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Abstract
Fuzzy ordered relations, which are in the center of research of this work,

play a crucial role in many theoretical and applied areas of Fuzzy Mathemat-

ics. In our Dissertation we develop the theory of fuzzy ordered relations in

two different, but internally closely related, directions. First, we construct an

L-valued category whose objects are L-E-ordered sets. To reach this goal, we construct

a crisp category whose objects are L-E-ordered sets and whose morphisms are order-

preserving mappings (in a certain fuzzy sense) and investigate basic properties of this

category. Then we fuzzify the constructed category and investigate fundamental prop-

erties of the resulting L-valued category. In the second part of the work we investigate

the role of fuzzy orders in aggregation processes. Here we study the three main topics:

involving fuzzy orders in the definition of the degree of monotonicity, pointwise aggre-

gation andA-T -aggregation of fuzzy relations, and finally, applications of the developed

methods in multi-objective linear programming problems.
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L-E-order relation, category, fuzzy category, L-valued category, aggregation function,
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Anotācija
Nestrikta sakārtojuma koncepcija, kas ieņem centrālo vietu mūsu darbā, spēlē nozı̄mı̄gu

lomu gan teorētiskās Nestriktās Matemātikas jomā gan tās lietojumos. Disertācijā mēs

attı̄stām nestrikto sakārtojumu teoriju divos, iekšēji saistı̄tos, virzienos. Sākumā mēs

konstruējam L-vērtı̄gu kategoriju, kuras objekti ir L-E-sakārtotas kopas. Lai sasniegtu

šo mērķi, mēs konstruējam klasisku kategoriju, kuras objekti ir L-E-sakārtotas kopas

un morfismi ir sakārtojuma saglabājošas funkcijas. Darbā mēs pētām konstruētas kat-

egorijas pamatı̄pašı̄bas. Tad mēs fazificējam konstruēto kategoriju un pētām iegūtas

L-vērtı̄gas kategorijas fundamentālas ı̄pašı̄bas. Tālāk mēs pētām nestrikta sakārtojuma

lomu agregācijas procesos. Šeit tiek izpētı̄ti trı̄s temati: nestrikta sakārtojuma

ievešana monotonitātes pakāpes definı̄cijai; nestriktu attiecı̄bu agregācija un tās lieto-

jumi daudzkriteriālajā lineārā programmēšanā; nestriktu attiecı̄bu A-T -agregācija.
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Chapter 1

Introduction

The aim of this work is to make a contribution to the theory of fuzzy relations. To be

more precise we are interested in the study of fuzzy order relation1 both from theoretical

point of view and from its possible practical applications. Actually, first we study fuzzy

order relations and order-preserving functions in the frame of category theory. Speaking

about the ”practical point of view” we are interested how the introduction of fuzzy orders

can help us to solve real-world problems. In this part we consider two questions: involv-

ing fuzzy orders for the definition of degree of monotonicity for aggregation functions

and the problem of aggregation of fuzzy order relations. Although the second part also

consists mainly of theoretical results the necessity of these investigations is motivated

by the real examples of decision making problems.

Since the introduction of the concept of a fuzzy set by L. A. Zadeh [48] and its gen-

eralization to L-fuzzy set by J. A. Goguen [16] in the second half of the 20th century,

fuzzy analogues of basic concepts of classical mathematics were introduced and investi-

gated, fuzzy relations among them. Fuzzy equivalence relation and fuzzy order relation

are the most important and mostly applied of all fuzzy relations. In this work we focus

on the fuzzy orders, but as we will see later the definition of fuzzy order without having

a fuzzy equivalence relation in the base does not make much sense (see [23], [5], [6]).

First time the definitions of a fuzzy order relation and a fuzzy equivalence relation were

introduced by L.A. Zadeh in 1971 [49] under the name of a fuzzy partial ordering and

a similarity relation respectively. Various properties of fuzzy equivalence relations and

1Actually in the first part of the work we consider a more general case than the fuzzy order relation - L-

E-order relation, where L is a cl-monoid and E is an L-valued equivalence. However in the Introduction

for simplicity we use the notion of ”fuzzy order relation”.
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fuzzy orderings were investigated in this initial paper, decomposition of fuzzy relations

and extended version of Szpilrajns theorem are among them. Fifteen years later U. Höhle

and N. Blanchard in their paper [23] proposed to involve fuzzy equivalence relation for

the definition of fuzzy order (partial ordering). In this paper the main purpose of the

authors was ”to improve results on fuzzy partial orderings obtained by Zadeh” and the

main motivation was that ”an axiom of antisymmetry without a reference to a concept

of equality is meaningless”. U. Bodenhofer in his papers [5], [6] also explained that the

reflexivity and antisymmetry should be defined with respect to fuzzy equivalence rela-

tion and illustrated this statement by examples from the fuzzy logic and fuzzy set theory.

Many other authors during the last forty years have contributed to the development of

fuzzy order relations (see e.g. [35], [24],[12], [42]).

In 80’s years of the last century bipolar fuzzy relations2 where defined and studied

(see [2]). The notion of bipolar fuzzy relation is a generalization of the idea of fuzzy

relation and is a pair of fuzzy relations, namely a membership and a non-membership

function, which represent positive and negative aspects of the given information. An-

other (and may be the most popular) generalization of fuzzy relations - interval-valued

fuzzy relations - was introduced independently. However bipolar fuzzy relations are iso-

morphic to interval-valued fuzzy relations (see e.g. [13]). Although in our work we do

not investigate any generalization of fuzzy order relations some results could be gener-

alized for the above described cases. This direction could be considered also as an idea

for the future research.

In the last years theoretical results in the theory of fuzzy relations were involved for

solving practical problems (see e.g.[8]). Significant applications of fuzzy order relations

can be found in connection with decision making problems (see e.g. [24]). For the

decision making one of the main questions related to fuzzy order relations is the question

of aggregation of fuzzy relations. In this field fundamentals works are [39], [38], [15].

The structure of the thesis is the following: short abstracts in English and Latvian,

the contents of the work, Introduction (you are reading it at present), Preliminaries, two

chapters with main results, the list of the conferences where results of the Dissertation

were presented, the list of references, and the list of publications of the author. The

main part of the work consists of two independent for the first look parts (Chapter 3

and Chapter 4). However they are connected by the fundamental and important notion

2Bipolar fuzzy relations could be also called as intuitionistic fuzzy relations, Atanassovs intuitionistic

fuzzy relations or bifuzzy relations.
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of fuzzy order relation. The first part (Chapter 3), where we study the category whose

objects are sets with fuzzy orders, was inspired by the course of Category theory at the

University of Bremen by Prof. David Holgate and the papers by Prof. Aleksanders

Šostaks [44],[47]. This part of the work is more theoretical, since we do not consider

here any applications for the real-world problems, but construct and study the structure

of categories from the pure mathematical point of view.

The main notion in this part of the work is the notion of an L-valued category. The

concept of an L-valued category was introduced in [43] and later was studied in a se-

ries of papers see, e.g. [44], [46], [47] etc. These papers contain also many examples

of L-valued categories which appear in the natural way, by ”fuzzifying” classical cat-

egories. For example an L-valued category whose objects are fuzzy sets, an L-valued

category whose objects are fuzzy topologies, etc. Actually an L-fuzzy category is a

triple (C, µ, ω) where C is an ordinary category with the class of objects Ob(C) and

the class of morphisms Mor(C), and ω : Ob(C) → L, µ : Mor(C) → L are re-

spectively L-subclasses of the class of objects and the class of morphisms, subjected to

certain properties. The intuitive meaning of the values ω(X) and µ(f) are the measures

to which X and f are respectively the object and the morphism of the corresponding

category. Interesting examples of L-valued categories were also constructed in [41].

Chapter 3 consists of three sections. The aim of Section 3.1 is to study L-E-ordered

sets, where L is a cl-monoid, from the L-valued category theory point of view. This

means that starting from the small categories we use already the concept of an L-valued

category, defining the degree to which each morphism is indeed the morphism in this

L-valued category. An alternative approach is to study generalized ordered structures in

the frame of categories enriched over a quantale Ω (or simply, Ω -categories), see e.g.

[28], [29], [27].

In our work we use the notion of an L-E-order relation and construct an analogue

of POS category (the category of Partially Ordered Sets). In our category objects are

L-E-ordered sets and morphisms are order-preserving mappings (in a fuzzy sense). By

constructing the category from small categories (small L-valued categories), we show

that the category is constructed in a natural way from the point of view of L-valued

category theory. To realize this goal we follow the construction of the crisp POS cat-

egory. We continue by studying the structure of the constructed category. Namely, we

consider some special morphisms, objects and standard constructions such as product

and coproduct.
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To construct and study a fuzzy analogue of POS category is not a new idea, but

in the literature we have found only the cases where the objects are fuzzy ordered sets

defined in the sense of Zadeh. Also we haven’t found the systematical study of any

fuzzy analogue of POS category. However in the literature there are works related to

the study of the categories where the objects are sets with fuzzy equivalence revelations

on them and morphisms are equivalence-preserving mappings, see [21], [22], [41]. Here

we want also to mention the work by H. Lai and D. Zhang [26] where they studied in-

terrelationship between fuzzy preordered sets, topological spaces, and fuzzy topological

spaces.

Section 3.2 is devoted to the fuzzyfication of the constructed category, where we

introduce an L-valued subclass of the class of all its morphisms as a mapping from

the class of morphisms to a cl-monoid L and thus we obtain an L-valued category.

The intuitive meaning of the value of this mapping for a given morphism is the de-

gree to which this morphism is an order-preserving mapping. Therefore we obtain the

L-valued category whose objects are L-E-ordered sets and morphisms are ”potential”

order-preserving mappings. Further we study also the structure of this L-valued cat-

egory and consider some operations such as products and coproducts. To study such

operations in the frame of an L-valued category we have to define the above described

notions in the context of L-valued category theory, by doing this we also contribute to

the development of this theory.

In Section 3.3 we also consider an L-valued analogue of POS category but in this

case we use another definition of fuzzy equivalence relation and this influences the na-

ture of fuzzy order relation. In this section apart from ”potential” morphisms we have

also ”potential” objects by introducing an L-valued subclass of the class of all its ob-

jects as a mapping from the class of objects to a cl-monoid L. Thus we generalized the

category obtained in the previous section.

The second part of the work (Chapter 4) was inspired by the conference FSTA2008,

where different aspects of aggregation functions (operators) were discussed. Chapter 4

consists of four sections. The idea for Section 4.1 ”Degree of monotonicity” was born

studying the above discussed categories: considering the L-valued categories we de-

fine the degree to which each morphism is an order-preserving mapping or, say it in a

different way, monotone mapping. Thus we applied this idea to characterize aggrega-

tion functions. Namely for a function we define the degree to which this function is

a monotone mapping. Further we show that this approach is not only a generalization
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of the monotonicity using the fuzzy language but this is a good tool for characterizing

aggregation functions.

In Section 4.2 we recall the main definitions and results concerning the pointwise

aggregation of fuzzy relations. We also investigate some properties which are necessary

for our further investigations.

Section 4.3 presents an approach for solution of multi-objective linear programming

problem. The idea is to involve fuzzy order relations and to use an aggregation for these

relations. In our approach fuzzy order relations describe the objective functions while in

”classical” fuzzy approach ([50], [51]) the membership functions, which illustrate how

far is the concrete point from the solution of an individual problem, are studied. Further,

the global fuzzy order relation is constructed by aggregating the individual fuzzy order

relations. Thus the global fuzzy relation contains the information about all objective

functions and in the last step we find a maximum in the set of constrains with respect to

the global fuzzy order relation. We illustrate this approach by an example.

Section 4.4 presents a new method for aggregation of fuzzy relations. The necessity

of this method is explained by the examples. This tool employs a t-norm and an ag-

gregation function to define the degree to which two elements are in relation when it is

known (correspondingly pairwise) for all vectors aggregated into these elements. In the

work we apply A-T -aggregation for fuzzy order relations and determine the necessary

conditions for preservation of some relevant properties.

The results of this work were presented at twelve international conferences (see List

of attended international conferences on page 95), eight local conferences, two interna-

tional seminars (Workshop ”Algebra and its applications”, Joint Tartu-Riga seminar in

pure mathematics). The main results are presented in seven papers (see List of Author’s

publications on page 100).
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Chapter 2

Preliminaries

In this chapter we present results required for our further considerations. For fundamen-

tal results on fuzzy (or L-fuzzy) set theory we refer the reader to [14], [45].

2.1 Commutative cl-monoids

We start with the definition of a cl-monoid, which is a lattice with additional binary

operation. For the basic notions and details on lattice theory see [4], [11].

Definition 2.1.1. (cf. [22]) A commutative cl-monoid is a complete lattice (L,≤,∧,∨)

enriched with a further binary commutative operation ∗, satisfying the isotonicity con-

dition:

∀α, β, γ ∈ L α ≤ β ⇒ α ∗ γ ≤ β ∗ γ

and distributing over arbitrary joins:

∀α ∈ L and ∀{ βi : i ∈ I} ⊂ L α ∗ (
∨
i

βi) =
∨
i

(α ∗ βi).

A commutative cl-monoid is integral if and only if the unit element 1 is also the

universal upper bound in L. It is known that for the integral commutative cl-monoid

with zero element 0 (i.e. ∀α ∈ L α ∗ 0 = 0) the universal lower bound is zero element

0.

Every integral commutative cl-monoid with zero is residuated, i.e., there exists a

binary operation ” 7→ ” (residuum) on L satisfying the following condition:

∀α, β, γ ∈ L α ∗ β ≤ γ ⇔ α ≤ (β 7→ γ).

12



T-norms

Explicitly the residuum is given by

α 7→ β =
∨
{λ ∈ L : α ∗ λ ≤ β}.

For the given residuum ” 7→ ” a biresiduum ”↔ ” is defined by:

α↔ β = (α 7→ β) ∗ (β 7→ α).

Let us mention some properties of integral commutative cl-monoids which will be

useful in the sequel:

(i) If α ≤ β and γ ≤ δ then α ∗ γ ≤ β ∗ δ;
(ii) α ∗ β ≤ α ∧ β;

(iii) (α 7→ γ) ∗ (γ 7→ β) ≤ α 7→ β.

The proof of the above properties and some other useful properties of the integral,

commutative cl-monoids can be found in [19], [10].

In our work we use an integral, commutative cl-monoid (L,≤,∧,∨, ∗) with zero

element but for simplicity in the sequel we will write simply cl-monoid.

2.2 T-norms

Here we propose the definition, basic examples and some properties of t-norms, which

are important for our future consideration. The notion of a t-norm is fundamental in

the framework of probabilistic metric spaces and in fuzzy logic. For us t-norms are

important as a generalized conjunctions in fuzzy logic. Detailed information on t-norms

can be found e.g. in [25], [45].

Definition 2.2.1. [25] A triangular norm (t-norm for short) is a binary operation T on

the unit interval [0, 1], i.e. a function T : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1]

the following four axioms are satisfied:

• T (x, y) = T (y, x) (commutativity);

• T (x, T (y, z)) = T (T (x, y), z) (associativity);

• T (x, y) ≤ T (x, z) whenever y ≤ z (monotonicity);

• T (x, 1) = x (boundary condition).

13



T-norms

It is well known that if T is a lower-semicontinuous, that is

sup
i∈I

T (xi, y) = T (sup
i∈I

xi, y),

then ([0, 1],≤,∧,∨, T ) is a particular choice of commutative cl-monoids.

Some of often used lower-semicontinuous (and, actually continuous) t-norms are

mentioned below:

• TM(x, y) = min(x, y) minimum t-norm;

• TP (x, y) = x · y product t-norm;

• TL(x, y) = max(x+ y − 1, 0) Łukasiewicz t-norm.

The corresponding residuums are:

• x 7→T y =

1, if x ≤ y

y, otherwise
residuum coresponding to minimum t-norm;

• x 7→T y =

1, if x ≤ y

y
x
, otherwise

residuum coresponding to product t-norm;

• x 7→T y = min(1− x+ y, 1) residuum coresponding to Łukasiewicz t-norm.

A t-norm T is called Archimedean if and only if, for all pairs (x, y) ∈ (0, 1)2, there

is n ∈ N such that x(n)
T < y.

Product and Łukasiewicz t-norms are Archimedean while minimum t-norm is not.

We proceed with one of powerful tools for the construction of t-norms involving only

one-place real function (additive generator) and addition. Furthermore, we use the same

tool for constructing residuum and fuzzy equivalence.

Definition 2.2.2. [25] Let f : [a, b] → [c, d] be a monotone function, where [a, b] and

[c, d] are closed subintervals of the extended real line [−∞,∞]. The pseudo-inverse

f (−1) : [c, d]→ [a, b] of f is defined by

f (−1)(y) =


sup{x ∈ [a, b] | f(x) < y} if f(a) < f(b),

sup{x ∈ [a, b] | f(x) > y} if f(a) > f(b),

a if f(a) = f(b).

14



Fuzzy relations

Definition 2.2.3. [25] An additive generator t : [0, 1]→ [0,∞] of a t-norm T is a strictly

decreasing function which is also right-continuous in 0 and satisfies t(1) = 0, such that

for all (x, y) ∈ [0, 1]2 we have

t(x) + t(y) ∈ Ran(t) ∪ [t(0),∞],

T (x, y) = t(−1)(t(x) + t(y)).

Theorem 2.2.1. [25] A function T : [0, 1]2 → [0, 1] is a continuous Archimedean t-norm

if and only if there exists a continuous additive generator t such that, for all x, y ∈ [0, 1],

the following holds:

T (x, y) = t(−1)(min(t(x) + t(y), t(0))).

Generator t is uniquely determined up to a positive multiplicative constant.

Theorem 2.2.2. [25] If T is a continuous Archimedean t-norm and t : [0, 1] → [0,∞]

an additive generator of T then the T -residuum 7→T can be obtained by the formula:

x 7→T y = t(−1)(max(t(y)− t(x), 0)).

2.3 Fuzzy relations

First time the definition of fuzzy order relation was introduced by L.A. Zadeh in 1971

under the name of a fuzzy partial ordering. Slightly modifying Zadeh’s definition we

present the following concept of L-valued order relation (we use the term ”fuzzy” when

L = [0, 1] and ”L-valued” for an arbitrary cl-monoid L).

Let L be a fixed cl-monoid.

Definition 2.3.1. (cf. e.g.[49]) Let X be a set. By an L-valued order relation we call an

L-valued relation P : X ×X → L such that the following three axioms are fulfilled for

all x, y, z ∈ X:

1. P (x, x) = 1 - reflexivity;

2. P (x, y) ∗ P (y, z) ≤ P (x, z) - transitivity;

3. x 6= y ⇒ P (x, y) ∗ P (y, x) = 0 - antisymmetry.
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Fuzzy relations

Fifteen years later U. Höhle and N. Blanchard in their paper [23] proposed to involve

L-valued equivalence relation1 for the definition of L-valued order (partial ordering).

