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Grinberg’s Criterion (Grinberg, 1968)

Given a plane graph with a hamiltonian cycle S and

fk (f ′
k) faces of size k inside (outside) of S, we have

∑

k≥3

(k − 2)(f ′k − fk) = 0.

Or – with s(f) the size of a face f :

∑

f inside S

(s(f)− 2) =
∑

f outside S

(s(f)− 2).
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This graph G is hypohamiltonian

(Thomassen (1976)):

One 10-gon, all other faces pentagons.
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Hamiltonicity of vertex-deleted subgraphs:

just give a Hamiltonian cycle!

Non-hamiltonicity of G:

One 10-gon, all other faces pentagons, so

∑

f inside S

(s(f)−2)(mod3) 6=
∑

f outside S

(s(f)−2)(mod3).

One side 0 – the other not.
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Generalizations by Gehner (1976), Shimamoto

(1978), and finally Zaks (1982):

Let C1, . . . , Cn be disjoint cycles in a plane

graph, so that

“no cycle separates two others”.

good good
bad

Faculty of Science



If vi vertices are strictly inside the cycles

and vo vertices strictly outside, then

∑

k≥3

(k − 2)(f ′k − fk) = 4(n− 1) + 2(vo − vi).

Or:

∑

f inside S

(s(f)−2)−2vi+4·1 =
∑

f outside S

(s(f)−2)−2vo+4n.
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Inside and outside are vague. . .

good good
bad

better talk about black and white:

1 white component
5 black components

1 black component
5 white components 2 white components

4 black components



The minimum requirement to talk about

an equality for two sets of faces is to be

able to distinguish the two sets. . .

Partitioning subgraph S:

a subgraph of an embedded graph G that

allows to colour the faces black and

white so that the edges of S are exactly

those between the black and the white

faces.
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B

W

?

not partitioningpartitioning
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black/white component: induced by (b/w) faces

sharing an edge

one white component 3 black components

The white component has 3 faces that are originally
no white faces (marked in red).

Some are originally no faces at all.



If S is a Hamiltonian cycle in a plane graph:

• one white and one black component

• both components are outerplanar graphs

• both components have one new (red)

face: the outer face
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1 black component with genus 0

2 white components with genus 0

1 white component with genus 1
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Now apply the Euler formula to each

component C:

2− 2γ(C) = |VC| − |EC|+ |FC|︸ ︷︷ ︸
= |VC|−

∑

f∈FC
(s(f)− 2)

2

Introduce all kinds of parameters and

determine the number of edges in C ∩ S:

|EC,S| =
∑

f∈FC,i

(s(f)−2)−2|VC,i|+4−4γ(C)−2|BC,S|+2dC
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one white component 3 black components

|E |=13

|E |=5

|E |=4

|E |=4S S

S

S
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Then sum up over all (e.g. black) components and get

|ES| =
∑

f∈Fb

(s(f)− 2)

︸ ︷︷ ︸

Grinberg

−2|Vb|+4|Cb| − 4
∑

C∈Cb

γ(C)− 2|Bb|+2db

︸ ︷︷ ︸

correction term

Vb: set of black vertices not in S

Cb: set of black components

Bb: set of red faces in black components

db: sum over all black components C of

|EC ∩ ES| − |VC ∩ VS|



Theorem:

∑

f∈Fb

(s(f)−2)−2|Vb|+4|Cb|−4
∑

C∈Cb

γ(C)−2|Bb|+2db

= |ES| =

∑

f∈Fw

(s(f)−2)−2|Vw|+4|Cw|−4
∑

C∈Cw

γ(C)−2|Bw|+2dw
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This is ugly!

So best check when the correction terms

−2|Vb|+4|Cb| − 4
∑

C∈Cb
γ(C)− 2|Bb|+2db

−2|Vw|+4|Cw| − 4
∑

C∈Cw
γ(C)− 2|Bw|+2dw

(almost) cancel out!

Faculty of Science



Corollary:

Let G be plane and let S be connected and

spanning (and of course partitioning. . . ).

Then

∑

f∈Fb

(s(f)−2)+2|Cb| =
∑

f∈Fw

(s(f)−2)+2|Cw|

Cb: set of black components
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Corollary:
(Combinatorial generalization of Grinberg’s theorem)

Let G be plane and let S be connected and

spanning with |Cb| = |Cw|. Then Grinberg’s

original formula is valid:

∑

f∈Fb

(s(f)− 2) =
∑

f∈Fw

(s(f)− 2)

Grinberg’s theorem is just the special case

|Cb| = |Cw| = 1
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Example:

This graph has no spanning subgraph that

is isomorphic to a cycle (Thomassen), but

also not one isomorphic to a subdivided

K2,4 or a subdivided Octahedron. . .



We had for some plane graphs:

Grinberg’s theorem is just the special case |Cb| = |Cw| = 1

Let’s now fix |Cb| = |Cw| = 1

but allow higher genera.
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Corollary:

Let G be an embedded graph of arbitrary

genus and S be a partitioning 2-factor with

|Cb| = |Cw| = 1. Then

∑

f∈Fb

(s(f)−2)−4γ(Cb) =
∑

f∈Fw

(s(f)−2)−4γ(Cw)
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Planarizing 2-factor:

A partitioning 2-factor with |Cb| = |Cw| = 1

and γ(Cb) = γ(Cw) = 0.

Informally: Obtained by identifying

2-factors consisting of faces of two plane

graphs.

Hamiltonian cycle in plane graph: obtained by

identifying the boundaries of two outerplanar

graphs.
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two plane graphs

1 toroidal graph
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Corollary:
(Topological generalization of Grinberg’s theorem)

Let G be an embedded graph of arbitrary

genus and S be a planarizing 2-factor. Then

∑

f∈Fb

(s(f)− 2) =
∑

f∈Fw

(s(f)− 2)

Grinberg’s theorem is just the special case that γ(G) = 0.
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Example applications:
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3,3,3,4,7 4,4,4,4,4,4,4

• Find a planarizing 2-factor of the Petersen graph.

• The Heawood graph has no planarizing 2-factor.

• Any hamiltonian cycle in the toroidal embedding
of the Heawood graph is not null-homotopic.



Further impact:

• An easy proof of a theorem of Lewis on

the length of spanning walks.

• A generalization of a theorem by Bondy

and Häggkvist on the decomposability of

a graph into two hamiltonian cycles.
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Conclusion

• We have proven a very general formula

generalizing Grinberg’s theorem.

• As a consequence even Grinberg’s orig-

inal formula in all its simplicity can be

generalized to larger classes of graphs.

• Theorems entirely or at least essentially

based on Grinberg’s formula can be proven

in a more general context.
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Thanks!


