=Sqrt[l/4 +i%pln2];
Kvu[x_] := BesselK[v, X];
Kvul[x_] = BesselK[v+1, X];

Vv
Kvupr[x_] = -Kvul[X] + — *Kvu[X];
X

Kvr2[x_] := BesselK[v, x* r02];
Kvlr2([x_] := BesselK[v+1, x%xr02];

\%
Kvr2pr[x_] = -Kv1r2[X] + * Kvr2[x];
X % r02
Ivu[x_] := Bessell[v, X];
Ivul[x_] :=Bessell[v+1, X];
\%
Ivupr[x_]1 = Ilvul[X] + — » Ivu[X];
X

Ivr2[x_] :=Bessell [v, x*r02];
Ivir2[x_] :=Bessell[v+1, x*r02];

\Y;
Ivr2pr[x_] := Ivlr2[X] + * lvr2[x];
X% ro2

11[x_] :=Bessell[1, X];
12[x_] = Bessell [2, X];
1
I1pr[x_] := 12[X] + — » 11[X];
X

11rO[x_] :=Bessell[1, x*r0];
K1[x_] := BesselK[1, X];

K1r2[x_] := BesselK[1, q[X] = r02];
K2r2[x_] := BesselK[2, q[X] * r02] ;

1
K1r2pr[x_] := -K2r2[Xx] + —q[x] 702 *K1r2[x];
D1[x_ 1 = lvr2[x] *Kvu[X] - IVU[X] * Kvr2[x];
D2[x_1 == Ivr2pr[Xx] *Kvu[Xx] - Ivu[X] * Kvr2pr[X];
D3[x_1 = Ivr2[X] * Kvupr[Xx] - Ivupr[X] « Kvr2[X];
D4[x_1 == Ivr2pr [X] * Kvupr [X] - Ivupr[X] = Kvr2pr[x];

D5[X_1 = 2% ul*Xx*11pr[x] + 11[X];
D6[X] = u2%*K1r2[Xx] » (D1[X] - 2*X» r02+«D2[X]) ;
D7[x_1 :=2%ulxq[Xx] *K1lr2pr[x] *D1[X];

skait[x_] :=2%ul* (D6[X] + D7[X]) ;
sauc[X_] = D5[X] * (D6[X] +D7[X]) - 2% X % u2 * KLr2[X] * 11[X] » (D3[X] - 2*X» r02%D4[Xx]) -
4w plxX*q[X] *KLr2pr[x] = 11[X] *D3[X];
11rOo[x] "2 skait[x]
fx_] := *(
11[x] sauc[Xx]
Z = ixNIntegrate[f[Xx], {x, 0.0001, 100}, MaxRecursion -» 50, WorkingPrecision - 8];
datal[pl] = Re[Z];
data2[pl] = Im[Z1}, {pl, 3, 10}];
data = Table[I1f[m =1, datal[k], data2[k]], {k, 3, 10}, {m, 1, 2}1;
grl[n] = ListPlot[data, PlotStyle » {PointSize[0.02], RGBColor|[rl, r2, r3]1},
AxesLabel » {Re[z], Im[z]}, DisplayFunction -» ldentity];
gr2[n] = ListPlot[data, AxesLabel » {Re[z], Im[z]}, PlotJoined - True,
PlotStyle -» RGBColor[rl, r2, r3], DisplayFunction - Identity]; r02 = r02+0.1}, {n, 1, 3}];

Show[grl[1], gr2[1], grl[2], gr2[2], gr1[3], gr2[3], DisplayFunction » $DisplayFunction]

-Kl[x1);
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Fig. Ap.7 ( Section 3.5 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (3.5.29).
Remove [""Global ™~ %""]
ro=1.1;r02=0.9; ul=1; u2 =5; koef=1.5;
Do|
{Do|
{If[n =1,{rl=1,r2=0, r3=0},
If[n=2, {r1=0,r2=1,r3=0}, {r1=0,r2=0, r3=1}11;
p2 = pl x koeT;
q[x_] =SqQrt[xX"2 + i % p2°2];
V=Sqgrt[l/4 +i%pl"2];
Kvu[x_] := BesselK[v, x]; Kvul[x_] := BesselK[v+1, X];

\"
Kvupr[x_] = -Kvul[X] + — *Kvu[X];
X

Kvr2[x_] := BesselK[v, X% r02]; Kvlr2[x_] :=BesselK[v +1, Xx*r02];

\Y
Kvr2pr[x_] = -Kv1lr2[x] + * Kvr2[x];
X *

ro2

Ivu[x_] = Bessell [v, x]; lvul[x_] :=Bessell[v+1, X];
\%

Ivupr[x_] = Ivul[X] + — » Ivu[X];
X

Ivr2[x_] :=Bessell[v, x*r02]; lvir2[x_] :=Bessell[v+1, xxr02];

v
Ivr2pr[x_] = Iv1r2[x] + * Ivr2[x];

X % r02
K1[x_] := BesselK[1, x]; K2[x_] := BesselK[2, X];

Klpr[x_1] :

1
-K2[X] + — *K1[X];
X

K1rO[x_] := BesselK[1, X r0];
K1[x_] := BesselK[1, X];

I11[x_] := Bessell[1, X];

11r2[x_] = Bessell [1, q[X] * r02];
12r2[x_] := Bessell [2, q[X] = r02] ;

1
11r2pr[x_] == 12r2[X] + m * 11r2[x];
D1[x_] = lvr2[X] *Kvu[X] - Ivu[X] * Kvr2[X];
D2[x_1] == Ivr2pr[X] * Kvu[X] - Ivu[X] * Kvr2pr[x];
D3[x_]1 == Ivr2[Xx] = Kvupr[X] - Ivupr [X] = Kvr2[X];

D4[x_1 == Ivr2pr[X] « Kvupr[Xx] - Ivupr[X] » Kvr2pr[X];
DS5[X_] = 2% pul X+ Klpr[x] + K1[X];
D6[X] 2= u2 % 11r2[X] » (D1[X] - 2% X* r02xD2[X]) ;
D7[x_] :=2%ul*xq[X]*11r2pr[x] *D1[X];
skalt[x_] :=2%pul* (D6[X] + D7[X]) ;
sauc[x_] :=D5[x] » (D6[X] +D7[x]) -
2% X% pu2 % 11r2[X] * KL[X] * (D3[X] -2 *X % r02%D4[X]) -
AaeplxXxq[X] * 11r2pr[x] * KL[X] *D3[X];
K1rO[x] "2 skait[x]
* (- - I1[x]) ;
K1[X] sauc [X]
Z = i xNIntegrate[f[x], {x, 0.0001, 100}, MaxRecursion - 50,
WorkingPrecision -» 8] ;
datal[pl] = Re[Z];
data2[pl] = Im[Z]}, {pl, 1, 20}];
data = Table[1f[m== 1, datal[k], data2[k]], {k, 1, 20}, {m, 1, 2}];
grl[n] = ListPlot[data, PlotStyle -» {PointSize[0.02], RGBColor[rl, r2, r3]},
AxesLabel » {Re[z], Im[z]}, DisplayFunction - ldentity];
gr2[n] = ListPlot[data, AxesLabel -» {Re[z], Im[z]}, PlotJoined - True,
PlotStyle » RGBColor([rl, r2, r3], DisplayFunction -» ldentity]; rO=r0 + 0.2},
{n, 1, 3}]; Show[grl[1], gr2[1], grl[2], gr2[2], gri[3], gr2([3],
DisplayFunction - $DisplayFunction]

f[x_] :=
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Fig. Ap.8 ( Section 3.7 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (3.7.31) .

Remove [""Global ~ "]

ro=0.8;r2=1.2; u1=1;38=0; koef=1.5;

pk = 1;

Do

{Do[{1f[n=1, {rr1 =1, rr2=0, rr3 =0},

If[n=2, {rr1 =0, rr2=1, rr3 =0}, {rr1=0, rr2=0, rr3=1}11;
u2 = ulxr273;
p2 = pl « koef;
q[X_] =SqQrt[X"2 + 1 »p2];
Cc=B+3;

ixpl

[x_] c
a[x_] 1= — + ;
- 2 2% X

fl[x_, Yy ] :=HypergeometricU[a[X], C, 2*X=*Y];

flpr[x_, y_] := -a[Xx] »HypergeometricU[a[X] +1, Cc+1, 2xX*xVY];

Fil[x_, y_] 1= y*  +Exp[-x*y] * F1[X, y];

Filprix_,y 1 :=yP«Exp[-X*yl* ((B+1-Xxy)*FL[X, Y] +2+X*yx FIprix, y1);
f2[x_, y_] :=HypergeometricU[c - a[X], C, -2%X*Y];

f2pr[x_, y_1 := (a[X] - ¢c) *HypergeometricU[c -a[x] +1, c+1, -2xX=*VY];

(* (c-a[Xx]) =*)

Fi2[x_,y 1 1=y «Exp[x+y] *F2[X, y];

FI2prix_, y 1 :=YP+EXp[X*y]* ((B+1+Xxy) *F2[X, Y] - 2+ Xxy*F2pr[x, y1);
K1[x_] := BesselK[1, X];

K2[x_] := BesselK[2, X];

1
Klpr[x_] := -K2[X] + — *K1[X];
X

11[x_] :=Bessell[1, X];
12[x_] :=Bessell [2, X];

1
11pr[x_] := 12[X] + — *» 11[X];
X

11rO[x_] := Bessell [1, x%r0];
D1[x_] := Filpr[x, r2] = fi2[x, 1] - fil[x, 1] = Fi2pr[x, r2];
D2[x_1 = Fil[x, 1] » Fi2[x, r2] - fil[x, r2] «fi2[x, 1];
D3[x_] := Filpr([x, 1] = Fi2pr[x, r2] - fi2pr[x, 1] =« Ffilpr[x, r2];
DA[x_1]1 := Fil[x, r2] =« fi2pr[x, 1] - filpr[x, 1] «fi2[x, r2];
K1r2[x_] = BesselK[1, q[X] *r2];
K2r2[x_] := BesselK[2, q[X] *r2];
K1ir2pr[x_] := -K2r2[Xx] + ; * K1r2[x];
q[X] *r2
skait[x_] 1= u2 *xK1r2[x] + D1[x] + q[X] *ulx (r2)#+ Kilr2pr[x]+D2[x];
sauCc[x_] := X*pu2 % ul «KLr2[x] = 11pr[x] * D1[X] +
X% Q[X] * (ul)z* (r2)8 « K1r2pr[X] = I1pr[X] * D2[X] + u2 * KLr2[X] » I1[X] *D3[X] +
q[X] *#ulx (r2)f s Kir2pr[x] + 11[x] *D4[X];
11rO[x] "2 ulxskait[x] - K1[X] * sauc[X]
Fx_] := *( )
11[x] sauc[x]
Z =i xNIntegrate[f[x], {x, 0.001, 100}, PrecisionGoal ->4];
datal[pk] = Re[Z];
data2[pk] = Im[Z]; pk =pk+ 1}, {pl, 1, 3, 0.5}];
data = Table[If[m=- 1, datal[kk], data2[kk]], {kk, 5}, {m, 1, 2}];
grl[n] = ListPlot[data, PlotStyle » {PointSize[0.02], RGBColor[rrl, rr2, rr3]},
AxesLabel » {Re[z], Im[z]}, DisplayFunction - ldentity];
gr2[n] = ListPlot[data, AxesLabel » {Re[z], Im[z]}, PlotJoined -» True,
PlotStyle -» RGBColor[rrl, rr2, rr3], DisplayFunction - ldentity]; B=8-1; pk= 1},
{n, 1, 3}];
Show[{grl[l1], gr2[1], grl[2], gr2[2], grl[3], gr2[3]},
DisplayFunction - $DisplayFunction]
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Fig. Ap.9 ( Section 4.2 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (4.2.15).
Remove ["'Global ™ %"]
a=0.0;8=1; h=0.05; um=5;
Do|
{Do[{lf[n =1,{rl=1, r2=0, r3 =0},
If[nN=2, {r1=0,r2=1,r3=0}, {r1=0,r2=0, r3=1}11;