For more resent results about fuzzy order defined with respect to the fuzzy equivalence

relation see [5].

Let us first define an L-valued set and related category:

Definition 2.3.2. (cf. e.g. [23]) By an L-valued set we call a pair (X,E) where X is a

set and E is an L-valued equivalence relation, i.e. a mapping E : X×X → L such that

the following three axioms are fulfilled for all x, y, z ∈ X:

1. E(x, x) = 1 - reflexivity;

2. E(x, y) ∗ E(y, z) ≤ E(x, z) - transitivity;

3. E(x, y) = E(y, x) - symmetry.

A mapping f : (X,EX)→ (Y,EY ) is called extensional if

EX(x1, x2) ≤ EY (f(x1), f(x2))

for all x1, x2 ∈ X . L-valued sets and extensional mappings between them obviously

form a category which is denoted L-SET.

Remark 2.3.1. In the paper [23] an L-valued set is called as an L-underdeterminate

set and an L-valued equality as an L-equality relation. For the particular choices of

cl-monoid an L-valued equality could be also called an M -equivalence relation (where

M = (M,≤,∧,∨, ∗)) [12], an L-equivalence [10], an M -valued similarity relation or

an M -similarity [21], a fuzzy equivalence relation w.r.t ∗ [5], [6], [7] and also a global

M -valued equality or an ∗-equality.

We continue with the definition of an L-E-order relation and an L-E-ordered set:

Definition 2.3.3. (cf. e.g. [23]) Let (X,E) be an L-valued set. By an L-E-order relation

on the L-valued set (X,E) we call an L-valued relation P : X ×X → L such that the

following three axioms are fulfilled for all x, y, z ∈ X:

1. E(x, y) ≤ P (x, y) - E-reflexivity;

2. P (x, y) ∗ P (y, z) ≤ P (x, z) - transitivity;

1in the original work the term L-equality was used
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Fuzzy relations

3. P (x, y) ∗ P (y, x) ≤ E(x, y) - E-antisymmetry.

A pair (X,P,E) is called an L-E-ordered set.

In the sequel we use Definition 2.3.3 of an L-E-order relation and we also give some

comments how concrete results depend on the definition of reflexivity and antisymmetry.

Remark 2.3.2. For particular choices of cl-monoid an L-E-order relation could be also

called an M -E-partial ordering (where M = (M,≤,∧,∨, ∗)) [12] , a fuzzy ordering

w.r.t ∗ or an ∗-E-ordering [5], [6].

In the first part of the work, where we observe the categories we use the definition of

L-E-order relation. In the second part we use fuzzy orders but still we use the definition

which is based on the fuzzy equivalence relation. Let us here propose three examples

where Zadeh’s definition doesn’t work and which justify the usage of fuzzy equivalence

in the definition of fuzzy order relation. These examples were proposed in U.Bodenhofer

work [5]:

1. It is a well-known and often-used fact in mathematical logic that there is a strong

connection between implications and order relations. It is easy to see that the

relation � which is defined as follows:

ϕ � ψ ⇔ (ϕ→ ψ is a tautology)

where ϕ and ψ are formulas is an order relation on the set of formulas in a given

language if we always consider two formulas as equal whenever their evaluations

coincide for all interpretations. The same is true for t-norm-based logics on the

unit interval. But if we consider a residuum 7→T (which corresponds to the con-

crete t-norm T and which is an analogue of implication in the t-norm-based logics)

it is not a fuzzy order relation (antisymmetry is not fulfilled).

2. It is trivial that, for each non-empty crisp setX , the inclusion⊆ is an order relation

on the power set P (X). The same holds in the fuzzy case, i.e. the well-known

inclusion

A ⊆ B ⇔ (∀x ∈ X : A(x) ≤ B(x)),

where A : X → [0, 1] and B : X → [0, 1] are fuzzy sets, defines an order relation

on the fuzzy power set F (X). But if we define a fuzzy inclusion as follows:

INCLT (A,B) = inf
x∈X

(A(x) 7→T B(x))

then it isn’t a fuzzy order relation (antisymmetry is not fulfilled).
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3. Let � be a crisp linear order relation on X . Then the relation � itself is the

only fuzzy order relation which is �-consistent and, as a consequence, the only

fuzzification of �, where ”fuzzification” of a crisp relation defines as follows:

Definition 2.3.4. [5] Consider a crisp binary relation � on a set X. A fuzzy relation

R is called �- consistent if and only if the implication

y � z ⇒ R(x, y) ≤ R(x, z)

holds for all x, y, z ∈ X . If additionally

x � y ⇒ R(x, y) = 1,

R is called a fuzzification of � ( R fuzzifies �).

These three examples justify that the fuzzy order relation should be defined w.r.t.

fuzzy equivalence relation.

Let us propose here construction methods for fuzzy equivalence relations and fuzzy

order relations. These results will be important for the second part of the work.

Remark 2.3.3. In the sequel, speaking about fuzzy relations, the fuzzy equivalence re-

lation could be also called T -equivalence if we want to stress the t-norm T which is

used in the definition of transitivity for correspondent fuzzy equivalence relation. By

the same reasons fuzzy order relation could be called T -E-order relation, where E is a

fuzzy equivalence relation.

The following result establishes principles of construction of fuzzy equivalence re-

lations from pseudo-metrics.

Theorem 2.3.1. (see e.g. [3]) Let T be a continuous Archimedean t-norm with an addi-

tive generator t. For any pseudo-metric d, the mapping

Ed(x, y) = t(−1)(min(d(x, y), t(0)))

is a T -equivalence.

Example 2.3.1. Let us consider the set of real numbers X = R and metric d(x, y) =

|x − y| on it. Taking into account that tL(x) = 1 − x is an additive generator of TL
(Łukasiewicz t-norm) and that tP (x) = −ln(x) is an additive generator of TP (product

t-norm), we obtain two fuzzy equivalence relations:

EL(x, y) = max(1− |x− y|, 0);

EP (x, y) = e−|x−y|.
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Definition 2.3.5. [5] Let � be a crisp order on X and let E be a fuzzy equivalence

relation on X . E is called compatible with � if and only if the following implication

holds for all x, y, z ∈ X : x � y � z ⇒ (E(x, z) ≤ E(y, z) and E(x, z) ≤ E(x, y)).

Remark 2.3.4. Let X be the set of real numbers and ≤ be a linear order on it. Then,

for a fixed element x0, E(x, x0) is non-decreasing in the interval [−∞, x0] and non-

increasing in the interval [x0,∞], where E is a fuzzy equivalence relation which is

compatible with ≤.

Further, in our work we consider special type of fuzzy equivalence relation on inter-

val [0, 1]:

E(x, y) = g(|x− y|), (2.1)

where g is a non-increasing function. The necessary condition for the relationE(x, y) =

g(|x − y|) to be compatible with ≤ is that function g is non-increasing. Thus when we

speak about fuzzy equivalence relation defined by formula (2.1) we require that function

g should be chosen in such a way that E fulfill all the necessary conditions.

We continue with the construction of fuzzy order relations (namely, of strongly linear

fuzzy order relations):

Definition 2.3.6. (see e.g. [5]) A fuzzy order L is called strongly linear if and only if

∀x, y ∈ X : max(L(x, y), L(y, x)) = 1.

The following theorem states that strongly linear fuzzy order relations are uniquely

characterized as fuzzifications of crisp linear orders.

Theorem 2.3.2. [5] Let L be a binary fuzzy relation on X and let E be a T -equivalence

on X . Then the following two statements are equivalent:

1. L is a strongly linear T -E-order on X .

2. There exists a linear order � the relation E is compatible with, such that L can

be represented as follows:

L(x, y) =

1, if x � y

E(x, y), otherwise.

This theorem shows that if we have a set X , a linear order � on it and a T -

equivalence on X which is compatible with �, then we can build a fuzzy linear order as
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it was shown above.

Further, in some results we consider special type of fuzzy order relation on interval [0, 1]:

L(x, y) =

1, if x ≤ y

g(|x− y|), otherwise,
(2.2)

where g is a non-increasing function.

For more information regarding to fuzzy orders constructed on the base of fuzzy equiv-

alence relations see [8],[6].

In general L defined by (2.2) is not a fuzzy order relation. The choice of a function g

is important. The necessary condition for the relation E(x, y) = g(|x − y|) to be com-

patible with ≤ is that function g is non-increasing. Therefore, if we prove a result for

an arbitrary fuzzy relation L defined as above, the result will also hold for a fuzzy order

relation

R(x, y) =

1, if x ≤ y

E(x, y) = g(|x− y|), otherwise,
(2.3)

where E is a fuzzy equivalence relation compatible with ≤.

Fuzzy order relation defined as above can be widely used in practical applications, see

e.g. [8].

2.4 L-valued categories

In this section, we recall the basic notions for L-valued categories. Main results on the

classical (crisp) category theory can be found in [20], [1].

We start with the definition of an L-valued category.

Definition 2.4.1. [47] An L-valued category C consists of:

1. A class Ob(C) of potential objects.

2. An L-valued subclass ω of Ob(C):

ω : Ob(C)→ L.

3. A class Mor(C) =
⋃
{MorC(X, Y ) : X, Y ∈ Ob(C)} of pairwise disjoint sets

MorC(X, Y ). For each pair of potential objects X, Y ∈ Ob(C) the members of
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MorC(X, Y ) are called potential morphisms from X to Y and the members of

Mor(C) are called potential morphisms of the category C.

4. An L-valued subclass µ of Mor(C):

µ : Mor(C)→ L,

such that if f ∈MorC(X, Y ), then µ(f) ≤ ω(X) ∧ ω(Y ).

5. A composition ◦ of morphisms, i.e. for each triple X, Y, Z ∈ Ob(C) there exists

a map

◦ : MorC(X, Y )×MorC(Y, Z)→MorC(X,Z) ((f, g)→ g ◦ f),

such that the following axioms are satisfied:

• preservation of morphisms:

µ(g ◦ f) ≥ µ(g) ∗ µ(f);

• associativity:

if f ∈MorC(X, Y ), g ∈MorC(Y, Z) and h ∈MorC(Z,U),

then h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

• existence of identities:

for each X ∈ Ob(C) there exists an identity idX ∈ MorC(X,X) such that

for all X, Y, Z ∈ Ob(C), all f ∈ MorC(X, Y ) and all g ∈ MorC(Z,X) it

holds f ◦ idX = f and idX ◦ g = g.

Note that in [47] it was requested that for identities the following condition

should fulfill:

µ(idX) = ω(X).

In this case the definition of an L-valued class of objects ω is determined

by the L-valued class µ of morphisms and hence this condition can be aban-

doned. We skip this condition and by this we generalize the notion of an

L-valued category.

Note that when applying the condition µ(f) ≤ ω(X)∧ω(Y ) for the identity

idX : X → X we have µ(idX) ≤ ω(X), which is a very natural property

saying that the identity could not exists if the object does not exist.

It is possible to create new categories from the existing ones:

Let C = (Ob(C), ω,Mor(C), µ, ◦) be an L-valued category and let another L-valued
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subclass ω′ of Ob(C) is given: ω′ : Ob(C)→ L. Then C′ = (Ob(C), ω′,Mor(C), µ′, ◦)
is an L-valued category, where µ′(f) = ω′(X) ∗ µ(f) ∗ ω′(Y ).

Proof:

• µ′(f) = ω′(X) ∗ µ(f) ∗ ω′(Y ) ≤ ω′(X) ∧ ω′(Y ).

• µ′(g ◦ f) = ω′(X) ∗ µ(g ◦ f) ∗ ω′(Z) ≥ ω′(X) ∗ µ(g) ∗ µ(f) ∗ ω′(Z) ≥
≥ (ω′(X) ∗ µ(f) ∗ ω′(Y )) ∗ (ω′(Y ) ∗ µ(g) ∗ ω′(Z)) = µ′(g) ∗ µ′(f)

It is natural to apply this construction when anL-valued category C is defined in such

a way that ω(X) = 1 for all X ∈ Ob(C). Then we involve another subclass of objects

ω′ such that ω′ < ω. This means that for at least one object X ω′(X) < 1. Then C′ =

(Ob(C), ω′,Mor(C), µ′, ◦) is anL-valued category, where µ′(f) = ω′(X)∗µ(f)∗ω′(Y ).

This construction will be applied in Section 3.3.

Remark 2.4.1. Let Obα(C) = {X ∈ Ob(C) : ω(X) ≥ α}.
The elements of Obα(C) will be referred as α-objects of the L-valued category C, while

the elements of Ob(C) will be called potential objects or just objects of C.

Similarly, the elements of Morα(C) (Morα(C) = {f ∈ Mor(C) : µ(f) ≥ α}) will

be referred as α-morphisms of the L-valued category C, while the elements of Mor(C)

will be called potential morphisms or just morphisms of C.

Given an L-valued category C = (Ob(C), ω,Mor(C), µ, ◦) and X ∈ Ob(C), in-

tuitively we understand the value ω(X) as the degree to which a potential object X

of the L-valued category C is indeed its objects; similarly, for f ∈ Mor(C) the intu-

itive meaning of µ(f) is the degree to which a potential morphism f of C is indeed its

morphism.

Definition 2.4.2. [44] Given an L-valued category C = (Ob(C), ω,Mor(C), µ, ◦) one

can construct a crisp category C0 = (Ob(C),Mor(C), ◦) by taking all potential objects

and potential morphisms of L-valued category C as objects and morphisms of crisp

category C0 and leaving the composition law unchanged. C0 is called the bottom frame

of L-valued category C. We also denote the top frame C1 = (Ob1(C),Mor1(C), ◦),

where

Ob1(C) = {X ∈ Ob(C) : ω(X) = 1}; Mor1(C) = {f ∈ Mor(C) : µ(f) = 1} and

where 1 is the universal upper bound in L.

A general scheme for fuzzification of classical categories [47].

Let C = (Ob(C),Mor(C), ◦) and D = (Ob(D),Mor(D), ◦) be two ordinary categories
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and let Φ : C → D be a functor. We define a new ordinary category Cat by setting

Ob(Cat) = Ob(C) and MorCat(X, Y ) = MorD(Φ(X),Φ(Y )). Thus the morphisms

from X to Y in Cat are the same as the morphisms from Φ(X) to Φ(Y ) in D. The

composition law in Cat is naturally induced by the composition law in D. Now, defining

in a certain way an L-subclass of objects: ω : Ob(Cat) → L and an L-subclass of

morphisms µ : Mor(Cat) → L satisfying Definition 2.4.1 we come to an L-valued

category (Ob(Cat), ω,Mor(Cat), µ). The category Cat could be also denoted as CDΦ

or CD.

We continue with the definition of a functor between two L-valued categories.

Definition 2.4.3. (see e.g.[47] ) Let C = (Ob(C), ωC,Mor(C), µC, ◦) and

D = (Ob(D), ωD,Mor(D), µD, ◦) be L-valued categories, then a functor F from C to D
is a function that assigns to each C-object A a D-object F (A), and to each C-morphism

f : A → A′ a D-morphism F (f) : F (A) → F (A′), in such way that the following

properties are satisfied:

1. F preserves composition, i.e. F (g ◦ f) = F (g) ◦ F (f) provided the composition

g ◦ f is defined;

2. F preserves identities, i.e. F (idX) = idF (X) for any X ∈ Ob(C);

3. µC(f) ≤ µD(F (f)) for any f ∈Mor(C);

4. ωC(X) ≤ ωD(F (X)) for any X ∈ Ob(C).

In [47] there was not the last condition since it follows from the third condition and

the condition that µ(idX) = ω(X) for each X ∈ Ob(C). Since we skip the condition

µ(idX) = ω(X) we should add the forth condition for the definition of functor.

We now proceed with the definitions of some special objects and special morphisms

for an L-valued category.

Let X, Y ∈ Ob(C), where C is an L-valued category and let α, β ∈ L.

Definition 2.4.4. [44] An object I in the L-valued category C is called α-initial if and

only if for every α-object X there exists a unique α-morphism f : I → X . An object I

is called initial if and only if it is α-initial for every α.

Definition 2.4.5. [44] An object T in the L-valued category C is called α-terminal if

and only if for every α-object X there exists a unique α-morphism f : X → T . An

object T is called terminal if and only if it is α-terminal for every α.

23



Aggregation functions

Definition 2.4.6. [44] An object Z in the L-valued category C is called α-zero if and

only if it is both α-initial and α-terminal. An object Z is called zero-object if and only

if it is α-zero for every α.

Definition 2.4.7. [44] An α-morphism f : X → Y is called an α-section if and only if

there exists an α-morphism g : Y → X such that g ◦ f = idX .

Definition 2.4.8. [44] An α-morphism f : X → Y is called an α-retraction if and only

if there exists an α-morphism g : Y → X such that f ◦ g = idY .

Definition 2.4.9. [44] An α-morphism f : X → Y is called an α-isomorphism if and

only if it is both an α-section and an α-retraction.

Definition 2.4.10. [44] An α-morphism f : X → Y is called a β-mono-α-morphism,

(or just a β-monomorphism for short) provided for all β-morphisms h : Z → X and

k : Z → X such that f ◦ h = f ◦ k it follows that h = k.

Definition 2.4.11. [44] An α-morphism f : X → Y is called a β-epi-α-morphism,

(or just a β-epimorphism for short) provided for all β-morphisms h : Y → Z and

k : Y → Z such that h ◦ f = k ◦ f it follows that h = k.

Definition 2.4.12. [44] An α-morphism f : X → Y is called a β-bi-α-morphism,

(or just a β-bimorphism for short) if and only if it is both β-monomorphisms and β-

epimorphism.

2.5 Aggregation functions

Aggregation functions play an important role in several areas, including fuzzy logic,

decision making, expert systems, risk analysis and image processing. Recent books

[33], [17] provide a comprehensive overview of aggregation functions, their properties

and methods of their construction. The purpose of aggregation functions is to combine

several input values into a single output value, which in some sense represents all the

inputs. Typically the inputs and outputs are real numbers, often from [0, 1], although

other choices are possible, e.g.,discrete sets, intervals and linguistic labels.

Definition 2.5.1. [17] An aggregation function is a mapping A : [0, 1]n → [0, 1] which

fulfills the following properties:
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• A(x1, ..., xn) ≤ A(y1, ..., yn) whenever xi ≤ yi for all i ∈ {1, ..., n} (monotonic-

ity);

• A(0, ..., 0) = 0 and A(1, ..., 1) = 1 (boundary conditions).

