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ANOTATION 
 

Deriving of solutions for steady-state 3D, 2D and 1D problems of heat 

transfer for cylindrical system with fin are considered in this thesis. Also, non steady-

state solutions of hyperbolic heat transfer problems for 1D cylinder and 2D 

cylindrical system with fin are discussed. Semi-analytical solutions for cylindrical 

system with fin with conservative averaging method are obtained. Analytical 

solutions with generalised Green function method for several cylindrical systems 

with fin are constructed. Some of listed models of steady-state problems are 

constructed and calculation examples are presented. The obtained results are 

compared and analysed. 

The thesis is written in English, it contains 87 pages (including 1 Appendix), 

23 figures, 300 formulae, 6 tables and 53 references. 
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INTRODUCTION 

 

Extended surfaces, or fins, are a popular topic of heat transfer [1], [2] and [3]. 

Fin is a surface which extends from the heat exchange object to increase the rate of 

heat transfer to or from the environment. Generally this thesis is dedicated to 

different heat transfer problems in cylindrical systems with extended surfaces – fins. 

In chapter 1, some three-dimensional problem for one element of cylindrical 

wall and fin is defined. It is assumed that the heat transfer process in the wall and the 

fin is in a steady-state. Some criterions when it is possible to replace three-

dimensional formulation of problem with two- or one-dimensional statement are 

given. Semi analytical 1D and 2D solutions are constructed for domains with a) ideal 

contact [4], [5] and b) contact resistance. These solutions are obtained by the original 

method of conservative averaging [6], [7], [8] and [9]. Calculations and results are 

compared and discussed.  

In chapter 2, analytical solutions for the steady state problem of cylindrical 

wall and fin are discussed [10]. At first, the problem is reduced to dimensionless 

arguments (see appendix A). Then, additional boundary conditions are added. Two 

different cases – with homogeneous surrounding temperature and with non-

homogeneous boundary conditions – are analysed and solved with a similar method. 

The solution obtained using a combination of two particular solutions by Green 

function for rectangular domain [11]. Still, solutions for separate domains contain 

unknown functions. Both domains are joined through conjugation conditions and 

problem reduced to the inhomogeneous Fredholm equation of the second kind.  

In chapter 3, hyperbolic heat transfer problems are discussed [12], [13]. To 

describe the process of intensive quenching [14], [15] hyperbolic heat transfer by 

professor A. Buiķis is proposed [16]. It is assumed that the heat transfer process in 

the wall and the fin is in a non steady-state. Solutions for the time inverse problem 

for one-dimensional cylinder and two-dimensional cylindrical wall with fin are 

constructed.  

 

 

Importance of Subject 

Processes where the main or a significant role is being played by heat transfer 

are important in many different fields: technology, agriculture, medicine, and other 

fields. In many cases, it is necessary to intensify the heat transfer in a device. For this 

purpose, both periodic and non-periodic systems with extended surfaces with fins are 

introduced. There is a wide range of applications for devices of this type and they 

can be found in many places starting from home heating systems – radiators, 

refrigerators, to computer hardware, jet engines and spacecrafts [1]. In recent years, 

systems where porous and non-porous materials are in contact are also considered in 

many fields, for example, when dealing with geological structures, composite 

materials [17] etc. 

The mathematical models describing thermal processes in real environments 

are usually characterised by the fact that they contain elements that make 
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mathematical modelling difficult, for example, the environment can seldom be 

considered homogenous. Very often in real life applications, a piecewise 

homogenous environment can be found, when the physical parameters (heat transfer 

coefficient and heat capacity) differ many times, it is often combined with different 

geometrical sizes for different sub-domains. 

It is important to find solutions for the non-steady processes, including 

situations where very rapid temperature changes take place at the beginning of the 

process. This feature is characteristic to the steel quenching process in water that can 

be described using the hyperbolic heat transfer equation [16]. 

Examples and methods for 1D cases have been widely discussed in the 

literature [3], [2], however problems with complicated domains [3], a combination of 

different domains or the solutions for multidimensional problems [11] with non-

linear boundary conditions or problems in cylindrical coordinates with an axially 

symmetrical domain can rarely be found in the literature, mostly as a specific 

problem of mathematical physics with a solution ready for use. 

The analytical solutions in the literature are often perceived as precise but not 

flexible and, in the worst case, as overly complicated and difficult to understand. 

However, recent trends show that the use of a combination of analytical and semi-

analytical solutions can be interesting for a wide class of problems, because they can 

offer greater insight into the solution, require less computer resources and/or provide 

a more precise solution [18]. 

 

 

The Objective of the Thesis 

The main tasks of this Thesis can be divided into two parts. The first part 

concerns stationary problems of mathematical physics for the classical heat transfer 

equations, the second part – non-steady solutions for the hyperbolic heat equations. 

Some of the main aims for this work are: 

 Using different boundary, symmetry and harmonisation conditions 

that describe physical processes as accurately as possible, to develop a 

semi-analytical and analytical solution for stationary heat transfer 

process in systems with cylindrical fin for the classical heat transfer 

equation, 

 To provide a solution for a group of problems of mathematical 

physics that is as wide as possible, 

 To develop a number of mathematical models and compare the results 

obtained, 

 To find analytical solutions to the unsteady time-inverse hyperbolic 

heat transfer problem in a cylindrical domain, 

 To find an analytical solution to the unsteady hyperbolic heat transfer 

problem for a cylindrical domain with a fin. 
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Research Methodology 

 

In this thesis, the method of conservative averaging is employed to acquire 

the semi-analytical solutions [19]. However, the Green function method is employed 

to acquire the analytical solution in non-canonical domains. All the problems of 

mathematical physics first are formulated in 3D and then, using the averaging over 

one of the dimensions, the 2D model is obtained. 

 

 

Scientific Novelty and Main Results 

 

This work contains the following results: 

 A semi-analytical solution for a system with cylindrical fin (with an 

ideal contact and contact resistance) is obtained using the method of 

conservative averaging. 

 A mathematical model for corresponding solutions obtained with the 

method of conservative averaging has been developed for 2D and 1D 

problems. Numerical calculations have been carried out using 

different values of physical parameters and geometrical sizes of 

domains. 

 A precise analytical solution has been found using the Green’s 

function method for a system with a cylindrical fin for a wide class of 

problems with different boundary conditions. 

 A mathematical model has been developed for solving the 2D 

homogenous problem using the Green’s function. Numerical 

calculations have been carried out using different values of physical 

parameters and geometrical sizes of domains. 

 An analytical solution for the 2D unsteady time-inverse problem for 

the hyperbolic heat transfer equation in a cylindrical domain has been 

found. 

 An analytical solution for the 2D unsteady problem for the hyperbolic 

heat transfer equation for a system with a cylindrical fin has been 

found. 

 

 

Application 

 

Any of the results presented in this work can be used both from practical and 

theoretical aspects. 

The advantage of the semi-analytical solution is the speed of calculations of 

numerical results. Semi-analytical and analytical results require much less computing 

time than the numerical results using methods of finite differences or elements. 

During international scientific conferences, foreign scientists have expressed interest 

many times in the results obtained in this work and their possible application in large 

scale computational systems. 
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However, the results obtained with the Green’s function method show how to 

generalise the methodology for a wider range of problems when the geometry 

consists of a number of canonical domains. The results acquired using the Green’s 

function method have the advantage of being precise analytical solutions. 

The precise analytical solution for the stationary heat transfer problem with a 

non-homogenous surrounding environment allows solving problems for a cylindrical 

system with an outer hydrodynamic field [20], [21]. 

The solutions provided by the hyperbolic heat transfer processes are 

interesting in the analysis of an intensive steel quenching process [14], [15]. Special 

attention is given to the question of whether the problems considered in this Thesis 

can be applied to real life situations, for example, whether it is possible to obtain the 

initial parameters of a mathematical model. A group of Latvian mathematicians has 

taken part in such a research project since 2005. It is important to develop models for 

components of complicated shapes such as, for example, the cylindrical system with 

a fin, described in this work. 
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1. SOME SEMI-ANALYTICAL STEADY-STATE SOLUTIONS 

FOR CYLINDRICAL FIN  

 

 

1.1 Problem Introduction 

 

Obtaining efficient cooling for the components of devices is a difficult 

challenge in modern industry. It is a topical issue in refrigerators, radiators, engines 

and modern electronics, etc. Often a solution using only primary surfaces does not 

provide expected efficiency. A well-known solution described in literature [1], [2], 

[22] is extended surfaces. An extended surface (also known as a combined 

conduction-convection 

system or a fin), is a object 

where heat transfer by 

conduction is assumed to be 

one dimensional, while heat 

is also transferred by 

convection (and/or radiation) 

from the surface in a 

direction transverse to that of 

conduction [2], [23] 

Extended surfaces may exist 

in many situations but are 

commonly used as fins to 

enhance heat transfer by 

increasing the surface area 

available for convection 

(and/or radiation). Figure 1.1 

depicts several examples of 

extended surfaces. Many more different shapes are used in modern industry. 

Some analytical solutions and 2D solution with method of Green function for 

extended surface (Figure 1.1 (A)) with a rectangular wall and a fin in Cartesian 

coordinates are given in the Master theses of author [9] and PhD thesis of M.Buiķe 

[8]. In this work, an extended surface (Figure 1.1 (D)) with cylindrical wall with a fin 

will be discussed. Usually its mathematical modelling is realised by one dimensional 

steady-state assumptions and, in all cases, the finite element method is offered [1], 

[24], [25]. Two dimensional analytical approximate solutions for a rectangular fin are 

constructed in papers [26], [27], [28], [29], but solutions with method of Green 

function are described in [27]. A number of solutions of the problem with no contact 

resistance between the primary surface and the fin are offered in papers [4], [5]. In 

this chapter, a number of new approximate analytical three dimensional solutions by 

the original method of conservative averaging and some its simplifications (special 

cases) are obtained.  

  

 
Figure 1.1. Several examples of Extended surfaces 

(A) rectangular fin, (B) longitudinal fin of trapezoidal profile,  

(C) cylindrical spine, (D) cylindrical fin 
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1.2 Problem Statement 

 

Let’s discuss the following 3D heat exchange problem in periodical system 

(Figure 1.2). There is hot fluid inside the cylindrical wall. The heat flows from the 

inside to the outside. One element of the system 

is shown in Figure 1.3. Usually for the system so-

called Murray – Gardner [1] assumptions are 

formulated. They are: 

1. The heat flow in the fin and the temperature 

( , , )V r z  at any point on the fin remain constant 

with time; 

2. The fin material is homogeneous; its thermal 

conductivity k is the same in all directions and 

remains constant; 

3. The heat transfer coefficient h between the 

fin and the surrounding medium is uniform and 

constant over the entire surface of the fin; 

4. The temperature aT  of the medium 

surrounding the fin is uniform; 

5. The fin height is so small compared with its 

length that temperature gradients across the fin 

height may be neglected; 

6. The temperature at the base of 

the fin is uniform; 

7. There are no heat sources 

within the fin itself; 

8. Heat transfer to or from the 

fin is proportional to the 

temperature difference between 

the fin and the surrounding 

medium; 

9. There is no contact resistance 

between fins in the configuration 

or between the fin and the 

surrounding medium; 

10. The heat transferred through 

the outermost edge of the fin is 

negligible compared to that 

through the lateral surfaces (faces) 

of the fin. 

 

The problem discussed further differs from the assumptions above in point 9 – the 

contact resistance between the wall and the fin will be taken into account.  

 

 

 
Figure 1.2. Axial section of 3D 

domain 
 

On the left side of the domain is hot liquid. 

Heat transfer is oriented from the inside  

to the outside. 

 
Figure 1.3. 3D domain. 

R0 – distance of the wall from the centre,  

R – distance of the fin from the centre,  

L – width of the fin, Z0 – height of the fin, Z – height of the wall 
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1.3 Mathematical Formulation of 3D Problem and Reduction to 2D 

 

Let’s start with accurate three-dimensional formulation of the steady-state 

problem for one element of the periodical system for the cylindrical wall and fin 

(Figure 1.3). Consumptions and boundary conditions of one element in this model 

describe whole system. The one element of the wall (base) is placed in the domain 

       ,0,,0~,,~
0  ZzRRr  and temperature field ),~,~(

~
0 zrV  in the wall with 

Laplace equation [30], [31] is described: 

0

~

~
1

~

~

~

~
~

~~
1

2

0

22

0

2

0 


































V

rz

V

r

V
r

rr
. (1.1) 

The cylindrical fin of length L occupies the domain 

  , ,r R R L     00, , 0,z Z     and the temperature field ),~,~(
~

zrV  fulfils the 

equation: 

2

2 2 2

1 1
0.

V V V
r

r r r z r 

    
   

    
 (1.2) 

Following boundary conditions in accordance with M-G point 5) in   direction are 

formulated: 

0

~~

0











 


VV
; 0 0

0
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V V

  
 

 

 
 

 
 (1.3) 

The problem (1.1) - (1.2) from 3D to 2D is reduced using the following average 

integral for argument : 

  



 0

),~,~(
~1~,~~

dzrVzrU

 

and  0 0
0

1
, ( , , )U r z V r z d



 


  . (1.4) 

 

 

1.3.1 Problem Formulation in Dimensionless Arguments 

 

The following dimensionless arguments and parameters are used, to 

transform problem (1.1) – (1.3) to a dimensionless problem: 

,
r

r
Z


 

,
z

z
Z

  0
0 ,
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   ,

R

Z
 

 
,

R L
l
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
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Z

Z
b 

 
0

0

,
hZ

k
   ,

hZ

k
   

0 0
0

0

h Z

k
  . And temperatures:

( , )
( , ) ,a

b a

U r z T
U r z

T T





 

0
0

( , )
( , ) .a

b a

U r z T
U r z

T T





 

 Here )( 0kk - heat conduction coefficient for the fin (wall), )( 0hh - heat 

exchange coefficient for the fin (wall), 0Z  - height of the fin, L  - length of the fin, 

Z - height of the wall, bT  - the surrounding temperature on the left (hot) side of the 

wall, aT  - the surrounding temperature on the right (cold) side of the wall and the fin. 
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Detailed description of formulation problem in dimensionless arguments is discussed 

in Appendix A, Chapter A.1.  

 

 

1.3.2 Description of Temperature Field in the Wall 

 

One element of the wall 

(base) (Figure 1.4) placed in the 

domain is now 

    1,0,,0  zr   and 

describes the dimensionless 

temperature field ),(0 zrU  in the 

wall with the equation: 

2

0 0

2

1
0

U U
r

r r r z

   
  

      

(1.5) 

Using Fourier’s fourth law and 

Newtown’s second law, and heat 

balance, boundary conditions for 

inner  and outward  surface 

of wall are formulated as follow: 

  01 0

0

0
0 




U

r

U
r  , 0r , ]1,0[z , (1.6) 

000
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


U

r

U
r  , r , ]1,[bz . (1.7) 

As we consider that the domain of this problem is periodical, id est., symmetrical 

against line 0z   and 1z  , then there is no heat exchange on following boundaries 

of wall  0, , 0r z    and  0, , 1r z    (). Therefore, homogeneous 

boundary conditions  are formulated: 

0 0

0 1

0
z z

U U

z z 

 
 

 
, ],[ 0 r . (1.8) 

The conjugation conditions  on the surface between the wall and the fin are not an 

ideal thermal contact. There is contact resistance assumed. A solution for an ideal 

thermal contact with the method discussed further is described in paper [4]. Also heat 

balance is fulfilled: 

0 0

0

U
U U

r








 
  

 
, 

0

0

0

0

 











r

U

r

U
, (1.9) 

There,   is 
'

k l

k



 . The contact resistance is interpreted as arising from a layer 

of some environment with width l  and heat conduction coefficient k’. 