SQre[BN2 +4 *xXN2]
V[X_] o= 5
a+f3
sqgrtb = Sqrt[-ixb];
2 xsqrtb
z0[x_] iz ———;
a+f3

D1[x 1] :=um*x+§;

B
D2 o= - —
[x_1] um % X >

1z0[x_] :=Bessell [v[X], zO[X]];
1z01[x_] :=Bessell [Vv[x] +1, zO[x]];

VIX]
1z0pr[x_] := -1z01[x] + *120[X];
z0[x]

skait[x_] :=D2[x] * 1z0[x] - sqrtb x 1z0pr[X];
sauc[x_] z=D1[x] % 1zO[X] +sqrtb 1z0pr[X];
1 -Cos[X] skait[x]
fIx ] iz ———— xEXp[-2*X*h] ¥ ——8 —;
X sauc [X]
Z = i *NIntegrate[f[Xx], {X, 0, 100}, MaxRecursion - 100,
WorkingPrecision - 8] ;
datal[b] = Re[Z];
data2[b] = Im[Z]}, {b, 1, 60}];
data = Table[I1f[m== 1, datal[k], data2[k]], {k, 1, 60}, {m, 1, 2}];
grl[n] = ListPlot[data,
PlotStyle » {PointSize[0.02], RGBColor[rl, r2, r3]},
AxesLabel » {Re[z], Im[z]}, DisplayFunction - ldentity];
gr2[n] = ListPlot[data, AxesLabel » {Re[z], Im[z]}, PlotJoined -» True,
PlotStyle » RGBColor[rl, r2, r3], DisplayFunction - ldentity];
B=B+1}, {n, 1, 3}];
Show[grl[l], gr2[1], grl[2], gr2[2], grl[3], gr2[3],
DisplayFunction -» $DisplayFunction]
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Fig. Ap.10 ( Section 4.3 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (4.3.30).
Remove ["Global ™ %]
rc = 0.05;
a=0.0;8=1; h=0.05;d=0.05; ul =1; u2 =100; koefF=1.5;
Do|
{po[
{1f(n=1, {r1=1,r2=0,r3=0},
If[n=2, {r1=0,r2=1,r3=0}, {r1=0,r2=0, r3=1}11;

SArt[BN2+4 »x"2]

VIx_] =
[x_] a+f
sqgrtb = Sqrt[-i=*b];

2 xsqrtb
z0[x_] i1=2 ———;

a+f3
1 orx] «Exp[- 22 L d
z1[X :=z0[Xx Xp |- ;
[x_] [X] *Exp| > xd]
D1[x_] := g*uZ*EXp[B*d] - ul*xVx"2 +1 xb+koef;

B-a

D2[x_] := u2*sqrtb«Exp|[ «d];

2
D3[X_] :=2%X#*ul+ B;

1zO[x_] = Bessell [v[x], zO[x]]; 1z01[x_] := Bessell [V[X] +1, zO[X]];

V[X]
1z0pr[x_] = -1z01[Xx] + * 1z0[X];
z0[Xx]

KzO[x_] := BesselK[V[X], zO[x]]; KzO1[x_] :=BesselK[Vv[x] +1, zO[X]]:

V[X]
KzOpr[x_] = -Kz01[X] + *KzO[X];
z0[Xx]

1z1[x_] :=Bessell [V[X], z1[Xx]]; 1z11[x_] -:=Bessell [v[X] +1, z1[X]];

V[X]
Iz1lpr[x_] = -1z11[X] + * 1z1[X];
z1[x]

Kz1[x_] :=BesselK[Vv[X], z1[X]]; Kz11[x_] = BesselK[v[x] +1, z1[x]];

VI[X]
Kzlpr[x_] = -Kz11[X] + *Kz1[X];
z1[x]

DA[x_] = 1z0[Xx] *Kz1[x] - 1z1[X] » KzO[X] ;
D5[x_1 = 1z0pr[x] *Kz1[Xx] - 1z1[X] » KzOpr[X];
D6[x_]1 = 1z0[X] *Kz1lpr[Xx] - 1z1pr[X] * KzO[X];
D7[x_]1 = 1z0pr[Xx] *Kzlpr[x] - 1z1pr[X] = KzOpr[x];
skalt[x_] := ul* (D1[X] *D4[X] + D2[X] *D6[X]) ;
sauc[X_] :=D1[X] *D3[X] * DA4[X] + 2xsqrtb = D1[x] *D5[x] + D2[X] * D3[x] *D6[X] +
2xsqrtb*D2[X] *D7[X];
skait[x]
fx_] := (
sauc [X]
Z = ixNIntegrate[f[X], {X, 0, 100}, MaxRecursion -» 50, WorkingPrecision - 8] ;
datal[b] = Re[Z];
data2[b] = Im[Z]}, {b, 1, 10}];
data = Table[If[m=- 1, datal[k], data2[k]], {k, 10}, {m, 1, 2}];
grl[n] = ListPlot[data, PlotStyle » {PointSize[0.02], RGBColor([rl, r2, r3]},
AxesLabel » {Re[z], Im[z]}, DisplayFunction - ldentity];
gr2[n] = ListPlot[data, AxesLabel - {Re[z], Im[z]}, PlotJoined - True,
PlotStyle » RGBColor[rl, r2, r3], DisplayFunction - ldentity]; B=8+ l},
{n, 1, 3}]; Show[grl[1l], gr2[1], grl[2], gr2[2], grl[3]1, gr2[3],
DisplayFunction - $DisplayFunction]

1
- )*EXp[—Z*X*h]*(l—COS[X]);
4 %X
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Fig. Ap.11 ( Section 4.4 ) “Mathematica” program for numerical calculation of the integrated
EMF given by formula (4.4.47).

Remove [""Global ™ "]
masT = {107%, 107>, 1074, 5+107%, 1073, 51073, 1072, 5%1072, 107%};
maso = {1%10’, 5%10’, 10 10};
u=2;h=0.1;
Do[
{o=maso[[n]];
Do[{If[n=1, {rr1=1, rr2=0, rr3 =0},
IfN=2, {rr1 =0, rr2=1, rr3=0}, {rr1=0,rr2=0, rr3=1}]11;
T=masT[[k]] // N;
T[x_] =A%nx10" % puxo/X°;
f[t_, t_, p_] = InverseLaplaceTransform[2xpu / (u+ SqQrt[l+sxt]) -1, s, t];
fl[z_, u_, T_] = Integrate[f[t, T, u], {t, 0, T}];
aa = NIntegrate[Exp[-2*X xh] » (Cos[X] -1) /X (FL[t[X], i, T]1), {X, O, 2000}1];
datal[k] =T;
data2[k] = aa}, {k, 1, 9}1;
data = Table[1f[m== 1, datal[kk], data2[kk]], {kk, 9}, {m, 1, 2}1;
grl[n] = ListPlot[data, PlotStyle » {PointSize[0.02], RGBColor[rrl, rr2, rr3]},
AxeslLabel » {t, V[t]}, DisplayFunction - ldentity];
gr2[n] = ListPlot[data, AxesLabel » {T, V[T]}, PlotJoined -» True,
PlotStyle - RGBColor[rrl, rr2, rr3], DisplayFunction -» ldentity]}, {n, 1, 3}1;
Show[{grl[1], gr2[1], grl[2], gr2[2], grl[3], gr2[3]},
DisplayFunction -» $DisplayFunction]
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Fig. Ap.12 ( Section 5.1 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (5.1.40).

Remove ["'Global ™ %"']
a=0.0;8=2; h=0.05;d=0.1; ro=5; um=5;
Do|[
{Do[{lf[n =1,{rl=1,r2=0, r3=0},
If[Nn=2, {r1=0,r2=1,r3=0}, {r1=0,r2=0, r3=1}11;
SArt[BN2 + 4% X"2]

VIX_,Yy_] := o+ B s

bsgrt[x_,y_ ] :=Sqrt[-i (612 +ro*X*xCos[y])];

Dl[x_,y 1] := g + UM * X3

D2[x_,Vy 1:

— —um*X;
2

2xbsqrt[x,
20[x_, y_] 1= —223ArtDG V1

a+f3

JzO[Xx_, y_] :=BesselJ[Vv[X, Y], z0[X, y11;
Jz01[x_,y_ ] :=BesselJ[Vv[x, y] +1, z0[X, y11;

. V[X, yl .
Jz0pr[x_,Vy_] :=-Jz01[X, Y] + —— *Jz0[X, VY];
z0[X, Y]

skait[x_,y_ 1 :=D2[x, y] *Jz0[X, Y] + bsqgrt[x, y] * Jz0pr[X, Yy];
sauc[x_, Yy ] :=D1[X, y]*JzO[X, y] +bsqgrt[x, y] *Jz0pr[x, y];

skait[x, Y]
F[x_,y ] :=BesselJ[1l, X]"2+xExp[-2*X*h] ¥ ——83 ———;
sauc[x, Y]

Z= -%*Nlntegrate[f[x, yl, {x, 0.000, 100}, {y, 0.000, 2=xrx},

PrecisionGoal -> 4] ;
datal[s61] = Re[Z];
data2[s1] = Im[Z]}, {61, 1, 20}];
data = Table[If[m= 1, datal[k], data2[k]], {k, 1, 20}, {m, 1, 2}];
grl[n] = ListPlot[data,
PlotStyle -» {PointSize[0.02], RGBColor[rl, r2, r3]},
AxeslLabel » {Re[z], Im[z]}, DisplayFunction - Identity];
gr2[n] = ListPlot[data, AxesLabel » {Re[z], Im[z]}, PlotJoined - True,
PlotStyle -» RGBColor([rl, r2, r3], DisplayFunction - Identity];
ro = ro+5}, {n, 1, 3}];
Show[grl[1l], gr2[1], grl[2], gr2[2], gr1[3], gr2([3],
DisplayFunction - $DisplayFunction]
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Fig. Ap.13 ( Section 5.2 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (5.2.31).

