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Abstract

Quantum computation is the field that investigates properties of models of
computation based on the laws of the quantum mechanics. Quantum compu-
tation has many different sub-fields and research directions, starting from very
physical ones and ending with purely algorithmic problems.

The thesis is dedicated to algorithmic aspects of quantum computation and
provides results in three directions:

• Quantum finite automata

We study space-efficiency of one-way quantum finite automata compared
to one-way classical finite automata. We improve best known exponential
separation [AF98] between quantum and classical finite automata.

• Analysis of Grover’s algorithm

We study fault-tolerance of Grover’s algorithm to logical faults. We gen-
eralize the model of logical faults by [RS08] and present several new
results.

• Quantum walks

We study search by quantum walks on two-dimensional grid. We improve
(speed-up) quantum walk search algorithm by [AKR05]. The compara-
ble improvement has been already achieved by other groups using other
methods. Nevertheless, we find our approach as interesting and promis-
ing.
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Part I

INTRODUCTION AND DEFINITIONS



1. INTRODUCTION

1.1 Relevance of the thesis

Today’s computers – both theoretical models and practical implementations –
are based on the laws of classical physics [Pen89]. Classical physics, however,
does not capture all known physical effects, which (at least in theory) can lead
to more powerful models of computation. Quantum computation is the field
that investigates properties of models of computation based on the laws of
the quantum mechanics – the generalization of classical physics, describing the
nature at the elementary particle level.

Quantum computation as a separate field was born in 80s with a realization
that it is not possible to efficiently simulate (model) quantum mechanics on
classical computers [Fey82]. The above problem appears as a result of non-local
nature of quantum mechanics; one needs exponentially many coefficients to
describe an N -particle quantum system. Quantum computer, or computation
using a quantum mechanical system, was proposed as a solution to the above
problem. It has also been conjectured that quantum computers will allow
to exponentially speed-up a classical computation and, thus, solve otherwise
unsolvable problems (such as NP-complete problems). At the moment, the
question if quantum computers can provide an exponential parallelism is still
open.

During the 80s the so-called standard model of quantum computation has
been developed and shown to be a generalization of a classical computation.
That is a general-purpose quantum computer can solve any problem solved by
a classical computer using the same amount of computational resources (time,
space, etc.) [Wat06]. The opposite may not be true. At the moment, there are
problems which can be efficiently (in polynomial time) solved on a quantum
computer, but no polynomial-time classical algorithm is known [Sho97].

Since then many brilliant and important results were found, starting from
Grover’s algorithm [Gro96], which solves the unstructured search problem of
size N in just O(

√
N) steps, and ending with recently developed quantum-
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walk-based search algorithms [CC+03, Amb07, Sze04, BS06].

Grover’s quantum search algorithm is known to be optimal in both amount
of used memory and number of steps. Many other quantum algorithms are
not optimal. Thus, an improvement of existing algorithms and development of
new algorithms (especially if new algorithms are based on novel ideas) is one
of major research directions.

Another important research direction is tolerance of existing quantum al-
gorithms to physical and logical faults. It has been shown that in “faulty
environment” some quantum algorithms may lose their superiority over classi-
cal algorithms [SBW03, RS08]. Therefore, study of fault-tolerance of existing
algorithms and development of methods of protection of certain classes of al-
gorithms from certain types of errors is of great interest [BN+05].

Quantum computer can solve many important computational problems
faster than a classical computer. However, quantum computation also gives us
a better understanding of potential and limits of classical computation. Devel-
opment of quantum computation has provided a new tools (methods of proof
and analysis) and insights which are useful in classical theory of computing
[DW11].

1.2 Objectives of the research

The main objective of the research done within the thesis is the study of power
and limits of quantum computation model, that is:

• To study known effects and properties of quantum computation model
which make quantum algorithms superior over classical algorithms.

• To find new effects of such type.

• To use found effects to improve existing algorithms and construct new
algorithms, with the main emphasis on the search algorithms.

• To analyse in which situations quantum algorithms lose their superiority
over classical algorithms.

1.3 Methods of the research

The research done within the thesis is based on
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• Construction of mathematical models of processes (problems) of interest.

• Numerical study of the models, which include implementation of simu-
lation of the process being studied and analysis of results of simulation
using tools from probability theory and mathematical statistics.

• Analytical study of the models using mathematical formalism of theory
of quantum computation and quantum information, as well as results
from computational complexity and probability theory.

1.4 Synopsis

The thesis summarizes research results in three directions:

Quantum finite automata

Quantum finite automata are a mathematical model for quantum computers
with limited memory.

• We improve exponential separation between quantum and classical fi-
nite automata, for the same computational problem as in [AF98]. The
construction in [AF98] requires O(poly

(
1
ϵ

)
log p) states, where ϵ is a prob-

ability of error. Our construction requires O(1
ϵ
log p) states.

The results of this part are joint work with A. Ambainis. The author’s contri-
bution is 60%.

Analysis of Grover’s algorithm

Grover’s algorithm is a quantum search algorithm solving the unstructured
search problem [Gro96].

• We show that despite the Grover’s algorithm being optimal [Zal99] it is
still possible to reduce the average number of steps required to find the
marked element (by approximately 12.14%) by ending the computation
earlier and repeating the algorithm if necessary.

• We study fault-tolerance of Grover’s algorithm to logical faults in [RS08]
model for a small number of errors. We show that k ≪ t (t is a number of
steps of the algorithm) uniformly distributed independent errors change
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the sequence of transformations of the algorithm from (DQ)t to (DQ)T ,
where T is the random variable with expectation O

(
t
k

)
and standard

deviation O
(

t√
k

)
.

• We generalize the model of logical faults of [RS08]. We analyse the lim-
iting behaviour of Grover’s algorithm for a large number of steps and
prove the existence of limiting state ρlim. If we measure ρlim, the proba-
bility of getting one of the marked states i1, . . . , ik is k

k+1
. We show that

convergence time is O(N).

The results of this part are joint work with A. Ambainis, A. Bačkurs and A.
Rivošs. The author’s contribution is 70%.

Quantum walks

Quantum walks are quantum counterparts of random walks [Amb03].

• We study search by quantum walks on two-dimensional
√
N ×

√
N grid.

We speed-up quantum walk search algorithm by [AKR05] fromO(
√
N log(N))

to O(
√
N log(N) steps.

The results of this part are joint work with A. Ambainis, A. Bačkurs and A.
Rivošs. The author’s contribution is 50%.

1.5 Theoretical and practical significance of the results

Similarly to the summary of the results we give significance of the results for
each research direction separately.

Quantum finite automata

At the moment no general purpose quantum computer exist. Even then
built, quantum computers will probably consist of two parts: a classical part
and a small but expensive quantum part. This motivates the study of systems
with a smallest possible quantum mechanical part.

We study space-efficiency of one-way quantum finite automata compared
to one-way classical finite automata. We improve best known exponential sep-
aration [AF98] between quantum and classical finite automata, that is we show
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that quantum automata can be much more efficient than classical automata.

Analysis of Grover’s algorithm

Grover’s algorithm is one of most important and widely known quantum
algorithms. It solves the unstructured search problem of size N in O(

√
N)

queries, providing a significant speed-up over any deterministic or probabilistic
algorithm solving the same problem. Many other quantum algorithms use
Grover’s algorithm as a subroutine.

The running time of the algorithm, however, is very sensitive to errors
[RS08]. We study fault-tolerance of Grover’s algorithm to logical faults. We
generalize the model of logical faults by [RS08] and present several new results.
Both the results and used methods can be applied to wide range of other quan-
tum query algorithms (mentioned in summary of corresponding chapters) and
serve as a basis for further research.

Quantum walks

Quantum walks have been useful to design quantum algorithms for a variety
of problems. In many of those applications, quantum walks are used as a tool
for search.

We study search by quantum walks on two-dimensional grid. We improve
(speed-up) quantum walk search algorithm by [AKR05]. Our improvement is
based on effect which has never been studied before. It opens several new
questions and has potential to be extended to graphs of other types. A com-
parable improvement has been already achieved by other groups using other
methods [Tul08, KM+10]. Nevertheless, we find our approach as interesting
and promising.

Overall, the results are of theoretical nature and serve as a basis for further
research.

1.6 Approval of the results

Author of the thesis studied quantum computation problems in the follow-
ing research projects: University of Latvia project “Jaunas zinātniskās grupas
izveide kvantu skaitļošanā un datorzintu teorijā” (“Creating a new research
group in quantum computing and theory of computing”) and ESF project
“Datorzinātnes pielietojumi un tās saiknes ar kvantu fiziku” (“Applications of
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computer science and its links to quantum physics”).

The results of the research done within the thesis are reflected in the fol-
lowing publications. The author’s contribution is 50-70%.

1. [AN08] A. Ambainis, N. Nahimovs.
Improved constructions of quantum automata.
Proceedings of TQC 2008, Lecture Notes in Computer Science, 5106:47-
56, 2008.

2. [AN09] A. Ambainis, N. Nahimovs.
Improved constructions of quantum automata.
Theoretical Computer Science (special issue on probabilistic and quantum
automata), 410:1916-1922, 2009.

3. [NR10] N. Nahimovs, A. Rivošs.
A note on the optimality of the Grover’s algorithm.
Scientific Papers University of Latvia, 756:221-225, 2010.

4. [KNR12] D. Kravchenko, N. Nahimovs, A. Rivosh.
On fault-tolerance of Grover’s algorithm.
Scientific Papers University of Latvia, 787:135-145, 2012.

5. [AB+12] A. Ambainis, A. Bačkurs, N. Nahimovs, R. Ozols, A. Rivosh.
Search by quantum walks on two dimensional grid without amplitude
amplification.
Proceedings of TQC 2012, Lecture Notes in Computer Science, 7582:87-
97, 2012.

6. [AB+13] A. Ambainis, A. Bačkurs, N. Nahimovs, A. Rivosh.
Grover’s algorithm with errors.
Proceedings of MEMICS 2012, Lecture Notes in Computer Science, 7721:180-
189, 2013.

The results of the thesis were presented at the following international con-
ferences and workshops:

1. TQC 2008 (The 3rd Workshop on Theory of Quantum Computation,
Communication, and Cryptography), Tokyo, Japan, 2008.
Presentation: Improved constructions of quantum automata.

2. CEQIP 2008 (5th Central European Quantum Information Processing
Workshop), Telč, Czech Republic, 2008.
Presentation: Space-efficient quantum automata.



1. Introduction 8

3. CEQIP 2009 (5th Central European Quantum Information Processing
Workshop), Jindricuv Hradec, Czech Republic, 2009.
Poster presentation: Grover’s algorithm with probabilistic solutions.

4. 68. LU konference, Rı̄ga, Latvia, 2010.
Presentation: Kvantu meklēšana ir ātrāka, ja to pārtrauc priekšlaikus.

5. CEQIP 2010 (7th Central European Quantum Information Processing
Workshop), Valtice, Czech Republic, 2010.
Poster presentation: On fault-tolerance of Grover’s algorithm.

6. Joint Estonian-Latvian Theory Days, Rakari, Latvia, 2011.
Presentation: Constant factor improvement of the Grover’s algorithm.

7. CEQIP 2011 (8th Central European Quantum Information Processing
Workshop), Znojmo, Czech Republic, 2011.
Poster presentation: Search by quantum walks on two dimensional grid
without amplitude amplification.

8. QIP 2012 (Quantum Information Processing), Montréal, Québec, Canada,
2011.
Poster presentation: Search by quantum walks on two-dimensional grid
without amplitude amplification.

9. 70. LU konference, Rı̄ga, Latvia, 2012.
Presentation: Kvantu klejošana uz divdimensiju režǧa.

10. TQC 2012 (The 7rd Workshop on Theory of Quantum Computation,
Communication, and Cryptography), Tokyo, Japan, 2012.
Presentation: Search by quantum walks on two-dimensional grid without
amplitude amplification.

11. CEQIP 2012 (9th Central European Quantum Information Processing
Workshop), Smolenice, Slovakia, 2012.
Presentation: Better algorithms for search by quantum walks on two-
dimensional grid.

12. MEMICS 2012 (Annual Doctoral Workshop on Mathematical and Engi-
neering Methods in Computer Science), Znojmo, Czech Republic, 2012.
Presentation: Grover’s algorithm with errors.
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1.7 Structure of the thesis

The thesis consists of an abstract, preface, acknowledgements, table of contents,
list of figures, list of tables, 9 chapters organized into 4 parts and bibliography.
The thesis is 113 pages long.

Part I provides an introduction. Chapter 1 gives an overview of the thesis.
Chapter 2 provides the necessary background on quantum information and the
standard model of quantum computation.

Part II is dedicated to quantum finite automata. Chapter 3 gives an
overview of quantum automata models and their relation to classical automata.
Chapter 4 contains new results on 1-way quantum finite automata. The results
of this chapter were published in [AN08, AN09].

Part III is related to one of most popular quantum search algorithms –
Grover’s algorithm. Chapter 5 introduces quantum query model and Grover’s
algorithm. In chapter 6 we study the optimality of Grover’s algorithm. The
results of this chapter were published in [NR10]. Chapters 7 and 8 study
fault-tolerance of Grover’s algorithm for different models of logical faults. The
results of these chapters were published in [KNR12, AB+13].

Part IV is dedicated to quantum walks in two dimensions. Chapter 9 in-
troduces quantum walks on two-dimensional grid and describes an improved
version of [AKR05] quantum walk search algorithm. The results of this chapter
were published in [AB+12].



2. QUANTUM COMPUTATION MODEL

This chapter describes the standard model of quantum computation. The stan-
dard model can be seen as a generalization of classical computation [Wat06].
It replaces classical bits with two state quantum systems (called quantum bits
or qubits) and enlarges the set of possible operations to include all operations
allowed by quantum mechanics. This model is the most widely used model of
quantum computation.

There are also more exotic models of quantum computation. In case of
measurement-only model the computation is done by preparing a quantum
system in a predefined state (independent of the problem) and then observing
its particles in some specific order (dependent on the problem). It has been
shown that this type of computation is equivalent to the standard model of
quantum computation [Joz05].

In case of the adiabatic model of quantum computation, which is a con-
tinuous time model, the computation (the evolution of the quantum state) is
done by a time-dependent Hamiltonian (physically implementable operation)
that slowly changes between an initial Hamiltonian, whose lowest-energy state
is easy to construct, and a final Hamiltonian, whose lowest-energy state de-
scribes a solution of a problem [FG+00]. Usually, the final Hamiltonian can
be constructed based on a structure of the problem without knowing an exact
solution. The laws of quantum mechanics guarantee that the system remains
in the lowest-energy state, so that at the end of this process the state of the
system describes the solution to the problem. The speed at which the Hamil-
tonians can be changed one into another depends on a problem and usually
is hard to estimate. The adiabatic model is also equivalent to the standard
model of quantum computation.

In the following sections we introduce the standard model by describing
three of its components: a set of possible states of a quantum system, a set
of transformations, which can be applied to the system, and the process of
observation of the state of the system. A more detailed description of the
standard model of quantum computation can be found in [Wat06] or [KLM07].
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2.1 Preliminaries, terminology and notation

We assume familiarity with complex numbers, basics of matrix algebra (matrix
addition, matrix multiplication, inverse matrix, etc.) and basic concepts of
linear algebra (vector spaces, linear independence, linear span, etc.) [Lay11].

We use Aij to denote the (i, j)-th entry of the matrix A and vi to denote
the i-th value of the vector v. We use A∗ for the conjugate transpose of matrix
A – the matrix obtained by transposing A and taking the complex conjugates
of all entries.

We use Cd to denote the d–dimensional complex space. We use Id to denote
the d × d identity matrix, which has 1s on its diagonal and 0s elsewhere. We
usually omit the subscript d when the dimension is clear from context.

The inner product of vectors v and w is a scalar v∗w =
∑

i v
∗
iwi. The outer

product of vectors v and w is a matrix vw∗. The complex number λ is an
eigenvalue of square matrix A with corresponding eigenvector v if Av = λv.

The tensor or Kronecker product of n×m matrix A and k × l matrix B is
nk ×ml matrix

A⊗B =


A11B . . . A1mB
A21B . . . A2mB

...
. . .

...
An1B . . . AnmB

 .

The tensor product satisfies following properties [Wat06]:

• (αA)⊗B = A⊗ (αB) = α(A⊗B) for any scalar α

• (A⊗B)⊗ C = A⊗ (B ⊗ C) (associativity)

• A⊗ (B + C) = A⊗B + A⊗ C (distributivity)

• (A⊗B)(C ⊗D) = (AC)⊗ (BD)

However, the tensor product is not commutative; in general

A⊗B ̸= B ⊗ A.
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2.2 Quantum states

In this section we describe possible states of a quantum system and introduce
the corresponding notation.

Quantum bit

Quantum bit or qubit is a two-level quantum system (system with two possible
states). We denote its states as |0⟩ and |1⟩ and refer to them as basis or classical
states.

According to quantum mechanics a qubit can be not only in its basis states
but also in any state

|ψ⟩ = α|0⟩+ β|1⟩,

where α and β are complex numbers with the property |α|2 + |β|2 = 1. There-
fore, a state of a quantum bit is as a unit vector in C2. We call α and β
amplitudes and |ψ⟩ – a superposition of |0⟩ and |1⟩ 1.

We use column vectors to describe a state of a quantum system. We identify
basis states with the vectors

|0⟩ def=
(

1
0

)
and |1⟩ def=

(
0
1

)
.

Thus, the state α|0⟩+ β|1⟩ means

α

(
1
0

)
+ β

(
0
1

)
=

(
α
β

)
.

We use ⟨ψ| to denote the conjugate transpose of |ψ⟩. That is ⟨ψ| is a row
vector whose entries are complex conjugates of |ψ⟩ entries. ⟨ψ|ϕ⟩ denotes the
inner product of |ψ⟩ and |ϕ⟩, i.e. a scalar. |ψ⟩⟨ϕ| denotes the outer product of
|ψ⟩ and |ϕ⟩ which is a matrix.

