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Anotācija 

Datu ieguve no apkārtējās vides ir un būs būtiska daudzos pielietojumos. Tagad pasaulē ar to 

izstrādi nodarbojās daudzas firmas, bet pamata principi palikuši nemainīgi ilgus gadus. Darbā 

veikti pētījumi, kā uzlabot datu ieguvi, lietojot pieeju, kad signāli tiek reprezentēti ciparu 

formā netradicionāli: pieņemtās periodiskās diskretizācijas vietā lietojot neregulāro signālu 

diskretizāciju un kvantēšanu. Konkrēti, darbā pētītas un analizētas: (1) asimetriskās datu 

saspiešanas/atjaunošanas metodes; (2) GHz signālu diskretizācija, lietojot divus atšķirīgus 

ACP paralēli; (3) uzlabota bioimpedances signālu datu ieguves metode; (4) uz signāla-

references funkciju krustošanās noteikšanas balstīta datu ieguves pieeja un tās realizācijas 

īpatnības. Izstrādāta un testēta ātrdarbīga F-DFT procesora FPGA implementācija.  

Atslēgas vārdi: datu ieguve, neregulārā diskretizācija, bioimpedances mērīšana, DASP 
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Annotation 

Work is focused on methods and algorithms for data acquisition from real world objects, 

and it is based on the theory of non-traditional Digital Signal Processing, including non-

uniform sampling and pseudo-randomized quantizing. That leads to obtaining data 

simultaneously from an increased number of data sources, to widening the frequency range 

and to significant complexity reductions. In particular, research has been done in the 

directions of: (1) asymmetric data compression/reconstruction; (2) data acquisition from 

sources in the GHz frequency range; (3) rational acquisition of bioimpedance data; (4) data 

acquisition based on signal and sine wave reference function crossings. Microelectronic 

implementation of the research results is considered. In particular, FPGA implementation of a 

Fast-DFT processor has been developed and tested. 

Keywords: data acquisition, nonuniform sampling, bioimpedance measurements, DASP
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1. Introduction 

1.1 Motivation for research in the area of data acquisition for 

computer systems 

 Massive data acquisition from real life objects and supplying computers with this 

information in an effective way evidently is vital to realizing full potential of computer 

system applications in many areas. Various types of sensors are used for obtaining 

information from objects of natural or technical origin. Most of them convert the primary 

information into continuous-time or analog signals. Data acquisition (DAQ) from only this 

type of sensors is considered in this work. As the acquired data are to be given as discrete 

quantities, the analog sensor signals have to be digitized to obtain their representations in the 

digital domain. Usually the classic Digital Signal Processing (DSP) technology is used for 

this. 

This approach, based on the assumption that digitizing is based on the classical sampling 

and quantizing concepts, leads to significant narrowing of the digital domain, to using of more 

expensive analog signal processing methods and technical means for performing signal 

processing in the high and ultra high frequency range. It means that this approach negatively 

impact data acquisition technologies and limits their application range. The research described 

in this summary is motivated by the importance of achieving progress in the direction of 

computer system applications in the wide area of Information Technologies related to 

computer system interaction with real world biological and industrial objects. 

1.2 Research goal and the basic problems that have to be resolved 

Research activities of this work target reaching the goal of discovering innovative 

methods for massive data acquisition from real life objects and effective supplying computers 

with this information. That evidently is vital for realizing full potential of computer system 

applications in many areas. The research is focused on resolution of the following basic 

problems that have been indicated at the beginning of this work as the most essential:  

 Too high DAQ system complexity; 

 Relatively small quantity of sensors that typically can be connected to inputs of a 

single DAQ system; 

 Limited number of channels for simultaneous data acquisition in parallel;  
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 Power consumption of DAQ systems, often limiting the duration of their autonomous 

performance time. 

Basic tasks 

To achieve progress in these directions, the following tasks are to be addressed:  

1. Research focused on development of innovative methods and algorithms for 

complexity-reduced DAQ paying attention, in particular, on the following: 

 Combining data acquisition with signal specific digital pre-processing; 

 Reduction of power consumption; 

 Increasing the number of sensors that can be connected to a single DAQ system at 

least up to 100; 

 Compression of acquired data. 

2. Development of algorithms and computer programs for sensor data transfer to 

computers. 

3. Experimental investigations of the developed problem solutions, mostly by computer 

simulations in MATLAB environment. 

4. Description of the developed DAQ structures in VHDL.  

Approach to resolution of the considered problems 

To reach the goal of this work a flexible approach to complexity-reduced multi-channel data 

acquisition from a large quantity of sensors has been used. The developed methods, systems 

and algorithms for data acquisition from wideband, event timing and large distributed clusters 

of signal sources are discussed with emphasis on data gathering from a large quantity of 

signal sources. Special signal digitizing techniques, including pseudo-randomized 

multiplexing, time-to-digital conversions and signal sample value taking at time instants when 

the input signal crosses a sinusoidal reference function, are used for that. Development of the 

discussed massive data acquisition systems is based on the knowledge accumulated over a 

long period of time in the area of Digital Alias-free Signal Processing. 

1.3 Outline of Thesis 

Thesis consists of 4 main Chapters (from 2. to 5.) excluding Introduction and 

Conclusions. 

2. Chapter – DAQ Systems for Gathering and Supplying Information to Computers 

In this Chapter a brief overview about current level of development in the field of DAQ is 

given. Relatively many various DAQ systems are currently produced and offered by many 

companies. Most of them actually are operating on the basis of a few basic DAQ principles 

that might be considered as classic: Shannon sampling theorem and Nyquist frequency 

limitation. 
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Uniform sampling is still leading and the most used sampling technique. Therefore 

performance of the existing DAQ systems mainly depends on the currently achieved 

perfection of the involved microelectronic elements. 

3. Chapter – Data Acquisition Based on NU Sampling: Achievable Advantages and 

Involved Problems 

This Chapter shows applicability of NU sampling and quantizing approaches in various 

dimensions of DAQ: widening frequency range of DAQ, fault-tolerant DAQ, asymmetric 2D 

data compression/reconstruction, simplify DAQ system hardware etc. The basics of cross-

interference CI effect also is described and explained in this Chapter. 

The method for DAQ system widening frequency range (using 2 ADCs in parallel) and 

improve acquired signal quality (in terms of signal resolution, dynamic range etc.) is 

developed and described in this Chapter. 

4. Chapter – Methods for Data Acquisition Exploiting Advantages of Pseudo-randomized 

Quantizing  

Signal quantizing methods – deterministic, randomized and pseudo-randomized 

quantizing – are considered in this Chapter. Special attention is drawn on one particular case 

of DAQ – biomedical data acquisition. The bioimpedance signal demodulation is essential in 

this DAQ case. The method for bioimpedance signal acquisition is suggested and described in 

this Chapter. 

5. Chapter – Data Acquisition Based on Gathering Timing Information 

In this Chapter the signal representation by timing information is considered. In such a 

way the DAQ systems can be significantly improved (simplified their hardware structure, 

reduced energy consumption etc.). The signal sampling based on detection the signal and 

sine-wave crossing instants (SWC sampling) is suggested and considered for this reason in 

this Chapter. The conditions of SWC sampling applicability in DAQ are studied and 

described. 

6. Chapter – FPGA based implementation of the considered DAQ methods 

In this Chapter the description of experimental activities and obtained research results is 

given. The novel logical structure for DFT coefficients estimation without massive 

multiplication has been implemented into FPGA and its performance evaluated. The 

comparison with equal purpose FIR digital filter reveals that considered F-DFT processor 

structure requires approximately 2 times less count of logical elements. The development of 

F-DFT processor has to continue. 

7. Chapter – Obtained research results 

The obtained research results are summarized in this Chapter, followed by Conclusions in 

Chapter 8. 
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1.4 Dissemination of the research results 

The main results of scientific work are approved in 11 scientific publications: 

1. Bilinskis I., Sudars K. Processing of signals sampled at sine-wave crossing instants. 

Proceedings of the “2007 Workshop on Digital Alias-free Signal Processing” 

(WDASP‟07), London, UK, 17 April 2007, pp. 45-50. 

2. Sudars K., Ziemelis Z., Expected performance of the sine-wave crossing data 

acquisition systems, Proceedings of DASP Workshop, London, UK, 17 April 2007. 

3. Bilinskis I., Sudars K. Digital representation of analog signals by timed sequences of 

events, “Electronics and Electrical Engineering”, No. 3(83), March, 2008, Presented 

in International Conference “Electronics 2008”, Kauna, Lithuania, 20-22 May 2008. 

4. Bilinskis I., Sudars K. Specifics of constant envelope digital signals, “Electronics and 

Electrical Engineering”, No. 4(84), April, 2008, Presented in International 

Conference “Electronics 2008”, Kauna, Lithuania, 20-22 May 2008. 

5. Artyukh Yu., Bilinskis I., Sudars K., Vedin V., Multi-channel data acquisition from 

sensor systems. Proceedings of the 10th International Conference “Digital Signal 

Processing and its Applications” (DSPA'2008), Moscow, Russia, 2008, Vol.X-1, 

pp.117-119. 

6. Artyukh Y., Bilinskis I., Sudars K., European Patent Application No. EP2075912 A1, 

Method for complexity-reduced digital filtering and parameter estimation of analog 

signals, Assignee: Institute of Electronics and Computer Science of Latvia, European 

patent Bulletin, January 7, 2009. 

7. Bilinskis I., Sudars K., Min M., Annus P., Advantages and limitations of an approach 

to bioimpedance data acquisition and processing relying on fast low bit rate ADCs, 

Baltic Electronic Conference BEC 2010, Tallinn, Estonia, 4.-6. October 2010.  

8. Artyukh Y., Bilinskis I., Roga S., Sudars K., Digital Representation of Analog 

Signals leading to their Energy-efficient Processing, Green Information Technology 

(GREEN IT 2010), Singapore, 25.-26. October 2010. 

9. Sudars K., Data Acquisition Based on Nonuniform Sampling: Achievable Advantages 

and Involved Problems, “Automatic Control and Computer Science” Magazine, 

Allerton Press, 2010, Vol. 44, No. 4, pp. 199-207. 

10. Bilinskis I., Skageris A., Sudars K. Method for fast and complexity-reduced 

asymmetric image compression, “Electronics and Electrical Engineering”, No. 

4(110), May, 2011, Presented in International Conference “Electronics 2011”, Kauna, 

Lithuania, 17-19 May 2011. 
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11. Artyukh Y., Bilinskis I., Rybakov A., Sudars K., Vedin V., Modular Multi-channel 

Data Acquisition Systems, “Automatic Control and Computer Sciences” Magazine, 

Allerton Press, 2008, Vol. 42, No. 3, pp. 113–119. 

The results are presented in following scientific conferences: 

1. Workshop on Digital Alias-free Signal Processing (WDASP‟07), London, UK, 17 

April 2007 

2. International Conference “Electronics 2008”, Kauna, Lithuania, 20-22 May 2008 

3. 10th International Conference “Digital Signal Processing and its Applications” 

(DSPA'2008), Moscow, Russia, 2008 

4. Baltic Electronic Conference BEC 2010, Tallinn, Estonia, 4-6 October 2010 

5. Green Information Technology (GREEN IT 2010), Singapore, 25-26 October 2010 

6. International Conference “Electronics 2011”, Kauna, Lithuania, 17-19 May 2011 
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2. DAQ Systems for Information Gathering and Supplying 

to Computers 

“Data acquisition is defined as process of sampling of real world physical conditions and 

conversion of the resulting samples into digital numeric values that can be manipulated by a 

computer” [31]. This popular definition of data acquisition (DAQ), while basically true, 

covers only the general part of this process. Actually the essence of the DAQ task is 

supplying computers with information gathered from some quantity of sources. Carriers of 

that information are signals and various types of sensors are used for obtaining information 

from these sources usually placed on and connected to objects of natural or technical origin. 

Most types of the sensors convert the primary information into continuous-time or analog 

signals given as variable in time voltage or electrical current. Data acquisition from only this 

type of sensors is considered in this work. As the sensor signals are analog, a particular but 

most important task of DAQ systems (DAS) is converting these signals into their digital 

counterparts or digitizing. That is done by using analog-to-digital converters (ADC). The data 

gathered from some quantity of signal sources, after digitizing, are transferred to a computer. 

Obviously, that requires multiplexing of them. This operation has to be performed at some 

stage of DAQ, either by multiplexing analog sensor signals or by multiplexing digital signals 

after their digitizing. 

Data acquisition is an essential part for many applications and this function will play an 

increasingly important role in the future. It is hard to imagine world without cameras for 

imaging, radars for plane monitoring, cardiographs for medical diagnosis and sensor devices 

for security etc. All of them are specific data acquisition systems. Many signal sources are 

around us and life quality of people could be significantly improved, if these signals would be 

acquired, analyzed by computers and some feedback generated for suppressing negative and 

amplifying positive factors. For example, environment monitoring, based on DAQ, provides 

vital information about varying pollution or flooding conditions, DAQ systems supply 

ambient intelligence systems or systems for medical diagnostics, remote patient monitoring in 

healthcare etc. DAQ application field rapidly grows and DAQ applications are diversified. 

That leads to increased demands for DAQ systems capable of data acquisition from larger and 

larger quantity of signal sources, operating at increased speed, at higher and higher input 

signal frequencies, in a wider resolution range while it is required that DAQ system designs 

have to be less complicated and consuming significantly reduced power. 
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The first Chapter of the thesis is an introduction into the current situation in the field of 

data acquisition. Basically there are a few DAQ systems and technologies that are usually 

used. They are briefly described and compared. Their advantages and limitations are specified 

and the problems that have to be resolved to develop more effective DAQ methods and 

algorithms are defined. 

2.1 Conventional DAQ methods and systems 

Data acquisition consists of several stages. It starts with measuring of physical 

phenomenon (temperature, light intensity, pressure, force etc). Then necessary physical 

property first has to be transformed into electrical signal. It can be done using transducers or 

sensors. At the next stage acquired electrical signal has to be prepared for the further 

processing and digitized (the signal may need to be amplified, filtered or demodulated etc.; 

some of these procedures can be done after signal digitization). After digitization all 

information about primary signal are carrying discrete signal sample values. The final is 

acquired data pre-processing and transmitting part. 

As the acquired data are to be given as discrete quantities so that they could be transferred 

to computers, the analog sensor signals have to be digitized to obtain their representations in 

the digital domain. Sensor signal digitizing and processing usually is performed on the basis 

of the classic Digital Signal Processing (DSP) theory and techniques. It might be said that 

DAQ is one of the widely used application of DSP. Relatively many various DAQ systems 

are currently produced and offered by many companies. On the other hand most of them 

actually are operating on the basis of a few basic DAQ principles that might be considered as 

classic as they have remained unchanged for a long time. Therefore performance of the 

existing DAQ systems mainly depends on the currently achieved perfection of the involved 

microelectronic elements. 

2.1.1 Basic theoretical background of the conventional DAQ systems 

Theoretical background of virtually all currently available DAQ systems depends on 

theoretical relationships and principles discovered and described about 60 years ago. 

Shannon`s sampling theorem represents the basic one of those principles. According to this 

theorem, under certain conditions every analog signal can be fully represented by periodically 

taken discrete signal samples. Then the original analog signal can be recovered from discrete 

signal samples according to the following relationship: 

 
(2.1) 
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Where x(t) – is original analog signal recovered from discrete signal sample values; x[n] 

– discrete signal sample values; t – time; T – is sampling period or time interval between two 

near standing signal samples; n – integer, which points discrete signal sample number. 

Interesting is the fact that this theorem is also known also as Whittaker and Kotelnikov 

sampling theorem. It seems that all these authors discovered this theorem independently in 

parallel. 

The Shannon sampling theorem works well, if discrete signal samples are taken 

equidistantly according to periodic sampling. Another significant condition required by 

sampling theorem is so-called Nyquist limit. The Nyquist limit or the Nyquist frequency fs 

defines the minimal signal sampling frequency that has to be used for periodic sampling of 

analog signals with the bandwidth B to ensure recovery of analog signals from their discrete 

signal samples according to relationship (2.1). This Nyquist frequency is at least two times 

larger than the upper frequency of the signal bandwidth:  

Bfs 2  (2.2) 

Where fs – is analog signal sampling frequency; B – is analog signal bandwidth upper 

frequency. 

Ignorance of this condition leads to corruptions of recovered signal due to the aliasing 

effect, what means that the original analog signal then cannot be correctly recovered. 

These are two basic theoretical principles are related to analog signal representation with 

its discrete signal samples. Description of the typical hardware implementations of multi-

channel data acquisition systems follows. 

2.1.2 Typical implementations of DAQ systems 

According to the definition, the data acquisition systems have to contain the following 

functional blocks: 

 Sensors (transducer) to convert some physical parameters into electrical signals; 

 Signal conditioning block to convert sensor signals into a form that can be 

converted to digital values; 

 Analog-to-digital converters that convert conditioned sensor signals into 

sequences of digital signal sample values; 

 Other functional blocks to transmit and process acquired digital data etc. 

Two of the most popular DAS architectures are given in Figure 2.1. 
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(a) 

(b) 

Figure 2.1 Two traditional DAS architectures: (a) based on many ADCs and (b) based on a single 

multiplexer and a wideband ADC. 

As it can be seen from Figure 2.1, one of the possible DAS architectures is based on 

usage of many analog-to-digital converters – one ADC per channel. In the centre of the other 

DAQ system hardware architecture is a multiplexer, which sequentially switch all inputs to 

wideband ADC. The essential difference between both DAS architectures is where the signal 

digitizing is accomplished. In the case of many ADCs usage the analog signal digitizing can 

be organized close to signal sources. 

Each of these DAQ system architectures has its own advantages and drawbacks. For 

example, architecture shown in Figure 2.1 (a) has multiple analog-to-digital converters, what 

makes system hardware more complex. On the other hand, the system analog hardware part in 

this case is simpler (it does not contain a multiplexer at the front-end of the system) and 

ADCs can be placed closer to the input signal sources, what protects acquired input signals 

from noise and leads to increased resolution (dynamic range). 

In the case of multiplexer based DAQ architecture, the sampling frequency of each 

channel can be calculated by dividing the ADC sampling frequency with the channel count. 

Therefore it is very hard to achieve with this architecture at the same time big channel count 

and large sampling rate per channel. More detailed comparison of these structures is given in 

the Section 2.3. These two DAS architectures basically are used for supplying computers with 

data taken from signal sources located more or less closely. That often is not the case. There 

are many DAQ applications that have to acquire data from signal sources scattered over some 

area. To cover the needs of these DAQ applications, sensor networks are used. Currently they 

are intensively explored in the world. 
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2.1.3 Sensor networks 

Sensor networks can be divided into two large groups – wireless sensor networks and 

wired sensor networks. Today wireless sensor networks has drawn much larger attention from 

researchers due to its promising and potential applications. Wireless sensor network concept 

defines that all sensor nodes are autonomous and communications between them are without 

usage of wires. It makes design of them much difficult in comparison with wired sensor 

networks. 

 In wireless sensor networks all sensor nodes – also called motes – are merged into one 

system with common goal – acquire data from environment around sensors and transmit 

acquired data to data center, where those can be analyzed. Data center – also sometimes 

called wireless sensor network sink – stores collected data and provides sensor network 

gateway functions if it is necessary. Only in particular cases data analyzing procedures can be 

delegated to sensor nodes due to its insufficient computation power, what is closely related to 

energy saving and cost of sensor nodes. Therefore only simplest data processing algorithms 

can be processed in sensor nodes. Nevertheless wireless sensor networks enable new 

dimensions in ambient intelligence, environment monitoring, process control and in many 

other applications [55]. 

Data acquisition is only common issue with sensor networks, what covers the scope of 

this dissertation. There sensor networks are surveyed as one particular data acquisition system 

with its own data acquisition philosophy. Important difference between sensor networks and 

simple data acquisition system is that sensor networks cover much larger functions range and 

data acquisition is not only function, what they are capable to provide. In general data 

acquisition is integrated part or subsystem of sensor networks. It will be clearly visible later, 

when the structure of sensor node will be given. 

In some applications data acquisition can be very simple as it shown in Figure 2.2, where 

some target detection is shown. To detect target is enough with ON-OFF signal acquisition 

(for example, is particular area poisoned or not). In these cases where signals with narrow 

bandwidth are acquired and full signal waveform is not necessary to know the data acquisition 

is one of the simplest parts of all sensor system. Then more complicated part of sensor 

network is communications between sensor nodes and data transmitting to data center [55]. 
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Figure 2.2 Illustration of target detection by a sensor network. 

In many applications sensor networks are used together with data distribution networks as 

it is shown in Figure 2.3. It provides additional functionality and enlarged applicability to 

sensor networks. 

 

Figure 2.3 Typical architecture of sensor network and data distribution network. 

In Figure 2.3 sensor network, used for data acquisition purpose, is connected with data 

distribution network – Internet. It provides additional functionality. User can remotely access 

sensor network, get acquired data from it through sensor network gateway and do all other 

necessary manipulations with acquired data. Achieving more automation level of system it 

can be done by computer programs of OSI model higher levels [55]. 

Wireless sensor networks usually have time variant topology, because some of sensor 

nodes can went out of order due to battery discharge or change its location due to some 

environment impact. It is illustrated in Figure 2.4. 
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Figure 2.4 Deployment of the wireless sensor network nodes (a) in ad hoc manner and (b) deployment 

changes after long enough time period.  

Networking in wireless sensor networks is a complicated issue, because communications 

media between nodes is an air and sensor nodes can be scattered over a geographic region in 

ad hoc manner (or in the better case according to mesh network topology, if it is specially 

planned). It means that each sensor node will receive signals from neighbours all the time 

with signal propagation delay if these signals are strong enough. All these conditions require 

additional intelligence from sensor nodes and it makes their organization more complicated. 

Therefore many network protocols are designed for wireless sensor networks [55]. 

Sensor node is quite complicated structure. It is shown in Figure 2.5 where typical 

organization of wireless sensor node is given [55]. 

 

Figure 2.5 Sensor node building blocks: power, sensing, analog/digital conversion, data processing, 

(wireless) communication and their system integration. 

As it can be seen in Figure 2.5 in general wireless sensor network mote (sensor node) 

consists of some essential functional blocks: 

 Sensor block with ADC – provides primary signal digitizing function with all 

necessary preparations included (signal sensing with sensor, signal 

conversion into electrical form, signal condition and signal conversion into 

sequence of digital sample values); 
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 In some applications actuators with digital-to-analog converters (DACs) can 

be included not only for monitoring environment, but also for affecting it and 

reacting on sensed impacts; 

 Autonomous power supply block (power management) – supplying sensor 

node with necessary energy and provides possible all functions related to 

energy storage, power conditioning, energy scavenging from the environment 

etc.; 

 (Wireless) communication block – provides communication links with 

neighbor nodes, network gateway or central base station (depending on 

network architecture and communication protocols) etc.; 

 Data processing and sensor node control block – this block provides 

necessary computation power for sensor node. It is needed for signal pre-

processing, appropriate coding for data transmitting, controlling other 

functional blocks of sensor node etc. 

In many applications each sensor nodes have to be as small as possible, their operational 

life should exceed several years and many other requirements. Therefore implementation of 

all these functional blocks into one robust sensor node is challenging from design point of 

view. 

More detailed studies of sensor networks including acquired data transmitting and 

communications between sensor nodes are out of scope of this work. 

2.2 Simultaneous DAQ: two different interpretations 

The term „simultaneous DAQ”, in general, means parallel acquisition of data from some 

multitude of signal sources simultaneously at the same time instants. Obviously often it is 

important to ensure fulfillment of that condition, to perform DAQ simultaneously. That is 

often crucial for correct evaluation of reaction of an object to some test excitation or for 

monitoring functioning of objects performed on the basis of DAQ and analysis of the acquired 

data. However this term not always is used in an acceptable way. The problem is that this 

might lead to wrong conclusions.  

Description of the requirements for „simultaneous DAQ” given in [32] represents a 

typical case of this. The essence of the given there misleading statements concerns DAQ 

systems made according to the basic structures shown in Figures 2.1 (a) and 2.1 (b). It is 

explained that only using a separate ADC in each of the DAQ channels provides for 

„simultaneous DAQ”. This term here is actually used in the sense that only such a structure 

allows to take signal sample values in all of the input channels exactly at the same time 

instants. That of course is true. However the conclusion, defined on the basis of this, the 
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conclusion that only the basic scheme of Figure 2.1 (a) and not the scheme given in Figure 2.1 

(b) (based on MUX and a single ADC) can be used for „simultaneous DAQ”, this conclusion 

is misleading.  

Let us explain what seems to be wrong with this approach to the term of „simultaneous 

DAQ” and this conclusion. The basic task for a DAQ system is obtaining information from a 

multitude of sensors, pre-processing this information and transferring it to a computer. Signals 

carry this information and it is picked up by the mentioned sensors. What is the best approach 

to acquire data so that they represent the essential information is another question. Broadly 

speaking, this information can be considered on the level of signal instantaneous sample 

values (case 1) or on the level of some sensor signal parameters in time, frequency or 

modulation domains (case 2).  Definitions and requirements of „simultaneous DAQ” in both 

these cases would differ. Actually just saying „simultaneous DAQ” is not enough. It should 

be clear what sort of data are to be acquired simultaneously.  

In this work, DAQ is considered as a process ensuring obtaining of data sufficient for 

reconstruction the waveforms of the respective signals provided by sensors. When data are 

acquired from a number of sensors in parallel, it is not necessary to sample all of the involved 

signals at the same time instants. It is required instead that the acquired data should contain 

sample values of these signals taken under conditions providing for reconstruction of the 

original signals. That ensures that the acquired data contain all information about the 

processes going on, being observed and reflected by the multitude of the sensor signals. 

Multi-channel DAQ should be simultaneous in this sense and it does not then matter if that is 

done on the basis of the basic scheme of Figure 2.1 (a) or the scheme given in Figure 2.1 (b).   

2.3 State-of-the-art in the area of DAQ 

To give an impression of the state-of-the-art in the area of DAQ, let us briefly consider 

achievements of a typical company developing and manufacturing of DAQ hardware and 

software. 

2.3.1 Multiplexer or multiple ADC based DAQ systems  

As all companies have to work on the best possible level of quality to ensure their 

competitiveness, performance of these products more or less characterize the currently 

achievable precision, operational speed, covered frequency range, number of channels and 

other related metrological parameters. Typical parameters of modern DAQ systems, currently 

available on the market, are given in Appendix 1. Although only the most important 

parameters of data acquisition systems are given, they reflect the performance of these 

systems built according to the structures shown in Figure 2.1 (a) and 2.1 (b). 
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Other significant factors besides the mentioned performance characteristics are the system 

cost and functionality. Signal pre-processing function currently can be and often is a part of a 

DAQ system. For example, company “National Instruments” provides DAQ boards, which 

can be plugged into PC. There is a FPGA chip on the board providing for additional 

functionality, specifically, for performing necessary pre-processing of the acquired signals. 

Typical representatives of DAQ systems are also given in Appendix 1.  

Not only the primary parameters like channel count, sampling frequency per channel etc. 

are important characterizers of DAQ systems. The system functionality also plays significant 

role. DAQ systems often are made with some extra features included. As all DAQ system 

hardware is built on the basis of specific electronic components, the characteristics of these 

components usually determine the achievable DAQ performance. The most responsible 

microelectronic elements for any DAQ system is the used analog-to-digital converter, 

converting continuous signals into their discrete counterparts by performing the sampling and 

quantizing operations, and a multiplexer (MUX) used for multiplexing either analog or digital 

signals. 