Remove ["'Global ~ ']
a=0.0;8=1; h=0.05;d=0.2; k6=1.5;ro=1; um=1; u2 =5;

Do
{Do]
{If[n::l, {r1=1,r2=0,r3=0}, If[n=2, {r1=0,r2=1,r3=0}, {r1=0,r2=0,r3=1}11;
62 =ké*561;
SQre[BN2 + 4% XN 2]
VIX_,y_1]:= ;

a+f3
bsgrt[x_, y_] :=Sqrt[-i* (612 +ro*XxxCos[y])];
g2[X_, Y_] :=SQrt[X"2 +1i % 62"2];
2xb
ZO[X_, y ]:= M;
a+f3
- d
z1[X_,y_ 1 :=20[x, Y] *Exp[%];
JzO[x_, Yy ] :=BesselJ[V[Xx, Y], z0[X, y]1;
Jz01[x_,y_] :=BesselJ[Vv[x, y] +1, z0[x, y11;
. VIX, Y] .
JzOpr[x_, y_] :=-Jz01[X, Y] + ————— %« Jz0[X, Y]
z0[X, V]
Jz1[x_, Yy ] :=BesselJ[V[X, Y], z1[X, Y]];
Jz11[x_, y_] :=BesselJ[Vv[x, y] +1, z1[x, y1]:
. VX, Y] .
Jzlpr[x_, y_] :=-Jz11[X, Y] + ————— % Jz1[X, Y];
z1[x, y]
YzO[x_, Yy ] :=BesselY[V[X, Y], z0[X, y]1;
Yz01[x_, y_] :=BesselY[V[x, y] +1, zO[x, y11;

) VX, y] .
YzOpr[x_, y_] :=-Yz01[X, Y] + —————— *YzO[X, Y]
z0[X, V]
Yz1[x_,Yy_] :=BesselY[V[X, y], z1[X, y]];
Yz11[x_, y_] :=BesselY[V[X, y] +1, z1[X, yI];
. VX, Y] .
Yz1pr[x_, y_] :=-Yz11[X, Y] + ————— %« Yz1[X, Y]
z1[x, y]
D1l[x_,y_]1 :=Jz0[X, Y] *Yz1[X, y] -Jz1[X, Y] *YzO[X, V]
D2[x_, y_ 1 :=Jz0pr[X, y] *Yz1[X, y] -Jz1[X, Y] *YzOpr[X, y];
D3[x_, y_ 1 :=Jz0[X, Y] *Yzlpr([X, y] -Jzlpr([X, Y] *Yz0[X, y];
DA[x_,y_ 1 :=Jz0pr[x, y] *Yzlpr([x, y] - Jzlpr[X, y] * YZOpr[X, Vy];
2
D5[x_,y_ ] := K 2*/3 * EXp[B*d] -um=xQg2[X, Y];

D6[X_, Yy ] t=umxX+ g;

(B-a) *d .
2 Ik
skait[x_,y ] :=2%xX*um= (D5[X, y] *D1[x, y] -D7[X, y] *D3[X, y]):;

D7[x_, Y_] := u2bsqrt[x, y] «Exp|

sauc[x_, y_] :=D5[x, y] = (D6[X, y] *D1[X, y] + bsqrt[x, y] *D2[x, y]) +
D7[x, y] * (D6[X, y] *D3[x, y] +bsqrt[x, y] *D4[X, y]) ,

skait[x, y]
fIx_,y ] :=BesselJ[1l, X]*"2+EXp[-2xX*xh] % (1— —);
sauc[x, Y]

Z-= —%*Nlntegrate[f[x, y1, {X, 0.001, 50}, {y, 0.000, 2+x}];

datal[é1l] = Re[Z];
data2[s1] = Im[Z]}, {61, 1, 10}];

data = Table[If[m= 1, datal[k], data2[k]], {k, 1, 10}, {m, 1, 2}71;

grl[n] = ListPlot[data, PlotStyle » {PointSize[0.02], RGBColor[rl, r2, r3]1},
AxeslLabel » {Re[z], Im[z]}, DisplayFunction -» ldentity];

gr2[n] = ListPlot[data, AxesLabel » {Re[z], Im[z]}, PlotJoined - True,

PlotStyle -» RGBColor[rl, r2, r3], DisplayFunction - ldentity]; ro = ro+2}, {n, 1, 3}];
Show[grl[1], gr2[1], grl[2], gr2[2], gr1[3], gr2[3], DisplayFunction -» $DisplayFunction]
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Fig. Ap.14 ( Section 6.1) “Mathematica” program for numerical calculation of the change in

impedance given by formula (6.1.77).

Remove["Global "]

mm = 107%; MSm = 10%; knz = 10%;

rO =4.5»mm;

h=0.2+mm;

o=0.8%wMSm; p0 = 4*7(*10'7; £ff = 22695059
a=2+n%ff; c=12.75 f2+mm; r2 = 6+mm; rl
z2 =0.3%+mm; z1 = 0. 06 %+mm ;

d=1.93 %mm;

: nConst =100;

=3+mm: b =10+12;

pdata = {67.00875183470953" + 1.2984687655904985" 0, 125.7226613564663" + 3.313199300880373"
185.26797461012538° + 5.552151080078192" &, 245.4513397389452° + 7.886303003911224" 4,
306.1811733439874° + 10.160240304197377 " 4, 367.2191824109314° + 12, 0807647363595478" 4,
427.87542043912464° + 13.649336114655455° 4, 487.52256884428806° + 15.77775453323662 4,
546.0575269481018° + 20,309151366631184° @, 599.3933177946013" + 33.04022627046605 1@,

371.161733985946° + 184,13053693428637°
686.8240879632289° + 19, 44069396726628°
798.357863313516° + 14.651451579730805°
904.2069105583389° +17.015615578586213°

n, §32.994932851322° + 31.1555620729415 " 4,

n, 743.0023811242852° + 15.560192051270032 4,
n, 852.3397533788766° + 15.591457610303891 " 4,
0, 954.6318525239519° + 16.64506260361474° &,

1006.1008882269491° + 14.454024526942483° &, 1059.0183179232567  + 12.483338703200928°
1112. 3684283128523 + 11.602421080194741° &, 1165.3787366618303° + 11.679764620140228°
1217.6585%972232187° +12.05560530821854° &, 1269.4123119845153° + 11.891456260181204 " 4,
1321.351079404242° +10.995238689769918 4, 1373.8252323146492° + 9.967652182283146 4,
1426.593992255994° + 9.36820680251447 " 4, 1479.2767129803842° + 9,.291283334691602" 4,
1531. 6382027455247 + 9.4289092104938%93" 4, 1583.734548341550%2° + 9.337124176993564 " 4,
1635. 8676959906277 + 8.851834990987964° 0, 1688.2474561075826° + 8.227260622881996° 4,
1740.8078145995062° + 7.806050502013001" &, 1793. 3514629420179 + 7.704072754100186" 4,
1845.7309961023407° + 7.762613161322348° 4, 1897.9559742082515° + 7.707171939284005" 4,

1950.179816990255° + 7.4064443932604° 4,

2055.003597153803"° + 6.676178499558322°
215h9. 860450418002 + 6.602805798281011°

2264.41611977299° + 6.36675392146837" 1@,

2369.187581341504° +5.827102354639212°

2002.5338491536913" + 6.987598578296566° 14,
f, 2107.4781906770722° + 6.577008958534012" 4,
n, 2212.144283023319° + 6.5681502604885h44° &,

2316. 762890578386 + 6.06720252354737 4,

n, 2421.6238646500615° + 5.736616095862516 4,

i,

i,

2474.0047525045966° +5,7466390884555655 @1, 2526.3190643630173° + 5.724660173565664 1,

2578.618788764458° + 5_582926146972814°

4, 2630.964165140325° + 5.358959336062282° 4,

2683.36422037534° + 5.167741449353327 " n, 2735.7774522855866° + 5.086367189604264° 4,

2788.15h982455466° + 5_087887730298888"
2892 .804576916251° +4.970759244690764°
2097.5361645%15454° + 4. 641685969794301°
3102.310773531464° + 4_565037065899655°

i, Z840. 4874766161543 + 5.073932090767937 " 4,
4, 2045.1505478417525° + 4.797845025743435 &,
4, 3049.9346475338543° + 4.568518774767272 4,
4, 3154.652566568355° + 4.5562711908%08575 " 4,

3206.9810883827386° + 4.479355980835865 1, 3259.3282918463915° + 4.3426200071251095 " 4@,

3311.704993147244° + 4_212560296494019°
3416. 4675262502045 + 4,139852368583515

i, 3364.093575748427° + 4.146485966907286° 4,

T4, 3468.815781357%907 + 4,134472852010781 &,

3521.1521336231694° + 4,0761437759461785° @, 3573.5007047974364° + 3. 9660168956784103" a};

kol =10 + 24 + 34;
<< LinearAlgebra MatrixManipulation’

<< HumericalMath BesselZeros’

1
Adata = . wBesselTZeros[1, kol];
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mn = 0;
po[{A =Adata[[ni]];
Ao =dwe; jlie = BeeeelT[1, Ac]; (v T1 (45 o) ")

j2Ac = Besseld[2, Ac]; (+ T2 () %)
J0ib = FesseldT [0, ib]; (¥ Top (A3Db] *)
Jlaxr( =Besseld[1l, A+»x0]; (¥ T1 (A5 x0) *)

Ab = Axb; j1Ab = BesseldJ[1, Ab]; [+ J1({35hb) *)

G0Ab = Besseld [0, Ab]; (* Tg {A5Db) %)
j2Abh = Besseld[2, Ab]; (* T2 (3b] *)
p =pdata[[ni]]: {+ p saknes no programmas )

gqrert - Spb[p T2 —draworp0];

(* pe *)
pol =pwce; jlpo =Besseld[1, pel]; {(+ J1(pic) ¥
j2pc =Besseld[2, pel]:; (% Jz (pic) W)
vlpco = BesselY[1, pol]; (+ ¥ (pic) W)
v2pc = Bessel¥Y[2, pol]:; (+ ¥z (pic) W)
(% pb w)
pbl =p+h; jlpb = BesselT[1, pbl]: [+ J1(pib)] w)
j2ph =BoeaclT (2, phl]; [+ Tz {pp1h) w )
¥lpb =Bessel¥Y[1, pbl]: [+ Y1 (pib)] w)
vZph = bessel¥ [2, phl]; [+ Y31 (pih) *)
(¥ qc *)
gol = gvert ¥c; jlge = BesseldJ[1, gol]; (+ J1 (gi c) *)
j2qc =BesselJ[2, gol]; (* T2 (gi o) *)
vlgo =Bessel¥Y[1, gol] ; (+ ¥1 (gzc) w)
v2qc =Bessel¥Y[2, gol] ; (+ ¥2 (gic) w)
(* ab *)
ghl = gvert +b; jlgb = BesselJ[1, gbhl]: (+ J1 (g b) *)
J2gb =Besseld[2, gbl]; (+ T2 (i b) w)
vlgb =BesselY[1, ¢gbl]; (* Y1 (uib) *)
v2gh =Bessel¥[2, gbl]; (+ ¥2 (gib) w)
(¥ Ti (pic) = J1 (pi c)+¥1 (pib)-T1 (pi b)#¥1 (pic)  #)
T1 = jlpc +v¥lpb - jlpb+ vlpc;
aal = ;*(l*jZAc*jlqc—qvert*jllc*j?qc); (+ a21ij *)
A? - gvert?
aa2 = 12—:1_132 * (Ac*J2Ac* (jlpb»ylpc - jlpo+ylpb) +polxjlic+ (J2pc »vliph - jlpb+ v2po));
(+ a%i5 ¥)
a2 =Tlwaal + jlgowaa2; (v aZij *)
nmn =nn +1;
aZdata[mn] = a2;
Al[mn] = (A +p) v+a2; AZ2[mn] = (A -p) va2;
A3[nn] = (X -p) *Exp[-prd] va2; Ad[nn] = (X+p) *Explp*d] ¥a2;
Znam =h2*j0).h2;
2+a2
Bl[nn] = ;
Znam

Ed[nj] =j1ax0«Exp[-A+h];

Bvert[nj] =p0+r0+«EJ[nj];

Bvert[nj]
Dvertnil = —  om

}. {ni. 1, kol}, {ni, 1, kel}]:
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211 = Table[Al[(kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
212 = Table[A2[ (kk -1) #kol « k], {kk, 1, kol}, {k, 1, kol}];
221 = Table[A3[(kk -1) vkol + k], {kk, 1, kol}, {k, 1, kol}]:
222 = Table[A4[(kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
B1l = Table[B1[(kk -1) vkol + k], {kk, 1, kol}, {k, 1, kol}];
EET = Table[EJ[k], {k, 1, kol}];

AR =BlockMatrix[{{al1l, al12}, {AZ21, B22}}]:
BB =Table[If[i £kol, Bvert[i], 0], {i, 1, 2+kol}];
so0l =LinearSolve[AA, BB];

Do[{D6[k] =sol[[k]]; DB[k] =sol[[kol +k]]}, {k, 1, kol}];
DD6 = Table[D&6[k], {k, 1, kol}]:

DD8 = Table[D8[k], {k, 1, kol}]:;

DDvert = Table[Dvert|[k], {k, 1, kol}]:

DD? =B11. (DD6 + DD8) - DDwvert;

Al0ind = DD2.EEJ;

Zind - Z2+xw+rO0v i+ o+ alind;

Print['koel = ", kol, " £f = ", ff," A0ind = ", A0ind, " Zind = =,
Zind]
kol - 68 FF - 2269.91 AOind - -3.16713x108-7.67604x10 81 Zzind - 0.000030954 - 0.0000127716 i
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Fig. Ap.15 ( Section 6.2 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (6.2.14).