General case

Suppose we have a quantum system with k possible states. We denote the
states as |1⟩, |2⟩, . . . , |k⟩. The state of the system is a unit vector in Ck:

1 The state introduced above is called pure state. The more general mixed states – prob-
abilistic mixture of pure states – are introduced in section 2.4.
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|ψ⟩ = α1|1⟩+ α2|2⟩+ . . .+ αk|k⟩,

where
∑k

i=1 |αk|2 = 1. Similarly to a single qubit case α1, . . . , αk are called
amplitudes and |ψ⟩ is called a superposition of |1⟩, . . . , |k⟩.

Multiple qubits

Suppose we have n quantum bits. The state of the system is a unit vector in
C

2 ⊗C2 ⊗ . . .⊗C2 = C2n space. This space is spanned by 2n basis (classical)
states that are tensor products of basis states of individual qubits:

|x1⟩ ⊗ |x2⟩ ⊗ . . .⊗ |xn⟩,

where x1 ∈ {0, 1}, . . . , xn ∈ {0, 1}. For simplicity we often omit ⊗ symbol and
write |ψ⟩ ⊗ |ϕ⟩ as |ψ⟩|ϕ⟩, or |ψ, ϕ⟩, or even |ψϕ⟩. Thus, the general state of an
n-qubit quantum system is

|ψ⟩ =
∑

x1,...,xn∈{0,1}

αx1,...,xn |x1, . . . , xn⟩,

where
∑

x1,...,xn∈{0,1} |αx1,...,xn |
2 = 1.
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2.3 Operations on quantum states

A quantum system can undergo two types of operations: a unitary evolution
(a sequence of unitary transformations) and a measurement.

Unitary evolution

A unitary transformation is a linear transformation U on Ck that preserves l2
norm – any |ψ⟩ with ||ψ|| = 1 is mapped to |ψ′⟩ with ||ψ′|| = 1. We use U |ψ⟩
to denote a vector to which U maps |ψ⟩.

Transformation U has a natural interpretation in terms of matrices. We
identify U with the k × k matrix where ith column is equal to U |i⟩. Uni-
tary transformations preserve an angle between vectors. Therefore, columns of
matrix corresponding to U must be orthogonal (as are vectors |i⟩).

Measurement

Measurement is the process of getting the information out of a quantum system.

Suppose we have a state:

|ψ⟩ = α1|1⟩+ α2|2⟩+ . . .+ αk|k⟩.

The simplest type of measurement is the measurement in the computational
basis. For the above state it gives |i⟩ with a probability |αi|2. This is why
we require

∑k
i=1 |αi|2 to be 1. After the measurement, the state of the system

changes to |j⟩ ( the outcome of the measurement). In other words measure-
ment “collapses” the superposition |ψ⟩ into a classical state |j⟩. Repeated
measurements will give |j⟩ with probability 1.

A more general type of measurement is a projective or von Neuman mea-
surement. We decompose Ck into orthogonal subspaces H1, . . . ,Hm so that

C
k = H1 ⊕ . . .⊕Hm.

Ameasurement of a pure state |ψ⟩ gives the result i with a probability ||Pi|ψ⟩||2,
where Pi|ψ⟩ denotes a projection of |ψ⟩ to the subspace Hi. The state after

the measurement changes to Pi|ψ⟩
||Pi|ψ⟩|| . Repeated measurements will give i with

probability 1.
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2.4 General quantum states and operations

In the previous sections we described the state of a quantum system by a
definite state vector. Such states are commonly referred to as pure states.
However, there are situations when all we know about a quantum system is
that it is in a specific set of states with corresponding probabilities. In this
case the system is said to be in mixed state.

Mixed states occur as a result of a stochastic process, such as interaction
of a quantum system with the environment or decoherence. Also, if a quan-
tum system consists of two or more subsystems that are entangled, then each
individual subsystem must be treated as a mixed state even if the complete
system is in a pure state.

The density matrix formalism was introduced by John von Neumann (and
independently by Lev Landau and Felix Bloch) in 1927 to describe a statistical
state of the quantum system. We introduce only a part of general quantum
state formalism, sufficient to understand the following chapters. More profound
overview of general quantum states and operators can be found in [KLM07].

Suppose we have a quantum system and we known it to be in the set of
states |ψ1⟩, . . . , |ψk⟩ with probabilities p1, . . . , pk (the probabilities must sum
to 1). The collection {(p1, |ψ1⟩); (p2, |ψ2⟩); . . . ; (pk, |ψk⟩)}, which describes pos-
sible states along with associated probabilities, is called the mixture. It is
not convenient to use mixtures as a mathematical description of a state of a
quantum system.

To describe a mixed state in a more convenient way, we use density matrices.
For a pure state |ψ⟩ =

∑n
i=1 αi|i⟩ the density matrix is given by

ρ = |ψ⟩⟨ψ| =



α1

α2

...

αn


(
α∗
1 α∗

2 . . . α∗
n

)
=



|α1|2 α1α
∗
2 . . . α1α

∗
n

α2α
∗
1 |α2|2 . . . α2α

∗
n

...
...

. . .
...

αnα
∗
1 αnα

∗
2 . . . |αn|2


.

For a mixed state (pi, |ψi⟩) the density matrix is the sum of density matrices
of possible pure states with associated probabilities:

ρ =
∑
i

pi|ψi⟩⟨ψi|.
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If two quantum systems (pi, |ψi⟩) and (qi, |ϕi⟩) have the same density ma-
trices they are physically indistinguishable [KLM07]. Any measurement will
give same probability distribution of outcomes. Thus, density matrix contains
all information about the quantum state.

The diagonal entries of a density matrix contain probabilities to find the
system in the corresponding state, if we perform a measurement in the com-
putational basis. Thus, their sum is equal to 1.

Consider an operation on mixed state. If we apply unitary operation U to
the mixed state (pi, |ψi⟩) we get mixed state (pi, U |ψi⟩). The corresponding
density matrix is

ρ
′
=
∑
i

piU |ψi⟩⟨ψi|U † = U

(∑
i

pi|ψi⟩⟨ψi|

)
U † = UρU †.

Similarly, if we apply a stochastic operation (qi, Ui) to the mixed state (pi, |ψi⟩)
we get

ρ
′
=
∑
j

qjUjρU
†
j .

Stochastic operations are just a special case of a general quantum operation.
Any operation Φ that can be written as

Φ(ρ) =
∑
i

AiρA
†
i

for some matrices A1, . . . , Ak satisfying∑
i

AjA
†
j = I

can be physically implemented.



Part II

QUANTUM FINITE AUTOMATA



3. ONE-WAY QUANTUM FINITE AUTOMATA

Quantum finite automata are a mathematical model for quantum computers
with limited memory. They are related to more general models of quantum
computers (such as quantum Turing machines and quantum circuits) in a sim-
ilar way classical finite automata are related to general models of classical
computers (such as Turing machines). A quantum finite automaton has a fi-
nite state space and applies a sequence of transformations, corresponding to
the letter of the input word to this state space. At the end, the state of the
quantum automaton is measured and the input word is accepted or rejected,
depending on the outcome of the measurement.

Similarly to a classical case several types of quantum finite automata has
been defined. The introduced models differ by their properties, starting from
classical ones, such as input head type (one-way, two-way), and ending with
quantum properties, such as a way we perform the measurement (measure-
once, measure-many).

Most commonly, finite automata (including quantum finite automata) are
studied in 1-way model, where the transformations, corresponding to the letters
of the input word, are applied in the order of the letters in the word, from the
left to the right.

In this chapter we give an overview of 1-way quantum finite automata
models and compare their computational power and space efficiency to classical
(deterministic and probabilistic) 1-way finite automata.
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3.1 One-way quantum finite automata models

First quantum automata models, such as [CM00] or [KW97], were defined in a
restricted way (were naive “quantization” of classical automata models). These
models recognize a subset of regular languages (for example, [KW97] demon-
strates regular languages which can not be recognized by these models) and
,thus, are weaker then deterministic and probabilistic 1-way finite automata,
which recognize all regular languages.

Later more general QFA models were introduced, which can recognize any
regular language [BMP03, Cia01]. As QFA can be simulated by DFA with
exponentially many states, QFA can not recognize languages not recognized
by DFA. Thus, QFA and DFA recognize the same set of languages – regular
languages – and have equivalent computational power.

One of the reasons why restricted quantum automata models are still being
used is that they are simple but powerful enough to demonstrate many of QFA
succinctness (space-efficiency) results.

3.1.1 Moore-Crutchfield (measure-once) model

We consider 1-way quantum finite automata (QFA) as defined in [CM00].
Namely, a 1-way QFA is a tuple M = (Q,Σ, δ, q0, Qacc, Qrej) where Q is a
finite set of states, Σ is an input alphabet, δ is a transition function, q0 ∈ Q
is a starting state, Qacc and Qrej are sets of accepting and rejecting states and
Q = Qacc ∪Qrej. ¢ and $ are symbols that do not belong to Σ. We use ¢ and
$ as the left and the right end-marker, respectively. The working alphabet of
M is Γ = Σ ∪ {¢, $}.

For q ∈ Q, |q⟩ denotes the unit vector with value 1 at q and 0 elsewhere.
The state of an automaton is a superposition of |q⟩.

The transition function δ maps Q × Γ × Q to C. The value δ(q1, a, q2) is
the amplitude of |q2⟩ in the superposition of states to which M goes from |q1⟩
after reading a. For a ∈ Γ, Va is a linear transformation on l2(Q) defined by

Va|q1⟩ =
∑
q2∈Q

δ(q1, a, q2)|q2⟩.

We require all Va to be unitary.

The computation of a QFA starts in the superposition |q0⟩. Then transfor-
mations corresponding to the left end-marker ¢, the letters of the input word x
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and the right end-marker $ are applied. The transformation corresponding to
a ∈ Γ is Va. If the superposition before reading a is |ψ⟩, then the superposition
after reading a is Va|ψ⟩.

After reading the right end-marker, the current state |ψ⟩ is observed with
respect to Eacc ⊕ Erej, where Eacc = span{|q⟩ : q ∈ Qacc}, Erej = span{|q⟩ :
q ∈ Qrej} 1. This observation gives x ∈ Ei with the probability equal to the
square of the projection of |ψ⟩ to Ei. After that, the superposition collapses
to this projection. If we get |ψ⟩ ∈ Eacc, the input is accepted. If |ψ⟩ ∈ Erej,
the input is rejected.

3.1.2 Kondacs-Watrous (measure-many) model

Independently of [CM00], quantum automata were introduced in [KW97]. The
difference between these two definitions is that the measurement is performed
after reading each letter (after each Va). There are three types of states: Qacc

– accepting states, Qrej – rejecting states and Qnon – nor accepting neither
rejecting states.

After reading an input word letter, the current state |ψ⟩ is observed with
respect to Eacc ⊕ Erej ⊕ Enon, where Eacc = span{|q⟩ : q ∈ Qacc}, Erej =
span{|q⟩ : q ∈ Qrej} and Qnon = span{|q⟩ : q ∈ Qnon}. If we get |ψ⟩ ∈ Eacc,
the input is accepted. If |ψ⟩ ∈ Erej, the input is rejected. If we get |ψ⟩ ∈ Erej,
the computation process is continued.

It can be shown that this model is a generalization of the Moore-Crutchfield
model [KW97].

3.1.3 General 1-way quantum finite automata

There exist several equivalent general quantum automata models, which were
independently introduced by different authors [BMP03] [Cia01].

General quantum finite automata are similar to [CM00], but instead of
unitary Va (transformation corresponding to an input work letter a) we have
general quantum operations Φa and state of an automaton is a mixed quantum
state. For a formal definition of general 1-way QFA see [Hir11].

1 span(V ) is the linear span of V , i.e. the set of all linear combinations of the elements of
V .
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3.2 Space-efficiency of 1-way quantum finite automata

This section overviews known results on space-efficiency of 1-way quantum
finite automata (compared to 1-way classical finite automata). We start with
a few definitions and then formulate the results.

Language is called unary is it is over alphabet consisting of a single letter.
Unary language defines a function

f : x→ {0, 1}

which specifies if word ax should be accepted or rejected. Language is called
periodic if there exists k such that

f(x) = f(x+ kn)

for n ∈ N.

The main results on space-efficiency of 1-way QFA are:

Theorem 3.1 ([AF98]): There exists a set of unary periodic languages Lp of
period p, for which any deterministic 1-way finite automaton requires at least
p states, but there exists a 1-way QFA with O(log p) states.

Theorem 3.2 ([MP01]): For any periodic unary language L of size p there exists
1-way QFA with O(

√
p) states.

Note that quantum finite automata can not be super-exponentially more
space-efficient than classical finite automata. One can always simulate a QFA
(approximate its state) by a DFA with exponential number of states.



4. SPACE-EFFICIENT QUANTUM AUTOMATA

It is known that quantum finite automata can be exponentially more space-
efficient than classical finite automata [AF98, Gal06]. We study a problem
(defined in [AF98]) for which any classical 1-way finite automaton needs p
states, but quantum 1-way finite automaton needs only O(log(p)) states. Our
first result is an improved exponential separation between quantum and clas-
sical finite automata. We provide a construction with less states and much
simpler analysis.

Second, both constructions of QFAs (in [AF98] and this thesis) are prob-
abilistic. They employ a sequence of parameters that are chosen at random.
We present two non-probabilistic constructions of QFAs. The first of them
is very simple but is supported by numerical experiments only. The second
construction is more complex and has slightly larger number of states but it is
provably correct.
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4.1 Summary of results

Let p be a prime. We consider the language

Lp = { ai | i is divisible by p }.

It is easy to see that any deterministic or probabilistic 1-way finite automaton
recognizing Lp has at least p states. Ambainis and Freivalds [AF98] have shown
that Lp can be recognized by a QFA with O(log p) states.

The constant before log p in [AF98] depends on the required probability of
correct answer. For x ∈ Lp, the answer is always correct with probability 1.
For x /∈ Lp, [AF98] give a QFA with poly(1

ϵ
) log p states, which is correct with

probability at least 1− ϵ on inputs x /∈ Lp.

We present a simpler construction of QFAs that achieves a better big-O
constant.

Theorem 4.1: For any ϵ > 0, there is a QFA with 4 log 2p
ϵ

states recognizing Lp
with probability at least 1− ϵ.

Similarly to [AF98] our construction is probabilistic. It employs a sequence
of parameters that are chosen at random and hardwired into the QFA. We
present two non-probabilistic constructions of QFAs. The first of them gives
QFAs with O(log p) states but its correctness is shown by numerical experi-
ments only. The second construction gives QFAs with O(log2+ϵ p) states but
it is provably correct.

4.2 Used theorems

In the proof below we will use the following theorem from the linear algebra.

Theorem 4.2: Let α1, . . ., αm be complex numbers such that

|α1|2 + . . .+ |αm|2 = 1.

Then,

1. there is a unitary transformation U1 such that U1|q1⟩ = α1|q1⟩ + . . . +
αm|qm⟩.



4. Space-efficient quantum automata 24

2. there is a unitary transformation U2 such that, for all i ∈ {1, . . . ,m},
U2|qi⟩ is equal to αi|q1⟩ plus some combination of |q2⟩, . . . , |qm⟩.

In the second case, we also have

U2(α1|q1⟩+ . . .+ αm|qm⟩) = |q1⟩.

We will also use the following theorem from the probability theory (variant
of Azuma’s theorem [MR94]):

Theorem 4.3: LetX1, . . . , Xd be independent random variables such that E[Xi] =
0 and the value of Xi is always between -1 and 1. Then,

Pr[|
d∑
i=1

Xi| ≥ λ] ≤ 2e−
λ2

2d .
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4.3 Probabilistic construction

In this section we will describe the probabilistic construction of space-efficient
QFA and will prove its correctness. We use QFA definition by [CM00] because
it is simple and sufficient to describe our result.

Let Uk, for k ∈ {1, . . . , p−1}, be a quantum automaton with a set of states
Q = {q0, q1}, a starting state |q0⟩, Qacc = {q0}, Qrej = {q1}. The transition
function is defined as follows. Transformation Va that corresponds to symbol
a maps |q0⟩ to cosϕ|q0⟩ + sinϕ|q1⟩ and |q1⟩ to − sinϕ|q0⟩ + cosϕ|q1⟩, where
ϕ = 2πk

p
(it is easy to check that this transformation is unitary). Symbols ¢

and $ leave |q0⟩ and |q1⟩ unchanged.

Lemma 4.1: After reading aj, the state of Uk is

cos

(
2πjk

p

)
|q0⟩+ sin

(
2πjk

p

)
|q1⟩.

Proof. By induction. �
If j is divisible by p, then 2πjk

p
is a multiple of 2π, cos(2πjk

p
) = 1, sin(2πjk

p
) =

0. Thus, reading aj maps the starting state |q0⟩ to |q0⟩. Therefore, we get an
accepting state with probability 1. This means that all automata Uk accept
words in L with probability 1.

Let k1, . . . , kd be a sequence of d = c log p numbers. We construct an
automaton U by combining Uk1 , . . . , Ukd . The set of states of U consists of 2d
states q1,0, q1,1, q2,0, q2,1, . . ., qd,0, qd,1. The starting state is q1,0.

The transformation for left end-marker ¢ is such that V¢(|q1,0⟩) = |ψ0⟩
where

|ψ0⟩ =
1√
d
(|q1,0⟩+ |q2,0⟩+ . . . |qd,0⟩).

This transformation exists because of the first part of Theorem 4.2. The trans-
formation for a is defined by

Va(|qi,0⟩) = cos
2kiπ

p
|qi,0⟩+ sin

2kiπ

p
|qi,1⟩,

Va(|qi,1⟩) = − sin
2kiπ

p
|qi,0⟩+ cos

2kiπ

p
|qi,1⟩.