We shall make a distinction between aggregation function having a definite number

of arguments and extended aggregation function (or aggregation operator) defined for

any number of arguments:

Definition 2.5.2. [33] An aggregation operator is a mapping A :
⋃
n∈N[0, 1]n → [0, 1]

which fulfills the following properties for every n ∈ N:

• A(x1, ..., xn) ≤ A(y1, ..., yn) whenever xi ≤ yi for all i ∈ {1, ..., n} (monotonic-

ity);

• A(0, ..., 0) = 0 and A(1, ..., 1) = 1 (boundary conditions).

In general, the number of the input values to be aggregated for the aggregation op-

erator is unknown, and therefore an aggregation operator can be presented as a family

A = (A(n))n∈N, where A(n) is an n-ary aggregation function (A(n) = A |[0,1]n).

We observe here some well-known examples of aggregation functions:

Example 2.5.1. • minimum MIN(x) =
n∧
i=1

xi;

• maximum MAX(x) =
n∨
i=1

xi;

• arithmetic mean AM(x) = 1
n

n∑
i=1

xi,

• weighted arithmetic means: WAMw(x) =
n∑
i=1

wixi, where weights wi ∈ [0, 1]

and
n∑
i=1

wi = 1;

• partial minimum: MINK(x) =
∧
i∈K

xi, where K ⊆ {1, ..., n};

• partial maximum: MAXK(x) =
∨
i∈K

xi, where K ⊆ {1, ..., n}.
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Chapter 3

L-valued category whose objects are
L-E-ordered sets

3.1 Category whose objects are L-E-ordered sets

3.1.1 Construction of the category

Our aim is to construct an analogue of the category of partially ordered sets (POS

or POSET). As we know in classical mathematics POS category can be constructed

from small categories (categories, where the class of objects is a set and the class of

morphisms is also a set). Actually we can observe each ordered set (X,≤) as a small

category where elements of a set are objects and morphism (unique) from an object x to

an object y exists if and only if x ≤ y. Then the functors between these small categories

must be order-preserving mappings of the corresponding ordered sets. Thus category

POS can be observed as a category whose objects are small categories and morphisms

are functors between them.

Our aim now is to construct a category whose objects are L-E-ordered sets. To

realize this construction we follow the construction of the crisp POS category. Thus,

first we observe a small category whose objects are elements of an L-E-ordered set.

Further we involve the degree to which each morphism is indeed the morphism of the

category and the degree to which each object is indeed the object of the category, thus

we get an L-valued category (a small L-valued category). Then we construct functors

between small categories. Finally we observe the category whose objects are small

categories and morphisms are functors between them. By the construction of category

26



Category whose objects are L-E-ordered sets

from small categories we justify that this category is constructed in a natural way from

the point of view of L-valued categories.

For the construction of the following small category we have to use a cl-monoid

without zero divisors (α ∗ β = 0⇒ α = 0 or β = 0).

Let L be a cl-monoid without zero divisors, P be an L-E-order relation and (X,P,E)

be an L-E-ordered set. Let us construct a small category pos(X,P,E) which has as objects

elements of L-E-ordered set (X,P,E):

• Objects: Ob(pos(X,P,E)) = {x : x ∈ X};

• Morphisms: f : x→ y, f ∈Mor(pos(X,P,E))⇔ P (x, y) > 0.

Now we check that all properties of a category are fulfilled:

1. We first prove that if f ∈Mor(pos(X,P,E)) and g ∈Mor(pos(X,P,E)) then

f ◦ g ∈Mor(pos(X,P,E)).

Let g : x→ y, g ∈Mor(pos(X,P,E)) and f : y → z, f ∈Mor(pos(X,P,E)).

Then P (x, y) > 0 and P (y, z) > 0. Since the cl-monoid L is without zero divisors

we establish that P (x, z) ≥ P (x, y) ∗P (y, z) > 0. Hence we obtain the existence

of morphism f ◦ g ∈Mor(pos(X,P,E)).

2. We prove the associativity condition for morphisms as follows:

f, g, h ∈Mor(pos(X,P,E))⇒ (f ◦ g) ◦ h = f ◦ (g ◦ h).

Assume that h : t → x, g : x → y, f : y → z. From the previous consideration

we can conclude that compositions (f ◦ h) ◦ h and f ◦ (g ◦ h) exist. We know that

from t to z exists only one morphism, hence (f ◦ g) ◦ h = f ◦ (g ◦ h).

3. P (x, x) = 1, this means that there exists an identity morphism idx : x → x.

Obviously f ◦ idx = f for all f : x→ y and idx ◦ h = h for all h : z → x.

Remark 3.1.1. Since the antisymmetry is defined by means of L-valued equivalence,

there could exist morphisms in the both directions between objects x and y: from x to y

and from y to x. But in the case of antisymmetry from Definition 2.3.1, since L does not

have zero divisors we conclude that for all x 6= y either P (x, y) = 0 or P (y, x) = 0.

This means that only one morphism between objects x and y could exist: either from x

to y or from y to x.
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Now let us involve an L-valued subclass of the class of morphisms as a mapping

from the class of morphisms to the cl-monoid L (µ : Mor(pos(X,P,E)) → L) in the

following way:

f : x→ y ⇒ µ(f) = P (x, y)

and an L-valued subclass of the class of objects as a mapping from the class of objects

to the cl-monoid L (ω : Ob(pos(X,P,E))→ L):

x ∈ X ⇒ ω(x) = 1.

We have constructed a small L-valued category

L-pos(X,P,E) = (Ob(pos(X,P,E)), ω,Mor(pos(X,P,E)), µ, ◦).

Remark 3.1.2. Intuitively the value µ(f) is the degree to which a potential morphism

f : x → y of the category is indeed its morphism, this means the degree to which x is

less or equal to y, what is actually characterized by the value P (x, y).

Next we verify all necessary properties for the L-valued category:

• The condition that µ(f) ≤ ω(x) ∧ ω(y) for all x, y ∈ Ob(L-pos(X,P,E)) and

for all f : x→ y is obvious since ω(x) = ω(y) = 1.

• We prove that µ(g ◦ f) ≥ µ(g) ∗ µ(f) , if the morphism g ◦ f exists:

Let f : x→ y and g : y → z.

Then by transitivity of the L-E-order P we have

µ(g ◦ f) = P (x, z) ≥ P (x, y) ∗ P (y, z) = µ(f) ∗ µ(g).

Thus we have proven that the category L-pos(X,P,E) is constructed correctly.

Let L-pos(X,P,E) and L-pos(Y,P ′,E′) be L-valued categories. We construct a functor

F from the category L-pos(X,P,E) to the category L-pos(Y,P ′,E′) such way that

E(x1, x2) ≤ E ′(F (x1), F (x2)).

The necessary condition for F to be a functor is:

∀f ∈Mor(L-pos(X,P,E)) µL-pos(X,P,E)
(f) ≤ µL-pos(Y,P ′,E′)

(F (f)).

This means that P (x1, x2) ≤ P ′(F (x1), F (x2)).
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x1
F−−−→ F (x1)

f

y yF (f)

x2
F−−−→ F (x2)

P (x1, x2) ≤ P ′(F (x1), F (x2))

Let us prove that this is also a sufficient condition for F to be a functor:

1. f ∈MorL-pos(X,P,E)
(x1, x2)⇒ P (x1, x2) > 0⇒

⇒ P ′(F (x1), F (x2)) > 0⇒ F (f) ∈MorL-pos(Y,P ′,E′)
(F (x1), F (x2)).

2. If the composition g ◦ f is defined when f ∈ MorL-pos(X,P,E)
(x1, x2) and g ∈

MorL-pos(X,P,E)
(x2, x3), then F (g ◦ f) = F (g) ◦ F (f) because of the existence of

only one morphism from F (x1) to F (x3).

3. F (idx) = idF (x) for all x ∈ Ob(L-pos(X,P,E)) since only one morphism from

F (x) to F (x) exists.

4. Obviously ω(x) ≤ ω(F (x)) for any x ∈ X since ω(x) = ω(F (x)) = 1.

We have proven that the functor was constructed correctly.

Next we define the category POS(L) (the analogue of crisp POS category) as a cat-

egory of small categories. The objects of POS(L) will be L-E-ordered sets (categories

of the type L-pos) and the morphisms will be functors between them:

• Objects: Ob(POS(L)) = {(X,P,E)} where (X,P,E) are L-E-ordered sets;

• Morphisms: Mor(POS(L)) = {f : (X,P,E)→ (Y, P ′, E ′) | ∀x1, x2 ∈ X
E(x1, x2) ≤ E ′(f(x1), f(x2)); P (x1, x2) ≤ P ′(f(x1), f(x2))}.

Remark 3.1.3. If we use Definition 2.3.1 the constructions of the category L-pos and

the category POS(L) are the same. We only have to skip the property E(x1, x2) ≤
E ′(f(x1), f(x2)) for the morphisms of the category POS(L).

Remark 3.1.4. In the sequel we say that a mapping f : (X,P,E) → (Y, P ′, E ′) is

order-preserving if P (x1, x2) ≤ P ′(f(x1), f(x2)) for all x1, x2 ∈ X .

Remark 3.1.5. The property that a cl-monoid L is without zero divisors was useful only

for the construction of the category of the type pos and, namely, for the existence of

composition. If we are not interested in this particular construction we can define the

category POS(L) straightway and skip the above mentioned condition for a cl-monoid.
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3.1.2 Properties of the category

Our next aim is to consider some properties of the category POS(L). We are going

to study some special objects, morphisms and some standard constructions of POS(L)

category.

We begin by studying some properties of POS(L) category.

Proposition 3.1.1. The category POS is a full subcategory of the category POS(L).

Proof. We have to prove that for all (X,≤) and (Y,≤′),

MorPOS((X,≤), (Y,≤′)) = MorPOS(L)((X,P≤, E=), (Y, P≤′ , E=′)), where

P≤ : X × X → L such that P≤(x, y) = 1 if x ≤ y and P≤(x, y) = 0 otherwise;

E=(x, y) = 1 if x = y and E=(x, y) = 0 otherwise. This is obvious since for crisp

ordered sets (X,≤) and (Y,≤′) the condition of preserving order for the function f is

equivalent to the condition P≤(x1, x2) ≤ P≤′(f(x1), f(x2)).

Proposition 3.1.2. Let L1 and L2 be two isomorphic cl-monoids (ϕ is an isomorphism)

and POS(L1), POS(L2) be the correspondent categories. Then we can define the

functor F : POS(L1) → POS(L2) by setting F ((X,P1, E1)) = (X,P2, E2), where

E2(x1, x2) = ϕ(E1(x1, x2)), P2(x1, x2) = ϕ(P1(x1, x2)) and F (f) = f . Thus defined

functor F is an isomorphism and categories POS(L1) and POS(L2) are isomorphic.

Since the proof is straightforward we omit it.

Proposition 3.1.3. IfL1 andL2 are cl-monoids and ϕ : L1 ↪→ L2 is an order-embedding

and operation-preserving mapping then POS(L1) is isomorphic to POS(ϕ(L1)), which

is a full subcategory of the category POS(L2).

Proof. We define the functor F : POS(L1) → POS(ϕ(L1)) as in the previous

proposition. Thus defined functor F is an isomorphism and categories POS(L1) and

POS(ϕ(L1)) are isomorphic. It is easy to see that Ob(POS(ϕ(L1))) ⊆ Ob(POS(L2))

and that MorPOS(ϕ(L1))((X,P ), (Y, P ′)) = MorPOS(L2)((X,P ), (Y, P ′)), where

(X,P ),(Y, P ′) ∈ Ob(POS(ϕ(L1))).

Proposition 3.1.4. The category POS(L) is a connected category.

Proof. To prove that the category POS(L) is a connected category we should show

that for every two objects (X,P,E) and (Y, P ′, E ′) (X and Y are not empty sets)

MorPOS(L)((X,P,E), (Y, P ′, E ′)) 6= ∅ which means that there exists a morphism
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f : (X,P,E)→ (Y, P ′, E ′).

Let us fix the objects (X,P,E) and (Y, P ′, E ′). Further we construct a morphism

f : (X,P,E) → (Y, P ′, E ′) in the following way: f(x) = y0 for all x ∈ X

where y0 is a fixed element from the set Y . Obviously E(x1, x2) ≤ E ′(f(x1), f(x2))

since E ′(f(x1), f(x2)) = E ′(y0, y0) = 1 and P (x1, x2) ≤ P ′(f(x1), f(x2)) since

P ′(f(x1), f(x2)) = P ′(y0, y0) = 1.

We continue by considering special objects in the category POS(L).

Proposition 3.1.5. The empty set is the unique initial object in POS(L).

Proposition 3.1.6. The singleton set (X,P,E) where X = {x}, E(x, x) = 1,

P (x, x) = 1 is the terminal object in POS(L).

Corollary 3.1.1. There are no zero objects in POS(L).

We continue by considering special morphisms in the category POS(L).

Proposition 3.1.7. A morphism f : (X,P,E)→ (Y, P ′, E ′) is a monomorphism if and

only if f is an injective mapping.

Proof. The sufficiency is obvious. We continue by proving the necessity.

If the mapping f : (X,P,E) → (Y, P ′, E ′) is not an injection then there exist two

elements x1 and x2 in the set X such that x1 6= x2 but f(x1) = f(x2).

Let (Z, PZ , EZ) be an L-EZ-ordered set such that Z = {z}, PZ(z, z) = 1, EZ(z, z) = 1

and let u, v : Z → X be functions such that u(z) = x1 but v(z) = x2. Thus, obviously

f ◦ u = f ◦ v but u 6= v. Hence f is not a monomorphism.

Proposition 3.1.8. A morphism f : (X,P,E) → (Y, P ′, E ′) is an epimorphism if and

only if f is a surjection.

Proof. The sufficiency is obvious. We continue by proving the necessity.

If the mapping f : (X,P,E) → (Y, P ′, E ′) is not a surjection then there exists an

element y0 in the set Y such that ∀x ∈ X f(x) 6= y0.

Let Z = Y
⋃
{z} where z /∈ Y , the L-valued equivalence E ′′ and L-E ′′-order P ′′ on the

set Z we define in the following way:

P ′′(y1, y2) = P ′(y1, y2), E ′′(y1, y2) = E ′(y1, y2) if y1, y2 ∈ Y ;

P ′′(z, y) = P ′(y0, y), E ′′(z, y) = E ′(y0, y) if y ∈ Y and y 6= y0;

P ′′(y, z) = P ′(y, y0), E ′′(y, z) = E ′(y, y0) if y ∈ Y and y 6= y0;
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P ′′(y0, z) = 1, E ′′(y0, z) = 1;

P ′′(z, y0) = 1, E ′′(z, y0) = 1;

P ′′(z, z) = 1, E ′′(z, z) = 1.

It is easy to verify that E ′′ is an L-valued equivalence and P ′′ fulfills all necessary

condition, that is P ′′ is E ′′-reflexive, transitive and E ′′-antisymmetric. Let us define

now the functions u : (Y, P ′, E ′) → (Z, P ′′, E ′′) and v : (Y, P ′, E ′) → (Z, P ′′, E ′′) in

the following way:

u(y) = y for all y ∈ Y ;

v(y) =

y, if y 6= y0

z, otherwise
.

Obviously, functions u and v are extensional, order-preserving mappings and

u ◦ f = v ◦ f but u 6= v. Hence f is not an epimorphism.

Remark 3.1.6. In case the order relation is realized in the sense of Definition 2.3.1., the

value P ′′(z, y0) should be defined as P ′′(z, y0) = 0. The rest of the proof need not be

changed.

From the previous two propositions and the definition of bimorphism we get the

following proposition:

Proposition 3.1.9. A morphism f : (X,P,E)→ (Y, P ′, E ′) is a bimorphism if and only

if f is a bijection.

We know that in the category POS not every injection is a section, not every surjec-

tion is a retraction and not every bijection is an isomorphism. Provided that the category

POS is a full subcategory of the category POS(L), in the category POS(L) we can

find injections which are not sections, surjections which are not retractions and bijec-

tions which are not isomorphisms. Hence the category POS(L) is not balanced.

A morphism f : (X,P,E) → (Y, P ′, E ′) is an isomorphism in the category

POS(L) if and only if it is a bijection, E(x1, x2) = E ′(f(x1), f(x2)) and

P (x1, x2) = P ′(f(x1), f(x2)) for all x1, x2 ∈ X .

We now turn to the study of special constructions in the category POS(L).

Theorem 3.1.1. The product of a family ((Xi, Pi, Ei))i∈I of POS(L) objects is a pair

((
∏
i

Xi, P∧, E∧), (πi)i∈I), where
∏
i

Xi = {f : I →
⋃
i

Xi | ∀i f(i) ∈ Xi},

E∧(f, h) =
∧
i∈I
Ei(f(i), h(i)), P∧(f, h) =

∧
i∈I
Pi(f(i), h(i)) and

πi : (
∏
i

Xi, P∧, E∧)→ (Xi, Pi, Ei) is defined by πi(f) = f(i).
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If I is a finite set then the Theorem 3.1.1. reduces to the following (more lucid) form:

Theorem 3.1.1.’ The product of a family ((Xi, Pi, Ei))i∈{1,n} of POS(L) objects is a

pair ((X1 ×X2 × · · · ×Xn, P∧, E∧), (πi)i∈{1,n}), where

E∧((a1, a2, ..., an), (b1, b2, ..., bn)) =
∧
iEi(ai, bi),

P∧((a1, a2, ..., an), (b1, b2, ..., bn)) =
∧
i Pi(ai, bi) and

πi : (
∏
i

Xi, P∧, E∧)→ (Xi, Pi, Ei) is defined by πi((a1, a2, ..., an)) = ai.

Here we prove the general Theorem 3.1.1.

Proof. • Let us prove that (
∏
i

Xi, P∧, E∧) is an object in the cat-

egory POS(L). This means we should prove that E∧ is an

L-valued equivalence and P∧ is an L-E∧-order relation. We skip the proof

that E∧ is an L-valued equivalence since it is similar to the proof that P∧ is

an L-E∧-order relation. We now turn to prove E∧-reflexivity, transitivity and

E∧-antisymmetry of the L-E∧-order relation P∧:

– Since all relations Pi are Ei-reflexive Ei(f(i), g(i)) ≤ Pi(f(i), g(i)) for all

i ∈ I . Therefore
∧
i

Ei(f(i), g(i)) ≤
∧
i

Pi(f(i), g(i)) for all f, g .

ThusE∧(f, g) ≤ P∧(f, g) and hence L-E∧-order relation P∧ isE∧-reflexive.