 

 

=1 

Figure 1.4 Dimensionless domain diagram. 
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1.3.3 Description of Temperature Field in the Fin 

 

The cylindrical fin of length l  occupies the domain     bzlr ,0,,    

(Figure 1.4) and the temperature field ),( zrU  fulfils the equation: 

2

2

1
0.

U U
r

r r r z

   
  

   
 (1.10) 

According to Newton’s second law, following boundary conditions  and  for the 

fin is valid: 

0



U

z

U
 , ],[ lr   , bz  , (1.11) 

0



U

r

U
r  , lr  , ],0[ bz . (1.12) 

And homogeneous boundary conditions (): 

0
0






zz

U
, ],[ lr   . (1.13) 

 

 

1.4 Approximate Solution of 2D Problem for a Periodical System 

 

The original method of conservative averaging described in Appendix A, 

Chapter A.2, is used to obtain a 2D half analytical solution for problem (1.5) – 

(1.13).  

 

1.4.1 Reduction of the 2D Problem for the Fin 

 

Similar to papers [8], [9], [26], [28] the original method of conservative 

averaging is used. The 2D temperature field ),( zrU  for the fin is reduced in 

following form: 

            -1

0 1 2, 1 1 ,    bz zU r z f r e f r e f r         (1.14) 

with three unknown functions   2 ,1 ,0 , irfi . For this purpose we introduce the 

integral average value of function ),( zrU  in the z - direction:  



b

dzzrUru
0

),()(  . (1.15) 

This equality (1.15), together with boundary conditions (1.13 ()), allows 

expressing function 
1( )f r  through 2( )f r  in following way: 

 1 2
0

0

( ) ( ) 0z z

z
z

U
e f r e f r

z

   





  


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0 0

1 2( ) ( ) 0e f r e f r    

1 2( ) ( ).f r f r   (1.16) 

From (1.16) and assumption (1.14) follows: 

           0 1 1, 1 1z zU r z f r e f r e f r     
 

       0 1, 2z zU r z f r e e f r    
 

       0 1, 2 cosh( ) 1U r z f r z f r  
  

(1.17) 

Using integral value (1.15) and equation (1.17) it is possible to express function  

1( )f r
 
through function 

0( )f r  in the following way: 

      0 1

0

( ) 2 cosh( ) 1

b

u r f r z f r dz   
 

 

   0 10

0

sinh( )
( ) 2

b

b z
u r f r z z f r


 



 
   

   

     0 1 1

sinh(1)
( ) 2 2 sinh(0)u r f r b b f r f r



 
    

   

     0 1( ) 2 sinh(1) 1u r f r f r  

 

 
0

1

( ) ( )
( ) .

2 sinh(1) 1

u r f r
f r





 (1.18) 

Now two unknown functions  rf i , 1,2i 
 
can be excluded from equation (1.14) 

putting (1.18) into (1.17) and only two unknown functions ( )u r  and 0( )f r  are left: 

   
  0

0

cosh( ) 1 ( ) ( )
,

sinh(1) 1

z u r f r
U r z f r

  
 

  

 
     0 0sinh(1) 1 cosh( ) 1 ( ) ( )

,
sinh(1) 1

f r z u r f r
U r z

   


  

   0

cosh( ) 1 sinh(1) cosh( )
, ( ) .

sinh(1) 1 sinh(1) 1

z z
U r z u r f r

  
 

 
 (1.19) 

Finally, by using of the boundary condition  (1.11) )(0 rf  from the last expression 

(1.19), function  0f r
 
can be excluded in following form: 

 

 

0

0

sinh( ) sinh( )
( )

sinh(1) 1 sinh(1) 1

cosh(1) 1 sinh(1) cosh(1)
( ) 0

sinh(1) 1 sinh(1) 1

z b

U b b
U u r f r

z

u r f r

   






 
    

   

  
   

  

 

       0sinh(1) cosh(1) 1 ( ) sinh(1) sinh(1) cosh(1)u r f r       
 

 0 ( )f r u r , where 
    

    )1sinh(1cosh1sinh

11cosh1sinh






b

b




 . (1.20) 



 

20 

It can obviously be seen that representation (1.20) pasted in (1.19) gives 

representation of the 2D solution ),( zrU  for the fin in the form of multiplication of 

two, one argument functions: 

( , ) ( ) ( ),U r z u r z   (1.21) 

where ( )z  from equations (1.19) and (1.20) is 

 
 1 cosh( ) sinh(1) 1

( )
sinh(1) 1

z
z

    
  


 

 
 1 cosh( ) sinh(1) 1 sinh(1)

sinh(1) 1

z     
 


 (1.22) 

  
cosh( ) sinh(1)

1 1
sinh(1) 1

z



  


. 

Putting equation (1.20) into equation (1.22) and unifying denominators, the 

following equation is obtained: 

 
cosh( ) sinh(1)

( ) 1
sinh(1) (cosh(1) sinh(1))

z
z b

b







   

 
 

 
 sinh(1) cosh(1) cosh( )

sinh(1) (cosh(1) sinh(1))

b z

b

 



 


 
. (1.23) 

Obviously that function ( ) 0z   for all [0, ]z b . 

The second stage for the method of conservative averaging is to transform the 

partial differential equation (1.15) for the function ( , )U r z  to the differential equation 

for one argument, function ( )u r . To realise this goal, the main differential equation 

(1.10) in the z - direction is integrated. And using equation (1.15), the following 

connection is obtained: 

0

1 1 1
0.

z b z

d du U U
r

r dr dr b z b z 

  
   

  
 (1.24) 

By using the boundary condition (1.13 ()) at 0z   for the function ),( zrU  and 

expressing the first derivative 
z

U




 trough the function ),( zrU  from the boundary 

condition (1.11 ()) at bz   the following differential equation can be obtained: 

1
0.

z b

d du U
r

r dr dr b





 
  

 
 (1.25) 

Expressing in differential equation (1.21) the function ),( zrU  through the function 

)(ru  with the help of the equality (1.25), then the new differential equation, which 

describes the 1D dimensional temperature field )(ru  in the fin, is received:  

21
( ) 0

d du
r u r

r dr dr


 
  

 
, (1.26) 

here 

)(2 b
b



 . (1.27) 
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By help of substitution 
1r r  equation (1.26) can be rewritten in following well-

known form: 

2 2 2

1 1 1 1 1 1''( ) '( ) ( ) ( ) 0r u r ru r r n u r    , where 0n  . (1.28) 

Differential equation (1.28) has a well-known solution [32] through Bessel’s 

modified functions 00 , KI : 

1 0 2 0( ) ( ) ( ).u r C K r C I r    (1.29) 

Now we can exclude constant 2C
 
from equation (1.29) by using boundary condition 

(1.12 ()) and (1.21) in the following way:
 

0 0
2 1 2 0 1 0

( ) ( )
( ) ( ) ( ) 0

r l

l

U
r U

r

I r K r
rC rC C I r C K r z

r r







 
   

 



 
  

 

  
      

  

 

1 0
2 1 1 1

1 0

( ) ( ( )) ( ( ))
.

( ) ( ( )) ( ( ))

l K l K l
C C C

l I l I l

      


      

   
 

   
 (1.30)

 

Solution (1.29) using (1.30) can be written in the following way: 

 )()()( 0011 rKrICru    (1.31) 

And from equations (1.21) and (1.31), the solution for the fin which includes only 

one unknown constant 
1C  is obtained: 

  )()()(),( 0011 zrKrICzrU   . (1.32) 

 

 

1.4.2 Reduction of the 2D Problem for the Wall 

 

The same method of conservative averaging is used to describe the 

temperature field in the wall. The approximation of the 2D temperature field ),(0 zrU  

for the wall is in following form: 

0 0 1 2

0

1 1
( , ) ( ) ( ) ( ),

r
U r z g z g z g z

r



  

 
    

 
 (1.33) 

with three unknown functions   2 ,1 ,0 , izgi . For this purpose, the integral average 

value of function ),(0 zrU  in the r  - direction is introduced:  









0

),(
2

)( 02

0

20 drzrrUzu . (1.34) 

This equality, (1.34), together with equality (1.33), gives following equation: 

0

0 0 1 22 2

0 0

2 1 1
( ) ( ) ( ) ( )

r
u z r g z g z g z dr

r







    

  
     

   
  
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0

2 2 2 3

0 0 1 22 2

0 0

2 1
( ) ( ) ( ) ( )

2 2 2 3

r r r r
u z g z r g z g z







    

    
        

       

 
22 2 3 2 3 2

00 0 0 0
0 0 1 22 2 2 2

0 0 0

2 2 2
( ) ( ) ( ) ( )

2 2 3( )( )
u z g z g z g z

        

      

    
   

   
 

 

0 0 1 1 2 2( ) ( ) ( ) ( ),u z g z g z g z     (1.35) 

where 





)( 0

0
1




 , 

0
2

0

2

3( )

 


 





. 

Let’s find the derivation of equation (1.33): 

0 1 2

2

0

( ) ( )
.

U g z g z

r r  


  

 
 (1.36) 

Now, putting into boundary condition (1.6 ()) equations (1.36) and (1.33), the 

following equation is obtained: 

0
0

0

00 1 2
0 0 2

0

0

0 0 1 2

0

( ) ( )
(1 )

1 1
1 ( ) ( ) ( ) 0

U rg z rg z
r U

r r

r
g z g z g z

r

 




 




  

 
      

  

   
        

   

 

 
0 0

0 0 0 0 0 0
0 0 1 2

0 0

( ) ( )
1 ( ) ( ) ( ).g z g z g z

       


  

   
  

  
(1.37) 

Function )(2 zg  from equation (1.35) is expressed: 

0 0 1 1
2

2

( ) ( ) ( )
( )

u z g z g z
g z





 


 
(1.38) 

and pasted to expression (1.37) in the following way: 

 
0

0 0 0
0 0 1

0

0

0 0 0 0 0 1 1

0 2

( )
1 ( ) ( )

( ) ( ) ( ) ( )

g z g z

u z g z g z

   




    

  

 
  

   
 



 

1 1 1 0 1 0 1( ) ( ) ( )K g z A g z B u z D   , (1.39) 

where  

  0 0
0 0 1 0 0 0

1

0 2 0

( ( ) )

( )
K

        

   

   
 


, 

  0

0 0 0 0

1 0

2 0( )
A

   


  

 
  


, 
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  0

0 0 0

1

2 0( )
B

   

  

 



, 

0

1 0D   . 

Now, function )(1 zg  from equation (1.35) is expressed as: 

0 0 2 2
1

1

( ) ( ) ( )
( )

u z g z g z
g z





 


 (1.40)
 

and pasted into expression (1.37) gives: 

 
0

0 0 0 0 0 2 2
0 0

0 1

0

0 0 0
2

0

( ) ( ) ( ) ( )
1 ( )

( )
( ),

u z g z g z
g z

g z

    


 

   

 

   
   

 




 

2 2 2 0 2 0 2( ) ( ) ( )K g z A g z B u z D    , (1.41) 

where 

  0 0
0 0 0 2 0 0

2

0 1 0

( ( ) )
K

        

   

   
 


, 

  0

0 0 0

2 0

0 1

A
   


 

 
  , 

  0

0 0

2

0 1

B
   

 

 
  , 

0

2 0D  . 

Equations (1.39) and (1.41) give: 

1 1 0 1 0 1

2 2 0 2 0 2

( ) ( ) ( )
,

( ) ( ) ( )

g z a g z b u z d

g z a g z b u z d

  


   
 (1.42) 

where 
i

i
i

K

A
a  ,

i

i
i

K

B
b  ,

i

i
i

K

D
d  . 

Putting equation (1.42) into equation (1.33), the following expression is obtained: 

 

 

0 0 1 0 1 0 1

2 0 2 0 2

0

1 1
( , ) ( ) ( ) ( )

( ) ( )

U r z g z a g z b u z d
r

r
a g z b u z d





 

 
      

 


   


 

   

0 1 2 0

0

2 1 2 1
0

0 0

( , ) 1 ( )

( ) .

r r
U r z a a g z

r

b b d d
r u z r

r r

 

  

 
     

  
    

 

   
        

      

(1.43) 

Equation (1.43) still has two unknown functions )(0 zg  and )(0 zu . Therefore 

different boundary and conjugations conditions on the wall to exclude these 

functions will be used. 
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1.4.2.1 Solution for upper Wall 

 

Let’s find the derivation of (1.43): 

0 1 2 2 1 2 1
0 02 2 2

0 0 0

( ) ( ) .
U a a b b d d

g z u z
r          

     
           

        

 

(1.44) 

The following expression is obtained from equations (1.44) and (1.43) pasted into 

boundary condition (1.7)  

0
0 0

1 2 2 1 2 1
0 0 0 02 2 2

0 0 0

( ) ( ) ( ) 0

U
r U

r

a a b b d d
g z u z g z





 
        

 
  

 

      
             

        

 

0 0 0 0( ) ( )g z b u z d 
,
 (1.45) 

where 
0

0
0

K

B
b  ,

0

0
0

K

D
d  ,

2 1
0

0

b b
B



  
 


,

2 1
0

0

d d
D



  
 


,

2 1
0 0

0

a a
K




  
  


. 

The next equation is obtained by putting equation (1.45) into equation (1.43): 

 

   

0 1 2 0 0 0

0

2 1 2 1
0

0 0

( , ) 1 ( )

( )

r r
U r z a a b u z d

r

b b d d
r u z r

r r

 

  

 
     

  
     

 

   
        

      

0 0 0 0( , ) ( ) ( ) ( )U r z r u z r  , (1.46) 

where 

 0 1 1 2 0 2
0 0

0

( ) ( )
b a b b b a

r r b
r


  

  
     

 
 and 

 0 1 1 2 0 2
0 0

0

( ) ( )
d a d d d a

r r d
r

 
  

  
    

 
. 

Now integrating partial differential equation (1.5): 

0

0

2

0
0

2

( , )( , )
0

rU r z drU r z
r

r z








 
  

  


 (1.47) 

and taking into account equation (1.34), the following expression is gotten 

0

2

0 0

2 2 2

0

2
0

U d u
r

r dz




 

 
  

  
. (1.48) 

Using boundary conditions (1.6 ()), (1.7 ()): 

 
0

0

00
0 01

U
r U

r 





  


 and 0
0 0

U
r U

r 





 


, (1.49) 
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and putting them into (1.48) we can get: 

 
2

0 0
0 0 0 0 02 2 2

0

2
( , ) (1 ( , ) 0

d u
U z U z

dz
   

 
    


. (1.50) 

Using equation (1.46) the equation (1.50) can be rewritten in the following form: 

   
2

0 0
0 0 0 0 0 0 0 0 0 02 2 2

0

2
( ) ( ) ( ) 1 ( ) ( ) ( ) 0

d u
u z u z

dz
       

 
         

 

2
20

3 0 22

d u
k u Q

dz
   , (1.51) 

where 

    0

0 0 0 0 02

3 2 2

0

2
k

   

 

  



, 

     0

0 0 0 0 0

2 2 2

0

2 1
Q

     

 

 



. 