The transformation for right end-marker $ is as follows. The states |qi,1⟩ are
left unchanged. The states |qi,0⟩ change to 1√

d
|q1,0⟩ plus a superposition of other
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states (part 2 of Theorem 4.2, applied to |q1,0⟩, . . . , |qd,0⟩). In particular,

V$|ψ0⟩ = |q1,0⟩.

The set of accepting states Qacc consists of one state q1,0. All other states
qi,j belong to Qrej.

Claim 4.1: If the input word is aj and j is divisible by p, then U accepts it
with probability 1.

Proof. The left end-marker maps the starting state to |ψ0⟩. Reading j letters
a maps each |qi,0⟩ to itself (see analysis of Uk). Therefore, the state |ψ0⟩, which
consists of various |qi,0⟩, is also mapped to itself. The right end-marker maps
|ψ0⟩ to |q1,0⟩, which is an accepting state.

�

Claim 4.2: If the input word is aj, j not divisible by p, U accepts it with
probability

1

d2

(
cos

2πk1j

p
+ cos

2πk2j

p
+ . . .+ cos

2πkdj

p

)2

. (4.1)

Proof. By Lemma 4.1, aj maps |qi,0⟩ to cos 2πkij
p

|qi,0⟩+sin 2πkij
p

|qi,1⟩. Therefore,
the state before reading the right end-marker $ is

1√
d

d∑
i=1

(cos
2πkij

p
|qi,0⟩+ sin

2πkij

p
|qi,1⟩).

The right end-marker maps each |qi,0⟩ to 1√
d
|q1,0⟩ plus a superposition of other

basis states. Therefore, the state after reading the right end-marker $ is

1

d

d∑
i=1

cos
2πkij

p
|q1,0⟩

plus other states |qi,j⟩. Since |q1,0⟩ is the only accepting state, the probability
of acceptance is the square of the coefficient of |q1,0⟩. This proves the lemma.

�
The rest of the proof is based on Theorem 4.3. We apply the theorem

as follows. Fix j ∈ {1, . . . , p − 1}. Pick each of k1, . . . , kd randomly from
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{0, . . . , p− 1}. Define Xi = cos 2πkij
p

. We claim that Xi satisfies the conditions
of theorem. Obviously, the value of cos function is between -1 and 1. Since
ki = k for each k ∈ {0, . . . , p− 1} with probability 1/p, the expectation of Xi

is

E[Xi] =
1

p

p−1∑
k=0

cos
2πkj

p
.

We have cos 2πkj
p

= cos 2π(kj mod p)
p

because cos(2π + x) = cos x. Consider the

numbers 0, j, 2j mod p, . . ., (p − 1)j mod p. They are all distinct. Since p is
prime, kj = k′j mod p implies k = k′. Therefore, the numbers 0, j, 2j mod p,
. . ., (p− 1)j mod p are just 0, 1, . . . , p− 1 in a different order. This means that
the expectation of Xi is

E[Xi] =
1

p

p−1∑
k=0

cos
2πk

p
.

This is equal to 0.

By equation (4.1), the probability of accepting aj is 1
d2
(X1+ . . .+Xd)

2. To
achieve

1

d2
(X1 + . . .+Xd)

2 ≤ ϵ,

we need |X1+ . . .+Xd| ≤
√
ϵd. By Theorem 4.3, the probability that this does

not happen is at most 2e−
ϵd
2 .

There are p−1 possible inputs not in L: a1, . . ., ap−1. The probability that
one of them gets accepted with probability more than ϵ is at most 2(p−1)e−

ϵd
2 .

If
2(p− 1)e−

ϵd
2 < 1, (4.2)

then there is at least one choice of k1, . . . , kd for which U does not accept any
of a1, . . ., ap−1 with probability more than ϵ. The equation (4.2) is true if we
take d = 2 log 2p

ϵ
. Therefore, the number of states for U is 4 log 2p

ϵ
.

�
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4.4 Explicit constructions

In the previous section we proved that for every ϵ > 0 and p ∈ P there is
a QFA with 4 log 2p

ϵ
states recognizing Lp with probability at least 1 − ϵ. The

proposed QFA construction depends on d = 2 log 2p
ϵ

parameters k1, . . . , kd and
accepts input word aj /∈ Lp with probability

1

d2

(
d∑
i=1

cos
2πkij

p

)2

.

It is possible to choose k1, . . . , kd values to ensure

1

d2

(
d∑
i=1

cos
2πkij

p

)2

< ϵ

or, equivalently, ∣∣∣∣∣
d∑
i=1

cos
2πkij

p

∣∣∣∣∣ < √
ϵd (4.3)

for every aj /∈ Lp.

However, our proof is by a probabilistic argument and does not give an
explicit sequence k1, . . . , kd. In this section we present two constructions of
explicit sequences. The first construction works well in numerical experiments
and gives a QFA with O(log p) states in all tested cases. The second con-
struction uses a slightly larger number of states but has a rigorous proof of
correctness.

4.4.1 The first construction: cyclic sequences

We conjecture

Hypothesis 4.1: If g is a primitive root modulo p ∈ P , then sequence Sg =
{ki ≡ gi mod p}di=1 for all d and all j : aj /∈ Lp satisfies (4.3).

We will call g a sequence generator. The corresponding sequence will be referred
to as cyclic sequence. We have checked all p ∈ {2, . . . , 9973}, all generators g
and all sequence lengths d < p (choosing a corresponding ϵ value) and have
not found any counterexample to our hypothesis.
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Below we describe numerical experiments which compare two strategies: a
random sequence k1, . . . , kd and a cyclic sequence.

We will use Srand to denote a random sequence and Sg to denote a cyclic
sequence with generator g. We will also use ϵrand and ϵg to denote the maximal
probability with which corresponding automata accept input word aj /∈ Lp.

Table 4.1 shows ϵrand and ϵg for different p and g values. ϵrand is calculated
as the average over 5000 randomly selected sequences. ϵg is for one specific
generator. ϵ in the second column shows the theoretical upper bound given by
Theorem 4.1.

p ϵ d g ϵrand ϵg
1523 0,1 161 948 0,03635 0,01517
2689 0,1 172 656 0,03767 0,01950
3671 0,1 179 2134 0,03803 0,02122
4093 0,1 181 772 0,03822 0,01803
5861 0,1 188 2190 0,03898 0,01825
6247 0,1 189 406 0,03922 0,02006
7481 0,1 193 6978 0,03932 0,01691
8581 0,1 196 5567 0,03942 0,02057
9883 0,1 198 1260 0,04011 0,01905

Tab. 4.1: ϵrand and ϵg for different p and g

In 99.98% - 99.99% of our experiments random sequences achieve the bound
of Theorem 4.1. Surprisingly, cyclic sequences substantially outperform ran-
dom ones in almost all the cases.

More precisely, for randomly selected p ∈ P , ϵ > 0 and generator g, a cyclic
sequence Sg gives a better result than a random sequence Srand in 98.29% of
cases. A few random experiment instances are shown in Figure 4.1. For each
instance we show the bound

√
ϵd of (4.3) obtained by a probabilistic argument,

the maximum of frand(j) (which is defined as the value of (4.3) for the sequence
Srand) over all j, a

j /∈ Lp and the maximum of fg(j) (defined in a similar way
using Sg instead of Srand).

In 1.81% of cases, we get that sup |fg(j)| > sup |frand(j)|, where sup |frand(j)|
is calculated as the average over 5000 randomly selected sequences. Figure 4.2
shows one of these cases: p = 9059, ϵ = 0.09 and g = 2689, comparing the
cyclic sequence with 9 different randomly chosen sequences. The cyclic se-
quence gives a slightly worse result than most of the random ones, but still
beats the probabilistic bound of (4.3) by a substantial amount.
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Fig. 4.1: sup |fg(j)| and sup |frand(j)| for random p, ϵ and g

Comparing different generators

Every p ∈ P might have multiple generators. Table 4.2 shows ϵg values for
p = 9059 and ϵ = 0.1 (d = 197,

√
ϵd = 62.0101221453601).

g ϵg g ϵg g ϵg
102 0,02533 1545 0,01858 9023 0,01807
103 0,03758 1546 0,02235 9033 0,01413
105 0,01999 1549 0,02896 9034 0,01485
106 0,02852 1552 0,02873 9036 0,02509
110 0,01685 1553 0,02624 9039 0,02311

Tab. 4.2: ϵg values for different generators. p = 9059

Different generators have different ϵg values. We will use gmin to refer to
a minimal generator, i.e. one having a minimal ϵg. Table 4.3 shows minimal
generators for p values from Table 4.1.

Typically, the minimal generators give a QFA with substantially smaller
probability of error. It is still an open question whether one could find a
minimal generator without an exhaustive search of all generators.
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Fig. 4.2: sup |fg(j)| and sup |frand(j)| for p = 9059, ϵ = 0.09 and g = 2689

4.4.2 The second construction: AIKPS sequences

Fix ϵ > 0. Let

R = {r | r is prime, (log p)1+ϵ/2 < r ≤ (log p)1+ϵ},

S = {1, 2, . . . , (log p)1+2ϵ},
T = {s · r−1|r ∈ R, s ∈ S},

with r−1 being the inverse modulo p. Ajtai et al. [AI+00] have shown

Theorem 4.4: [AI+00] For all k ∈ {1, . . . , p− 1},

|
∑
t∈T

e2tkπi/p| ≤ (log p)−ϵ|T |.

Razborov et al. [RSW93] have shown that powers e2tkπi/p satisfy even
stronger uniformity conditions. However, Theorem 4.4 is sufficient for our
purposes.

By taking the real part of the left hand side, we get∣∣∣∣∣∑
t∈T

cos

(
2tkπi

p

)∣∣∣∣∣ ≤ (log p)−ϵ|T |.
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p ϵ d g ϵg gmin ϵgmin

1523 0,1 161 948 0,01517 624 0,00919
2689 0,1 172 656 0,01950 1088 0,01060
3671 0,1 179 2134 0,02122 1243 0,01121
4093 0,1 181 772 0,01803 1063 0,01154
5861 0,1 188 2190 0,01825 5732 0,01133
6247 0,1 189 406 0,02006 97 0,01182
7481 0,1 193 6978 0,01691 2865 0,01205
8581 0,1 196 5567 0,02057 4362 0,01335
9883 0,1 198 1260 0,01905 5675 0,01319

Tab. 4.3: Minimal generators for different p

Thus, the use of elements of T as k1, . . . , kd gives an explicit construction of a
QFA with O(log2+3ϵ) states.

For our first (cyclic) construction, the best provable result is a bound on
exponential sums by Bourgain [Bou05]. This gives a QFA with O(pc/ log log p)
states which is weaker than both the numerical results and the rigorous con-
struction in this section.
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4.5 Conclusions

We have considered a class of languages Lp = { ai | p ∈ P, i is divisible by
p } and studied exponential separation in number of states between quantum
and classical finite automata. We have improved previously known result of
[AF98], providing a construction of QFA with a better constant in front of log p
and a much simpler analysis.

Both constructions of QFAs, presented in [AF98] and the thesis, are prob-
abilistic. That is, they employ a sequence of parameters that are chosen at
random and hardwired into the QFA. We have presented two non-probabilistic
constructions of QFAs for the same class of languages. The first of them gives
QFAs with O(log p) states but its correctness is only shown by numerical ex-
periments. The second construction gives QFAs with O(log2+ϵ p) states but it
is provably correct.

The language we have studied is an unary periodic language. Consider the
class of unary periodic languages of period p. It is known, that some languages
(such as language Lp considered above) can be recognized by QFA with loga-
rithmic number of states, while others can not [BMP03a]. The interesting open
question is to understand the necessary and sufficient properties of a language
to be log-state recognizable.

Some of log-state recognizable languages, such as {a, a3, a5, . . . }, can be
also recognized by DFA with logarithmic number of states, while others, such
as [AF98], can not. It would also be interesting to understand the class of
hard-for-classical-easy-for-quantum automata languages.



Part III

ANALYSIS OF GROVER’S ALGORITHM



5. QUANTUM QUERY MODEL AND GROVER’S
ALGORITHM

Grover’s algorithm is a quantum search algorithm solving the unstructured
search problem. The algorithm is formulated within a query model where data
is accessed through an oracle and query count is used as a measure of com-
plexity of an algorithm. Grover’s algorithm allows to solve the unstructured
search problem in about π

4

√
N queries. It is known that any deterministic

or randomized algorithm requires linear time (number of queries) to solve the
above problem. Thus, Grover’s algorithm provides a significant speed-up over
any classical algorithm.

In the following sections we overview the query model and give a description
and an analysis of Grover’s algorithm.



5. Quantum query model and Grover’s algorithm 36

5.1 Quantum query model

Suppose we have a function

f : {0, 1}n → {0, 1}m.

It is often useful to think of the function as implemented by some device, that
is look at the function as a black box. This means that we cannot look inside
the device to see how it works. The only way to gain information about the
function f is to give the device some input a ∈ {0, 1}n and allow the device to
output f(a) ∈ {0, 1}m.

We will start with a simple example f : {0, 1} → {0, 1}. In the classical case
function f can be implemented by a device taking one input bit and producing
one output bit (figure 5.1).

Fig. 5.1: Classical device implementing one-bit function f .

In quantum case a device needs to perform a valid quantum operation.
More specifically, the action of the device must corresponds to a unitary trans-
formation. Therefore, often it is not sufficient to consider the black box as a
one-qubit operation Uf |a⟩ → |f(a)⟩. For example, if f = 0 (f is identically 0),
then the operation would correspond to the matrix(

1 1
0 0

)
,

which is not unitary.

To overcome the above limitation we add an auxiliary ”input/output”
qubit. For a one-qubit function f : {0, 1} → {0, 1} we define a 2-qubit op-
eration

Uf |a⟩|b⟩ → |a⟩|b⊕ f(a)⟩

where ⊕ denotes the bitwise exclusive OR (figure 5.2). Usually the auxiliary
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qubit is initialized to |0⟩, thus, we get |a⟩|f(a)⟩ as Uf output. It can be
verified that the matrix corresponding to the above operation will always be a
permutation matrix, meaning that all of the entries are 0 or 1 and every row
and every column has exactly one 1 in it. Permutation matrices are always
unitary.

Fig. 5.2: Quantum device implementing one-bit function f with an auxilary qubit.

In the previous example (f is identically 0) the corresponding 2-bit opera-
tion will be

Uf |0, 0⟩ → |0, 0⟩
Uf |0, 1⟩ → |0, 1⟩
Uf |1, 0⟩ → |1, 1⟩
Uf |1, 1⟩ → |1, 0⟩

or, written in a matrix form, 
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


which is unitary.

In general, for any function

f : {0, 1}n → {0, 1}m

the corresponding quantum transformation Uf will be defined by

Uf |x⟩|y⟩ → |x⟩|y ⊕ f(x)⟩.

The associated matrix will be a permutation matrix and, therefore, will be
unitary.
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Speaking about quantum query model, we need to mention an interesting
effect. Suppose we have a function f : {0, 1}n → {0, 1} implemented as a black
box Uf . We want to calculate f value on some input a. This time, however,
the initial state of the auxiliary qubit will be

1√
2
|0⟩ − 1√

2
|1⟩.

Performing the Uf on the above mentioned state, we will get

Uf |a⟩
(

1√
2
|0⟩ − 1√

2
|1⟩
)

=
1√
2
Uf |a⟩|0⟩ −

1√
2
Uf |1⟩|0⟩ =

1√
2
|a⟩|0⊕ f(a)⟩ − 1√

2
|a⟩|1⊕ f(a)⟩ =

(−1)f(a)|a⟩
(

1√
2
|0⟩ − 1√

2
|1⟩
)
.

We have used the fact that

|0⊕ x⟩ − |1⊕ x⟩ = (−1)x(|0⟩ − |1⟩)

for x ∈ {0, 1}.

Notice that the Uf transformation has not changed the state of the auxil-
iary qubit; it has remained in the state

1√
2
|0⟩ − 1√

2
|1⟩.

At this point the auxiliary qubit can be discarded, for its state is completely
independent from the state of the other qubits.

This phenomenon is usually referred to as phase kick-back and is a com-
monly used trick in quantum algorithms. Many quantum query algorithms use
queries of form

Uf |a⟩ = (−1)f(a)|a⟩

with the implicitly assumed auxiliary qubit.
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5.2 Grover’s quantum search algorithm

Grover’s algorithm is a quantum search algorithm solving the unstructured
search problem. The algorithm works in the following model. We have an
unstructured search space of N elements in which some elements have a certain
property. We call these elements marked. We are given a procedure which
checks whether the element is marked. The task of the algorithm is to find one
of marked elements.

Grover’s algorithm solves the unstructured search problem of size N in
about π

4

√
N queries. It is known that any deterministic or randomized al-

gorithm requires linear number of queries to solve the above problem. Thus,
Grover’s algorithm provides a significant speed-up over any classical algorithm.

In this section we give a description and a brief analysis of the algorithm.
The rigorous analysis of the algorithm can be found in [Gro96] or [Wat06].

Grover’s algorithm

The algorithm starts in the state |ψ0⟩ = 1√
N

∑N
x=1 |x⟩ (uniform superposition

of all elements of the search space). Each step of the algorithm consists of two
transformations: Q and D. Here Q is a query to a black box defined as

Q|x⟩ = (−1)f(x)|x⟩

and D is the an inversion about average (often called a diffusion transforma-
tion) defined as

D = 2|ψ0⟩⟨ψ0| − I =


−1 + 2

n
2
n

. . . 2
n

2
n

−1 + 2
n

. . . 2
n

. . . . . . . . . . . .
2
n

2
n

. . . −1 + 2
n

 .
We refer to |ψt⟩ = (DQ)t|ψstart⟩ as the state of Grover’s algorithm after t steps.