– P∧(f, g) ∗ P∧(g, h) =

=
∧
i

Pi(f(i), g(i)) ∗
∧
i

Pi(g(i), h(i)) ≤
∧
i

(Pi(f(i), g(i)) ∗ Pi(g(i), h(i))) ≤

≤
∧
i

Pi(f(i), h(i)) = P∧(f, h). We have proven the transitivity of

L-E∧-order relation P∧.

– We have to prove that for all f, g it holds P∧(f, g) ∗ P∧(g, f) ≤ E∧(f, g):

P∧(f, g) ∗ P∧(g, f) =

=
∧
i

Pi(f(i), g(i)) ∗
∧
i

Pi(g(i), f(i)) ≤
∧
i

(Pi(f(i), g(i)) ∗ Pi(g(i), f(i))) ≤

≤
∧
i

Ei(f(i), g(i)) = E∧(f, g). We have proven the E∧-antisymmetry of

L-E∧-order relation P∧.

• We proceed to show that πj are morphisms for all j ∈ I:

E∧(f, h) =
∧
i∈I
Ei(f(i), h(i)) ≤ Ej(f(j), h(j)) = Ej(πj(f), πj(h)) for all j ∈ I;

P∧(f, h) =
∧
i∈I
Pi(f(i), h(i)) ≤ Pj(f(j), h(j)) = Pj(πj(f), πj(h)) for all j ∈ I .

• The task is now to prove that for each pair ((C,PC , EC), (pi)i∈I), where

(C,PC , EC) is a POS(L) object and for each j ∈ I,
pj : (C,PC , EC) → (Xj, Pj, Ej) is a morphism there exists a unique POS(L)
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morphism q : (C,PC , EC) → (
∏
i

Xi, P∧, E∧) such that for each j ∈ I , the trian-

gle

(C,PC , EC)
q

- (
∏
i

Xi, P∧, E∧)

(Xj, Pj, Ej)

πj

?

p
j

-

commutes.

Let us first prove the existence of the morphism q.

We define q : (C,PC , EC)→ (
∏
i

Xi, P∧, E∧) in the following way:

∀c ∈ C q(c) = fc : fc(j) = pj(c) ∀j ∈ I.

We have to prove that q is an extensional, order-preserving mapping:

We know that pj is an extensional, order-preserving mapping for every j ∈ I . This

means that EC(c1, c2) ≤ Ej(pj(c1), pj(c2)) and PC(c1, c2) ≤ Pj(pj(c1), pj(c2))

for all j ∈ I .

Thus EC(c1, c2) ≤
∧
i

Ei(pi(c1), pi(c2)) = E∧(fc1 , fc2) = E∧(q(c1), q(c2));

PC(c1, c2) ≤
∧
i

Pi(pi(c1), pi(c2)) = P∧(fc1 , fc2) = P∧(q(c1), q(c2)).

Now it is sufficient to prove that the above diagram commutes and that q is the

unique morphism for which this diagram commutes. The proof is similar as in the

case of product in the category SET .

Theorem 3.1.2. A coproduct of a family ((Xi, Pi, Ei))i∈I of POS(L) objects is a pair

((µi)i∈I , (
⋃
i

Xi, P∪, E∪)) where
⋃
i

Xi is disjoint union,

E∪(a, b) =

Ei(a, b), if a, b ∈ Xi

0, otherwise
; P∪(a, b) =

Pi(a, b), if a, b ∈ Xi

0, otherwise
and µi : (Xi, Pi, Ei)→ (

⋃
i

Xi, P∪, E∪) such that µi(a) = a.

Proof. • Let us prove that (
⋃
i

Xi, P∪, E∪) is an object in the category POS(L).

This means we should prove that E∪ is an L-valued equivalence and P∪ is an
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L-E∪-order relation. We skip the proof that E∪ is an L-valued equivalence since

it is similar to the proof that P∪ is an L-E∪-order relation. We now turn to prove

E∪-reflexivity, transitivity and E∪-antisymmetry of the L-E∪-order relation P∪:

– If a, b ∈
⋃
i

Xi and there exists an index j such that a, b ∈ Xj , then

E∪(a, b) = Ej(a, b) ≤ Pj(a, b) = P∪(a, b) since all relations Pi are re-

flexive. Otherwise, P∪(a, b) = 0 and E∪(a, b) = 0 and then obviously

E∪(a, b) ≤ P∪(a, b).

– We have to prove that P∪(a, b) ∗ P∪(b, c) ≤ P∪(a, c). We consider the case

when there exists an index j such that a, b, c ∈ Xj (otherwise P∪(a, b) = 0

or P∪(a, c) = 0 and then obviously P∪(a, b) ∗ P∪(b, c) ≤ P∪(a, c)). Thus

P∪(a, b) ∗ P∪(b, c) = Pj(a, b) ∗ Pj(b, c) ≤ Pj(a, c) = P∪(a, c) since all

relations Pi are transitive.

– We have to prove that P∪(a, b) ∗ P∪(a, b) ≤ E∪(a, b): We consider the case

when there exists an index j such that a, b ∈ Xj (otherwise P∪(a, b) = 0

and P∪(b, a) = 0 and then obviously P∪(a, b) ∗ P∪(b, a) ≤ E∪(a, b)). Thus

P∪(a, b) ∗ P∪(b, a) = Pj(a, b) ∗ Pj(b, a) ≤ Ej(a, b) = E∪(a, b) since all Pi
are antisymmetric L-valued relations.

• We are now in position to show that µj are morphisms for all j ∈ I . We have to

prove that for all j ∈ I and ∀a, b ∈ Xj Pj(a, b) ≤ P∪(a, b), but we know even

more, that Pj(a, b) = P∪(a, b).

• Our next aim is to verify that for each pair ((pi)i∈I , (C,PC , EC)), where

(C,PC , EC) is a POS(L) object and pj : (Xj, Pj, Ej) → (C,PC , EC) is a mor-

phism for each j ∈ I, there exists a unique POS(L) morphism

q : (
⋃
i

Xi, P∪, E∪)→ (C,PC , EC) such that for each j ∈ I , the triangle

(Xj, Pj, Ej)

(
⋃
i

Xi, P∪, E∪)

µj

?

q
- (C,PC , EC)

p
j

-

commutes.

Let us first prove the existence of the morphism q.
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We define q : (
⋃
i

Xi, P∪, E∪)→ (C,PC , EC) in the following way:

∀x ∈
⋃
i

Xi q(x) = pj(x) : x ∈ Xj.

We have to prove that q is an order-preserving mapping:

P∪(a, b) ≤ PC(q(a), q(b)) ∀a, b ∈
⋃
i

Xi.

We assume that there exists an index j such that a, b ∈ Xj , otherwise

P∪(a, b) = 0 and obviously P∪(a, b) ≤ PC(q(a), q(b)).

Thus a, b ∈ Xj ⇒ P∪(a, b) = Pj(a, b) ≤ PC(pj(a), pj(b)) = PC(q(a), q(b)).

Similarly we can prove that q is an extensional mapping.

Now it remains to prove that the above diagram commutes and that q is the unique

morphism for which the diagram defined above commutes. The proof is similar

as in the case of product in the category SET .

Theorem 3.1.3. In the category POS(L) the following diagram is a pullback:

(V, PV , EV )
πX- (X,PX , EX)

(Y, PY , EY )

πY

? f
- (Z, PZ , EZ)

g

?

where V = {(x, y) ∈ X × Y : g(x) = f(y)};
PV ((x1, y1), (x2, y2)) = PX(x1, x2) ∧ PY (y1, y2);

EV ((x1, y1), (x2, y2)) = EX(x1, x2) ∧ EY (y1, y2);

πX(x, y) = x; πY (x, y) = y.

The proof that EV is an L-valued equivalence and PV is an L-EV -order relation is

similar as in Theorem 3.1.1. The other part of the proof is similar as in the case of

pullback in the category SET .

3.2 L-valued analogue of POS(L) category

We describe here three different L-valued categories whose objects are L-E-ordered

sets:
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1. Let us introduce the mapping µ for the category POS(L) described in the previous

section in the following way:

µ(f) = inf
x1,x2∈X

(P ′(f(x1), f(x2)) 7→ P (x1, x2))

where f : (X,P )→ (Y, P ′), f ∈Mor(POS(L)) and the mapping ω:

ω((X,P,E)) = 1 where (X,P,E) is an object of the category POS(L).

In this case we obtain the category, where the intuitive meaning of the value µ(f)

is the degree to which a morphism f is an order-reflecting mapping. Thus the

obtained L-valued category is something more than just an L-valued analogue of

POS category, because all morphisms are order-preserving mappings, but addi-

tionally we introduce the ”order-reflecting” degrees for the morphisms. It is worth

to mention that the bottom frame of this L-valued category is exactly the category

POS(L). This approach was investigated in [Auth1] and we do not discuss it

here.

2. The idea of the second approach is to omit the following order-preserving prop-

erty: P (x1, x2) ≤ P ′(f(x1), f(x2)) for the morphism f : (X,P ) → (Y, P ′), but

to use the graded order-preserving property described by the mapping µ:

µ(f) = inf
x1,x2∈X

(P (x1, x2) 7→ P ′(f(x1), f(x2))).

In this case we obtain an L-valued analogue of the POS(L) category. To be more

formal we describe this case by applying the scheme proposed on page 21. In our

case the scheme can be described as follows.

Let φ : POS(L) → L-SET be the functor assigning to each POS(L) object

(X,P,E) the support set (X,E) and leaving morphisms unchanged. Then ac-

cording to the scheme we come to the category POS(L)L-SET. Its objects are

the same as in POS(L), but its morphisms are all mappings between the corre-

sponding support sets. Starting from this category as the crisp bottom frame we

define the L-valued category L-POS(L) by setting ω((X,P,E)) = 1 for every

L-POS(L) object (X,P,E) and define the mapping µ as above.

3. The idea of the third approach is to omit the following order-preserving property:

P (x1, x2) ≤ P ′(f(x1), f(x2)) for the morphism f : (X,P )→ (Y, P ′), but to use

the graded order-preserving-and-reflecting property described by the mapping µ:

µ(f) = inf
x1,x2∈X

(P (x1, x2)↔ P ′(f(x1), f(x2))).
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In this case we obtain something more than just an L-valued analogue of the

POS(L) category.

In the section below we consider only constructions 2 and 3. The main attention

is paid to the properties of the category presented by construction 2 since we

consider it as the direct L-valued analogue of POS(L) category.

3.2.1 Construction of the category

Let us observe the category L-POS(L).

L-POS(L)-objects are L-E-ordered sets and L-POS(L)-morphisms are exten-

sional mappings between them.

L-POS(L) = (Ob(L-POS(L)), ω,Mor(L-POS(L)), µ, ◦), where

Ob(L-POS(L)) = {(X,P,E) : (X,P,E) is an L-E-ordered set};

Mor(L-POS(L)) = {f : (X,P,E)→ (Y, P ′, E ′) :

∀x1, x2 ∈ X E(x1, x2) ≤ E ′(f(x1), f(x2))};

µ(f) = inf
x1,x2∈X

(P (x1, x2) 7→ P ′(f(x1), f(x2))), where

f : (X,P,E)→ (Y, P ′, E ′);

ω((X,P,E)) = 1 ∀(X,P,E) ∈ Ob(L-POS(L)).

Theorem 3.2.1.

L-POS(L) = (Ob(L-POS(L)), ω,Mor(L-POS(L)), µ, ◦)

is an L-valued category.

Proof. It is obvious that Ob(L-POS(L)) and Mor(L-POS(L)) form a crisp category,

thus we have to prove the conditions for the mappings µ and ω, the part which charac-

terizes the L-valued case.

1. µ(f) ≤ ω((X,P,E)) ∧ ω((Y, P ′, E ′)) for all (X,P,E), (Y, P ′, E ′) ∈
Ob(L-POS(L)) and for all f ∈MorL-POS(L)((X,P,E), (Y, P ′, E ′)),

since ω((X,P,E)) = 1 and ω((Y, P ′, E ′)) = 1.

2. Let us prove that µ(g ◦ f) ≥ µ(g) ∗ µ(f) where f : (X,P,E) → (Y, P ′, E ′) and
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L-valued analogue of POS(L) category

g : (Y, P ′, E ′)→ (Z, P ′′, E ′′):

µ(g ◦ f) = inf
x1,x2

(P (x1, x2) 7→ P ′′(g(f(x1)), g(f(x2)))) ≥

≥ inf
x1,x2

((P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗

∗ (P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2))))) ≥

≥ inf
x1,x2

(P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗

∗ inf
x1,x2

(P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2)))) ≥

≥ inf
x1,x2

(P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗

∗ inf
y1,y2

(P ′(y1, y2) 7→ P ′′(g(y1), g(y2))) =

= µ(f) ∗ µ(g).

We obtain that µ(g ◦ f) ≥ µ(g) ∗ µ(f).

We have used the properties of the cl-monoid and the following inequality in the

proof :

inf
x1,x2

(P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2)))) ≥
≥ inf

y1,y2
(P ′(y1, y2) 7→ P ′′(g(y1), g(y2)))

This follows from the fact that:

{ P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2))) : x1, x2 ∈ X} ⊆
⊆ { P ′(y1, y2) 7→ P ′′(g(y1), g(y2)) : y1, y2 ∈ Y } ⊂ L.

Now let us define the category FL-POS(L) which we have discussed in the third

clause of the previous section. It is worth to mention that the only difference between

L-valued category FL-POS(L) and L-valued category L-POS(L) is in the choice of

mapping µ.

FL-POS(L)-objects are L-E-ordered sets and FL-POS(L)-morphisms are exten-
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sional mappings.

FL-POS(L) = (Ob(FL-POS(L)), ω,Mor(FL-POS(L)), µ, ◦), where

Ob(FL-POS(L)) = {(X,P,E) : (X,P,E) is an L-E-ordered set};

Mor(FL-POS(L)) = {f : (X,P,E)→ (Y, P ′, E ′) :

∀x1, x2 ∈ X E(x1, x2) ≤ E ′(f(x1), f(x2))};

µ(f) = inf
x1,x2∈X

(P (x1, x2)↔ P ′(f(x1), f(x2))), where

f : (X,P,E)→ (Y, P ′, E ′);

ω((X,P,E)) = 1 ∀(X,P,E) ∈ Ob(FL-POS(L)).

Theorem 3.2.2.

FL-POS(L) = (Ob(FL-POS(L)), ω,Mor(FL-POS(L)), µ, ◦)

is an L-valued category.

Proof. All properties of an L-valued category (except of the property

µ(g ◦ f) ≥ µ(g) ∗ µ(f)) are straightforward. It is only necessary to prove that

inf
x1,x2

(P (x1, x2)↔ P ′′(g(f(x1)), g(f(x2)))) ≥

≥ inf
x1,x2

(P (x1, x2)↔ P ′(f(x1), f(x2))) ∗ inf
y1,y2

(P ′(y1, y2)↔ P ′′(g(y1), g(y2)))

where f : (X,P,E)→ (Y, P ′, E ′), g : (Y, P ′, E ′)→ (Z, P ′′, E ′′),

x1, x2 ∈ X and y1, y2 ∈ Y :

inf
x1,x2

(P (x1, x2)↔ P ′′(g(f(x1)), g(f(x2)))) =

= inf
x1,x2

((P (x1, x2) 7→ P ′′(g(f(x1)), g(f(x2)))) ∗

∗(P ′′(g(f(x1)), g(f(x2))) 7→ P (x1, x2))) ≥

≥ inf
x1,x2

((P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗

∗(P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2)))) ∗

∗(P ′′(g(f(x1)), g(f(x2))) 7→ P ′(f(x1), f(x2))) ∗

∗(P ′(f(x1), f(x2)) 7→ P (x1, x2))) ≥

≥ inf
x1,x2

((P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗ (P ′(f(x1), f(x2)) 7→ P (x1, x2))) ∗

∗ inf
x1,x2

((P ′(f(x1), f(x2)) 7→ P ′′(g(f(x1)), g(f(x2)))) ∗

∗(P ′′(g(f(x1)), g(f(x2))) 7→ P ′(f(x1), f(x2)))) ≥
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≥ inf
x1,x2

((P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗ (P ′(f(x1), f(x2)) 7→ P (x1, x2)))) ∗

∗ inf
y1,y2

((P ′(y1, y2) 7→ P ′′(g(y1), g(y2))) ∗ (P ′′(g(y1), g(y2)) 7→ P ′(y1, y2)))) =

= inf
x1,x2

(P (x1, x2)↔ P ′(f(x1), f(x2))) ∗ inf
y1,y2

(P ′(y1, y2)↔ P ′′(g(y1), g(y2))).

Remark 3.2.1. If the value of a mapping ω is equal to 1 for all objects of an L-valued

category we do not write ω. For instance we will write

L-POS(L) = (Ob(L-POS(L)),Mor(L-POS(L)), µ, ◦).

3.2.2 Properties of the category

In this section we study properties of the category L-POS(L).

Proposition 3.2.1. If we consider the crisp category POS as an L-valued category

POS = (Ob(POS),Mor(POS), µPOS, ◦), where µPOS(f) is equal to 1 if and only

if f is an order-preserving mapping and 0 otherwise, then the category POS is an

L-valued subcategory of the category L-POS(L).

We continue by considering special objects and special morphisms in the category

L-POS(L).

Proposition 3.2.2. The empty set is the unique initial (1-initial) object in L-POS(L).

Proposition 3.2.3. The singleton set with the uniquely constructed L1-E1-order on it is

the terminal (1-terminal) object in L-POS(L).

Corollary 3.2.1. There are no α-zero objects in L-POS(L).

Proposition 3.2.4. An α-morphism f : (X,P ) → (Y, P ′) is a β-monomorphism (for

any β ∈ L) if and only if f is an injective mapping.

Proposition 3.2.5. An α-morphism f : (X,P ) → (Y, P ′) is a β-epimorphism (for any

β ∈ L) if and only if f is a surjection.

Proposition 3.2.6. An α-morphism f : (X,P ) → (Y, P ′) is a β-bimorphism (for any

β ∈ L) if and only if f is a bijection.
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L-valued analogue of POS(L) category

For the previous three proposition the proof is a straightforward generalization of the

proofs of Propositions 3.1.6, 3.1.7 and 3.1.8.

Remark 3.2.2. From the above propositions it is easy to see that studying an L-valued

category, if the property holds for the bottom and top frame of L-valued category, then

this property holds for the L-valued category for each β ∈ L. For example, studying

L-POS(L) category, the bottom frame is SET category, the top frame is POS(L)

category. Knowing that ”a morphism is an epimorphism if and only if f is a surjection”

in SET and in POS(L) we conclude that an ”α-morphism is a β-epimorphism (for any

β ∈ L) if and only if f is a surjection”.

We continue by describing product in the category L-POS(L). To do this we define

the product in the context of L-valued categories.

Let C = (Ob(C),Mor(C), µ, ◦) be an L-valued category.