Equation (1.51) is the second order linear non homogeneous differential equation. It 

can be solve with a common approach. At first, the homogeneous equation should be 

solved and then one particular solution must be found [33]. The solution of the 

homogeneous equation of (1.51) is: 

2
20

3 02
0

d u
k u

dz
   (1.52) 

2 2

3 0k  
 

1,2 3k  
 

3 31 2

0 1 2 1 2( ) .
k z k zz zu z С e С e С e С e  

     (1.53) 

The particular solution in form 0( )u z A  is searched, therefore: 

0 0'( ) 0, ''( ) 0.u z u z   (1.54) 

Putting (1.54) into (1.51) we get 2

3 2,k A Q   2

2

3

Q
A

k
  then the solution for 

differential equation (1.51) is: 

3 3 2
0 0 0 1 2 2

3

( ) ( ) ( )
k z k z Q

u z u z u z С e C e
k


    

. 
(1.55) 

Still, two unknown constants are represented. The boundary condition (1.8 ()), 

equations (1.51) and (1.46) are used to express solution through one constant: 

0
0 0

1

( ) '(1) 0
z

U
r u

z 


  


 

3 3

0 1 3 2 3'(1) 0
k k

u С k e C k e


  
 

32

1 2 .
k

С C e



 

(1.56) 

Now equation (1.55) through (1.56) can be written in the following way: 

3 3 32 2
0 2 2 2

3

( )
k k z k z Q

u z С e e C e
k

 
  
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2
0 2 3 2

3

( ) cosh( ( 1)) ,
Q

u z C k z
k

    (1.57) 

where 3

2 22
k

C C e


 . 

Function )(0 zu  is solved and now problem for upper wall reduces from (1.46) 

and (1.57) to the following form  

0 1 1 2 0 2
0 0

0

2 0 1 1 2 0 2
2 3 02

3 0

( , ) ( )

cosh( ( 1)) ( ) .

b a b b b a
U r z r b

r

Q d a d d d a
C k z r d

k r


  


  

   
      

  

    
        

   

 (1.58) 

Problem for upper wall (1.58) reduces to the problem of finding constant
2C . 

 

 

1.4.2.2 Solution for Lower Wall 

 

From (1.43) we get: 

0 0( , ) ( ).U z g z   (1.59) 

From (1.32) we get: 

 
 1 1 0 0( , ) ( ) ( ) ( ),U z C I K z       (1.60) 

 1 1 1 1

( , )
( ) ( ) ( ).

U r z
C I K z

r 

   


  


 (1.61) 

Using equation (1.59), (1.60) and (1.61), and putting them into conjugation condition 

(1.9 ()) at value r  following equations are obtained: 

0 1 2( ) ( )g z C F z  , (1.62) 

where  2 1 0 0 1 1 1( ) ( ) ( ) ( )F I K I K          . 

Equation (1.23) is rewritten as: 

)cosh()( 10 zFFz  , (1.63) 

where 

)1sinh()1cosh(
)1sinh(

1
1





b

F



 and 10 )1cosh(
)1sinh(

F
b

F 










. 

Let’s continue with equation (1.62) and (1.63) and get: 

 0 1 2 0 1( ) cosh( )g z C F F F z   

 0 1 0 1( ) cosh( )g z C F F z  , (1.64) 

where 2i iF F F , 0,1i  . 

From the second conjugation condition (1.9) and (1.61), (1.63) follows: 
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  0 0
1 1 1 1 0 1( ) ( ) cosh( )

r

U
C I K F F z

r 


      




  