The achieved ADC perfection is very high and the parameter range covered by various 

types of ADC is very wide. Specifically, one of the fastest and ultra-wideband ADC is 

currently produced by company MAXIM. It is MAX 109 chip, which supports high sampling 

rate, up to 2.2 Gsps. However it is an expensive device with high power consumption and its 

dynamic range is quite narrow 8 bits (low resolution). “Nationals Instruments” has announced 

development of currently the world‟s fastest and very precise ADC. It is capable of sampling 

at 3.6 Gsps and provides for 12 bit resolution. Nevertheless its power consumption also is 

quite large 2.06 W [33]. 

Much wider dynamic range has ADCs operating at considerably lower sampling 

frequencies. For example, MAX11040 chip from MAXIM has 24 bit resolution, but its 

sampling frequency is only 64 Ksps. Available parameters of currently existing ADCs are 

given in Appendix 1. Note that all the best parameters cannot be available at the same time for 

one converter. That means, if ADC has high sampling frequency then its resolution will be 

low etc. 

Similar situation is with available multiplexers – each MUX is designed for its own 

applications. Therefore one multiplexer cannot be the best in all categories. Available 

parameters of current multiplexers are summarized in Appendix 1. 

Many applications exist, where data acquisition is integrated part. In these cases the 

characterizing parameters are hardly extractable from other system descriptive parameters. 

Anyway it impacts all system performance. For example, data acquisition is definitely a part 

of some automated test equipment, offered from many companies. If the specific data 
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acquisition task with particular signal pre-processing procedures should be solved, in many 

cases the system hardware architecture can be customized to the given specific application.  

2.3.2 Sensor nodes 

Today sensor networks are developed all around the world starting with small researcher 

groups and ending with prominent companies and organizations. Few prominent companies 

and organizations in the field of developing and manufacturing wireless sensor networks for 

data acquisition are Crossbow, Ember, Microstrain, IMEC etc. Detailed descriptions of them 

are given in Appendix 2. 

To get insight about typical parameters of wireless sensor network nodes, an example of 

one sensor node – TelosB mote from Crossbow – is considered. This sensor node TelosB is 

shown in Figure 2.6. 

 

Figure 2.6 Sensor mote TelosB from Crossbow illustrating state-of-the-art in the field wireless sensor 

networks. 

TelosB mote has following specification: IEEE 802.15.4 compliant; 

 250 Kbps, high data rate radio; 

 TI MSP430 microcontroller with 10kB RAM; 

 Integrated onboard antenna; 

 Data collection and programming via USB interface; 

 Open-source operating system; 

 Optional integrated temperature, light and humidity sensor. 

As it can be found from Crossbow web page, TelosB mote platform is an open source, 

low-power wireless sensor module designed to enable cutting-edge experimentation for the 

research community. The TelosB bundles all the essentials for lab studies into a single 

platform including: USB programming capability, an IEEE 802.15.4 compliant, high data rate 

radio with integrated antenna, a low-power MCU with extended memory and an optional 

sensor suite. 
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2.4 Comparison of two common DAS hardware architectures 

In the case of multiplexer based DAQ architecture each channel sampling frequency can 

be calculated dividing ADC sampling frequency with channel count. Therefore with this 

architecture big channel count and large sampling rate per channel is very hard to achieve at 

the same time [32]. This fact is illustrated in the next Table. 

Table 2.1 Signal bandwidth per channel in both common DAQ architectural cases. 

DAQ system architecture based on single 

MUX and wideband ADC 

DAQ system architecture based on many 

ADCs 

Number of 

channels 

acquired 

Sampling 

rate per 

channel 

[KHz] 

Signal 

bandwidth 

[KHz] 

Number of 

channels 

acquired 

Sampling 

rate per 

channel 

[KHz] 

Signal 

bandwidth 

[KHz] 

1 120 60 1 120 60 

2 60 30 2 120 60 

3 30 15 3 120 60 

4 15 7.5 4 120 60 

5 7.5 3.75 5 120 60 

Usage of DAQ system architecture based on many ADCs increases overall system 

sampling frequency and signals with higher bandwidth can be acquired, but it can be costly 

and can‟t be recommended for all cases. Wider bandwidth of acquired signal is achievable, 

because each channel uses the full throughput of an individual ADC converter [32]. 

DAS hardware architecture based on usage of many ADCs provides better operational 

speed and accuracy than multiplexer based DAS architecture, because several sources of error 

like settling time and channel-to-channel crosstalk can be avoided. Both these errors sources 

are because of analog multiplexer imperfections and can‟t be met in the case many ADCs 

DAS architecture type. 

Settling time is parameter, which shows how fast multiplexer inputs can be switched with 

output. This parameter also is called transition time and it impact DAS system operation rate 

especially at high rates. For reason that DAS hardware architectures based on usage of many 

ADCs have a separate ADCs for each input, transition time between channels is not an issue. 

That means you can acquire data at very high speeds [32]. 

According to [32] channel-to-channel crosstalk occurs when the signals on one or more 

multiplexed channels interfere with the signal on the channel that is being switched. Crosstalk 

is inherent to the multiplexing process and distortions become larger as someone increase the 

number of channels or the signal frequency. Crosstalk phenomenon occurs because of 
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parasitic capacitance across each open switch couples. Due to it a portion of each channel 

signal goes to the output and distorts the multiplexed signal. 

All common DAQ hardware architecture drawbacks and advantages are summarized in 

Table 2.2. 

Table 2.2 Summarized comparison of two the most common DAQ system hardware architectures. 

DAQ system architecture based on single 

MUX and wideband ADC 

DAQ system architecture based on 

many ADCs 

Digitization only after signal multiplexing 

(large system analog part) 

Digitization can be close to signal source 

Simpler system hardware and less power 

consumption 

More complex system hardware and large 

power consumption 

Sampling rate per channel is inversely 

proportional to the channel number 

Sampling rate per channel is independent 

on channel number 

Acquired signals are less protected from 

environmental noise and impact of other 

signals 

Acquired signals are more protected from 

noise and can be measured more precise 

with increased resolution 

Signal sample values from all channels only 

can be taken sequentially 

Signal sample values from all channels can 

be taken at the same time instant 

It will be shown later that designing multi-channel DAQ system these two common 

hardware architectures could be changed, if the uniform sampling is not just only sampling 

approach, what is considered. The uniform sampling is just a special case from the general 

NU signal sampling group, where all signal sample values are taken equidistantly. When 

DAQ system hardware organization is designed from many signal sources, the most 

appropriate signal sampling should be chosen and trading-off among their properties has to be 

done. 

2.5 Specific approaches to signal conversions involved in DAQ 

operations 

As it is shown in the previous sections, acquisition of data from real-world information 

sources usually requires conversion of analog signals into respective digital signals. Achieved 

quality of DAQ strongly depends on these analog-to-digital conversions. The existing DAQ 

systems mostly are based on the classical theory and procedures for these conversions. 

However the drawbacks of this approach have been noticed a long time ago and there have 

been attempts to use also non-traditional methods and techniques for that. Application of NU 

sampling for analog-to-digital conversions used at DAQ is described and discussed in the 

following Chapter 3. 
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Signals can be represented by particular information in both the time (or space) and 

frequency domain. How it is known, for full signal representing in frequency domain it is 

enough with signal amplitudes and phases. The same can be done in time domain employing 

various sampling schemes. Here representing signals digitally by using only timing 

information and novel trend in data acquisition called compressive sensing is briefly 

considered. The results achieved in this area also are reviewed. 

2.5.1 How signals can be represented using only timing information 

Interesting fact is that many examples can be found in the nature, where timing instants 

are carrying all information about signal. For biologist it is known that human inner ear 

conveys information from ear to the brain in the form of almost identically shaped nerve 

impulses or spikes. Then the information about the acoustic signal is represented by the 

timing information in the form of spike trains [56]. It was just one example and many others 

can be found. 

Only under particular conditions explored by Logan in 1977 bandpass signals can be 

represented by sequences of timing instants alone {tk} [42]. This specific signal class of 

bandpass signals is called real-zero signals. In this case signals are uniquely represented by 

their zero crossings (these are time instants at which the signals change their sign) without 

additional knowledge about sampling specifics [35]. Examples of signals represented by 

timing information are given in Figure 2.7. 

 

Figure 2.7 Several sequences of timing instants. 

Satisfying requirement to know some knowledge about signal sampling scheme in 

advance the many representation signal methods by timing information can be found. This 

additional knowledge can be information about sampling scheme organization, targeting DAS 

signal class etc. Note, that the discrete signal processing can be involved in any signal 

representation phase, if only the appropriate processing algorithm exists. 

After representing signals by timing information, the signal reconstruction or specific 

processing of time instants is required, in order to recover original signal waveform. This 

might be understandable as inverse procedure to signal sampling. 
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One specific signal sampling scheme, where signals are represented by timing 

information, is based on detection of signal and reference function crossings. Representing 

signals in such a way, the sequence of crossing time instants is carrying all information about 

the original signal. Of course, if the sampling is organized properly – providing sufficient 

sampling point count N at some time period θ. Time period θ is also known as signal 

observation window. A priori knowing reference function waveform, the original discrete 

signal sample values can be recovered from the crossing instants very easy. Going further the 

obtained discrete signal samples can be converted into original continuous signal, if it is 

necessary. Doing this the specific reconstruction algorithm is needed, because all discrete 

signal samples of the original signal are localized nonuniformly. 

In many cases sine-wave as reference is preferred. Nevertheless many other possible 

functions have to be taken into account. It is known that signal sampling based on signal and 

sine-wave crossings was explored long time ago. As it can be found in papers [25, 58] the 

image representation by zero and sin-wave crossings was explored in 1987. Since it many 

related papers appeared, continuing research and finding nontraditional signal representations 

applicability in the field of DAQ. 

Usage of sinusoid-crossing sampling leads to attractive simplification of sampling scheme 

hardware. It is because threshold detection can be implemented only with one comparator. 

While in the case of uniform sampling designing of analog-to-digital converters are either 

expensive (as it is with flash architectures ADCs, which requires a number of comparators) or 

slow (ADCs by successive approximation architecture) [53]. The sampling based on detection 

of signal and sine-wave crossing instants will be illustrated and quite overwhelm discussed 

later. 

2.5.2 Threshold level sampling and direct signal recovery from threshold 

crossings 

Another specific signal sampling scheme is threshold level sampling, where reference 

function is one or many constant levels. According to this sampling in general signal can be 

represented by two vectors – threshold level crossing timing instants and numbers of crossed 

level (or with related information, exploiting ideas from sigma-delta modulation), if only one 

level threshold level sampling or real-time system design without acquired data storage in 

memory is not considered. In that case it is sufficient with timing information only [41]. 

This sampling approach together with asynchronous data processing circuits is well suited 

to particular DAQ cases where acquired signals from information sources are rare impulses. 

Then this approach can provide very low energy consumption. 

Level crossing sampling more detailed is illustrated in Figure 2.8. As it can be seen from 

Figure 2.8 (a) the each time instant is detected when signal intersects some constant reference 
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level. The sequence of detected crossing time instants (can be seen in Figure 2.8 (b)) together 

with level number are carrying all information about continuous signal, of course, if sampling 

conditions are proper. 

 

Figure 2.8 Fixed threshold level sampling is illustrated. 

Manipulation with threshold levels is the main tool, how the signal sampling conditions 

can be managed. In the simplest case threshold levels are fixed in the time. However, 

exploration of much complex level crossing sampling schemes is became popular lately, 

where threshold levels change their value in time and the process could be signal dependent. 

This is called adaptive level crossing sampling. 

Recovery algorithms are important part of any NU sampling scheme. It provides inverse 

transformation from timing information back to signal original waveform. In general all 

recovery algorithms can be divided in two large groups – direct and indirect reconstruction 

algorithms. Indirect recovery algorithms provide signal reconstruction via Fourier Transform. 

Other algorithms direct recovery class provides signal reconstruction in time domain. To this 

algorithm class belong all interpolation and approximation algorithms – polynomial curve-

fitting, cubic-spline interpolation etc. 

According to this sampling scheme the signal waveform can be recovered quite precise 

directly from level crossing instants and information related to crossed level number. 

Additional precision is achievable with some digital filtering procedures etc. 

In some application cases even with one bit ADC (one threshold level sampling) is 

sufficient to achieve high accuracy. For example, in paper [29] the high accuracy Fourier 

Transform interferometry, without oversampling, with a 1-bit analog-to-digital converter is 

considered. 

2.5.3 Compressive sampling/sensing 

Compressive sampling also known as compressive sensing (CS) is relatively new 

paradigm that goes against the common wisdom in data acquisition. According to it signal can 

be represented and reconstructed by fewer signal samples or measurements in comparison 



Doctoral Thesis  Kaspars Sudars 

31 

 

with traditional Shannon sampling method. For certain signals it can be done beyond Nyquist 

frequency requirement. A good introduction about compressive sensing can be found in 

article [27]. 

According to compressive sampling concept, the information about a signal s(t) is 

obtained by following expression: 

( ), ( ) ,k ky s t t  k = 1,2, …, m. (2.3) 

Information about original signal are carrying a set of correlation coefficients yk. In 

formula (2.3) s(t) – is an original signal waveform; υk(t) – is set of particular waveforms or 

basis functions. 

Choose of basis function set {υk(t)} is the main tool to control signal sampling conditions. 

This particular approach like other NU signal sampling techniques requires reconstruction 

process to obtain back original signal waveform. Therefore each particular compressive 

sampling method has to be considered together with reconstruction algorithm. 

In compressive sensing expression (2.3) is standard procedure to digitize original signal 

waveforms and get footprints from them. Actually, the original signal is not represented by 

pure signal sampling values as it is in case of traditional uniform sampling, but with signal 

and particular function correlation coefficients. 

There exists a large number of varieties what waveforms {υk(t)} can be. If these are Dirac 

delta functions (or spikes) then it leads to traditional uniform sampling. In another case if 

these are sine-waves then yk are coefficients of Fourier transformation. 

There are two main principles: sparsity and incoherence. Sparsity principle underlying 

CS says that during the compressive sampling process the obtained small coefficients yk can 

be discarded without significant loss of information about original signal waveform s(t). 

Second principle – incoherence – shows the connection between two function basis. One is 

signal sensing basis and the other is signal representation basis. Coherence measures the 

largest correlation between any two elements of sensing basis Φ={υk(t)} and signal 

representation basis Ψ={ψk(t)} (there is assumption that signal can be fully represented with 

finite number elements of this function basis, as it is shown in formula 2.4). Compressive 

sensing is mainly concerned with low coherence pairs of function basis, and then the 

described technique provides the most remarkable results. 

Signal model in the case of compressive sensing: 

1

( ) ( )
n

i i

i

s t x t , (2.4) 

Where s(t) – is original signal; xi – are coefficients of s(t) and )(),( ttsx kk ; ψi(t)  – is 

signals representation basis. 
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Compressed signal is obtained after sparsity procedure. It is subset, what remains from all 

coefficients {yk}. Therefore it can be written that now Mk , where },...,1{ mM . After 

compression the coefficients count n is significantly smaller than waveform count m. It can be 

written n << m. 

Reconstruction of compressed signal can be done according to 1 -norm minimization 

algorithm. Note, that 1 -norm is defined following: 

i ixx
1

 (2.5) 

Reconstructed signal vector can be obtained following s’=Ψx’, where x’ is solution of the 

convex optimization program: 

','min
1'

xytosubjectx kk
Rx n  , Mk . (2.6) 

Expression (2.6) means that among all objects s’=Ψx’ we pick that coefficient sequence 

with minimal 1 -norm. Anyway, there exist also other reconstruction methods and many 

variations of this reconstruction method involving linear programming. 

2.6 Conclusions 

Performance of a wide variety of computer systems to a large extent depends on the 

perfection of their DAQ subsystems supplying these computer systems with the information 

obtained from real-world sources. Much has been already done to develop DAQ systems 

capable of fulfilling these functions under conditions dictated by various applications. The 

overall situation in this field is considered and discussed in Chapter 2. Analysis of the 

currently used data acquisition system specifics reveals some essential facts and leads to the 

following generalized conclusions: 

1. While many DAQ systems are manufactured and used, they mostly belong to one of two 

basic types of DAQ systems: (1) multi-channel systems for DAQ based on multiplexing 

inputs to a central ADC connected via interface to a computer; (2) multi-channel systems 

for so-called simultaneous DAQ using a separate ADC in every input channel. 

2. DAQ functions usually are considered as input signal conditioning, analogy-to-digital 

conversions and transmitting the digital signals, obtained from all inputs, to the computer. 

Processing of data more often than not is the responsibility of the host computer. 

3. The essential function of signal digitizing usually is performed on the basis of the 

classical concepts of uniform periodic sampling and fixed-threshold quantizing. 

4. The sampling rate of for DAQ systems based on multiplexing inputs to a central ADC 

directly depends on the clock frequency at which the multiplexer is switched and the rate 
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of sampling signals in each input channel is inversely proportional to the number of 

inputs. Consequently the quantity of DAQ system inputs usually is restricted to relatively 

small numbers, usually up to 16. More complicated systems contain a hierarchy of 

multiplexers. In this case there might be more inputs however this type of DAQ systems 

then can be used only for data acquisition from low-frequency sources. 

5. Using a separate ADC in every input channel allows avoiding these restrictions. 

Therefore this type of DAQ systems can be used for obtaining data from high frequency 

signal sources. The factors limiting their applications are relatively high complexity 

(ADC in every channel) and multiplexing of ADC output signals needed for transmitting 

them sequentially to the host computer. Additional drawback of this type of DAQ systems 

is relatively high power consumption narrowing the area of their applicability for 

autonomous DAQ. 

6. The quality of developed and produced DAQ systems improve all the time, however this 

progress is mostly based on the achievements in the area of semiconductor device 

development and production technologies. The theoretical basis for signal digitizing 

exploited for DAQ, in general, has remained the same classical one for many years. 

The last conclusion is true for most of the currently produced DAQ equipment. On the 

other hand, there have been various R&D efforts addressing the problem of data acquisition 

under conditions more demanding than usual. Some of significant publications in this field are 

discussed above. They are dedicated to consideration of essential problems in the area of 

signal digitizing, data pre-processing and compressing. In general, they reveal a very 

important fact: 

 The classical theory covering signal digitizing (sampling and quantizing) and digital 

representation of analogy signals is not exclusive. These signal conversion operations can be 

performed in various ways, not only according to the rules of periodic sampling and 

traditional quantizing. 

In particular, the applicability of NU sampling and low-bit rate quantizing has been 

investigated over a long period of time and this approach is directly related to DAQ functions 

[22, 23, 43, 44]. These methods and algorithms are applicable for achieving a number of 

essential advantages, such as performing of DAQ in a wide frequency range, elimination the 

dependency of the sampling rate in a channel on the quantity of channels in a system, data 

compression/reconstruction, reducing the complexity of DAQ systems and others. That leads 

to the following conclusions: 

1. The currently used classical theory covering signal digitizing (sampling and quantizing) 

and digital representation of analog signals is not exclusive. These signal conversion 

operations can be performed in various ways, based on the signal digitizing theory 
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developed in a few past decades, including theory of randomized signal processing, NU 

sampling and quantizing and DASP.   

2. To achieve progress in the area of DAQ, efforts have to be put in this work basically in 

the directions of developing methods and algorithms for application-specific DAQ. That 

is considered to be the key factor for achieving the capability of more precise data 

acquisition in a wider dynamic range from a larger quantity of signal sources at increased 

operational speed, widened signal bandwidth and increased energy-efficiency.  

3. Selecting and using the most effective type of digital representation of analog input 

signals is really important for that. 

4. Data pre-processing in many cases should be included in the list of functions to be 

fulfilled by a DAQ system as algorithms for parallel processing of raw digital signals can 

be developed and used at that stage for effective data representation and compression. 

Reduction of power consumption, simplification of system hardware, simplification of 

algorithms for acquired data pre-processing and enlargement of system channel quantity, 

accurate signal acquisition are still very desirable for DAQ systems. 

 

 



3. Data Acquisition Based on NU Sampling: Achievable 

Advantages and Involved Problems 

To convert an analog sensor signal into its digital counterpart, it has to be digitized on the 

basis of the sampling and quantizing operations. No doubt that periodic sampling is currently 

the most used and widespread sampling method. This type of sampling is also called uniform 

or equidistant sampling as the intervals between the taken sample values in that case are 

constant. However there are other methods for sampling. Attention is drawn to a non-

traditional approach to sampling performed in the process of data acquisition, specifically, to 

NU sampling. The achievable advantages and application potential of this approach are based 

on exploitation of the capabilities offered by the NU sampling procedure carried out in the 

process of the sensor signal digitizing [22, 23, 30, 43, 44, 54]. 

 Usage of NU sampling makes it possible, first of all, to enlarge the frequency range 

where information carried by the analog signals can be represented in the digital domain. To 

achieve that, these signals, in the process of their digitizing, must be sampled non-uniformly 

in a right way to avoid overlapping or aliasing of signal components whenever their 

frequencies exceed half of the mean sampling rate. Skilful using of NU sampling then opens 

up the possibility of getting valuable positive advantages but that leads also to specific 

difficulties related to processing of this type of digital signals, including reconstruction of the 

original signal waveforms from them. However, if these signals could be reconstructed, then a 

number of typical problems arising at development of data acquisition systems can be 

resolved in a simple and effective way. 

Application potential of this non-traditional approach to data acquisition from sources of 

continuous in time sensor signals is discussed in this Chapter. It is shown that using NU 

sampling at digitizing such signals opens up a possibility of obtaining a number of practically 

valuable benefits under the condition that appropriate algorithms are used for processing 

them. However this approach requires also more complicated processing of the acquired data, 

especially at reconstruction of the original waveforms. Problems of this kind and ways how to 

resolve them are discussed. 

The knowledge accumulated over a long period of time in the area of non-traditional 

Digital Signal Processing (DSP) has been used to develop the theory of Digital Alias-free 

Signal Processing (DASP). It is also very useful for gaining benefits at data acquisition and 

for finding the right solutions to the involved problems [22, 23]. The later largely are related 
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to the task of the original waveform reconstruction from the acquired data and to the problems 

arising from the specific properties of the irregular signal sample value sequences obtained in 

result of NU sampling. As soon as the sampling process is nonuniform there might be bias 

errors if the sampling procedure is not performed in a right way and cross-interference 

between components of a signal occurs. This fact has to be taken into account. How that could 

be done and at what costs is explained in Section 3.1 – 3.3. 

Sometimes NU sampling is deliberately used with clear purpose to gain some specific 

advantages. In such a case the sampling nonuniformities are just a side effect defining the 

costs due to usage of NU sampling methods. However in some application areas data can be 

acquired only at unpredictable random time instants as it is, for example, in the case of fault 

tolerant data acquisition. DASP theory helps also in this case. A number of typical data 

acquisition cases, where the considered approach to data acquisition can be successfully used, 

are discussed in Section 3.4. The specific problem of image data compression and image 

reconstruction is considered in Section 3.5. In Section 3.6 problems concerned with wideband 

signal digitization in enlarged dynamic range problems are considered with the following 

conclusions at the end of Chapter. 

3.1 Aliasing effect in DSP, is it possible to avoid it? 

Frequency overlapping or aliasing is a well known effect significantly limiting the 

frequency range where signals can be digitally processed on the basis of the classical DSP 

theory and existing microelectronic elements. Whenever continuous time signals are digitized 

and then processed on the basis of DSP, the sampling rate fs of the used periodic sampling 

limits the bandwidth of the original analog signals. Then the restrictions, defined by the 

Sampling theorem, have to be satisfied to avoid the uncertainty due to the fact that all 

frequencies belonging to the sequence: fo; fs fo; 2fs fo; 3fs fo;... nfs fo are indistinguishable.  

Let us briefly consider the essence of aliasing to see what can be done to avoid the 

limitations imposed on DSP in result of this effect. Suppose there are two sinusoidal signals 

tftx k 00 2)( and tnfftx skn )(2)( 0 . Both of them belong to the indicated above row of 

aliasing frequencies. Suppose that they are sampled at the frequency fs. Then we obtain 

0
0 0
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T where T is the sampling interval or period of the 

sampling frequency. 
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Now compare these two original analog signals and their digital counterparts. Note that 

while the original signals are clearly different sine functions, the respective digital signals are 

equal. They provide the same sequences of sample values. In other words, the compared 

digital signals completely overlap and they evidently are aliases. 

The obvious way to avoid this uncertainty is to require that the frequency fo<fs/2 and that 

all frequencies in the spectrum of the input signal above fs/2 are taken out by analog low-pass 

pre-filtering. Whenever that does not represent a problem, periodic sampling of signals is 

preferable as it leads to significant advantages. However the widely spread belief that the 

limitations defined by the Sampling theorem are unavoidable is not right. 

Indeed, the equality of both digital signals in (3.1) is due to the fact that the sampling 

interval T has a constant value. In other words, both these digital signals are overlapping 

because sampling is performed periodically and this signal overlapping or aliasing can be 

avoided if the signal sample values are taken non-uniformly, if the sampling operation is 

nonuniform.  

This fact has not escaped attention and published descriptions of attempts to use NU 

sampling to avoid aliasing started to appear in 1960-ties [15] and they were quite popular in 

1970-ties [16-21, 36-40, 45-49]. Balakrishnan, for example, considered the well known fact 

that periodic sampling is always in fact a random process as the signal sample value taking 

actually happens at random time instants tk as there is random jitter of them. At this type of 

sampling the signal sample values are taken at time instants  

tk=kT+τk ,    k=0, 1, 2, ...                                                            (3.2) 

where τk ,    k=0, 1, 2, ..., is a random variable. 

While consideration of this jittering usually was focused on the problem how to suppress 

it, Balakrishnan draw attention to the potential usefulness of the involved jittering. Relatively 

many other publications proposing and discussing deliberate randomization of signal 

sampling followed. Gradually it became clear that there is a possibility to avoid the described 

uncertainty due to frequency overlapping or aliasing and that this possibility is based on 

application of NU signal sampling [16, 45]. 

 Indeed, imagine that the signal frequencies are sampled non-equidistantly, obviously then 

all the digital replicas of signal frequencies will differ. That opens up the principal possibility 

of distinguishing between them without mentioned cutting-off of the analog signal spectra by 

low-pass pre-filtering of them. 

 On the other hand, it is not so easy to gain from NU sampling, to develop practically 

applicable designs of analog/digital systems successfully exploiting advantages of this 

technique. Whenever signals are sampled nonuniformly, processing of the obtained digital 

signals has to be done specifically and correctly, to avoid errors due to the cross-interference 
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between signal components and to other negative effects related to the specifics of 

randomized sampling. 

Suppose a signal x(t), continuous in time, is sampled at time instants tk, k=1, 2, 3, … and a 

sequence of sample values x(tk)=xk taken at these time instants is obtained. It becomes 

possible to use this sequence of the sample values {xk} for representing the original analog 

signal in the digital domain if certain requirements, depending on the specific sampling mode 

used, has been satisfied. While in the cases of periodic sampling the signal sample values 

have to be taken at a rate at least twice exceeding the upper frequency in the spectrum of the 

signal, it is less clear what requirements have to be satisfied in the cases where signals are 

sampled nonuniformly. They depend, in general, on the used specific method for NU 

sampling, on various parameters characterizing the sample value taking process and also on 

the used approach to extraction of the information carried by the signal. The sampling model 

(3.2) actually has limited application. It was shown [22, 23] that so-called additive random 

sampling has proved to be a much better NU sampling option. The basic difference between 

the NU sampling procedure based on (3.2) and the additive random sampling is that the 

introduced randomness in the second case accumulate and this do not happen in the first case. 