Definition 3.2.1. A pair (
∏
i

Xi, (πi)i∈I) is an α-product of a family (Xi)i∈I of

C-objects if and only if:

•
∏
i

Xi is a C-object;

• πi are C-morphisms such that inf
i
µ(πi) ≥ α;

• for each pair (C, (pi)i∈I), where C is a C-object and for each j ∈ I,
pj : C → Xj is a C-morphism and µ(pj) ≥ µ(πj) there exists a unique

C-morphism qC : C →
∏
i

Xi such that µ(qC) ≥ α and for each j ∈ I , the

triangle

C
qC -

∏
i

Xi

Xj

πj

?

p
j

-

commutes.

Now we propose an alternative definition where we try to separate the ”crisp” and

the ”fuzzy parts”, but first we should define the notion of an α-source.
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L-valued analogue of POS(L) category

Definition 3.2.2. An α-source in an L-valued category C is a pair (X, (fi)i∈I), where

X is a C-object and (fi : X → Xi)i∈I is a family of C-morphisms each with domain X

and inf
i
µ(fi) ≥ α.

Definition 3.2.3. An α-source (
∏
i

Xi, (πi)i∈I) in an L-valued category C is an

α-product of a family (Xi)i∈I of C-objects if and only if it is a product in a crisp category

C = (Ob(C),Mor(C), ◦) and for each α-source (C, (pi)i∈I) such that µ(pj) ≥ µ(πj)

for all j ∈ I , if qC is a unique morphism qC : C →
∏
i

Xi then

µ(qC) ≥ α.

Remark 3.2.3. The idea of defining notions in the frame of L-valued categories is as

follows: the product in the top frame of L-valued category should be 1-product in an

L-valued category. The same idea is valid for other notions.

Proposition 3.2.7. If a pair (
∏
i

Xi, (πi)i∈I) is an α-product of a family (Xi)i∈I of

C-objects then

1. for each β-isomorphism h : A→
∏
i

Xi a pair (A, (πi ◦ h)i∈I) is an α ∗ β-product

of a family (Xi)i∈I .

2. for each α-product (A, (pi)i∈I) of a family (Xi)i∈I of C-objects there exists an

α-isomorphism h : A→
∏
i

Xi such that pi = πi ◦ h ∀i ∈ I .

Proposition 3.2.8. If a pair (A, (πi)i∈I) is an α-product of a family (Ai)i∈I of C-objects

and for each i ∈ I (Ai, (pij)j∈Ji) is an β-product of a family (Aij)j∈Ji then a pair

(A, (pij ◦ πi)i∈I) is an β ∗ α-product.

The last two propositions are straightforward generalization of the classical case.

We observe some α-products of a family ((Xi, Pi, Ei))i∈{1,n} of L-POS(L) objects,

where L is a concrete cl-monoid in the next examples.

Example 3.2.1. Let L be a cl-monoid. A pair ((X1 × · · · ×Xn, P∧, E∧), (πi)i∈{1,n}) is

a 1-product of a family ((Xi, Pi, Ei))i∈{1,n} of L-POS(L) objects, where

E∧((a1, a2, ..., an), (b1, b2, ..., bn)) =
∧
iEi(ai, bi),

P∧((a1, a2, ..., an), (b1, b2, ..., bn)) =
∧
i Pi(ai, bi) and

πi : (
∏
i

Xi, P∧, E∧)→ (Xi, Pi, Ei) are defined by πi((a1, a2, ..., an)) = ai.
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In the next two examples for the brevity of explanation the relations Ei for all i are

crisp equivalence relations: Ei(a, b) =

1, if a = b

0, otherwise
and the relation E∧ will be defined as follows:

E∧((a1, a2, ..., an), (b1, b2, ..., bn)) =
∧
iEi(ai, bi).

Example 3.2.2. Let L = ([0, 1],≤,∧,∨, T, 7→T ) be a cl-monoid, where T is a t-norm

without zero divisors, 7→T is a corresponding residuum and let Aω be the weakest ag-

gregation function defined by:

Aω(x1, x2, ..., xn) =

1, x1 = x2 = ... = xn = 1

0, otherwise
.

The requirement on a family ((Xi, Pi, Ei))i∈{1,n} of L-POS(L)-objects is that sets Xi

are non-empty sets and there exists an index j such that ∃aj, bj ∈ Xj :Pj(aj, bj) ∈ (0, 1).

Then a pair ((X1 × · · · ×Xn, PAω , E∧), (πi)i∈{1,n}) is a 0-product of a family

((Xi, Pi, Ei))i∈{1,n} of L-POS(L) objects, where

PAω((a1, . . . , an), (b1, . . . , bn)) = Aω(P1(a1, b1), . . . , Pn(an, bn)) and

πi : (
∏
i

Xi, PAω , E∧)→ (Xi, Pi, Ei) are defined by πi((a1, a2, ..., an)) = ai.

For example for L-POS(L)-morphism

h : (X1×· · ·×Xn, P∧, E∧)→ (X1×· · ·×Xn, PAω , E∧) µ(h) is equal to 0 if the above

conditions are fulfilled and thus ((X1 × · · · ×Xn, PAω , E∧), (πi)i∈{1,n}) is a 0-product.

Example 3.2.3. Let L = ([0, 1],≤,∧,∨, TL, 7→TL) be a cl-monoid, where TL is

Łukasiewicz t-norm and 7→TL is the corresponding residuum.

Then a pair ((X1 ×X2, PTL , E∧), (πi)i∈{1,2}) is a 0.5-product of a family

((Xi, Pi, Ei))i∈{1,2} of L-POS(L) objects, where

PTL((a1, a2), (b1, b2)) = TL(P1(a1, b1), P2(a2, b2)) and

πi : (
∏
i

Xi, PTL , E∧)→ (Xi, Pi, Ei) are defined by πi((a1, a2)) = ai.

Proof:

We know that for the Łukasiewicz t-norm TL (as it is a left-continuous t-norm)

x 7→TL y = 1 ⇔ x ≤ y. Obviously TL(P1(a1, b1), P2(a2, b2)) ≤ Pi(ai, bi) for all i and

for all ai, bi ∈ Xi. Thus µ(πi) = 1 for all i.

So for every other source ((C,PC , EC), (fi)i∈{1,2}), where µ(πi) ≤ µ(fi) we know that

µ(fi) = 1 and then PC(c1, c2) ≤ Pi(fi(c1), fi(c2)) for all c1, c2 ∈ C.

Thus there exists unique morphism hC : (C,PC , EC) → (X1 × X2, P∧, E∧) such that
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PC(c1, c2) ≤ P∧(hC(c1), hC(c2)) (Theorem 3.1.1’), where

P∧((a1, a2), (b1, b2)) = P1(a1, b1) ∧ P2(a2, b2). This gives µ(hC) = 1. Thus for every

morphism qC : (C,PC , EC) → (X1 × X2, PTL , E∧) the following inequality holds:

µ(qC) ≥ µ(eX1×X2)∗µ(hC), where eX1×X2 : (X1×X2, P∧, E∧)→ (X1×X2, PTL , E∧)

is defined by eX1×X2((x1, x2)) = (x1, x2). It is easy to calculate that µ(eX1×X2) ≥ 0.5,

thus µ(qC) ≥ 0.5.

In the same way we could define and investigate other special constructions. For

example:

Definition 3.2.4. A pair ((ρi)i∈I ,
∐
i
Xi, ) is an α-coproduct of a family (Xi)i∈I of C-objects

if and only if:

•
∐
i
Xi is an object in the category C;

ρi are morphisms in the category C such that inf
i
µ(ρi) ≥ α;

• for each pair ((fi)i∈I , C), such that µ(fj) ≥ µ(ρj) there exists a unique C-morphism

qC :
∐
i
Xi → C such that µ(qC) ≥ α and for each j ∈ I , the following triangle

commutes.

(Xj , Pj)

∐
i

Xi

ρj

?

qC

- C

f
j

-

3.3 Generalized L-POS(L) category

Now let us replace the reflexivity property for fuzzy equivalence relation:

E(x, x) = 1 for all x ∈ X

with the following property of weak reflexivity:

E(x, x) ≥ E(x, y) for all x, y ∈ X.

If there exists an element x ∈ X such that E(x, x) = 0 then E(x, y) = E(y, x) = 0 for

all elements y from the set X . Since it is not a natural situation we delete such elements

from the setX . Further we observe only L-valued sets for which the following condition

holds:

E(x, x) > 0 for all x ∈ X.

45



Generalized L-POS(L) category

To distinguish from the previous case we call the relation which respects weak reflex-

ivity, symmetry and transitivity as weak fuzzy equivalence and denote it by Ew. The

intuitive meaning of the value Ew(x, x) is the degree of the existence of an element x.

Now we build a category pos(X,P,Ew) whose objects are elements of an L-Ew-ordered

set:

• Objects: Ob(pos(X,P,Ew)) = {x : x ∈ X};

• Morphisms: f : x→ y, f ∈Mor(pos(X,P,Ew))⇔ P (x, y) > 0.

It is obviously a small category.

Now let us involve an L-valued subclass of the class of morphisms as a mapping

from the class of morphisms to the cl-monoid L (µ : Mor(pos(X,P,Ew)) → L) in the

following way:

f : x→ y ⇒ µ(f) = Ew(x, x) ∧ P (x, y) ∧ Ew(y, y)

and an L-valued subclass of the class of objects as a mapping from the class of

objects to the cl-monoid L (ω : Ob(pos(X,P,Ew))→ L)

x ∈ X ⇒ ω(x) = Ew(x, x).

We have constructed a small L-valued category

L-pos(X,P,Ew) = (Ob(pos(X,P,Ew)), ω,Mor(pos(X,P,Ew)), µ, ◦).

Let us verify all necessary properties for the L-valued category:

• Note that for a given morphism f : x→ y we have

µ(f) = Ew(x, x) ∧ P (x, y) ∧ Ew(y, y) ≤ Ew(x, x) ∧ Ew(y, y) = ω(x) ∧ ω(y).

• The next property we have to prove is µ(g ◦ f) ≥ µ(g) ∗ µ(f) , if the morphism

g ◦ f exists. Let f : x→ y and g : y → z. Then by transitivity of the fuzzy order

P we have

µ(g ◦ f) = Ew(x, x) ∧ P (x, z) ∧ Ew(z, z) ≥

≥ Ew(x, x) ∧ (P (x, y) ∗ P (y, z)) ∧ Ew(z, z).

Let us denote a := Ew(x, x);b := P (x, y);c := P (y, z);d := Ew(z, z);

e := Ew(y, y). Then

a∧ (b ∗ c)∧ d ≥ (a ∗ d)∧ (b ∗ c)∧ (a ∗ c) ≥ (a ∗ c)∧ (a ∗ d)∧ (b ∗ c)∧ (b ∗ d) ≥
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≥ (a ∧ b) ∗ (c ∧ d) ≥ (a ∧ b ∧ e) ∗ (e ∧ c ∧ d).

Thus

µ(g ◦ f) = Ew(x, x) ∧ P (x, z) ∧ Ew(z, z) ≥

≥ (Ew(x, x) ∧ P (x, y) ∧ Ew(y, y)) ∗ (Ew(y, y) ∧ P (y, z) ∧ Ew(z, z)) =

= µ(f) ∗ µ(g).

Remark 3.3.1. Obviously in the category pos(X,P,Ew) we have

µ(idx) = Ew(x, x) ∧ P (x, x) ∧ Ew(x, x) = Ew(x, x) = ω(x), where idx is the identity

morphism. In this case the L-valued class of objects ω is determined by the L-valued

class of morphisms µ.

It is also possible to define the mapping µ : Mor(pos(X,P,Ew))→ L in the following

way:

f : x→ y ⇒ µ(f) = Ew(x, x) ∗ P (x, y) ∗ Ew(y, y).

In this situation µ(idX) ≤ ω(X).

Then we build an L-valued category, whose objects are small categories, as in the

previous sections. Thus we obtain the following L-valued category:

L-POS(L) = (Ob(L-POS(L)), ω,Mor(L-POS(L)), µ, ◦), where

Ob(L-POS(L)) = {(X,P,Ew) : (X,P,Ew) is an L-Ew-ordered set};
Mor(L-POS(L)) = {f : (X,P,Ew)→ (Y, P ′, E ′w) :

∀x1, x2 ∈ X Ew(x1, x2) ≤ E ′w(f(x1), f(x2))};
µ(f) = inf

x∈X
(Ew(x, x)) ∗ inf

x1,x2∈X
(P (x1, x2) 7→ P ′(f(x1), f(x2))) ∗ inf

y∈Y
(E ′w(y, y)),

where

f : (X,P,Ew)→ (Y, P ′, E ′w);

ω((X,P,Ew)) = inf
x∈X

(Ew(x, x)) ∀(X,P,Ew) ∈ Ob(L-POS(L)).

To prove that it is indeed an L-valued category we refer the reader to Theorem 3.2.1

and the construction of new L-valued categories from the existing ones (page 20).
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3.4 Conclusion on L-valued categories

The main aim of this chapter was:

• To construct an L-valued analogue of POS category. The scheme of construction

justify that this category is constructed in a natural way from the point of view of

L-valued categories.

• To study the properties of the constructed L-valued category. What is not only

important by itself but also helps to develop and investigate deeply the theory of

L-valued categories.

In the future we are going to prepare the work about L-valued categories, what is now

possible thanks to the studying of one concrete example. Studying L-POS(L) category

we have made some correction in the definitions (see Definitions 2.4.1, 2.4.3), we de-

fined some new notions and by this developed the scheme of defining new notions in

the frame of L-valued category theory (e.g. Definition 3.2.1). The important is also the

scheme of fuzzification and we are going to develop it (see also Remark 3.2.2 as one of

the possible directions).

In this chapter we have constructed the L-valued category whose objects are

L-E-ordered sets and morphisms are ”potential” order-preserving mappings. To realize

the construction we have introduced the degree (for the class of potential morphisms) to

which each morphism is an order-preserving mapping, or, in other words, a monotone

mapping. In the natural way we can use this idea for some practical applications. For

example to construct an aggregation process in the context of L-valued POS categories

and by this define the graded property of monotonicity for the aggregation function.

It is also possible to apply the above idea to the aggregation of fuzzy relations, in

particular, to the aggregation of fuzzy orders. Our suggestion is to involve the degree to

which aggregation operator preserves properties of fuzzy relations. So we will be able

to calculate this degree for any aggregation function, not only for aggregation operators

which preserve properties of fuzzy relations.

In the future we are going to apply the properties of constructed categories for the

above mentioned practical applications.
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Chapter 4

Involving fuzzy orders in aggregation
processes

Representation of several input values by a single output value is the essence of the

aggregation process. It is natural to require that the aggregation function should fulfill

the boundary conditions and the condition of monotonicity. In the first part of this

chapter we will focus on the condition of monotonicity in the process of aggregation

and introduce the graded property of monotonicity. In the previous sections when

constructing the L-valued analogue of POS category, we introduced the degree to

which a morphism is an order preserving mapping, or, in other words, a monotone

mapping. We use the same idea to define the graded property of monotonicity for the

aggregation function. In the first section of this chapter the degree of monotonicity will

be defined straightforward, but here we construct the aggregation process in the context

of L-valued POS categories and obtain the same definition:

Let us observe the 1-product ((X1 × · · · × Xn, P∧), (πi)i∈{1,n}) of a family

((Xi, Pi))i∈{1,n} of L-POS(L) objects. Then if we construct a mapping

f : (X1 × · · · × Xn, P∧) → (Y, P ) in the category L-POS(L), the order-preserving

degree for this mapping is calculated as:

µ(f) = inf
x,y

(P∧(x,y) 7→ P (f(x), f(y)) or

µ(f) = inf
x,y

(
∧
i Pi(xi, yi) 7→ P (f(x), f(y)),

where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). We suggest to use this order-

preserving degree for an arbitrary function f instead of the crisp definition of mono-

tonicity for the aggregation process.
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In the second part we focus on the aggregation of fuzzy relations, in particular, on the

aggregation of fuzzy orders. In the literature there are works considering the problem,

which aggregation functions preserve properties of fuzzy relations in the aggregation

process (see e.g. [39],[38]). Our aim here is to involve the above mentioned concept of

the degree µ in order to estimate to what extent do the aggregation functions preserve

properties of fuzzy relations.

Our suggestion is to involve the degree to which aggregation function preserves

properties of fuzzy relations. So we will be able to calculate this degree for any aggre-

gation function, not only for aggregation functions which preserve properties of fuzzy

relations.

Definition 4.0.1. (cf. [39] ) Let A : [0, 1]n → [0, 1] be a mapping and let R1, R2, ..., Rn

be fuzzy relations (Ri : X ×X → [0, 1]).

An aggregation fuzzy relation RA (RA : X ×X → [0, 1]) is described by the formula

RA(x, y) = A(R1(x, y), ..., Rn(x, y)), x, y ∈ X.

A function A preserves a property of fuzzy relations if for every fuzzy relation

R1, R2, ..., Rn having this property, RA also has this property.

In order to calculate how well the function A preserves the properties of fuzzy re-

lations R1, R2, ..., Rn we use the mapping ξ: ξ(A) = inf
i
µi, where µi is the degree

to which an aggregation function A preserves the property of the corresponding fuzzy

relation Ri. The idea to define this degree lies in the construction of the fuzzy POS

category. The degree of preservation the property of the corresponding fuzzy relation

for aggregation functions is:

ξ(A) = inf
i

( inf
x1,x2

(Ri(x1, x2)↔ RA(x1, x2)))

Remark 4.0.1. The mapping ξ could be also defined by the following equality:

ξ(A) = inf
i

( inf
x1,x2

(Ri(x1, x2)→ RA(x1, x2)))

In the paper [9] the graded property of monotonicity is involved and the graded

notion of dominance is investigated. Although these notions are completely different

from the described above, it could be interesting to study the connections between the

notions defined in paper [9] and in our work.

The two ideas described above come from the construction of the L-valued POS

category. In the first section of this chapter we precisely realize the first idea, that is
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defining the degree of monotonicity for an aggregation process. We do not develop here

the second idea, but this is in our plans for the future research. In this work we are

interested in the process of aggregation of fuzzy relations and in the last three sections

we concentrate exactly in this question.

4.1 Degree of monotonicity

4.1.1 Motivation and definitions

The aim of this section is to introduce a fuzzy order relation in aggregation process,

namely, to use a fuzzy order relation instead of the crisp order relation in the definition

of monotonicity. Recall that an aggregation function is a mapping satisfying bound-

ary conditions and the condition of monotonicity. In our work we focus only on the

condition of monotonicity.

The next two examples illustrate our inspiration which led to the present research:

Alternat. First

attrib.