 or 

 )cosh(
~~~~

101
0 zFFC

r

U

r











,  (1.65) 

where   ii FKIF )()(
~~

111
0 



  , 0,1.i   

From equation (1.64) and the derivation of equation (1.43) at value 0r  follows: 

 
0

0 2 1
1 0 1 2

0 0

1 2 2 1
02 2

0 0 0 0

cosh( )

( ) .

r

U a a
C F F z

r

b b d d
u z




  

     



 
    

  

   
      

      

(1.66) 

Now submitting equations (1.65) and (1.66) in equation (1.48) the following 

differential equation is obtained 

 

 

2

0 1
0 12 2 2

0

2 1
1 0 1 2

0 00

2 2

0 1 2 2 1
02 2

0 0 0 0

2
cosh( )

cosh( )
2

0

( )

d u C
F F z

dz

a a
C F F z

b b d d
u z


 


  

 

     

  


  
    

  
 

     
             

 

2

0
0 1 12

cosh( )
d u

u M FC H EC z
dz

    , (1.67) 

where 

0 1 2

2 2 2

0 0 0

2 b b
M



    

 
  

  
, 2 1

1 0 12 2 2

0 0 0

2 a a
E F F

    

  
    

   
, 

2 1
0 0 02 2 2

0 0 0

2 a a
F F F

    

  
    

   
, 0 2 1

2 2 2

0 0 0

2 d d
H



    

 
  

  
. 

Equation (1.67) is a second order linear non homogeneous differential equation. 

Similar as equation (1.51) it can be solved with a common approach. The solution of 

the homogeneous equation of (1.67) is: 
2

0
02

0
d u

u M
dz

 
 

2 0M  
 

1,2 M  
 

1 2

0 1 2 1 2( ) .z z M z M zu z С e С e С e С e       (1.68)
 

Now particular solution for equation(1.67) should be found in following form: 
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0( ) cosh( ) .u z B z A   (1.69) 

From solution (1.69) pasted into equation (1.67) follows: 

0 '( ) sinh( )u z B z 

 
2

0 ''( ) cosh( )u z B z   

 2

1 1cosh( ) cosh( ) cosh( )B z B z A M FC H EC z       
 

1

2

EC
B

M



, 1 .

H FC
A

M


  (1.70) 

The solution of differential equation (1.67) looks like the sum of particular solution 

(1.69) and homogeneous equation solution (1.68) in the following way: 

1 1
0 3 4 2
( ) cosh( )M z M z EC FC H

u z C e C e z
M M




 
   


. (1.71) 

From condition conditions (1.8 ()), (1.46) and (1.71) it follows that: 

0
0 0

0

( ) '(0) 0
z

U
r u

z 


  


 

0 0 1
0 3 4 2
'(0) sinh(0) 0

C E
u C M e C M e

M




   


 (1.72) 

From (1.72) it follows that, constants 3 4C C , therefore )(0 zu  equation (1.71) can 

rewrite in the following way: 

1 1
0 3 2
( ) cosh( ) cosh( ) ,

EC FC H
u z C M z z

M M





  


 (1.73) 

where 
3 32C C . 

Putting together equations (1.43), (1.64) and (1.73) follows: 

   

 

 

1 2
0 1 0 1

0

2 1

0

1 1
3 2

2 1

0

( , ) cosh( ) 1

cosh( ) cosh( )

.

a a
U r z C F F z r

r

b b
r

r

EC FC H
C M z z

M M

d d
r

r

 
  


  





  

  
       

  

 
    

 

 
   

 

 
   

 

 (1.74)

 

Now the solution for lower wall contains only two unknown constants, 
1C  and 3C . 
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1.4.3 Solution 

 

We have two additional conditions on function )(0 zu , respectively: 

0000 )()(   bb bubu  (1.75) 

and  

0

0

0

0

 








bb z

u

z

u
. (1.76) 

Also, in point  b, , the values of functions ),(0 zrU  and ),( zrU  must satisfy 

contact resistance condition (1.9 ( )) at point ( , )b : 

0

( , )

( , )
( , ) ( , )

b

U r z
U b U b

r 

  


 


  (1.77) 

Equations (1.73) and (1.57) are used to satisfy equation (1.75)  

2
2 3 2

3

3 1 2

cosh( ( 1))

cosh( ) cosh(1) ,

Q H
C k b

k M

E F
C M b C

M M

   

 
   

   

(1.78) 

but the derivative of equation (1.73) and (1.57) is used to satisfy equation (1.76) 

3 12

2 3 3

sinh( ) sinh(1)

sinh( ( 1)).

E
MC M b C

M

C k k b




 



 

 (1.79) 

From (1.60) and (1.61) follows: 

 1 1 0 0( , ) ( ) ( ) ( )U b C I K b       (1.80) 

 

 1 1 1 1

,

( , )
( ) ( ) ( ).

b

U r z
C I K b

r 

   


  


 (1.81) 

But from (1.46) and (1.73) we get: 

1 1
0 0 3 02
( , ) cosh( ) cosh(1) .

EC FC H
U b b C M b d

M M




 
    

 
 (1.82) 

Equations (1.80), (1.81) and (1.82) are used to satisfy equation (1.77)  

  1 1 0 0 1 1 1

1 1
0 3 02

( ) ( ) ( ) ( ) ( )

cosh( ) cosh(1) .

C I K I K b

EC FC H
b C M b d

M M

      



    

 
    

 

 (1.83) 

And now, the problem is reduced to the solution of three linear equations 

(1.78), (1.79) and (1.83), for three unknown constants 3,2,1, iCi  
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  

2
2 3 2

3

3 1 2

1 1 0 0 1 1 1

1 1
0 3 02

3 12

2 3 3

cosh( ( 1))

cosh( ) cosh(1)

( ) ( ) ( ) ( ) ( )

cosh( ) cosh(1)

sinh( ) sinh(1)

sinh( ( 1)).
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k M

E F
C M b C

M M

C I K I K b

EC FC H
b C M b d

M M

E
M C M b C

M

C k k b



      








   


  
    

 
     


 
    

 

 


 









 (1.84) 

Constants 3,2,1, iCi  
can be determined from system (1.84). The value of 

the temperature at any point of 2D domain can be calculated using equations (1.32), 

(1.58) and (1.74) and values of 3,2,1, iCi . 

 

 

1.5 1D Solution as the Simple Case of the 3D Solution 

 

Similar to papers [24], [25], a 1D solution is obtained. In this chapter, a 1D 

solution by conservative averaging method from 2D solution is discussed. Semi-

analytical 1D solution is gained. 

Define the following integral values for equations (1.5): 

 dzzrUrv ,)(
1

0
00   (1.85) 

and for equation (1.10): 

 
b

dzzrU
b

rv
0

,
1

)( .  (1.86) 

The assumption that the temperature field does not depend on z direction is 

considered: 

 0 0, ( )U r z v r  and  , ( ).U r z v r
 

(1.87) 

Let’s integrate equation (1.5) and use boundary conditions (1.8), assumptions (1.85) 

and (1.87): 
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z z
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
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 
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
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vd
r

r dr dr

 
 

 
 0, .r    (1.88) 

Similarly equation (1.10) is integrated: 
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    
   

    
  (1.89) 

From boundary conditions (1.11) and (1.13) we get: 

 

z b

U
U

z





 


 and 0

0






zz

U
. (1.90) 

And together form equations (1.86), (1.87), (1.89) and (1.90) follows: 
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 
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,  , .r l    (1.91) 

Boundary condition (1.6) is integrated and assumptions (1.85) and (1.87) used: 

1 1
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1 0
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 
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  01 0

0

0

0  v
dr

dv
r  , 0r .  (1.92) 

From boundary condition ( 1.12), (1.86) and (1.87) follows: 

0  v
dr

dv
r  , .r l   (1.93) 

Conjugation condition ( 1.9) together with equations (1.85), (1.86) and (1.87) can 

be rewritten: 

0 0

0

r

r
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v v
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, 0
0

00 rr

dv dv

dr dr 

 
  

 . (1.94) 

Boundary condition (1.7) is used as the final step for problem formulation in 

following way: 
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0
0 0 0

dv
r v

dr
  , r  , (1.95)

 
but from equations (1.94) and (1.95) follows: 
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Now the 1D problem is formulated with equations (1.88) and (1.91) also 

conditions (1.92), (1.93) and (1.96). 

The equation (1.88) can be solved in the following form: 

0 0
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0 1 2lnv C r C  . (1.97) 

The solution of equation (1.91) can be rewritten in a well-known form in the 

following way: 

0
b d dv

r v
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
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The following replacement 
1r r

b




 

 is applied and the well-known form of a 

modified Bessel’s differential equation [32] obtained: 

 2 2 2

1 1" ' 0 0.r v rv r v     (1.99) 

with the following solution: 

3 0 4 0( )v r C I r C K r
b b

    
       

   
, (1.100) 

where 00 , KI  are Bessel’s modified functions. 
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Together, equations (1.97) and (1.100) give the solution for the 1D problem: 

0 1 2

3 0 4 0

( ) ln
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v r C r C

v r C I r C K r
b b
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 
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   

. (1.101) 

Using boundary (1.92), (1.93) and conjugation conditions (1.96), constants 

1 4C C  from (1.101) can be excluded. 

From (1.100) follows: 
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Equations (1.100) and (1.102) placed in equation (1.93) give: 
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From (1.97) follows: 

1
0 '
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Equations (1.92), (1.97) and (1.104), where 0r  , give: 

 01
0 1 21 ln 0

C
r C r C

r
     

0 0 0

1 0 0 1 0 2ln 0C rC C     
 

 0

0 2

1 0

0 0

1

1 ln

C
C



 





. (1.105) 

Putting expressions (1.97), (1.100) and (1.102) into equation (1.94), where ,r   the 

following connection is obtained: 
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(1.106) 

Whereas putting expressions (1.97), (1.99), (1.102) and (1.104) into equation (1.96), 

where ,r   the next connection follows: 
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(1.107) 

As we can see from equations (1.103), (1.105), (1.106) and (1.107), the four 

unknown constants can be easily determined from the linear equation system: 
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(1.108) 

Equations (1.101) together with constants from system (1.108) give the solution of 

the 1D heat transfer problem for the cylindrical system with the fin. 

 

 

1.6 Calculations and Results 

 

2D unstructured mesh [34] was constructed for numerical calculation of 

problems solved with the 

conservative averaging 

method (see chapter 1.3.) 

The node count varies 

between 700500 , but 

triangle count - from 

1200800  (see Fig. 1.5). 

Software in Delphi environment for numerical solutions of 1D and 2D problems 

were developed. Developed software depending on the given parameters calculates 

the solution of systems of linear equations for 2D (1.84) and 1D (1.108) problems. 

The software calculates values of temperature fields depending on the values of ,r z  
at any point of generated mesh for a 2D problem using formulae (1.74), (1.58) or 

Figure 1.5. Example of unstructured 2D mesh 
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(1.32) and for 1D problem using formula (1.101). The temperature value on each 

mesh node ( ,r z ) is displayed as a field for 2D problem and 1D as well. Extracting of 

representation of the solution for 1D to 2D is done, respectively; all values for 1D 

solution of temperature do not depend on the value of z. At constant value of 

r const  the solution reaches the same temperature value for all values of z, but 

generally r   reaches different temperature value. Several sections at constant value 

of z through the 2D domain are constructed, thus 2D and 1D solutions can be easily 

compared and temperature profile displayed. 

Obviously the 1D solution for the wall has a logarithmic nature (1.101), 

however 2D solution for the wall contains exponents (1.58) and (1.74), and do not 

have linear nature in z direction. The question is how much do these solutions differ 

one from another? Since both solutions contain quite complicated analytical 

expressions, it is more affordable to compare some particular calculations using the 

same input data.  

Calculations were done at different input data. Most interesting of them will 

be discussed (see table 1.1., 1.2. and 1.3.). Input data are summarised in Table 1.1 

[35], other dimensionless parameters which are common for all numerical 

calculations are presented in Table 1.2. Table 1.3 contains data which differs for each 

version of the calculation. All calculations are done for problems with dimensionless 

parameters; real temperatures obtained using formulae (A.13) and (A.14). 

 

Table 1.1. Input data common of all calculations. 

Parameter 
1T , 

][ C  

0T , 

][ C  

 , 

[m] 
0k , 










mK

W
 

k , 










mK

W
 

'k , 










mK

W
 

0h , 










Km

W
2

 

h , 










Km

W
2

 

Value 121 26 0.00368 45 100 0.025 1000 100 

 

Table 1.2. Input data with common dimensionless parameters 

Parameter 
0    0

0  0    

Value 0.2 1.17197 0.03140 0.00314 0.00698 

 

Table 1.3. Different input data for calculations 

Parameter 1. 2. 3. 4. 5. 

B , [m] 0.000445 0.000445 0.000445 0.00089 0.002225 

R , [m] 0.002695 0.002695 0.002695 0.002250 0.000470 

L , [m] 0.012699 0.006350 0.025398 0.012699 0.012699 

b  0.141719 0.141719 0.141719 0.283439 0.708598 

l 4.044585 2.022292 8.0891714 4.044585 4.044585 

  0 0 0 0 0 
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 Table 1.3. Different input data for calculations (continue) 

Parameter 6. 7. 8. 

B , [m] 0.000445 0.000445 0.000445 

R , [m] 0.002695 0.002695 0.002695 

L , [m] 0.012699 0.012699 0.012699 

b  0.141719 0.141719 0.141719 

l 4.044585 4.044585 4.044585 

  0.01333 0.1333 1.333 

 

The solution of problems can be shown by using a table or figure. 2D solution 

for the first calculation (further in text - basic calculation) is also shown in numerical 

format in Table 1.4. Basic calculation of the 2D and 1D solution is shown in Figure 

1.5. It is obviously that the isolines of the 1D solution are perpendicular to the r axis, 

as it was mentioned previously. However, the isolines of the 2D solution are curves, 

which, in general case, are not perpendicular to the r axis. In the 1D solution, we do 

not see the influence of extended surface to the solution and see that the temperature 

is constant on line
0r  . The 2D solution confirms the temperature difference on the  

internal surface of the wall (see Fig. 1.5 – 1.7). Tangents of isolines at the upper and 

lower edges of the wall are perpendicular to the r axis because of symmetry 

conditions for 2D problem. 

 

Table 1.4. Numerical results of calculation for basic case. 

z\r 0.2 0.52 0.84 1.17 1.74 2.32 2.90 3.48 4.06 4.63 5.21 

1.00 76.22 75.36 75.18 75.11  

0.90 76.21 75.35 75.17 75.10  

0.80 76.18 75.33 75.14 75.07  

0.70 76.13 75.28 75.10 75.03  

0.60 76.07 75.21 75.03 74.96  

0.50 75.99 75.13 74.95 74.88  

0.40 75.89 75.03 74.84 74.77  

0.30 75.77 74.90 74.72 74.65  

0.20 75.63 74.76 74.58 74.51  

0.14 75.54 74.67 74.49 74.44 66.67 61.73 58.42 56.20 54.78 54.00 53.74 

0.10 75.39 74.56 74.46 74.43 66.68 61.74 58.43 56.21 54.79 54.00 53.74 

0.00 75.25 74.45 74.44 74.42 66.69 61.75 58.44 56.22 54.80 54.01 53.75 

 



 

37 

 
 

Let’s shortly consider the solution for the fin. It is obviously that the isolines 

for the fin barely decline to the left. It is caused by heat exchange between the 

surrounding environment on the upper edge of the fin and symmetry conditions on 

lower edge of the fin. This is similar to the case of the wall tangent of isolines at the 

lower edge of the fin is perpendicular to the r axis. 

Since a general view of both 1D and 2D solution method is obtained, further 

calculation results at different input data and geometry will be discussed and 

compared using basic calculation.  

The fin is doubled by length in the third calculation compared to basic 

calculation (Figure 1.7). It is obvious from Figure 1.7 that the prolongation of the fin 

gives an effective cooling of the wall. There is an approximately 8
o
C difference of 

the average temperature in the wall compared to the basic calculation. In case of two 

times shorter fin comparing to basic calculation (Figure 1.6) temperature in the wall 

is higher for approximately 14
o
C. 

  

 
Figure 1.5. Basic calculation results 

1D solution on top and 2D solution on bottom, problem with ideal contact 
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Comparing temperature value in Figures 1.5, 1.6, and 1.7 at length of the fin ~1.5, 

~3, ~5 and ~9, it is obvious that a longer fin better cools itself and the wall as well. 

 

 

 

Influence of length of the fin is clear, still, the question of influence of fin 

height to temperature distribution is open. 

The height of the fin in the fourth configuration is doubled compared to the 

basic configuration (Fig. 1.8). Comparing both solutions in Figures 1.5 and 1.8, is 

 
Figure 1.7. Results of third configuration 

1D solution on top and 2D solution on bottom, problem with ideal contact 

 

 
Figure 1.6. Results of second configuration 

1D solution on top and 2D solution on bottom, problem with ideal contact 
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clear that the configuration with a higher fin has lower temperature in the wall, but 

still has a higher temperature inside the fin.  

 

 

 

Fifth configuration consists of fin five times higher than in the basic 

configuration. And Figure 1.9 once more shows and approves already known fact 

from theory [2], [23], that the higher fin will better cool the wall, and temperature 

gradient in the fin is less than in the case of a lower fin with same length. 

 

 

 
Figure 1.9. Results of fifth configuration 

1D solution on top and 2D solution on bottom, problem with ideal contact 

 
 

Figure 1.8. Results of fourth configuration 
1D solution on top and 2D solution on bottom, problem with ideal contact 
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Since the fin has better heat transfer properties than the surrounding environment, it 

better conducts heat from the wall and fin contact surface as well. Temperature 

values at different points of 2D and 1D solution in Figure 1.9 are shown. 

 
 

All six configurations have fine compatibility between 1D and 2D solutions 

in the mean of average temperatures (see, for example Fig. 1.9). Since a 1D solution 

cannot show the dependence of temperature distribution on argument z, still gives  

 

 
Figure 1.11. Results of seventh configuration 

1D solution on top and 2D solution on bottom, problem with contact resistance 

 
Figure 1.10. Results of sixth configuration 

1D solution on top and 2D solution on bottom, problem with contact resistance 
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quite a good evaluation of the particular case of this steady-state process. 

 
 