This difference is significant as the accumulative effect of the introduced randomness at the 

additive random sampling leads to a number of important advantages.  

3.2 Using of NU sampling for data acquisition 

Various methods and techniques are used for implementation of NU sampling [22, 23]. 

The most popular are the following methods for NU sampling: (1) additive sampling and (2) 

random skipping of some quantity from the periodically given sampling points. Actually, both 

methods can be implemented in pseudo-random way. Each of the methods has its own 

advantages and drawbacks, of course. Let us consider the basic specifics of NU sampling 

relevant to data acquisition. 

3.2.1 Basics of additive sampling 

In the case of the mentioned additive sampling, the sample values are taken from signals 

at time instants tk defined as follows [23]: 

tk=tk-1+τk ,    k=0, 1, 2, ... (3.3) 

where τk are random or pseudo-random variables. 

As it has been proved, the successive sampling intervals τk, τk+1 should be statistically 

independent and identically distributed. Remarkable properties of the sampled signals are 

achieved under this condition. First of all application of this type of sampling makes it 

possible to avoid aliasing even when the mean sampling rate does not exceed the upper 
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frequency in the spectrum of a signal. On the other hand, randomizing of the signal sampling 

instants leads to further considered negative effects complicating processing of the digital 

signals obtained in result of such sampling. To reduce these negative effects to some extent, a 

simple method can be used. The idea is really very simple: the randomness introduced at 

sampling should be minimized for that. This means, in terms of equation (3.3), that the 

distribution of the random or pseudo-random variables τk should be characterized by relatively 

small ratios σ/μ, where μ is the mean sampling rate and σ is standard deviation of τk. Usually 

the desirable properties of sampling are obtained at even small values of the ratio σ/μ. 

Excessive randomization of the sampling process actually is just harmful. 

3.2.2 Ensuring unbiased estimation of signal parameters. 

Additive sampling has a very valuable property. Specifically, the sampling point density 

function p(t) characterizing this type of sampling, with t increasing, tends to the constant level 

1/μ. It is shown that usually there are no problems in achieving that. The point is that signal 

waveform instantaneous values are sampled under this condition with equal probability. And 

that is very important as only then the nonuniformly sampled signals can be processed 

without systematic or so-called bias errors. It is shown in [23] that the estimates Â  of many 

various signal parameters A, defined on the basis of functional conversions FA according to 

1

1ˆ [ ( )]
M

A k

k

A F x t
N

, (3.4) 

where N is the number of signal sample values taken within the time interval Θ during 

which the signal is observed. 

If the sampling operation is performed in accordance to (3.3), then the expectation ]ˆ[AE , 

as it is shown in [23], is given as  

0

1ˆ[ ] [ ( )] ( )A kE A F x t p t dt
N

, (3.5) 

If the sampling point density function p(t)=1/μ=const. and Nμ=Θ, then  

0

1ˆ[ ] [ ( )]A kE A F x t dt A , (3.6) 

Therefore estimation of signal parameters A under these conditions is reduced to 

estimation of the mean value of the functionally converted signals and the expected value 

]ˆ[AE  of these parameters is equal to them. And the additive sampling procedure, performed 

according to (3.3), leads to such sampling characteristics. Therefore this approach is 

preferable. Whenever it is used in a right way there are no systematic or bias errors in 

parameter A estimation.  

This fact is significant for a number of reasons. 
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 First, there are other methods for NU sampling and they have to be evaluated before 

using for data acquisition because not all of them satisfy the above conditions for unbiased 

signal parameter estimation. For example, periodic sampling with fluctuations of the sampling 

instants, even if these fluctuations are significant, does not satisfy the requirement 

p(t)=1/μ=const.  

Second, the criteria for unbiased parameter estimation cover a wide range of signal 

parameters, including Fourier coefficients estimated for signal conversion from the time to the 

frequency domain. Therefore the defined conditions for avoiding bias errors are essential also 

for achieving unbiased signal waveform or image recovery from the acquired data.  

3.2.3 Implementation of DAQ on the basis of additive NU sampling concept. 

The concept of NU sampling can be used for multi-channel DAQ in various ways. Let us 

consider two typical cases of simultaneous DAQ performed at time instants tk. Data then are 

taken from M sensor signal sources in one or another way as shown in Figure 3.1. 

 

Figure 3.1 Two multi-channel DAQ system structures modified according to requirements of NU 

sampling: (a) structure based on usage of NU sampling performed by many ADCs and (b) structure for 

data acquisition based on NU multiplexing of input signals. 

        In general, these DAQ system structures seemingly do not differ from the already 

discussed typical multi-channel DAQ system structures given in Figure 2.1. Actually they 

differ significantly as they perform the functions of DAQ using two different approaches to 

this task. While systems shown in Figure 2.1 perform DAQ functions according to the rules of 

periodic sampling, the systems given in Figure 3.1 perform these functions on the basis of NU 

sampling. Consequently, the capabilities and characteristics of them differ strongly. 

Whenever DAQ is based on periodic input signal sampling, the achievable higher frequency 
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of input signals, as well as the achievable number of DAQ channels, is limited by the 

sampling frequency. Introduction of the NU sampling concept into the procedures of DAQ 

takes out this limitation. That leads to the possibility of obtaining various benefits valuable for 

practical applications. How that can be done on the basis of DAQ systems given in Figure 3.1 

is shown and discussed in Sections 3.4 and 3.5.  

     However introduction of the NU sampling concept into the procedures of DAQ 

preconditions also some more or less damaging negative effects. Consideration of the basic 

drawback, typical for NU sampling based DAQ, follows. This is the effect of cross-

interference between signal components that appears whenever signals are sampled 

nonuniformly.   

3.3 Relevant specifics of NU sampled signals  

An example of a typical signal sampled nonuniformly is shown in Figure 3.2. 

 

Figure 3.2 Digitizing based on NU sampling: (a) analog signal; (b) digital signal obtained in result of 

additive NU sampling. 

Whenever a signal is digitized, it should be possible to reconstruct the original signal 

from the obtained discrete signal sample value sequence. In the case of periodic sampling, it 

can be done whenever the signal sampling frequency fs is high enough. Shannon sampling 

theorem defines this frequency limit saying that a continuous signal can be sampled and 

converted back into its original form if the sampling frequency fs is at least twice higher than 

the upper frequency fu present in the spectrum of the signal. This frequency limit is called 

Nyquist frequency (see Chapter 2.1.1 about DAQ theoretical basis). If a signal has 

frequencies exceeding this limit then overlapping or aliasing of signal components at 

frequencies fs+f, fs– f, 2fs+f, 2fs– f ... takes place. Obviously, then it is impossible to 

reconstruct the original signal from the sequence of its sample values. 
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Figure 3.3 Impact of the cross-interference between signal components on spectral estimations. 

Aliasing can be avoided if signals are sampled according to proper methods for NU 

sampling and the obtained sample value sequences are processed by taking into account the 

specifics of the used sampling approach. It means that using of NU sampling sometimes 

makes it possible to enlarge the frequency range where information carried by the analog 

signals can be represented by digital data. For example, if the DAQ for measurements is 

considered. 

And that is exactly why it is suggested in this Chapter to use NU sampling for data 

acquisition. The point is that skilful using of NU sampling leads to significant advantages. On 

the other hand, using of this type of sampling leads also to specific difficulties and problems. 

Most of them are due to the fact that whenever signals are sampled nonuniformly, cross-

interference (CI) between signal components occurs. If nothing is done to take care of the 

consequences of this phenomenon, substantial errors distort the results of processing the 
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digital signal obtained in this way. Figure 3.3 illustrates how this CI affects digital signal 

processing in the cases of NU sampling.  

Suppose that classical Discrete Fourier Transform (DFT) is performed over data obtained 

in result of periodic and NU sampling of a signal given as a single sinusoid at a specific 

frequency. Then obtained spectra will look similar to the spectrograms given in Figure 3.3 (a) 

and (b), respectively. At the first glance it seems that the spectrogram obtained in the case of 

NU sampling has additional noise related to the randomness present at sampling. Actually that 

is not exactly right. Studies of the involved processes have revealed [22] that the NU 

sequence of sampling points, defining the signal sampling process, and the particular signal 

frequency fully determines the pattern of the spectrogram. The spectrum is deterministic and 

each peak in it can be traced back to the signal sinusoid. Amplitudes of these peaks are 

proportional to the amplitude of this sinusoid. Therefore the signal frequency interferes with 

other frequencies in the spectra and actually symmetric CI takes place, as can be seen by 

comparing Figure 3.3 (c) with Figure 3.3 (d) illustrating the CI between two signal 

components in the case where the amplitude of the second component is smaller. These two 

diagrams might be compared with the spectrograms given in Figure 3.3 (e) and 3.3 (f) 

obtained in the case where the amplitude of the second component is enlarged. 

As it is shown in [22, 51], the CI coefficients for a given NU sampling point process are 

given as:  
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(3.7) 

and 

(3.8) 

Where N – count of signal discrete values; fs – sampling frequency; fm – frequency on 

which DFT is carried out; fi – frequency on which signal component is expected; tk – time 

instants, when signal sample values are taken; k – signal sample number k = 0, 1, 2... N-1; m – 

frequency number m = 1, 2, 3... M. 

 CI coefficients allow estimating how each signal component impacts all other 

components at all frequencies fm.  That could be done by using the CI coefficient matrix. 
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(A C ) (A S ) (A C ) (A S ) ... (A S ) (A S )
1 1 1 1 1 2 1 2 1 M 1 M

(B C ) (B S ) (B C ) (B S ) ... (B C ) (B S )
1 1 1 1 1 2 1 2 1 M 1 M

(A C ) (A S ) (A C ) (A S ) ... (A S ) (A S )
2 1 2 1 2 2 2 2 2 M 2 M

(B C ) (B S ) (B C ) (B S ) ... (B C ) (B S )
2 1 2 1 2 2 2 2 2 M 2 M

... ... ... ... ... ... ...

(A C ) (A S ) (A C ) (A
i 1 i 1 i 2 i

C

) ... (A C ) (A S )
2 i M i M

(B C ) (B S ) (B C ) (B S ) ... (B C ) (B S )
i 1 i 1 i 2 i 2 i M i M

S

 (3.9) 

To eliminate the impact of the CI, this matrix has to be inverted and then the 

reconstructed values of the Fourier coefficients are calculated by using the following matrix: 

1 1 11 1 12 2 13 2 14 M 1 1 M 1

1 1 21 1 22 2 23 2 24 M 2 1 M 2

2 1 31 1 32 2 33 2 34 M 3

ˆ ˆ ˆˆ ˆ ˆa   a ( ) b ( )  a ( )  b ( ) ... a ( )  b ( )

ˆ ˆ ˆˆ ˆ ˆb   a ( ) b ( )  a ( )  b ( ) ... a ( )  b ( )

ˆ ˆˆ ˆ ˆa   a ( ) b ( )  a ( )  b ( ) ... a (

M M

M M

M 1 M 3

2 1 41 1 42 2 43 2 44 M 4 1 M 4
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....................................................................................................................

M

M M

M 1 ( 1)1 1 ( 1)2 2 ( 1)3 2 ( 1)4 M ( 1)
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.....

ˆ ˆ ˆˆ ˆa   a ( ) b ( )  a ( )  b ( ) ...  b ( )

ˆ ˆ ˆˆ ˆ ˆb   a ( ) b ( )  a ( )  b ( ) ... a ( )  b ( )

M M M M M M

M M M M M M MM

 (3.10) 

Where αij are the elements of the inverted matrix inv(C). 

To perform reconstruction of the original waveforms from the data obtained in result of 

signal digitizing based on NU sampling, the briefly described CI effect has to be taken into 

account. Otherwise significant errors will distort the signal processing results. And that under 

certain conditions might represent a problem. Indeed, these calculations take time and that in 

turn makes it difficult to reconstruct data in real time. 

However, there are also other methods how to cope with NU sampling irregularities and 

the CI effect. And recovery of nonuniformly sampled signals is a rather wide subject out of 

scope for this work. 

3.4 Using NU sampling to obtain specific benefits for DAQ 

Various specific and valuable for practical applications advantages can be obtained by 

exploiting NU sampling techniques. Several methods of this kind are considered in this 

Section. 

3.4.1 Data acquisition from high frequency signal sources 

As proper application of NU sampling leads to elimination of aliasing, this specific 

approach to signal sampling can be used to enlarge the frequency range where information 

carried by high frequency analog sensor signals can be represented by digital data (for 

example, in cases of signal demodulations). A structure shown in Figure 3.1 (a) can be used 

for data acquisition directly from high frequency signal sources if operation of the used ADCs 
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is based on quantizing signal sample values taken from the input signal at time instants 

dictated by a NU sampling point process. In such a case the usage of the additive sampling 

point process is usually preferable. The upper frequency of the signal spectrum sometimes can 

exceed the mean sampling rate several times. However the data obtained under these 

conditions then must be treated with the specifics of NU sampling taken into account [12, 13, 

23]. 

3.4.2 Increasing the quantity of input channels 

The structure of the DAQ system used for data acquisition from a multitude of sensors is 

based on multiplexing of analog signals and it is illustrated in Figure 3.1 (b). The difference 

between the traditional structures of this type (given in Figure 2.1) and this one is in operation 

of the multiplexer. Whenever it connects inputs to the ADC periodically, the number of inputs 

is limited by the achievable multiplexer switching rate as the sampling rate of each input then 

is n times lower, where n is the number of inputs (see Chapter 2.4). Replacing the periodic 

multiplexer switching by randomized allows using of the total bandwidth of channels more 

efficiently. Therefore that makes it possible to increase the number of inputs several times for 

specific class of signals [14]. Of course, the obtainable increasing of this input number 

depends on specific conditions. 

 

Figure 3.4 Particular implementation of simultaneous multi-channel data acquisition from M sources. 

Note that the variables τk in the equation defining the additive NU sampling procedure in 

this case are digital and pseudo-random. The smallest digit of these pseudo-random time 

intervals τk is equal to the period Δt of the high frequency clock used for controlling the data 

acquisition process. This parameter also defines the upper frequency limit for the data 

acquisition bandwidth Bu. Obviously, according to the Nyquist criterion, Bu =1/2Δt. The mean 

value of the time intervals τk between acquiring data from a particular source is equal to μ and 

they are distributed in the interval μ±ξkΔt, where ξk are pseudo-random numbers uniformly 

distributed in a specified interval (in the case of the considered example, this interval is equal 

to [0, 2]).  
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3.4.3 Data acquisition at object testing 

Exploiting NU sampling techniques and gaining advantages on that basis is a 

considerably less complicated task under conditions typical for the cases where data are 

acquired from some biomedical or industrial objects being tested. Then the information that 

has to be obtained is related to the characteristics and properties of the object and the signals 

taken off the respective object during the tests carry it. These signals reflect reaction of the 

object on the used some specific excitation signals. Diagram, shown in Figure 3.5, illustrates 

this situation. The fact that data acquisition then is performed under conditions where the test 

signal characteristics, including its spectrum, are given is very useful. Taking this information 

into account makes it possible to reduce significantly the complexity of the following data 

processing process. Indeed, to take out the errors due to the CI discussed in Section 3.3, 

usually data processing has to be based on calculations of CI coefficients, composing of the 

matrix (3.9), inverting it, obtaining the elements αij of the inverted matrix inv(C) and then 

estimating the Fourier coefficients. In the cases of data acquisition at object testing the 

situation is specific. As the spectra of the test signals then are given, the frequencies of the 

output signals are known whenever the objects are linear. The specific NU sampling point 

streams used at data acquisition are also given. Using of this significant a priori information 

leads to substantial simplification of the algorithms to be used at reconstruction of the 

waveforms or their parameters. All cross-interference coefficients then can be pre-calculated, 

matrix C also can be composed and inverted so that all elements αij of the inverted matrix 

inv(C) also could be pre-calculated. Therefore the Fourier coefficients in this case can be 

calculated by directly using the equation system (3.10). That dramatically simplifies and 

speeds-up the involved calculations. 

 

Figure 3.5 Diagram illustrating the conditions for data acquisition at linear object testing. 

That leads to the conclusion that gaining practically valuable benefits from using the NU 

sampling approach is much easier for applications related to data acquisition at linear object 

testing. Using of this approach for data acquisition in the specific case of bioimpedance signal 

analysis in a wide frequency range of the test signals (up to a few GHz) is described in [51]. 
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3.4.4 Fault tolerant data acquisition 

Suppose data are acquired under conditions where the spectra of the involved processes 

are restricted at relatively low frequencies. Then application of NU sampling is not needed 

and data might and should be acquired at periodically repeating time instants. Attention is 

drawn to the possibility of improving the performance of the data acquisition system on the 

basis of NU sampling even under these conditions if it is needed to protect this system against 

unpredictable explosive noise bursts. Then the concept of NU sampling and specific data 

processing typical for NU sampling still proves to be quite useful.  

Time diagrams shown in Figure 3.6 illustrate the data acquisition process under normal 

conditions in Figure 3.6 (a) and under the impact of noise bursts in Figure 3.6(b). 

 

Figure 3.6 Impact of noise bursts on signals: (a) periodically sampled continuous signal, (b) the same 

signal with bursts of lost data and the recovered parts of faulted signal (recovery performed using CI 

method discussed above). 

Data acquisition system protection against unpredictable explosive noise bursts also is a 

subject falling within the interest area of DASP, because the signals under impact of noise 

bursts become NU in a specific way. It means that sometimes DAQ systems should be ready 

and prepared to such accidents that might happen. In other words, their fault tolerance 

sometimes has to be improved. And the concept of NU data representation proves to be useful 

for that. The idea of improving fault tolerance on this basis is simple. The essence of it is as 

follows: to improve fault tolerance on the basis of the NU sampling concept, the data should 

be acquired periodically as usual and facilities usually used for processing of nonuniformly 

acquired data should be added to the system and used for data reconstruction [12, 13, 24, 50]. 

This means that under normal data acquisition conditions redundant equipment would be 

used. The role of this equipment would be to recover the data lost under impact of the noise 

bursts. 
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3.4.5 Asymmetric data compression/reconstruction 

Essential are the advantages related to data compression that are obtainable if proper NU 

sampling procedures are used for DAQ. To compare the conditions for data compression in 

the cases of classical DAQ and non-traditional approach to fulfilling this function, consider 

the diagrams given in Figure 3.7. 

 

Figure 3.7 Standard data compression/reconstruction scheme (a) and the structure (b) used for data 

compression/reconstruction in the case where the compression is based on properties of NU sampling. 

Standard data compression/reconstruction schemes look like the structure given in Figure 

3.7 (a). This diagram reflects the fact that in this case, to compress and decompress the data, 

they are processed twice. Naturally that requires using of computing resources twice and that 

takes time. Using of the NU sampling procedures makes it possible to reduce the volume of 

data representing the respective input sensor signals simply by taking out some quantity of the 

signal sample values or perform other simple operation. It means that in this case no 

calculations are made at data compression. Then the structure used for data 

compression/reconstruction looks like the one shown in Figure 3.7 (b). The computational 

burden related to reconstruction of the compressed data then is totally placed on the data 

recovery side of the system. This data acquisition paradigm seems to be with high application 

potential as it is well suited for significant reducing of the acquired data massive as well as 

the data compressing costs in terms of equipment volume, weight and power consumption. 

The basic advantage is that this type of complexity-reduced data acquisition and compression 

is fast [22]. Note that compressive sensing described in subsection 2.6.3 also belongs to this 

asymmetric data compression/reconstruction paradigm. 

Specifics of asymmetric data compression/reconstruction are considered in some detail on 

the example of 2D data acquisition given in the following Section 3.5. Image data acquisition, 

compression and reconstruction are discussed there. 
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3.5 Asymmetric 2D image data acquisition/reconstruction 

3.5.1 Asymmetric 2D image data compression 

      The considered method for asymmetric data acquisition/reconstruction can be used in 

a wide application area, including 2D data compression and reconstruction [10]. Therefore 

this method can be exploited for image encoding, transmission (or storage) and 

reconstruction. Actually this task is quite complicated. It is considered in this Section and a 

standard test image, shown in Figure 3.10 (a), is used for that. This standard test image I can 

be defined by its NM matrix of pixels or elements as follows:  

11 12 13 14 15 16 1

21 22 23 24 25 26 2

31 32 33 34 35 36 3

41 42 43 44 45 46 4

1 2 3 4 5 6

...

...

...

...

... ... ... ... ... ... ... ...

...

N

N

N

N

M M M M M M MN

e e e e e e e

e e e e e e e

e e e e e e e
I

e e e e e e e

e e e e e e e

 (3.11) 

According to the considered method, to compress the original 2D data, many of pixels 

have to be replaced by zeroes in accordance to the basics of NU sampling. The question is 

how to do that in a way that would make the task of the compressed image reconstruction 

easier. Various approaches have been considered and tested. The best of so far found                                              

approaches is based on design and usage of a mask containing logic 1 and 0. An example of it 

is given as matrix (3.12) and it is shown also in Figure 3.9. 

Full cycle of original image compression and reconstruction is organized in accordance to 

the flowchart shown in Figure 3.8. Note that this particular signal/image compression 

procedure differs from the popular Compressive Sensing approach. 
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Figure 3.8 Flowchart of asymmetric image acquisition/reconstruction. 

An example of the compression matrix H or mask, used for the considered asymmetric 

data acquisition, is given as: 

0 1 0 0 0 1 0 0 1 0 0 1 0 0... 0

0 0 1 0 0 0 1 0 0 1 0 0 1 0... 0

0 0 0 1 0 0 0 1 0 0 1 0 0 1 ... 1

1 0 0 0 1 0 0 0 1 0 0 1 0 0 ... 0

0 1 0 0 0 1 0 0 0 1 0 0 1 0 ... 0

... ... ... ... ... ... ... ...

0 1 0 0 1 0 0 0 1 0 0 0 1 0 ... 0

H  (3.12) 

To generate this mask, taking out of pixels is done in a specific way by using additive 

sampling sequence given in Figure 3.9 (b) and generated according to formula (3.3). The 

mean distance μ of two neighbouring pixels left in the image is equal to 5 and width of the 

uniform distribution of pseudo-random numbers ξ is equal to 3. The same sampling sequence 

is used also at the next image rows. They are only circularly shifted by one pixel each time to 

the right. The mask matrix needed for implementation of image compression in such a way 

has been generated by using the following MATLAB M-language code: 

 

rand('state',1232); 

h=1; 

tmp=zeros(1,512); 

while h<=512; % additive sampling flow 

    tmp(h)=1; 

    % xi random variable 

    xi=round(2.495*(rand-.5)); 

    tau=5+xi; 
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    h=h+tau; 

end; 

maska=zeros(512,512); % MASK generation 

for r=1:512;  

    maska(r,:)=circshift(tmp,[0 r]); 

end; 

The mask and the used additive sampling point process can be seen in Figure 3.9. 

 

Figure 3.9 Image mask (a) showing the part of image pixels that will be taken out (in white colour) and 

the pixels that will remain after image compression (black colour); (b) the respective additive sampling 

point process used for generation of the mask. 

The compressed image is obtained in a very simple way, just by using logic or scalar 

multiplication of generated mask matrix with the image matrix: 

12 16 19 1

23 27 2

34 38 3

41 45 49 4

2 5 9

0 0 0 0 0 0 ...

0 0 0 0 0 0 0...

0 0 0 0 0 0 0 ...

0 0 0 0 0 0 ...

... ... ... ... ... ... ...

0 0 0 0 0 0 ...

N

N

N

c

N

M M M MN

e e e e

e e e

e e e
I I H

e e e e

e e e e

 (3.13) 

As can be seen, pixel taking out in a row is organized so that the remaining pixels are 

arranged in accordance to a realization of an additive sampling point process used for 

generation of the mask. Then the mask itself is formed by stacking this type of pixel rows that 

are shifted by one step horizontally per each vertical step, as it is shown in Figure 3.9 (a).  

The compressed image is obtained in this way. Apparently image compression performed 

in such a way is a quite inexpensive and technically effective operation. The complexity of 

this type of image compression is much lower than the complexity of the usually exploited 

rather complicated standard image compression algorithms. That apparently represents a 

significant advantage of the proposed and described 2D data compression algorithm.  

 



Doctoral Thesis  Kaspars Sudars 

52 

 

3.5.2 Reconstruction of the compressed image  

Two approaches to sparse image reconstruction were considered and studied. Both of 

them have a common first recovery stage. The result obtained after this stage is shown in 

Figure 3.10 (c). According to the suggested reconstruction method, part of all unknown image 

pixels can be calculated at this stage by processing its neighbour pixel values if these are 

known. In this particular sampling case, the maximum count of the known pixels in close 

proximity (considering 2D 4-pixel connectivity case) can be 2. These pixels can be 

approximately calculated averaging its neighbour pixel values: 

, 1, , 1
ˆ 0.5( ),mn l m n m ne e e

 
for the left side estimates 

, 1, , 1
ˆ 0.5( ),mn r m n m ne e e

 
for the right side estimates 

(3.14) 

Where m = 1, 2, 3 …M, n = 1, 2, 3 …N. The matrix of the recovered image pixel values 

after the first reconstruction cycle is the following: 

11 12 13 15 16 17 19 1

22 23 24 26 27 28 2

33 34 35 37 38 39 3

1

41 42 44 45 46 48 49 4

1 2 4 5 8 9

ˆ ˆ ˆ ˆ0 0 ...

ˆ ˆ ˆ ˆ0 0 0 ...

ˆ ˆ ˆ ˆ0 0 0 ...
ˆ

ˆ ˆ ˆ ˆ0 0 ...

... ... ... ... ... ... ... ... ... ... ...

ˆ ˆ ˆ0 0 0 ...

N

N

N

r

N

M M M M M M MN

e e e e e e e e

e e e e e e e

e e e e e e e
I

e e e e e e e e
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 (3.15) 

At the next stages this process can be continued iteratively (finding unknown pixels, 

which have known neighbouring pixels and then calculating them). 
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Figure 3.10 Example of asymmetric DAQ compression/reconstruction: (a) the original image by size 

512×512 pixels; (b) sparse image after losing 80.27% of its pixels; (c) the image recovered at the first 

recovery stage; (d) image recovered by calculating unknown pixels from their neighbours and (e) 

recovered image obtained on the basis of SECOEX method. 

Evidently there are exceptions for the estimates of the first and last rows:   

1 , 1, 1

, , 1

ˆ

ˆ

n l n

Mn r M n

e e for theleft sideestimates

e e for theright sideestimates
 

(3.16

) 

At the last recovery stages the unknown pixels are calculated from the four estimated 

pixels: ).ˆˆˆˆ(25.0~
4637352636 eeeee  

The essence of the method is iteratively finding unknown pixels by averaging known 

values of the neighbouring pixels until all unknown pixels of the compressed image are 
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replaced by the estimated pixel values. All the pixel values are estimated in this way after a 

few cycles and the full image is recovered. The following MATLAB code is used for fast 

performance of the first iteration at the first image recovery stage: 

% X is compressed image before Recovery stage No.1 

tmp=X; % temporary variable 

for r=1:511; 

    X(r,:)=tmp(r,:)+(circshift(tmp(r,:),[0 1])+tmp(r+1,:))/2; 

end; 

for r=2:512; 

    X(r,:)=X(r,:)+(circshift(tmp(r,:),[0 -1])+tmp(r-1,:))/2; 

end; 

% Now X is result after Recovery stage No.1, iteration No.1 

 

The average relative error, obtained in this particular case at image reconstruction 

performed in accordance to the described method, is equal to 0.1648 %. This parameter shows 

how close the recovered pixel values are to the respective true image values. 