Second

attrib.

Aggreg.

result

a1 0.1 0.3 0.2

a2 0.01 0.31 0.29

a3 0.2 0.4 0.3

Table 4.1: Motivating example 1.

Let us observe first the aggregation which is illustrated by the Table 4.1 and which

is made by an expert. The expert has made the aggregation in his judgment (he did not

apply any concrete aggregation function) and we don’t know the motivation why he has

chosen the following way to aggregate the information.

Now let us imagine that we have a task to analyze the result of aggregation. Ac-

cording to the definition of aggregation function, the mapping defined above is an ag-

gregation function (monotonicity condition is fulfilled). But if we have our own look at

this example and consider the aggregation results of alternatives a1 and a2 we will find

out that results are rather strange (intuitively incorrect). The first attribute of the alter-

native a2 is less than the first attribute of the alternative a1, the second attribute of the

alternative a2 is greater than the second attribute of the alternative a1, so we don’t need
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to compare the aggregation results for these two alternatives since these alternatives are

incomparable, hence crisp property of monotonicity is automatically fulfilled. On the

other hand the second attribute of a2 is greater than the second attribute of a1 only a lit-

tle (is equal to the second attribute of a1 ”in fuzzy sense”), so, intuitively, we expect that

if even the aggregation result of the alternative a2 is greater than the aggregation result of

the alternative a1, then it should be greater only a little. But in our example aggregation

result of the alternative a1 is less than the aggregation result of the alternative a2 and we

have a big difference between the aggregation results. Actually, the element a2 is less or

equal than the element a1 ”in a fuzzy sense” but for aggregation results we can’t confirm

the same. To avoid these situations we involve fuzzy order relation in order to define

degree of monotonicity.

Another possible situation where fuzzy order could help is the problem when we

have small mistakes in aggregation, what is actually illustrated by the ”Motivating ex-

ample 2”.

Alternat. First

attrib.

Second

attrib.

Aggreg.

result

a1 0.1 0.3 0.2

a2 0.2 0.399 0.301

a3 0.2 0.4 0.3

Table 4.2: Motivating example 2.

The small variation of data could change the result drastically. For the question ”Is

this an aggregation function?” we could only answer ”Yes” or ”No”, thus a very small

mistake or destroy of data could change the answer from ”Yes” to ”No”. Let us observe

Example 2.

In this case it is not an aggregation function since the monotonicity condition for the

pair (a2, a3) is not fulfilled. But the second row could be realized just as the damaged

third one. Thus, in this case it would be useful to delete the second row or to involve

the degree of monotonicity which not only says ”it is an aggregation function” or ”it is

not an aggregation function” but gives us the degree to which a mapping is a monotone

function.

Thus the aim of this section is to define the degree of monotonicity, to observe illus-

trating examples and to study the properties of the degree of monotonicity.
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We continue with the definition of the degree of monotonicity.

Definition 4.1.1. Let f : [0, 1]n → [0, 1] be a function (aggregation function),

P : [0, 1]2 → [0, 1] be a fuzzy order relation and 7→T a residuum. We define the degree of

monotonicity for a function (aggregation function) f w.r.t fuzzy relation P and residuum

7→T in the following way:

MP,7→T
(f) = inf

x,y
(∧iP (xi, yi) 7→T P (f(x), f(y))).

We also involve the degree of monotonicity for a function f :
⋃
n∈N [0, 1]n → [0, 1].

In this case, we can introduce a function f as a family f = (f(n))n∈N , where

f(n) : [0, 1]n → [0, 1] is the restriction of function f to [0, 1]n. Then we can calculate the

degree of monotonicity for every fn as

MP,7→T
(fn) = inf

x,y
(∧iP (xi, yi) 7→T P (fn(x), fn(y)))

and the degree of monotonicity for function f will be

MP,7→T
(f) = inf

n
(MP,7→T

(fn)).

In the sequel, we will often write x to denote an element x = (x1, ..., xn) and for

simplicity of notation we write x ≤ y if x = (x1, ..., xn), y = (y1, ..., yn) and xi ≤ yi

for all i ∈ {1, ..., n}.

Example 4.1.1. Let us observe the examples which we have been presented in the in-

troduction and let us calculate the degree of monotonicity for these aggregations. Let

us denote by A the aggregation function, namely, A(ak) denotes the aggregation result

for the alternative ak. We calculate the degree of monotonicity with respect to the fuzzy

order relation:

P (ai, bi) =

1, if ai ≤ bi

max(1− |ai − bi|, 0), otherwise
,

based on Łukasiewicz T -norm (see Example 2.3.1 and Theorem 2.3.2 ) and the residuum

corresponding to the same t-norm: a 7→T b = min(1−a+b, 1) (Łukasiewicz residuum).

The preliminary results which we get calculating the value ∧iP (aki, ani) 7→T

P (A(ak), A(an)) (let us denote this value by ω(ak, an)) for every two alternatives ak
and an are summarized in Table 4.3 and Table 4.4.

For the first example the degree of monotonicity is equal to 0.92. We note ”defi-

ciency” for the alternatives a2 and a1 - the result which we expected to get.

For the ”Motivating example 2” the degree of monotonicity is equal to 0.999.
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Table 4.3: Motivating example 1.

Alt. ak and an ω(ak, an)

a1 and a2 1

a1 and a3 1

a2 and a1 0.92

a2 and a3 1

a3 and a1 1

a3 and a2 1

Table 4.4: Motivating example 2.

Alt. ak and an ω(ak, an)

a1 and a2 1

a1 and a3 1

a2 and a1 0.999

a2 and a3 0.999

a3 and a1 1

a3 and a2 1

Further we study the properties of aggregation functions which have the degree of

monotonicity equal to 1.

Proposition 4.1.1. The degree of monotonicity for a function f with respect to a crisp

linear order is equal to 1 if and only if f is a monotone function.

Proof. First we prove that the degree of monotonicity for a monotone function with

respect to a crisp linear order is equal to 1.

In the proof we distinguish the following two cases:

1. If x ≤ y, then ∧iP (xi, yi) = 1. Provided that f is a monotone function, we

conclude that, f(x1, ..., xn) ≤ f(y1, ..., yn) and hence P (f(x), f(y)) = 1.

Finally ∧iP (xi, yi) 7→T P (f(x), f(y)) = 1.

2. If x 6≤ y then there exists an index k such that xk > yk. Therefore P (xk, yk) = 0

and ∧iP (xi, yi) = 0.

Thus ∧iP (xi, yi) 7→T P (f(x), f(y)) = 0 7→T P (f(x), f(y)) = 1.

From the previous we can conclude that inf
x,y

(∧iP (xi, yi) 7→T P (f(x), f(y))) = 1.

Now we prove that if the degree of monotonicity for a function with respect to a crisp

linear order is equal to 1 then the initial function is monotone. Assume contrary that

a function is not monotone, then there exist vectors x and y such that x ≤ y but

f(x1, ..., xn) > f(y1, ..., yn). This means that ∧iP (xi, yi) = 1 but P (f(x), f(y)) = 0.

Hence ∧iP (xi, yi) 7→T P (f(x), f(y)) = 0, which contradicts the fact that he degree

monotonicity for the function with respect to a crisp linear order is equal to 1. By this

we have finished the proof.
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This also means that the degree of monotonicity for an aggregation function with

respect to a crisp linear order is equal to 1.

We continue with the proposition stating that the degree of monotonicity for the

weighted mean with respect to a certain fuzzy order relation and residuum, correspond-

ing to the left-continuous t-norm is equal to 1.

Proposition 4.1.2. Let f be the weighted mean: f(x1, x2, ..., xn) =
n∑
i=1

wixi where

weights wi are non negative and
n∑
i=1

wi = 1, and let g be a non-increasing function.

Then the degree of monotonicity for function f with respect to the fuzzy order relation

P (xi, yi) =

1, if xi ≤ yi

g(|xi − yi|), otherwise

and the residuum 7→T , where T is a left-continuous t-norm, is equal to 1.

Proof. To find the value inf
x,y

(∧iP (xi, yi) 7→T P (f(x), f(y))) we consider two cases:

1. If xi ≤ yi, for all i ∈ {1, 2, ..., n} then P (x1, y1) = · · · = P (xn, yn) = 1 by the

definition of fuzzy relation P .

Since obviously
n∑
i=1

wixi ≤
n∑
i=1

wiyi it follows that P (
n∑
i=1

wixi,
n∑
i=1

wiyi) = 1.

Hence (∧iP (xi, yi) 7→T P (f(x), f(y))) = (1 7→T 1) = 1.

2. Now we consider the case when there exists a set K ⊆ I (I = {1, 2, ..., n}) such

that for all k ∈ K xk > yk.

Let g(|xl−yl|) = min
k∈K

g(|xk−yk|) = ∧iP (xi, yi). Thus for all k ∈ K g(|xl−yl|) ≤
≤ g(|xk − yk|) and therefore |xk − yk| ≤ |xl − yl| since the function g is non-

increasing.

If f(x) ≤ f(y) then P (f(x), f(y)) = 1 and (∧iP (xi, yi) 7→T P (f(x), f(y))) =

= (P (xl, yl) 7→T 1) = 1.

Assume now that f(x) > f(y), i.e.
n∑
i=1

wixi >
n∑
i=1

wiyi.

Further |f(x)− f(y)| = |
n∑
i=1

wixi −
n∑
i=1

wiyi| =
n∑
i=1

wixi −
n∑
i=1

wiyi =

=
n∑
i=1

wi(xi − yi) ≤
∑
k∈K

wk(xk − yk) ≤ (xl − yl) ·
∑
k∈K

wk ≤ |xl − yl| and then

g(|xl − yl|) ≤ g(|f(x)− f(y)|). Finally, (∧iP (xi, yi) 7→T P (f(x), f(y))) =

= (P (xl, yl) 7→T P (f(x), f(y))) = 1.
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We have shown that ∧iP (xi, yi) 7→T P (f(x), f(y)) = 1 for all x and y. Hence

MP,7→T
(f) = 1.

We continue with the more general case.

Theorem 4.1.1. Let f : [0, 1]n → [0, 1] be a monotone function, T be a continuous

Archimedean t-norm with an additive generator t and let d be an arbitrary pseudo-

metric in interval [0, 1] such that d(a, b) ≤ t(0) for all a and b from the unit interval.

Then the degree of monotonicity for function f with respect to the residuum 7→T and the

fuzzy order relation

P (xi, yi) =

1, if xi ≤ yi

Ed(xi, yi), otherwise

is equal to 1 if and only if for all x = (x1, ..., xn), y = (y1, ..., yn)

f(x) > f(y)⇒ d(f(x), f(y)) ≤ max
xi>yi

(d(xi, yi)).

Proof. Let us prove the sufficiency:

To find the value ∧iP (xi, yi) 7→T P (f(x), f(y)) for different x and y we consider the

following three cases:

1. If xi ≤ yi for all i ∈ {1, .., n} then ∧iP (xi, yi) = 1. According to the monotonic-

ity of f , f(x) ≤ f(y) and then P (f(x), f(y)) = 1.

Hence ∧iP (xi, yi)→ P (f(x), f(y)) = 1.

2. If there exists j for which xj > yj and f(x) ≤ f(y) then P (f(x), f(y)) = 1.

Hence ∧iP (xi, yi)→ P (f(x), f(y)) = 1.

3. If there exists j for which xj > yj and f(x) > f(y), then let k be an integer for

which ∧iP (xi, yi) = P (xk, yk) = Ed(xk, yk) = t(−1)(min(d(xk, yk), t(0))).

Since f(x) > f(y) we have P (f(x), f(y)) = t(−1)(min(d(f(x), f(y)), t(0))).

Then ∧iP (xi, yi) 7→T P (f(x), f(y)) =

= t(−1)(max(t(t(−1)(min(d(f(x), f(y)), t(0))))−
−t(t(−1)(min(d(xk, yk), t(0)))), 0)) =

= t(−1)(max(min(d(f(x), f(y)), t(0))−min(d(xk, yk), t(0)), 0)).

We consider two cases:

• min(d(xk, yk), t(0)) = t(0) ⇒ min(d(f(x), f(y)), t(0)) ≤ t(0) ⇒
t(−1)(max(min(d(f(x), f(y)), t(0))−min(d(xk, yk), t(0)), 0)) =

= t(−1)(0) = 1
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• min(d(xk, yk), t(0)) 6= t(0)⇒
min(d(xk, yk), t(0)) = d(xk, yk)⇒
min(d(f(x), f(y)), t(0)) = d(f(x), f(y))⇒
t(−1)(max(min(d(f(x), f(y)), t(0))−min(d(xk, yk), t(0)), 0)) =

= t(−1)(max(d(f(x), f(y))− d(xk, yk), 0)) = t(−1)(0) = 1

Thus in both cases ∧iP (xi, yi) 7→T P (f(x), f(y)) = 1. Therefore the degree of mono-

tonicity is equal to 1.

We continue by proving the necessity. Let us assume that there exist elements x and

y such that f(x) > f(y) but d(f(x), f(y)) > max
xi>yi

(d(xi, yi)). Then we calculate the

value ∧iP (xi, yi)→ P (f(x), f(y)). Let k be an integer for which

∧iP (xi, yi) = P (xk, yk) = Ed(xk, yk) = t(−1)(min(d(xk, yk), t(0))).

Since f(x) > f(y) we have P (f(x), f(y)) = t(−1)(min(d(f(x), f(y)), t(0))).

Then ∧iP (xi, yi) 7→T P (f(x), f(y)) =

= t(−1)(max(t(t(−1)(min(d(f(x), f(y)), t(0))))− t(t(−1)(min(d(xk, yk), t(0)))), 0)) =

= t(−1)(max(min(d(f(x), f(y)), t(0)) − min(d(xk, yk), t(0)), 0)) < t(−1)(0). The last

inequality is true since min(d(f(x), f(y)), t(0))−min(d(xk, yk), t(0)) > 0 and t(−1) is

a strictly decreasing mapping. Thus ∧iP (xi, yi) 7→T P (f(x), f(y)) 6= 1.

We illustrate the theorem by the next two examples, where we apply it to minimum

and maximum functions.

Example 4.1.2. Let MIN be the minimum function:

MIN(x1, ..., xn) = min(x1, ..., xn),

T be a continuous Archimedean t-norm with an additive generator t and d be a pseudo-

metric on interval [0, 1] such that d(a, b) = |a− b|. Then the degree of monotonicity for

function MIN with respect to the residuum 7→T and the fuzzy order relation

P (xi, yi) =

1, if xi ≤ yi

Ed(xi, yi), otherwise

is equal to 1:

MP, 7→T
(MIN) = 1.

This follows from the previous theorem since MIN is obviously a monotone function

and

MIN(x) > MIN(y)⇒
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⇒ d(MIN(x),MIN(y)) ≤ max
xi>yi

(d(xi, yi)).

To prove the implication let min
i
yi = yk.

Then MIN(x) > MIN(y)⇒ d(MIN(x),MIN(y)) =

= min
i
xi −min

i
yi = min

i
xi − yk ≤ xk − yk ≤ max

xi>yi
(d(xi, yi)).

We can generalize this example for the case when the pseudo-metric is defined by

d(a, b) = ϕ(|a− b|), where ϕ is a non-decreasing function.

Example 4.1.3. Let MAX be the maximum function:

MAX(x1, ..., xn) = max(x1, ..., xn),

T be a continuous Archimedean t-norm with an additive generator t and d be a pseudo-

metric on interval [0, 1] such that d(a, b) = |a− b|. Then the degree of monotonicity for

function MAX with respect to the residuum 7→T and the fuzzy order relation

P (xi, yi) =

1, if xi ≤ yi

Ed(xi, yi), otherwise

is equal to 1:

MP,7→T
(MAX) = 1.

This follows from the previous theorem since MAX is obviously a monotone function

and

MAX(x) > MAX(y)⇒

⇒ d(MAX(x),MAX(y)) ≤ max
xi>yi

(d(xi, yi)).

To prove the implication let max
i
xi = xk.

Then MAX(x) > MAX(y)⇒ d(MAX(x),MAX(y)) =

= max
i
xi −max

i
yi = xk −max

i
yi ≤ xk − yk ≤ max

xi>yi
(d(xi, yi)).

We can generalize this example for the case when the pseudo-metric is defined by

d(a, b) = ϕ(|a− b|), where ϕ is a non-decreasing function.

4.1.2 Involving α-levels in the definition of the degree of monotonic-
ity

Not for every monotone function f the degree of monotonicity MP,7→T
(f) is equal to 1.

We illustrate this by the following example:
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Example 4.1.4. Let us evaluate the degree of monotonicity for weak t-norm

TW (x1, x2) =

min(x1, x2), if x1 ∨ x2 = 1

0, otherwise
,

(which is obviously a monotone function), with respect to the fuzzy order relation

P (xi, yi) =

1, if xi ≤ yi

g(|xi − yi|), otherwise
,

where g is a continuous non-increasing mapping, and the residuum 7→T corresponding

to a left-continuous t-norm:

MP, 7→T
(TW ) ≤ inf

x=(1,1),
y=(y0,y0),
y0∈[0,1)

(∧iP (xi, yi) 7→T P (TW (x), TW (y))) =

= inf
y0∈[0,1)

(P (1, y0) 7→T P (1, 0)) = sup
y0∈[0,1)

P (1, y0)→T P (1, 0) = 1→T P (1, 0) =

= P (1, 0) = g(1). It is not natural to take a mapping g in such way that g(1) = 1, since

in this case g is equal to 1 for all arguments from the unit interval. So, for any mapping

g such that g(1) 6= 1, it follows that MP, 7→T
(TW ) is not equal to 1.

Calculating the degree of monotonicity of a monotone function f for every two

elements x,y such that x < y we have to compute the value ∧iP (yi, xi) 7→T

P (f(y), f(x)) which is equal to ∧iE(yi, xi) 7→T E(f(y), f(x)) in case when

P (xi, yi) =

1, if xi ≤ yi

E(xi, yi), otherwise
.

Then if f is a monotone function the necessary condition for MP, 7→T
(f) = 1 is

inf
x<y

(∧iE(yi, xi) 7→T E(f(y), f(x))) = 1.

Intuitively this is the degree of the statement: ”if x and y are indistinguishable then

f(x) and f(y) are indistinguishable”. This is something more than just generalization

of monotonicity. But we think that it could be a useful condition for the study of aggre-

gation processes.