The next three calculations for the case of contact resistance are done. The 

rugged contact between the wall and fin is, that there is a bigger temperature 

difference between both elements [23]. 

 

 
Figure 1.13. Results of eight configuration 

1D solution on top and 2D solution on bottom, problem with contact resistance 

 
 

Figure 1.12. Temperature field of eighth configuration 
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The assumption that the gap between the fin and wall is filled with air is 

done. It is considered that the air convection is not present since the gap is less than 

<0.5mm [35]. Therefore, the coefficient, well-known in literature, of air heat 

conduction 0.025 W/mK is used [35]. 

Several examples of contact resistance are displayed in Figures 1.10 – 1.12. 

The solution of the case when contact resistance parameter   is equal to 0.01333 

(see Table 1.3, sixth configuration) in Figure 1.10 is showed. It can also be 

interpreted as contact resistance with an air gap approximately 10
-4

mm in width. 

Obviously, temperature changes compared to the basic configuration are relatively 

small, within 1
o
C. 

Increasing contact resistance difference between solutions of basic and other 

configurations appears. Insignificant differences in the wall can be observed. The 

seventh configuration has a gap ~10
-3

mm in width (see Fig. 1.11). 

Whereas increasing the gap by a jump of ten times, the 1D and 2D solution at 

the contact surface of the fin and wall can be observed (Figure 1. 12). The solution 

for the seventh configuration comparing with the solution of the basic configuration 

shows a temperature difference in the wall for ~8
0
C, and a temperature difference at 

the left side of the fin approx. 10
0
C, but approx. 6

o
C at the right side of the fin. 

More details on constructed and applied numerical models and analysis of 

their advantages and disadvantages are discussed in Chapter 2.6. 

 

 

1.7 Conclusion 

 

Some approximate three dimensional analytical solutions for a periodical 

system with a cylindrical fin when the wall and the fin consist of materials which 

have different thermal properties are constructed. Semi-analytical mathematical 

models of the 2D and 1D solution with a conservative averaging method are 

constructed. Some examples are analysed. The influence of model geometry and 

contact resistance at the contact between the wall and fin to the solution is shown. 
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2. ANALYTICAL 2D STEADY-STATE SOLUTION FOR 

CYLINDRICAL FIN  

 

 

2.1 Problem Statement 

 

In this chapter, the steady-state heat transfer problem in the cylindrical wall 

with fin is discussed. In Chapter 2.4, a similar problem as in Chapter 1.1 is described. 

Also, a non-homogeneous problem with a non-homogeneous environment is 

discussed. Similar methodology for a full 3D problem can be applied. It is considered 

that, fluxes in  direction are comparable and do not affect the solution essentially. 

The correct reduction of the problem from 3D to 2D at its solution is shown. A 

similar approach of the analytical solution for a rectangular fin in the Cartesian 

coordinate system is discussed in the Master theses of author [9] and paper [27]. A 

short description of the generalised method of the Green function is described in 

Appendix A, Chapter A.3. The solution of discussed problems can be used in the 

solving of more complicated problems of mathematical physics, for example, 

solutions of a cylindrical fin with an outer hydrodynamic field [20], [21]. 

 

 

2.2 Mathematical Formulation of 3D Problem and Exact its Reduction to 

Non-homogeneous 2D Problem 

 

At first, the accurate three-dimensional formulation of the steady-state 

problem for a system of cylindrical wall and fin (Figure 2.1) is considered. The one 

element of the wall is placed in the domain       0 1, , 0, , 0,r R R z H      and 

temperature field ),~,~(
~

0 zrV  in the wall is described with the Laplace equation:  

2 2

0 0 0

2 2 2

1 1
0

V V V
r

r r r z r 

   
   

    
. (2.1) 

The cylindrical fin of length L occupies the domain 

      1 2 0, , 0, , 0,r R R z H      and the temperature field ),~,~(
~

zrV  fulfils the 

equation: 

2 2

2 2 2

1 1
0.

V V V
r

r r r z r 

    
   

    
 (2.2) 

The following boundary conditions in   direction is considered (other 

boundary conditions will be added in non-dimensional form in chapter 2.2.1 and 

2.2.2):  

00
0

0

( , ),
V

q r z









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00
1 ( , ),

V
q r z











 
0

0

( , ),
V

q r z









 (2.3)

 

1( , ).
V

q r z









 

Equations (2.1) and (2.2) 

from 3D to 2D can be reduced by 

introducing the following average 

integral values for argument  : 

 

 

0

0
0

0

,

1
( , , ) ,

,

1
( , , ) .

U r z

V r z d

U r z

V r z d

 

 



















. (2.4) 

Integration of equation (2.1) for the wall over [0, ]  gives the following 

equation (exact consequence of 3D partial differential equation (2.1)): 

2

0 0 0 0

2 20 0
0

1 1 1 1
0

V V V V
r d d

r r r z r
 

 
 

 

 

     
                 

 
 

2

0 0 0 0

2 2

0

1 1
0.

U U V V
r

r r r z r
 

 
 

     
               

 (2.5) 

The first pair of boundary conditions (2.3) allows rewriting the last equality 

(2.5) in the form of two- dimensional non-homogeneous equation as follows: 

2

0 0
02

1
( , ) 0,

U U
r Q r z

r r r z

  
   

   

 

where 
0 0

1 0
0 2

( , ) ( , )
( , ) .

q r z q r z
Q r z

r





 (2.6) 

A similar equation (2.2) together with boundary condition (2.3), the second 

pair can be rewritten in the following form: 

2

2

1
( , ) 0,

U U
r Q r z

r r r z

   
   

   
 where 1 0

2

( , ) ( , )
( , ) .

q r z q r z
Q r z

r





 (2.7) 

  

 
Figure 2.1. 3D domain 

R0 – radius of hole, R1 – distance of fin from centre, R2 – end of fin 
from centre, H0 – height of fin, H – height of wall, φ – angle of cut 

of cylinder 
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2.2.1 Problem Formulation in Dimensionless Arguments 

 

The following dimensionless arguments and parameters to transform problem 

(2.5) to dimensionless problem are used: 

,
r

r
H

 ,
z

z
H

 0
0 ,

R

H
 

1 2

1 2, ,
R R

H H
   0 ,

H
b

H


 0

0

,
hH

k
  ,

hH

k
  0 0

0

0

,
h H

k
 

0
0

1

,






1

,







0
0 0
0

0





  and 

temperatures: 

( , )
( , ) ,a

b a

U r z T
U r z

T T






0
0

( , )
( , ) .a

b a

U r z T
U r z

T T





 

Here, k  and 0k  - heat 

conductivity coefficient for the fin and wall, h and 0h  -heat exchange coefficient for 

the fin and wall, 0H  - height of the fin, L  - length of the fin, H - height of the wall, 

bT  - the surrounding temperature on the left (hot) side (the heat source side) of the 

wall, aT  - the surrounding temperature on the right (cold) side (the heat sink side) of 

the wall and the fin. 

 

 

2.2.2 Description of Temperature Field in the Wall 

 

One element of the wall placed in the dimensionless domain (Fig. 2.2) is now 

    0 1, , 0,1r z    and the dimensionless temperature field ),(0 zrU  in the wall 

is described with following equation: 
2

0 0

02

1
( , ) 0

U U
r Q r z

r r r z

   
   

   
. (2.8) 

Additional boundary condition  and  are defined similarly as described in 

Chapter 1.3.2: 

 00

0 01 0
U

U
r




  


, 0 , [0,1]r z  ,  (2.9) 

0

0 0 0
U

U
r




 


, 1r  , ]1,[bz . (2.10) 

=1 

Figure 2.2 Dimensionless domain diagram. 
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And, in contradiction to the statements of problems in paper [4] and Chapter 1.2.2, 

general non-homogeneous boundary conditions on the bottom  and the top  of 

the wall are considered: 

0
0 0 1

0

( ), [ , ],
z

U
q r r

z
 




 


 (2.11) 

0
0 0 1

1

( )
z

U
U q r

z




 
  

 
, (2.12) 

where α is a parameter with two possible values 0 or 1. This kind of construction of 

boundary condition allows discussing several different problems: the second and 

third kind non homogeneous BC; only the second kind non homogeneous BC. The 

statement where 
0 1( ) ( ) 0q r q r   and 0   match with the problem described in 

Chapter 1. 

Conjugation conditions  on the surface between the wall and the fin are 

assumed as ideal thermal contact - there is no contact resistance: 

1 1
0 0 0r r

U U
    

 , 

1 1

0
0

0 0

.
r r

U U

r r 

 
   

 


 
 (2.13) 

 

 

2.2.3 Description of Temperature Field in the Fin 

 

The cylindrical fin of length l  in dimensionless problem (Fig. 2.2) occupies 

the domain     1 2, , 0,r z b    and the temperature field ),( zrU  fulfils the 

equation: 
2

2

1
( , ) 0.

U U
r Q r z

r r r z

   
   

   
 (2.14) 

The following boundary conditions on top  and right side  of the fin are 

considered: 

0



U

z

U
 , 1 2[ , ]r   , bz  , (2.15) 

0
U

U
r




 


, 2r  , ],0[ bz . (2.16) 

And non-homogeneous boundary conditions on the bottom  of fin (similar as for 

wall) are defined: 

0

( )
z

U
q r

z 





, 1 2[ , ]r   . (2.17) 
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2.3 Solution of Non Steady-State Problem for 2D Sub-Domain  

 

The solution of the non steady-state problem with axial symmetric 

rectangular domain known in literature [11] is discussed in this chapter. Also main 

ideas on how to use this solution for the steady-state problem with cylindrical wall 

and fin are described. 

Axial symmetric non steady-state heat exchange problem with positive or 

negative heat source in cylindrical system of coordinates is formulated in the 

following way, where ( , , )U U r z t : 

2 2

2 2

1
( , , ).

U U U U
a r z t

t r r r z

    
    

    
 (2.18) 

Problem (2.18) is formulated in domain 1 2r   , 0 z l   with the following 

initial condition and boundary conditions (,,,) of 3
rd

 kind (Fig. 2.3): 

( , ,0) ( , ),U r z f r z  

1 1( , )
U

k U g z t
r


 


, 1,r   

2 2 ( , )
U

k U g z t
r


 


, 2 ,r   (2.19) 

3 3( , )
U

k U g r t
z


 


, 0,z   

4 4 ( , )
U

k U g r t
z


 


, .z l  

 

The solution of problem (2.18) – (2.19) with mean of Green’s function is the 

following: 

2

10
( , , ) 2 ( , ) ( , , , , )

l

U r z t f G r z t d d



         

 
1 1 1

0 0
2 ( , ) ( , , , , )

t l

a g G r z t d d          
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2 ( , ) ( , , , , )

t l

a g G r z t d d            
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t

a g G r z t d d

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2 ( , ) ( , , , , )
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a g G r z l t d d



          

 

 

2

10 0
2 ( , , ) ( , , , , ) .

t l

G r z t d d d



                (2.20)  

Where Green’s functions are: 

1 2( , , , , ) ( , , ) ( , , ),G r z G r t G z t       (2.21) 

Figure 2.3 2D sub domain diagram. 
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 
2

2
2

1 2 0 2 1 2

1

( , , ) ( ) ( ) ( ) ( ) ,
4

n atn
n n n n n

n n

G r t k J J H r H e
B


      






    (2.22) 

2

2 2
1

( ) ( )
( , , ) ,matm m

m m

z
G z t e
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








  (2.23) 

and: 

     
2 22 2 2 2

2 1 0 1 1 1 1 2 0 2 1 2( ) ( ) ( ) ( ) ,n n n n n n n n nB k k J J k k J J                
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m
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m
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k


 




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  
(2.24)

 

0 1 0 1( ), ( ), ( ), ( )J J Y Y   
 
- Bessels’ functions. 

But n  are positive roots of the following transcendent equation: 

  

  
1 0 1 1 1 2 0 2 1 2

2 0 2 1 2 1 0 1 1 1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) 0.

n n n n n n

n n n n n n

k J J k Y Y

k J J k Y Y

         

         

  

     
(2.25) 

But m  are positive roots of the following transcendent equation: 

3 4

2

3 4

.
tg l k k

k k



 




  
(2.26) 

To adapt solution (2.20) for the steady state problem (2.1) – (2.17), we can 

use the general properties of Green’s function and their solutions [11]. The main idea 

is presumed that the steady-state case is the boundary case of the non steady-state 

problem when .t   

Since the solution of problem (2.18) – (2.19) is formulated, we can adapt 

solution (2.20) for the 2D problem for a cylindrical system with fin - separately for 

the wall and fin. 

For simple cases with the first or second kind of boundary conditions, the 

method of separation of variables can be used [36]. Based on the theorem of Steklov 

[37] and property of superposition of solutions, a separate solution for particular sub-

domains can be found [38].
  

 

 

2.4 Solution of Homogeneous Steady State 2D Problem 

 

In this chapter, the case of homogeneous equations for the cylindrical wall 

(2.8) and fin (2.14) are analysed and, for simplicity, additionally homogeneous 

boundary conditions (2.11), (2.12), (2.17) are assumed, id est.: 

0( , ) ( , ) 0Q r z Q r z  , 0 1( ) ( ) ( ) 0.q r q r q r    (2.27) 
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The general case (with non-homogeneous differential equations and non- 

homogeneous boundary conditions) will be considered in Chapter 2.5. 

 

2.4.1 The Separate 2D Problem for the Wall 

 

BC (2.10) together with the conjugation conditions (2.13) can be written in 

the following common form: 

1

0 00
0 0

0

( ),0

0 , 1
r

F z z bU
U

r b z





 

  
   

    
, where  (2.28) 
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U
F z U

r



 

 
  

 
 

Values and conditions harmonised with the nomenclature of the problem in chapter 

2.3 are described in Table 2.1. 

 

Table 2.1. Formulation of problem for wall. 

gi  ki  Other values 

0

1 0( , )g z t    
0

1 0k   1a   

0 0

2

( ),0
( , )

0 , 1

F z z b
g z t

b z

  
 

 
 

2 0k   1 0 

 
2 1   

3( , ) 0g r t   3 0k   1l   

4( , ) 0g r t   4 0k   ( , , ) 0r z t   

0( , , ) ( , )U r z t U r z  

 

Solution (2.20) can be written in the following form because of the 

homogeneity of the equation and boundary conditions for problem (2.8) – (2.13): 
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0
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0
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U r z f G r z t d d
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(2.29) 
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
    

Obviously all the rest of the addends of equation (2.20) for the wall are equal to zero 

due to the homogeneity of the problem or boundary conditions (see Table 4.1). It can 

easily be shown that the first addend of formula (2.29) also is zero: 
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 (2.30) 
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Let’s consider  1 2lim ( , , ) ( , , )
t

G r t G z t 


. From equations (2.22) and (2.23) it is 

obvious that both Greens’ functions can be rewritten in following way: 
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  (2.31) 

where nA  and mX  are: 

 
2

2

0 0 1 1 1( ) ( ) ( ) ( ) ( , )
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n
n n n n n n

n

J J H r H A r
B


          and 

2

( ) ( )
( , )
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m m

m

m

z
X z

  



 , 

( ) cos( )m m mz z  
.
 

Now easy we can see that  
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2 2

1 2

1 1

lim ( , , ) ( , , )

lim ( , ) , 0
4
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t

t t

n m
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 

 


 



 
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 
 



 
  

 
  .

 (2.32) 

Formula (2.29) taking into account (2.32) looks in the following way: 

 

1
0

0 0 0
0 0

0 0 1
0 0

( , ) 2 lim ( , , , , )

            2 lim ( ) ( , , , , ) .

t

t

t b

t

U r z G r z t d d

F G r z t d d

     

      





  

 

 

 
 (2.33)

 

Further, the first part of formula (2.33) will be discussed. From equation (2.21) and 

properties of Greens’ function [11] order of integration can be changed: 
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 
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 

 
  (2.34) 

Unifying equation (2.33) with the nomenclature of (2.31), the following connection 

is obtained: 
1

0
0 0

lim ( , , , , )
t
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G r z t d d    
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4
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

  (2.35) 

where  , , , , ( , ) ( , )m n n mQ r z A r X z     . 

Further, equation (2.35) is integrated taking into account values of Table 4.1 and 

connections (2.31): 
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 (2.36) 

Equation (2.36) pasted into formulas (2.34) and (2.33), and obtained: 
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 (2.37) 

Further, the second part of equality (2.33) is discussed. Again, the order of 

integration is changed and obtained the following: 
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Using similar methods as (2.35), equation (2.38) can partly submit in the following 

way: 
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Joining equations (2.39) and (2.37) the solution for the wall in the following form is 

gained: 
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 (2.40) 

Using Table 4.1 and formulas (2.24) – (2.26) are obtained: 
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But n  are the roots of the following transcendent equation: 
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(2.42) 

But m  are positive roots of the following transcendent equation: 

0 ,m mctg    if 1, 
 
and 0,mtg   if 0.   (2.43) 

Representation (2.40) can be rewritten in a shorter form (with known function

0 ( , )r z ): 
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where 0 ( , )r z
 
and 0 1( , , , )G r z    are given by expressions: 
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The representation (2.44)-(2.46) is not the solution because of unknown function

0 ( )F  .  

 

 

2.4.2 The Separate 2D Problem for the Fin 

 

Conjugation conditions (2.13) are written in the following form: 