The second considered reconstruction method is based on application of SECOEX 

method. There exist also other options how to recover the compressed image and some other 

approximation algorithms are applicable. Application of this SECOEX method (it is well 

described in [22]) leads to the result shown in Figure 3.10 (e). In this particular case, the 

average relative error of image recovery is 0.3147 %, what actually is worse than the result 

obtained by the previous method. While this larger error can be explained by the 

particularities of the processed test image signals, image reconstruction based on the 

SECOEX method is much more complicated and more time consuming in comparison with 

the developed method.  

This considered example of asymmetric data acquisition draws attention to the 

capabilities of this imaging method, it is not given for comparison of various image 

reconstruction algorithms. The asymmetric 2D data acquisition/reconstruction has significant 

advantages for application cases where computational power is limited and transmitting of the 

acquired data is expensive in terms of spent time, memory and equipment resources. 

The discussed method for asymmetric 2D data acquisition/reconstruction so far has been 

considered as a tool for rational encoding and reconstruction of grey-scale images. The 

applicability of this method has been widened to cover also processing of colour images. 

Actually this widening of the functionality is straightforward and there are no serious 

problems in handling colour images on this basis. The illustration of the results obtained in 

this way are given in Appendix 7. 

An experimental system has been developed and made for studies of the described image 

compression method. The photo of this system is given in Appendix 7 Figure A7.6. The 
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device is developed on the basis of the modified digital video camera module Omnivision 

OV7620 supplied with the hardware and software of the video module CMUcam3. 

3.6 Wideband signal digitizing in enlarged dynamic range 

As it is shown in the previous section, usage of NU sampling provides various advantages 

in the data acquisition. Obtaining of these advantages mostly is tied to the possibility of 

representing wideband sensor signals digitally if the data acquisition is based on NU 

sampling. 

In many cases it is important to perform analog-digital conversions at high frequencies to 

support applications of digital electronics in various fields. However it is not so easy to 

achieve this capability, as it is shown in [34] in regard to the specific case of software-based 

radio. The frequency range, where the currently available 10 to 12 bit ADCs are applicable, 

often is not wide enough. On the other hand, the dynamic range of the ADCs, applicable for 

analog-digital conversions in GHz frequency range, is limited by the achievable quantization 

bit rate usually not exceeding 4 bits [26, 57]. These typical problems, arising at attempts to 

convert analog signals into their digital counterparts in a wide frequency range extending up 

to GHz frequencies, are studied and a specific approach to resolution of them is suggested in 

this Section. 

This approach is based on application of special Digital Alias-free Signal Processing 

techniques [22]. They are well suited for processing of signals digitally at much higher 

frequencies than it can be done on the basis of the classical Digital Signal Processing. 

Although it is easier to use them for estimation of wideband signal parameters, including their 

spectra, it has been shown that it is also possible to digitize wideband signals and reconstruct 

their waveforms [24, 50]. However the so far developed methods for signal waveform 

reconstruction do not cover real-time applications, because the method for waveform 

reconstruction discussed in [12, 13, 24], specifically, is based on the direct and inverse 

Discrete Fourier transforms. The problem is that it takes time to execute these transforms. In 

other words, it is difficult to reconstruct data obtained in result of NU sampling in real time. A 

possible approach to resolution of this problem is studied further. Various options in 

resolution of the task of wideband signal digitizing and their waveform real time 

reconstruction in sufficiently wide dynamic range are considered in this Section. 

3.6.1 Current trends in development of ADCs 

Evidently both operations of sampling and quantizing are of vital importance for 

analog/digital conversions of signals so that improvements obtained at performance either one 

of these operations impact positively the whole digitizing process. Indeed, quality of data 

acquisition from sensors strongly depends on such characteristics of the analog-to-digital 
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converters (ADCs) as the highest applicable sampling rate and the quantization bit rate. While 

the first of these parameters define the frequency range that can be covered by the respective 

DAC, the second parameter determines how large are the errors corrupting rounding-off of 

the sample values taken from the input signal at their sampling. These parameters are cross-

related. At a given perfection level of ADC manufacturing technology, the achievable highest 

quantization bit rate depends on anis limited by the needed highest sampling rate. 

Currently produced ADCs, capable of taking signal sample values at rates measured in 

Gsps, typically provides for 6 to 8 bit quantizing. For example, currently offered on the 

market ADCs MAX109 with 8-Bit resolution from MAXIM fall within this ADC category. In 

particular, input bandwidth and the highest sampling rate of 2.2 Gsps MAX109 provide for 

signal digitizing in a rather wide frequency range extending up to 1.1 GHz. There are also 

reported R&D results showing the feasibility of making low-power 4 bit 2.5 Gsps ADC [57] 

and covering even a wider signal frequency range by 4 bit ADCs [26].  

Thus there are ADCs that can operate in a wide frequency range. The problem is that their 

relatively narrow dynamic range limits the application area of these devices. Resolution 

provided by 4 to 8 bit quantizing in many cases is not sufficiently high. In addition, there are 

other disadvantages related to such low bit-rate ADCs, specifically, significant unpredictable 

errors due to spurious frequencies appearing in the spectra of the digital signals obtained in 

result of using this type of ADCs that are characterized by high power consumption. 

3.6.2 Waveform recovery by digital filtering 

To achieve the possibility of using 10 to 12 bit ADCs for wideband signal digitizing at 

frequencies exceeding the mean sampling rate, the pseudo-randomized version of this type of 

sampling is used. A typical realization of the used pseudo-randomized additive sampling 

point sequences is shown in Figure 3.11. 

Bandwidth of the signals x(t) is limited, the upper frequency fu of the signal spectrum does 

not exceed the frequency limit flim, inequality fu<flim is satisfied. NU sampling is carried out 

according to the model of pseudo-randomized additive sampling [22]. The basic parameters 

characterizing this additive pseudo-randomized sampling scheme is the period Tc  of the high 

frequency clock used for generation of the sampling point stream defining the sampling 

instants; the mean sampling rate 1/μ, where μ is the mean value of the sampling intervals 

equal to nTc, n=1, 2, 3,….Therefore 
cnT  and .

2

1
lim

cT
f  Problems met at reconstruction of 

the original signal waveforms, under the conditions that the upper frequency in the spectra of 

input signals might exceed the mean sampling rate but not the indicated frequency limit 

defined by the clock frequency, are studied and approaches to resolution of them are looked 

for.  
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Figure 3.11 illustrates filtering of signal sample value sequences obtained in result of 

pseudo-randomized sampling process under these conditions. A realization of an input signal 

sample value sequence xk is given in the upper part of this diagram. All of the sample values 

are placed on the time grid dictated by the used clock frequency. As can be seen, the intervals 

between these sample values are not constant, they are pseudo-random. Each of these sample 

values are multiplied by the respective filter coefficient and at each filtering cycle, at 

calculation of an output signal value at a given time instant. 

 

Figure 3.11 Conditions for filtering signal sample value sequences obtained in result of pseudo-

randomized additive sampling process. 

Note that the filter coefficients in fact are sample values of the filter impulse response. 

This function is step-by-step shifted at filtering and the step size is equal to the clock period. 

While the whole filter coefficient set is used for filtering, the number of them used at specific 

filtering cycles is reduced several times. It is shown that different coefficient sets are used for 

obtaining two output signal values. 

The information carried by the NU signal sample value sequences, obtained in cases 

where the signals have been sampled according to this type of sampling point processes, 



Doctoral Thesis  Kaspars Sudars 

58 

 

provides not only for elimination of the aliases but it could be also successfully used, under 

certain conditions, for obtaining accurate spectral estimates and recovered waveforms of a 

wide class of signals. That has been confirmed experimentally [22, 24]. As it has been 

demonstrated by using the iterative approach to signal processing based on direct and inverse 

DFT, not applicable for analog-digital conversions in real-time, a different approach to this 

task has to be found. Using iterative special digital filtering for that was considered. 

Consider using a low-pass digital filter for reconstruction of a signal from the sample 

values of it obtained in result of the described pseudo-randomized sampling. The calculation 

of the filter coefficients is based on a sampling model, according to which the signal is 

sampled periodically at the clock frequency. Relatively many signal samples are pseudo-

randomly taken out as shown in Figure 3.11. The remaining sample values then are to be 

filtered. They are placed on the time axis nonuniformly according to the additive sampling 

point process discussed. Filtering is iterative. Structure of the electronic system, used for 

reconstruction of a signal waveform from the sample values, obtained in result of the 

described pseudo-randomized sampling, is shown in Figure 3.12. 

 

Figure 3.12 Structure of the electronic systems used for iterative reconstruction of signal waveforms, 

when signal is sampled according to NU sampling Driver. 

Digitizing of the input signals is performed by using a 12 bit ADC. At the first stage of it 

the missing signal sample values are replaced by some values predicted in various ways. The 

results are given in Figure 3.13, where the empty places are filled either by zeroes (version1), 

by adding to each given sample values copies of it, placed on both sides of the known values 

(version 2) or by averaging each pair of the given sample values and using the result for 

filling the empty places, remaining after applying the procedure 2 (version 3). The outputs of 

this iterative filtering process are used, at all filtering stages, only for filling the empty places 

with sample values recovered with iteratively improved precision. 

Examples of the obtained results are given in Figure 3.13. While signal waveforms are 

reconstructed in this way, the precision obtainable at sufficiently low mean sampling 

frequencies is not acceptable. The basic reason why waveform reconstruction with high 

enough precision was not achieved is related to behavior of the involved iterative filtering 
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process. It does not tend to the zero error value. Some systematic error remains. It varies 

under variable sampling conditions but, in general, this error is too large.  

 

Figure 3.13 Reduction of signal waveform reconstruction errors by iterative filtering. 

To achieve improved results, the option of using both high bit rate ADC and high 

sampling rate ADC in parallel was considered. The results obtained then indeed are much 

better. Discussion of this approach follows. 

3.6.3 Combining precise sampling with low-bit very fast sampling in parallel 

Improving previous signal sampling/reconstruction scheme shown in Figure 3.12 the 

sampling operation can be organized in a different way adding to the precise ADC another 

one, which has to be very fast (therefore with relatively low-bit resolution according to the 

current development trends of ADCs). This is illustrated in Figure 3.14. Now the empty 

places of discrete signal are not necessary to predict and it is suggested to these unknown 

signal samples measure with fast low-bit resolution ADC. 

 

Figure 3.14 Structure of the electronic systems used for iterative reconstruction of signal waveforms, 

when signal is sampled using two ACDs in parallel. 

Suppose the iterative filtering procedure is repeated when results of 4 bit fast periodic 

sampling are used for filling the spaces remaining empty after the precise signal sample 
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values have been taken at time instants according to the described additive random sampling. 

Then the conditions for waveform reconstruction are more favourable and the obtained results 

also are significantly improved. They are displayed in Figure 3.15. As can be seen, only a few 

iterations have to be made to get the results, obtainable under the given conditions. While 

these results are relatively good, the waveform reconstruction error is not suppressed to a 

level that would be achievable if the same signal would be digitized by a hypothetical 12 bit 

ADC that would be capable of taking signal sample values at the clock frequency. To improve 

the waveform reconstruction, using of yet another one of the randomized procedures, namely, 

randomized quantizing is suggested. 

 

Figure 3.15 Results of waveform reconstruction when precise undersampling and low-bit fast periodic 

sampling procedures are used in parallel. 

 

Figure 3.16 Waveform reconstruction precision improvement due to pseudo-random quantizing of the 

4 bit signal sample value sequences. 

Introduction of pseudo-randomized quantizing of the sample values (the pseudo-

randomized signal quantizing is described in the next Chapter), obtained in result of 
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considered fast 4 bit periodic sampling, is considered. That is aimed to increase the achievable 

waveform reconstruction quality even more. 

The obtained results are shown in Figure 3.16. 

The precision improvement, achieved in this way, is evident. While it seems to be 

relatively small, the actual quality improvement of the waveforms reconstructed in this way is 

more significant, as introduction of randomized filtering eliminates also the spurious 

frequencies in the spectra of the reconstructed signals usually distorting the spectra of 4 bit 

digital signals. 

3.7 Conclusions 

There are a number of advantages achievable at data acquisition using NU sampling. 

They are essential for various practical applications of data acquisition, especially at high 

frequencies. However there are also problems that have to be resolved. They are related to the 

specifics of digital data obtained in result of NU sampling. It is computationally burdensome 

to cope with the data nonuniformities and recalculate data as if they would have been 

obtained in result periodic sampling. Specifically, cross-interference between signal discrete 

components occurs whenever NU sampling is used. It is shown that this type of problems 

could be resolved and the knowledge accumulated in the area of DASP is useful for that.  

Specific methods for wideband signal digitization in enlarged dynamic range is 

considered, where all signal samples are nonuniformly sampled and can be placed on periodic 

grid. Sampling is based on the combination of one precise ADC with another very fast ADC 

working in parallel. This is useful approach for precision improvement of wideband digital 

signals. The approach involves iterative Low-pass digital signal filtering, what provides 

computing efficiency in comparison with usage of methods based on direct and inverse DFTs. 

The obtained research results of data reconstruction carried out in the case of data acquisition 

using the procedure of NU sampling confirm the feasibility of real-time waveform 

reconstruction based on iterative filtering. 

A number of benefits achievable for DAQ by using the concept of NU sampling are 

described to show the application potential of DASP methods for data acquisition. Considered 

approaches are beneficial especially for: 

 DAQ based on pseudo-randomized multiplexing; 

 Asymmetric data compression/reconstruction; 

 Data acquisition from objects under tests; 

 Improving fault tolerance of data acquisition. 

NU sampling has high potential in the field of 2D data acquisition or image data 

acquisition. To show this, the example of asymmetric image data compression/reconstruction 
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was considered. The standard test image has been taken and compressed taking out 80 % of 

its pixels according to the asymmetric DAQ concept. After that it was successfully 

reconstructed with 0.1648 % of average relative error. Thus it has been shown that application 

of NU sampling makes it possible to perform very simple image data compression. The 

achieved compression rate, in the case of the considered example, is equal to 5. It is shown 

that the developed method and algorithm can be used also for 2D data acquisition for colour 

image data compression and reconstruction with the same compression rate of 5. 
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4. Methods for Data Acquisition Exploiting Advantages of 

Pseudo-randomized Quantizing 

Rational data acquisition to a large extent depends on signal digitizing and the method 

used for quantizing the sampled signal sample values directly impact performance of the used 

digitizers. Three basic quantizing models, specifically, deterministic, randomized and pseudo-

randomized quantizing, are considered in this Chapter in the context of DAQ with the focus 

on the third method. DAQ based on pseudo-randomized quantizing has been investigated and 

it has been found that this method suits well the specific conditions for DAQ. On the other 

hand, while advantages of pseudo-randomized quantizing are significant, at first glance it 

seems that electronic implementation of this approach to quantizing is much more 

complicated than in the cases of deterministic and randomized quantizing. That probably is 

the reason why pseudo-randomized quantizing is seldom used. In search for effective data 

acquisition procedures, an approach to complexity-reduced DAQ based on this type of 

quantizing has been developed and investigated. The obtained results are described and 

discussed. It is shown that the design complications due to such quantizing, if it is 

implemented in a right way, actually are much less significant than might be expected. Impact 

of signal quantizing on DAQ resolution and DFT coefficient estimation precision is 

considered and the potential of pseudo-randomized quantizing for resolution improvement is 

shown. 

Specifics of DAQ based on pseudo-randomized quantizing are considered in more detail 

in the particular case of bioimpedance measurement data acquisition and pre-processing. 

4.1 Impact of signal quantizing on efficiency of data acquisition 

4.1.1 Deterministic, randomized and pseudo-randomized quantizing 

As it is described in [23], signal quantizing could be reduced to one of three quantizing 

methods. These methods are: deterministic quantizing DQ, randomized quantizing RQ (also 

known as dithering) and pseudo-randomized quantizing PRQ. No doubt that currently the 

method for deterministic signal quantizing is the most popular and the most used method in 

the world. Nevertheless there are also other quantizing methods and they have their particular 

advantages over the deterministic quantizing. 

Suppose a continuous in time signal x(t) is sampled at time instants tk, k=1, 2, 3, … and 

the obtained sequence of sample values x(tk) = xk are quantized according to one of the 
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considered above models. Let us denote the quantized signal values by kx̂ . Then in the case of 

deterministic quantizing, we can write: 

ˆ
k kx n q , (4.1) 

 where nk is the number of threshold levels below the respective signal value xk and q is 

quantization step. 

The quantized signal value, obtained at randomized quantizing, is defined by the same 

expression: 

ˆ
k kx n q , (4.2) 

However there is significant difference between both cases of quantizing. While only the 

respective analog signal x(t) is quantized in the case of traditional deterministic quantizing, in 

the case of the pseudo-randomized quantizing an auxiliary random noise )(t  is generated in 

the range [-0.5q,+0.5q] and is added to the signal x(t) before the quantization procedure. 

Therefore at randomized quantizing actually a mixture x(t)+ )(t then is being quantized and 

the properties of the quantization noise to a large extent depend on )(t . 

The quantized signal value, obtained at pseudo-randomized quantizing, is defined as: 

1
ˆ ( )

2
k k kx q n q , (4.3) 

where ξk is the value of the pseudo-random noise in interval [0 1] used at t = tk for 

pseudo-randomizing of the quantizing operation.  

For better understanding signal waveforms of the deterministic quantizing and the 

pseudo-randomized quantizing are shown in Figure 4.1. 

 

Figure 4.1 Waveforms of a signal (blue curve) quantized according to rough 4-bit deterministic 

quantizing (green line) and rough pseudo-randomly quantizing (red line). 
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It is shown in [23] that RQ and PRQ quantizing methods could be implemented on the 

bases of deterministic quantizing using ordinary analog-to-digital converters. In the case of 

randomized sampling the random values in the interval [-0.5q,+0.5q] should be added to 

continuous signal x(t) at the start of the conversion. Little more complicated it is in case of 

pseudo randomized quantizing. Implementing PRQ the added random values should be a 

priori known and later used for correction estimation simply concatenating additional bits to 

the output of analog-to-digital converter. This quantizing method makes sense only in cases of 

relatively rough ADCs usage. 

 

Figure 4.2 Empirical distributions of quantizing errors are shown in the cases of (a) deterministic 

quantizing, (b) randomized quantizing and (c) pseudo-randomized quantizing. 

Typical empirical distributions of quantizing errors are shown in Figure 4.2. These 

distributions are obtained at quantizing a single component of a signal according to the 

considered DQ, RQ and PRQ methods. As it can be seen, errors in the case of randomized 

quantizing fall into diapason [-q, +q]. As it is twice larger than the error distribution intervals 

for DQ and PRQ, it could seem that randomized quantizing is the worst method of all. 

However that is not true. First, the probability of larger errors is small. Second, it is very easy 

to implement this quantizing method it has its applicability in enhancement of signal 

resolution, in particular, it effectively eliminates spurious frequencies. 

As can be seen from these spectrograms, spurious frequencies, present in the noise of 

deterministic quantizing, are taken out by randomization of quantizing and the less powerful 

noise is obtained in the case of pseudo-randomized quantizing. While the specific properties 

of all these quantization models have been studied and are known for a long time (for 

example see [23]), the application value of randomized quantizing is still underestimated. 

That can be explained by the fact that application of multi-bit ADC strongly prevails and 

randomized quantizing is significantly better than deterministic in the cases of rough 

quantizing. 
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Figure 4.3 Typical spectrograms of the quantization noise obtained by quantizing the same signal in 

the cases of: (a) deterministic, (b) randomized and (c) pseudo-randomized quantizing. 

 

Figure 4.4 Typical spectrograms of quantized sine-wave function according to (a) deterministic 

quantizing DQ, (b) random quantizing RQ and (c) pseudo-randomized quantizing PRQ. 

Typical spectrograms of rough 4 bit quantizing are illustrated in Figure 4.4. The single 

sine wave function is quantized according to DQ, RQ and PRQ methods to show the 

difference between them. As it can be seen the RQ and PRQ spectrograms does not contain 

spurious frequencies in comparison with deterministic quantizing. The difference between 

randomized and pseudo-randomized quantizing has smaller dynamic range which appears as 

higher background noise at spectrograms. 



Doctoral Thesis  Kaspars Sudars 

67 

 

4.1.2 Method for elimination of spurious frequencies 

It is well known that spurious frequencies distort spectra of digital signals obtained by 

using the traditional simple method for fixed-threshold deterministic quantizing. Then, to 

suppress the errors due to these spurious frequencies, either quantizing bit rate has to be 

increased or the quantization operation has to be randomized by using so-called dithering. The 

first option obviously leads to increased computational burden and additional power 

consumption. Therefore the second option seems to be and actually is better. Quantizing with 

dither, or randomized quantizing, indeed helps to remove the spurious frequencies. To 

implement this method, a random noise (dither) is generated and added to the analog signal at 

the input of ADC. That is usually done to eliminate spurious frequencies in the spectra of the 

signals quantized according to this method. And, indeed, the desired positive effect is 

achieved in this simple way. Although the quantization error is increased in this case from 

±1/2 LSB (Least Significant Bit) ±1 LSB, the dynamic properties of the quantization noise are 

improved substantially. As dithering eliminates the spurious frequencies, the bit-rate of such 

quantizing could be to some extent reduced. In other words, quantizing with dither helps to 

reduce the number of bits in the numeric sample values. That slightly reduces the bit flow that 

has to be further processed and the power consumption is reduced accordingly. 

 More effective in this sense is so-called subtractive dithering. It is a more complicated 

method for pseudo-randomized quantizing that outperforms quantizing with dither as it 

provides for significant improvement of statistical characteristics of the quantization noise. In 

particular, it provides for unbiased estimation of signal parameters and for effective 

decorrelation of the quantization noise from the input signal. This noise is always white even 

at rough small bit-rate quantizing [22, 23]. However the price for this advantage is the 

increased number of bits (ξk-1/2)q that has to be processed. 

This type of quantizing usually is performed as shown in Figure 4.5 (a). A pseudo-

random noise is generated, added to the input of ADC and then subtracted from its output. 

The quantized signal sample values in this case are given in expression (4.3). Errors of signal 

sample value quantizing in this case do not exceed ± q or, in other words, ± 1/2 LSB. 

Consider definition (4.3) of the quantized sample values. The first part of it reflects the 

pseudo-random noise used and the second part gives results of quantizing. Both parts 

contribute to the number of bits that has to be processed. 
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Figure 4.5 Illustration of two approaches to composition of system architectures in the case of systems 

performing functions of data acquisition and pre-processing. (a)  structure of the system in the case 

where subtractive dithering is used in the traditional way; (b) structure of the system built as suggested. 

 

Figure 4.6 Spectrogram of a signal calculated partly for the signal quantized classically (lower 

frequencies) and partly for the signal quantized according to the pseudo-randomized quantization 

method. 

It is suggested how to avoid processing of the increased number of bits (ξk-1/2)q and how 

to improve the energy efficiency of designs based on this method of quantizing. Suppose that 

such a quantizer is included into a subsystem performing some linear transformations of the 

input signal, for example, this system fulfils the task of spectrum analysis. It is suggested to 

generate and add the generated pseudo-random noise {ξk} to the input of ADC, as it is usually 

done at quantizing with dither, but not to subtract it from the output of the respective ADC. 

Then there are no additional bits that have to be processed. The signal with the dither added is 

quantized and only the bits nkq of the second part of (4.3) are processed as shown in Figure 
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4.5(b). The first part of (4.3), obviously, does not depend on the input signal and can be pre-

processed and the obtained results then can be used as corrections of the spectral estimates 

obtained without taking values (ξk-1/2)q into account. 

The spectrogram given in Figure 4.6 has been calculated under conditions typical for the 

classical deterministic quantizing (part of the spectrogram in the lower frequency region) and 

for quantizing performed according to the method for pseudo-randomized quantizing (second 

part of the spectrogram). As can be seen, the used subtractive dithering leads to significant 

reduction of the spurious frequencies. The point is that in this case this positive effect has 

been achieved as suggested by processing a 9 bit digital signal without increasing the bit rate 

for additional 5 bits as it would be if the subtracting dithering would be applied in the usual 

way. To achieve the same spurious frequency reduction level on the basis of the classical 

quantizing, 12 bit digital signal would have to be processed. 

This method can be used in many cases for improving energy efficiency of systems in 

addition to other undertakings targeting achievement of the same goal. Implementation of it is 

simple enough and costs little.  

4.2 Improving resolution of data acquisition 

4.2.1 Improving ADC resolution 

To increase ADC resolution, oversampling with filtering off the quantization noise in a 

large part of the covered frequency range can be used. This is a well-known technique that 

still draws attention and is suggested for applications [28]. As it is shown in this article, the 

quantization noise energy is distributed over the frequency range spreading from DC to half 

of the sampling frequency fs. Increasing of the sampling rate (oversampling) makes it possible 

to reduce proportionally the quantization noise level within a fixed length frequency interval. 

Such oversampling and filtering increases the Signal-to-Noise Ratio (SNR) and an additional 

bit of resolution is obtained if the input signal is oversampled by a factor of four. 

While this approach to improving resolution of ADC certainly works, in many cases 

application of it simply does not make sense. Indeed, why to use 8 bit ADC (for example, 

MAX109) for sampling a signal at 2.2 Gsps and then narrow the signal bandwidth 16 times 

from 1.1 GHz down to 68.75 MHz to reach 10 bit resolution if there are less expensive ADCs 

capable of covering this frequency range at even better resolution and much lower power 

consumption? Nevertheless the basic reasoning behind this approach to resolution 

improvement is sound and it, if modified, could be used under certain conditions for 

achieving DAC performance improvement without oversampling.  

An essential problem complicating signal processing in the mentioned frequency range is 

aliasing. Signals with components at frequencies measured in hundreds of MHz have to be 
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sampled at a very high sampling frequency fs. Suppose that frequency downconverting for 

some reasons is not applicable. Then using of oversampling and narrowing the frequency 

range of the sampled signal by low-pass filtering to increase the resolution, under the given 

conditions, is not possible. The input signal under the stated conditions must be sampled at 

the frequency fs. However the frequency interval occupied by separate input signal 

frequencies can be subdivided into a number of smaller intervals. Various approaches to 

resolution of this task might be used. For example, a bank of narrow-band filters could be 

used for that. Then a large part of the quantization noise energy is filtered off by each of the 

used filters and the filter output signals are obtained and processed with increased resolution. 

The effect of improving SNR, usually targeted by using oversampling and low-pass filtering, 

then is achieved in this way.  

The disadvantage of this approach evidently is in the necessity of using some quantity of 

filters for processing the ADC output signal in real-time. However, in the case of 

bioimpedance data acquisition and demodulation, using of these filters is not necessary. The 

same resolution improvement effect then can be achieved simply by performing Discrete 

Fourier Transform at a relatively small number of excitation frequencies. The bandwidth Δf 

covered by each of these filters, at a given sampling frequency fs, is inversely proportional to 

the number N of the signal sample values processed. Indeed, we can write 

that
N

f

tNT
f s11 , where Δt is sampling interval. Therefore the quantization noise energy, 

remaining in the frequency range of a signal component in this DFT case, is reduced N times 

as N
f

f s . In other words, the same number of additional bits of resolution, that can be 

gained by oversampling M times, can be obtained by processing N=M sample values at DFT. 

And the desirable effect of increasing the resolution or decreasing the Fourier coefficient 

estimation errors in this case is achieved in a much simpler way.  