Remove ["'Global " %]

mm = 1073; MSm = 108; kHz = 103;

0=9.6+xMSm; O = 4 %7 * 10‘7; f = 2269.9059; nConst = 100;
w=2%nxFF;c=19.75/2+mm; r2=6xmm; rl=3xmm; b=10%r2;
22 =0.39xmm; z1=0.06%mm;

d=1.93%mm;

pdata = {67.00875183470953" + 1.2984687655904985" i, 125.7226613564663" + 3.313199300880373" i,
185.26797461012538" +5.552151080078192" i, 245.4513397389452" + 7.886303003911224" i,
306.1811733439874" + 10.160249304197377" i, 367.2191824109314" + 12.080764736395478" i,
427 .87542043912464~ + 13.649336114655455™ 1, 487.52256884428806" + 15.77775453323662" 1,
546.0575269481018" + 20.309151366631184~ i, 599.3933177946013" + 33.04022627046605" i,
371.161733985946" + 184.13053693428637" i, 632.994932851322" + 31.1555629729415" i,
686.8240879632289" + 19.44069396726628~ i, 743.0023811242852" + 15.560192051270032" i,
798.357863313516" + 14.651451579730805" i, 852.3397533788766" + 15.591457610303891" i,
904.2069105583389" + 17.01615578586213" i, 954.6318525239519" + 16.64506260361474" i,
1006.1008882269491" + 14.454024526942483" i, 1059.0183179232567" + 12.483338703200928" 1,
1112.3684283128523" +11.602421080194741" i, 1165.3787366618303" + 11.679764620140228" i,
1217.6585972232187" +12.05560530821854" i, 1269.4123119845153" + 11.891456260181204" i,
1321.351079404242~ +10.995238689769918" i, 1373.8252323146492" + 9.967652182283146" i,
1426.593992255994" +9.36820680251447" i, 1479.2767129803842" + 9.291283334691602" i,
1531.6382027455247~ +9.428909210493893" i, 1583.7345483415509" + 9.337124176993564" i,
1635.8676959906277" +8.851834990987964" i, 1688.2474561075826" + 8.227269622881996" i,
1740.8078145995062" + 7.806050502013001" i, 1793.3514629420179" + 7.704072754100186" i,
1845.7309961023407" +7.762613161322348™ i, 1897.9559742082515" + 7.707171939284005" i,
1950.179816990255~ + 7.4064443932604" i, 2002.5338491536913" + 6.987598578296566" i,
2055.003597153803" + 6.676178499558322" i, 2107.4781906770722" + 6.577008958534012" i,
2159.860450418002" + 6.602805798281011" i, 2212.144283023319" + 6.568150260488544" i,
2264.41611977299" +6.36675392146837" i, 2316.762890578386" + 6.06720252354737" i,
2369.187581341504" +5.827102354639212"~ i, 2421.6238646500615" + 5.736616095862516" i,
2474 .0047525045966" +5.7466399884555655™ i, 2526.3190643639173" + 5.724660173565664" i,
2578.618788764458" +5.582926146972814" i, 2630.964165140325" + 5.358959336062282" i,
2683.36422037534" +5.167741449353327" i, 2735.7774522855866" + 5.086367189604264" i,
2788.155982455466" +5.087887730298888~ i, 2840.4874766161543" + 5.073932090767937" 1,
2892.804576916251" +4.970759244690764" i, 2945.1505478417525" + 4.797845025743435" i,
2997.536164915454" +4.641685969794301" i, 3049.9346475338543" + 4.568518774767272" i,
3102.310773531464" +4.565037065899655" i, 3154.652566568355" + 4.5562711908908575" i,
3206.9810883827386" +4.479355980835865" i, 3259.3282918463915" + 4.3426200071251095" i,
3311.704993147244" +4.212560296494019" i, 3364.093575748427" + 4.146485966997286" i,
3416.4675262592045" +4.139852368583515™ i, 3468.815781357907" + 4.134472852010781" 1,
3521.1521336231694" +4.0761437759461785" i, 3573.5007047974364" + 3.9660168956784103" i} ;

kol = 68;

<< LinearAlgebra MatrixManipulation™

<< NumericalMath™BesselZeros™

1
adata = B * BesselJZeros[1, kol];
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nn =0;

DD[{J\ =Adata[[nj]]:;

(w Ac *)

Ao =A+xc; Ab=Axh;

jlAc =Besseld[1, Ac]; (* J1 (A5 ¢c) *)

j2Ac =Besseld[2, Ac]:; (+ J2 (A5 ) *)

(+ Ab )

j1ib =Besseld[1, Ab]; (* J1(A5hb) W)

j0Ab =Besseld[0, Ab]; (* Jo (A b) )

j2Ah =Besseld[2, Ab]; (* J2 (A5 b) *)

p =pdata[[ni]]; (* p saknes no programmas *)

gvert = Sqrt[p" 2 -hrowowrpl];

( pc *)

pol =pwec; jlpe = Besseld[1l, pol]; (» J1 (pic) W)

j2pc =Besseld[2, pol]: (+ J2 (pic) )

vlpc =Bessel¥Y[1l, pcl]; (+ ¥i1 (pic) w)

¥2pc = Bessel¥([2, pol]; (* Y2 (pic) W)

(* pb *)

pbl =p+h; jlpb = Besseld[1, pbl]:; {* J1({pib) *)

j2ph =Besseld[2, pbl]; {+* J2 {(pib) *)

¥lph =Bessel¥[1l, pbhl]; {*+ Y1 (pihb) ¥*)

¥2ph =Bessel¥[2, pbl]; {* Y1 (pib) *)

( qec *)

gol = gvert vo; jlgo = Besseld[1, gol]: {+ J1 (g c) w)
j2¢qc =Besseld[2, gol]; (v J2 (gz o) )
¥lgo =Bessel¥[1, gol]; (+# Y1 {dgic) W]
¥2qc —Bessel¥[2, gcl]; (+ Y2 (gic) *)
(+ gb *)

ghl = gvert vb; jlgh = Besseld[1, ghl]; {+ J1(gib) w)
j2gh =Besseld[2, ghl]; (* T2 (gib)  *)
vlgh - Bessel¥[1, ghl]: {(+ ¥1 {ozb) *]
v2ib =Bessel¥[2, ghl]; (+ ¥z (gib) W]
( Ti{pic) = T1(pic)*¥1(pib)-T1(pib)+*¥1(pic) =)
T1 = jlpc +¥lpb - jlph+ yvlpc;
aal = m*(l*j?lc*jlqc—qvert*jllc*j?qc); (* aZIij *)
aa? = ).2—:}132 ¥ (A v J2Acw (J1lpb v vlpo - Jlpox vlph) + poeljlacy (j2po*v¥lpb - jlphxv¥2pe) ) (¥ azzij *)

a2 =Tlwaal +jlgowaa2; (+ az:ij *)

nn -—nn +1;

aZ?data[nn] =a2;
Adl[nn] = (A +p) +»a2; AZ2[nn] = (A -p) *a2;
A3[mn)] = (A -p) vExp[-p¥d] ¥a2; Ad[nn] = (A+p) *Exp[prd]va2;
Znam :hZ*jO).hz;
2% a2
Bl[nn] = H Ccdiag[nj] = ——
Znam A% Znam

}. {ni. 1, kol}, {ni, 1, kol}];

178



A1l =Table[al[(kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
Al12 =Table[A2] (kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
A21 =Table[a3[ (kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}]:
A22 =Table[a4[ (kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
B1ll =Table[B1[ (kk -1) +kol + k], {kk, 1, kol}, {k, 1, kol}]:
COdiag =Table[Cdiag[k], {k, 1, kol}]:

Cldiag =DiagonalHMatrix[COdiag];

EE = IdentityMatrix|[kol];

A22inv = Inverse[A22];

Y1 =211-a12.322inv.A21;

¥linv = Inverse[¥1];

¥ =B11. (EE -A22inv.A21).¥1linv - Cldiagqg;

Exp[-Ad +=zl] - Exp[-Adi + z2]

po[{Ai = Adata[[i]]; moz1 =

Ail
g0 x» nConst » mmozl
bh[i] = ; fm[i] = mnoz1}, {i, 1, kol}];
(r2 -rl) w (=2 - zl)
bbl =Tahle[bh[k], {k, 1, kol}];
fml = Table[£m[k], {k, 1, kol}];
aind = fml. (¥.bbl);
2%mxnwawnConst
Zind = % aind ;
(r2 -xrl1) » (=2 - z1)
Print[" kol = ", kol, " ££ = ", ££, » 2™ _ v gzind]

kol - 68 fF - 2269.91 z'"d - 0.281031 - 0.122532

* (gint [Ad »r2] - gint[Ad»x1]);
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Fig. Ap.16 ( Section 6.3 ) “Mathematica” program for numerical calculation of the first five
eigenvalues p, .

Remove[""Global “s']
prog[xl_, x2_,yl ,y2 ] :=Module[{xx1=x1, xx2=X2, yyl =yl, yy2=y2, mm= 10°3,
MSm = 10°, kHz = 10°},

0=9.6%MSM; 10 = 4% n+1077; FF= 1xkHz;

w=2%nxTF; c=19.75/2+mm; r2=10xmm; b = 10% r2;

PIX_, Y 1 :=X+i xYy;

PCIX_, Y_1 == PI[X, Y] *C;

pbIX_, Y_1 1= P[X, y1 *b;

X ,Y 1=V X+ +y)2-i xw+o%u0;

QC[X_, Y_1 Z=Q[X, Y] *C;

J0qrx_, y_1 := BesselJ[0, qcix, y11;

J1qrx_, y_1 := BesselJ[1, qcIx, y11;

] . 1 .

1gprix_, = X, Y] - —— *J1q[X, Y1 ;

J10PrLpe, 1 2= J0ADK V1 - oo #3101 V]

. 1 . 1 .

