On Grinberg's Criterion

Gunnar Brinkmann and Carol T. Zamfirescu

Grinberg's Criterion (Grinberg, 1968)

Given a plane graph with a hamiltonian cycle S and $f_{k}\left(f_{k}^{\prime}\right)$ faces of size k inside (outside) of S, we have

$$
\sum_{k \geq 3}(k-2)\left(f_{k}^{\prime}-f_{k}\right)=0
$$

Or - with $s(f)$ the size of a face f :

$$
\sum_{f \text { inside } S}(s(f)-2)=\sum_{f \text { outside } S}(s(f)-2)
$$

This graph G is hypohamiltonian (Thomassen (1976)):

One 10-gon, all other faces pentagons.

Hamiltonicity of vertex-deleted subgraphs: just give a Hamiltonian cycle!

Non-hamiltonicity of G :

One 10-gon, all other faces pentagons, so

$$
\sum_{f \text { inside } S}(s(f)-2)(\bmod 3) \neq \sum_{f \text { outside } S}(s(f)-2)(\bmod 3) .
$$

One side 0 - the other not.

Generalizations by Gehner (1976), Shimamoto (1978), and finally Zaks (1982):

Let C_{1}, \ldots, C_{n} be disjoint cycles in a plane graph, so that
"no cycle separates two others".

bad

If v_{i} vertices are strictly inside the cycles and v_{o} vertices strictly outside, then

$$
\sum_{k \geq 3}(k-2)\left(f_{k}^{\prime}-f_{k}\right)=4(n-1)+2\left(v_{o}-v_{i}\right)
$$

Or:

$$
\sum_{f \text { inside } S}(s(f)-2)-2 v_{i}+4 \cdot 1=\sum_{f \text { outside } S}(s(f)-2)-2 v_{o}+4 n
$$

Inside and outside are vague...

better talk about black and white:

1 white component 5 black components

The minimum requirement to talk about an equality for two sets of faces is to be able to distinguish the two sets. . .

Partitioning subgraph S :

a subgraph of an embedded graph G that allows to colour the faces black and white so that the edges of S are exactly those between the black and the white faces.

Faculty of Science
black/white component: induced by (b/w) faces sharing an edge

The white component has 3 faces that are originally no white faces (marked in red).
Some are originally no faces at all.

If S is a Hamiltonian cycle in a plane graph:

- one white and one black component
- both components are outerplanar graphs
- both components have one new (red) face: the outer face

1 black component with genus 0
2 white components with genus 0
1 white component with genus 1

2 $x+3$
Faculty of Science

Now apply the Euler formula to each component C :

$$
\underbrace{2-2 \gamma(C)=\left|V_{C}\right|-\left|E_{C}\right|+\left|F_{C}\right|}=\left|V_{C}\right|-\frac{\sum_{f \in F_{C}}(s(f)-2)}{2}
$$

Introduce all kinds of parameters and determine the number of edges in $C \cap S$:

$$
\left|E_{C, S}\right|=\sum_{f \in F_{C, i}}(s(f)-2)-2\left|V_{C, i}\right|+4-4 \gamma(C)-2\left|B_{C, S}\right|+2 d_{C}
$$

one white component

$\left|E_{S}\right|=13$

3 black components

Then sum up over all (e.g. black) components and get

$$
\left|E_{S}\right|=\underbrace{\sum_{f \in F_{b}}(s(f)-2)}_{\text {Grinberg }} \underbrace{-2\left|V_{b}\right|+4\left|C_{b}\right|-4 \sum_{C \in C_{b}} \gamma(C)-2\left|B_{b}\right|+2 d_{b}}_{\text {correction term }}
$$

V_{b} : set of black vertices not in S
C_{b} : set of black components
B_{b} : set of red faces in black components
d_{b} : sum over all black components C of $\left|E_{C} \cap E_{S}\right|-\left|V_{C} \cap V_{S}\right|$

Theorem:

$$
\begin{aligned}
& \sum_{f \in F_{b}}(s(f)-2)-2\left|V_{b}\right|+4\left|C_{b}\right|-4 \sum_{C \in C_{b}} \gamma(C)-2\left|B_{b}\right|+2 d_{b} \\
& =\left|E_{S}\right|= \\
& \sum_{f \in F_{w}}(s(f)-2)-2\left|V_{w}\right|+4\left|C_{w}\right|-4 \sum_{C \in C_{w}} \gamma(C)-2\left|B_{w}\right|+2 d_{w}
\end{aligned}
$$

This is ugly!