Actually, if we want to be closer to the classical (crisp) definition of monotonicity,

we can calculate the value ∧iP (xi, yi) 7→T P (f(x), f(y)) only for those elements x, y

which are in the relation x ≤ y in a certain fuzzy sense. By this we mean that the value

∧iP (xi, yi) should be close to 1. One can choose a constant α from the interval [0, 1] to

define what ”close to 1” does mean and calculate the degree of α-monotonicity:

Definition 4.1.2. Let f : [0, 1]n → [0, 1] be a function (aggregation function),

P : [0, 1]2 → [0, 1] be a fuzzy order relation and 7→T a residuum corresponding to the
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t-norm T . We define the degree of α-monotonicity for a function (aggregation function)

f w.r.t fuzzy relation P and residuum 7→T in the following way:

Mα
P,7→T

(f) = inf
∧iP (xi,yi)≥α

(∧iP (xi, yi) 7→T P (f(x), f(y))).

It is easy to see that if a fuzzy order P and a t-norm T are fixed and α1 ≤ α2 then

Sα1 ⊆ Sα2 , where Sα1 = {f : Mα1
P,→T

(f) = 1} and Sα2 = {f : Mα2
P,→T

(f) = 1}.

4.1.3 Example

Let us observe the following example, where f is the arithmetic mean destroyed at one

point

x1 = x2 = 0.5:

Figure 4.1: f(x1, x2) =


x1+x2

2
, x1, x2 6= 0.5

0.6, x1 = x2 = 0.5

We involve the concrete fuzzy order relation:

P (xi, yi) =

1, if xi ≤ yi

max(1− |xi − yi|, 0), otherwise
,

based on Łukasiewicz T -norm (see Example 2.3.1 and Theorem 2.3.2) and the residuum

corresponding to the same t-norm:

a 7→T b = min(1− a+ b, 1) (Łukasiewicz residuum).

Function f is monotone everywhere except of point (0.5, 0.5), so we define the defect

of monotonicity of function f as

def(f) = f(0.5, 0.5)− lim
(x1,x2)→(0.5,0.5)

f(x1, x2) = 0.1.

60



Degree of monotonicity

We calculate the degree of monotonicity for function f with respect to the fuzzy order

relation P and the residuum 7→T . According to Proposition 4.1.2, for every two elements

x, y where (x1, x2) 6= (0.5, 0.5) and (y1, y2) 6= (0.5, 0.5)

∧iP (xi, yi) 7→T P (f(x), f(y)) = 1.

Thus we must find the value ∧iP (xi, yi) 7→T P (f(x), f(y)) for all x,y where

(x1, x2) = (0.5, 0.5) or (y1, y2) = (0.5, 0.5). For the brevity of calculation we involve

notation

ωP, 7→T
(x,y) = ∧iP (xi, yi) 7→T P (f(x), f(y)).

Then MP,7→T
(f) = inf

x,y
ωP,7→T

(x,y). We know that inf
x,y 6=(0.5,0.5)

ωP,7→T
(x,y) = 1, so

we have to find inf
x=(0.5,0.5)

ωP,7→T
(x,y) and inf

y=(0.5,0.5)
ωP, 7→T

(x,y).

Throughout the calculation to shorten the notation we will write ω(x,y) instead of

ωP,7→T
(x,y).

• (x1, x2) = (0.5, 0.5)

If f(x) ≤ f(y) then ω(x,y) = 1, so we investigate the case when f(x) > f(y).

This means that y1+y2
2

< 0.6.

We consider the following cases:

1. If y1 < 0.5 and y2 < 0.5 then

ω(x,y) = ((1− |0.5− y1|) ∧ (1− |0.5− y2|)) 7→T (1− |0.6− y1+y2
2
|) =

= 0.4+ y1+y2
2

+max(0.5−y1, 0.5−y2). It is easy to verify, that the minimal

value will be when y1 = y2.

Thus ω(x,y) = 0.4 + y1+y1
2

+ 0.5− y1 = 0.9.

2. If y1 ≥ 0.5 and y2 < 0.5 then

P (0.5, y1) = 1 and P (0.5, y1) ∧ P (0.5, y2) = P (0.5, y2).

Thus ω(x,y) = P (0.5, y2) 7→T P (0.6, f(y)) =

= (1− |0.5− y2|) 7→T (1− |0.6− y1+y2
2
|) = min(0.9 + y1−y2

2
, 1) ≥ 0.9.

3. The same considerations work for y1 ≥ 0.5 and y2 < 0.5:

ω(x,y) = min(0.9 + y2−y1
2
, 1) ≥ 0.9.

4. If y1 ≥ 0.5 and y2 ≥ 0.5 then

ω(x,y) = 1 7→T P (0.6, f(y)) = 1 7→T (1− |0.6− y1+y2
2
|) =

= 0.4 + y1+y2
2
≥ 0.9.

The above investigations are visualized by the following illustration:
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Figure 4.2: ω(x,y), where x = (0.5, 0.5)

• (y1, y2) = (0.5, 0.5)

According to the previous proposition,

P (x1, 0.5) ∧ P (x2, 0.5) 7→T P (f(x), 0.5) = 1. It is easy to verify (using the

properties of the residuum 7→T and the properties of the fuzzy order relation P )

that if f(0.5, 0.5) ≥ 0.5 and f(x1, x2) = x1+x2
2

for all (x1, x2) 6= (0.5, 0.5) then

P (x1, 0.5) ∧ P (x2, 0.5) 7→T P (f(x), f(0.5, 0.5)) = 1.

From the previous investigations we conclude thatMP,7→T
(f) = inf

x,y
ωP, 7→T

(x,y) is equal

to 0.9, which is well in accordance with our definition of the defect of monotonicity:

MP,7→T
(f) = 1− def(f) = 0.9.

We can generalize the previous example by considering function h(x1, x2):

h(x1, x2) =


x1+x2

2
, x1, x2 6= 0.5

0.5 + def(h), x1 = x2 = 0.5
,

where def(h) ∈ [0, 0.5]. In this case also

MP,7→T
(h) = 1− def(h).

Next we calculate the degree of monotonicity for the same function f(x1, x2) with

respect to the same fuzzy order relation P , but we use the residuum corresponding to

the minimum t-norm :

a 7→T b =

1, if a ≤ b

b, otherwise
.

Reasoning similar to the previous situation we calculate the value ω(x,y) as follows:
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• (x1, x2) = (0.5, 0.5)

As in the previous example we calculate the value ω(x,y) if y1+y2
2

< 0.6, because

it is easy to see that ω(x,y) = 1 for y : y1+y2
2

> 0.6.

1. If y1 < 0.5 and y2 < 0.5 then

ω(x,y) = 1 if max(0.5− y1, 0.5− y2) ≥ 0.6− y1+y2
2

and

ω(x,y) = 0.4 + y1+y2
2

otherwise.

Thus if y1 = y2 = 0 then ω(x,y) = 0.4.

2. If y1 < 0.5 and y2 ≥ 0.5 then

ω(x,y) = 1, if y2−y1
2
≥ 0.1 and

ω(x,y) = 0.4 + y1+y2
2

otherwise. Which means that ω(x,y) ≥ 0.4.

3. If y1 ≥ 0.5 and y2 < 0.5 then

ω(x,y) = 1 if y1−y2
2
≥ 0.1 and

ω(x,y) = 0.4 + y1+y2
2

otherwise. Which means that ω(x,y) ≥ 0.4.

4. If y1 ≥ 0.5 and y2 ≥ 0.5 then ω(x,y) = 0.4 + y1+y2
2
≥ 0.9.

The above investigations are visualised by the following illustration:

Figure 4.3: ω(x,y), where inf
x,y

= (0.5, 0.5)

• (y1, y2) = (0.5, 0.5)

Analogously as in the case of Łukasiewicz residuum we get ω(x,y) = 1.

From the previous investigations we conclude that MP,7→T
(f) = 0.4
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Next we calculate the degree of monotonicity for the same function f(x1, x2) with

respect to the same fuzzy order relation P , but we use the residuum corresponding to

the product t-norm :

a 7→T b =

1, if a ≤ b

b
a
, otherwise

.

Reasoning similar to the previous situations we calculate the value ω(x,y) as follows:

• (x1, x2) = (0.5, 0.5)

As in the previous examples we calculate the value ω(x,y) if y1+y2
2

< 0.6, because

it is easy to see that ω(x,y) = 1 for y : y1+y2
2

> 0.6.

1. If y1 < 0.5 and y2 < 0.5 then ω(x,y) =
0.4+

y1+y2
2

1−max(|0.5−y1|,|0.5−y2|) .

Thus if y1 = y2 = 0 then ω(x,y) = 0.8.

2. If y1 < 0.5 and y2 ≥ 0.5 then ω(x,y) =
0.4+

y1+y2
2

0.5+y1
.

Which means that ω(x,y) ≥ 0.8.

3. If y1 ≥ 0.5 and y2 < 0.5 then ω(x,y) =
0.4+

y1+y2
2

0.5+y2
.

Which means that ω(x,y) ≥ 0.8.

4. If y1 ≥ 0.5 and y2 ≥ 0.5 then ω(x,y) = 0.4 + y1+y2
2
≥ 0.9.

The above investigations are visualised by the illustration Fig.4.4.

Figure 4.4: ω(x,y), where x = (0.5, 0.5)

• (y1, y2) = (0.5, 0.5)

Analogously as in the case of Łukasiewicz residuum we get ω(x,y) = 1.
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From the previous investigations we conclude that MP,7→T
(f) = 0.4

Thus in these examples the best result is when both the fuzzy order P and the

residuum correspond to the same, Łukasiewicz t-norm.

Now let observe the first case from the previous example, when the degree of mono-

tonicity for the destroyed arithmetic mean is calculated with respect to the Łukasiewicz

residuum. It is interesting to see what result we obtain if we suppose that two points

are indistinguishable if the distance between them is less or equal to 0.1. Thus we

would like ”to get round” the deficiency of 0.1. Further we calculate the degree of

monotonicity for the function

f(x1, x2) =


x1+x2

2
, x1, x2 6= 0.5

0.6, x1 = x2 = 0.5

with respect to Łukasiewicz residuum and the following fuzzy order relation:

PMod(xi, yi) =

1, if xi ≤ yi + 0.1

1.1− |xi − yi|, otherwise
.

As in the previous example ωPMod,7→TL
(x,y) is equal to 1 if y = (0.5, 0.5). The

results when x = (0.5, 0.5) are visualized by the following illustration. To compare the

results for ωPMod, 7→TL
and ωP, 7→TL

(x,y) we fix in the graph two points: (0.5, 0.5, 0.9)

and (0.5, 0.5, 1).

Figure 4.5: ωPMod, 7→TM
(x,y),

where x = (0.5, 0.5)

Figure 4.6: ωP, 7→TM
(x,y),

where x = (0.5, 0.5)
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We see that using fuzzy order relation PMod where we tried ”to get round” the defi-

ciency of 0.1 we get the same result MPMod,7→TL
(f) = 1 − def(f) = 0.9. To improve

the situation we can calculate the degree of α-monotonicity for α = 0.9. In this case

M0.9
P, 7→T

(f) = 1. So ”to get round” the deficiency we should both modify the fuzzy order

relation and use the definition of the degree of α-monotonicity.

4.1.4 Conclusion on fuzzy monotonicity

The degree of monotonicity is calculated for a concrete mapping and depends on this

mapping, fuzzy order relation and residuum which are chosen by an expert. The degree

of monotonicity takes its values from the interval [0,1]. In case of a crisp order rela-

tion the property of having the degree of monotonicity equal to 1 is equivalent to the

property of being monotone in the crisp sense. We consider the behavior of the degree

of monotonicity calculated with respect to the given fuzzy order relation and residuum,

illustrating it with examples. Besides, we study how a deficiency of monotonicity influ-

ences the degree of monotonicity. In the work we also study necessary properties when

the degree of monotonicity is equal to 1. Note that a more substantial theory is obtained

by involving α levels in the definition of the degree of monotonicity.

4.2 Aggregation of fuzzy relations

Aggregations of fuzzy relations are important in fuzzy preference modeling, solving

decision making problems and other problems having to do with imprecise information.

The concept of aggregation of fuzzy relations has been studied in [24], [39],[15] et

al. This topic is of high importance because it is a good reflection of some practical

applications (see e.g. [8]).

It is necessary to investigate which aggregation operators are able to preserve properties

of aggregated fuzzy relations during aggregation process. There are many works devoted

to this topic and namely, to the concept of dominance of aggregation operators and

principles of building dominating aggregation operators.

Let us consider the following example:

Assume that we have a query q = (q1, ..., gn), where each qi ∈ Xi is a value referring to

the i-th field of the query. Given a data record x = (x1, ..., xn) such that xi ∈ Xi for all

i = 1, ..., n. We denote the degrees to which a given record matches query q pointwice
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(Ri(xi, qi)). If we model the aggregation by means of a mapping A : [0, 1]n → [0, 1]:

R(x,q) = A(R1(x1, q1), ..., Rn(xn, qn)),

it is natural to require at least the following properties:

1. If Pi(xi, qi) = 1 for all i, then the global degree should be also 1. In other words:

A(1, ..., 1) = 1.

2. If none of the single queries is matched at all, i.e. all degrees Ri(xi, qi) = 0, then

the global degree of fulfillment should be 0, too: A(0, ..., 0) = 0.

3. If one degree Ri(xi, qi) increases while the others are kept constant, the overall

degree must not decrease, i.e. A should be non-increasing in each component.

That is exactly the definition of aggregation function.

Let us now investigate the problem of preservation of properties of fuzzy orders by

an aggregation function.

Due to the fact that fuzzy order relations are based on the equivalence relations let

us first focus on the aggregation of fuzzy equivalence relations Ei. The preservation of

reflexivity is rather clear because of the boundary conditions of aggregation function.

Preservation of symmetry is also obvious. The more interesting and complex question

is about preservation of T -transitivity. Here we use the results about the preservation

of T -transitivity studied in [39], where it is shown that preservation of T -transitivity is

equivalent to the dominance of the t-norm T by the aggregation operator (or function)

A.

Definition 4.2.1. [39] Consider an n-argument aggregation function

A : [0, 1]n → [0, 1] and a t-norm T . We say that A dominates T if for all xi ∈ [0, 1] with

i ∈ {1, ..., n} and yi ∈ [0, 1] with i ∈ {1, ..., n} the following property holds:

T (A(x1, ..., xn), A(y1, ..., yn)) ≤ A(T (x1, y1), ..., T (xn, yn)).

Theorem 4.2.1. [39] Let |X| > 3 and let T be a t-norm. An aggregation function A

preserves T -transitivity of fuzzy relations on X if and only if A belongs to the class of

aggregation functions which dominate T .

Corollary 4.2.1. Let |X| > 3 and let T be a t-norm. IfEi are fuzzy equivalence relations

(T -equivalences) for all i ∈ {1, ..., n} then

E(x,y) = A(E1(x1, y1), ..., En(xn, yn))
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is also a T -equivalence relation if A belongs to the class of aggregation functions which

dominate T .

The following fact will be important in the next section:

Corollary 4.2.2. Let |X| > 3 and let T be a t-norm. IfEi are fuzzy equivalence relations

(T -equivalences) for all i ∈ {1, ..., n} then

E(x, y) = A(E1(x, y), ..., En(x, y))

is also a T -equivalence relation in case when A belongs to the class of aggregation

functions which dominate T .

We continue with the aggregation of fuzzy order relations.

Theorem 4.2.2. Let |X| > 3 and let T be a t-norm. If Ei are fuzzy equivalence relations

(T -equivalences) for all i ∈ {1, ..., n}; Pi are fuzzy order relations (T -Ei-orders) for

all i ∈ {1, ..., n} then P (x,y) = A(P1(x1, y1), ..., Pn(xn, yn)) is a T -E-order relation

in case when A belongs to the class of aggregation functions which dominate T and

E(x,y) = A(E1(x1, y1), ..., En(xn, yn)).

Proof. 1. Since all Pi are Ei-reflexive (Ei(xi, yi) ≤ Pi(xi, yi)) we have

A(E1(x1, y1), ..., En(xn, yn)) ≤ A(P1(x1, y1), ..., Pn(xn, yn))

because of the monotonicity of the function A. Thus P is an E-reflexive fuzzy

relation.

2. T -transitivity holds because of Theorem 4.2.1.

3. It remains to prove that T (P (x,y), P (y,x)) ≤ E(x,y):

T (P (x,y), P (y,x)) =

= T (A(P1(x1, y1), ..., Pn(xn, yn)), A(P1(y1, x1), ..., Pn(yn, xn))) ≤

≤ A(T (P1(x1, y1), P1(y1, x1)), ..., T (Pn(xn, yn), Pn(yn, xn)))

because of the dominance of T by A. Further

A(T (P1(x1, y1), P1(yn, xn)), ..., T (Pn(xn, yn), Pn(yn, xn))) ≤

≤ A(E1(x1, y1), ..., En(xn, yn))
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since A is a monotone function and T (Pi(x, y), Pi(y, x)) ≤ Ei(x, y) fir every i.

Thus we have proved the required inequality.

The following fact will be important in the next section:

Corollary 4.2.3. Let |X| > 3 and let T be a t-norm. If Ei are fuzzy equivalence re-

lations (T -equivalences) for all i ∈ {1, ..., n} ; Pi are fuzzy order relations (T -Ei-

orders) for all i ∈ {1, ..., n} then P (x, y) = A(P1(x, y), ..., Pn(x, y)) is T -E-order

relation if A belongs to the class of aggregation functions which dominate T and

E(x, y) = A(E1(x, y), ..., En(x, y)).

In the next two examples we observe aggregation functions which dominates

Łukasievicz and product t-norms:

Example 4.2.1. [39] For any k > 2 and any p = (p1, ..., pk) with
k∑
i=1

pi ≥ 1 and

pi ∈ [0,∞] k-ary aggregation function

Ap(x1, ..., xk) = max(
k∑
i=1

xi · pi + 1−
k∑
i=1

pi, 0)

dominates Łukasiewicz t-norm TL.

Example 4.2.2. [39] For any k > 2 and any p = (p1, ..., pk) with
k∑
i=1

pi ≥ 1 and

pi ∈ [0,∞] k-ary aggregation function

Ap(x1, ..., xk) =
k∏
i=1

xpii

dominates product t-norm TP .

The above described results will be important in the next section.

Let us now introduce the notion of σ-aggregation but first we present the following

motivating example:

Example 4.2.3. Let consider the query ”When I am in Latvia I usually visit Jurmala”.

If we apply pointwise aggregation it is not matched to the query ”I usually visit Jurmala

when I am in Latvia”, since it disregards the order of words. Thus it is not a good

reflection of the reality since both queries contain the same information. In this case the

classical pointwise aggregation does not work.
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We proceed with the definition of σ-aggregation:

Definition 4.2.2. Let Ri : Xi ×Xi → [0, 1], i ∈ {1, ..., n} be binary fuzzy relations,

A be an arbitrary aggregation function and (yσ(1), ..., yσ(n)) be an arbitrary permutation

of vector y (σ is a permutation from the set Sn of all permutations of the set {1, ..., n}).
Then

R̃σ(x,y) = max
σ∈Sn

{A(R1(x1, yσ(1)), ..., Rn(xn, yσ(n)))}

is called σ-aggregation.