If there is one marked element i, the probability of finding it by measuring
|ψt⟩ reaches 1 − o(1) for t = O(

√
N). If there are k marked elements, the

probability of finding one of them by measuring |ψt⟩ reaches 1 − o(1) for t =
O(
√
N/k).
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Analysis of Grover’s algorithm

To analyse the algorithm, we define two sets:

A = {x : f(x) = 1}

B = {x : f(x) = 0}.
We will think of the set A as the set of elements that satisfy the search criterion.
The set B contains all elements that do not satisfy the search criterion. The
goal of the algorithm is to find one of strings from the A set.

Let a = |A| and b = |B|. We define states

|A⟩ = 1√
a

∑
x∈A

|x⟩ and |B⟩ = 1√
b

∑
x∈B

|x⟩,

which are both unit vectors and are orthogonal to each other.

The initial state of the algorithm is

|ψ0⟩ =
1√
N

N∑
x=1

|x⟩ =
√

a

N
|A⟩+

√
b

N
|B⟩.

Calculations show [Wat06] that the transformation G = DQ changes states
|A⟩ and |B⟩ as follows:

G|A⟩ =
(
1− 2a

N

)
|A⟩ − 2

√
ab

N
|B⟩

G|B⟩ = 2
√
ab

N
|A⟩ −

(
1− 2b

N

)
|B⟩.

As
√

a
N

2
+
√

b
N

2

= 1, there exists an angle θ that satisfies

sin θ =

√
a

N
and cos θ =

√
b

N
.

Using this notation, we can write the initial state of the register X as

|ψ0⟩ = sin θ |A⟩+ cos θ |B⟩

and the transformation G as

G|A⟩ = cos 2θ |A⟩ − sin 2θ |B⟩
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G|B⟩ = sin 2θ |A⟩+ cos 2θ |B⟩

which is simply a rotation by angle 2θ in the space spanned by |A⟩ and |B⟩.
This implies that after t iterations of G the state of the algorithm is

|ψt⟩ = sin((2t+ 1)θ) |A⟩+ cos((2t+ 1)θ) |B⟩.

The goal of the algorithm is to measure some element x ∈ A, so we need
the state of the algorithm to be as close to |A⟩ as possible, that is

sin((2t+ 1)θ) ≈ 1.

This implies

(2t+ 1)θ ≈ π

2

and it is sufficient to choose

t ≈ π

4θ
− 1

2
.

Suppose a = 1. Then

θ = sin−1

√
1

N
≈ 1√

N
,

so
t = ⌊π

4

√
N⌋

is a reasonable choice for the algorithm.

In the general case the situation is more challenging. However, it can be

shown that O
(√

N
a

)
queries are still enough to find an x ∈ A [Wat06].



6. OPTIMALITY OF GROVER’S ALGORITHM

Grover’s quantum search algorithm is known to be optimal: no quantum al-
gorithm can solve the unstructured search problem in less than a number of
steps proportional to

√
N [BB+97]. Moreover, for any number of queries up

to about π
4

√
N , Grover’s algorithm gives the maximal possible probability of

finding the marked element [Zal99].

However, it is still possible to reduce the average number of steps required
to find the marked element by ending the computation earlier and repeating the
algorithm if necessary. This fact was mentioned by Christof Zalka as a short
remark to the analysis of Grover’s algorithm [Zal99]. Unfortunately, the remark
went unnoticed by the most of scientific community. We have rediscovered this
fact while analysing Grover’s algorithm.
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6.1 Summary of results

Theorem 6.1: Let T be a running time of Grover’s algorithm. If the algorithm
is stopped at moment t ≈ 0.74202T and rerun if necessary the average running
time to find the marked item is ≈ 0.87857T . This value is optimal.

Thus, the average number of steps can be reduced by approximately 12.14%.

6.2 Average number of steps of Grover’s algorithm

Suppose we have an algorithm which gives a correct answer with some prob-
ability p. To obtain the correct answer (with probability Θ(1)) we need to
repeat it 1

p
times on the average [MR94]. If the running time of the algorithm

is t, the average running time will be t
p
.

In the previous chapter we showed that the state of the Grover’s algorithm
after t steps is

|ψt⟩ = sin((2t+ 1)θ) |A⟩+ cos((2t+ 1)θ) |B⟩.

The amplitude of the correct answer grows proportionally to sin(2tθ) ≈ sin( 2t√
N
),

therefore, the probability to get the correct answer grows proportionally to
sin2( 2t√

N
). To get rid of N , we scale t from [0, π

4

√
N ] to [0, 1], letting the run-

ning time of the original algorithm be 1 and t represent the fraction of steps
completed by the algorithm. The probability to get the correct answer becomes
p(t) = sin2(πt

2
).

If we stop the computation at the moment t, the average running time of
the algorithm will be

t

p(t)
=

t

sin2
(
πt
2

) .
If t ∈ [0, 0.5), then

sin2

(
πt

2

)
< t

and
t

p(t)
=

t

sin2
(
πt
2

) > 1.

Therefore, the average running time is greater than in the original algorithm.
If t = 0.5, then

sin2

(
πt

2

)
= 0.5
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Fig. 6.1: p(t) = sin2(πt2 ) and p(t) = t

and
t

p(t)
=

t

sin2
(
πt
2

) = 1.

The average running time is the same as in the original algorithm. If t ∈ (0.5, 1],
then

sin2

(
πt

2

)
> t

and
t

p(t)
=

t

sin2
(
πt
2

) < 1.

Therefore, the average running time is less than in the original algorithm.

The optimal moment to end the computation is the minimum of the t
p(t)

function, which can be found by solving(
t

p(t)

)′

=

(
t

sin2
(
πt
2

))′

=
sin2(πt

2
)− t · 2 · sin(πt

2
) · cos(πt

2
) · π

2

sin4(πt
2
)

= 0.

As sin(πt
2
) ̸= 0, we have

sin2

(
πt

2

)
= 2 · sin

(
πt

2

)
· cos

(
πt

2

)
· πt
2
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or

πt = tan

(
πt

2

)
.

This equation has infinitely many solutions. We are interested in the one
for which t ∈ (0.5, 1). Numeric calculation gives t ≈ 0.74202 and the average
running time t

p(t)
≈ 0.87857. Thus, the average number of steps can be reduced

by approximately 12.14%.
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6.3 Conclusions

We have shown how to reduce the average number of Grover’s algorithm steps
by approximately 12.14%. In case of multiple search operations this can sig-
nificantly increase the performance of the algorithm.

The same argument can be used for a wide range of other quantum query
algorithms, such as amplitude amplification [BH+00], some variants of quan-
tum walks and NAND formula evaluation [AKR05, Amb07a], etc. In general,
it applies to any algorithm having the same rotation-from-bad-to-good-state
analysis.



7. GROVER’S ALGORITHM WITH FAULTY ORACLE :
OMITTED QUERY MODEL

Grover’s algorithm is a quantum search algorithm solving the unstructured
search problem. The algorithm is formulated within a query model – data is
accessed through an oracle and query count is used as a measure of complexity
of an algorithm. Grover’s algorithm solves the unstructured search problem in
about π

4

√
N queries, while any deterministic or randomized algorithm needs

a linear number of queries. Thus, Grover’s algorithm provides a significant
speed-up over any classical algorithm.

The running time of the algorithm (number of queries), however, is very
sensitive to errors. Regev and Schiff have shown [RS08] that if that if query
transformation has some small probability of failing (reporting that none of
the elements are marked), then quantum speed-up disappears: no quantum
algorithm can be faster than a classical exhaustive search by more than a
constant factor.

We find it interesting to understand what happens if only a constant number
of failed queries is allowed. We show that even a single failed query can stop
the algorithm from finding any of marked elements. Remarkably, this property
does not depend on a number of marked elements. This makes the quantum
case completely different from the classical case.

A failure of a single or multiple query transformations results in a number of
steps not being executed. We show that k failed queries with a high probability
change the number of actually executed steps of Grover’s algorithm from l to

O
(

l√
k

)
.
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7.1 Technical preliminaries

Grover’s algorithm

Suppose we have an unstructured search space of sizeN . Grover’s algorithm
finds a marked element in the search space in O(

√
N) steps (queries to the

black-box). Each step of the algorithm consists of two transformations: D –
inversion above average and Q – query transformation. Thus, the sequence of
transformations of Grover’s algorithm is

DQDQ . . . DQ = (DQ)l.

Our analysis will not depend on a particular value of l and how it is related
to N . We will simply treat l as the number of steps of the algorithm.

We will also use the following fact:

DD = QQ = I,

which follows from the definitions of D and Q transformations.

7.2 Model and results

Error model

In their paper [RS08], Regev and Schiff introduce the following error model: on
each step, instead of the correct query Q, a faulty query Q′, defined as follows,
is applied:

• Q′ = I with probability p (error);

• Q′ = Q with probability 1− p (no error);

[RS08] proves that in this model we need O(N) steps to find any of marked
elements.

We use the same definition of error (replacement of Q with I), but instead
of fixing the probability of error we fix a number of errors. We assume that
positions of errors are uniformly distributed independent random variables.
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Summary of results

For the model above we show:

Theorem 7.1: Let l be a number of steps of the algorithm. Then k ≪ l uni-
formly distributed independent errors change the sequence of transformations
of the algorithm from (DQ)l to (DQ)L, where L is the random variable with

expectation O
(
l
k

)
and standard deviation O

(
l√
k

)
.

Therefore, with a high probability the number of actually executed steps of

Grover’s algorithm changes from l to O
(

l√
k

)
.

7.3 Related work

The work of Regev and Schiff [RS08] mentioned above is the paper that is most
closely related to our work.

Several authors [LL+00, SMB03, SBW03] have studied the effect of ran-
dom imperfections in either diffusion transformation or black box query on the
performance of Grover’s algorithm, showing that such type of noise can com-
pletely destroy the advantage of Grover’s algorithm over classical exhaustive
search. The difference between their work and ours is that they consider small
random imperfections that occur on every step of the algorithm, while we con-
sider the case there query is performed correctly for some marked elements and
not performed at all for others.

Buhrman et al. [BN+05] have looked at a coherent noise model in which
the algorithm has access to procedures Ai that check whether an element is
marked and have some error probability. The algorithm is allowed to run both
Ai and A

−1
i multiple times. This model is sufficiently general to enable a fault-

tolerant computation and allows to simulate any noise-free quantum algorithm
that makes T queries by a noisy algorithm that makes O(T log T ) queries. In
some cases, a constant overhead instead of a logarithmic one is sufficient. The
difference between coherent noise and our models is that in coherent noise
model the state after the query is still a pure state, while in our model query
leads to a mixes state.
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7.4 Omitting a single query

The sequence of transformations of Grover’s algorithm is

DQDQ . . . DQ = (DQ)l.

If we omit a single query transformation, the sequence changes to

(DQ)l1D(DQ)l2 ,

where l1 + l2 + 1 = l, or
D(QD)l1(DQ)l2 .

As DD = QQ = I, the shortest subsequence will cancel a part of the longest
subsequence. More precisely

l1 ≥ l2 : D(QD)l1(DQ)l2 = D(QD)l1−l2

l1 < l2 : D(QD)l1(DQ)l2 = D(DQ)l2−l1 .

Thus, a single omitted query transformation changes the sequence of transfor-
mations of the algorithm from (DQ)l to (DQ)O(|l1−l2|), decreasing the number
of actually executed steps.

Suppose the query transformation can be omitted on a random step if the
algorithm, that is l1 is a uniformly distributed random variable. The length
of the resulting sequence of transformations will also be a random variable.
Simple calculations show that it has mean l

2
+O(1) and variance l2

12
+O(l).

Corollary

A single omitted query transformation on the average will twice decrease the
number of actually executed steps of the algorithm. If the query transformation
will be omitted right in the middle of the sequence of transformations (l1 = l2),
the number of actually executed steps will be 0. That is the algorithm will
leave the initial state unchanged.
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7.5 Omitting multiple queries

The sequence of transformations of the algorithm is

DQDQ . . . DQ = (DQ)l.

If we omit k − 1 query transformations, the sequence changes to

(DQ)l1D(DQ)l2D . . . (DQ)lk−1D(DQ)lk ,

where l1 + l2 + · · ·+ lk + (k − 1) = l. By regrouping the brackets we will get

(DQ)l1DD(QD)l2(DQ)l3DD(QD)l4 · · · =

(DQ)l1(QD)l2(DQ)l3(QD)l4 . . .

Transformations Q and D have the following commutativity property:

(QD)i(DQ)j = (DQ)j(QD)i.

Thus, the sequence can be rewritten as

(DQ)l1+l3+... (QD)l2+l4+... .

Therefore, k omitted query transformations change the sequence of transfor-
mations of the algorithm from (DQ)l to (DQ)O(|l1−l2+l3−l4+···±lk|).

Positions of errors, and, therefore, also l1, . . . , lk, are random variables.
Thus, the length of resulting sequence, i.e. number of actually executed steps,
is also a random variable.

Next we examine the continuous approximation case, where positions of
errors have continuous uniform distributions and l1 + l2 + · · ·+ lk = l. This is
completely valid as k ≪ l. We show that the length of the resulting sequence
of transformations is a random variable with mean 0 (even k) or l

k
(odd k)

and variance O
(
l2

k

)
. These values perfectly agree with numerical experiment

results for discrete case.

Proof of the main result

Suppose we have k − 1 independent random variables X1, X2, . . . , Xk−1. Each
Xi is uniformly distributed between 0 and l. That is the probability density
function of Xi is

fXi
(x) =


1
l
x ∈ [0, l]

0 x /∈ [0, l]
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and the cumulative distribution function is

FXi
(x) =


0 x < 0

x
l
x ∈ [0, l]

1 x > l

.

The above random variables split the segment [0, l] into k subsegments l1, l2, . . . , lk.
The length of each subsegment is also a random variable.

Let us focus on the subsegment l1. Probability that l1 ≤ x is the probability
that at least one of Xi ≤ x. Thus, the cumulative distribution function of l1 is

Fl1 = 1− (1− FX1)(1− FX2) . . . (1− FXk−1
)

or

Fl1(x) =


0 x < 0

1− (1− x
l
)k−1 x ∈ [0, l]

1 x > l

.

The probability density function of l1 is

fl1(x) =


k−1
l
(1− x

l
)k−2 x ∈ [0, l]

0 x /∈ [0, l]
.

Knowing the probability density function of l1, we can calculate its mean
and variance by using the following formulae:

E[X] =

∫ ∞

−∞
x · fX(x)dx

E[X2] =

∫ ∞

−∞
x2 · fX(x)dx

V ar[X] = E[X2]− E[X]2.

We leave out the details of calculation of integrals and give the results.

E[l1] =

∫ ∞

−∞
x · fl1(x)dx =

∫ l

0

x
k − 1

l
(1− x

l
)k−2dx =

l

k
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E[(l1)
2] =

∫ ∞

−∞
x2 · fl1(x)dx =

∫ l

0

x2
k − 1

l
(1− x

l
)k−2dx =

2l2

k(k + 1)

V ar[l1] =
2l2

k(k + 1)
−
(
l

k

)2

=
k − 1

k + 1
·
(
l

k

)2

.

It is easy to see that all li subsegments have the same mean and vari-
ance. This follows from the fact that all Xi are independent and are uniformly
distributed. We should also note that, although Xi are independent random
variables, li are not independent (the length of one subsegment increases as
other decreases and vice versa) .

Now let us focus on L = l1 − l2 + l3 − ... ± lk. First we will calculate the
mean of L. We will use the following well known formulae:

E[−X] = −E[X]

E[X1 + · · ·+Xk] = E[X1] + · · ·+ E[Xk].

As all li have the same mean, then

E[L] = E[l1]− E[l2] + · · · ± E[lk] =


0 k = 2m

l
k

k = 2m+ 1
.

Now we will calculate the variance of L. As li subsegments are correlated,
we have to use the following formula:

V ar[X1 + · · ·+Xk] =
k∑
i=1

V ar[Xi] +
∑
i̸=j

Cov[Xi, Xj]

The subsegment covariance can be easily calculated from the following triv-
ial fact:

V ar(l1 + · · ·+ lk) = 0.

This is so because l1 + · · · + lk is always equal to l. Using the above formula,
we will get:

V ar[l1 + · · ·+ lk] =
k∑
i=1

V ar[li] +
∑
i ̸=j

Cov[li, lj] = 0
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or
k∑
i=1

V ar[li] = −
∑
i̸=j

Cov[li, lj].

As all li have the same mean and variance, they will also have the same co-
variances Cov[li, lj]. Using this fact, we will get

k · V ar[li] = −k(k − 1) · Cov[li, lj]

or

Cov[li, lj] = − 1

k − 1
· V ar[li] = − 1

k + 1
·
(
l

k

)2

.

Now let us return to the variance of L:

V ar[L] =
k∑
i=1

V ar[li]±
∑
i̸=j

Cov[li, lj].

Covariance sign will depend on li and lj signs (whether they are the same or
not). More precisely:

Cov[−X,Y ] = Cov[X,−Y ] = −Cov[X,Y ]

Cov[−X,−Y ] = Cov[X, Y ].

If k = 2m, then m subsegments have plus sign and m subsegments have
minus sign. There are 2m(m − 1) subsegment pairs with the same signs and
2m2 subsegment pairs with opposite signs (we should count both (li, lj) and
(lj, li) pairs). Thus, we can rewrite the formula as:

V ar[L] = k · V ar[li] + Cov[li, lj] ·
(
2m(m− 1)− 2m2

)
=

= k · V ar[li]− k · Cov[li, lj] =

= k · V ar[li] +
k

k − 1
· V ar[li] =

= k · V ar[li] ·
k

k − 1
.