However that is true only in the case where the quantization noise is white, does not 

depend on the input signal and is distributed uniformly in the range [-0.5q,+0.5q], where q is 

quantization step. Only multi-bit quantizing, carried out according to various quantizing 

models, more or less satisfy these requirements. Quantization noise of rough 4 or 6 bit 

deterministic and randomized quantizing, in general, does not meet them [23]. Consequently, 

gaining of additional bit resolution at DFT can be expected only in the case where quantizing 

is performed according to the pseudo-randomized quantizing model. The quantization noise 

characteristics then do not depend on the input signal even in the cases of extremely rough 

fast ADCs. 

To widen the application area of these fast ADC, resolution of them has to be improved. 

In other words, the errors of signal sample value rounding-off or quantizing have to be 
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somehow reduced.  However the conventional deterministic quantizing, used in the cases of 

all of the referred to types of ADC, has significant drawbacks so that this method, in 

comparison with randomized and pseudo-randomised quantizing, is the less efficient one [23]. 

4.2.2 Precision of DFT estimates in DQ, RQ and PRQ cases 

Discrete Fourier Transform or DFT also has significant role in bioimpedance signal 

demodulation. For multi-channel data acquisition the transform should be performed on 

several frequencies. Therefore in this section the impact of signal quantizing on DFT 

coefficient estimation precision is considered. The errors of DFT estimations are compared in 

the cases where signals are quantized deterministically, randomly and pseudo randomly. 

Obtained results are shown in Figure 4.7 where signal consists of single component. 

 

Figure 4.7 Empirical distributions of (a, b, c) DFT coefficient a estimates, (d, e, f) DFT coefficient b 

estimates, (g, h, i) DFT amplitude estimates and (j, k, l) DFT phase estimates are shown in cases where 

signal is quantized (a, d, g, j) deterministic quantizing DQ, (b, e, h, k) random quantizing RQ and (c, f, 

i, l) pseudo-randomized quantizing PRQ. 

Histograms in Figure 4.7 are obtained under conditions where 512 points of signal are 

processed; the signal is quantized in full magnitude range with 4 bit rough ADC (but different 

quantizing method); the signal consists of one component with amplitude 1 and phase 1.0695 

radians (which was arbitrary taken) on frequency 0.17 of sampling frequency. 
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Comparing all quantizing cases in Figure 4.7 is clearly shown that deterministic 

quantizing is the most accurate, but it has bias error which does not appear in cases of random 

and pseudo-random quantizing. The important fact what should be taken into account is that 

in cases of random and pseudo random quantizing the quantizing noise is very close to white. 

It means the signal dynamic range could be easily enlarged with low-pass filtering. 

4.2.3 PRQ using reduced frequency additive pseudo-random values 

Pseudo randomized quantizing usually is carried out so that a specific additive pseudo-

random value is added to the input signal at quantizing each sample value. When the sample 

values to be quantized are obtained at a very high rate, there might be serious problems to 

generation the needed pseudo-random values as they have to be converted by a 

Digital/Analog Converter into analog form so that they could be added to the signal. The 

possibility of keeping these pseudo-random values constant for a number of quantization 

cycles is considered. Of course, it can cause some distortions and might reduce the quality of 

pseudo randomized quantizing. Nevertheless it could be allowed under specific conditions, 

which are evaluated in this section. 

Empirical distributions of quantizing errors are shown in Figure 4.8. As it can be seen, the 

quantizing error distribution does not noticeably change from keeping the random increments 

fixed for 16 clock periods before taking the next random value. Illustrated is the case where 4 

bits pseudo randomized quantizing is considered with 4 bit random values sequence added to 

the continuous signal x(t) (it could be written 4+4 bits PRQ quantizing). It means that values 

of the pseudo-random noise are changing at 16 times slower rate than the sampling rate used 

by the respective analog-to-digital converter. The distribution of the quantizing errors remains 

the same. 

 

Figure 4.8 Empirical distributions of pseudo-randomized quantizing errors in cases where (a) ordinary 

PRQ is used and (b) modified PRQ is used. 

Of course, the modified pseudo randomized quantizing with changed random increment 

affects the quality of further processing, because quantizing errors instead of pure white noise, 

which should be uniformly distributed over signal spectrum, becomes band limited. Also the 

necessary statistical properties of added random noise might be difficult to ensure. 
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Nevertheless in some cases incrementing of randomness is feasible and the processing quality 

of PRQ quantized signals does not suffer very much. The considered example of PRQ 

quantizing impact on processing quality is DFT coefficients estimation. Their error empirical 

distributions are shown in the next Figure. 

 

Figure 4.9 Comparison of DFT estimation error empirical distributions in the cases where (a, c, e) the 

random values is changed at every sampling event and (b, d, f) it is kept constant for 16 sampling 

intervals. 

As it can be seen from Figure 4.9 diminishing of random values variability affects the 

DFT coefficients estimation precision. The histograms, which represent empirical 

distributions of DFT coefficient estimation errors, in the case of larger random increment are 

more inaccurate and their shapes become more blurred. 

At first sight it is suggested to do not take random increment larger than 16, but it is case 

dependant and the detailed studies of the issue are necessary, including spectral analysis of 

DFT coefficients estimation errors etc. The spectral analysis would help to control appearance 

and expected energy of spurious frequencies etc. Also the number of processed signal samples 

is significant factor, which affects the choice of random increment value. 

4.3 Particular case of bioimpedance data acquisition and processing 

Using the DASP technology [22] for acquisition of data in a wide frequency range under 

the conditions typical for bioimpedance measurements has been already suggested and 

considered in [51]. As it is explained there, bioimpedance measurements are carried out to 

observe reaction of a biological object to some excitation current in a more or less wide 

frequency range [52]. Data for these measurements are acquired by digitizing signals picked 
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up from electrodes placed on the object at various locations. The bioimpedance measurements 

are based on processing the data acquired from a number of such signal sources. 

a) 

 

b)  

 

Figure 4.10 Typical signal in the data acquisition case of bioimpedance signal demodulation: (a) signal 

in the full scale and (b) zoomed signal. 

The multitude of the picked up signals reflect the response of the object to the excitation 

process applied to the object being examined. The measurements have to be made in a way 

providing information characterizing this response in time and frequency domains. While 

parameters of the excitation current might vary from a case to case, typically it contains 

components at a number of frequencies. Consequently the bioimpedance measurements in 

many cases could be reduced to estimation of the signal spectra on specific pre-determined 

frequencies. The task of this spectrum analysis is made more difficult by the fact that the 

biological objects are dynamic. It means that the characteristics of these objects do change in 

time, the signals are modulated by these changes and that actually biomodulation of tissue 

impedance has to be analyzed in real time. In addition, the frequency range of interest is wide. 

While effective methods and techniques for bioimpedance measurements at frequencies up to 

several MHz have been developed and are used, there are problems when the spectrum 
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analysis of the modulated bioimpedance signals has to be performed in the frequency range 

up to several hundreds of MHz or even up to several GHz. The involved data acquisition and 

processing tasks then become rather challenging. In particular, data have to be processed in 

real-time and with sufficiently high resolution. 

Exploiting of DASP methods and techniques were considered in [51] for performing 

bioimpedance data acquisition and their real-time spectrum analysis with the emphasis on NU 

sampling. It is shown there how to reduce the required sampling rate and how to avoid cross-

interference induced errors at bioimpedance signal demodulation and spectrum analysis in a 

wide frequency range. While the required performance improvement could be achieved in this 

way, the electronic systems implementing this approach are not so simple. 

4.3.1 Processing of bioimpedance signals on the basis of complexity reduced DFT 

As can be seen from (4.3), the pseudo-randomly quantized signal values contain 

significantly increased number of bits in comparison with deterministically or randomly 

quantized signals as the value of the pseudo-random noise ξk , used at quantizing, is added 

[22, 23]. Directly processing of the quantized signal (4.3) clearly leads to a complicated 

processing procedure. Fortunately, it is possible to avoid these complications. Suppose 

bioimpedance signal demodulation is based on DFT, on estimation of the Fourier coefficients. 

It is suggested to do that on the basis of the following equations: 
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The point is that these corrections, taking into account impact of the specific sequence of 

the pseudo-random numbers used at quantizing, do not depend on the input signal. Therefore 

if a specific sequence of pseudo-random numbers is used at such quantizing repeatedly, these 

corrections remain constant, can be pre-calculated for all excitation frequencies and then they 

could be used according to equations (4.4). It means that the DFT complexity in the case of 

pseudo-randomized quantizing will be practically the same as in the cases of deterministic 

and randomized quantizing. Equal quantity of bits will have to be processed in all these cases. 
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Using the pseudo-randomized quantizing scheme would simply require taking into account 

these pre-calculated corrections at the Fourier coefficient estimation. 

Comparison of the considered various approaches to quantizing from various points of 

view leads to the conclusion that pseudo-randomized quantizing often is preferable if the 

involved ADC is a low-bit device and quantizing is rough. In the case of the considered 

bioimpedance measurement application, using of fast low-bit ADCs exploiting pseudo-

randomized quantizing could be especially attractive. Then there is marginal freedom in 

selection of the excitation frequencies and that makes it easier to gain from replacement of the 

sin, cos functions at DFT by rectangular functions assuming only the values ±1. Then the 

complexity of Fourier coefficient estimation can be significantly reduced. These estimates 

then can be obtained on the basis of the following equations which are modifications of (4.4) 

and (4.5): 
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Where A is a coefficient taking into account the specifics of the approach. The needed 

corrections in this the case are calculated as  
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The advantage of this approach to estimation of the Fourier coefficients is evident. Data 

can be processed in this case in a very simple and fast way. However the applicability of this 

approach is conditional. It can be used for estimations of the Fourier coefficients at frequency 

fi only if the signal kx̂ does not contain components at frequencies (3, 5, 7,…) fi. The required 

conditions usually can be provided for in the specific cases of acquiring and processing of 

data characterizing an object being tested by applying a specially generated test signal. If the 

object is linear and the indicated frequencies can be excluded from the test signal then the 

design complexity of the involved electronic system can be significantly reduced by using this 

approach. 

4.3.2 Obtained results of the suggested method 

Diagrams given in Figure 4.11 illustrate the precision obtainable at using the suggested 

methods for bioimpedance data acquisition and demodulation of the bioimpedance signals. 
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Figure 4.11 Estimates of the demodulated signal obtained by using deterministic quantizing (1) and 

pseudo-randomized quantizing (2). Averaged estimates based on the complexity-reduced approach 

using sign(sin) and sign(cos) functions are given as curve (3). 

Note that the amplitude of the demodulated signal shown in Figure 4.11 is only 1% of a 

single carrier amplitude which is 1. There are 3 excitation frequencies with total magnitude 3. 

As can be seen, the estimates based on pseudo-randomised quantizing are significantly more 

precise than in the case of deterministic quantizing. Both types of the estimates have been 

obtained under equal other conditions.  

Results obtained according to the suggested method (DFT in rectangular function basis) 

are achieved under easier conditions where demodulated signal values are taken with 10 times 

larger frequency in comparison with both other approaches. Also the additional filtering with 

33 tap moving average filter is performed at the end of demodulation. 

Results of comparing traditional DFT and DFT based on rectangular functions are shown 

in Figure 4.12. The quantizing is organized according to deterministic or pseudo random 

quantizing. These diagrams are obtained where test signal consists of one component on 

frequency 0.17 from the sampling frequency. At MATLAB simulations, 2000 signal samples 

were processed for calculation of each DFT estimate. 
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Figure 4.12 Comparison of traditional DFT and DFT based on rectangular functions in the case where 

a single harmonic is used at simulations as a signal. Histograms of estimation errors are shown in the 

cases where (a, d, g, j) deterministic quantizing is used, (b, c, e, f, h, i, k, l) the equivalent pseudo-

randomized quantizing is used and (b, e, h, k) DFT based on rectangular functions is used, (a, c, d, f, g, 

i, j, l) traditional DFT is used. 

As can be seen from Figure 4.12, in case of deterministic quantizing the DFT coefficients 

are estimated the most accurate, but due to its bias error, DQ does not provide sufficient 

precision. The best results provide traditional DFT together with pseudo randomized 

quantizing if phase histograms are not taken into account. 

Histograms shown in Figure 4.13 are obtained under the same conditions as in the Figure 

14 only in this case the test signal consists of two components on frequencies 0.17 and 0.225 

from sampling frequency. Now the bias error, typical for deterministic quantizing, could not 

be clearly seen. 

The accuracy of DFT estimates based on rectangular functions certainly is lower. The 

simple calculations reveal that in the case of bioimpedance signal demodulation where the 

signal carrier has amplitude 1 and the demodulated signal amplitude is 1% of it, particular 

relative errors of the demodulated signal amplitude could be 200% (see Figure 4.13 (h)). That 

of course is not acceptable. Therefore this approach to DFT based on using rectangular 

functions is not applicable for bioimpedance signal demodulation without additional signal 

processing carried out for improving this accuracy. 
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Figure 4.13 Comparison results of traditional DFT and DFT based on rectangular functions in the case 

where two harmonics are used at simulations as a signal.  Histograms of estimation errors are shown in 

the cases where (a, d, g, j) deterministic quantizing is used, (b, c, e, f, h, i, k, l) the equivalent pseudo-

randomized quantizing is used and (b, e, h, k) DFT based on rectangular functions is used, (a, c, d, f, g, 

i, j, l) traditional DFT is used. 

4.3.3 Demodulated signal resolution improvement by filtering 

After bioimpedance signal demodulation, the extra precision of processing could be 

obtained with ordinary digital filtering. For this purpose application of the moving average 

filter MAF is considered. If it is needed such filtering could be used iteratively. Also it is 

expected that using of other filter types, like low-pass filters LPF, would provide good results. 

As with all signal resolution improvement methods, which are based on filtering, 

obtaining of enlarged number of signal sample values helps. The processed point count 

directly puts the limit on the achievable signal resolution improvements. 

Figures in Table 4.1 illustrate comparison of signal quantization errors with and without 

filtering. As can be seen, the filtering in general reduces quantizing errors, no matter whether 

it is MAF or LPF filtering. Comparison of both filter applications, based on these results, is 

conditional. Moving average filtering efficiency depends on filter length, but not only. Results 

in Table 1 were obtained for LPF having cut-off frequency 0.15 of signal sampling frequency 

and the test signal bandwidth upper frequency does not exceed filter cut-off frequency. 

Finding optimal filter parameters was not attempted. 
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Table 4.1 Typical relative quantizing error readings.* 

  Moving average filter MAF length 3 5 7 9 

1 

Deterministic 4 bit quantizing (without 

filtering) 0.1010 0.1010  0.1010 0.1010 

2 

Deterministic 12 bit quantizing (without 

filtering) 0.00037 0.00037 0.00037 0.00037 

3 

4+4 bit PRQ quantizing (without 

filtering) 0.0994 0.0993 0.1005 0.1004 

4  4+4 bit PRQ quantizing, LPF 0.0431 0.0403 0.0426 0.0406 

5 Deterministic 4 bit quantizing, LPF 0.0642  0.0642 0.0642 0.0642 

6 4+4 bit PRQ quantizing, MAF 0.0399 0.0294 0.0274 0.0271 

* The errors are statistical values and are not constants as it is given in table, because they are signal 

dependent. 

 

Figure 4.14 Demodulated signals are shown where the green background is the theoretical signal 

associated with the perfect demodulation, the blue discrete values are obtained in case of deterministic 

8 bit quantizing and the red discrete values are obtained in case of 8+4 bit PRQ quantizing. 

A fragment of DFT amplitude estimations is shown in Figure 4.14 as it is in 

bioimpedance signal demodulation. The modulated signal has 3 carriers on frequencies 0.13, 

0.2, 0.33 of the sampling frequency 2.175 GHz with total amplitude 3.  The demodulated 

signal does not exceed 1% of single carrier amplitude 1 and has upper frequency 4 KHz. The 

indicated results were obtained without additional demodulated signal filtering. 

As it can be seen from Figure 4.14, PRQ quantizing provides better demodulated signal 

precision than the traditional deterministic quantizing. 
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Figure 4.15 Demodulated signal is shown after filtering in comparison with theoretically perfect 

demodulation. The modulated signal is quantized according to PRQ method and moving average filter 

with length 3 is used. 

Results in Figure 4.15 were obtained under the same condition as in Figure 4.14 with the 

difference that the demodulated signal is additionally filtered with 3 tap moving average filter. 

After this procedure the demodulation signal precision is achieved less than 2%. As it was 

shown, the demodulation signal quality could be improved with additional digital signal 

filtering. 

4.3.4 Demodulation quality dependence on processed point count 

The number of processed signal sample values plays an important role at bioimpedance 

signal demodulation based on DFT coefficient estimation. This issue is considered in this 

section. 

Each point in Figure 4.16 was calculated by averaging 16 DFT estimates. Results are 

obtained after procedures: (a) carrier signal quantizing, (b) carrier demodulation and (c) 

demodulated signal filtering with moving averaging filters with core length 3.  

Results illustrated in Figure 4.16 were obtained under the following MATLAB simulation 

parameters: sampling frequency Fs is 2.175 GHz; carrier signal frequencies are 290, 435, 725 

MHz and 1.015GHz with amplitude 1 (for each carrier) and random phases; demodulated 

signal is quasi-stationary with amplitude 0.02; modulated signal is quantized according to 8 

bit PRQ quantizing and after demodulation signal is filtered with 3 tap MAF. 
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Figure 4.16 One realization of demodulation relative error dependence on processed point count N is 

shown in three cases: (a) 4-bit PRQ, (b) 6-bit PRQ and (c) 8-bit PRQ. 

As it is shown in Figure 4.16, the important role plays point count, which falls into the 

signal processing time window. At first sight it would seem that better results provide larger 

point count, but it in general it is not quite true (if enormous points count is not considered). 

Much important is to ensure demodulation conditions where integer number of carrier periods 

falls into time window (including sampling frequency periods). Then windowed signal sample 

processing would provide optimal DFT coefficient estimation precision. 

 

Figure 4.17 Averaged relative errors dependence on processed point count in cases where (blue curve) 

traditional DFT is used and (red curve) DFT based on rectangular functions is used. 

In Figure 4.17 the traditional DFT is compared with DFT using rectangular basis 

functions. Placing carrier frequencies more irregularly, the averaged relative errors of 

bioimpedance signal demodulation were obtained, where each error was calculated by 
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averaging 16 relative errors. Other simulation conditions remain unchanged. The general 

trend shows that enlarging of the point count provides for better demodulation signal quality, 

but it does not exclude the previous conclusion about the optimal time window size. This is 

true for both traditional DFT and DFT using rectangular basis functions involved in 

bioimpedance-signal demodulation. 

4.4 Conclusions 

Application specifics of the basic three signal quantizing methods (methods for 

deterministic, randomized and pseudo-randomized quantizing) for data acquisition are 

studied. All three of them are compared and their properties discussed in this Chapter. In 

many cases PRQ proves to be the best of them. That, of course, depends on the particular 

application. Actually the application potential PRQ for DAQ hardware designs is high as PRQ 

has significant advantages in comparison with DQ, PRQ specifically: 

 Can be used in a wide dynamic range; 

 There are no spurious frequencies in spectra of pseudo-randomly quantized data. 

 Provides for decorrelation of data and quantizing noise; 

 Eliminates systematic bias errors in estimates of basic signal parameters, 

including spectral; 

 Provides for uniform quantizing noise distribution invariant to quantizing bit rate, 

essential for extension of the application range of rough quantizing; 

 Ensures that distribution of the power spectrum of the quantizing noise is uniform 

independently of the original signal and the quantizing step size. 

DFT is often needed for biomedical DAQ applications, where performance of 

bioimpedance signal demodulation is required. Methods for such signal processing are 

essential for design of medical equipment. This work considers bioimpedance signal 

demodulation based on calculations of DFT coefficients on several frequencies and the 

advantages of using PRQ are shown. 

Due to these features, PRQ is an approach to quantizing that is rather valuable for 

achieving high performance of DAQ systems. That is confirmed by results obtained in the 

area of DAQ used for bioimpedance data acquisition. It is shown that in this application area: 

 Improved resolution of very fast low bit rate ADCs (several GHz sampling 

frequency) at wideband low bit rate DAQ. In other words, PRQ reduces the 

quantizing bit rate, widening the application range of rough quantizing; 

 Better digitized signal quality (in terms of signal sample values precision); 

 Simplified, energy efficient DAQ hardware and bioimpedance signal processing. 
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In general, the obtained research results confirm that design and performance of DAQ 

systems often can be significantly improved by exploiting PRQ methods both for DAQ 

system hardware design and for data pre-processing software development. 
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5. Data Acquisition Based on Gathering Timing 

Information 

As it is shown in the previous Chapters, taking sample values from continuous or so-

called analog signals can be performed in a way differing from the classical approach to this 

operation, differing from the periodic sampling. Of course there should be a good reason for 

using sampling techniques significantly differing from this traditional sampling as the 

periodic sampling approach has a number of excellent properties and advantages. However it 

has also drawbacks, such as overlapping of frequencies (aliasing), excessive sample value 

taking from the signal parts slowly varying in time and others. Consequently it is often worth 

to spend time and efforts on finding some other special application-specific sampling methods 

better suited to conditions of a given specific application. Once the basic idea, the idea that 

the sampling operation actually can be performed in various ways, is accepted then it is not so 

difficult to find various unusual approaches to execution of this operation. On the other hand, 

application of different sampling methods leads to various digital representations of analog 

signals and that in turn leads to differing conditions for processing the digital signals obtained 

in result of using various specific sampling techniques. These conditions must be taken into 

account whenever it is attempted to change the approach to sampling from the classical to a 

specific one. Therefore, to avoid unexpected negative effects distorting results of digital 

signal processing, every new sampling technique has to be carefully studied before it is used.  

5.1 Sampling based on detection of signal and reference function 

crossings 

5.1.1 Sample value taking at the time instants of signal and reference function 

crossings 

 To get sample values from a signal, the signal can be compared with some reference 

functions at the time instants when the signal becomes equal to the reference, when the signal 

crosses the reference. This approach, as a technique closely related to zero-crossings, is 

discussed in [44] and in a number of other publications, specifically in [22]. Thus there are 

relatively many publications belonging to the subject area of non-traditional methods for 

analog signal digitizing. However sampling based on signal and reference sine-wave 

crossings has never been considered as a widely applicable alternative to the classical periodic 
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sampling. This work is related to and further develops the sampling techniques suggested in 

[22]. 

The function of capturing the real world signals is important for many modern DAQ 

systems used in the areas of industry, medicine, defense etc. The importance of the role they 

play is growing. Sampling, based on detection of signal and reference function crossings 

(SRC sampling), provides many new features valuable for efficient data acquisition from the 

real life objects. Let us consider the concept, basic electronic schemes, advantages, drawbacks 

and other things of this sampling approach. 

The features of this approach significantly differ from the characteristics of the classic 

solutions typically used for data acquisition systems. They, in fact, more often than not relay 

on uniform signal sampling. A number of typical essential features of the classic and SRC 

sampling approaches are given in Table 5.1. 

Comparison of an analog input signal with a reference function is in the core of the SRC 

sampling approach. Detection of the time instants tk when both inputs x(t) and r(t) become 

equal is how the SRC sampling operation is being done and this function could be performed 

in a simple way by using a single comparator. There are various possible approaches how to 

organize necessary multi-channel data acquisition for computers on that basis. Consideration 

of them follows. 

 

Figure 5.1 Various types of samplers used for performing the sampling operation. (a) sampler 

implementing the classical Shannon sampling; (b) sampler used for SRC based sampling; (c) sampler 

for SRC crossing based sampling controlled by an enabling function. 

 Figure 5.1 illustrates various approaches to implementation of the sampling operation. 

In the classical sampling case (see Figure 5.1 (a)) this operation usually is based on the 

„Sample & Hold‟ circuit as shown in Figure 5.1 (a). In the case of SRC sampling scheme, the 
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core element there is a comparator detecting the signal and the reference function r(t) crossing 

instants tk (Figure 5.1 (b)). It compares the analog input from signal source with the reference 

function and forms trains of short pulses at the time instants { kt }. They carry all the 

information taken from the original analog signal x(t). 

To add to the functionality of this signal/reference crossing detector, an enabling function 

is introduced as shown in Figure 5.1 (c). It is used for activating the comparator. The 

comparator fulfils its functions, compares the inputs and produces short pulses at the output 

when the crossing events occur only during the time intervals when it is activated by the 

enabling function. Figure 5.2 illustrates operation of such a sampler. 

 

Figure 5.2 Functionality provided by SRC sampling scheme. (a) SRC sampling in the case of 

triangular reference function; (b) enabling function; (c) pulse train carrying information taken off the 

input signal; (d) another option of timing information presentation: a sequence of digitally timed 

crossing instants. 

According to the discussed SRC sampling approach, the signal sample values are taken 

when the analog input signal intersects the reference function (Figure 5.2 (a)). In the 

illustrated SRC sampling case, the reference function is generated as an asymmetric sawtooth 

function with differing ascending and descending slopes. The sampling operation based on 

the signal and reference function crossing time instant detection is performed according to the 

equality: 

( ) ( )k kx t r t ,  k=1, 2, 3…  (5.1) 
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Where )( ktx  - instantaneous input signal values, )( ktr  - instantaneous reference function 

values, kt  - time instants at which the equality holds. 

In result of the sampling operation, the time instants when the signal intersects the 

reference function are detected and given either as a train of analog pulses placed properly on 

the time axis, as shown in Figure 5.2 (c), or as a sequence of digitally timed crossing events 

(Figure 5.2 (d)). Note that only those crossing instants are used that fall within the time 

intervals when the comparator is activated by the enabling function (Figure 5.2 (b)).  

The enabling function z(t) is a useful instrument that can be used for manipulation of 

signal sampling conditions. The comparator performing analog signal sampling is active only 

when the enabling function allows that. During the inactivated time intervals it sleeps and the 

power consumption of it then can be reduced. 

Usage of the enabling tool is beneficial also from the functional point of view. By using 

this enabling function it is possible to ignore signal sample values and to control such 

conditions as the mean sampling frequency, minimal time duration between two sample 

values, sampling flow periodicity etc. 

To avoid the situation when DAQ is halted because the comparator is deactivated by the 

enabling function, it is useful to put and use comparators in parallel, to perform DAQ form 

many channels according to Time Division Multiplexing Access principle. It gives the 

opportunity for utilizing the enabling function for multiplexing by sequential activating one 

comparator after another. Such manipulations could be done periodically what leads to the 

classical multiplexer functions or to non-periodical multiplexing what gives interesting 

opportunities to utilize enabling function for carrying out randomized multiplexing. These 

variations of the enabling function utilization are considered in the following Sections in more 

detail. 

5.1.2 SRC sampling in the context of analog-to-digital conversions. 

Traditionally conversions of analog signals into their digital counterparts are subdivided 

into two subsequent stages where: 

 The first stage is the signal sampling operation; 

 The second stage is quantizing of the signal.  

Signals are sampled at the first stage and sequences of the taken signal sample values are 

then formed. In the case of the classic sampling (Figure 5.1 (a)), the signal sample values are 

given as voltage (current) levels, changing after each sampling event. In the case of SRC 

sampling, only the sequences of the crossing time instants are formed at the output of the 

sampler. Recovering of the original signal sample values happens in both cases at the second 

stage of the analog-to-digital conversions and the quantizing operation is performed in some 

way to fulfill this function. SRC sampling is specific and, consequently, signal analog-to-
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digital conversions that are based on this type of sampling are carried out also in an unusual 

way. Block diagram given in Figure 5.3 shows how the considered SRC sampling is exploited 

in the process of such conversions. 