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1 1

0
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00 0

1
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 

 

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     

    
  (2.47) 

Values and conditions unified with the nomenclature of the problem described in 

chapter 2.3 represented in Table 2.2. 

 

Table 2.2. Formulation of problem for fin. 

gi  ki  Other values 

1( , ) ( ),g z t F z [0, ]z b  1k 
 
 1a   

2( , ) 0g z t   2k   1 1 

 
2 2   

3( , ) 0g r t   3 0k   l b  

4( , ) 0g r t   4k   ( , , ) 0r z t   
( , , ) ( , )U r z t U r z  

 

In the equation of the fin, similar to the case of the wall, some of addends are 

zero because of the homogeneity of the boundary conditions and the problem. Using 

(2.20) solution for the fin can be represented in the following form: 
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t b

U r z F G r z t d d            (2.48) 

Changing order of integration and using same idea as in (2.35) we obtain: 

2

1

0

( , ) ( ) ( , , , ) ,
2

b

U r z F G r z d
 

       (2.49) 
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Using Table 4.2 and expressions (2.24) – (2.26) following equations obtained: 
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here
*

k and *

l  are positive roots of the following transcendental equations: 
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2.4.3 The Conjugation of Two Separate Problems 

 

Easily from representations (2.47) together with (2.44) and (2.28) together 

with (2.49), the two following equalities are obtained:  
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here: 
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 (2.55) 

1( , , , ) .
G

G r z G
r

  

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

 

Equation (2.54) substituted into (2.53) allows writing out the following second kind 

of Fredholm’s integral equation: 

1

0

( ) ( , ) ( ) ( , ) ,

b

F z z F z d        (2.56) 

here: 

2
2
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0

( , ) ( , , , ) ( , , , ) .
2

b

z G G z d
 
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 

   
 

  (2.57)

This is an inhomogeneous integral Fredholm equation of the second kind (2.56) by 

the given kernel ( , )z  . Equation (2.57) has exactly one solution [39]. Knowing

( )F z we can find from representation (2.49) the solution for the fin.  

Fredholm’s method to obtain the solution of (2.56) is used. At first, interval 

(0, )z b  into N exact parts ,   0,iz i N
 
are divided, thus 0 0z  , but Nz b . Now 
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equation (2.56) considered in separate points ,   0,iz i N  can be rewritten in the 

form of a system of linear equations: 

0

N

i i ij j

j

F F h


    , (2.58) 

where: 

( )i iF z F , ( )i iz  , ( , )i j ijz z    un 1

0
i i

b
z z h

N



   . (2.59) 

In this method we replace the integral with rectangular squaring formula, but 

it can be replaced by a trapezium or any other squaring formula. It is necessary to 

express ( )z  and ( , )z   to solve the system of linear equations (2.58). Let’s 

express function ( )iz  using (2.55) and (2.45): 
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where: 
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It is necessary to express 
0 1 1 0( , , , )iG z   and

1 0 1( , , , )jG z    for ij . 

From equations (2.55) and (2.46) follows: 

 0 1 1 0
0 1 1 0 0 0 1 1 0

( , , , )
( , , , ) ( , , , ) .i

i i

G z
G z G z

r

  
      


 


 (2.62) 

Equations (2.31), (2.35) and (2.46) inserted into (2.62) can be written in the 

following form: 
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where: 
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 1 1
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Now, only left to find is the expression of 
1 0 1( , , , )jG z   . From formula (2.55) is 

obtained: 
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From equations (2.65) and (2.50) follow: 
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where: 
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Now from expressions (2.57), (2.63) and (2.66) follow: 
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(2.68) 

With the help of equations (2.31) and (2.50) expression (2.68) is written in the next 

form: 
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The system of linear equation (2.58) contains unknown values of function ( )F z  at 

fixed iz , Ni ,0 . Function ( , )i jz z  (2.70) and ( )iz  (2.60) are stated with 

analytical expressions and can be calculated at any value of iz  and jz . The further 

set of values of ( )iF z  is obtained. Now, again integral in expression (2.49) with the 

rectangular squaring formula is replaced in following way: 
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Heat transfer at any point of the fin using expression (2.71) can be calculated. Now, 

easily the values of second unknown function 0( )F z  can also be calculated. 

Equations (2.50) and (2.71) pasted in formula (2.28): 
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 And one more time, the rectangular squaring formula for the integral of 

formula (2.44) is applied, and by means of formula (2.46) and (2.72), the value of 

heat transfer at any point of the wall can be calculated: 
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Equations (2.71) and (2.73) are the solutions of problem (2.8) – (2.17) when 

1 0( ) ( ) ( ) 0q r q r q r    and ( , ) 0Q r z   (2.27). 
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2.5 Solution by Non-homogeneous Environment Temperature  

 

In this chapter, the case of non-homogeneous equations and non-

homogeneous boundary conditions is considered.  

 

 

2.5.1 The Statement of the Full Mathematical Problem 

 

As the main equations for the wall and the fin we take differential equations 

(2.8), (2.14): 
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The non homogenous BC for the wall are as follows: 
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(2.75) 

Similar are the non homogeneous boundary conditions for the fin: 
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To complete the full statement of generalised problem (2.74)-(2.76) the solution must 

fulfil the conjugations conditions (2.13): 
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2.5.2 The Separate Solutions for the Wall and the Fin 

 

In the same way as in the sub-section 2.4.1, the notation (2.28) is introduced. 

Then the solution in the wall can again be presented in the same form as (2.44): 
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Now the expression for the first term of the right hand side has a significantly 

more complicated form: 
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 (2.79) 

The solution for the fin with boundary conditions (2.76) can be presented in a 

similar way as for the wall:  
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The expression for the first term of right hand side has the form: 
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2.5.3 The Junction of Solutions for the Wall and the Fin  

 

The following notations are introduced: 
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The representations (2.79) and (2.81) allow to easily obtain the following two 

equations: 
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From this system (2.83) the following second kind of Fredholm integral 

equation is established: 
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Here the kernel of the Fredholm integral equation is given by the same 

formula as (2.57): 
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In its turn, the first term in the right hand side has a more complicated 

expression:  
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Evidently this second kind of Fredholm integral equation (2.84) has exact one 

solution [39]. Again, by the known ( )F z , the representation (4.80) allows to find the 

solution for the fin. In a similar way, the integral equation for the function 0 ( )F z  

can be constructed and the solution for the wall obtained. 

 

 

2.6 Calculations and Results 

 

A mathematical model for the problem described in chapter 2.4 was 

developed. The visualisation of the results and principles applied are the same as in 

section 1.6. The parameters used in calculations are shown in tables 1.2 and 1.3 and 

correspondingly three cases (1; 2 and 5) were considered. The cases are shown in 

table 1.4. 
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The basic case of configuration where the Green’s function method is used 

for the solution is shown in Fig. 2.4. The analytical result by method of Green’s 

function can be easily compared with the solution shown in Fig. 1.5. Evidently, both 

the 1D and 2D semi-analytical results obtained using the method of conservative 

averaging and the analytical 2D solution using the Green’s function method have no 

significant differences. 

 

 

 

When the calculations are performed using the Green’s function method, it is 

necessary to take into account the time needed for computation. In Fig.2.4 the first 10 

eigenvalues are used and the computation time was approx. 5 minutes. However, 

when the number of eigenvalues is increased the computational time increases 

significantly. In Figure 2.5, the result using the same input dataset as in Fig. 2.4 is 

shown, however, this time only the first five eigenvalues are used. It is evident that 

the use of only the first five eigenvalues is sufficient to produce a representative 

result. 

 

 

 
Figure 2.5. Results of basic configuration 

Problem with ideal contact, 5 eigenvalues 
 

 
 

Figure 2.4. Results of basic configuration 
Problem with ideal contact, 10 eigenvalues 
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In Figure 2.6, the result using the second parameter data set is shown. A 

comparison with the semi-analytical solution shows that the most pronounced 

differences are in the fin; in general the average temperature difference is approx. 

2
o
C. 

 

 

 

In Figure 2.7, the semi-analytical 2D, 1D and analytical 2D results are shown. 

It is evident, that the features of the solution are similar; however there are small 

differences in numerical values. 

Depending on the nature of the physical problem in question and the 

precision constraints of the results, it is possible to choose any of the models 

developed in Chapter 1 and 2. Each one of them has its advantages and 

disadvantages: 

 The derivation of the 1D semi-analytical solution and the amount of 

code that needs to be written are comparatively small. When the 

calculations are carried out using the model, the result is acquired 

instantaneously. A significant flaw is the fact that only one dimension 

is considered and no understanding about the temperature distribution 

in the 2D domain is gained. 

 The mathematical derivation of the 2D semi-analytical solution 

requires careful work and the amount of code increases when 

compared to the 1D model. From a practical point of view, the 

possibility of errors increases when the amount of derivation and code 

increases. However, it is possible to relatively easily identify and 

rectify the errors because the solution is reduced to the analytical 

solution of a system of linear equations. The result can be obtained in 

a few milliseconds. 

 

 
Figure 2.6. Results of second configuration 

Problem with ideal contact, 10 eigenvalues 
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 The analytical solution in 2D is the most time consuming and most 

voluminous of the models considered in this work. The numerical 

solution reduces to a number of different sub-problems – finding 

eigenvalues, solving a Fredholm integral equation and a number of 

multiple sums. Some of the sub-steps in the solution were compared 

with the results from Maple software to ascertain the congruence and 

the correctness of the results. This model is especially non-transparent 

because of the number of multiple sums, and even if the smallest 

mistakes are made it is hard to identify their cause. However, the 

advantage is that it is very clear that the result of the computation is 

the solution of the problem. The disadvantage of this model is the 

time needed for computation that, depending on the precision needed 

requires more and more resources. The increase of time needed is not 

linear but exponential. Most of the resources are used for finding the 

 
Figure 2.7. Results of fifth configuration 

Problem with ideal contact, 2D semi-analytical solution, 1D semi-analytical solution, 

2D exact analytical solution with 10 eigenvalues 
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eigenvalues (formulas (1.42), (1.43) and (1.52)) and the computation 

of values for different terms that consists of the construction of 

multiple sums. 

 

2.7 Conclusions 

 

Two 2-dimensional analytical solutions (in both cases: homogeneous chapter 

(2.4) and non-homogeneous chapter (2.5) environment) for a system with cylindrical 

fin when the wall and the fin consist of materials with different thermal properties is 

constructed.  

Numerical mathematical model of homogeneous solution is produced. Some 

examples of calculation and main benefits and disadvantages of technical 

performance are represented. 

  



 

65 

3. ANALYTICAL SOLUTIONS FOR NON STEADY-STATE 

HYPERBOLIC HEAT EXCHANGE EQUATION 

 

 

3.1 Problem Introduction 

 

The intensive quenching method was patented several decades ago [15], [40], 

[14]. This method of intensive quenching is offered in water in contrast to other 

hardening methods in oil. To describe the standard hardening process, the classical 

equation is used [41], [42]. Dr. N. Kobasko has kindly provided the experimental 

result shown in Figure 3.1. Curve Nr. 2 on this figure shows that the solution has the 

character of an equation of hyperbolic type. In [16] it was proposed to describe the 

quenching process by the hyperbolic heat equation. In the paper it was concluded 

that hyperbolic type heat exchange equation better describes steel quenching physical 

processes. 

 

Intensive quenching technical processes as well as mathematical models meet 

with several difficulties caused by a number of reasons. Firstly, if cooling process of 

part exceeds some critical value thin layer of water steam can form on the surface of 

part and so called film boiling can begin [2]. During film boiling process component 

is often fractured [13], [16], [43], [44], [45]. Then nucleate boiling process caused by 

fractures begins, which means that, non linear boundary conditions are required for 

mathematical process description. Secondly, there are no exact mathematical verified 

solutions for parts with more complicated geometry. Usually Kondratjev number 

(form factor) is used to reduce a complex problem to a problem with simpler domain. 

Thirdly, solution of hyperbolical heat exchange equation requires additional initial 

conditions (heat flux), that are not known; therefore issue is reduced to inverse non 

steady-state problem. 

Understanding of intensive quenching process requires lot of experimental 

work including mathematical modelling as well. Because of the unknown values of 

 

Figure 3.1. Function of temperature of sample (quenching from 

860
о
C in salt water): 1 – centre; 2 – surface 
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initial heat flux, there are two additional conditions at the moment t T  of process 

are given for further discussed problems.  

Time inverted hyperbolic heat exchange problem for cylinder is discussed in 

chapter 3.2. Closed form 1D solution for a thin cylinder is obtained. 

In chapter 3.3, a non steady-state solution for the hyperbolic heat equation for 

a cylindrical sample with fin is constructed. Usually mathematical modelling of 

systems with extended surfaces is realised by one dimensional steady-state 

assumptions [1], [3]. In [4], [5], [26], [28] two and three dimensional semi-analytical 

and analytical solutions for the steady-state process are constructed. This technique 

gives a more suitable form of the solution in the form of the Fredholm integral 

equation. In this chapter, the exact 3D problem is reduced to 2D and analytical 

solutions by the Green function method are obtained.   

 

 

3.2 Mathematical Formulation of 3D Non Steady-State Hyperbolical Heat 

Exchange Problem for Cylinder 

 

Definition of problem in domain (0, ),r R  (0, ),z H  (0, ],t T  

[0,2 ]   is as follows: 

2
2

2

2 2
2 1

2 2r a
U U U U

t t

U
r r r

r r z 
 


    

   
    

   
 

   
, (3.1) 

where  is a known relaxation parameter (constant) from experimental results. 

The additional following boundary conditions when [0, ],  [0,2 ]t T     are 

formulated: 

1 1
( , , )

U
k U

r
z t 





 , ,r R [0, ],z H  (3.2) 

2 2
,( , , )

U
U

z
k r t 





 [0, ],r R ,z H  (3.3) 

3 3( , , )
U

U
z

k r t 


 


, [0, ],r R 0z  . (3.4) 

Periodical (continuity) boundary conditions when (0, ),r R  (0, ),z H  

(0, ]t T  are the following: 

( , ,0, ) ( , ,2 , ),U r z t U r z t  
( , ,0, ) ( , ,2 , )

.
U r z t U r z t

r r

 


 
 (3.5) 

Additional condition in the centre is the following: 

0,  0,  [0, ],  [0, ].
U

r r z Z t T
r


   


 (3.6) 

Usually for hyperbolic heat equation, the two following initial conditions are 

required: 
0( , , ),  0,  [0, ],  [0, ],U u r z t r R z H    , (3.7) 
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0( , , ),  0,  [0, ],  [0, ].
U

V r z t r R z H
t




   


. (3.8) 

Value 0 ( , )V r z   of initial condition (3.8) is usually unknown. Therefore two 

additional conditions at the moment t T  of process are given instead of initial 

condition (3.8): 

( , , , ) ( , , ),TU r z T U r z 
 

( , , , ) ( , , )T

U
r z T V r z

t
 





 (3.9) 

 

 

3.2.1 Solution for Cylinder 

 

The simplest case when BC (3.2)-(3.4), initial conditions (3.7), (3.8) and 

additional conditions (3.9) on the right hand side depend on two arguments ,r z  (it 

means practically the thin cylinder or cylinder with rotation symmetry): 