If k = 2m+ 1, then m+ 1 subsegments have plus sign and m subsegments
have minus sign. There are (m+1)m+m(m−1) = 2m2 subsegment pairs with
the same signs and 2(m+1)m subsegment pairs with opposite signs. Thus, we
can rewrite the formula as:

V ar[L] = k · V ar[li] + Cov[li, lj] ·
(
2m2 − 2m(m− 1)

)
=
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= k · V ar[li] + (k − 1) · Cov[li, lj] =

= k · V ar[li]− V ar[li] =

= k · V ar[li] ·
k − 1

k
.

Using O notation, we can rewrite both cases as O(k) · V ar[li] = O
(
l2

k

)
.

�

Corollary

We have shown that k − 1 omitted query transformations change the length
of the resulting sequence of transformations from l to a random variable with

mean 0 (even k) or l
k
(odd k) and variance O

(
l2

k

)
.

From Chebyshev’s inequality we have that with 96% probability L lies
within five standard deviations from its mean [MR94]. For large k (but still
k ≪ l) even a tighter bound applies. In the next section we will show that
the probability distribution of L for large k is close to the normal distribution.
Thus, with 99.7% probability L lies within three standard deviations from the
mean.

Therefore, with a very high probability the length of the resulting sequence

of transformations changes from l to O
(

l√
k

)
. In other words k failed query

transformations decrease the length of the resulting sequence of transforma-
tions O(

√
k) times.
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7.6 Probability distribution of the median

In the previous sections we have studied the following model. We have inde-
pendent random variables X1, X2, . . . , Xk−1. Each Xi is uniformly distributed
between 0 and l. The random variables split the segment [0, l] into k subseg-
ments l1, l2, . . . , lk. Our task was to estimate L = l1 − l2 + l3 − l4 + · · · ± lk.
Due to symmetry of li, L is equal to l

2
− Xm, where Xm is the median of

X1, X2, . . . , Xk−1, that is the point separating the higher half of the points
from the lower half of the points.

In this section we will show that for a large number of uniformly distributed
random variables (points) the probability distribution of the median is close to
the normal distribution.

2k + 1 points

Consider a real number interval [−N ;N ] and 2k+1 random points, each having
a uniform distribution. Median is the point number k + 1.

Probability density of the median at position x, which is at the distance |x|
from 0, can be expressed by the formula

pdf(x) =
(N − x)k(N + x)k

(2N)2k+1
× (2k + 1)!

k!k!
=

(N2 − x2)k(2k)!(2k + 1)

(2N)2k+1k!k!
. (7.1)

Using the Stirling approximation, we can rewrite (7.1):

pdf(x) ≈
(N2 − x2)k

√
4πk

(
2k
e

)2k
(2k + 1)

(2N)2k+1
√
2πk

(
k
e

)k√
2πk

(
k
e

)k =
(N2 − x2)k(2k + 1)

2N2k+1
√
πk

=

(
1− x2

N2

)k
(2k + 1)

2N
√
πk

.

For large k we can approximate 2k + 1 with 2k:

pdf(x) ≈

(
1− x2

N2

)k√
k

N
√
π

. (7.2)



7. Grover’s algorithm with faulty oracle : omitted query model 57

For small x
N

values (7.2) can be approximated (applying 1− z ≈ e−z) by

pdf(x) ≈

(
e−

x2

N2

)k√
k

N
√
π

=

√
k

N
√
π
e−k

x2

N2 ,

which corresponds to the normal distribution with mean 0 and variance N2

2k
.
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2k points

Consider a real number interval [−N ;N ] and 2k random points, each having a
uniform distribution. Median is the point number k.

Probability density of the median at position x, which is at the distance |x|
from 0, can be expressed by the formula

pdf(x) =
(N − x)k−1(N + x)k

(2N)2k
× (2k)!

(k − 1)!k!
=

(N2 − x2)kk(2k)!

(2N)2k(N −X)k!k!
. (7.3)

Using the Stirling approximation, we can rewrite (7.3):

pdf(x) ≈
(N2 − x2)kk

√
4πk

(
2k
e

)2k
(2N)2k(N − x)

√
2πk

(
k
e

)k√
2πk

(
k
e

)k =
(N2 −X2)k

√
k

N2k(N − x)
√
π

=

(
1− x2

N2

)k√
k(

1− x
N

)
N
√
π
. (7.4)

For small x
N

values (7.4) can be approximated (applying 1− z ≈ e−z) by

pdf(x) ≈

(
e−

x2

N2

)k√
k(

e−
X
N

)
N
√
π

=

√
k

N
√
π
e−k

x2

N2+
x
N . (7.5)

By multiplying (7.5) with e−
1
4k , which for large k is close to 1, we will get

pdf(x) ≈
√
k

N
√
π
e−k

x2

N2+
x
N
− 1

4k =

√
k

N
√
π
e−k

(x− N
2k

)2

N2 ,

which corresponds to the normal distribution with mean N
2k

and variance N2

2k
.
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7.7 Conclusions

We show that k failed queries change the number of actually executed steps
from l to a random variable L with expectation O

(
l
k

)
and standard deviation

O
(

l√
k

)
. Chebyshev’s inequality guarantees that with 96% probability L lies

within five standard deviations from its mean [MR94]. For large k (but still
k ≪ l) even a tighter bound applies. We show that the probability distribution
of L for large k is close to the normal distribution. Thus, with 99.7% probability
L lies within three standard deviations from the mean. That is with high
probability the number of actually executed steps of Grover’s algorithm is

O
(

l√
k

)
. In other words k failed query transformations decrease the length of

the resulting sequence of transformations O(
√
k) times.

However, even a single error can be very destructive. If the error occurs
right in the middle of the sequence of transformations (l1 = l2), the number of
actually executed steps will be 0. That is the algorithm will leave the initial
state unchanged. Moreover, this behaviour is independent of number of marked
elements. This makes the quantum case completely different from the classical
case.

Our analysis is very generic – the same argument can be used for a wide
range of other quantum query algorithms, such as amplitude amplification,
some variants of quantum walks and NAND formula evaluation, etc. In general,
it applies to any quantum query algorithm for which a transformation X used
between queries has the property X2 = I.



8. GROVER’S ALGORITHM WITH FAULTY ORACLE:
INDEPENDENT ERROR MODEL

In this chapter we continue to study the behaviour of Grover’s quantum search
algorithm in presence of logical faults. This time, however, we use a slightly
different model. Instead of omitting the query transformation, we allow it to
report some marked elements as unmarked. Each marked element has its own
probability of failing, independent of other marked elements. We assume that
faults are one-sided. That is, if the ith element is not marked, the black box
always answers that it is not marked. If the ith element is marked, the black
box may give the correct answer (with probability 1−pi) or mistakenly answer
that the element is not marked (with probability pi).

We analyse the limiting behaviour of Grover’s algorithm for a large number
of steps and prove the existence of limiting state ρlim. Interestingly, the limiting
state is independent of error probabilities of individual marked elements. If we
measure ρlim, the probability of getting one of the marked states i1, . . . , ik is
k
k+1

. We show that convergence time is O(n).
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8.1 Technical preliminaries

Grover’s algorithm

Suppose we have an unstructured search space of size n. Grover’s algorithm
starts with a state |ψstart⟩ = 1√

n

∑n
i=1 |i⟩. Each step of the algorithm consists

of two transformations: Q and D. Here, Q is a query to the black box defined
by

• Q|i⟩ = −|i⟩ if i is a marked element;

• Q|i⟩ = |i⟩ if i is not a marked element.

D is the diffusion transformation described by the following n× n matrix:

D =


−1 + 2

n
2
n

. . . 2
n

2
n

−1 + 2
n

. . . 2
n

. . . . . . . . . . . .
2
n

2
n

. . . −1 + 2
n

 .
We refer to |ψt⟩ = (DQ)t|ψstart⟩ as the state of Grover’s algorithm after t steps.

If there is one marked element i, the probability of finding it by measuring
|ψt⟩ reaches 1 − o(1) for t = O(

√
n). If there are k marked elements, the

probability of finding one of them by measuring |ψt⟩ reaches 1 − o(1) for t =
O(
√
n/k).

Frobenius norm

Let ρ = (ρij) be an n×n matrix. The Frobenius norm (also called Euclidean
norm and l2-norm) of ρ is defined as

∥ρ∥F =

√√√√ n∑
i=1

n∑
j=1

|ρij|2.

Frobenius norm is unitary invariant: if U is unitary, then ∥Uρ∥F = ∥ρ∥F =
∥ρU∥F [HJ06, chapter 5.6]. Also, ∥ρ∥F ≥ 0 and ∥ρ1 + ρ2∥ ≤ ∥ρ1∥ + ∥ρ2∥, as
for any matrix or vector norm.
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8.2 Model and results

Error model

Suppose that a search space of size n contains k marked elements i1, i2, . . . , ik.
In each step, instead of the correct query Q, we apply a faulty query (faulty
oracle) Q′ defined as follows:

• Q′|ij⟩ = |ij⟩ with probability pj;

• Q′|ij⟩ = −|ij⟩ with probability 1− pj;

• Q′|i⟩ = |i⟩ if i is not a marked element.

For different elements ij, faults occur independently one from another. Also,
for different steps faults are independent.

Summary of results

For the model above we show

Theorem 8.1: Let ρt be the density matrix of the state of Grover’s algorithm
with a faulty oracle after t queries. Then, the sequence ρ1, ρ2, . . . converges to

ρlim =
1

k + 1

k∑
j=1

|ij⟩⟨ij|+
1

k + 1
|ϕ⟩⟨ϕ|,

where |ϕ⟩ = 1√
n−k

∑
i̸=ij

|i⟩ is the uniform superposition over all non-marked
elements.

If we measure ρlim, the probability of getting one of the marked states
i1, . . . , ik is

k
k+1

. Interestingly, the final state is independent of the error proba-
bilities p1, . . . , pk. Initially the probabilities of finding the elements with higher
probabilities of correct answer grow faster but, in the limit for a large number
of steps, the probabilities of finding all elements ij converge to the same value
1

k+1
. Figure 8.1 illustrates this behaviour.

The following result quantifies the speed of convergence to the limiting state
ρlim.
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Fig. 8.1: Grover’s algorithm with different error probabilities for different marked
elements, n = 1024.

Theorem 8.2: Assume that errors occur with the same probability p1 = . . . =
pk = p for all marked elements. Then, for every ϵ > 0 there exists a number
of steps of the algorithm t = O(n), for which the probability to find one of the
marked elements is in [ k

k+1
− ϵ, k

k+1
+ ϵ].

8.3 Related work

The work of Regev and Schiff [RS08], mentioned in the previous chapter, is the
paper that is most closely related to our research. The difference between the
two approaches is that [RS08] assume that a query either outputs the correct
answer for all elements (with probability 1 − p) or answers that there is no
marked element (with probability p). pi). Whereas, we consider a model in
which each marked element has its own probability of failing, independent of
other marked elements. We assume that faults are one-sided. That is, if the
ith element is not marked, the black box always answers that it is not marked.
If the ith element is marked, the black box may give the correct answer (with
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probability 1− pi) or mistakenly answer that the element is not marked (with
probability pi).
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8.4 Limiting behaviour of Grover’s algorithm with errors

In this section we will study limiting behaviour of Grover’s algorithm with
errors and will prove the Theorem 8.1.

The state of Grover’s algorithm after t steps is a pure state

DQDQ . . . DQ|ψ0⟩ = (DQ)t|ψ0⟩.

We have replaced unitary query transformation Q with stochastic faulty query
transformation Q′. Thus, the state of the algorithm is no longer a pure, but a
mixed state. Therefore, we should consider the density matrix ρt of the state
of Grover’s algorithm after t steps. Due to symmetry, we can assume that the
first k basis states correspond to the marked elements. Note that Grover’s
algorithm acts in the same way on all unmarked elements. Therefore, the state
of the algorithm is a probabilistic mixture of pure states of the form

α1|1⟩+ . . .+ αk|k⟩+
n∑

i=k+1

β|i⟩, (8.1)

with the amplitudes of all unmarked states being equal. The density matrix
ρt, then, takes the form

ρt =



a1 b1,2 . . . b1,k c1 . . . c1

b1,2 a2 . . . b2,k
...

. . .
...

...
...

. . . . . .
...

. . .
...

b1,k b2,k . . . ak ck . . . ck
c1 . . . . . . ck d . . . d
...

. . . . . .
...

...
. . .

...
c1 . . . . . . ck d . . . d


because the density matrix for every pure state (8.1) in the mixture ρt is of
this form.

Let pi be the error probability for the ith marked element. The effect of the
faulty query transformation Q′ on the density matrix ρt is:

ai 7→ ai
bi,j 7→ (2pi − 1)(2pj − 1)bi,j
ci 7→ (2pi − 1)ci
d 7→ d

. (8.2)
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Let us prove bi,j 7→ (2pi− 1)(2pj − 1)bi,j. Consider the corresponding entry
(Q′ρtQ

′)ij of the density matrix, after the faulty oracle Q′ is applied. If Q′

changes the sign of either |i⟩ or |j⟩, the entry is equal to −bij. This happens
with probability pi(1− pj) + pj(1− pi). If Q

′ changes the sign of both |i⟩ and
|j⟩ or none of them, the entry is equal to bij. This happens with probability
pipj + (1− pi)(1− pj). Hence,

(Q′ρtQ
′)ij = −bij(pi(1− pj) + pj(1− pi)) + bij(pipj + (1− pi)(1− pj)) =

= (1− 2pi)(1− 2pj)bij.

Similarly, we can prove that ci 7→ (2pi − 1)ci, ai 7→ ai and d 7→ d.

Consider the Frobenius norm of the density matrix. If we multiply the den-
sity matrix by the unitary diffusion matrix, its Frobenius norm does not change.
Since the faulty query transformation decreases the Frobenius norm (if 0 < pi <
1) and the Frobenius norm takes non-negative values, the limt→∞ ∥ρt∥ = C ex-
ists.

If limt→∞ bi,j ̸= 0, we obtain a contradiction, because the Frobenius norm
decreases infinitely. Analogously, we can prove limt→∞ ci = 0.

Let us prove limt→∞(ai − aj) = 0 for each i ̸= j. Assume it is not true, i.e.
there exist i ̸= j and δ > 0 so that |ai− aj| > δ for infinitely many t. Consider
t′ so that for all t > t′ and all m, l inequalities bm,l < ϵ and cm < ϵ hold. After
right multiplying the density matrix by the diffusion matrix

ρtD =



a1 . . . O(ϵ) O(ϵ) . . . O(ϵ)
...

. . .
...

...
. . .

...
O(ϵ) . . . ak O(ϵ) . . . O(ϵ)
O(ϵ) . . . O(ϵ) d . . . d
...

. . .
...

...
. . .

...
O(ϵ) . . . O(ϵ) d . . . d




−1 + 2
n

2
n

. . . 2
n

2
n

−1 + 2
n

. . . 2
n

. . . . . . . . . . . .
2
n

2
n

. . . −1 + 2
n

 ,

the last column contains values 2a1
n

+O(ϵ), . . . , 2ak
n

+O(ϵ) and d(n−2k)
n

+O(ϵ)
(n− k times). After left multiplying this matrix by the diffusion matrix, each
of the first k elements in the last column takes the value 2v− 2ai

n
+O(ϵ), where

v is the arithmetic mean of the last column of ρtD. We obtain a contradiction
by choosing a sufficiently small ϵ, because at least two of these values differ by
at least 2δ

n
+O(ϵ).

For an arbitrary ϵ we can choose t′ so that for every t > t′ the inequalities
bm,l < ϵ, cm < ϵ and |am−al| < ϵ hold for allm and l. Since a1+. . .+ak+d(n−
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k) = 1 (a property of the density matrix), it follows that ai =
1−d(n−k)

k
+O(ϵ).

So, the arithmetic mean of the last column of ρtD is

v =
2(a1 + . . .+ ak) + d(n− 2k)(n− k)

n2
+O(ϵ) =

=
2 + d(n− 2k − 2)(n− k)

n2
+O(ϵ).

After left and right multiplying the density matrix by the diffusion matrix,
the i-th value in the last column is

2v − 2ai
n

+O(ϵ) = 2v − 2− 2d(n− k)

nk
+O(ϵ) =

=
4 + 2d(n− 2k − 2)(n− k)

n2
− 2− 2d(n− k)

nk
+O(ϵ) =

=
2(n− 2k)(d(k + 1)(n− k)− 1)

kn2
+O(ϵ).

Since this sum must be O(ϵ), it follows that d(k + 1)(n − k) − 1 = O(ϵ),
assuming n ̸= 2k. Choosing ϵ arbitrarily small, we obtain limt→∞ d = 1

(k+1)(n−k)
and limt→∞ ai =

1
k+1

.

�
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8.5 Convergence speed of Grover’s algorithm with errors

In this section we will study how fast Grover’s algorithm with errors converges
to its limiting state and will prove the Theorem 8.2.

We describe the state of Grover’s algorithm after t queries by the density
matrix

ρt =



a1 b1,2 . . . b1,k c1 . . . c1

b1,2 a2 . . . b2,k
...

. . .
...

...
...

. . . . . .
...

. . .
...

b1,k b2,k . . . ak ck . . . ck
c1 . . . . . . ck d . . . d
...

. . . . . .
...

...
. . .

...
c1 . . . . . . ck d . . . d


.

In this section we assume that errors occur with the same probability p1 =
. . . = pk = p for all marked elements. Thus, the density matrix takes the much
simpler form

ρt =



a b . . . b c . . . c

b a . . . b
...

. . .
...

...
...

. . .
...

...
. . .

...
b b . . . a c . . . c
c . . . . . . c d . . . d
...

. . . . . .
...

...
. . .

...
c . . . . . . c d . . . d


.

In the further analysis we use the square of the Frobenius norm of the
density matrix:

∥ρ∥2F =
n∑
i=1

n∑
j=1

|ρij|2.