19r2ix Ly 1 e (= 1)« §1qx, VI - ——— » Jlopriix, yi:
JAgprZ[x_, y_1 e, yn2 }*J qrx, yl ac, VI *J1qpri[Xx, y]

JOpIx_, y_1 := BesselJ[0, pcIx, y11;
J1pix_, y_1 := BesselJ[1, pc[x, y11;
YOp[X_, y_] := BesselY[0, pc[x, Y11;
yip[x_, y_1 := BesselY[1, pc[X, Y11

R _ 1 _

1ppripx_, = X, Y] - —— +J1p[X, VI;

J1ppripx_, y_1 == JOpx, yi pCIX, V1 *J1PIX, y]
1

Appri[x_, I= X, Y] - ——— xYIp[X, Y] ;

Y1pprifx_, y_1 = YOPIX, Y] CIX. ] *YIp[X, Y1

JOb[x_, y_1 == BesselJ[0, pb[x, y11;
Jibrx_, y_ 1 := BesselJ[1, pb[x, y11;
yOb[X_, y_] := BesselY[0, pb[x, y11;
ylb[x_, y_] := BesselY[1, pb[x, yi];

Jlbpri[x_,y 1 :=joOb[x, y1 - * J1b[X, y1;

oI, y1
ylbpripx_, y_1 z= yOb[X, y] - B, VT *»y1b[X, y1;
ilppr2ix_, y 1 := (lenz -1) «j1prx, 1 - m *J1ppriix, vi:
YIppr2[x_, y_1 := (lel)z - 1} *y1p[X, Y1 - m +ylpprlix, y1;

F1[X_, Y1 = pIX, Y1 *J19[X, Y] * (JIPPri[x, y1 »y1b[x, yI - J1b[X, Y] »y1ppri[X, y1)
-q[x, y1*J1oprl[x, yl = (J1p[X, y1 »y1b[X, y1 - jIb[X, y] »YIP[X, Y1) ;
21X, y_1 1= J1q[X, y1 » (J1pprl[x, y1 = ylb[x, y1 - JIb[x, y1 »ylpprlix, y1) +
X, _ _
PIX, Y1 * g[[x ;/]] *Cx J1qpril(x, y1 = (J1pprl[x, y1 »ylb[X, y]
-J1b(x, y1 *ylpprl(X, y1) + PIX, Y1 * J1q[X, Y1 * (C* JIppr2[x, yl »ylb[X, y]
+ b Jlpprl[x, y] »ylbprl(x, yi
- bx jlbpriix, y1 »ylpprilix, y] - ¢+ j1b[x, y1 = y1ppr2[x, yi)

X, _ _ _
- g[[x i; *J1oprlix, y1 = (JIpIX, Y1 »y1biX, y1 - J1b[x, yI »yIp[X, Y1)
- PIX, Y1 *CxJlgpr2[X, y1 = (JIp[X, y1 »y1b[x, yI - J1b[X, Y1 *y1p[X, YI) -
qrXx, y1 *J1opri[x, yi =
(C*Jlpprl[x, yl »y1b(x, y] + b J1p[X, y1 «ylbpri[x, y]
- b« jlbprl[x, y1 »y1p[x, y] - ¢+ J1b[X, y] » ylppri[x, y1);

2[X, y1 .
fiix, y1°’
al = NIntegrate[F[xX, yyl] - F[xX, yy2], {XX, xx1, xx2}, MaxRecursion - 30] ;
a2 = NIntegrate[f[xx2, yy] - F[xx1, yyl, {YY, YY1, yy2}, MaxRecursion - 30] ;

int0= ;* (al+1 *xa2); nrooll= Re[intO] ;
2% xi

a3 = NIntegrate[ (Xx+ i »Yyl) » F[XX, yyl] - (XX + 1 +Yy2) = F[XX, yy21,
X, xx1, %<2}, MaxRecursion - 30] ;

ad = NIntegrate[ ()02 + i +Yy) » F[Xx2, yy] - XL+ 1 +Yyy) = F[xx1, yy1,
Y, Y1, yy2}, MaxRecursion - 30] ;

* (a3+;'1*a4)]

fix_,y1:=

z

2%l
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av=0.001; bv=200; ch=0.001; dh=200; nl=10; n2=4;
kol = 0;

ysakl = ch; ysak = ch;
ybeig = dh; nvert = n2;

hvertl = Mk;
nvert
Do[{xsakl = av; xsak = av; xbeig = bv; nhorz = nl; hhorz = %; hvert = hvertl;
Do[
{xl:)@ak;)Q:th]orz;ﬂ:ywk;ybﬂmeert;
progixi, X2, y1, y21;

If[nrool1< 0.5, xsak= X2,
If[nrool1< 1.5, {
kol = kol + 1;
datalikol] = Re[Z) ;
data2rkol] = Im[Z] ; xsak = X2},

{ny:l;hvert:%*hvert;

Whille[ny== 1, {yl=ysak;y2=yl+hert;
prog[xl, X2, y1, y21 ;
If[nrool1 < 0.5, ysak = y2,
If[nrooll< 1.5,
{ Dor{yl=yl;y2=yl+hvert; progixl, X2, y1, y21;
kol = kol + 1;
datalrkol] = Re[Z];
data2[kol] = Im[Z] ; y1 =2},
1k, 1, 2313
ysak = ysakl; hvert = yoeig; xsak=>x2; ny =2},
(v Printg” "1 hvert= ~ shvert)] 11111}

{rh, 1, nhorz}] ; ysak =ysakl + nv=hvertd}, {nv, 1, nvert}]
data = Table[If[m == 1, datal(k], data2[k]], {k, 1, kol}, {m, 1, 2}1;
Print[data] ;
grl[l) = ListPlot[data, PlotStyle - {PointSize[0.02], RGBColor[1, 0, 0]}, AxesLabel - {Re[z], Im[z]}, DisplayFunction- Identity];
gr2[1) = ListPlot[data, AxesLabel » {Re[z], Im[z]}, PlotJoined - True, PlotStyle - RGBColor[1, 0, O], DisplayFunction- Identity];
Show[grl[l], gr2[1], DisplayFunction- $DisplayFunction]

{{38.8055,0.400362},{71.6711,1.16421},{104.675,2.15072},{137.882,3.30863},{171.276,4.661}}
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Fig. Ap.17 ( Section 6.4 ) “Mathematica” program for numerical calculation of the change in

impedance given by formula (6.4.66).
Remove [""Global " ']

mm = 1073; MSm = 108; kHz = 105;
f =7000.0; w=2%n+fF;
o=3%MSm;

u0 =4*7r*10'7;

C=2.2%xmm;

ro=4.5%mm;

h=1.4%mm;

dl=0.7+mm; d2=0.3 %mm;

d3 =dl +d2;

b=10%5.5%mm;

pdata = {549.096978208783" + 149.52882915593767" i, 499.18441867917574" + 164.8928681563969" i,
452 .3539478271909" + 182.34844874431516" i, 409.8019254811801" + 201.62650986187526" i,
372.80299587630515™ + 221.92705542132163" i, 318.9432124824753" + 259.8039780539326" i,
342.3702713381244" +241.87990331798355" i, 302.367867070953" + 274.1384122330393" i,
292.17279133053717" +283.7441814738398™ 1, 1329.2329935083806" + 59.51820672620454" i,
1386.176899830915" + 57.07846853412605" i, 1443.1521694836172" + 54_853265444223474" 1,
1500.153708349577" + 52.81465732097078" i, 1557.1770768284669" + 50.93820547868496" i,
1614.2183861042176~ +49.20258902407101" i, 1671.2742479303836" + 47.58928827419457" i,
1728.341748001099" + 46.08231630970696" i, 1785.4184238706928" + 44_66798522501355" 1,
932.2636597156051" + 85.99535053116698" i, 988.6895165784267" + 80.82599871742124" i,
1045.2493344562758™ + 76.23235039498023" i, 1101.9120088964116" + 72.13507861242243" 1,
1158.6555874522467" + 68.46764351428901" i, 1215.4642778520304" + 65.1735684868936" 1,
1272.3263995768627" + 62.2044006471691" i, 709.1578128269097" + 114.68598773045271" i,
764 .3464128585051" + 106.02330603799754" i, 820.0124599371625" + 98.4645794170425" i,
876.0164075402721" +91.83606613094479 i, 601.1462479928093" + 136.1905499831746" i,
654.654257529524" + 124.6613429691535™ i, 2013.7816227969483" + 39.73243201692545" 1,
2070.8805961764897" + 38.64248418085895" i, 2127.9813206239915" + 37.60034869307359" i,
2185.0833358697837" + 36.60304578626898" i, 2242.186295088276" + 35.64838590298651" i,
2299.289943418036" + 34.73478815649102" i, 2356.394104688071" + 33.861106702647305" i,
2413.4986737077165" + 33.02646934712094" i, 2470.603610900386"~ + 32.230132512338336" i,
2527.7089364020503" + 31.471356300511875" i, 2584.814721508555" + 30.749302700264685" i
2641.9210765357175" + 30.06295907630328™ i, 2699.0281353790883" + 29.41108802705787" i,
2756.1360381229124" + 28.79220339811314" i, 2813.2449135969177" + 28.204571042901538" i
2870.354864075254" + 27.64623162054064" i, 2927.465953845413" + 27.115041793491308" i,
2984 .578202890122" + 26.60872935297439~ i, 3041.691585891972" + 26.1249574890313" i,

3098.806036144899" + 25.661393348013625" i, 3155.9214531653906"
3213.0377125028467" + 24.785981697292794" 1, 3270.154676197324"
3327.2722024755867" + 23.966366889370978" i, 3384.390153780836"
3441.508402647483" +23.190118931945594" i, 3498.6268354166996

+25.215776285384656" i
+24.370076986812528" i
+23.573426233681722" i
+22.81560278488201" 1,

3555.74535419817" +22.449320508855575™ i, 1842.50223700856" + 43.33469666412491" i,
1899.591535133496" + 42.07274809049757" i, 1956.6850055138937" + 40.87414762226893" i};

kol =62;
<< LinearAlgebra MatrixManipulation™
<< NumericalMath™BesselZeros™

1
adata = o x= BesselJZeros|[1, kol];

nn =0;
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Do[{A =2xdata[[nj]];
Ac =2axc; jlac =BesselJ[1, xcl; (x J1 (}jc) *)

J2xc =BesselJ[2, xc]; (x J2 (rjcC) *)
JOxb = BesselJ[0, Ab]; (* Jo (Ajb) *)
J1xr0 =BesselJ[1, A+ r0]; (x J1 (x5 r0) *)

Ab =axb; jlAb =BesselJ[1, Ab]; (+ J1 (Ajb) *)

JOxb = BesselJ[0, Ab]; (* Jo (Ajb) *)
J2ab = BesselJ[2, Ab]; (» J2 (Ajb) *)
Pl =SqQrt[A"N2+ixw*o*xpu0]; (* pl no RL )
p = pdata[[ni]]; (» p saknes no programmas *)

qvert =SQrt[p"2-i*w*o*u0];

(% pc *)

pcl =p=xc; jlpc=BesselJ[1, pcl]; (» J1(p2icC) %)
jJ2pc = BesselJ[2, pcl]; (» J2 (p2ic) *)
ylpc = BesselY[1, pcl]; (» Yi(p2icC) %)
y2pc = BesselY[2, pcl]; (» Y2 (p2ic) *)
(* pb *)

pbl =pxb; jlpb = BesselJ[1, pbl]; (» J1(p2ib) *)
j2pb = BesselJ[2, pbl]; (» J2 (p2ib) %)
ylpb = BesselY[1, pbl]; (* Yi(p2ib) %)
y2pb = BesselY[2, pbl]; (* Y1 (p2ib) %)
(* qc *)

qcl =qgvertxc; jlgc = BesselJ[1, qcl]; (« J1(Qjc) *)
j2qc = BesselJ[2, qcl]; (* J2(qic) ¥
ylqc = BesselY[1, qcl]; (* Yi(gic) x)
y2qc = BesselY[2, qcl]; (» Y2(gic) %)
(* gb *)

gbl = qvertxb; jlgb = BesselJ[1, gqbl]; (x Ji1(qib) *)
j2gb = BesselJ[2, gbl]; (* J2(qib) %)
ylgb = BesselY[1, gbl]; (* Yi(dib) %)
y2gb = BesselY[2, qbl]; (* Y2 (dib) %)
(* T1 (gic) = J1 (diC)*Y1 (di b)-J1 (Qi b)*Y1 (qic) =)