1 1
( , )

U
k U

r
z t





 , ,r R [0, ],z H  

(3.10) 

2 2
,( , )

U
U

z
k r t





 [0, ],r R ,z H  

(3.11) 

3 3( , )
U

U
z

k r t


 


, [0, ],r R 0z  . 
(3.12) 

We introduce on the basis of conservative averaging method [46], [47] the 2D 

model: 

 
2

0

1
, , ( , , , ) .

2
V r z t U r z t d



 


   
(3.13) 

Integration of the main differential equation (3.1) gives main 2D differential 

equation: 

2 2

2 2 2

2 0

1 1
,

2
r

V V V V U U
r

t r r rt z r
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2 2

2 2

1
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r
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     
  
    

 

(3.14) 

The problem for this 2D cylinder is investigated in paper [43]. In this paper 

only one additional condition for classical heat equation was used: 

( , , ) ( , ).TV r z T U r z

 
(3.15) 

The main equation (3.14) can be written in the form of the heat equation with 

unknown source term: 

2
2 1

2
( , , , , ),a

V V
F r z t V

t

V
r r

r r z



   

  
   

  


  
 (3.16) 

here: 
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2

2
( , , , , ) ( , , ) ( , , ), ( , , ) .r

V
F r z t V f r z t W r z t W r z t

t
 


  


 (3.17) 

The solution of the problem with known source function F  for the classical 

heat conduction equation has the well-known form by employing the Green function

( , , , , )G r z t  for the finite cylinder with mixed type (second and third type) 

boundary conditions [11]: 

1 2( , , , , ) ( , , ) ( , , ),G r z t G r t G z t      (3.18) 

here: 
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(3.19) 

where 0n  and 0m  are the roots of the following transcendental equations: 

2 3 2 3
1 1 0 2

2 3

( ) ( ) 0, ( ) .
k k k k

J k RJ tg H
k k

    
 

 
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 
 (3.20) 

This fact allows us to write the solution in short form as the following 

expression: 

0 0 0

( , , ) ( , , )

2 ( , , , , ) ( , , ) .

t H R

r

V r z t r z t
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  

   
 (3.21) 

Here the function ( , , )r z t contains all the other integrals where the Green 

function is multiplied by known boundary and initial conditions: 
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d d f G r z H t d              

(3.22) 

Now it is the right time to use the additional condition (3.9) in formula (3.21) 

and reduce equality to the first kind of Fredholm type integral equation for function

( , , )W r z t : 



 

69 

0 0 0
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     (3.23) 

 

 

3.2.1.1 2D solution by Tihonov’s Regularization Method 

 

The solving of the integral equation (3.23) is an ill-posed problem, but 

regardless of this, it can be solved, e.g. by Tihonov regularisation method [48]. Let’s 

denote the regulasized solution with ( , , )W r z t . Then, the approximate (regularised) 

solution ( , , )V r z t follows from the formula (3.21): 
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 (3.24) 

From here the following expression can be written for the first time derivative 

of the solution: 
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 (3.25) 

The well-known filtration property of the Green function [49] allows 

rewriting the last equation in the following form: 
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 (3.26) 

The unknown function 0 ( , )V r z  can now be obtained by passage to the limit 

0t   in the equation (3.27). So the solution of the time inverse problem looks like 

the following: 

0

( , , 0)
( , ) ( , , 0).r

r z
V r z W r z

t


 
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
 (3.27) 

 

 

3.2.1.2 1D solution by Green Function Method for Thin Cylinder 

 

The main idea of the solution will be shown for the 1D case hyperbolic heat 

exchange equation. For cases of thin cylinder, it is assumed that the right side of BC 

(3.11) and (3.12) do not depend on r: 
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(3.29) 

As the next step by conservative averaging, the 1D model is introduced [7]: 
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(3.30) 

Integration of the differential equation (3.1) and using BC (3.28) and (3.29) 

gives the main 1D differential equation: 
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(3.31) 

To exclude the first derivation by time, following unknown function is 

substituted: 
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(3.32) 

As a result from (3.31) and (3.32), the following equation is obtained: 
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Equation (3.33) is the Klein –Gordon equation [50] with a new BC instead of 

(3.10): 
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(3.34) 

and updated initial conditions (3.7) – (3.8): 
0
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The additional conditions (3.9) at final moment are the following: 
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The solution of direct problem [11] is: 
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here: 
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(3.38) 

where eigenvalues of the equation can be found as positive roots of the following 

transcendent equation: 
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(3.39) 

With the first end condition (3.36), it leads to the first kind of Fredholm integral 

equation: 
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(3.40) 

For solution of function 
0( )U x  we obtain the following first kind of 

Fredholm integral equation: 
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(3.41) 

If it is assumed that 1 2( ) ( )     then time depending heat flux, consider the 

following: 
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(3.42) 

Using this equation, start condition (3.8) can be found. In this case, the first 

kind of Fredholm’s integral equation must be solved. If both additional conditions at 

the end of process (3.9) are used, then coordinates by time in equation (3.33) can be 

transformed: 
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(3.43) 

Equation (3.33) has a similar look: 
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 





      

   
      

(3.44) 

Initial conditions look like the following: 
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2
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2

0

( )e ,

( )e .
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u u U r

u u
V r

t t





 

 

 

 
   

 
 

(3.45) 

The derivation of equation (3.42) by time is: 

2
2

2

0

2

0

2 22 2

1 1

0

( , ) ( )e ( , , )

( )e ( , , )

( )e ( , , ) ( )e .

r

r

r r

TR

T

TR

T

tt

u r t U G r t d
t t

V G r t d
t

a G r R t d a t
t







 

  

  

    

 
 

 







  









 
(3.46) 

By putting 0t T t    into (3.46), the following connection is obtained. 

This is initial condition (3.8), and is also direct problem: 

2

2

0

0

2

1

0

2

1

( , ) ( )exp ( , , )
2

( )exp ( , , )
2

( )exp ( , , )
2

( )exp .
2

R

T

r t T

R

T

t Tr

T

t Tr

r

T
u r T U G r t d

t t

T
V G r t d

t

a G r R t d
t

T
a T

  


  



   












  
  

  

  
  

 

  
   

 

 
  

 






 

(3.47) 

 

 

3.2.2 Solution for Thin Disk 

 

In case of thin disk BC (3.10) can be rewritten in the following way: 

1 1
( )

V
k V

r
t





 , ,r R [0, ].z H  (3.48) 

1D model introduced by averaging: 

 
2 0

2
, ( , , ) .

R

u z t rV r z t dr
R

 
 

(3.49) 

Integration of the main differential equation (3.1) and using BC (3.11) and (3.12) 

give the main 2D differential equation: 

2 2

2 2

2
.

r R

r

u u u V

t R rt z





   

 
    

2 2

1

2 2

1
22

.
( )

r

ku u u
u

t R Rt z

t
 

  
  
   

(3.50) 
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Further construction of solution is similar as in case of thin cylinder (see sub-

chapter 3.2.1.2). 

Equation (3.33) and (3.50) can be transformed to an ordinary differential 

equation by time, by means of the conservative averaging method. Thus a semi-

analytical solution can be found. Monographs [51], [52] are useful for the solution in 

more complicated cases of domain described in Chapter 3.3. 

 

 

3.3 Mathematical Formulation of 3D Problem for Cylindrical Fin 

 

Further the cylindrical wall 

with fin is discussed. Let’s assume 

that surface 0z   and 0   is 

middle surfaces with second type 

homogeneous boundary 

conditions. In other words, the 

angle of the sample is 2  and 

the height in z direction is 2H. All 

other surfaces come into contact 

with continuously flowing water 

at constant temperature 0 . It is 

assumed that the heat exchange 

processes on surfaces can be 

described by linear third type 

boundary conditions. 

The steel sample is heated 

up to an initial temperature inV  and placed in the facility for quenching. This 

physical system can be described with the following mathematical model. 

Let’s start with an accurate 3D formulation of the transient problem for a 

system of a cylindrical wall and fin. One element of the wall (base) is placed in the 

dimensionless domain       0 1, , 0,1 , 0,r z      . The cylindrical fin 

occupies the domain       1 2, , 0, , 0,r z b      . 

The following dimensionless arguments, parameters to transform the problem 

to a dimensionless problem are used: ,
r

r
H


 

,
z

z
H

  0
0 ,

r

H
  1

1 ,
r

H
   2

2 ,
r

H
 

0 ,
H

b
H


 

,
hH

k
   

1

,





  2 .
k

a
c

  Here the k - heat conductivity coefficient 

for the fin and wall, c - is specific heat capacity,  - density, h - heat exchange 

coefficient for the system, 0H  - height of the fin, L  - length of the fin, H - height of 

the wall, parameter  is so called relaxation time.  

The most interesting shapes of this system are the following. The case when 

0 0 0r    there are two shape options: 

 
Figure 3.2 3D domain in dimensionless 

arguments 
0 – radius of hole, 1 – distance of fin from centre, 2 – end of fin from 

centre, b – height of fin, 1 – height of wall, φ – angle of cut of cylinder 
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a) 2   partial cylinder (cross section in z direction is sector) with the fin; 

b) 2   complete cylinder with fin. Case when 0 0r   and 2   we 

get a tube with the fin. 

The dimensional temperature field of the steel sample (wall) is described by 

function
0 ( , , , )V r z t  and the following dimensionless temperature field is 

introduced 0 0

0

0

( , , , )
( , , , )

in

V r z t
V r z t

V








, here inV  is some characteristic value. It 

means, that dimensionless temperature field 0 ( , , , )V r z t  in the wall is described 

with the equation: 
2 22 2

20 0 0 0 0

2 2 2 2

V V V V Va a
r a

t r r rt z r




      
    

     
. (3.51) 

Similarly, the temperature field ( , , , )V r z t  in the fin fulfils the equation: 

2 2 2 2
2

2 2 2 2

V V a V V a V
r a

t r r rt z r




      
    
     

. (3.52) 

And the following boundary conditions in   and z directions are formulated:  

0 0

0

0 0

0 0

0

00 1

0, 0, 0, 0,

0, 0, 0, 0.
zz z bz

V V V V
V V

V V V V
V V

z z z z

  

 
   

 

  

 

     
        

      

      
       

     

 (3.53) 

Analogously the boundary conditions in r  direction (one symmetry condition 

and three heat exchange conditions) are formulated: 

0 1

2

0 0
0 0

0

0, 0,

0, 0.

r r

z r

V V
V V

r r

V V
V

r r

 



 



 

 

    
      

    

  
   

  

 (3.54) 

The conjugations conditions on the surface between the wall and the fin are 

assumed as ideal thermal contact - there is no contact resistance (it is the continuity 

of temperature and the heat flux): 

1 1
0 0 0

U U
  

 , 

1 1

0

0 0

, [0, ]
r r

U U
z b

r r    

 
 

 
. (3.55) 

The initial conditions are assumed in the following form: 
0

0 0 00 0
( , , ), ( , , ),

t t
V V r z V V r z 

 
   (3.56) 

00

0 0

00

( , , ), ( , , ).
tt

V V
W r z W r z

t t
 



 
 

 
 (3.57) 

From the practical point of view, both conditions (3.57) are unrealistic. For 

this case the initial heat flux must be determined theoretically. Additional conditions 
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are assumed that the temperature distribution and the heat fluxes distribution at the 

end of process are given (known): 
0

0

00

( , , ), ( , , ),

( , , ), ( , , ).

T Tt T t T

T T

t T t T

V V r z V V r z

V V
W r z W r z

t t

 

 

 

 

 

 
 

 

  (3.58) 

In case of 2  , boundary condition (3.53) is in the following form: 

0 0

0 0

, .
V V V V

   
   

   

   
 

   
 (3.59) 

 

 

3.3.1 Exact 3D Reduction to 2D Problem 

 

Equations (3.51) and (3.54) can be reduced from 3D to 2D problem by 

introducing the following average integral values for argument  :  

   0 0
0 0

1 1
, , ( , , , ) , , , ( , , , ) .U r z t V r z t d U r z t V r z t d   

 

 
    (3.60) 

Integration of the equation (3.51) for the wall over [0, ]  gives following 

equation (exact consequence of 3D partial differential equation (3.51)): 

2 22 2
20 0 0 0 0 0

2 2 2

0

.
U U U U V Va a

r a
t r r rt z r

 


 

 

        
                 

 (3.61) 

The first pair of boundary conditions (3.53) allows rewriting the last equality 

in the form of two dimensional equations (assuming 0U  is constant regarding 

argument  ): 

2 22 2
20 0 0 0

02 2 2
( ) , ( ) .

U U U Ua a
r a d r U d r

t r r rt z r



     

     
     

  (3.62) 

Similarly, the dimensionless temperature field ( , , )U r z t  in the fin can be 

described with the equation: 

2 2 2
2

2 2
( )

U U a U U
r a d r U

t r r rt z

     

    
    

. (3.63) 

The needed boundary conditions and conjugations conditions are defined as 

follow: 

0

0 0
U

U
r




 


, 0 , [0,1]r z  ,  (3.64) 

0

0 0
U

U
r




 


, 1r  , ]1,[bz , (3.65) 

0
0 0 10, [ , ], 1

U
U r z

z
  


   


 (3.66) 
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0

0 10, [ , ], 0,
U

r z
z

 


  


 (3.67) 

0
U

U
r




 


, 2r  , ],0[ bz , (3.68) 

1 20, [ , ], 0,
U

r z
z

 


  


 (3.69) 

0



U

z

U
 , 1 2[ , ]r   , bz  , (3.70) 

1 1
0 0 0

U U
  

 , 

11

0

00

U U

r r  

 


 
. (3.71) 

The initial conditions transform into the form: 
0

0 0 00 0
( , ), ( , ),

t t
U U r z U U r z

 
   (3.72) 

00

0 0

00

( , ), ( , ).
tt

U U
W r z W r z

t t 

 
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 
 (3.73) 

Additional conditions transform into following: 
0

0

00

( , ), ( , ),

( , ), ( , ).

T Tt T t T

T T

t T t T

U U r z U U r z

V V
W r z W r z

t t

 

 

 

 
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 

 (3.74) 

All initial and additional conditions (3.72) – (3.74) are obtained by the 

integration of conditions (3.56) – (3.57) by direction   regarding equation (3.60). 

Equations (3.51), (3.52) in case of 2   taking into account the boundary 

condition (3.59) are rewritten in a more simple form: 

2 22
20 0 0 0

2 2

2 2 2
2

2 2

,

.

U U U Ua
r a

t r r rt z

U U a U U
r a

t r r rt z





     
   

    

     
   
    

 (3.75) 

Let’s make the following transformation to functions 0( , , ), ( , , )v r z t v r z t : 

2 2
0 0( , , ) ( , , ), ( , , ) ( , , ).

t t

U r z t e v r z t U r z t e v r z t 
 

   (3.76) 

The main equations (3.61) and (3.62) transform in following form: 
2 2 2 2

2 20 0 0

02 2

22 2
2

2 2 2

, ,

1
, .

4

v a v v a
r a cv a

r r rt z
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
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






    
    

   

    
     
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 (3.77) 

Boundary conditions (3.67) - (3.74) for functions 0( , , ), ( , , )v r z t v r z t  stay in 

the same form, only initial conditions (3.75), (3.76) are the following: 
0

0 0 00 0
( , ), ( , ),

t t
v U r z v U r z

 
   (3.78) 
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0
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 
 (3.79) 

Additional conditions (3.77) are the following: 
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T
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t
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







 
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  

  
     

 (3.80) 

 

 

3.3.2 Solution of 2D Problem 

 

There, one shape of sample will be discussed. All other mentioned cases have 

a similar methodology of research as papers [45], [53]. Let’s consider a complete 

cylinder with the fin. In this case, to split up the sample into two complete cylinders 

connected with surface z b  is preferred: 

0
0 20 0

0 0

, , [0, ].
b b

z b z b

v v
v v r

z z


 
   

 
  

 
 (3.81) 

The boundary condition for a cylinder on the right hand side (3.68) together 

with the conjugation conditions (3.81) can be rewritten in following common form: 

0 20
0 0

2 10 0

( , ),0 ,
( , ) .

0 , ,
z b z b

F r t rv v
v F r t v

rz z


 

 
   

     
      

     
  (3.82) 

The solution for the complete cylinder can be written in the well-known form 

by means of the Green function, see, [11]: 

2
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2
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r z t d U W G r z t d






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   

 
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 

 

 (3.83) 

The Green function has the form: 
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 

 

 
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There m and 
n  are positive roots of following transcendental equations: 

 

 

 
1 1

0

1 / 4
,

.

m

n

n n

m
m N

b

J

J

 


 

 

 
 



 (3.85) 

The representation (3.83) is not the solution because of the unknown function

0( , )F r t . As the next step some conditions for the fin are modified. The conjugations 

conditions are rewritten in following form: 

  2 0
0

0 02 1

, ,0 ,
( , ) .

0, ,z b z b

F r t rv v
v F r t v

z zr


 

    

     
      

     
  (3.86) 

Similar to the case of formula (3.83) the solution for the fin can be 

represented in following form: 

2

2

0

0 0

( , , ) ( , , ) ( , ) ( , , , , ) .

t

v r z t r z t a d F G r z b t d



            (3.87) 

Formulae (3.83), (3.87) can be rewritten for
0( , ),F r t   ,F r t  similar as in 