We will also need the function

S(ρ) = k(k − 1)b2 + 2k(n− k)c2, (8.3)

which gives the sum of squares of all b and c elements of the density matrix.

According to (8.2), the faulty query transformation Q′ decreases the square
of the Frobenius norm of the density matrix by

k(k − 1)b2 + 2k(n− k)c2 − k(k − 1)(b(2p− 1)2)2 − 2k(n− k)(c(2p− 1))2 =
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= k(k − 1)b2(1− (2p− 1)4) + 2k(n− k)c2(1− (2p− 1)2) >

> (k(k − 1)b2 + 2k(n− k)c2)(1− (2p− 1)2) = S(ρ)(4p− 4p2). (8.4)

Before the first application of the query transformation, the Frobenius norm
is 1. Each further application of the query transformation decreases the Frobe-
nius norm. We have proved that the Frobenius norm has a limit of 1√

k+1

(Frobenius norm of the limiting state ρlim). Thus, total decrease of the Frobe-
nius norm is 1 − 1√

k+1
. Similarly, the square of the Frobenius norm decreases

from 1 to 1
k+1

and has the total decrease of k
k+1

.

Among first 2m applications of the query transformation, there exist two
sequential applications which decrease the square of the Frobenius norm by
less than 1

m
. Let ρ1 and ρ2 be density matrices before these applications. Let

a1, b1, c1, d1 and a2, b2, c2, d2 be a, b, c, d values of ρ1 and ρ2 respectively.

From (8.4) we have

S(ρ1) <
1

m(4p− 4p2)
and S(ρ2) <

1

m(4p− 4p2)
. (8.5)

In the further proof we use the following straightforward-to-prove lemma:

Lemma 8.1: If S = k(k−1)b2+2k(n−k)c2 < R and k ≥ 2 hold then |c| <
√

R
n

and |b| <
√
R also hold.

We also use the notation δ(a, b) = {x|a− b < x < a+ b}.

Lemma 8.1 and the equation (8.5) implies

c1 ∈ δ

(
0,

√
R

n

)
,

b1 ∈ δ
(
0,
√
R
)
,

c2 ∈ δ

(
0,

√
R

n

)
,

b2 ∈ δ
(
0,
√
R
)
,

where R = 1
m(4p−4p2)

.
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The diffusion matrix changes each element a of a vector to 2v − a, where
v is the arithmetic mean of all elements. We will call this the diffusion matrix
property.

The arithmetic mean of each of the first k columns of the matrix ρ′1 (after
the first application of the query transformation) is

v ∈ δ

(
a1
n
,
√
R
k − 1

n
+

√
R

n

n− k

n

)
⊆ δ

(
a1
n
,
k

n

√
R +

√
R

n

)
.

Because of the diffusion matrix property, the value of the last elements of the
first k columns of the matrix Dρ′1 is

c′1 = 2v − c1 ∈ δ

(
2
a1
n
,
2k

n

√
R + 3

√
R

n

)
.

The arithmetic mean of each of the last n− k columns of the matrix ρ′1 is

v ∈ δ

(
d1
n− k

n
,
k

n

√
R

n

)
.

Hence, the value of the last elements of the last n − k columns of the matrix
Dρ′1 is

d′1 = 2v − d1 ∈ δ

(
d1
n− 2k

n
,
2k

n

√
R

n

)
.

The arithmetic mean of the last row of the matrix Dρ′1 is

v ∈ δ

(
a1

2k

n2
+ d1

(n− k)(n− 2k)

n2
,
2k2

n2

√
R +

5nk − 2k2

n2

√
R

n

)
.

Assuming n > 2k and using the definition of the diffusion matrix, we obtain

c2 = 2v − c′1 ∈

∈ δ

(
−2a1

n− 2k

n2
+ 2d1

(n− k)(n− 2k)

n2
,
4k2

n2

√
R +

10nk − 4k2

n2

√
R

n
+

2k

n

√
R + 3

√
R

n

)
⊆

⊆ δ

(
−2a1

n− 2k

n2
+ 2d1

(n− k)(n− 2k)

n2
,
4k

n

√
R + 13

√
R

n

)
=
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= δ

(
2(d1(n− k)− a1)(n− 2k)

n2
,
4k

n

√
R + 13

√
R

n

)
.

As c2 ∈ δ
(
0,
√

R
n

)
,
∣∣∣2(d1(n−k)−a1)(n−2k)

n2

∣∣∣ < 4k
n

√
R + 14

√
R
n
holds.

As ka1+d1(n−k) = 1, it follows that d1(n−k)−a1 = 1− (k+1)a1. Using
the inequality ∣∣∣∣ k

k + 1
− ka1

∣∣∣∣ < |1− (k + 1)a1| ,

we obtain ∣∣∣∣ k

k + 1
− ka1

∣∣∣∣ < (2k

n
+

7√
n

)
n2

n− 2k

√
R.

The left side of this inequality is the absolute value of the difference between
the probability of finding any of the marked elements and k

k+1
.

For an arbitrary ϵ the inequality(
2k

n
+

7√
n

)
n2

n− 2k

√
R < ϵ

holds if

m >
1

4p(1− p)ϵ2

(
2k

n
+

7√
n

)2
n4

(n− 2k)2
= O(n)

(substituting R = 1
4mp(1−p)).

�
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8.6 Conclusions

We have analysed the behaviour of Grover’s algorithm in the model of logi-
cal errors where the query transformation is allowed to report some marked
elements as unmarked. We have shown existence of the limiting state ρlim to
which the state of the algorithm converges after the large number of steps. If
we measure ρlim, the probability of getting one of the marked states i1, . . . , ik
is k

k+1
. We have analysed the speed of convergence to the limiting state and

shown that this happens in O(n) steps. This matches the lower bound of [RS08]
1.

Our analysis uses the density matrix formalism, which is the standard tool
for analysing the effect of stochastic operations on a quantum state. Although,
our results can not be directly applied to other query algorithms (as different
algorithms have different transformations applied between subsequent queries),
our approach (structure of the proof and used techniques) can be adapted to
analyse the behaviour of query algorithms in the described and similar error
models.

For example, applying our approach to the error model of [RS08] (described
in chapter 7) we can prove existing of limiting state

ρlim =
1

2k

k∑
j=1

|ij⟩⟨ij|+
1

2(N − k)
|ϕ⟩⟨ϕ|

and O(N) convergence time. The corresponding proofs are just a minor mod-
ification of proofs of theorems 8.1 and 8.2.

Our proofs provide useful insights into fault-tolerance of quantum query al-
gorithms. For example, zero limits of coefficients of the density matrix affected
by a faulty query (in our case bi,j and ci coefficients) hold for any quantum
query algorithm, i.e. does not depend on transformation used between subse-
quent queries.

It would be interesting to generalize our results to a wider class of quantum
query algorithms (and, if possible, other models of errors) and understand
limits of our approach. It would also be interesting to connect our results with
results from quantum Markov chain theory, which studies limiting states of a
quantum system which undergoes a sequence of stochastic quantum operations
[Gud08, LP11].

1 Technically, the lower bound of [RS08] is for a slightly different model. However, the
difference between the models is not important in this case.



Part IV

QUANTUM WALKS



9. SEARCH BY QUANTUM WALKS ON
TWO-DIMENSIONAL GRID

Quantum walks are quantum counterparts of random walks [Amb03, Kem03].
They have been useful to design quantum algorithms for a variety of problems
[CC+03, Amb07, Sze04, AKR05, MSS05, BS06]. In many of those applications,
quantum walks are used as a tool for search.

We study a search by quantum walks on a finite two-dimensional grid ac-
cording to [AKR05]. For grid of size

√
N ×

√
N the original [AKR05] algo-

rithm takes O(
√
N logN) steps and finds a marked location with probability

O(1/ logN). This probability is small, thus, the algorithm needs amplitude
amplification to get Θ(1) probability. The amplitude amplification adds an
additional O(

√
logN) factor to the number of steps, making it O(

√
N logN).

We show that despite small probability to find marked location, the prob-
ability to be within O(

√
N) neighbourhood, i.e. at O( 4

√
N) distance from the

marked location, is Θ(1). This allows us to replace amplitude amplification
with classical post processing which does not increase time complexity of the
algorithm and leads to O(

√
logN) speed-up.

The same speed-up has been already achieved by other research groups.
However, their approaches to this problem are based on modification of the
original algorithm [Tul08] or both the algorithm and the structure of the graph
[KM+10]. Therefore, we find our approach as deserving an interest.
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9.1 [AKR05] quantum walk search algorithm

This section describes a quantum walk model of [AKR05] for two-dimensional
grid. The model, however, is very generic and can be used for other types of
graphs.

Search problem

Suppose we have N items arranged on a two dimensional lattice of size
√
N ×√

N . The locations on the lattice are labelled by their x and y coordinate
as (x, y) for x, y ∈ {0, . . . ,

√
N − 1}. We assume that the grid has periodic

boundary conditions. For example, going right from a location (
√
N − 1, y) on

the right edge of the grid leads to the location (0, y) on the left edge of the grid.
Similarly to Grover’s algorithm some of locations have a certain property. We
call these locations marked. We are given a procedure which checks whether
the location is marked. The algorithm is allowed to check its current location
or to move to an adjacent location. The task of the algorithm is to find one of
marked locations.

[AKR05] algorithm

To introduce quantum version of random walk, we define a ”location” register
with basis states |i, j⟩, i, j ∈ {0, . . . ,

√
N − 1}. We also define an additional

”coin” register with four states, one for each direction: | ⇑⟩, | ⇓⟩, | ⇐⟩ and | ⇒⟩
1. Thus, basis states of quantum walk are |i, j, d⟩ for i, j ∈ {0, . . . ,

√
N − 1},

d ∈ {⇑,⇓,⇐,⇒} and the state of quantum walk is given by:

|ψ(t)⟩ =
∑
i,j

(αi,j,⇑|i, j,⇑⟩+ αi,j,⇓|i, j,⇓⟩+ αi,j,⇐|i, j,⇐⟩+ αi,j,⇒|i, j,⇒⟩).

The [AKR05] quantum walk algorithm starts in the state

|ψ(0)⟩ = 1

2
√
N

∑
i,j

(
|i, j,⇑⟩+ |i, j,⇓⟩+ |i, j,⇐⟩+ |i, j,⇒⟩

)
.

Each step of the algorithm consists of three transformations: Q, C and S.
Here, Q is a query to the black box defined by

1 There are also quantum walk models which does not have coin register (e.g. [Sze04]).
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• Q|i, j, d⟩ = −|i, j, d⟩ if location (i, j) is marked;

• Q|i, j, d⟩ = |i, j, d⟩ if location (i, j) is not marked.

C is the transform on the coin register, called coin flip transformation. The
[AKR05] algorithm uses Grover’s diffusion transformation

D =
1

2


−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1


as C. The transformation S is called shift transformation and is defined as:

|i, j,⇑⟩ → |i, j − 1,⇓⟩
|i, j,⇓⟩ → |i, j + 1,⇑⟩
|i, j,⇐⟩ → |i− 1, j,⇒⟩
|i, j,⇒⟩ → |i+ 1, j,⇐⟩

.

Notice that after moving to an adjacent location S changes the value of the
direction register to the opposite. This is necessary for the quantum walk
algorithm of [AKR05] to work. The state of the algorithm after t steps is
refered as |ψ(t)⟩.

If there are marked locations, the state of the algorithm starts to deviate
from |ψ(0)⟩. It has been shown [AKR05] that after O(

√
N logN) steps the

inner product ⟨ψ(t)|ψ(0)⟩ becomes close to 0. If the state of the algorithm
is measured at this moment then for one or two marked locations we find a
marked location with O(1/ logN) probability. For multiple marked locations
this is not always the case. There exist marked location configurations for
which quantum walk fails to find any of marked locations [AR08].

The probability to find a marked location is small, thus, the algorithm
uses amplitude amplification [BH+00] to get Θ(1) probability. The amplitude
amplification adds an additional O(

√
logN) factor to the number of steps,

making it O(
√
N logN).
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9.2 Summary of results

Suppose we have an
√
N ×

√
N grid with one marked location 2. The [AKR05]

algorithm takesO(
√
N logN) steps and finds the marked location withO(1/ logN)

probability. The algorithm then uses amplitude amplification to get Θ(1) prob-
ability. The amplitude amplification adds an additional O(

√
logN) factor to

the number of steps, making it O(
√
N logN).

Performing numerical experiments with [AKR05] algorithm, we have no-
ticed that probability to be close to the marked location is much higher than
probability to be far from the marked location. Figure 9.1 shows probability
distribution by distance from the marked location for 1024×1024 grid. Figure
9.2 shows the same probability distribution on logarithmic scale.

Fig. 9.1: Probability by distance, one marked location, grid size 1024×1024, normal
scale.

In this chapter we show:

Theorem 9.1: We can choose t = O(
√
N logN) so that, if we run [AKR05]

algorithm with one marked location (i, j) for t steps and perform the mea-
surement, the probability of obtaining a location (i′, j′) with |i− i′| ≤ N ϵ and
|j − j′| ≤ N ϵ is Ω(ϵ).

2 Numerical experiments give very similar results for multiple marked locations.
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Fig. 9.2: Probability by distance, one marked location, grid size 1024 × 1024, loga-
rithmic scale.

The theorem allows us to replace amplitude amplification with a classical
post processing step. We run the algorithm for O(

√
N logN) steps and per-

form a measurement. Then we classically check O(
√
N) neighbourhood of the

outcome of the measurement. According to the theorem the probability to find
the marked location is Ω(1/2) (figure 9.3 shows this probability for different
grid sizes). Thus, we do not need to perform the amplitude amplification and,
therefore, the running time of the algorithm stays O(

√
N logN).

9.3 Related work

The problem of search on a two-dimensional grid was stated in 2002 by Paul
Benioff [Ben02], who conjectured that search on two-dimensional

√
N ×

√
N

grid needs Ω(N) time, i.e. no quantum speed-up is possible in this setting.
One year later Ambainis and Aaronson proposed an algorithm [AA03] which
finds a marked location in O(

√
N log2N) steps. In 2005 Ambainis, Kempe and

Rivosh [AKR05] proposed a quantum walk based algorithm. The [AKR05]
algorithm requires O(

√
N logN) steps. The basic building block consists in

O(
√
N logN) steps of a quantum walk, which succeeds in finding the marked
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Fig. 9.3: Probability to be within
√
N neibourghood from the marked location.

location with O(1/ logN) probability. This success probability can in turn be
amplified to Θ(1) by using amplitude amplification, which adds an additional
O(

√
logN) factor to the number of steps.

Following the [AKR05] algorithm, it had been conjectured that this cost
could be reduced to O(

√
N logN), hence providing a full quadratic speed-up

over the corresponding random walk based approach. This conjecture has been
confirmed a few years later, first by Tulsi, who showed in 2008 how the basic
quantum walk could be modified so that a constant success probability could
be achieved in O(

√
N logN) steps [Tul08]. Tulsi’s technique has later been

extended by Magniez et al., who showed in 2009 that a full quadratic speed-up
could be obtained over any state-transitive random walk [MN+09]. In 2010,
Krovi et al. gave another technique leading to a similar result, but for an
extended class of random walks, namely any reversible random walk [KM+10].

We propose a third technique to reduce the cost to O(
√
N logN) for the

search on the two dimensional grid. Our idea is that while the basic quantum
walk can only find the marked location with probability O(1/ logN), it actually
returns a location close to the marked one with high probability. Therefore,
the marked location can in turn be found by running a classical search over
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the neighbourhood of the location returned by the quantum walk.

We find our result (localization of probability around marked elements)
interesting and hope to extend it to other types of graphs.
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9.4 Proofs

The proof of Theorem 9.1 consists of two steps. First, in Lemma 9.1, we derive
an approximation for the state of quantum walk at time t = O(

√
N logN)

when the state of quantum walk has the biggest difference from the starting
state. Then, in section 9.4.2, we use this approximation to derive our main
result.

Informally, the idea of the proof is as follows. Denote Pr[0] the probability
to find a marked location and Pr[R] the probability to be at distance R from
the marked location (we use Manhattan or L1 distance). For small R values
(R ≪

√
N) we have:

Pr[R] ≈ Pr[0]

R2
.

There are 4R points at the distance R from the marked location. Thus, the
total probability to be within

√
N neighbourhood of the marked location is:

Pr[≤ 4
√
N ] =

4√N∑
R=1

4R×O

(
Pr[0]

R2

)
= Pr[0]×

4√N∑
R=1

O

(
1

R

)
= Pr[0]×O(logN).

The probability to find the marked location is O(1/ logN), thus, we have

Pr[≤ 4
√
N ] = O

(
1

logN

)
×O(logN) = const.

9.4.1 Approximation of the final state of the quantum walk

Let

|ψ⟩ =

√
N−1∑
j=0

√
N−1∑
j′=0

∑
d

αtj,j′,d|j, j′, d⟩

be the state of the quantum walk after t steps.

Lemma 9.1: We can choose t = O(
√
N logN) so that for any set

S ⊆ {0, ...,
√
N − 1}2
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we have ∑
(j,j′)∈S

|αtj,j′,⇑|2 ≥ C2
∑

(j,j′)∈S

(f(j, j′)− f(j − 1, j′))2 + o(1),

where

f(j, j′) =
∑

(k,l)̸=(0,0)

1

2− cos 2kπ√
N
− cos 2lπ√

N

ωkj+lj
′
,

ω = e
2πi√
N and C = Θ( 1√

N logN
).

Proof: We will repeatedly use the following lemma.

Lemma 9.2: [BV97] Let |ψ⟩ =
∑m

i=1 αi|i⟩ and |ψ′⟩ =
∑m

i=1 βi|i⟩. Then, for any
set S ⊆ {1, 2, . . . ,m}, ∑

i∈S

∣∣|αi|2 − |βi|2
∣∣ ≤ 2∥ψ − ψ′∥.