 

Figure 5.3 Basic scheme according to which the signal-to-digital conversions are performed on the 

basis of the considered SRC sampling. 

The basic scheme shown in Figure 5.3 is, in fact, a specific analog-digital converter and 

that can be used for performing the sampling operation according to the considered here 

approach. The merit of it is the simplicity of the front-end design and the fact that it is well 

suited for remote signal sampling applications, specifically, for building distributed structure 

ADCs. The diagram given in Figure 5.3 draws attention to the fact that using of the 

considered SRC sampling makes it possible to distance the sampler at the front-end from that 

part of the whole ADC which performs quantizing of the sampled signal. That indeed is the 

case. As the output signal of the sampler then is a sequence of pulses with sharp leading 

edges, only the positions of the pulses on the time axis have to be preserved while the changes 

of their shape, due to the impact of the ambient noise, do not matter. Consequently the output 

signal of this type of samplers is much better protected against noise than the usually used 

samplers of Figure 5.1 (a). That leads to the possibility of performing this type of sampling 

operations in the close vicinity to the signal sources even if the output signals of the samplers 

have to be transmitted over relatively long transmission lines. The term Remote Sampler 

emphasizes that fact. 

Thus, according to the considered sampling approach, the central element of the scheme 

in Figure 5.3 is the comparator used for detection of the time instants {tk} at which the signal 

x(t) intersects the reference waveform. The physical output y(t) of the comparator is formed as 

a pulse whenever the sampler is enabled by a function z(t) and a crossing of the input signal 

x(t) and the reference function r(t) takes place. These pulses y(t) at the sampler output are 

formed so that they carry the timing information indicating the exact crossing instants tk of the 

signal and the reference function. In the framework of this work, it is assumed that the output 

pulses, having extremely short front edges of negligible duration, are formed with a constant 

delay after each crossing of the signal and the reference sine-wave function. Thus the sampler 
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output signal is carrying the original information encoded as the sequence {tk} of the sine-

wave crossing instants. It is transferred over some shorter or longer distance to the quantiser 

used for recovery of the input signal sample values. The signal sampling has to be executed in 

a way ensuring that the information carried by the input signal x(t) is fully transferred to the 

sampled signal given as the sequence {tk}. Evidently fulfilling of this requirement is crucial 

for recovery of the input signal sample values encoded by this timing information. As it will 

be shown later, the timed event sequence {tk} has various properties that should be taken into 

account when designs of systems for data acquisition from the real world objects are 

considered. 

The reference function r(t) is needed both for performing the signal sampling operation 

and for the recovery of sampled signal values. The reference waveform used for both these 

operations should be exactly the same. It concerns all parameters of the reference function, 

including the start time of the function. Any smallest deviation from this equality between 

both reference function replicas will cause distortions of the sampled digital signal and will 

degrade the quality of the following operations. Therefore it is crucial to achieve high 

precision at synchronization of the reference functions used for sampling and reconstruction 

(quantizing) of the signal. 

Equally important is the question which type of the reference function is to be used. 

While there certainly are some options, sine-wave reference functions are used in the 

framework of this work as the best choice. The arguments in favour of that are given in 

Section 5.2. 

As the above brief discussion of the SRC sampling approach in the context of signal 

analog-to-digital conversions shows, this approach differs from the classical sampling 

significantly. Comparison of both these methods for sampling follows. 

5.1.3 SRC sampling in comparison with the classic approach to the sampling 

operation 

Both the classical and the SRC sampling methods have various features essential for data 

acquisition applications. In Table 5.1 they are compared from the data acquisition viewpoint. 

As can be seen, SRC based sampling has features that makes this approach well suited for 

applications related to simultaneous data acquisition from a large quantity of signal sources. 

Specifically, no switching of the analog signals are then performed and multiplexing of 

channels, provided for by proper application of the enabling function, is much simpler. 

Actually output signals of the samplers rather than their analog input signals are then 

multiplexed and that certainly is much better. 
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Table 5.1 Comparison of two alternative sampling approaches. 

Classical sampling approach SRC sampling approach 

Signal sample value acquiring 

 Signal sample values are taken at 

predetermined time instants 

 Sample values are represented by 

respective voltage (current) levels 

 

 Uniformly spaced signal sample values 

 Remote sampling implementations usually 

not acceptable 

 Aliasing determined by Nyquist frequency 

 

 Sample values are taken at the signal and 

reference function crossing instants 

 Sample values are represented by the time 

instants when the crossing events take place 

 Nonuniformly spaced signal sample values 

 Remote sampling applicable 

 Specific aliasing conditions 

 

 Reference function defines the envelope of 

the sampled signal instantaneous values  

Signal sample value transmission 

 Requires transmission of constant levels 

 Sensitive to the ambient noise 

 

 Transmission acceptable only over short 

distances 

 

 Based on transmission of time instants 

 Relatively insensitive to the ambient noise 

 Transmission might be performed over 

relatively large distances 

 Provides for data compression: transmission 

of a single pulse generated at the SRC instants 

is equivalent to transfer of a multi-bit code 

Quantizing 

 Sample values are quantized directly 

 

 Reference function values are quantized at 

the crossing time instants 

 High precision synchronization of the 

reference functions used for signal sampling 

and reconstruction is required 

Multi-channel operation 

 Based on switching the analog input signals 

 Number of channels limited by hierarchic 

multiplexer structures 

 

 

 No switching of analog signal performed 

 

 Multiplexing of channels, provided by 

enabling function, is much simpler 

 Well suited to data acquisition from a large 

quantity of signal sources 

 Data gathering is well suited to the specifics 

of implementations based on the Ultra 

Wideband communication techniques 

Processing 

 Based on the classical DSP algorithms 

 

 

 

 

 Typically specific algorithms are needed for 

processing 

 Applicability of standard algorithms 

achievable under certain condition 

 Complexity-reduced pre-processing is 

achievable in a relatively wide application 

range 

Advantages for DAQ systems 

 Features and obtainable benefits are well 

known 

 

 

 Reduced complexity and power 

consumption at the DAQ system front-end 

part 

 Significantly enlarged number of data 

channels 
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Remote sampling directly at the signal sources distributed over some 3D area becomes 

feasible. Thus SRC sampling is well suited for data acquisition from a large quantity of 

relatively low-frequency signal sources scattered over a relatively large area. Ultra Wideband 

communication techniques are well suited for high-speed sampled data transmission to the 

part of the data acquisition system where the sampled signals are reconstructed. 

The content of Table 5.1 also shows that successful application of SRC sampling based 

for data acquisition largely depends on high-resolution detection of the signal and reference 

function crossing time instants and on the precision of the reference function generation and 

synchronization. Therefore attention has to be focused on achieving sufficiently good results 

in that direction. That is directly related to the problem of defining the most suitable reference 

function type. Let us consider this essential problem. 

5.2 Sine waves as the preferred selection of the reference function 

The reference function plays an important role at SRC based sampling. It affects the 

whole sampling process. Specifically, the crossing time instant streams and the characteristics 

of the digital signals, obtained in result of such sampling and the following sample value 

reconstruction, essentially depend on the features of the used reference function. The crossing 

time instant streams in turn determine the aliasing conditions, the applicability and efficiency 

of various algorithms for pre-processing the acquired data. Therefore serious attention has to 

be paid to the selection of the reference function type. It has to provide for: 

 Relatively regular distribution of the crossing points along the time axis; 

 Features of the digitized signals leading to rational algorithms for their digital 

pre-processing; 

 Simple and effective high-precision generation of the reference functions with a 

few given parameters that can be stabilized in time and in regard to changing 

exploitation conditions of the respective electronic circuits. 

Let us consider and compare two types of possible reference function candidates: variable 

parameter sawtooth functions (as shown in Figure 5.2) and sine-wave functions.  

The first type of functions, the sawtooth functions, is relatively popular. They are 

currently used for similar applications almost exclusively. For example, they are usually 

exploited for Pulse-width modulation. The reason for such preference is the fact that their 

slopes are linear. Application of such reference functions in our case would ensure that bias in 

input signal level would lead to proportional shift of the crossing time instants along the time 

axis. Obtaining of this property, of course, is desirable if only the price for this is not too high. 

The second possible type of the reference functions is sine-wave functions. While both 

types of the reference functions being compared would equally well provide for meeting of 
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the first given above requirement (application of both of them would properly pre-condition 

relatively regular crossing event distribution in time), the sine-waves are non-linear and that at 

first glance makes them less suitable. However sine-waves have other features that make them 

more useful than the mentioned sawtooth functions. To show this, attention is drawn to the 

given equality (5.1). According to it, all instantaneous values of the signal sampled on the 

basis of the SRC method belong to the reference function. Consequently, the envelope of 

these sample values is constant independently from the input signal. And the reference 

function defines this envelope. Therefore in the case of the sine-wave reference, the envelope 

of the sample values is sinusoidal. This type of sampling is considered as Signal and Sine-

Wave Crossing sampling or SWC sampling. 

5.2.1 Constant envelope sampling 

Diagrams in Figure 5.4 illustrate signal sampling performed according to the considered 

SWC sampling model in the case where sine-wave reference function is used. While sampling 

then is signal-dependent and essentially nonuniform, it is characterized by constant envelopes 

defined by the used sinusoidal reference function. As is evident from the given diagrams, the 

envelopes of the two obtained distinctly different digital signals are exactly the same. This is a 

significant positive fact leading to far reaching consequences for processing of this type of 

digital signals.  

The various reference functions could be used while at the system implementation and 

design point of view the reference should be stable and easy to generate the same waveform. 

The sine-wave is one of those functions which match to above mentioned requirements very 

well. The reference function also has to be varying and has to cover all dynamic diapason of 

input analog signal. Therefore in the case of DAQ from real world objects the sine-wave 

function is recommended as reference function [1]. 

It was mentioned at previous discussion where the SRC signal sampling was considered 

that sine-wave function is well suited to be a reference function when the massive data 

acquisition is organized from many signal sources. The main reasons were the easy copy- 

ability of sine waveform and the applicability form many algorithms. The second reason will 

more clearly appear further when the processing of such a way sampled signals will be 

considered. 

This specific sampling approach organized in mentioned way has following advantages: 

 The switching of the original analog input signals is not planned; 

 The sampling could be easily accomplished close to the signal source, while the 

remained part of DAQ system could be placed distantly. It is called the remote 

sampling; 
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 Under certain conditions it is possible to use classical DSP algorithms. These 

conditions are estimated at latter chapters; 

 The front-end part of considered DAQ system is very simple and consist only 

from one comparator; 

 It is possible to use new algorithms (for DFT, digital filtering etc.) that typically 

are complexity-reduced and not requiring multiplication of multi-digit numbers 

instead of classical ones; 

 The power consumption of the basic electronic scheme might be ultra-low. 

 

 

Figure 5.4 Illustration of a constant envelope sampling process based on a signal and a sinusoidal 

reference function crossings. (a), (b) diagrams illustrating sampling of two signals having components 

at differing frequencies; (c) signal digital sample value sequence of the signal shown in (a); (d) signal 

digital sample value sequence of the signal shown in (b). 

Unfortunately there also exist some drawbacks of the considered sampling approach what 

needs attention: 

 The sampled signals according with this sampling are nonuniform what means 

well known consequences with sampled signal further recovery, signal processing 

etc. However this topic is much deeper considered in latter chapters; 

 In this case many classical signal processing algorithms doesn‟t work therefore 

there is need for developing the new applicable algorithms. 

5.2.2 Potential of SWC sampling for simplifying some DSP algorithms 

The fact that the envelope of the digital sample values, obtained in result of SWC 

sampling, is a sine function is unusual and meaningful. Indeed, it means that the digital 
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signals reconstructed from the crossing point streams in that case always have one and the 

same sinusoidal envelope independently of the input signal. The signal only varies the 

crossing point positions on the time axis. In other words, all sample values then belong to a 

sine-wave function and they are nonuniformly distributed along the time axis. 

This significant feature of SWC sampling might be exploited for reducing the complexity 

of the algorithms for pre-processing of signals. Such pre-processing usually is performed in 

the process of data acquisition and formatting in order to compress data and to simplify their 

handling. Algorithms for processing digital signals obtained in result of SWC sampling often 

can be significantly less complicated than the widely used conventional ones. In particular, it 

is possible in many cases to avoid multiplications of multi-bit numbers. The obtainable 

complexity reduction then is based on the well known relationships: 

1
sin( )sin( ) [cos( ) cos( )]

2
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sin( )cos( ) [sin( ) sin( )]
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a b a b a b

a b a b a b

 (5.2) 

The unique constant envelope feature of SWC sampling makes it possible to exploit these 

formulae and to develop rational algorithms, in particular, for Discrete Fourier Transform 

based spectrum analysis and waveform reconstruction. For example, the following equations 

can be used for calculation of Fourier coefficient estimates 
iâ , ib̂  not requiring multiplication 

of multi-digit numbers as usual [1, 2, 6]: 
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Where Ar, fr are the amplitude and frequency of the sinusoidal reference function, tk 

denotes the crossing time instants and N is the number of signal samples processed. 

This approach to complexity reduction of algorithms for data pre-processing is usable 

only under the condition that the reference function is sinusoidal. This represents a strong 

argument in favour of using this type of reference functions. The problem related to the 

necessity of operating with sine and cosine functions in this case can be easily resolved by 

using look-up tables. 

5.2.3 Generation of reference functions 

Reference functions evidently play an important metrological role at signal digitizing. 

Their waveforms must exactly fit the respective definitions so that their parameters are very 

close to the defined values. The precision obtainable at data acquisition based on the 

considered type of signal sampling to a large extent depend on this. Therefore the issue of the 
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reference function generation is important. It has to be taken into account that analog as well 

as digital generators of reference functions are needed and that in multi-channel data 

acquisition systems relatively many of such generators have to be used. 

It might seem that generation of sawtooth type of reference functions is easy. Indeed, 

digital structures such as counters and DAC might be used for that. However then the 

structures of such generators would not be so simple and, in addition, generation of reference 

functions with relatively short periods would represent a serious problem. 

Actually generation of precise sinusoidal reference functions in many cases prove to be 

considerably simpler. The fact that a sine-wave is a mono-harmonic function with all power 

concentrated at a single frequency helps a lot at their generation. That can be done on the 

basis of simple structures as narrow-band selective filters might be used for obtaining truly 

sinusoidal signals. 

The arguments discussed in this Section leads to the conclusion that it makes sense to 

prefer and use the sine-waves as reference functions at sampling based on the detection of the 

signal and reference function crossing instants. 

5.3 SWC sampled signal properties in the time domain 

Periodic sequences of analog signal sample values are usually considered as the natural 

digital representatives of the respective original analog signals. As it is shown in Chapter 3, 

the signal sample sequences might be also non-periodic or, in other words, nonuniform. Thus 

the periodic sampling based digital signals are not unique, there are other types of digital 

signals that can be used for representing their analog signal counterparts. Let us show that the 

sequences of timed events might be added to the list of various types of digital signals that 

can be used for representation of analog signals. 

If the crossings of a signal with a reference function are considered as events, then the 

sequences of these events, under certain conditions, might be considered as carriers of the 

information initially carried by the respective analog signals. Therefore it should be possible 

to reconstruct the mentioned analog signals from the respective sequences of timed crossing 

(sampling) events. If that is the case, then this type of timed event sequences could be 

considered as a specific digital representation of analog signals. As it is further shown, under 

certain conditions, that indeed can be done. The first condition is the requirement to add the 

parameters of the reference function to each of the used sequence of the timed crossing 

events. These timed event sequences become meaningful only if this information is a priory 

given. 
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5.3.1 Signal representation by timed sequences of events 

To convert an analog signal into digital, sample values of the original analog signal 

usually are taken at some specifically defined sampling time instants and the digital signal is 

formed as a sequence of these sample values. As the definition of the sampling time instants 

of the signal sample value taking might differ, analog signals actually might be converted into 

their digital counterparts in various ways. The most popular approach is based on sampling 

signals periodically but it certainly is not exclusive. The sampling process might as well be 

also nonuniform. A specific signal digitizing technique suggested in [22] is considered in 

some detail in work. It is rarely used so far. According to it, signal sample values are taken at 

time instants when the signal crosses a sinusoidal reference function. Such digitizing of 

signals, based on their crossings of a given constant parameter reference sinusoid, has features 

unparalleled by other digital signals. For a wide class of input signals, the envelope of their 

digital counterparts is invariable. And that leads to a remarkable method for representing the 

analog signals. They might be fully digitally represented just by sampling time instant 

sequences rather than by the sequences of their sample values as usual. Consequently, the 

conditions for processing this type of digital signals are essentially specific as well. Therefore 

adding the described digital signal to the collection of other more conventional digital signal 

types widens the variety of the signal processing and the signal processing system design 

options. When development of a specific application is planned, this approach to signal 

digitizing is well worth considering. Basics of this signal digitizing approach are further 

discussed. 

An essential informative parameter characterizing this kind of sampling is the ratio σ/μ, 

where σ is the standard deviation of the sampling intervals and μ is the mean value of them. 

This parameter, for the sampled signals in Figure 5.5 (a) and (b), is σ/μ=0.4863 and 

σ/μ=0.9055, respectively. 

 

Figure 5.5 Sampling point processes fully representing the respective analog signals in the digital 

domain. (a) reference function; (b) point process representing the sampled signal shown in Figure 

5.4(a); (c) point process representing the sampled signal given in Figure 5.4(b). 

Empirical distributions of the sampling intervals in both of these cases are given in Figure 

5.6. Evidently they strongly differ. The first one illustrates a sampling case that is much better 
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than the second one. First of all it is better in the sense that it is more regular. The deviations 

of the sampling interval values from their mean value are less pronounced. Second, only a 

small number of the sampling intervals in that case are very short. That is not the case with 

the empirical distribution given in the Figure 5.6 (b). In that case, a considerable number of 

crossings occur very closely in time and that represents a problem for processing the 

respective signal sample values. It might be said that the nonuniformity of sampling in the 

second illustrated case is much stronger. And that is clearly shown in the given empirical 

distributions and follows from the numerical value of the ratio σ/μ. 

 

Figure 5.6 Empirical distributions of the sampling interval duration normalized to the reference period: 

(a) for the sampled signal shown in Figure 5.4 (a); (b) empirical distribution for the sampled signal 

shown in Figure 5.4 (b). 

The displayed two cases of two differing signal sampling reveal the fact that this 

approach to sampling and to analog signal digitizing leads to digital signals that could be 

given either as sequences of signal sample values with envelopes defined by the used 

reference function or just as sequences of sampling (crossing) time instants {tk}. Both types of 

the digital signals represent the respective analog signals equally well. The quality of this kind 

of digital signals, obtained by detecting the original signal crossings with a reference sinusoid, 

remains to be found out. This issue is discussed in [1] and to some extent in the following 

sections. 

5.3.2 Trading-off the mean sampling rate against the time-resolution 

Features of the digital signal formed in result of the analog input signal and the reference 

sinusoid crossings obviously depend on both of the involved processes. As the crossing point 

process might be considered as the digital signal representing the original analog signal, the 

basic features of concern are the regularity of the intervals between the sampling (crossing) 

points and the accuracy of the indicated crossing time instants. Both of these features to some 

extent depend on the frequency of the used reference sinusoid. Therefore the question arises 

how to select the appropriate value of this parameter of the reference function. 
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Figure 5.7 Digital signal (b) in the case where a signal crosses a low frequency reference function as 

shown in (a). 

There are some considerations that might be taken into account. In general, at low 

reference frequencies the relative resolution with which the crossing events are fixed in time 

is better than at high reference frequencies. From that point of view, low reference frequency 

seems to be preferable. On the other hand, at low reference frequencies, the crossings 

typically occur as it is shown in Figure 5.7 (a). Then the crossing point pattern in time 

basically depends on the signal frequency content as the signal typically crosses the reference 

function a number of times during each period of the reference and the sampling point process 

then is characterized by relatively high values of the ratio σ/μ as it is rather irregular. 

Consequently, distortions of the sampled signal processing due to the cross-interference 

phenomenon might be expected then. 

 

Figure 5.8 Illustration of a sampling case where the reference sinusoid is not crossing the signal within 

relatively large signal segments. (a) crossings of the signal and the reference function; (b) obtained 

digital signal. 

Another drawback typical for the cases where low frequency reference functions are used 

is illustrated in Figure 5.8. As can be seen, there are relatively large gaps between the detected 

crossing points. In result, essential information is lost during these time intervals. The formed 

digital signal, namely, the sampling (crossing) point process, given in Figure 5.8 (b), again is 

nonuniform and it is characterized by large values of the ratio σ/μ. 

The digital signal, obtained in the cases where relatively high frequency reference 

function is used, typically is more regular as the reference function basically imposes the 
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crossings. A typical sampling process of this kind is given in Figure 5.9. As can be seen, the 

formed digital signal indeed is more regular in this case. 

 

Figure 5.9 Illustration of the digital signal forming in the case where relatively high frequent reference 

function is used: (a) sampling process; (b) formed digital signal. 

As the given illustrations show, usually it is preferable to use reference sinusoids at 

relatively high frequencies. However even then the irregularities of the obtained digital signal 

might lead to significant distortions of the signal processing results. These distortions are 

typical for any kind of NU sampling and they are caused by the cross-interference between 

the nonuniformly sampled signal spectral components. While more often than not it is 

desirable to work at higher reference frequencies, increasing of the reference frequency is 

limited. And the consideration of the time-resolution basically is the dominating factor setting 

up this limit. Therefore the mean sampling rate, directly depending on the reference 

frequency, often has to be traded-off against the achievable time-resolution. 

5.4 SWC sampled signal properties in the frequency domain  

This Section reveals the particularities of SWC sampled signals in the frequencies 

domain. 

5.4.1 SWC sampled signals spectrum particularities 

The digital signals discussed in this paper clearly are highly specific and, in this sense, 

unusual. First of all, their definition differs from the classical and traditionally used one. 

Timed sampling event sequences or, in other words, sampling point processes in time are 

considered as digital representations of the respective analog input signals rather than 

sequences of signal sample values as usual. Next, the sampling time instants under these 

conditions are signal-dependent and time intervals between them are nonuniform. On the 

other hand, these sampling intervals not necessarily are random. As they are related to the 

input signals, there might be periodicities present in the digital signals representing the 

original analog signals. Therefore overlapping of frequencies or aliasing might be expected. 

There may be also cross-interference between signal components typical for NU sampled 
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signals. Actually the specific properties of the digital signals of this kind are not pre-

determined, they strongly depend on the input signal and the used reference function. 

Hence the considered digital signals indeed are highly specific and they have features 

unparalleled by other digital signals. It still has to be learned how to effectively process them 

under varying conditions. However there is a factor that draws attention and stimulates 

interest to this sampling approach. The point is that the digital signals obtained in the 

mentioned way have an outstanding positive feature. The envelope of the digital signal 

instantaneous value sequences, in the case of this kind of analog-to-digital conversions, 

remains constant no matter what is the spectral content of the respective analog signals. This 

fact represents a powerful advantage of the considered type of signal sampling as the constant 

envelope of various digital signals obtained under the mentioned conditions leads to various 

options in processing them. Some of these options, including complexity-reduced spectrum 

analysis and massive data acquisition, are briefly discussed in [1, 22]. Specific properties of 

the constant envelope digital signals, obtained in the case of SWC sampling, are studied and 

described here. The features of the digital signals obtained then are essentially specific. The 

feature of special interest is overlapping of frequencies or aliasing observed in the cases 

where sampling is performed in the mentioned way and the digital signal itself is a sampling 

point process or, in other words, a sequence of timed sampling events. Consideration of 

aliasing issues characterizing this type of digital signals follows. 

5.4.2. Aliasing of SWC sampled signals 

To observe how frequencies are overlapping in the considered signal digitizing case and 

how aliasing does impact processing of the obtained digital, DFT of a signal, containing only 

three components at frequencies f1, f2 and f3, was performed. The sampling-specific 

complexity-reduced algorithm and the following equations (5.3), discussed in [1, 22], were 

used for calculations of the Fourier coefficient estimates at the frequency fi. 

Evidently no multiplications of the signal and filtering function digital values have to be 

carried out in this case. This is a significant advantage of the discussed sampling approach as 

DFT based on calculations carried out according to these equations is exclusively applicable 

only for spectrum analysis of the digital signals obtained in result of sampling based on the 

reference sine-wave crossings.  

The spectrogram obtained in this way is given in Figure 5.10. As can be seen, there are 

many other peaks in this spectrogram in addition to the peaks that might be considered as 

spurious noise. Actually the most pronounced additional peaks appear in the spectrogram in 

connection with the frequency overlapping or aliasing effect. In this specific sampling case, 

positions of the peaks related to aliasing depend on the frequencies related to the periodicity 
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in the sampling point stream. This means that both the reference frequency and the mean 

sampling frequency play some role in that and are to be considered in this light. 

  

Figure 5.10 Illustration of the aliasing frequency pattern. 

Consider the spectrogram given in Figure 5.10. The frequencies fi and fn of the signal 

components, along with other typical frequencies such as the reference frequency fr and the 

mean sampling rate fs, are indicated in the spectrogram. Note that the frequencies of the 

reference function together with the mean sampling frequency define the positions of the 

aliasing frequencies displayed in it. The pattern of the peak positions on the frequency axis 

helps to reveal the essence of the mentioned relationships defining the aliasing conditions. 

Actually there are three rows of the expected aliasing frequencies. They are: 

fi; fr± fi; 2fr± fi; 3fr± fi; …;                  i=1, 2, 3, … 

fs± fi; 2fs± fi; 3fs± fi; …;                      i=1, 2, 3, …        

fr±(fi±fn); 2fr±(fi±fn); 3fr±(fi±fn); …;   for i≠n and i=1, 2, 3, …; n=1, 2, 3…       

(5.4) 

Where fi and fn are frequencies of a signal components, fr is the reference frequency and fs 

is the mean sampling rate. 

Peaks due to aliasing might be found at any frequency given in (5.4). Their magnitude 

depends on the specific conditions under which the crossings of the signal and the reference 

function occur. In general, the relationships defining the aliasing conditions in this case are 

more complicated than in the cases where the sampling process is pre-determined and does 

not depend on the signal. First, as can be seen from this spectrogram, there are more aliases 

than in the case of the conventional periodic sampling. Second, the aliasing process is 

suppressed. The peaks at frequencies of true signal components are much stronger then the 

aliases. That is due to the fact that the sampling process is both periodic and nonuniform. The 
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nonuniformities of the sampling intervals lead to this effect of alias suppression. The fact that 

the aliases are to some extent suppressed is significant. This helps to separate them from the 

signal components. Third, the aliases related to the indicated in row (5.4) three frequency 

rows might be not equally strong. For instance, while the aliases related to the mean sampling 

rate fs are rather weak in the case illustrated by Figure 5.10, they are well pronounced in the 

diagram shown in Figure 5.11. This difference in aliasing can be traced to the differences in 

signal sampling conditions. Fourth, aliasing illustrated by Figure 5.11 occurs also at 

frequencies related to the reference frequency and signal component differences/sums (fi±fn); 

…; for i≠n and i=1, 2, 3, …; n=1, 2, 3… That is unusual. 

Actually the question is arguable whether the aliasing effect does take place in the 

discussed case at all. Indeed, it is clear that there is no full-scale frequency overlapping. While 

peaks appear in the spectrogram at frequencies belonging to the row (5.4), they are 

significantly suppressed. This type of aliasing is considered as so-called fuzzy aliasing [22]. It 

seems that in this specific case it might be even assumed that there are cross-interference 

effects rather than aliasing while these effects are amplified at the indicated in (5.4) 

frequencies.  