Chapter 2.4.3 and Fredhom’s integral equations of the second kind obtained. Similar 

to papers [45], [53], the system can be reduced to one integral equation.  

 

3.4 Conclusions 
 

The solution of the time inverse problem in closed form for a thin cylinder is 

obtained. The methodology of the solution of inverse problems in non canonical area 

is described. An two-dimensional analytical solution for a system with a cylindrical 

fin (when the wall and the fin consist of the same material) is obtained.  
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CONCLUSIONS 
 

The ideas concerning steady-state and non-steady-state semi-analytical and 

analytical solutions for a number of systems with a different number of dimensions 

are examined in this work and can be used as an additional learning tool when 

studying methods of mathematical physics for problems of heat transfer. A survey of 

the available literature shows that 2D problems in cylindrical coordinates for non-

canonical domains using analytical or semi-analytical solutions have not been 

considered before; therefore it stands to reason that this Thesis adds to the 

educational and scientific literature. 

Numerical models developed in this Thesis give a better insight into the 

advantages of analytical and semi-analytical solutions. Despite the fact that many 

scientists regard the analytical approach as archaic; in my opinion this work shows 

the solutions in a different light and highlights the contemporary flexibility and the 

wide scale of their applications. Evolving technologies change the requirements for 

applied methods. Therefore, in my opinion there is reason to think that, if advanced 

in this direction, analytical solutions can experience their renaissance especially 

concerning engineering applications in different fields. 

  



 

80 

 

BIBLIOGRAPHY 

[1] Kern D.Q. and Kraus A.D. Extended Surface Heat Transfer. New York : 

McGraw-Hill, 1972. 816 p. 

[2] Incropera F.P. Fundamentals of Heat and Mass Transfer. 6th ed. Hoboken 

(NJ) : Wiley, 2006. 1024 p. 

[3] Cole K.D., Beck J.V, Haji-Sheikh A., et al. Heat Conduction Using Green's 

Functions. 2nd. US : CRC Press, 2011. 

[4] Bruvere A. and Buikis A. Analytical 3-D steady-state statement for cylindrical 

fin and some of it’s approximate solutions. WSEAS TRANSACTIONS on HEAT 

and MASS TRANSFER. 2006, Vol. 1, Issue 4, pp. 415-422. 

[5] Some approximate analytical steady-state solutions for cylindrical fin. Bruvere 

A. and Buikis A. 2006. Proceedings of 4th IASME/WSEAS International 

Conference on HEAT TRANSFER, THERMAL ENGINEERING and 

ENVIRONMENT. pp. 238-243. 

[6] Buiķis A. Problems of Mathematical Physics with Discontinuous Coefficients 

and Their Applications. Rīga : s.n., 1991. 385 p. In Russian, unpublished book. 

[7] Viļums R. Conservative averaging method in mathematical models of heat 

processes of electric systems. Riga : University of Latvia, 2010. ISBN 978-

9934-8180-2-8. 

[8] Buiķe M. Analītiskie un skaitliskie risinājumi siltuma un masas pārneses 

procesiem kārtainās vidēs. s.l. : University of Latvia, 2010. PhD Thesis. 978-

9984-45-328-6. 

[9] Brūvere A. Viendimensiju un divdimensiju atrisinājumi sistēmās ar taisnstūru 

ribu. 2004. Master Thesis. 

[10] Exact Analytical 3D Steady-State Solution for Cylindrical Fin. Piliksere A. and 

Buiķis A. Puerto de la cruz, Tenerife, Canary Islands, Spain : WSEAS Press, 

2007. Proceeding of the 4th WSEAS International Conference on Heat Transfer, 

Thermal Engineering and Environment. pp. 238-243. 

[11] Polyanin A.D. Handbook of Linear Partial Differential Equations for 

Engineers and Scientists. - : Chapman&Hall/CRC, 2000. 

[12] Steel quenching process as hyperbolic heat equation for cylinder. Piliksere A., 

Buiķe M and Buiķis A. Tampere, Finland : s.n., August, 2011. 6th Baltic Heat 

Transfer Conference (BHTC). 

[13] Issues of hyperbolic heat exchange equation in polar co-ordinate system. Buikis 

A. and Piliksere A. Riga : s.n., 2011. Proc. of 16th International Conference on 

Mathematical Modeling and Analysis. p. 20. 

[14] http://www.intensivequench.com. [Online]  



 

81 

[15] Kobasko, N. I. Intensive Steel Quenching Methods. Theory and Technology of 

Quenching. s.l. : Springer-Verlag, 1992. 

[16] Solution of Reverse Hyperbolic Heat equation for intensive carburized steel 

quenchin. Buikis A. and Guseinov Sh. s.l. : IIT Madras, December 1-6, 2005. 

Proceedings of ICCES’05, Advances in Computational and Experimental 

Engineering and Sciences. pp. 741-746. 

[17] Ortinska Je.G., Behta P.A., Bakalec A.V., et al. Matematichna model procesu 

vigotovlennja faneri іz shhponu pіdviweno vologostі. Naukovij vіsnik NLTU 

Ukraїni. 2010, Issue 2010.10. 

[18] The future of analytical solution methods for grownd water flow and transport 

simulation. Craig J.R. and Rea W.W. Barcelona : CIMNE, 2010. XVIII 

International Conference on Water Resources. 

[19] Buiķis A. Modelling of Filtration Processes in Layered Porous Media by the 

Conservative Averaging Method. Kazan : -, 1987. 374 p., Dr. Thesis. In Russian. 

[20] Analytical three-dimensional solution for heat sink temperature. Lehtinen A. 

and Karvinen R. 2004. Proceedings of IMECE2004-61062. p. 7. 

[21] Lehtinen A. Analytical treatment of heat sinks cooled by forced convecten. 

Tampere : s.n., 2005. 59 p. 

[22] Manzoor M. Heat Flow through Extended Surface Heat Exchangers. Berlin 

and New York : Springer-Verlag, 1984. 286 p. 

[23] Kraus A.D. Analysis and ealuation of extended surface thermal systems. s.l. : 

Hemisphere publishing Corporation, 1982. 

[24] Performance Indicators for Steady-State Heat Transfer Through Fin 

Assemblies. Wood A.S., Tupholme G.E., Bhatti M.I.H., et al. New York : 

ASME, 1996, Journal of Heat Transfer, Vol. 118, Issue 2, pp. 310-316. 

[25] Wood A.S., Tupholme G.E., Bhatti M.I.H., et al. Steady-state heat transfer 

through extended plane surfaces. Int. Commun. in Heat and Mass Transfer. 

1995, Issue 1, pp. 99-109. 

[26] Buikis A. and Buike M. Closed two-dimensional solution for heat transfer in a 

periodical system with a fin. Proceedings of the Latvian Academy of Sciences. 

Section B, 1998, Vol. 52, Issue 5, pp. 218-222. 

[27] Analytical two-dimensional solutions for heat transfer in a system with 

rectangular fin. Buikis A., Buike M. and Guseinov S. - : WIT press, 2004. 

Advanced Computational Methods in Heat Transfer, VIII. pp. 35-44. 

[28] Buikis A. and Buike M. Some analytical 3D steady-state solutions for systems 

with rectangular fin. IASME Transactions. September, 2005, Vol. 2, Issue 7, pp. 

1112-1119. 

[29] An approximate analytical solution to a familiar conjugate heat transfer 

problem. Malik M.Y., Wood A.S. and Buikis A. 2004, Intern. Journal of Pure 



 

82 

& Applied Mathematics, Issue 10, pp. 91-107. 

[30] Buiķis A. Matemātiskās fizikas vienādojumi. Riga : University of Latvia, 2002. 

[31] Tihonov, A.N., Samarskij, A.A. Uravnenija matematicheskoij fiziki. s.l. : 

Izdatel'stvo Moskovskogo Universiteta, 1999. ISBN 5-21104138-0. 

[32] Broman A. Introduction to Partial Differential Equations: From Fourier Series 

to Boundary-Value Problems. New York : Dover publications, 1989. 

[33] Kronbergs, E., Rivža, P., Bože. Dz. Augstākā matemātika 2. s.l. : Zvaigzne, 

1988. 

[34] PAIC SIA. http://www.paic.lv/en/produkti.php#mesheditor.  

[35] http://www.likumi.lv/doc.php?id=56049 Latvijas būvnormatīvs LBN 002-01. 

[Online]  

[36] Riekstiņš E. Matemātiskās fizikas vienādojumi. s.l. : Latvijas Valsts 

Izdevniecība, 1964. 

[37] Bugrov Ja.S. and Nikol'skij S.M. Vysshaja matematika. Rostov-na-Donu : 

Feniks, 1997. 

[38] Zajcev, V.F., Poljanin, A.D. Metod razdelenija perememennyh v 

matematicheskoj fizike. s.l. : Sankt-Peterburg, 2009. ISBN 978-5-94777-211-1. 

[39] Guenther R.B. and Lee J.W. Partial Differential Equations of Mathematical 

Physics and Integral Equations. New York : Dover Publications, 1996. 

[40] Kobasko N.I. Quenching of Steel in Liquid Media Under Pressure. Kiev : 

Naukova Dumka, 1980. 206 p. 

[41] Kobasko N.I. and V. Dobrivecher. Self-Regulated Thermal Process and 

Cooling Properties of Quenchants. IASME Transactions. November 2005, Vol. 

2, Issue 9, pp. 1825-1828. 

[42] Kobasko N.I. and Buiķis A. Cooling time calculation for any configuration of 

steel part. Proceedings of 9th In-ternational Scientific and Technical Congress 

of Heat-Treaters and Metallographers. 2008, Vol. I, pp. 275-281. 

[43] Modelling of Intensive Steel Quenching Process by Time Inverse Hyperbolic 

Heat Conduction. Buikis A., Guseinov Sh. and Buike M. Riga : s.n., June 8-9, 

2006. Proceedings of the 4th International Scientific Colloquium “Modelling for 

Material Processing”. pp. 169-172. 

[44] Several Intensive Steel Quenching Models for Rectangular Samples. Buike M. 

and Buikis A. Corfu Island, Greece : s.n., July 22-24, 2010. Latest Trends on 

Theoretical & Applied Mechanics, Fluid Mechanics and Heat & Mass Transfer. 

International Conference on Fluid Mechanics and Heat & Mass Transfer. pp. 

88-93. 

[45] Hyperbolic heat equation as mathematical model for steel quenching of L-shape 

samples, Part 1 (Direct Problem). Buike M. and Buikis A. Puerto De La Cruz, 



 

83 

Tenerife, Canary Islands, Spain : WSEAS Press, December 15-17, 2008. 

Applied and Computational Mathematics. Proceedings of the 13th WSEAS 

International Conference on Applied Mathematics (MATH’08). pp. 198-203. 

[46] Buiķis A. Conservative Averaging as an Approximate Method for Solution of 

Some Direct and Inverse Heat Transfer Problems. Advanced Computational 

Methods in Heat Transfer, IX. Southampton : WIT Press, 2006, pp. 311-320. 

[47] Conservative Averaging Method for Partial Differential Equations with 

Discontinuous Coefficients. Viļums R. and Buiķis A. Athens : WSEAS Press, 

2006, WSEAS Transactions on Heat and Mass Transfer, Vol. 1, Issue 4, pp. 

383-390. ISSN: 1790-5044. 

[48] Tihonov A.N. and Arsenin V.Ja. Metody reshenija nekorrektnyh zadach. 

Moskva : Nauka, 1986. 

[49] Roach G.F. Green’s functions. s.l. : Cambridge Univesity Press, 1999. 

[50] Debnath L. Nonlinear partial differential equations for scientists and 

engineers. Boston : Birkhäuser Boston, 2005. 737 p. 

[51] Őzişik, M. Necati. Boundary Value Problems of Heat Conduction. Mineola, 

New York : Dover Publications, Inc., 1989. 

[52] Carslaw H.S. and Jaeger C.J. Conduction of Heat in Solids. Oxford : 

Clarendon Press, 1959. 

[53] Hyperbolic Heat Equation as Mathematical Model for Steel Quenching of L-

shape Samples, Part 2 (Inverse Problem). Bobinska T., Buike M and A. 

Buikis. Cambridge, UK : WSEAS Press, 2010. Proc. of the 5th 

IASME/WSEAS Int. Conf. on CONTINUUM MECHANICS (CM’10). pp. 21-

26. 

 

 

 
 

 

  



 

84 

Appendix A. Applied Methods 

A.1 Problem Reduction to a Problem with Dimensionless Arguments 

 

In several chapters of the thesis, a basic problem is reduced to a problem in 

dimensionless arguments. This kind of modification is necessary to lighten the 

discussed problem and to simplify mathematical formulation. A further example of a 

full 2D mathematical problem will be formulated and reduced to dimensionless 

arguments shown. 

Heat transfer in the 

wall is 0( , )U r z , but in the fin

( , ).U r z  Environment 

temperature on the left side of 

the wall, where 0r  , is 1T , 

but environment temperature 

along edges where ,r    

 ,z B B R   (denoted with 

),  , ,r L z B     

(denoted with ) and 

 , 0,r L y B     () are 

equal to 0T  (see Fig. A.1). 

Using the following law: heat 

flux (q) on edge of domain is 

proportional to temperature difference [2], id est. 

Thq  , (A.1) 

where T  is temperature difference. Heat flux inside the domain can be described 

with the following equation: 

 
n

T
kq



 , (A.2) 

where n is the normal direction [2]. Unifying both equations (A.1) and (A.2), the 

following connection for boundaries is obtained 

 
n

T
kTh



 . (A.3) 

Sequentially, all edges will be discussed and connection (A.3) applied for them. The 

following boundary condition applying (A.3) for edge  0, 0,r z B R    (denote) 

is obtained: 

 0
00 0 1

U
k h T U

r


  

   
  

, (A.4) 

Heat convection on edge  can be described with the following connection 
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y 
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  
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T0 

T1 

T0 

0( , )U r z  

( , )U r z  h0 

h 

h 

k 

k0 

 +L 0 
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Figure A.1. Domain of problem. 
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 0
00 0

U
k h U T

r


  

   
  

. (A.5) 

A similar connection for edges  and  can be obtained (taking into account flux 

direction): 

0 ,
U

k h U T
r


  

   
  

 (A.6) 

 
0 .

U
k h U T

z


  

   
  

 (A.7) 

Taking into account heat balance, continuity of heat flux and connection (A.2) the 

following connection at the fin and wall contact surface  , 0,r z B    (), is 

obtained: 

 
0

0

0 0

.

r r

U U
k k

r r
 

 


 
 (A.8) 

For case of ideal thermal contact [4] on line , the following connection is valid: 

 
00

0










xx

UU . (A.9) 

In case of a periodical system, id est., system symmetric regarding lines 0z   and

z B R  , there is no heat flux on edges  0, , 0r z    and  0, ,r z B R     

() and  , , 0r L z     (), respectively: 

 
0 0

0 1

0

z z

U U

z z

 

 

 
 

 
 and 

0

0

z

U

z









. (A.10) 

 Now the reduction to dimensionless arguments can be done. That means new 

a dimensionless problem must be constructed within temperature range  1,0T , 

and the new domain always reduces that wall to one unit high: 

r
r

B R






 and 
z

z
B R






. (A.11) 

New values of wall width, fin length and fin height in dimensionless domain are: 

RB 


 , 

RB

L
l


  and 

RB

B
b


 . (A.12) 

Heat transfer in the wall is:  

 
01

00

0
TT

TU
U








 

   00100 TTTUU  , (A.13) 

but heat transfer in the fin is: 
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01

0

TT

TU
U








 

   001 TTTUU  . (A.14) 

Now equations (A.11) and ((A.13) or (A.14)) pasted into the equation (A.4) gives the 

following new BC for edge : 

  0 0
0

0

( ) 1 0
U h

B R U
kr


   


, (A.15) 

BC for edge : 

 
0 0

0

0

( ) 0
U h

B R U
kr


  


, (A.16) 

BC for edge : 

 ( ) 0
U h

B R U
kr


  


 (A.17) 

and BC for edge : 

 ( ) 0
U h

B R U
kz


  


. (A.18) 

Since the coefficients in equations (A.7), (A.15) – (A.18) are constants, the following 

denotations are done: 

 
0

00

0

)(

k

RBh 
 , 

0

0

)(

k

RBh 
 , 

k

RBh )( 
 . (A.19) 

Similarly, problem reduction to the problem of dimensionless arguments can be done 

for other discussed issues in the Thesis. 

 

 

A.2 Method of Conservative Averaging 

 

The main idea of the conservative averaging method is assuming that the 

solution has a known form of functional connection of one direction. This 

assumption is done to simplify the original problem, but still conserving by means of 

the average value original formulation of heat balance. The method of conservative 

averaging is openly discussed in papers [7], [19]. In short, the main ideas and steps 

for applied conservative averaging method for the problem described in the first 

chapter are the following: 

1. The solution for the fin in z direction assumed to be a combination of 

exponential functions and written in the form which contains three additional 

unknown functions; 

2. The average temperature connection in z direction for the fin is defined; 

3. The solution for the wall in r direction is assumed to be a combination of 

polynomial functions and written in the form which contains three additional 

unknown functions; 

4. The average temperature connection in r direction for the wall is defined; 
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5. Consequently, BC on the fin and wall is applied to exclude unknown 

functions; 

6. The solution for the wall is divided into two solutions: 

a. solution for the lower wall, respectively, sub-domain which has 

boundary only with the fin  

b. solution for the upper wall, id est., sub-domain which has boundary 

only with the outer environment 

7. A junction condition for wall lower part and fin is applied. 

8. Additional conditions for the unknown function are defined: Continuity of 

function and its derivative at the contact of the wall and fin is requested. 

9. At last, completing of the junction condition at the common point of all three 

sub-domains  b,  is requested. 

10. After completing points 1 – 8, a linear system of equations is obtained. And 

the solution to the original problem of the solution for the system of linear 

equations is reduced. 

 

 

A.3 Generalised Method of the Green Function 

 

The main idea of the generalised method of the Green function for non 

canonical domains is (1) applying of the Green function method for each canonical 

sub-domain and (2) merging both analytical solutions through junction conditions. 

The generalised method of the Green function is applied for problems in Chapter 2 

and 3.3. Following the main steps of the method, the following may be pointed out: 

1. Non-canonical domain is divided in two canonical sub-domains. 

2. Junction conditions are combined together with boundary conditions. Non-

homogeneous boundary condition of third kind with unknown functions on 

right side for each canonical sub-domain is written.  

3. Analytical solution for each sub-domain is constructed where unknown 

function in boundary condition like known function is treated. But still it is 

not solution of basic problem, since it contains unknown function. 

4. Obtained solutions with unknown function are pasted in boundary conditions 

and second kind of Fredholm’s integral equation is written.  

5. The solution of Fredholm integral equation for one sub-domain is obtained. 

Thus unknown function for each sub-domain is gained. 

The existence and unity of the described solution is guaranteed by the unity and 

existence of the solution of Fredholm’s integral equation and the continuity of its 

kernel [39]. 