We recast the algorithm for search on the grid as an instance of an abstract
search algorithm (generalization of Grover’s search algorithm) [AKR05]. An
abstract search algorithm consists of two unitary transformations U1 and U2

and two states |ψstart⟩ and |ψgood⟩. We require the following properties:

1. U1 = I − 2|ψgood⟩⟨ψgood|. In other words, U1|ψgood⟩ = −|ψgood⟩ and, if |ψ⟩
is orthogonal to |ψgood⟩, then U1|ψ⟩ = |ψ⟩;

2. U2|ψstart⟩ = |ψstart⟩ for some state |ψstart⟩ with real amplitudes and there
is no other eigenvector with eigenvalue 1;

3. U2 is described by a real unitary matrix.

The abstract search algorithm applies the unitary transformation (U2U1)
T to

the starting state |ψstart⟩. We claim that under certain constraints its final
state (U2U1)

T |ψstart⟩ has a sufficiently large inner product with |ψgood⟩.

For the quantum walk on
√
N ×

√
N grid

|ψgood⟩ =
1

2
|i, j,⇑⟩+ 1

2
|i, j,⇓⟩+ 1

2
|i, j,⇐⟩+ 1

2
|i, j,⇒⟩,

where i, j is the marked location, and

|ψstart⟩ =
1

2
√
N

√
N−1∑
i,j=0

(|i, j,⇑⟩+ |i, j,⇓⟩+ |i, j,⇐⟩+ |i, j,⇒⟩) .
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Since U2 is described by a real-value unitary matrix, its eigenvectors (with
eigenvalues that are not 1 or -1) can be divided into pairs: |Φ+

j ⟩ and |Φ−
j ⟩,

with eigenvalues eiθj and e−iθj , respectively. In the case of the walk on the
2-dimensional grid we have:

Claim 9.1: [AKR05, Claim 6] Quantum walk on the 2-dimensional grid with
no marked locations has N−1 pairs of eigenvalues e±iθj that are not equal to 1
or -1. These values can be indexed by pairs (k, l) ∈ {0, 1, . . . ,

√
N−1}2 \ (0, 0).

The corresponding eigenvalues are equal to e±iθk,l , where θk,l satisfies cos θk,l =
1
2
(cos 2πk√

N
+ cos 2πl√

N
).

We use |Φ+
k,l⟩ and |Φ−

k,l⟩ to denote the corresponding eigenvectors. According
to [MPA10, pages 3-4] these eigenvectors are equal to

|Φ+
k,l⟩ = |ξk⟩ ⊗ |ξl⟩ ⊗ |v+k,l⟩ and |Φ−

k,l⟩ = |ξk⟩ ⊗ |ξl⟩ ⊗ |v−k,l⟩,

where |ξk⟩ =
∑√

N−1
i=0 ωki 1

4√N
|i⟩,

|v+k,l⟩ =
i

2
√
2 sin θk,l


e−iθk,l − ωk

e−iθk,l − ω−k

e−iθk,l − ωl

e−iθk,l − ω−l

 , |v−k,l⟩ =
i

2
√
2 sin θk,l


ωk − eiθk,l

ω−k − eiθk,l

ωl − eiθk,l

ω−l − eiθk,l

 .
The order of directions for the coin register is: | ⇓⟩, | ⇑⟩, | ⇒⟩, | ⇐⟩. The sign
of |v−k,l⟩ has been adjusted so that

1√
2
|Φ+

k,l⟩+
1√
2
|Φ−

k,l⟩ = |ξk⟩ ⊗ |ξl⟩ ⊗ |ψ0⟩, (9.1)

where |ψ0⟩ = 1
2
| ⇓⟩+ 1

2
| ⇑⟩+ 1

2
| ⇒⟩+ 1

2
| ⇐⟩.

Due to symmetry, we can assume that |ψgood⟩ = |0⟩⊗ |0⟩⊗ |ψ0⟩. This gives
us an expression of |ψgood⟩ in terms of the eigenvectors of U2:

|ψgood⟩ =
1√
N

∑
k,l

|ξk⟩ ⊗ |ξl⟩ ⊗ |ψ0⟩ =

1√
N
|ψstart⟩+

1√
2N

∑
(k,l)̸=(0,0)

|Φ+
k,l⟩+ |Φ−

k,l⟩.
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Using the results from [AKR05], we can transform this into an expression
for the final state of our quantum search algorithm. According to the first big
equation in the proof of Lemma 5 in [AKR05], after t = O(

√
N logN) steps we

get a final state |ψ⟩ such that ∥|ψ⟩ − |ϕfinal⟩∥ = o(1), where |ϕfinal⟩ =
|ϕ′final⟩
∥ϕ′final∥

and

|ϕ′
final⟩ =

1√
N
|ψstart⟩+

1√
2N

∑
(k,l)̸=(0,0)

ak,l|Φ+
k,l⟩+ bk,l|Φ−

k,l⟩ (9.2)

and

ak,l = 1 +
i

2
cot

α+ θk,l
2

+
i

2
cot

−α + θk,l
2

,

bk,l = 1 +
i

2
cot

α− θk,l
2

+
i

2
cot

−α− θk,l
2

.

We now replace
∑

(j,j′)∈S |αtj,j′,d|2 by the corresponding sum of squares of am-

plitudes for the state |ϕfinal⟩. By Lemma 9.2, this changes the sum by an
amount that is o(1).

From [AKR05] we have α = Θ( 1√
N logN

), min θk,l = Θ( 1√
N
) and max θk,l =

π −Θ( 1√
N
). Hence, we have ±α + θk,l = (1 + o(1))θk,l and we get

|ϕ′
final⟩ =

1√
N
|ψstart⟩+

1√
2N

∑
(k,l)̸=(0,0)

(
1 + i(1 + o(1)) cot

θk,l
2

)
|Φ+

k,l⟩+

(
1− i(1 + o(1)) cot

θk,l
2

)
|Φ−

k,l⟩. (9.3)

This means that ∥|ψfinal⟩ − |ϕfinal⟩∥ = o(1) where |ψfinal⟩ =
|ψ′

final⟩
∥ψ′

final∥
and

|ψ′
final⟩ = |ψgood⟩+

1√
2N

∑
(k,l)̸=(0,0)

i cot
θk,l
2

(
|Φ+

k,l⟩ − |Φ−
k,l⟩
)
. (9.4)

Again, we can replace a sum of squares of amplitudes for the state |ϕfinal⟩ by
the corresponding sum for |ψfinal⟩ and, by Lemma 9.2, the sum changes by an
amount that is o(1).

We now estimate the amplitude of |j, j′,⇑⟩ in |ψfinal⟩. We assume that
(j, j′) ̸= (0, 0). Then, the amplitude of |j, j′,⇑⟩ in |ψgood⟩ is 0. Hence, we can
evaluate the amplitude of |j, j′,⇑⟩ in

1√
2N

∑
(k,l) ̸=(0,0)

i cot
θk,l
2
(|Φ+

k,l⟩ − |Φ−
k,l⟩) (9.5)
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and then divide the result by Θ(
√
logN), because ∥ψ′

final∥ = Θ(
√
logN).

From the definitions of |v±k,l⟩ we have

1√
2
|v+k,l⟩ −

1√
2
|v−k,l⟩ =

i

4 sin θk,l


2 cos θk,l − 2ωk

2 cos θk,l − 2ω−k

2 cos θk,l − 2ωl

2 cos θk,l − 2ω−l

 .
The amplitude of | ⇑⟩ in this state is i

2 sin θk,l
(cos θk,l − ω−k). The amplitude of

|j⟩ in |ξk⟩ is 1
4√N
ωkj. The amplitude of |j′⟩ in |ξl⟩ is 1

4√N
ωlj

′
. Therefore, the

amplitude of |j, j′,⇑⟩ in 1√
2
|Φ+

k,l⟩ − 1√
2
|Φ−

k,l⟩ is

1√
N
ωkj+lj

′ i

2 sin θk,l
(cos θk,l − ω−k).

The amplitude of |j, j′,⇑⟩ in (9.5) is

1√
2N

∑
(k,l)̸=(0,0)

i cot
θj
2
· i

2 sin θk,l
(cos θk,l − ω−k)ωkj+lj

′
.

By using sin θk,l = 2 sin
θk,l
2
cos

θk,l
2
, we get that the amplitude of |j, j′,⇑⟩ is

1√
2

∑
(k,l)̸=(0,0)

1

4N

(
− cos θk,l

sin2 θk,l
2

ωkj+lj
′
+

1

sin2 θk,l
2

ωk(j−1)+lj′

)
=

1√
2

∑
(k,l)̸=(0,0)

1

4N

(
2ωkj+lj

′ − 1

sin2 θk,l
2

(ωkj+lj
′ − ωk(j−1)+lj′)

)
, (9.6)

with the equality following from cos 2x = 1− 2 sin2 x.

We can decompose the sum into two sums – one over all the first components
and one over all the second components. The first component of the sum in
(9.6) is close to 0 and, therefore, can be omitted. Hence, we get that the
amplitude of |j, j′,⇑⟩ in the unnormalized state |ψ′

final⟩ can be approximated
by

1√
2

∑
(k,l)̸=(0,0)

1

4N

1

sin2 θk,l
2

(−ωkj+lj′ + ωk(j−1)+lj′) =

Θ

(
1

N

)
· (f(j − 1, j′)− f(j, j′)).

To obtain the amplitude of |j, j′,⇑⟩ in |ψfinal⟩, this should be divided by
∥ψ′

final∥ which is of the order Θ(
√
logN). This implies Lemma 9.1.

�
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9.4.2 Bounds on the probability of being close to the marked location

We start by performing some rearrangements in the expression f(j, j′).

Let n =
√
N and S be the set of all pairs (k, l) such as k, l ∈ {0, 1, . . . , n−1},

except for (0, 0). We consider

f(j, j′) =
∑

(k,l)∈S

1

2− cos 2kπ
n

− cos 2lπ
n

ωkj+lj
′
=

∑
(k,l)∈S

cos 2(kj+lj′)π
n

+ i sin 2(kj+lj′)π
n

2− cos 2kπ
n

− cos 2lπ
n

. (9.7)

Since the cosine function is periodic with period 2π, we have cos 2lπ
n

=

cos 2(l−N)π
n

. Hence, we can replace the summation over S by the summation
over

S ′ =
{
(k, l)|k, l ∈

{
−
⌊n
2

⌋
, 1, . . . ,

⌊n
2
− 1
⌋}}

\ {(0, 0)}.

This implies that the imaginary part of (9.7) cancels out because terms in the
sum can be paired up so that, in each pair, the imaginary part in both terms
has the same absolute value but opposite sign. Namely:

• If none of k, l,−k and −l is equal to n
2
, we pair up (k, l) with (−k,−l).

• If none of k and −k is equal to 0 or n
2
, we pair up (−n

2
, k) with (−n

2
,−k)

and (k,−n
2
) with (−k,−n

2
).

• The terms (−n
2
, 0), (0,−n

2
) and (−n

2
,−n

2
) are left without a pair. This

does not affect the argument because the imaginary part is equal to 0 in
those terms.

Thus, we have

f(j, j′) =
∑

(k,l)∈S′

cos 2(kj+lj′)π
n

2− cos 2kπ
n

− cos 2lπ
n

.

We define a function g(j, j′) = f(j, j′)−f(j−1, j′). By Lemma 9.1, Cg(j, j′)
is a good approximation for the amplitude of |j, j′,⇑⟩ in the state of the quan-
tum walk after t = O(

√
N logN) steps.

Lemma 9.3: ∑
0<j′,j<M

g2(j, j′) = Ω(n2 lnM)

where M = nϵ and ϵ = Ω(1), and ϵ = 1− Ω(1).



9. Search by quantum walks on two-dimensional grid 87

Together with Lemma 9.1, this implies that the sum of amplitudes of |j, j′,⇑
⟩ for 0 < j′, j < M is Ω

(
logM
logN

)
− o(1). Since logM

logn
= ϵ this implies Theorem

9.1.

Proof: [of Lemma 9.3] We introduce a function

R(M ′,M ′′, k) =
M ′′∑

l=M ′+1

g2(l, k)

where M ′′ > M ′ > k and M ′′ = αM ′ for some α.

Claim 9.2: |f(j, j′)− n2

2π2f
′(j, j′)| = O(n2) where

f ′(j, j′) =
∑

(k,l)∈S′

cos 2(kj+lj′)π
n

k2 + l2
.

Claim 9.3: Let j′ = jβ where 0 < β ≤ 1 and j = nϵ, and ϵ = Ω(1), and
ϵ = 1− Ω(1). Then the following equality holds:

f ′(j, j′) =
π

2
ln
n

j
+O(1).

Given these two claims, we now complete the proof of Lemma 9.3. From
the inequality of quadratic and arithmetic means, we get

R(M ′,M ′′, k) ≥ (f(M ′′, k)− f(M ′, k))2

M ′′ −M ′

=

(
n2

4π
ln n

M ′′ − n2

4π
ln n

M ′ +O(n2)
)2

M ′′ −M ′

=

(
n2

4π
lnα +O(n2)

)2
(α− 1)M ′

=
Ω(n2)

M ′ ,

where the first equality follows from M ′′,M ′ > k and Claims 9.2 and 9.3. The
last equality holds if we choose an α large enough that n2

4π
lnα+O(n2) = Ω(n2).

We introduce a notation

P (M ′) =
M ′−1∑
l=0

R(M ′, αM ′, l).
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From R(M ′,M ′′, k) = Ω(n2)
M ′ we get P (M ′) = Ω(n2). We obtain the following

lower bound: ∑
0<j′,j<M

g2(j, j′) >
∑

0<j′<j<M

g2(j, j′)

>

logα
√
M∑

l=1

P

(
M

αl

)
= Ω

(
n2 logα

√
M
)
= Ω(n2 lnM).

�
Proof: [of Claim 9.2]

We have

|f(j, j′)− n2

2π2
f ′(j, j′)|

≤
∑

(k,l)∈S′

∣∣∣∣cos 2(kj + lj′)π

n

∣∣∣∣ ·
∣∣∣∣∣ 1

2− cos 2kπ
n

− cos 2lπ
n

− n2

2π2(k2 + l2)

∣∣∣∣∣ .
The claim now follows from |S ′| = n2 − 1, | cos x| ≤ 1 and∣∣∣∣∣ 1

2− cos 2kπ
n

− cos 2lπ
n

− n2

2π2(k2 + l2)

∣∣∣∣∣ ≤ 1

2
.

To prove the last inequality, we first rewrite

1

2− cos 2kπ
n

− cos 2lπ
n

=
1

2(sin2 kπ
n
+ sin2 lπ

n
)
.

We have x− x3

6
≤ sinx ≤ x for all x ∈ [0, π]. This implies x2− x4

3
≤ sin2 x ≤ x2.

Hence, we have∣∣∣∣∣ 1

2(sin2 kπ
n
+ sin2 lπ

n
)
− 1

2((kπ
n
)2 + ( lπ

n
)2)

∣∣∣∣∣ = (kπ
n
)2 + ( lπ

n
)2 − (sin2 kπ

n
+ sin2 lπ

n
)

2((kπ
n
)2 + ( lπ

n
)2)(sin2 kπ

n
+ sin2 lπ

n
)

≤
(kπ
n
)4 + ( lπ

n
)4

6((kπ
n
)2 + ( lπ

n
)2)
(
(kπ
n
)2 + ( lπ

n
)2 − ( kπ

n
)4+( lπ

n
)4

3

) ≤ 1

2

where the last inequality follows from

a2 + b2

(a+ b)
(
a+ b− a2+b2

3

) ≤ 3

which holds for 0 ≤ a, b ≤ (π
2
)2. �
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Proof: [of Claim 9.3]

We will use the notation α = 2π
n
.

The following equalities hold∑
(k,l)∈S′

cosα(kj + lj′)

k2 + l2
=
∑

(k,l)∈S′

cosαj(k + lβ)

k2 + l2

=
∑

k + lβ ≤ n
k, l ∈ Z0+

(k, l) ̸= (0, 0)

cosαj(k + lβ)

k2 + l2
+O(1). (9.8)

The last equality holds because it lacks some summands, with absolute value
of their sum bounded above by∑

(k, l) ∈ S ′

k + l > n

1

k2 + l2
= O(1).

It also has some new summands, with absolute value of their sum bounded
above by ∑

l > n
0 < k < n
k, l ∈ Z0+

1

k2 + l2
= O(1).

We will use the notation k′ = k + ⌈lβ⌉ − lβ. We replace the sum (9.8)
(without the asymptotic) with∑

k + lβ ≤ n
k, l ∈ Z0+

(k, l) ̸= (0, 0)

cosαj(k′ + lβ)

k2 + l2
. (9.9)

The error because of the replacement is

2πnϵ−1
∑

k + lβ ≤ n
k, l ∈ Z0+

(k, l) ̸= (0, 0)

1

k2 + l2
≤ 2πnϵ−1

∑
k, l ∈ Z0+

(k, l) ̸= (0, 0)
0 ≤ k ≤ n
l ≥ 0

1

k2 + l2
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= 2πnϵ−1O(lnn) = o(1)

where we used the fact that | cosαj(k′ + lβ)− cosαj(k + lβ)| ≤ 2πnϵ−1.

We replace the sum (9.9) with∑
k + lβ ≤ n
k, l ∈ Z0+

(k, l) ̸= (0, 0)

cosαj(k′ + lβ)

(k′)2 + l2
. (9.10)

The error of the last replacement is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
∑

k + lβ ≤ n
k, l ∈ Z0+

(k, l) ̸= (0, 0)

(
cosαj(k′ + lβ)

(k′)2 + l2
− cosαj(k′ + lβ)

k2 + l2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

≤
∑

k, l ∈ Z0+

(k, l) ̸= (0, 0)

(k′)2 − k2

(k2 + l2)2
≤

∑
k, l ∈ Z0+

(k, l) ̸= (0, 0)

2k + 1

(k2 + l2)2

≤ 3
∑

k, l ∈ Z0+

(k, l) ̸= (0, 0)

k + l

(k2 + l2)2
≤ 12

∑
k, l ∈ Z0+

(k, l) ̸= (0, 0)

1

(k + l)3
= O(1).