T1 = jlgc *ylgb - jlgb ylqc;

c _ _ _ _
aal = 322 * (A* J2XC # J1pc - p * J1xC * j2pcC) ; (» a%lij %)
1
_ R . s - B s - 22,
aa2 = 2 _qvert? quert? * (AC * J22c + (Jlgb xylqc - jlgc+ylgb) +qcl« Jlxc» (J29qc *ylgb - jlgbxy2qc)); (+ a“<ij
a2 =Tlxaal + jlpcxaa2; (x a%j  *)
nn=nn+1;

a2data[nn] = a2;
Al[nn] = ((A+pl) * (p1+p) *EXp[(pl-p) *d1l] + (A -pl) » (p1-p) *+Exp[- (pl+p) »dl]) xa2;
A2[nn] = ((A+pl) * (p1-p) *EXp[ (Pl +p) »d1l] + (XA -pl) » (pl+p) *xExp[- (pl - p) »d1]) »a2;

A3[nn] = (A -p) *Exp[-p*d3] xa2; A4[nn] = (A+p) *Exp[p*d3] xa2;

znam = b2 % jOAb? « p1;

B1[nn] - (p1+p)*Exp[(p1—p)*d1]*a2; B2[nn] = (pl—p)*Exp[(p1+p)*d1]*a2;
znam znam

B3[nn] - (pl-p) *Exp[- (pl +p) »d1] xa2 ; B4[nn] - (Pl +p) *Exp[- (pl-p) »d1] a2 .
znam znam

EJ[nj] = JIar0O xExp[-A*h];
Bvert[nj] =2+u0 »rOxpl*xEJ[NJ];
_ u0xr0OxEJ[Nnj]
Pvertinil = =3 bz, joz

}. {ni. 1, kol}, {ni, 1, kol}];
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all =Table[al[ (kk -1) vkol + k], {kk, 1, kol}, {k, 1, kol}];
Al12 =Table[aZ[ (kk -1) vkol + k], {kk, 1, kol}, {k, 1, kol}];
21 = Table[A3[ (kk -1) vkol + k], {kk, 1, kol}, {k, 1, kol}];
A22 =Table[a4[ (kk -1) vkol + k], {kk, 1, kol}, {k, 1, kol}];
B1ll = Table[B1[ (kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
B12 =Table[B2[ (kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
B21 = Table[B3[ (kk - 1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
B22 =Table[B4[ (kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];

AA =BlockMatrix[ {{all, al12}, {A21, Bn22}}]:
BB =Table[If[i <kol, Bvert[i], 0], {i, 1, 2+kol}]:
gol = LinearSolve[AR, BE]:;

Do[{DB[k] =sol[[k]]: D10[k] = sol[[kol +k]]}. {k, 1, kol}]:
DD8 =Table[DB[k], {k, 1, kol}]:

DD10 = Table[D10[k], {k, 1, kol}]:

DDvert = Table[Dwvert[k], {k, 1, kol}]:

EETJ =Table[Ed[k], {k, 1, kol}];

pp4 =B11.0D8 + B12.DD010; DD5 = B21.DD8 + B22.DD10;

DDZ =DD4 + DD5 - DDvert;

A0ind =Dot[DD2, EET];
Zind =2 va#r0v« A vavA0ind;
Print["kol = ", kol, " AQ0ind = ", A0ind, " Zind = ", Zind]

kol = 62 AOind = -9.6869 x10°°-2.67753 x10°®i Zzind = 0.0000332969 - 0.0000120463 i
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Fig. Ap.18 ( Section 6.5 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (6.5.14).

Remove [""Global ™ *"']

mm = 10735 MSm = 108; kHz = 103;
fF=7000.0; w=2xnxFF;
o =3%MSm;

10 =4xmx1077;
nConst = 400;

C=2.2%mm;

r2=5.5+mm; r1=3.5%mm;
22 =2.6xmm; z1=0.3%mm;
dl=0.7%mm; d2=0.3xmm;
d3=dl+d2; b=10%r2;

pdata = {549.096978208783" + 149.52882915593767" i, 499.18441867917574" + 164.8928681563969" i,
452.3539478271909" + 182.34844874431516" i, 409.8019254811801" + 201.62650986187526" 1.,
372.80299587630515" + 221.92705542132163" i, 318.9432124824753" + 259.8039780539326" i,
342.3702713381244™ + 241.87990331798355" 1, 302.367867070953" + 274.1384122330393" 1,
292.17279133053717" +283.7441814738398™ i, 1329.2329935083806" + 59.51820672620454" 1.,
1386.176899830915" +57.07846853412605" i, 1443.1521694836172" + 54.853265444223474" 1,
1500.153708349577" +52.81465732097078™ i, 1557.1770768284669" + 50.93820547868496" i,
1614.2183861042176" +49.20258902407101" i, 1671.2742479303836" + 47.58928827419457" 1,
1728.341748001099" +46.08231630970696" i, 1785.4184238706928" + 44.66798522501355" i,
932.2636597156051" +85.99535053116698" i, 988.6895165784267" + 80.82599871742124™ i,
1045.2493344562758™ + 76.23235039498023™ i, 1101.9120088964116" + 72.13507861242243" i,
1158.6555874522467" + 68.46764351428901" i, 1215.4642778520304" + 65.1735684868936" i,
1272 .3263995768627" +62.2044006471691" i, 709.1578128269097" + 114.68598773045271" i,
764 .3464128585051" + 106.02330603799754~ i, 820.0124599371625" + 98.4645794170425" i,
876.0164075402721" +91.83606613094479" i, 601.1462479928093" + 136.1905499831746" i, 654.654257529524" + 124.6613429691535" i,
2013.7816227969483" + 39.73243201692545" i, 2070.8805961764897" + 38.64248418085895" i,
2127.9813206239915" + 37.60034869307359" i, 2185.0833358697837" + 36.60304578626898" i,
2242 186295088276~ + 35.64838590298651" i, 2299.289943418036" + 34.73478815649102" 1,
2356.394104688071" +33.861106702647305" i, 2413.4986737077165" + 33.02646934712094" 1.,
2470.603610900386" +32.230132512338336" i, 2527.7089364020503" + 31.471356300511875" i,
2584.814721508555" + 30.749302700264685" i, 2641.9210765357175" + 30.06295907630328" i,
2699.0281353790883" +29.41108802705787" i, 2756.1360381229124" + 28.79220339811314" i,
2813.2449135969177" +28.204571042901538" i, 2870.354864075254" + 27.64623162054064" 1.,
2927 465953845413 + 27.115041793491308™ i, 2984.578202890122" + 26.60872935297439" i,
3041.691585891972" + 26.1249574890313" i, 3098.806036144899" + 25.661393348013625" i,
3155.9214531653906" +25.215776285384656" i, 3213.0377125028467" + 24.785981697292794" i,
3270.154676197324" + 24.370076986812528™ i, 3327.2722024755867" + 23.966366889370978" i,
3384.390153780836 " + 23.573426233681722" i, 3441.508402647483" + 23.190118931945594" i,
3498.6268354166996" +22.81560278488201" i, 3555.74535419817" + 22.449320508855575" 1,
1842.50223700856 " +43.33469666412491" i, 1899.591535133496" + 42.07274809049757" i,
1956.6850055138937" +40.87414762226893" i} ;

kol =62;

<< LinearAlgebra™MatrixManipulation™

<< NumericalMath™BesselZeros™

1
2data = 5* BesselJZeros|[1, kol];

nn =0;
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Do[{x =rdata[[nj]];
AC =A%C; jlac =BesselJ[1, xc]; (» J1({j0C) *)

Jj2xc =BesselJ[2, ac]; (» J2 (Aj0) *)
JOxb = BesselJ[0, Ab]; (» Jo (Ajb) *)
J1ar0O = BesselJ[1, Axr0]; (» J1 (A5 r0) *)

Ab =axb; jlab =BesselJ[1, Ab]; (x J1(rjb) *)

JOxb = BesselJ[0, Ab]; (*» Jo (Ajb) *)

J2xb =BesselJ[2, Ab]; (» J2 (Ajb) *)

Pl =SqQrt[A"2+i*w*oxul]; (* pl no R1 =)

p =pdata[[ni]]; (» p saknes no programmas *)
qvert = SQrt[pMr2-i*wxo*u0];

(* pc *)

pcl=p=*c; jlpc=BesselJ[1, pcl]; (» Ji(p2iC) %)
j2pc = BesselJ[2, pcl]; (» J2 (p2ic) %)
ylpc = BesselY[1, pcl]; (* Y1 (p2ic) %)
y2pc = BesselY[2, pcl]; (» Y2 (p2ic) =*)
(* pb *)

pbl = p«b; jlpb = BesselJ[1, pbl]; (+ J1(p2ib) ¥
j2pb =BesselJ[2, pbl]; (* J2 (p2ib) %)
ylpb = BesselY[1, pbl]; (* Y1 (p2ib) %)
y2pb = BesselY[2, pbl]; (* Y1 (p2ib) %)
(* qc *)

gcl = gvert«c; jlqc = BesselJ[1, qcl]; (» Ji(gjcC)  #)
j2qc = BesselJ[2, qcl]; (» J2(gic) ¥
ylgc = BesselY[1, qcl]; (» Y1 (gic) *)
y2qc = BesselY[2, qcl]; (* Yz2(gic) %)
(* gb *)

gbl = qvertb; jlgb = BesselJ[1, gbl]l; (+ J1(qib) *)
j2gb = BesselJ[2, gbl]; (» J2(gib) %)
ylgb = BesselY[1, gbl]; (* Y1(qib) %)
y2qgb = BesselY[2, gbl]; (# Y2 (gib) %)
(* T1(gic) = J1 (QiC)*Y1 (Qi b)-J1 (i b)*Y1 (dic)  *)

Tl = jlqc+ylgb - jlgb=ylqc;
aal = ﬂ%pz*(A*jZJIC*jlpC—p*jllC*ijC); (» a%lij %)

1
aa2 = 2 quere2 * (AC * j2ac » (J1lgb xylgc - jlgcxylgb) +qcl = Jiac« (j2qc »ylgb - jlgbxy2qc)); (» a%ij
a2 =Tl«aal + jlpcxaa2; (x a%ij =*)
nn=nn+1;

a2datal[nn] =a2;

Al[nn] = ((A+pl) = (p1+p) *EXp[(pl-p)+*dl] + (A-pl) » (p1-p) xExp[- (pl +p) »d1l]) xa2;
A2[nn] = ((A+pl) = (p1-p) *Exp[ (Pl +p) *dl] + (A -pl) = (p1+p) *Exp[- (pl - p) »d1]) xa2;
A3[NN] = (A -p) *Exp[-p*d3] xa2; A4[nn] = (A +p) *Exp[p*d3] xa2;

znam = b2« jOAb? « p1;

B1[nn] - (Pl +p) *EXp[(pl - p) xd1l] xa2 . B2[nn] = (pl-p) *EXp[ (Pl +p) »dl] xa2 .
znam znam

B3[nn] - (p1l-p) *Exp[- (pl +p) »d1l] xa2 : B4[nn] - (pl +p) *Exp[- (pl-p) +d1l] »a2 .
znam znam