So best check when the correction terms

$$
\begin{aligned}
& -2\left|V_{b}\right|+4\left|C_{b}\right|-4 \sum_{C \in C_{b}} \gamma(C)-2\left|B_{b}\right|+2 d_{b} \\
& -2\left|V_{w}\right|+4\left|C_{w}\right|-4 \sum_{C \in C_{w}} \gamma(C)-2\left|B_{w}\right|+2 d_{w}
\end{aligned}
$$

(almost) cancel out!

Corollary:

Let G be plane and let S be connected and spanning (and of course partitioning...). Then

$$
\sum_{f \in F_{b}}(s(f)-2)+2\left|C_{b}\right|=\sum_{f \in F_{w}}(s(f)-2)+2\left|C_{w}\right|
$$

C_{b} : set of black components

4

Corollary:

$\overline{\text { (Combinatorial }}$ generalization of Grinberg's theorem)

Let G be plane and let S be connected and spanning with $\left|C_{b}\right|=\left|C_{w}\right|$. Then Grinberg's original formula is valid:

$$
\sum_{f \in F_{b}}(s(f)-2)=\sum_{f \in F_{w}}(s(f)-2)
$$

Grinberg's theorem is just the special case

$$
\left|C_{b}\right|=\left|C_{w}\right|=1
$$

Went

Example:

This graph has no spanning subgraph that is isomorphic to a cycle (Thomassen), but also not one isomorphic to a subdivided $K_{2,4}$ or a subdivided Octahedron. . .

We had for some plane graphs:
Grinberg's theorem is just the special case $\left|C_{b}\right|=\left|C_{w}\right|=1$

$$
\text { Let's now fix }\left|C_{b}\right|=\left|C_{w}\right|=1
$$

but allow higher genera.

Corollary:

Let G be an embedded graph of arbitrary genus and S be a partitioning 2-factor with

$$
\left|C_{b}\right|=\left|C_{w}\right|=1 . \text { Then }
$$

$$
\sum_{f \in F_{b}}(s(f)-2)-4 \gamma\left(C_{b}\right)=\sum_{f \in F_{w}}(s(f)-2)-4 \gamma\left(C_{w}\right)
$$

Planarizing 2-factor:

A partitioning 2-factor with $\left|C_{b}\right|=\left|C_{w}\right|=1$ and $\gamma\left(C_{b}\right)=\gamma\left(C_{w}\right)=0$.

Informally: Obtained by identifying 2-factors consisting of faces of two plane graphs.

Hamiltonian cycle in plane graph: obtained by identifying the boundaries of two outerplanar graphs.
two plane graphs

1 toroidal graph

而

Corollary:

(Topological generalization of Grinberg's theorem)

Let G be an embedded graph of arbitrary genus and S be a planarizing 2 -factor. Then

$$
\sum_{f \in F_{b}}(s(f)-2)=\sum_{f \in F_{w}}(s(f)-2)
$$

Grinberg's theorem is just the special case that $\gamma(G)=0$.

而

Example applications:

3,3,3,4,7

4,4,4,4,4,4,4

- Find a planarizing 2-factor of the Petersen graph.
- The Heawood graph has no planarizing 2-factor.
- Any hamiltonian cycle in the toroidal embedding of the Heawood graph is not null-homotopic.

Further impact:

- An easy proof of a theorem of Lewis on the length of spanning walks.
- A generalization of a theorem by Bondy and Häggkvist on the decomposability of a graph into two hamiltonian cycles.

Conclusion

- We have proven a very general formula generalizing Grinberg's theorem.
- As a consequence even Grinberg's original formula in all its simplicity can be generalized to larger classes of graphs.
- Theorems entirely or at least essentially based on Grinberg's formula can be proven in a more general context.

Thanks!