We replace the sum (9.10) with∑
k + lβ ≤ n
k, l ∈ Z0+

(k, l) ̸= (0, 0)

cos (αj(k′ + lβ))
1

β

∫ β
2

−β
2

dt

(k′ − t)2 +
(
l + t

β

)2 . (9.11)

Because of the last replacement the error in a fixed summand is∣∣∣∣∣∣∣
1

(k′)2 + l2
− 1

β

∫ β
2

−β
2

dt

(k′ − t)2 +
(
l + t

β

)2
∣∣∣∣∣∣∣ =
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∣∣∣∣∣∣∣∣
1

(k′)2 + l2
−

arctan

(
k′+lβ

(k′)2+l2− 1+β2

4

)
k′ + lβ

∣∣∣∣∣∣∣∣ .
By using x− x3

3
< arctanx < x that holds for all x > 0 we bound the error

from above by

∣∣∣∣∣ −1+β2

4

((k′)2 + l2)((k′)2 + l2 − 1+β2

4
)

∣∣∣∣∣+
∣∣∣∣∣∣∣∣∣
(

k′+lβ

(k′)2+l2− 1+β2

4

)3

3(k′ + lβ)

∣∣∣∣∣∣∣∣∣ .

By using the inequalities (k′)2+ l2 ≥ 1
2
(k′+ l)2 and (k′)2+ l2− 1

2
≥ 1

4
(k′+ l)2

which hold if k + l ≥ 1 and k, l ∈ Z0+, and 0 < β ≤ 1, we obtain the following
upper bound of the error:

4

(k′ + l)4
+

64

3(k′ + l)4
=

76

3(k′ + l)4
≤ 76

3(k + l)4
.

Thus, the error made in (9.11) can be bounded from above by∑
k + lβ ≤ n
k, l ∈ Z0+

(k, l) ̸= (0, 0)

76

3(k + l)4
= O(1).

We replace (9.11) with

1

β

n∑
s=1

cosαjs

∫ s

0

dk

k2 +
(
s−k
β

)2 .
We grouped summands with equal cosine arguments. We also altered in-

tegration limits to obtain an integral on the interval [0, s]. The error made in
this step can be bounded from above by

n∑
s=1

1

s2
= O(1).
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By using
∫ s
0

dk

k2+( s−k
β )

2 = βπ
2s

we obtain the following sum:

π

2

n∑
s=1

cosαjs

s
. (9.12)

Proposition 9.1: Let j = nϵ and ϵ = Ω(1), and ϵ = 1− Ω(1).

The following equality holds:

n∑
k=1

cos
(
2π
n
jk
)

k
= (1− ϵ) lnn+O(1).

Now Proposition 9.1 gives us that (9.12) is equal to

π

2
ln
n

j
+O(1).

�
Proof: [of Proposition 9.1]

We can rewrite the sum
∑n

k=1

cos( 2π
n
nϵk)

k
in the following way:

⌊n1−ϵ⌋∑
k=1

cos (2πnϵ−1k)

k
+

⌊nϵ⌋−1∑
l=1

⌊n1−ϵ(l+1)⌋∑
t=⌊n1−ϵl⌋+1

cos (2πnϵ−1t)

t

+
n∑

k=⌊n1−ϵ⌊nϵ⌋⌋+1

cos (2πnϵ−1k)

k
(9.13)

Proposition 9.2:
n∑
k=1

cos
(
2π
n
k
)

k
= lnn+O(1).

Proof:

The proposition follows from

n∑
k=1

cos
(
2π
n
k
)

k
≤ lnn+ 1.
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and
n∑
k=1

cos
(
2π
n
k
)

k
≥

n∑
k=1

1

k
−

n∑
k=1

2π

n
≥ lnn− 2π

where the first inequality in the last expression follows from cosx ≥ 1−x which
holds if x ≥ 0. �

From proposition 9.2 we get the following equality for the first big summand
of (9.13):

⌊n1−ϵ⌋∑
k=1

cos (2πnϵ−1k)

k
= (1− ϵ) lnn+O(1).

We can also obtain the following bound for the third big summand of (9.13):∣∣∣∣∣∣
n∑

k=⌊n1−ϵ⌊nϵ⌋⌋+1

cos (2πnϵ−1k)

k

∣∣∣∣∣∣ < n1−ϵ + 1

n− n1−ϵ = o(1).

We replace the second big summand of (9.13) with

⌊nϵ⌋−1∑
l=1

⌊n1−ϵl⌋+⌊n1−ϵ⌋∑
t=⌊n1−ϵl⌋+1

cos (2πnϵ−1t)

t
. (9.14)

The error because of the replacement is∣∣∣∣∣∣
⌊nϵ⌋−1∑
l=1

cos (2πnϵ−1⌊n1−ϵ(l + 1)⌋)
⌊n1−ϵ(l + 1)⌋

∣∣∣∣∣∣ <
⌊nϵ⌋−1∑
l=1

1

n1−ϵl
= o(1)

which follows from the fact that the inequality |⌊x⌋+ ⌊y⌋ − ⌊x+ y⌋| ≤ 1 holds
for all x and y.

We rewrite (9.14) as

⌊n1−ϵ⌋∑
t=1

⌊nϵ⌋−1∑
l=1

cos (2πnϵ−1 (⌊n1−ϵl⌋+ t))

⌊n1−ϵl⌋+ t
.

We get rid of the floor function in the numerator of the last expression,
thus, obtaining the following sum:

⌊n1−ϵ⌋∑
t=1

cos
(
2πnϵ−1t

)
p(t) (9.15)
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where

p(t) =

⌊nϵ⌋−1∑
l=1

1

⌊n1−ϵl⌋+ t
.

Using the fact that |cosx− cos y| ≤ |x− y| holds for all x and y, we obtain
that the cosine value because of the replacement changed at most by∣∣2πnϵ−1

(
⌊n1−ϵl⌋ − n1−ϵl

)∣∣ ≤ 2πnϵ−1.

Thus, we obtain the following bound of the error of the replacement:

2πnϵ−1

⌊n1−ϵ⌋∑
t=1

p(t) ≤ 2πnϵ−1n1−ϵp(t) = o(1)

where we used

p(t) ≤
⌊nϵ⌋−1∑
l=1

1

n1−ϵl
<
ϵ lnn+ 1

n1−ϵ = o(1).

To prove that the expression (9.15) is O(1), first we will pair almost all of
it’s summands so that the sum of cosine values in each pair is very close to 0.

Let k(t) = ⌊n1−ϵ

2
⌋ − t and r(t) = ⌊3n1−ϵ

2
⌋ − t. We replace (9.15) with

⌊n1−ϵ

4
⌋−3∑

t=3

(
cos
(
2πnϵ−1t

)
p(t) + cos

(
2πnϵ−1k(t)

)
p(k(t))

)

+

⌊n1−ϵ⌋−3∑
⌊ 3n1−ϵ

4
⌋+3

(
cos
(
2πnϵ−1t

)
p(t) + cos

(
2πnϵ−1r(t)

)
p(r(t))

)
(9.16)

where we removed some of the summands of (9.15). Let the number of the
removed summands be C = O(1). From p(t) = o(1) we get that the error of
the last replacement is o(1).

Now we replace (9.16) with

⌊n1−ϵ

4
⌋−3∑

t=3

(
cos
(
2πnϵ−1t

)
p(t) + cos

(
π − 2πnϵ−1t

)
p(k(t))

)

+

⌊n1−ϵ⌋−3∑
⌊ 3n1−ϵ

4
⌋+3

(
cos
(
2πnϵ−1t

)
p(t) + cos

(
3π − 2πnϵ−1t

)
p(r(t))

)
. (9.17)
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The error of the last replacement is n1−ϵ · 2πnϵ−1 · o(1) = o(1) where the first
factor is larger than the number of summands of the last sum; the second factor
is the maximum change in the value of the cosine function; the third factor is
p(t) = o(1).

Now we can bound the maximum value of (9.17) with

⌊n1−ϵ⌋ − C

2

⌊nϵ⌋−1∑
l=1

1

n1−ϵl
− ⌊n1−ϵ⌋ − C

2

⌊nϵ⌋−1∑
l=1

1

n1−ϵ(l + 1)

=
⌊n1−ϵ⌋ − C

2

(
1

n1−ϵ −
1

n1−ϵ⌊nϵ⌋

)
= O(1).

�
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9.5 Conclusions

We have studied a search by quantum walks on a finite two-dimensional grid
with one marked location according to [AKR05]. We have shown that while
the original quantum walk can only find the marked location with probability
O(1/ logN), it actually returns a location close to the marked one with high
probability. This allows us to replace amplitude amplification with classical
post processing which does not increase time complexity of the algorithm and,
thus, leads to O(

√
logN) speed-up.

We have shown the effect of localization of probability around the marked
location for one marked location case. However, our numerical simulations
show the very same effect for multiple marked locations. Moreover, as the
model of quantum walk is very generic, we expect the same effect for other
types of graphs. This, if proven, can be used to improve various quantum walk
based algorithms.

We were unable to prove our conjecture as our analysis technique is very
dependent on the structure of a graph as well as number and positions of
marked locations. This is due to expressing the initial state of the algorithm in
terms of eigenvectors of a single step of the walk. Every change in structure of
the graph or positions of marked locations change the eigenvectors. Therefore,
the analysis should be started from the very beginning. Thus, the important
question is to find more appropriate techniques for approximation of final state
of general graph.

Our result opens a very natural question: if the quantum search on a graph
is stopped after a certain number of steps and outputs an element, how far
is the output from a marked location. This question has never been studied
before. We have solved the problem for a special case of the two-dimensional
grid. The more general solution is still to be found.



10. CONCLUSIONS

In this thesis we studied the power and the limits of quantum computation.
We examined two models: quantum finite automata and quantum search al-
gorithms in the query model.

First, we examined one-way quantum finite automata. This is the case
where quantum computation demonstrates a clear advantage over classical
counterparts, namely deterministic and probabilistic one-way finite automata.
We studied a space-efficiency of quantum finite automata and have improved
best known exponential separation between quantum and classical finite au-
tomata.

Next, we examined quantum search algorithms in the query model. We
studied Grover’s quantum search algorithm, which is one of most important and
widely known quantum query algorithms. Similarly to quantum automata case
Grover’s algorithm provides a significant speed-up over any deterministic and
probabilistic algorithms. The algorithm, however, is very sensitive to errors in
queries and may completely lose its superiority over classical algorithms [RS08].
This makes Grover’s algorithm a good candidate for study of the limits of the
quantum query model. We analysed a behaviour of Grover’s algorithm in two
different models of query errors – model of [RS08] and it’s generalization –
and have shown that in both cases the algorithm loses its quantum speed-up.
Our analysis provides useful insights into fault-tolerance of quantum query
algorithms. However, many questions are still open. The main open question
(stated in [RS08]) is if there exist a search problem for which a quantum speed-
up is achievable in the faulty query model?

Lastly, we examined a problem of search on a two-dimensional grid. The
problem is also formulated in the query model. We show that despite of quan-
tum search problem being well studied there still exists unnoticed effects, which
can be used to build efficient quantum search algorithms. We demonstrate one
such effect – localization of probability around the marked location – and use it
to improve (speed-up) quantum walk search algorithm by [AKR05]. We expect
the effect to be applicable to other search problems (with other structure of the
search space). However, the limit of its applicability is still to be understood.
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The thesis does not provide a complete theory of effects and models being
studied. There are still many questions to be answered. Nevertheless, it pro-
vides a number of notable results and new approaches and is a step towards
understanding the power and the limits of quantum computation.



BIBLIOGRAPHY

Part I references

[Aar04] S. Aaronson. Limits on Efficient Computation in the Physical
World, arXiv:quant-ph/0412143, 2004.

[BB+97] C. H. Bennett, E. Bernstein, G. Brassard, U. Vazirani. Strengths
and Weaknesses of Quantum Computing, SIAM Journal on Com-
puting (special issue on quantum computing), 26(5):1510-1523,
1997.

[DW11] A. Drucker, R. de Wolf. Quantum Proofs for Classical Theorems,
arXiv:0910.3376 [quant-ph], 2011.

[Fey82] R. Feynman. Simulating Physics with Computers, International
Journal of Theoretical Physics, 21(6/7), 1982.

[FG+00] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser. Quantum Com-
putation by Adiabatic Evolution, arXiv:quant-ph/0001106, 2000.

[Joz05] R. Jozsa. An introduction to measurement based quantum com-
putation, arXiv:quant-ph/0508124, 2005.

[Gro96] L. K. Grover. A fast quantum mechanical algorithm for database
search, Proceedings of the 28th ACM STOC, 212-219, 1996.

[Lad75] R. Ladner. On the Structure of Polynomial Time Reducibility,
Journal of the ACM, 22(1):155-171, 1975.

[KLM07] P. Kaye, R. Laflamme, M. Mosca. An Introduction to Quantum
Computing, Oxford University Press, 2007.

[Lay11] D. C. Lay. Linear Algebra and Its Applications, 4th edition, Pear-
son, 2011.

[Pen89] R. Penrose. The Emperor’s New Mind: Concerning Computers,
Minds and The Laws of Physics, Oxford University Press, 1989.



Bibliography 100

[Sho97] P. W. Shor. Polynomial-Time Algorithms for Prime Factorization
and Discrete Logarithms on a Quantum Computer, SIAM Journal
on Computing, 26(5):1484-1509, 1997.

[Wat06] J. Watrous. Quantum Computation, Lecture course ”CPSC
519/619”, University of Calgary, 2006. Available at
http://www.cs.uwaterloo.ca/~watrous/lecture-notes.html

Part II references

[AI+00] M. Ajtai, H. Iwaniec, J. Komlos, J. Pintz, E. Szemeredi. Con-
struction of a thin set with small Fourier coefficients, Bulletin of
the London Mathematical Society, 22:583-590, 1990.

[AF98] A. Ambainis, R. Freivalds. 1-way quantum finite automata:
strengths, weaknesses and generalizations, Proceedings of
FOCS’98, 332-341, 1998.

[AN08] A. Ambainis, N. Nahimovs. Improved constructions of quantum
automata, Proceedings of TQC 2008, 47-56, 2008.

[AN09] A. Ambainis, N. Nahimovs. Improved constructions of quantum
automata, Theoretical Computer Science (special issue on proba-
bilistic and quantum automata), 410:1916-1922, 2009.

[BMP03] A. Bertoni, C. Mereghetti, B. Palano. Quantum Computing: 1-
Way Quantum Automata, Developments in Language Theory,
Lecture Notes in Computer Science, 2710:1-20, 2003.

[BMP03a] A. Bertoni, C. Mereghetti, B. Palano. Lower Bounds on the Size
of Quantum Automata Accepting Unary Languages, Theoretical
Computer Science, Lecture Notes in Computer Science, 2841:86-
96, 2003.

[Bou05] J. Bourgain. Estimates on exponential sums related to Diffie-
Hellman distributions, Geometric and Functional Analysis, 15:1-
34, 2005.

[Cia01] M. Ciamarra. Quantum Reversibility and a New Model of Quan-
tum Automaton, Proceedings of FCT’01, 376-379, 2001.

[CM00] C. Moore, J. Crutchfield. Quantum automata and quantum gram-
mars, Theoretical Computer Science, 237(1-2):275-306, 2000.



Bibliography 101

[Gal06] F. Le Gall. Exponential separation of quantum and classical online
space complexity, Proceedings of SPAA’06, 67-73, 2006.

[Hir11] M. Hirvensalo. Quantum Automata with Open Time Evolution,
International Journal of Natural Computing Research, 1(1):70-85,
2010.

[KW97] A. Kondacs, J. Watrous. On the power of quantum finite state
automata, Proceedings of FOCS’97, 66-75, 1997.

[MP01] C. Mereghetti, B. Palano. Upper Bounds on the Size of One-Way
Quantum Finite Automata, Proceedings of ICTCS’2001, 123-135,
2001.

[MR94] R. Motwani, P. Raghavan. Randomized Algorithms, Cambridge
University Press, 1994.

[RSW93] A. Razborov, E. Szemeredi, A. Wigderson. Constructing small
sets that are uniform in arithmetic progressions, Combinatorics,
Probability and Computing, 2:513-518, 1993.

Part III references

[Amb07a] A. Ambainis. A nearly optimal discrete query quantum algorithm
for evaluating NAND formulas, arXiv:0704.3628 [quant-ph], 2007.
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[NR10] N. Nahimovs, A. Rivošs. A note on the optimality of the Grover’s
algorithm, Scientific Papers University of Latvia, 756:221-225,
2010.

[RS08] O. Regev, L. Schiff. Impossibility of a Quantum Speed-up with a
Faulty Oracle, Proceedings of ICALP’2008, 773-781, 2008.

[SBW03] N. Shenvi, K. R. Brown, K. B. Whaley. Effects of Noisy Oracle
on Search Algorithm Complexity, Physical Review A, 68(5), 2003.

[SMB03] D. Shapira, S. Mozes, O. Biham. Effect of unitary noise on
Grover’s quantum search algorithm, Physical Review A, 67(4),
2003.

[Zal99] C. Zalka. Grovers quantum searching algorithm is optimal, Phys-
ical Review A, 60:2746-2751, 1999.

Part IV references

[AA03] S. Aaronson, A. Ambainis. Quantum search of spatial regions,
Proceedings of FOCS’03, 200-209, 2003.
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