Bdiag[nj] =

2% A xZznam

}. tni, 1, kol}, {ni, 1, kol}];
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All = Table[Al[ (kk -1) = kol + k], {kk, 1, kol}, {k, 1, kol}];
Al2 = Table[A2[ (kk - 1) x kol + k], {kk, 1, kol}, {k, 1, kol}];
A21 = Table[A3[ (kk - 1) kol + k], {kk, 1, kol}, {k, 1, kol}];
A22 =Table[A4[ (kk -1) = kol + k], {kk, 1, kol}, {k, 1, kol}];
B11 = Table[B1[ (kk - 1) » kol + k], {kk, 1, kol}, {k, 1, kol}];
B12 = Table[B2[ (kk - 1) » kol + k], {kk, 1, kol}, {k, 1, kol}];
B21 = Table[B3[ (kk - 1) » kol + k], {kk, 1, kol}, {k, 1, kol}];
B22 = Table[B4[ (kk - 1) » kol + k], {kk, 1, kol}, {k, 1, kol}];

BOdiag = Table[Bdiag[k], {k, 1, kol}];
Bldiag = DiagonalMatrix[BOdiag] ;

Y1 =B11 + B21;

A22inv = Inverse[A22];

Y2 = (B12 + B22) _.A22inv.A21;
Y3 = A1l - A12_A22inv.A21;
Y3inv = Inverse[Y3];

Y = (Y1 -Y2).Y3inv - Bldiag;

gint[x_] =n/2%X* (BesselJ[1, x] » StruveH[0, X] - BesselJ[0, X] »StruveH[1, X]):
Do[{Ai =xdata[[i]]; pl=SArt[Ai"2+i+wxo*u0];
EXp[-Al »21] - EXp[-Aid % z2] _ _ _ _

mnozl = %3 * (QINE[AN * r2] - gint[Al »rl]);

bb[i] = 2*‘222*?2)”30(2?_*2;021 S fm[i] =moz1}, (i, 1, kol}];
bbl = Table[bb[k], {k, 1, kol}];
fml = Table[fm[k], {k, 1, kol}];
aind = fm1. (Y.bbl) ;
2% 7% 1% w*NConst
(r2-rl) « (z2-21) *
Print[" kol = ", kol, "™ FF = ", £F, * zd _ » Zind]

Zind =

aind;

kol - 62 FF - 7000. zind _ 535381 -1.95226 i
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Fig. Ap.19 ( Section 6.6 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (6.6.63).

Remove ["Global ™ ']

mm = 1073; MSm = 108; kHz = 10%;
ff =1000.0; w=2%nxTF;
ol =18.5%MSm; o2 = 3xMSm;
10 =4xmx1077;
nConst = 200;

C=2.2%mm;

ro=4.5mm;

h=1.4+mm;

dl=0.7+mm; d2=0.3%mm;
d3 =d1 +d2;
b=10%5.5%mm;

pdata = {585.6125666407848" + 19.96753914713313" i, 302.0138186894424" + 39.13318585213058" i,
358.1735464898753" + 32.953203961568846" i, 414.79663571326194" + 28.405271653801893" i,
471.63900542251565" +24.92812718013798" i, 528.5945185780903" + 22.185617494793377" i,
246.9415593824931" +47.90637239178142" i, 150.0069857013391" + 78.93953779439951" i,
194.70766373837137" + 60.795800878154935" 1, 120.48253234046189" + 98.2979316591395" i,
642.6671139296317" +18.136776865011754" i, 699.7439083636791" + 16.600475527500386" i,
756.8347425004006" +15.293670753812087" i, 813.9346912119364" + 14.169598222564355" i,
871.0407000798174~ +13.193731915181857" i, 928.1508255334398" + 12.33998930479806" i,
985.2638064650472" +11.588243421526323" i, 1042.378812402543" + 10.922650125853187" i,
1099.4952897599107" + 10.330499606789072" i, 1156.6128648345505" + 9.801414252695084" 1,
1213.7312809750824~ +9.326780942590808~ i, 1270.8503572355248™ + 8.899345214259181" i,
1327.969961058612" +8.512919133492588™ i, 1385.0899904578364" + 8.162169966082372" i,
1442 .210362743044" +7.842466737127328™ i, 1499.3310078060854" + 7.549768312423858" i,
1556.4518644391555" + 7.280541150936903" i, 1613.572878663931" + 7.031697970442959" i,
1670.6940031335075" + 6.800550868066859" i, 1727.8151970928461" + 6.584774023845818" i,
1784.936426406056" + 6.3823724232052035" i, 1842.057663438685" + 6.191653990520207" i,
1899.1788866769662" + 6.011203281806632" i, 1956.300080092903" + 5.839855541107693" i,
2013.4212323225302" +5.676670433579974" i, 2070.5423357745317" + 5.520905130471578" i,
2127.6633857819543" +5.371986838811965" i, 2184.784379871219" + 5.229485021844497" i,
2241.9053172177773" +5.0930838157464855™ i, 2299.0261982752354~ + 4.962555204740818" i,
2356.147024575969" + 4.8377335904359215" i, 2413.2677986236667" + 4.718492390137807" 1,
2470.3885238299167" +4.604723227363309" i, 2527.509204437955" + 4.496318199478199" i,
2584.6298453857157" +4.393155588568525" i, 2641.7504520923376" + 4.2950892212793805" i,
2698.8710301787273" +4.201941548142413" i, 2755.9915851497167" + 4.113500335435322" 1,
2813.1121220669866" +4.02951877240534" i, 2870.2326452607126" + 3.9497185362435037" i,
2927.353158118439" + 3.87379541354091" 1, 2984.473662979242" + 3.801426863363942" i, 3041.594161117447" + 3.732280911591989" i,
3098.7146528383437" +3.666025718944301" i, 3155.8351376366986" + 3.6023392336681486" i,
3212.955614410991" + 3.540918299493317" i, 3270.076081674544" + 3.4814867269152945" i,
3327.1965377706665" +3.423801896184088™ i, 3384.316981038191" + 3.367659578676023" i,
3441 4374099554675 +3.3128967757137113" i, 3498.5578231908785" + 3.2593925080324735" i,
3555.6782196812883" + 3.20706656693612" i} ;

kol =62;

<< LinearAlgebra MatrixManipulation™

<< NumericalMath™BesselZeros™

2data = % *BesselJZeros[1, kol];

nn =0;

188



Do[{x = adata[[nj1];
Ac =A*C; jlxc =BesselJ[1, xc]; (+ J1(}jc) *)

j2xc =BesselJ[2, xc]; (» J2 (}j0) *)

JOxb =BesselJ[0, Ab]; (» Jo (Ajb) *)

J1ar0 =BesselJ[1, x%r0]; (» J1 (35 r0) *)

A =Axb; jlAb =BesselJ[1, Ab]; (x Ji1(AjDb) *)

JOxb =BesselJ[0, Ab]; (» Jo (Ajb) *)

J2xb =BesselJ[2, Ab]; (» J2 (A5 b) *)

Pl =SQrt[ A2+ i xw*ol xp0]; (* pno Rl «x)

p2 = pdata[[ni]]; (* p2 saknes no programmas )
qvert =SQrt[p272-i+xw* 02+ u0];

pl =Sqgrt[gvert™2 +i+w*ol+u0]; (* pl no R2 %)
(* p2c *)

pcl =p2xc; jlpc=BesselJ[1l, pcl]; (* J1(p2ic) *)
J2pc =BesselJ[2, pcl]; (» J2 (p2ic) *)
ylpc = BesselY[1, pcl]; (* Y1 (p2ic) *)
y2pc = BesselY[2, pcl]; (* Y2 (p2ic) *)
(* p2b *)

pbl =p2xb; jlpb = BesselJ[1, pbl]; (* J1(p2ib) *)
J2pb =BesselJ[2, pbl]; (* J2 (p2ib) *)
ylpb = BesselY[1, pbl]; (* Y1 (p2ib) *)
y2pb = BesselY[2, pbl]; (* Y1 (p2ib) *)
(* qc %)

qcl =qvertxc; jlqc = BesselJ[1, qcl]; (* Ji1(Qjc) *)
J2qc =BesselJ[2, qcl]; (* J2 (gjc) *)
ylqc = BesselY[1, qcl]; (* Y1 (gjc) *)
y2qc = BesselY[2, qcl]; (* Y2 (gjc) *)
(* gb %)

gbl = qvert«b; jlgb = BesselJ[1, gb1l]; (* J1(qjb) *)
J2gb =BesselJ[2, qbl]; (* J2 (gjb) *)
ylgb = BesselY[1, qbl]; (* Y1 (gijb) *)
y2qb = BesselY[2, qbl]; (* Y2 (gijb) *)
(* T1(gic) = J1 (Qi €)*Y1 (di b)-J1 (gi b) %Y1 (gic) *)
T1 = jlqc »ylgb - jlgb+ ylqc;

aal = )@%pzZ * (A J22C * J1pc - p2 + j1ac * j2pc) ; (» a%ij  #)
aa2 = m * (AC * j22c + (J1lgb xylqc - jlqc«ylgb) +qcl«jlxc = (j2qc+ylab - jigb=y2qc)); (» a%ij )

a2 =Tlwaal + jlpc*aa2; (x aZjj *)
nn=nn+1;
a2data[nn] =a2;
AL[NN] = ((A+pJ) * (pJ + PL) *EXp[(pJ - p1) *d1] + (A -pj) * (PJ - p1) *EXp[- (pj + pl) xd1]) *xa2;
A2[nn] = ((A+pJ) * (pPJ - P1) *Exp[(pJ + pl) *d1] + (A -pj) * (PJ + p1l) *EXp[- (pj - p1) »d1]) *xa2;
A3[nn] = (pj -pl) *Exp[-pl*d3] xa2; A4[nn] = (pJ + pl) *Exp[pl*d3] xa2;
znam = b? x jOabZ + pj;
BL[nn] = (PJ +pl) *Exp[(pj - p1) xd1] a2 . B2[nn] = (PJ - P1) *Exp[(pJ +p1) +d1] xa2 .
znam znam
(PJ - pl) *Exp[- (pJ +p1) »d1] a2 (PJ +pl) *EXp[- (pj - p1) +d1] xa2

B3[nn] = Znam ; B4[nn] = Znam ;

EJ[Nj] = JIwr0 xExp[-Axh];
Bvert[nj] =2+*u0 »rOxpj +EJ[Nj];
w0 xrO+xEJ[Nj]

A % b2 % jOAb2
}» nj, 1, kol}, {ni, 1, kol}];

Dvert[nj] =
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211 - Table[al[ (kk -1) kol + k], {kk, 1, kol}, {k, 1, kol}];
212 - Table[A2] (kk - 1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
221 = Table[a3] (kk -1) kol + k], {kk, 1, kol}, {k, 1, kol}];
222 = Table[ad4[ (kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
B1ll = Table[B1[(kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
B12 = Table[B2[ (kk - 1) +kol + k], {kk, 1, kol}, {k, 1, kol}]:
B21 = Table[B3[ (kk -1) *kol + k], {kk, 1, kol}, {k, 1, kol}];
B22 =Table[B4[ (kk -1) kol + k], {kk, 1, kol}, {k, 1, kol}];

DDvert = Table[Dwvert[k], {k, 1, kol}]:
EEJ = Table[EJ[k]. {k, 1, kol}]:

A3 =BlockMatrix[{{all, a12}, {A21, A22}}];:

BE =Table[If[i =kol, Bwvert[i], 0], {i, 1, 2+kol}]:

g0l = LinearSolve[ARlL, BE]:;

Do[{D6[k] =sol[[k]]; DB[k] = sol[[kol +k]]}, {k, 1, kol}];

DD& = Table[D&6[k], {k, 1, kol}];

DD8 = Table[DB[k], {k, 1, kol}]:

DD4 =B11.DD6 +B12.DD8B; DD5H - B21.DD6G + B22.DD8;
DDZ =DD4 + DDA - DDvert ;

A0ind = DD2.EEJ;

Zind =2 +Aa»r0« 0+ aowAlind;

Print["kol = ", kol, " A0ind = ", A0ind, "

kol - 62 AOind = -2.53139 x10°8_-2.91717

Zind

%1081

v, Zind]

Zind

5.18243 »x10°°_-4.49709 x 106 i
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Fig. Ap.20 ( Section 6.7 ) “Mathematica” program for numerical calculation of the change in
impedance given by formula (6.7.14).