It is possible to check if this assumption is right. If the peaks in question do appear in 

result of the cross-interference due to the sampling irregularities, then it should be possible to 

take them out by adapting signal processing to the specific sampling nonuniformities. That 

was checked and the discussion of the obtained result follows in the next Section. 

5.4.3 Cross-interference between signal components 

The considered sampling process is nonuniform and, consequently, some distortions of 

signal spectrograms due to the cross-interference between NU sampled signals are to be 

expected [22]. There are two aspects of this impact. There is a background noise with 

spurious frequency peaks and the mentioned interference actually distorts more or less the 

whole spectrogram. The spurious frequencies, reflecting the impact of the cross-interference 

between the signal components and present in the spectrogram, confirm this expectation. 

These spurious frequencies are not very noticeable in the particular spectrogram of Figure 

5.10. They are more powerful in the spectrogram given in Figure 5.11. Under certain 

sampling conditions providing for small sampling point irregularities this kind of spectrum 

distortions might be negligible as it is shown in [1]. In other cases special signal processing 

procedures for adapting the sampled signal to the sampling nonuniformities has to be carried 

out in a way described in [22]. 
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Figure 5.11 Impact of sampling regularization on the aliasing conditions. 

The impact of this cross-interference on the signal spectrograms directly depends on the 

signal sampling conditions. The spectrograms displayed in Figure 5.11 illustrate this. The 

signal in this particular case has only three components and the sampling conditions are 

varied. In result, the peaks in the spectrogram indicating the aliases and the power of the 

spurious frequencies vary as well. While all signal and the reference crossing events are taken 

into account in the first case illustrated by the spectrogram in Figure 5.11 (a), the sampling 

operation is enabled only during each sixth half-period of the reference function in the second 

case (Figure 5.11 (b)) and during each tenth half-period in the third case (Figure 5.11 (c)). As 

can be seen, this approach to sampling significantly impacts the features of the obtained 

digital signal. Introduction of the enabling function actually has the effect of sampling 

regularization. Increasing the interval during which the sampling operation is blocked results 

in smaller power of the introduced element of the randomness and that in turn leads to 

reduction of the effects induced by the cross-interference and to increasing of the peaks in the 

spectrogram due to aliasing. 

5.4.4 Evolution of anti-aliasing capabilities 

The problem of alias elimination usually comes up when periodic sampling could not be 

performed at sufficiently high frequencies. This typically happens either when the upper 

frequency of the input signal in a single input channel case exceeds the sampling frequency or 

there are many input channels and the rate of signal sample value taking depends on the 

number of channels and the achievable channel-switching rate. An effective technique for 

massive data acquisition providing protection against aliasing in the latter case is 
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randomization of enabling for remote sampling at sine-wave crossing instants. Figure 5.12 

illustrates this approach. 

 

Figure 5.12 Pseudo-randomized enabling of the sampling operation to be carried out in three particular 

input channels.  

Sequential enabling of a number of samplers fulfils the functions typically performed by 

multiplexers. In both cases analog-digital conversions of a multitude of input signals is carried 

out by connecting the converter to each of the signal sources repeatedly for a short time 

period. If this switching is performed periodically, as it is in the typical case, then the number 

of the signal sources limits the frequency range where signals could be processed without 

distortions due to aliasing. To avoid aliasing in a much wider frequency range, multiplexer 

switching and sequential enabling of samplers should be pseudo-randomized. Achieving of 

the anti-aliasing effect in both cases apparently is based on the same principles. They are 

discussed in [2, 14, 22] relative to pseudo-randomized switching of a multiplexer. Pay 

attention to the fact that taking signal sample values at time instants with unequal distances 

between them, while it is a necessary anti-aliasing condition, does not guarantee obtaining of 

high quality signal processing results. To achieve high precision at signal processing, the 

nonuniformly taken signal sample values have to be processed in a proper way with the 

sampling irregularities taken into account. Algorithms for processing NU sampled signals 
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adapted to the sampling nonuniformities should be used for that as it is described in [22]. The 

achievable improvement is signal processing achievable in this way is illustrated in [14]. 

To achieve the capability of suppressing signal aliases, sampling based on the sine-wave 

crossings has to be enabled at random or pseudo-random half-periods of the reference 

function. The smallest digit of the sampling time interval then is equal to the period of the 

reference function. While it is possible to realize various sampling modes in that way, it is 

actually senseless to use additive sampling in this case as there is no obstacles preventing 

taking of the sample values occasionally also at successive reference periods. If the sampling 

operation is enabled at each period of the reference function with an equal probability, then 

there is no secondary aliasing. Consequently, the cross-interference taking place whenever the 

sampling operation is randomized then does not have high peaks at some frequencies 

typically observed whenever the secondary aliasing takes place. 

 

Figure 5.13 Spectrogram of a single tone signal obtained in the case where the sampling operation is 

enabled randomly. 

The spectrogram characterizing sampling of this kind is given in Figure 5.13. It has been 

obtained for the case where the sampling operation was enabled at each second half-period of 

the reference sine wave with constant probability equal to 0.1. The spectrogram in Figure 5.13 

confirms the fact that suppressing of aliasing is much more pronounced when the sampling 

operation is enabled randomly. 

5.5 Data acquisition based on SWC sampling 

5.5.1 Timed signal and reference crossings as information carriers 

The sampling based on signal and sine-wave crossings also called SWC sampling is a 

special case of signal-reference sampling class, where the choose of reference lays on the 

sine-wave function: 
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( ) sin(2 ),k r r k rr t A f t  k=1, 2, 3… (5.5) 

Where  )( ktr  - reference signal, kt  - time instants, when the equation is true, Ar, fr and υr 

are the amplitude, frequency and phase angle of the reference sinusoid respectively. 

Signal sample value taking at the time instants {tk}, satisfying equation (5.5), represents 

the basic model of the considered sampling process. Figure 5.18 illustrates it. 

 

Figure 5.14 Time diagrams illustrating specific two types of input signal representation in the digital 

domain. (a) sampling based on signal and the reference function crossings; (b) enabling function; (c) 

analog carrier of information; (d) digital carrier of information. 

Digitally timed events, defined as crossings of an input signal and a reference function, is 

used in this case for representation of analog signals in the digital domain. The most 

responsible elements of this system apparently are the comparators used for detection of the 

time instants tk at which the signal x(t) intersects the reference function r(t) that is given as a 

sine wave at frequency fr. It has constant amplitude Ar. The physical output y(t) of the 

comparator is formed as a pulse whenever the sampler is enabled by a function z(t) (Figure 

5.14 (b)) and a crossing of the input signal x(t) and the reference function r(t) takes place. 

These pulses y(t) at the sampler output are formed so that they carry the timing information 

indicating the exact crossing instants tk of the signal and the reference function. It is assumed 

that the output pulses, having sharp front edges are formed with a constant delay after each 

signal and the reference sine-wave crossings. Thus the sampler output signal is carrying the 

original information encoded as the sequence {tk} of the sine-wave crossing instants. It is 

transferred over some shorter or longer distance to the host computer. Note that this sequence 

fully represents the respective input signal. It means that the crossing instant sequence might 
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be used either for recovery of the input signal sample values and reconstruction of the signal 

or the input data processing might be based on direct processing of these crossing instants as 

it is explained below [8]. 

While the sequence of the signal and reference function crossing instants represents in 

this case the input analog signal in the digital domain, either an analog or a digital carrier may 

be used for transmitting this information, as it is shown in Figure 4c and 4d. A train of 

position-modulated short pulses (Figure 5.14 (c)) is used as an analog information carrier and 

a sequence of digital crossing instant values {tk} (Figure 5.14 (d)). The analog carrier is used 

primarily for gathering and transmission of data from the cluster of remote samplers to the 

master part of the distributed ADC (Figure 5.15). The digital carrier is used at the stages of 

data reconstruction and/or their pre-processing and data transfer to computers (Figure 5.15). 

5.5.2 Reconstruction of signal sample values from SWC timing instants 

The instantaneous values of the reference function ),2sin()( rkrrk tfAtr  corresponding 

to the time instants {tk}, obviously defines the sequence x(tk) of the instantaneous values of the 

input signal. Therefore recovery of the input signal sample values basically is a 

straightforward operation. In Figure 5.3, it is illustrated as a quantizing procedure. While 

various techniques might be used for the recovery of the input signal sample values, basically 

a replica of the reference function waveform is sampled and quantized for that. Note that this 

copy of the reference function could be given either in analog or digital format. The signal 

sample values, of course, might be recovered and presented digitally in both cases. 

The recovery of the input signal sample values concludes the analog-digital conversion of 

the signal. The digital signal obtained in result of this conversion then has to be processed in 

one or other way and that has to be done with the specifics of the digital signal taken into 

account. The problem is that the recovered sample values are placed on the time axis non-

uniformly. In addition, the information about their positions {tk}, provided by the sampler, is 

given in an analog form. While this is true, recovery of the digital quantized signal sample 

values actually leads also to the possibility of recovering the signal sampling instants in 

digital form. Indeed, each of the signal sample values is equal to the corresponding reference 

function value u(tk) fixed in time. Therefore, knowing the value r(tk) makes it possible to 

calculate the value of tk. It gives a chance to express time instants tk as: 

( )
arcsin

2

r r k
k r

r

T u t
t kT

A
, (5.6) 

where Tr is the period of the reference sine-wave and k=0, 1, 2,… is the number of the 

sampling event taking place within the k-th period of the reference sine-wave. 
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The formula (5.6) can be divided into two parts where rkT  is fully deterministic. 

Therefore the time instants {tk} could be described only with
r

krr

A

tuT )(
arcsin

2
. That reduces the 

length of the words carrying information about {tk}. 

This (5.6) expression is valid in the case where the comparator is enabled during the 

descending-value half-waves of the reference function. Therefore if the enabling conditions 

are different, this expression has to be modified. There should not be problems with that. 

However, is it necessary to carry out these calculations or not, that is another question. The 

point is that the digital values of the sampling instants quite often simply are not needed for 

resolving a given signal processing task. This issue is discussed in some detail below. 

The mentioned fact that different digital signals of the considered kind have invariable 

envelope also means that the sampling point processes actually fully describes the respective 

sampled signals as the envelopes of the sample value sequences are invariable and pre-

determined. Indeed, if a sampling time instant tk is given, the equation (5.5) provides for 

recovery of the respective signal sample value x(tk). Therefore this type of point processes 

actually could be considered as digital signals fully representing the respective original analog 

signals in the digital domain. 

5.5.3 Architecture of an energy-efficient system for multichannel data 

acquisition. 

The suggested hardware architecture for simultaneous multichannel data acquisition is 

shown in Figure 5.15. Reduction of power consumption to a large extent is due to the method 

used for sampling. Application of it not only leads to the simplicity of the front-end design of 

this system. Remote samplers that can be placed directly at the locations of the sensors then 

are used rather than ADCs. This approach is well suited for remote signal sampling 

applications and for building the shown architecture of the system that actually is a distributed 

ADC. As can be seen, the sampling and quantising operations, in this structure, are distanced. 

This approach makes it possible to use many remote samplers at the front-end of it and to 

gather data from them in a rational way. 

So far we have discussed functioning of a sampler performing signal sampling functions 

according to the sampling method based on detection of the signal and the reference function 

crossing instants. Relatively many of such samplers are used in the system shown in Figure 

5.15. To ensure proper performance of them in parallel, specific enabling control functions 

are introduced and used. Only those crossings are taken into account that happen during the 

time intervals when the respective comparator is enabled by a specially generated enabling 

function (see Figure 5.14 (b)). This enabling function is exploited also for executing the input 

multiplexing. The analog input signal switching could be avoided then and that certainly is a 
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significant positive fact. Another role the enabling function is playing is taking part in 

forming the digital information carrier. It is essential that the distribution of the time intervals 

between successive digital values of this signal is characterized by a relatively small standard 

deviation. Sequential enabling of the remote samplers and enabling of them during half-waves 

of the reference function helps in achieving this. 

 

Figure 5.15 Architecture of the considered energy-efficient system fulfilling simultaneous data 

acquisition functions based on SWC sampling. 

While this type of signal digital representations is specific and successful using of it 

requires some skills, it leads to obtaining of significant benefits summarized in Table 5.1. 

The channel count of such a DAQ system shown in Figure 5.15 is limited with some 

factors discussed further. In general, the mean sampling rate fs of a signal connected to one 

channel of this type data acquisition depends on the reference function shape and parameters. 

Also it depends on the number m of the input channels. In the case that reference is sine-wave 

function the important parameter is its frequency fr. Although only one of the reference sine-

wave half-periods is enabled for sampling in each separate channel, different half-periods are 

used in various channels. This means that sampling occurs in the system twice during each 

period of the reference function. Therefore the mean sampling rate fs=2fr/m and the number of 

inputs m=2fr/fs. Thus the maximal number of the inputs is proportional to the ratio of the 

reference and sampling frequencies. They in turn depend on various conditions, including the 

perfection of microelectronic designs, current technological level of microelectronic product 

manufacturing, conditions and requirements for processing the digitized signals. The upper 

limit of the reference sine-wave frequency depends on the required resolution of quantizing. 
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At the current technological level, this limit is approximately 25 MHz for 8 to 10 bit 

quantizing. It is not so easy to achieve it. More realistic figures are 5–10 MHz with the 

quantization rate up to 12 bits. This leads to the maximal number of channels equal to 1000 

for the mean sampling frequency equal to 20 KHz. Then the input signal could be processed 

in the alias-free way within the bandwidth 0–10 KHz. More often than not the required input 

numbers are smaller. Then the input signal bandwidth could be proportionally widened. 

5.5.4 Achieving the applicability of standard DSP algorithms 

To avoid SWC sampling nonuniformities, regularization of SWC sampling results is 

considered. A very simple method for this regularization has been developed and is 

suggested. It has remarkable advantages in comparison with other reconstruction methods 

where burdensome signal processing is involved. The suggested signal regularization does not 

require any additional computation power at all. Of course, the results may be acceptable for 

end-users only under certain conditions. 

Regularization of SWC sampling leads to obtaining the possibility of using standard DSP 

algorithms for processing SWC sampled signals. Whenever this type of regularization is 

carried out, the wealth of existing DSP algorithms can be used for processing the signal 

sample values obtained in result of SWC sampling. This method can be implemented with 

help of the enabling function. 

Treating signal sample values obtained with usage of SWC sampling as a traditionally 

equidistantly sampled values leads to error (according to regularization the signal samples are 

placed on time grid in regular manner). The mechanism of this error is explained in Figure 

5.16. This regularization error ignorance may emerge as distortions and insufficient quality of 

results after signal deliberated processing. 

 

Figure 5.16 Regularization of SWC sampling samples.  
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The given curves in Figure 5.17 have been obtained varying signal sampling frequency 

and keeping constant reference frequency. The reference frequency, with the enabling 

decimation factor n varying, was changed according to s rf f n. Then with n growing, the 

sampling conditions are becoming closer to regular until it reaches the point at which the 

sampling mode could be considered as regular and all DSP algorithms can be directly 

applicable. Unfortunately the regularization process proportionally decreases the signal 

sampling frequency. 

The estimated SNR for some signals is shown in Figure 5.17 and the parameters of these 

signals are given in Table 5.2. 

 

Figure 5.17 Signal-to-noise ratio SNR versus decimation coefficient n of the activated reference 

function periods for three various signals.  

How it can be seen from Figure 5.17 the SNR is acceptable starting to 20-th activated 

sine-wave half period. Actually it greatly depends on particular application. 

Table 5.2 Parameters of test signal discrete components used in Figure 5.17. 

fi/fs 
Signal 1 Signal 2 Signal 3 

ai bi ai bi ai bi 

0.025 0.1214 0.0882 0.1214 0.0882 - - 

0.036 0.0278 0.0856 0.0278 0.0856 - - 

0.055 0.2092 0.068 0.178 0.1293 - - 

0.144 0.0324 0.0235 0.0124 0.038 0.1942 0.1411 

0.156 0.16 0 0.16 0 0.0494 0.1522 

0.188 - - 0.1 0 0.1537 0.1117 

0.231 - - 0.0243 0.0176 0.0764 0.1052 

0.255 - - 0.0556 0.1712 0.18 0 
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Apparently this regularization approach, whenever it is applicable, is of high application 

value as the wealth of the existing classical DSP algorithms and computer programs then is 

applicable for processing signals sampled on the basis of sine-wave crossings. Especially 

valuable is the possibility of using the fast algorithms, especially FFT. To illustrate this, a 

real-life signal has been sampled in according to SWC sampling and reconstructed by using 

FFT and inverse DFT. A speech signal was used for that. 

Figure 5.18 Waveform of a speech signal sampled at sine-wave crossing instants and reconstructed on 

the basis of Fourier Transform by applying the described sampling regularization approach. 

The reconstructed speech signal waveform is given in Figure 5.18. It is very close to the 

original waveform. Figure 5.19 illustrates the recovered signal sample values in comparison 

with the original signal. As can be seen, these sample values actually overlap the original 

waveform. 

 
Figure 5.19 Zoomed up original speech signal and the sample values of the reconstructed waveform. 
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The given example simply demonstrates the feasibility of using standard DSP software 

tools for processing the sampled signals obtained by using the discussed sampling techniques. 

Of course, it is not suggested that these techniques should be exploited for processing of 

speech signals. There are a wide selection of excellent methods and algorithms for doing that. 

It was simply convenient to use this real-life signal for demonstration the applicability of DSP 

algorithms under the conditions of the considered specific NU sampling. Versatile processing 

of biomedical signals might be mentioned as a field where this regularization approach to 

processing signals sampled according to the sine-wave crossing method should prove to be of 

high application value. 

5.6 Conclusion 

A specific approach to signal sampling, based on detection of signal and sine-wave 

function crossings (so-called SWC signal sampling method), is considered in this Chapter. It 

is shown that under certain conditions it is possible to represent analog signals with timed 

sequences of events without loss of information. A comprehensive comparison of the classical 

signal sampling method and suggested method for SWC sampling is given in Table 5.1. The 

analysis is done in a number of relevant aspects and from different points of view essential for 

data acquisition. 

The discussed specific signal digitizing method, based on signal sample value taking at 

the time instants when the signal crosses a sinusoidal reference function, is analyzed in the 

time and frequency domains. It certainly has unusual positive and some not so positive 

features. 

The following points can be extracted after SWC sampling analysis in this Chapter: 

 Algorithms and signal processing. Signals sampled according to the SWC method has 

constant envelope not depending on the original analog signal frequency content. 

That makes it possible to develop algorithms for processing them without massive 

multiplication of multi-digit numbers.  

 A new signal filtering algorithms, exploiting the constant envelope property, have 

been developed is described in [6]. 

  DFT without massive multiplication operation is possible. 

 Applicability of traditional DSP algorithms under certain conditions has been 

achieved. This applicability of classical DSP algorithms can be obtained by using 

regularization process of SWC sampled signals.  

 To gain from of the constant envelope sampling, it has to be learned how to 

effectively cope with the drawbacks related to the nonuniformity of the obtained 

digital signals. The signal regularization using the enabling function is recommended 
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as effective tools for controlling signal sampling conditions. However it reduces the 

mean signal sampling rate for each DAS channel depending on particular application. 

 Sampling properties. The SWC sampling properties are evaluated in the time domain 

and as well as in the frequency domain. Trading-off the mean sampling rate against 

the time resolution has to be done to provide for proper quality sampling. It is 

considered how the particularities of this type of signal spectra differ from spectra of 

the traditionally sampled signals. 

 DAQ system architecture. Application of SWC sampling leads to simpler and more 

energy efficient hardware architectures of data acquisition systems as the signal 

sampling operation can be performed on the basis of a single comparator instead of 

ADC. 

The main conclusion is that SWC signal sampling method is well suited to simultaneous 

multi-channel data acquisition from a large number of relatively low-frequency signal 

sources. 
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6. FPGA based implementation of the considered DAQ 

methods 

As it is shown in Subsection 6.1, execution of DAQ functions could be based on DASP 

sampling and quantizing methods and this leads to various nontraditional DAQ techniques. 

To evaluate the expected benefits obtainable by using these research results, specifics of 

FPGA based implementation of the considered DAQ methods have been considered.  

In this Subsection the performance of real logic structures is estimated. All structures are 

defined and implemented into FPGA by using hardware description language VHDL.  Altera 

Quartus 10 Web Edition software is used for comparison and estimation of the required 

resources. 

6.1 Pin-to-pin delays for various types of FPGA logic structures 

The pin-to-pin delays are essential parameters closely related to performance of all types 

of systems. The pin-to-pin delay is the delay in propagation of a signal through a particular 

logic. Small delays allow using of high clock frequency for the system and that improves the 

operational speed of the systems performance. Therefore this parameter to some extent 

reveals the efficiency of a considered design. In other words, comparison of various design 

efficiency can be based on measurements of this parameter. 

Cascades of two types of logic structures are considered for experimental comparison. 

Specifically, the first is a cascade of adders and the second is a cascade of embedded 

multipliers. In general, these delays more or less depend on the word bit number.  

The pin-to-pin delays in a FPGA chip are calculated by using Altera Quartus 10 Web 

Edition Classic Timing Analyzer and Altera Cyclone II EP2C70F672C6N chip model. Altera 

Cyclone II EP2C70F672C6N chip model is used as it is specially designed for applications of 

digital signal processing. Nevertheless all other FPGAs could be used as well. General 

structure of the experimental FPGA setup is given in Figure 6.1. 

 

Figure 6.1 General structure of the experimental FPGA setup. 
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All obtained measurement results of the pin-to-pin delays for 6 bit and 12 bit words are 

summarized in Table 6.1.  

Table 6.1 Pin-to-pin delay within cascades of typical logic structures 

Count of cascade 

elements 

6 bit adders in 

cascade* 

6 bit embedded 

multipliers in 

cascade 

6 bit multipliers 

in cascade* 

1 12.137 ns 13.582 ns 16.532 ns 

4 14.250 ns 26.656 ns 45.087 ns 

8 18.048 ns 37.855 ns 81.329 ns 

16 28.096 ns 71.360 ns 147.463 ns 

32 45.595 ns 131.520 ns 300.351 ns 

64 72.513 ns 246.407 ns 599.806 ns 

Count of cascade 

elements 

12 bit adders in 

cascade* 

12 bit embedded 

multipliers in 

cascade 

12 bit multipliers 

in cascade* 

1 10.978 ns 14.175 ns 29.789 ns 

4 15.443 ns 28.070 ns 87.247 ns 

8 22.482 ns 44.619 ns 163.152 ns 

16 29.486 ns 80.333 ns 321.059 ns 

30 42.056 ns 143.897 ns 602.468 ns 
* Built from available Altera Cyclone II EP2C70F672C6N Logic Elements 

Given tables shows the time delay after which the right result appears at the output of 

system. Nevertheless if the triggers are involved at system design process (the design is 

pipelined) then the clock frequency appears and has meaning. In such a case the number of 

clock frequency cycles determines delay after which the right result appears at the output of 

system. In such a way the design performance can be improved. 

 

Figure 6.2 Worst case Pin-to-pin delay for 6 bit and 12 bit cascades of typical logic structures. 
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Obviously, as it can be seen from Table 6.1 and Figure 6.2, the pin-to-pin delay for the 

cascade of adders is significantly smaller than in the case of a cascade of multipliers. These 

results reveal what can be expected from replacement of massive multiplication operations by 

massive addition operations. The impact of twice longer words also is shown. While 

execution of multiplication operations are sensitive to additional bit in words, addition 

operation delays practically are not impacted by that.  

6.2 Averaging large quantities of signal value multiplications with 

coefficients 

Various approaches to FPGA based FIR filter implementation have been chosen as the 

platform for evaluation of the typical data pre-processing procedures. Indeed, averaging of a 

large quantity of signal sample value multiplications with filter coefficients is a typical 

operation widely used at resolution of various DAQ preprocessing tasks. Such averaging 

function actually is generic. Indeed, it covers a wide variety of signal processing tasks 

performed both in time and frequency domains, including convolution, correlation functions 

and all types of digital filtering, performed on the basis of filter banks or DFT.  Therefore 

studies of FPGA implementation of such averaging function reveals relationships essential for 

FPGA implementations of data pre-processing. 

Typical FIR filter structures with parallel multipliers and a shared multiplier are shown in 

Figure 6.3. The filter performance and the required FPGA resources needed for filter 

implementation are estimated. 

 

Figure 6.3 (a) Typical FIR filter structure with parallel multipliers and (b) FIR filter structure with 

a shared multiplier. 
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Important parameters for filter performance characterization are the system clock 

frequency (this parameter is closely tied to with input signal bandwidth) and the system delay 

that shows how much time it will take for a signal to propagate through the system logic. It is 

also important to know the requirements for the FPGA resources (in terms of logic gate count 

etc.) needed for implementation of the respective logic structures. In the case of FIR filters, 

these required resources are summarized in Appendix 6 and Figures 6.4. For comprehensive 

comparison of the two FPGA chip models, different architecture filters having various 

numbers of coefficients (with one shared and many parallel multipliers) are considered. 

 

Figure 6.4 (a) Required FPGA resources (in percents) depending on the number of FIR filter 

coefficients in the case of the typical FIR filter structure based on parallel multipliers and (b) 

Dependence of the input signal bandwidth on the number of FIR filter coefficients for digital filters 

based on parallel multipliers. 

Note that the filter clock frequency is directly related to the filter input signal bandwidth. 

If the FIR filter with parallel multipliers is considered then the bandwidth of the filter input 

signal might be half of filter clock frequency (according to Nyquist criteria). In the case of the 

filter with one shared multiplier the signal bandwidth has to be divided also by the number of 

filter coefficients. 

Proposed alternative [6] is to use digital filters with a structure given in Figure 6.4 (b). 

The advantage of filters with this structure is that they operate without multipliers. This 

operation is avoided by using specific signal encoding on the basis of timing information, 

studied and described in Chapter 5. 
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Figure 6.5 (a) Nontraditional multiplier-less structure of FIR filter and (b) Amplitude-Frequency 

characteristic of a 32-tap band-pass multiplier-less FIR filter. 

An example of a possible filter Amplitude-Frequency characteristic of a band-pass filter is 

given in Figure 6.5 (b). 

Results of comparison various FIR filters, specifically, their performance and required 

resources, are displayed in Figure 6.4 and given in Appendix 6 (in terms of combinational 

functions and registers). The given parameters show what could be expected at 

implementation of particular filters or other similar functional blocks on the basis of FPGA 

chips. 

6.3 FPGA based implementation of fast DFT for data pre-processing 

FPGA based implementation of a specific DFT multiplier-less structure for fast pre-

processing of data has been developed and FPGA implementation specifics studied.  This type 

of FPGA is applicable for designs of various application-specific systems fulfilling digital 

signal pre-processing related to data time-frequency representation, data 

compression/reconstruction, spectrum analysis, filtering, parameter estimation and 

demodulation.  

Experimental system has been programmed and tested on the basis of Altera Cyclone II 

EP2C70F672C6N chip model. The basic structure of the Fast DFT Processor implemented is 

given in Figure 6.6. The core of it is represented by a multiplier-less Adder-Subtractor Matrix. 

In addition to this Matrix, there are data input and output subsystems. Designs of these 
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subsystems depend on specifics and requirements of various applications. Therefore the data 

input and output version shown in Figure 6.6 is just one of the possible modifications. Real-

time DFT and batch processing of data for DFT are two of the most often needed types of 

data pre-processing that can be performed on the basis of the developed FPGA chip. 

 

Figure 6.6 Block diagram of the Fast DFT Processor implemented as a FPGA chip. 

Requirements dictated by a specific bioimpedance measurement system were taken into 

account at definition of the parameters of DFT for the specification of this FPGA chip. These 

parameters are the following: Fourier coefficients have to be calculated simultaneously at 

frequencies f0 (data mean value), f1, f2, f4, f8, f16, f32 and f64 by processing N=256 real 

signal sample values. The absolute values of these frequencies depend only on the parameters 

of data acquisition, in particular, on the specifics of the signal source and the used ADC. Thus 

the considered processor can perform DFT in a wide frequency range from KHz up to GHz.  

The most important parameter that has to be experimentally measured is the achieved pin-

to-pin delays characterizing the Matrix, as this parameter actually defines the upper repetition 

rate of DFT operation or system clock frequency. Printout of so-called Clock setup, showing 

pin-to-pin delays for the involved data flows at the specified frequencies, follows.  
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Figure 6.7 Printout showing test results of the F-DFT processor measured by Quartus software. 

Achievable clock frequencies for various data flow routes and the related pin-to-pin delays are names 

are given for the indicated addresses.  

As can be seen in Figure 6.7, the worst case is for the data flow in the Matrix from 

register reg[231][7] to the output f8c7[0]. According to the Figure 6.7, the achievable clock 

frequency of the F-DFT processor the under described conditions is 101.49 MHz and the 

worst-case pin-to-pin delay is 9.853 ns. Required resources for the F-DFT processor design 

are given in the printout of Figure 6.8. 

  

Figure 6.8 Required resources of the designed F-DFT processor (Altera Quartus snapshot). 

To compare both, the following points have to be taken into account: (1) the considered 

particular F-DFT processor calculates simultaneously outputs of 15 filters (1 filter for f0 and 

two filters for each other 7 frequencies) in parallel; (2) the structure of the considered single 

FIR filter is pipelined, therefore the indicated clock frequency for it depends on the delay of 

only a single filter stage.  
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For the explained reasons, the performance of both devices cannot be directly compared. 

As to the resources, the requirements of F-DFT are significantly reduced. 

Table 6.2 Summary of required resources and parameters of the F-DFT processor and particular 

digital FIR filter. 

Cyclone II Device 

EP2C70F672C6 

F-DFT  

data block 256 

Pipelined FIR on 256 

coefficients with 256 

multipliers 

Clock frequency 101.49 MHz 117.25 MHz 

Total combinational functions 11,640 / 68,416 ( 17 % ) 28,785 / 68,416 ( 42 % ) 

Dedicated logic registers 7,498 / 68,416 ( 11 % ) 16,807 / 68,416 ( 25 % ) 

Total logic elements 14,108 / 68,416 ( 21 % ) 29,115 / 68,416 ( 43 % ) 

Total pins 26 / 422 ( 7 % ) 30 / 422 ( 7 % ) 

Embedded Multiplier 9-bit elements 0 / 300 ( 0 % ) 0 / 300 ( 0 % ) 

6.4 Application potential of the developed DAQ methods 

The application range for the DAQ methods, developed in result of the obtained research 

results, is wide. Basically they could be used for obtaining data from various biomedical and 

industrial objects and transferring them to computers. These DAQ methods, in general, are 

specific. That is especially true for the DAQ methods based on the DASP concept of the 

Distributed Remote Sampling Analog-to-Digital conversions and the algorithms for alias-free 

processing of nonuniform data streams. This approach makes it possible to obtain a number of 

application benefits. Specifically:  

 This type of multi-channel data acquisition systems is flexible and applicable for 

simultaneous data acquisition from many signal sources (up to 250 or even more); 

 The upper frequencies of the input signal spectra not necessarily depend on the 

quantity of the input channels; 

 Input signals are sampled directly at their sources by front-end devices; 

 Input front-end devices are much simpler than the traditionally used ADCs; 

 Reduced power consumption of these front-end devices. 

On the other hand, DASP technology is specific. Therefore special hardware and software 

tools are needed to implement this approach DAQ. Streams of digitally timed sampling events 

are used as digital signals representing the acquired data. Massive data acquisition is based on 

pseudo-randomised time-sharing, analog-to-event and time-to-digital conversions. 

While the existing   microelectronic components can be used to some extent, development 

and using of special elements would provide much better results. Using the FPGA technology 

partly solves this problem. However ASICs also are needed for effective implementation of 

the signal encoding by timing information. 
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Original fast multiplier-less algorithms for pre-processing of data, represented by the 

streams of digitally timed sampling events, have been developed and their FPGA 

implementation specifics studied.  They are applicable for digital signal pre-processing related 

to signal reconstruction, spectrum analysis, filtering, parameter estimation and demodulation.  

Experimental systems have been designed, made and tested specifically for data 

acquisition from wideband, event timing and large distributed clusters of signal sources. 

Modular system design has been used for achieving versatility in customizing the data 

acquisition systems. 

If the power consumption of the front-end devices is not considered to be of primary 

importance, reference frequency 30 MHz might be used. Under this condition and if the 

number of input channels is up to 1000, the mean sampling rate of inputs then evidently is 

equal to 30 KHz and the upper frequency of the inputs signals is limited at 15 KHz. If data 

has to be acquired also from wideband signal sources, then the upper frequencies of the input 

signals would be limited at 15 MHz. However processing of the data gathered from the 

outputs of these modules then will be more complicated.  

As the USB throughput and USB drivers of the development software impose the 

limitation on the data transmission rate, other interface options might be also used if needed. 

On the other hand, the number of inputs needed for many applications does not exceed 250. 

The data transmission rate of 3 MHz for this quantity of inputs would support the mean 

sampling rate 12 KHz. 

In the cases where massive data acquisition has to be performed under conditions 

requiring very low power consumption at remote sampling, the reference frequency usually 

has to be decreased. If the required input signal bandwidth is given as well, then there might 

be some limitations imposed on the achievable number of inputs. Using of NU sampling then 

might be considered for reducing these limitations, as the input signal bandwidth then does 

not directly depend on the numbers of the inputs. 

Apparently, to achieve significantly higher performance level, the considered multi-

channel data acquisition approach has to be implemented on the basis of special ASICs.  
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7. Obtained research results  

7.1 Current situation in the field of DAQ 

Overview of the specifics related to development and production of currently available 

DAQ systems, made in Chapter 2, reveals the basic tendencies characterizing the situation in 

this field. While about 300 industrial companies are active in this area and seemingly many 

various DAQ systems are offered, actually progress there is relatively slow. As it is shown in 

Chapter 2, the basic limiting factor there is the dependency of DAQ methods on the classical 

theory of DSP, especially on the dominating theoretical principles of periodic sampling. 

Indeed, the classical DSP theory is currently used in this field almost exclusively. 

Consequently, progress in development of new and better DAQ systems currently depends on 

achievements of the technologies for microelectronic element production. In particular, the 

quantity of the information sources from which data could be acquired simultaneously is 

directly tied (for the given highest frequency in the signal spectra) to the achievable highest 

sampling rate. This restriction is typical for DAQ systems based on multiplexing. The number 

of input channels is inversely proportional to the sampling frequency. To avoid this 

restriction, separate ADCs are used in every input channel. However then DAQ systems are 

significantly more complicated and their power consumption level is relatively high.   

The mentioned overview and analysis of the current situation in the area of DAQ, shows 

that the most effective way how to significantly improve DAQ characteristics should be based 

on reconsideration and improvement of the DAQ theoretical basis. It should be upgraded by 

using the latest theoretical principles of DSP developed relatively recently. Specifically, 

theory of randomized and alias-free signal processing is rather well suited for DAQ 

applications. This fact has been taken into account and the undertaken research activities of 

these doctoral studies are based on and exploit a number of essential results of the Digital 

Alias-free Signal Processing theory. That concerns mostly non-traditional methods for signal 

sampling and quantizing performed in the process of digitizing the input signals used at data 

acquisition. The digital data obtained in result of these conversions have specific features and 

special algorithms are to be used for their processing. The point is that signal digitizing 

performed in this way is rather flexible and can be adjusted to the needs of various DAQ 

applications. The approach to DAQ explored in the Thesis is based on these considerations. 

Summary of the obtained research results follows. 
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7.2 Summary of the obtained research results 

Description of the research activities and discussions of various problems and obtained 

results are given in the Chapters 3, 4, 5 and 6. Specifically: 

1. Chapter 3 is dedicated to exploration of the potential of NU sampling for DAQ. The 

obtained results, given in conclusion of this chapter, show that NU sampling is widely 

applicable for improving DAQ procedures. That leads to the possibilities of gaining 

significant improvements of DAQ systems on this basis, specifically:  

 Data acquisition at several times higher frequencies and within a wider dynamic 

range than it is achievable at similar digitizing performed on the basis of periodic 

sampling. 

 Simultaneous data acquisition in parallel from significantly increased number of 

signal sources.  

 Asymmetric data compression/reconstruction. 

 Data fault tolerance. 

 Very fast image data asymmetric (in the sense that most of the computational 

burden is put on the reconstruction stage) compression/reconstruction. Methods 

and algorithms for that have been developed and explored. Experimental 

complexity-reduced hardware/software system based on this method has been 

developed, made and tested. Image data compression up to 5 times has been 

achieved and the compressed image reconstruction quality is demonstrated by 

processing various images, including color and standard images. 

 Spectrum analysis of data obtained in result of NU sampling, in particular, 

bioimpedance data demodulation done by using DFT. Various approaches to DFT 

coefficient estimation are considered, analyzed and described. 

2. Chapter 4 is dedicated to DAQ based on the deterministic, randomized and pseudo-

randomized quantizing methods. They are discussed and compared. Obtained results: 

 Impact of pseudo-randomized signal quantizing on precision of spectrum 

analysis of data is explored and clarified.  

 Methods for spectrum analysis of data, based on pseudo-randomized signal 

quantizing, have been developed. It is shown that application of them leads to 

significantly improved precision of spectral estimations.  

 Performing of DFT on the basis of rectangular functions has been suggested. 

This approach provides for significantly simpler bioimpedance data 

demodulation.  

 Comparison of all three quantizing versions shows that pseudo-randomized 

quantizing usually outperforms two other quantizing options. 
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3. Chapter 5 covers work done on development of a new approach to DAQ based on 

acquiring timing information. The obtained results are: 

 A method for signal sampling, based on detection of signal and sine-wave 

crossing instants (SWC sampling), has been computer-simulated and 

extensively explored. It is shown that this sampling method provides a 

number of advantages, which are well suited to the specifics of DAQ system 

designs. 

 The most significant advantage of SWC based DAQ systems probably is their 

capability of data gathering from a very large quantity of signal sources 

distributed over an object of technical or biomedical origin.  

 And there are other advantages. In particular, SWC sampling provides for 

simple and energy saving architecture for DAQ system hardware. According 

to this sampling concept, ADCs in input channels can be replaced by much 

simpler devices, by comparators. The data from system front-end to the data 

collecting point then are transmitted using sequence of short pulses. It makes 

such DAQ systems much simpler and less energy consuming. 

 SWC sampled signal regularization can be performed to ensure the 

applicability of standard DSP algorithms. 

 This regularization decreases the signal sampling frequency, but increases 

signal quality, as the regularization error and the comparator element delay 

diminish at the same time. This approach is applicable when the signals have 

relatively low-frequency bandwidth, in particular, for biomedical data 

acquisition. 

 Special signal processing methods applicable in the case of SWC sampling 

have been developed for complexity-reduced design of digital filters and 

multiplier-less structures for DFT. The further research activities in this 

direction are very desirable. 

4. Chapter 6 contains description of experimental activities and obtained research 

results. The novel logical structure for DFT coefficients estimation without massive 

multiplication has been implemented into FPGA and its performance evaluated. The 

comparison with equal purpose FIR digital filter reveals that considered F-DFT 

processor structure requires approximately 2 times less count of logical elements. The 

development of F-DFT processor has to continue. 

Computer simulations of the explored DAQ methods have been performed on the basis of 

the developed and used MATLAB programs. 
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8. Conclusions 

The goal of this work, discovering innovative methods for efficient massive data 

acquisition from real life objects and supplying computers with this information, has been 

reached and the planned tasks have been fulfilled. The developed and investigated innovative 

methods for complexity-reduced DAQ and energy-efficient pre-processing of the data are 

based on the theory, concepts and methods of the non-traditional digital signal processing 

DASP. The obtained research results show: (1) how that can be done and (2) what can be 

gained at computer system linking to the real world technical and biological objects by using 

the developed DAQ methods. The basic benefits that can be obtained in this way, specifically, 

are the following: 

1. The developed methods for multi-channel data acquisition systems are flexible and 

applicable for simultaneous data acquisition from many signal sources. 

2. Simultaneous data acquisition from many signal sources is performed in parallel under 

conditions where the upper frequencies of the input signal spectra do not depend on the 

quantity of the input channels. 

3. Input signals can be sampled directly at their sources by front-end devices that are 

much simpler than the traditionally used ADCs.  

4. Consequently, the power consumption of these front-end devices might be significantly 

lower. 

However DASP technology is specific. Therefore hardware and software implementing 

DAQ based on this technology are specific as well. MATLAB based software tools have been 

developed and they could be used to implement the chosen approach. Streams of digitally 

timed sampling events are used as digital signals representing the acquired data. Massive data 

acquisition is based on pseudo-randomised time-sharing, analog-to-event and time-to-digital 

conversions. 

Experimental investigations of the developed DAQ methods were carried out by using 

hardware tools that have been developed in the Laboratory 2.2.of Institute of Electronics and 

Computer Science in the framework of ERAF Project Nr. 

VDP1/ERAF/CFLA/05/APK/2.5.1/000024/012 “Development of multi-channel systems for 

acquisitions of data from biomedical, ecological and industrial systems and transferring them 

to computerized systems”, co-sponsored by the European Union. Author of this research work 

participated in this project as a member of the team.  

Tests and experimental evaluation of the developed DAQ systems show that: 
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1. Experiments confirm the results obtained theoretically.  

2. The existing microelectronic components, including FPGA chips and their 

programming technology, basically are suitable and can be used for implementation of 

gathered data specific pre-processing. 

3. Potential of FPGA usage for specific data pre-processing is demonstrated by 

performance of the developed Fast DFT Processor (see Protocol of F-DFT Processor 

international evaluation results given in Attachment). 

4. Attempts to use the existing microelectronic components for implementation of the 

front-end operations at DAQ show that this approach basically does not lead to sufficiently 

high results. 

5. To fully gain from the research results obtained in the framework of this work, 

implementation of the front-end DAQ procedures, defined by the developed DAQ methods, 

should be based on developed new specific ASICs (Application Specific Integrated Circuits). 
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Appendix 1 – Typical basic parameters of currently 

available DAQ systems 

 

Table A1.1 Typical basic parameters of currently available DAQ systems (May 6, 2010) 

Parameter Value 

System clock frequency Up to 48 MHz 

Sampling frequency 150 – 750 Ks/s per channel 

Channel count 1-32 

Resolution 12-24 bits 

Analog input range -10 to +10 V 

PC interfaces USB, ISA, PCI, PCI-Express 

 

 

Simultaneous Series modules from “Data Translation” are shown in Figure A1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A1.1 Simultaneous Series DAQ modules from “Data Translation” illustrating 

technical complexity of currently produced DAQ systems. 

 

As it is given in [26], the Simultaneous Series modules from “Data 

Translation”, built according to the structures shown in Figure 1.1 (a), provide a 16-

bit ADC for each analog channel. This allows the user to correlate high-speed (up to 2 

MHz) measurements of all input signals at the exactly same time instants. These 

modules are also designed with 500V galvanic isolation to maximize signal integrity 

and protect the PC. This series was developed for customers seeking to correlate 

highly accurate, high-speed measurements while eliminating phase noise from 
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channel-to-channel data acquisition. A common clock and trigger are used for 

simultaneous and synchronous sampling of all inputs. This means that all functions of 

the data acquisition modules (ADC, DAC, DIO, Counter/Timers, and Quadrature 

Decoders) can be simultaneously triggered internally or externally. The data can then 

be clocked either internally or externally and streamed synchronously to host 

memory. The synchronous operation allows all I/O data to be processed and 

correlated for all inputs and outputs. This is very valuable in determining the response 

across a device-under-test to stimuli at the same exact instant. 

 

Table A1.2 Significant parameters of currently available ADCs from companies “Analog 

Devices” and “MAXIM” (May 11, 2010) 

Resolution 

[Bits] 

Sampling frequency 

[Msps]  

Analog input range 

[MHz] 

6 800 400 

8 2200 2800 

10 300 700 

12 400 (250)* 480 (780)* 

14 150 650 

16 125 650 

18 2 50 

24 2.5 1.35 

* Parameters of second better ADC. 

 

For some ADCs available channel count is up to 16. In these cases the ADCs 

sampling frequency will be proportionally smaller. 

 

 
Table A1.3 Significant parameters of currently available multiplexers and switches from 

company “Analog Devices” (May 11, 2010) 

Bandwidth 

[MHz] 

Transition time 

[ns] 

Channel count 

350 4 2:1 

700 10 4:1 

800 1 4:1 

1000 4 2:1 
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Appendix 2 – Typical sensor nodes  

 

Few prominent companies and organizations in the field of developing and 

manufacturing wireless sensor networks for data acquisition are following: 

 Crossbow (www.xbow.com) – Crossbow is supplier and developer of smart 

sensor technologies for more than a decade and has shipped hundreds of 

thousands of smart sensors to more than 4000 customers worldwide. Today, 

Crossbow is a leading supplier of wireless sensor technology and inertial 

MEMS sensors for navigation and control; 

 Ember (www.ember.com) – Ember seeks to develop wireless sensor and 

control network technologies that enable dramatic energy efficiency 

improvements for businesses, homes and the utilities that serve them; 

 Microstrain (www.microstrain.com) – Microstrain makes tiny sensors that are 

used in a wide range of applications, including knee implants, civil structures, 

advanced manufacturing, unmanned military vehicles and automobile engines. 

Company develops and produces innovative, smart, wireless, microminiature 

displacement, orientation and force sensors; 

 IMEC (www.imec.be) – Imec is Europe‟s largest independent research center 

in nanoelectronics and nano-technology. Its staff of more than 1750 people 

includes over 550 industrial residents and guest researchers. Imec’s research is 

applied in better healthcare, smart electronics, sustainable energy and safer 

transport. 

 
 

 

http://www.xbow.com/
http://www.ember.com/
http://www.microstrain.com/
http://www.imec.be/
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Appendix 3 – Experimental setups of the developed DAQ 

systems 

 

 

 

 

 

 

 

 

 

 

 

Figure A3.1 Novel multi-channel data acquisition system prototype.  The system‟s front-

end part is based on SWC sampling principles, involving data transmission with timing 

instants. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure A3.2 Developed multi-channel DAQ system. 
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Figure A3.3 Typical experimental measurement and analysis of front-end part and timing 

event decoder of the multi-channel DAQ pilot system: (a) The acquired test signal with the 

multi-channel DAQ system and (b) its spectrum. 

 

 

 

 
 

Figure A3.5 Work place (consists of oscilloscope, signal source and FPGA development 

board) for DSP digital structure FPGA development and testing. In this particular case the 

selective digital FIR filter on 1024 coefficients is implemented into FPGA. 
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Appendix 4 – Examples of VHDL defined structures 

The VHDL programming is carried out to define logic structures for their comparison and 

find out the real numbers of required resources for their implementation. 

VHDL code for multiplier cascade 

-- EMBEDDED MULT. 

-- 9 standard MULT in cascade 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

entity p2p_delay_mult is 

port( 

ie1, ie2, ie3, ie4, ie5, ie6, ie7, ie8, ie9, ie10 : in std_logic_vector (8 downto 1); 

iz : out std_logic_vector (16 downto 1) 

); 

end entity; 

architecture arch of p2p_delay_mult is 

signal tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, pop : std_logic_vector (16 downto 1); 

begin 

-- Mult 1   

tmp1 <= ie1*ie2;  

-- Mult 2 

tmp2 <= tmp1(8 downto 1) * ie3;  

-- Mult 3  

  tmp3 <= tmp2(8 downto 1) * ie4; --"10110011";  

  -- Mult 4 

  tmp4 <= tmp3(8 downto 1) * ie5; --"11101011";  

 -- Mult 5 

 tmp5 <= tmp4(8 downto 1) * ie6; --"00101011";  

  -- Mult 6 

  tmp6 <= tmp5(8 downto 1) * ie7; --"10110010";  

  -- Mult 7 

  tmp7 <= tmp6(8 downto 1) * ie8; --"11100010";  

-- Mult 8 

  tmp8 <= tmp7(8 downto 1) * ie9; --"10110011";  

-- Mult 9 

  iz <= tmp8(8 downto 1) * ie10; --"01011010";  

end architecture; 

 

VHDL code for adder cascade 

-- 9 Adders in cascade 

library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_arith.all; 

use ieee.std_logic_unsigned.all; 

entity p2p_delay_measuring is 

port( 

ie1, ie2, ie3, ie4, ie5, ie6, ie7, ie8, ie9, ie10 : in std_logic_vector (8 downto 1); 

iz : out std_logic_vector (8 downto 1) 
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); 

end entity; 

architecture arch of p2p_delay_measuring is 

signal tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8 : std_logic_vector (8 downto 1); 

begin 

-- Cascade summing 

-- Adding 1   

tmp1 <= ie1+ie2;  

-- Adding 2 

tmp2 <= tmp1 + ie3;  

-- Adding 3  

  tmp3 <= tmp2 + ie4;  

-- Adding 4 

  tmp4 <= tmp3 + ie5;  

 -- Adding 5 

 tmp5 <= tmp4 + ie6;  

  -- Adding 6 

  tmp6 <= tmp5 + ie7;  

  -- Adding 7 

  tmp7 <= tmp6 + ie8;  

-- Adding 8 

  tmp8 <= tmp7 + ie9;  

-- Adding 9 

iz <= tmp8 + ie10;  

end architecture; 
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Appendix 5 – Used Altera Quartus, ModelSim and Matlab 

tools 

  

Figure A5.1 MATLAB simulation environment used for FIR filter model development and 

testing. It was used in addition for testing the behaviour of created logic structures and VHDL 

code. 
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Figure A5.2 Virtual test signal and part of code generated in MATLAB for the ModelSim 

VHDL code development and testing environment. 
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Figure A5.3 ModelSim environment. It was used for logic structure description by VHDL 

code and for debugging and functionality tests (writing test benches). 
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Figure A5.4 Altera Quartus software used for programming Cyclone FPGA located on 

Altera DSP development board used for estimating required resources for logic structure 

implementation into FPGA. 
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Appendix 6 – Estimated FIR filter performance and 

required resources for the developed experimental models 

Cyclone II Device 

EP2C70F672C6 

FIR on 32 

coefficients with 1 

shared multiplier 

FIR on 32 

coefficients with 32 

parallel multipliers 

FIR on 64 

coefficients with 64 

multipliers 

Signal bandwidth 4.3494 MHz 148.08 MHz 141.64 MHz 

Total combinational functions 2,108 / 68,416 ( 3 % ) 3,570 / 68,416 ( 5 % ) 7,174 / 68,416 ( 10 % ) 

Dedicated logic registers 1,349 / 68,416 ( 2 % ) 2,803 / 68,416 ( 4 % ) 5,650 / 68,416 ( 8 % ) 

Total logic elements 2,780 / 68,416 ( 4 % ) 4,367 / 68,416 ( 6 % ) 8,759 / 68,416 ( 13 % ) 

Total pins 30 / 422 ( 7 % ) 30 / 422 ( 7 % ) 30 / 422 ( 7 % ) 

Embedded Multiplier 9-bit elements 2 / 300 ( < 1 % ) 0 / 300 ( 0 % ) 0 / 300 ( 0 % ) 

Cyclone II Device 

EP2C70F672C6 

FIR on 128 

coefficients with 128 

multipliers 

FIR on 256 

coefficients with 256 

multipliers 

FIR on 512 

coefficients with 512 

multipliers 

Signal bandwidth 122.94 MHz 117.25 MHz 117.98 MHz 

Total combinational functions 14,396 / 68,416 ( 21 % ) 28,785 / 68,416 ( 42 % ) 58,012 / 68,416 ( 85 % ) 

Dedicated logic registers 8,447 / 68,416 ( 12 % ) 16,807 / 68,416 ( 25 % ) 33,828 / 68,416 ( 49 % ) 

Total logic elements 14,534 / 68,416 ( 21 % ) 29,115 / 68,416 ( 43 % ) 58,466 / 68,416 ( 85 % ) 

Total pins 30 / 422 ( 7 % ) 30 / 422 ( 7 % ) 30 / 422 ( 7 % ) 

Embedded Multiplier 9-bit elements 0 / 300 ( 0 % ) 0 / 300 ( 0 % ) 0 / 300 ( 0 % ) 

Cyclone III Device 

EP3C120F780 

FIR on 32 

coefficients with 1 

shared multiplier 

FIR on 32 

coefficients with 32 

parallel multipliers 

FIR on 64 

coefficients with 64 

multipliers 

Signal bandwidth 4.095 MHz 128.16 MHz 127.88 MHz 

Total combinational functions 2,108 / 119,088 ( 2 % ) 3,570 / 119,088 ( 3 % ) 7,174 / 119,088 ( 6 % ) 

Dedicated logic registers 1,349 / 119,088 ( 1 % ) 2,803 / 119,088 ( 2 % ) 5,650 / 119,088 ( 5 % ) 

Total logic elements 2,780 / 119,088 ( 2 % ) 4,367 / 119,088 ( 4 % ) 8,756 / 119,088 ( 7 % ) 

Total pins 30 / 532 ( 6 % ) 30 / 532 ( 6 % ) 30 / 532 ( 6 % ) 

Embedded Multiplier 9-bit elements 2 / 576 ( < 1 % ) 0 / 576 ( 0 % ) 0 / 576 ( 0 % ) 

Cyclone III Device 

EP3C120F780 

FIR on 128 

coefficients with 128 

multipliers 

FIR on 256 

coefficients with 256 

multipliers 

FIR on 512 

coefficients with 512 

multipliers 

Signal bandwidth 121.62 MHz 118.81 MHz 118.55 MHz 

Total combinational functions 14,396 / 119,088 ( 12 % ) 28,785 / 119,088 ( 24 % ) 58,012 / 119,088 ( 49 % ) 

Dedicated logic registers 8,447 / 119,088 ( 7 % ) 16,807 / 119,088 ( 14 % ) 33,828 / 119,088 ( 28 % ) 

Total logic elements 14,531 / 119,088 ( 12 % ) 29,095 / 119,088 ( 24 % ) 58,467 / 119,088 ( 49 % ) 

Total pins 30 / 532 ( 6 % ) 30 / 532 ( 6 % ) 30 / 532 ( 6 % ) 

Embedded Multiplier 9-bit elements 0 / 576 ( 0 % ) 0 / 576 ( 0 % ) 0 / 576 ( 0 % ) 
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Appendix 7 – Results of asymmetric colour image 

compression and reconstruction 

  

Figure A7.1 Original image 1200×1600 pixels. 

 

  

Figure A7.2 Compressed image with 80% of all pixels taken out. 
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Figure A7.3 Image after recovery stage 1. 

 

  

Figure A7.4 Image after recovery stage 2. 

 

  

Figure A7.5 Compressed image is reconstructed with the average relative error 0.1648 %. 
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Figure A7.6 The developed asymmetric data capturing device. 

 

 