Remove [""Global ~%'"]

mm = 10-3; MSm = 108; kHz = 10%;
F =1000.0; w=2%n«Ff;
ol =18.5%*MSm; o2 = 3% MSm;
u0=4*71'*10'7;
nConst = 200;

C=2.2%mm;

r2=5.5+«mm; rl=3.5+mm;
z2=2.6xmm; z1=0.3%xmm;
dl=0.7+mm; d2=0.3xmm;
d3=d1+d2; b=10xr2;

pdata = {585.6125666407848" + 19.96753914713313" i, 302.0138186894424"~ + 39.13318585213058" i,
358.1735464898753" + 32.953203961568846" 1, 414.79663571326194" + 28.405271653801893" 1,
471.63900542251565~ + 24.92812718013798™ i, 528.5945185780903" + 22.185617494793377" 1,
246.9415593824931" +47.90637239178142~ i, 150.0069857013391" + 78.93953779439951" 1,
194.70766373837137" + 60.795800878154935™ i, 120.48253234046189" + 98.2979316591395" i,
642.6671139296317" +18.136776865011754" i, 699.7439083636791" + 16.600475527500386" i,
756 .8347425004006" + 15.293670753812087 " i, 813.9346912119364~ + 14.169598222564355" i,
871.0407000798174" +13.193731915181857" i, 928.1508255334398" + 12.33998930479806" i,
985.2638064650472" +11.588243421526323~ i, 1042.378812402543" + 10.922650125853187" 1,
1099.4952897599107" + 10.330499606789072~ i, 1156.6128648345505" + 9.801414252695084" i,
1213.7312809750824~ +9.326780942590808~ i, 1270.8503572355248" + 8.899345214259181" 1,
1327.969961058612~ + 8.512919133492588" i1, 1385.0899904578364" + 8.162169966082372" 1,
1442 .210362743044~ +7.842466737127328" i, 1499.3310078060854" + 7.549768312423858" i,
1556.4518644391555" + 7.280541150936903~ i, 1613.572878663931" + 7.031697970442959" i,
1670.6940031335075" + 6.800550868066859~ i, 1727.8151970928461" + 6.584774023845818" 1,
1784 .936426406056" + 6.3823724232052035™ i, 1842.057663438685" + 6.191653990520207" 1,
1899.1788866769662" +6.011203281806632~ i, 1956.300080092903" + 5.839855541107693" i,
2013.4212323225302" +5.676670433579974" i, 2070.5423357745317" + 5.520905130471578" 1,
2127 .6633857819543" +5.371986838811965" i, 2184.784379871219" + 5.229485021844497" i,
2241.9053172177773" +5.0930838157464855™ 1, 2299.0261982752354" + 4.962555204740818" i,
2356.147024575969" + 4.8377335904359215™ i, 2413.2677986236667 " + 4.718492390137807" i,
2470.3885238299167" +4.604723227363309" i, 2527.509204437955" + 4.496318199478199" i,
2584 .6298453857157" +4.393155588568525" i, 2641.7504520923376" + 4.2950892212793805" i,
2698.8710301787273" +4.201941548142413™ i, 2755.9915851497167" + 4.113500335435322" 1,
2813.1121220669866" +4.02951877240534~ i, 2870.2326452607126" + 3.9497185362435037" i,
2927.353158118439" +3.87379541354091" i, 2984.473662979242" + 3.801426863363942" i,
3041.594161117447" +3.732280911591989" i, 3098.7146528383437" + 3.666025718944301" i,
3155.8351376366986~ + 3.6023392336681486~ i, 3212.955614410991" + 3.540918299493317" 1,
3270.076081674544" + 3.4814867269152945™ i, 3327.1965377706665" + 3.423801896184088" i,
3384.316981038191" + 3.367659578676023~ i, 3441.4374099554675~ + 3.3128967757137113" 1,
3498.5578231908785" + 3.2593925080324735™ i, 3555.6782196812883" + 3.20706656693612" i} ;

kol =62;

<< LinearAlgebra MatrixManipulation™

<< NumericalMath BesselZeros™

1
Adata = ot BesselJZeros[1, kol];

nn =0;
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Do[{r =xdata[[nj]];
AC =AxC; Ab=2axb;

jJlxc =BesselJ[1, xc]; (» J1(x0) *)

J2xc =BesselJ[2, xc]; (» J2 (rjc) *)

jJOxb =BesselJ[0, Xb]; (* Jo (A5 b) *)

J1b =BesselJ[1, Ab]; (» J1 (Ajb) *)

jJOxb =BesselJ[0, Xb]; (* Jo (A5 b) *)

J2Xb =BesselJ[2, Ab]; (» J2 (A5b) *)

PJ =SQrt[A"2+ i *xw* ol »u0]; (* pnoRL «)

p2 = pdatal[[ni]]; (» p2 saknes no programmas )
qgvert = SQrt[p272 - i *xw* o2 % 0] ;

pl =Sqrt[gvert™2+i*w*ol+u0]; (* pl no R2 %)
(* p2c *)

pcl =p2«xc; jlpc=BesselJ[1, pcl]; (* J1 (p2ic) *)
J2pc =BesselJ[2, pcl]; (* J2 (p2ic) *)
ylpc = BesselY[1, pcl]; (* Y1 (p2ic) *)
y2pc = BesselY[2, pcl]; (* Y2 (p2ic) *)
(* p2b *)

pbl =p2xb; jlpb = BesselJ[1, pbl]; (* J1 (p2ib) *)
J2pb =BesselJ[2, pbl]; (* J2 (p2ib) *)
ylpb = BesselY[1, pbl]; (* Y1 (p2ib) *)
y2pb = BesselY[2, pbl]; (* Y1 (p2ib) *)
(* qc %)

gcl =qgvertxc; jlgqc = BesselJ[1, qcl]; (+» Ji1(gjc) *)
J2qc =BesselJ[2, gcl]; (* J2 (qjc) *)
ylqgc = BesselY[1, qcl]; (* Y1 (gjc) *)
y2qc = BesselY[2, qcl]; (* Y2 (qjc) *)
(* gb *)

gbl =qgvertxb; jlgb = BesselJ[1, gbl]; (*» Ji1(qgijb) *)
J2gb =BesselJ[2, gbl]; (* J2 (qjb) *)
ylgb = BesselY[1, gbl]; (* Y1 (qib) *)
y20gb = BesselY[2, gbl]; (* Y2 (qjb) *)

(% T1 (gic) = J1 (QiC)*Y1 (dib)-J1 (Qi b)*Y1 (Qic)  »)
T1 = jlgc »ylgb - jlgb* ylqc;

. ¢ : : : : - 21
aal = 32 - p22 * (Ax J22C % jJ1pc - p2 * J1xc * j2pc) ; (*»  a“ij *)
aa2 = 2 quer2 * (xc * j2xc + (J1lgb xylqc - jlgc*ylgb) +qgcl+jixac+ (j2qc+ylgb - jlgbxy2qc)); (+ a%%jj  «)
a2 =Tlxaal + jlpc«aa2; (» a%j  *)
nn=nn+1;

a2data[nn] = a2;

AL[NN] = ((A+pJ) * (PJ + PL) *EXp[(pJ - p1) »d1] + (A -pJ) * (PJ - p1) *EXp[- (pj + p1) #d1]) »a2;
A2[nn] = ((A+pJ) + (PJ - p1) *Exp[(pj + pl) +d1] + (A -pJ) * (PJ + p1) *Exp[- (pj - p1) +d1]) »a2;
A3[nn] = (pj -pl) *Exp[-pl*d3] xa2; A4d[nn] = (pj + pl) *Exp[pl »d3] *a2;
znam = b% x JOAbZ « pj ;

(PJ + p1) *Exp[(pj - p1) »d1] xa2 (PJ - p1) *Exp[(pJ +pl) xdl] a2

B1[nn] = B2[nn] =
znam znam
j-pl) *Exp[- (pJ +pl) +d1l] xa2 j +pl) +Exp[- (pJ - p1l) *d1l] a2
B3[nN] = (PJ - P1) *Exp[- (pJ +P1) +d1] . BA[NN] = (pJ +pl) xExp[- (pJ - pl) +d1] xa .
znam znam
- _ 1
Bdiag[nj] = 2% A *Zznam

}. (ni. 1, kol}, {ni, 1, kol}];
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A1l = Table[AL[ (KK - 1) = kol + kK], {Kkk,
Al2 = Table[A2[ (kk - 1) = kol + k], {kk, 1, kol}, {k,
A21 = Table[A3[ (Kk - 1) x kol + k], {kk, 1, kol}, {k,

1, kol}, {k,
1
1
A22 = Table[A4[ (kk - 1) = kol + K], {kk, 1, kol}, {k,
1
1
1
1

» kol}1;
» kol}1;
, kol}1;
kol}]1;
, kol}1;
» kol}1;
, kol}1;
, kol}];

B11l = Table[B1[ (kk - 1) » kol + k], {kk, 1, kol}, {k,
B12 = Table[B2[ (kk - 1) » kol + k], {kk, 1, kol}, {k,
B21 = Table[B3[ (kk - 1) » kol + k], {kk, 1, kol}, {k,
B22 = Table[B4[ (kk - 1) » kol + k], {kk, 1, kol}, {k,
BOdiag = Table[Bdiag[k], {k, 1, kol}];

Bldiag = DiagonalMatrix[BOdiag];

P RPRRRPPRRPRPPR

Y1 =B11 +B21;

A22inv = Inverse[A22];

Y2 = (B12 + B22) _.A22inv.A21;
Y3 = All - A12.A22inv._A21;
Y3inv = Inverse[Y3];

Y = (Y1 -Y2).Y3inv - Bldiag;

gint[x_] =n/2%X* (BesselJ[1, X] »StruveH[0, X] - BesselJ[0, X] *StruveH[1, X]);
Do[{Ai =data[[i]]; pj = SArt[Ai "2 +i*w* ol +u0];
EXp[-Al *z1] - EXp[-Al *Zz2] _ _ _ _

mnozl = 3 * (QINE[AT % r2] -gint[Al »rl]);
2% 10 *pj * nConst xmnozl

(r2 -rl) » (z2-2z1)
bbl = Table[bb[k], {k, 1, kol}];
fml = Table[fm[k], {k, 1, kol}];
aind = fm1. (Y.bbl);
2 % tx 1 % w*NConst
(r2-rl) » (z2 - z1) *
Print[” kol = ", kol, " ff = ", ff, * Zz" - = 7Zind]

bb[i] ; fm[i] =mnoz1}, {i, 1, kol}];

Zind = aind;

kol - 62 fF - 1000. z'nd _ 0.207724 -0.181782 i
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