The domain and co-domain of R̃σ are the same like in the case of pointwise aggre-

gation: R̃σ : X ×X → [0, 1], where X =
∏
i

Xi.

The necessity of R̃σ is justified by similar practical needs as in the case of pointwise

aggregation. Concerning the previous example R̃σ can measure the degree to which a

query y matches a query x, where all records are sentences and all elements of the record

are words in the language where the order of words is not of the vital importance, e.g.

Slavonic, Baltic languages or English in some particular cases. In this case we should

use only one fuzzy relation R (not different Ri for each attribute i), because symme-

try need to be preserved. Since we allow the arbitrary permutations of the elements

of vectors preservation of symmetry is not possible when we have different Ri. More-

over to preserve the property of symmetry we should introduce a symmetric aggregation

function.

Theorem 4.2.3. If R is a T -transitive fuzzy relation, and A is a symmetric aggregation

function which dominates T then R̃σ is also T -transitive, where

R̃σ(x,y) = max
σ∈Sn

{A(R(x1, yσ(1)), ..., R(xn, yσ(n)))}.

Proof. We need to show that

T (R̃σ(x,y), R̃σ(y, z)) ≤ R̃σ(x, z)

for arbitrary x,y, z.

One can see that if we use symmetric aggregation function and only one fuzzy relation

R for all coordinates i ∈ {1, ..., n}, it is not important which one of the vectors x or y or

both of them we permute in Definition 4.2.2, result is the same. Therefore by Definition

4.2.2 there exists a permutation x∗ = (x∗1, ..., x
∗
n) of x such that

R̃σ(x,y) = A(R(x∗1, y1), ..., R(x∗n, yn)).
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Similarly there exists a permutation z∗ = (z∗1 , ..., z
∗
n) of z such that

R̃σ(y, z) = A(R(y1, z
∗
1), ..., R(yn, z

∗
n)).

By the fact that A dominates T and that R is the T -transitive fuzzy relation we

conclude:

T (R̃σ(x,y), R̃σ(y, z)) =

T (A(R(x∗1, y1), ..., R(x∗n, yn)), A(R(y1, z
∗
1), ..., R(yn, z

∗
n))) ≤

≤ A(T (R(x∗1, y1), R(y1, z
∗
1)), ..., T (R(x∗n, yn), R(yn, z

∗
n))) ≤

≤ A(R(x∗1, z
∗
1), ..., R(x∗n, z

∗
n)) ≤ R̃σ(x, z).

Corollary 4.2.4. If E is a T -transitive fuzzy equivalence relation, and A is a symmetric

aggregation function which dominates T then Ẽσ is also T -transitive fuzzy equivalence

relation, where

Ẽσ(x,y) = max
σ∈Sn

{A(E(x1, yσ(1)), ..., E(xn, yσ(n)))}.

4.3 Involving fuzzy orders for multi-objective linear

programming

4.3.1 Problem formulation

In this section we work in the field of multi-objective (or Multiple Objective) linear pro-

gramming (MOLP), which is an important tool for solving real-life optimization prob-

lems such as production planning, logistics, environment management, banking/finance

planning etc. Our investigations are based on the fuzzy approach [50] where the mem-

bership functions are involved to prescribe how far the concrete point is from the solu-

tion of an individual problem. We propose to use fuzzy order relations instead of the

membership functions described above. Further we describe the solution approach and

investigate examples. Let us now focus on the formulation of the problem and the de-

scription of the scheme.

MOLP problem can be represented as follows:

MAX Z, where Z = (z1, ..., zk) is a vector of objectives,

71



Involving fuzzy orders for multi-objective linear programming

zi =
n∑
j=1

cijxj where i = 1, .., k,

subject to
n∑
j=1

aijxj ≤ bi, i = 1, ...,m. (1)

That is we must find a vector xo = (xo1, ..., x
o
n) which maximizes k objective functions

of n variables, and with m constraints. Let D denote a feasible region of the problem

(1).

In problem (1), all objective functions can hardly reach their optima at the same time

subject to the given constraints since usually the objective functions conflict one with

another. Thus Pareto optimal solution (efficient solution) and optimal compromise solu-

tion are introduced:

Definition 4.3.1. [51] x∗ is called Pareto optimal solution if and only if there does not

exist another x ∈ D such that zi(x∗) ≤ zi(x) for all i and zj(x∗) 6= zj(x) for at least

one j.

Definition 4.3.2. [51] An optimal compromise solution of a vector-maximum problem

is a solution x ∈ D which is preferred by the decision maker to all other solutions,

taking into consideration all criteria contained in the vector-valued objective function.

It is generally accepted, that an optimal compromise solution has to be a Pareto optimal

solution.

Thus our main aim is to determine the optimal compromise solution. The fuzzy

approach for solving MOLP proposed by Zimmermann [10] has given an effective way

of measuring the satisfaction degree for MOLP. The idea is to identify the membership

functions prescribing the fuzzy goals (solutions of individual problem) for the objective

functions zi, i = 1, .., k. The following linear function is an example of a membership

function:

µi(x) =


0, if zi(x) < zmini

zi(x)− zmini

zmaxi − zmini

, zmini ≤ zi(x) ≤ zmaxi

1, zi(x) > zmaxi

,

where zmaxi is the solution of the individual problem

MAX zi, s.t.
n∑
j=1

aijxj ≤ bi, i = 1, ...,m

and zmini is the solution of the individual problem

MIN zi, s.t.
n∑
j=1

aijxj ≤ bi, i = 1, ...,m.
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Usually the membership functions µi are linear functions and it is argued by the ”facil-

itation computation for obtaining solutions”. Further in the ”classical” fuzzy approach

membership functions µi are aggregated. The main subject which is discussed in the

majority of papers is the choice of an aggregation function.

Here we propose a completely different approach although we are still working in

the fuzzy environment. We initiate involving fuzzy orders to solve the problem. To

justify the choice of a fuzzy order let us first observe the classical linear programming

problem when we must maximize the unique function z =
n∑
j=1

cjxj where the vectors

(x1, ..., xn) belong to the set D :
n∑
j=1

aijxj ≤ bi, i = 1, ...,m. In this case we can involve

the relation �:

x � y⇔ z(x) ≤ z(y)

which is obviously a crisp linear order with respect to the crisp equivalence relation

x
.
= y⇔ z(x) = z(y).

Thus we can reformulate the problem in the following way: MAX(D,�). That is we

should find a maximum in the set D which is ordered by the linear order �. We use this

idea to solve the multi-objective linear programming problem. Since we have more than

one objective functions we should involve order relation for each objective function and

they should be obviously fuzzy order relations to overcome the conflict of all objective

functions. Further we aggregate fuzzy order relations to get one fuzzy order relation

which includes the information about all objective functions and in the last step we must

find a maximum in the set D with respect to the aggregated fuzzy order relation. Thus

the scheme of the solution is as follows:

1. We define fuzzy order relations Pi which generalize the following crisp order re-

lations:

x �i y⇔ zi(x) ≤ zi(y), i = 1, .., k.

Thus each fuzzy order relation describes corresponding objective function zi.

2. We aggregate fuzzy orders using an aggregation function A which preserves the

properties of initial fuzzy orders:

P (x,y) = A(P1(x,y), ..., Pk(x,y)).

Thus the aggregated fuzzy order relation P provides the information about all

objective functions.
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3. We find a maximum in the setD with respect to the aggregated fuzzy order relation

P .

In our work we exactly realize the above described scheme. As we have seen above,

solving the classical linear programming problem with one objective function there nat-

urally arises a crisp linear order. This crisp linear order could be naturally generalized

to fuzzy linear order solving multi-objective problem. Thus if we use fuzzy approach

proposed by Zimmermann [50] and generalized by many others authors (see e.g. [36],

[37], [18]) we do not take into account the information about these orders (which are

reflective, transitive and antisymmetric relations), so this information is lost. Thus one

of the advantages of our approach is that we take into account this information, and even

more aggregating these fuzzy orders we use the aggregation function which preserves

the properties of fuzzy orders. The other advantage is that in our approach we explain

the ”shape” of fuzzy order relation and choice of aggregation function (this is caused by

the fuzzy environment (or t-norm) in which we are working). Moreover in our approach

we can naturally use compensatory aggregation functions and even more we can use

weights (see Section 4.3.3) to show the preference of objective functions.

As we wrote in Definition 4.3.2, an optimal compromise solution has to be a Pareto

optimal solution. Although the ”min” operator method, proposed by Zimmermann [50]

has been proven to have several nice properties, the solution generated by this approach

does not guarantee Pareto-optimality. As we will see later, in our approach we have

found the properties which guarantee Pareto-optimality even regardless of the unique-

ness of the optimal solution.

4.3.2 Solution approach

Let us now come back to the realization of our scheme. Our aim now is to involve

fuzzy orders Pi which contain the information about objective functions zi. Since we

define fuzzy order relations it is necessary to define fuzzy equivalence relations first.

To define the fuzzy equivalence relations we use the construction proposed in Theorem

2.3.1 where the relation are constructed on the base of pseudo-metrics. It is worth to

mention that this approach is widely used in the literature for practical applications (see

e.g. [8]).

Thus we build the following pseudo-metrics on the set D:

di(x,y) =
|zi(x)− zi(y)|
zmaxi − zmini

.
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Thus defined di are indeed pseudo-metrics and applying Theorem 2.3.1 we can build a

T -equivalence relation:

Ei(x,y) = t(−1)(min(
|zi(x)− zi(y)|
zmaxi − zmini

, t(0))), (4.1)

where t is an additive generator of a continuous Archimedean t-norm T .

Hence we should first choose a t-norm which plays a role of a generalized conjunc-

tion and further construct a T -equivalence using the correspondent additive generator

t.

Example 4.3.1. 1.

Ei(x,y) = 1− |zi(x)− zi(y)|
zmaxi − zmini

(4.2)

are fuzzy TL-equivalence relations.

2.

Ei(x,y) = e
− |zi(x)−zi(y)|

zmax
i

−zmin
i (4.3)

are fuzzy TP -equivalence relations.

Remark 4.3.1. Although the above defined pseudo-metrics are quite natural, other met-

rics can be also used. For example the following pseido-metrics can be chosen:

di(x,y) = Ci ·
|zi(x)− zi(y)|
zmaxi − zmini

,

where Ci is a real number greater than 0.

In this case Ei(x,y) = max(1− Ci · |zi(x)−zi(y)|
zmax
i −zmin

i
, 0) are fuzzy TL-equivalence relations

and Ei(x,y) = e
−Ci

|zi(x)−zi(y)|
zmax
i

−zmin
i are fuzzy TP -equivalence relations.

Further we build fuzzy order relations applying Theorem 2.3.2. Namely we construct

T -Ei-orders where T is a chosen t-norm and Ei is the constructed fuzzy equivalence

relation. To apply Theorem 2.3.2 we must also fix crisp order relations and in our case

they are linear orders �i on the set D:

x �i y⇔ zi(x) ≤ zi(y).

Let us show that fuzzy equivalence relation 4.1 is compatible with linear order �i:
x �i y �i z⇒ (Ei(x, z) ≤ Ei(y, z) and Ei(x, z) ≤ Ei(x,y)).

If x �i y �i z then zi(x) ≤ zi(y) ≤ zi(z) and hence |zi(x)− zi(y)| ≤
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≤ |zi(x) − zi(z)|. Furthermore min( |zi(x)−zi(y)|
zmax
i −zmin

i
, t(0)) ≤ min( |zi(x)−zi(z)|

zmax
i −zmin

i
, t(0)). Hence

by strictly decreasing monotonicity of t(−1) we get: Ei(x, z) ≤ Ei(x,y). The same

considerations are valid to show that Ei(x, z) ≤ Ei(y, z).

Hence the following functions:

Pi(x,y) =

1, if x �i y

Ei(x,y), otherwise.
=

1, if zi(x) ≤ zi(y)

Ei(x,y), otherwise.
(4.4)

are T -Ei-orders, where Ei are defined by Equation 4.1.

Example 4.3.2. 1.

Pi(x,y) =

1, if zi(x) ≤ zi(y)

1− |zi(x)−zi(y)|
zmax
i −zmin

i
, otherwise.

are fuzzy order relations with respect to t-norm TL and TL-equivalence Ei defined

by Equation 4.2.

2.

Pi(x,y) =

1, if zi(x) ≤ zi(y)

e
− |zi(x)−zi(y)|

zmax
i

−zmin
i , otherwise.

are fuzzy order relations with respect to t-norm TP and TP -equivalence Ei defined

by Equation 4.3.

The fuzzy order relations are constructed and we come to the next step where we ag-

gregate corresponding relations. So we have to fuse the information about all fuzzy order

relations Pi and get a global fuzzy order relation P which includes the information about

all fuzzy order relations Pi and thereby also the information about all objective functions

zi. Let us introduce the aggregation function A : [0, 1]k → [0, 1] which aggregates fuzzy

order relations:

P (x,y) = A(P1(x,y), ..., Pk(x,y)).

It is also natural to require that the global fuzzy relation should fulfill the same properties

as the individual fuzzy relations. Thus an aggregation function A should be chosen in

such a way that it should preserve the properties of initial fuzzy order relations.

We show the importance of the requirement that aggregated fuzzy relation of fuzzy

orders must be also a fuzzy order by the example of preservation of transitivity:

If zi(x) ≤ zi(y) and zi(y) ≤ zi(z) for all i it is natural that the element z is more
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preferable for us than the element x in a global sense what is exactly guaranteed by the

preservation of transitivity.

Further the multi-objective linear programming problem comes to the following

problem:

max
y

min
x
P (x,y) (P )

Intuitively this means that we find for each y ∈ D the value min
x
P (x,y), that is we

find the degree to which y is greater (or better) than every x ∈ D. In other words we

find the degree to which y is a maximal element in the set D and later on we find y to

which this satisfaction degree is the largest.

Theorem 4.3.1. An optimal solution y to the problem (P ) is a Pareto optimal solution

if it is the unique optimal solution.

Proof. Suppose that y is not a Pareto optimal solution. Then there exists another ỹ ∈ D
such that zi(y) ≤ zi(ỹ) for all i and zj(y) 6= zj(ỹ) for at least one j. Let us now compare

Pi(x,y) and Pi(x, ỹ). Further we distinguish between the following three cases:

1. If zi(y) ≤ zi(ỹ) ≤ zi(x) or zi(y) < zi(ỹ) ≤ zi(x) then

|zi(x)− zi(ỹ)| ≤ |zi(x)− zi(y)|. Furthermore min( |zi(x)−zi(ỹ)|
zmax
i −zmin

i
, t(0)) ≤

≤ min( |zi(x)−zi(y)|
zmax
i −zmin

i
, t(0)). Further since t(−1) is strictly decreasing we get:

Ei(x,y) ≤ Ei(x, ỹ) and thus Pi(x,y) ≤ Pi(x, ỹ).

2. If zi(x) ≤ zi(y) ≤ zi(ỹ) or zi(x) ≤ zi(y) < zi(ỹ) then

Pi(x,y) = Pi(x, ỹ) = 1 since zi(x) ≤ zi(y) and zi(x) < zi(ỹ)

(or zi(x) ≤ zi(ỹ)).

3. If zi(y) < zi(ỹ) then there could be also the following situation:

zi(y) < zi(x) < zi(ỹ). Then Pi(x,y) ≤ Pi(x, ỹ) since Pi(x, ỹ) = 1.

Thus for all x ∈ D

A(P1(x,y), P2(x,y), ..., Pk(x,y)) ≤ A(P1(x, ỹ), P2(x, ỹ), ..., Pk(x, ỹ)).

Hence min
x
P (x,y) ≤ min

x
P (x, ỹ). This contradicts the fact that y is the unique optimal

solution to the problem.

We can also prove the above theorem without demanding the ”uniqueness of the

optimal solution” but in this case we should require some specific properties:
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Theorem 4.3.2. An optimal solution y to the problem (P ) is a Pareto optimal solution

if zi(x) > zi(y)⇒ Pi(x,y) < 1 and A is a strictly monotone function.

Proof. Suppose that y is not a Pareto optimal solution. Then there exists another ỹ ∈ D
such that zi(y) ≤ zi(ỹ) for all i and zj(y) < zj(ỹ) for at least one j.

We can follow considerations from the previous theorem and thus for every x ∈ D
it holds

A(P1(x,y), P2(x,y), ..., Pk(x,y)) ≤ A(P1(x, ỹ), P2(x, ỹ), ..., Pk(x, ỹ)).

Moreover since D is linearly connected there exists such x̃ that zj(y) < zj(x̃) < zj(ỹ).

Thus Pj(x̃, ỹ) = 1 since zj(x̃) < zj(ỹ) and Pj(x̃,y) < 1 since

∀i and ∀ x,y ∈ D zi(x) > zi(y)⇒ Pi(x,y) < 1.

Thus, since A is a strictly monotone function

A(P1(x̃,y), P2(x̃,y), ..., Pk(x̃,y)) < A(P1(x̃, ỹ), P2(x̃, ỹ), ..., Pk(x̃, ỹ)).

Hence min
x
P (x,y) < min

x
P (x, ỹ). This contradicts the fact that y is the optimal solu-

tion to the problem.

The properties that zi(x) > zi(y)⇒ Pi(x,y) < 1 and that A is a strictly monotone

function are quite natural properties since by this we just require that the order P should

react to any change of any of the functions zi. Thus for practical applications we suggest

to use fuzzy orders and aggregation functions respecting these properties.

4.3.3 Numerical example

Let us observe the following linear programming problem:

max z1 = x1,

max z2 = x2,

s.t. x1 + x2 ≤ 1,

x1, x2 ≥ 0.

Figure 4.7 shows the solution space of this problem where we colored in gray

feasible region of the problem and dotted lines denote the level lines of the objective

functions for which the corresponding objective reach its maximum. We have chosen

the simple (in the sense of input data) problem in order not to pay attention at the
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Figure 4.7:

details of computation but to illustrate the naturality of the proposed approach. Here

we demonstrate the computation and how the result depends on the choice of an

aggregation function and the base t-norm.

The point (1, 0) is optimal solution with respect to the objective function z1, the point

(0, 1) is the optimal solution with respect to the objective function z2. Obviously the set

{(x1, x2) : x1 ∈ [0, 1], x2 = 1− x1} is the set of Pareto optimal solutions.

We follow the approach described above and apply the following fuzzy order relations

based on Łukasiewicz t-norm (see Example 4.3.2):

P1(x,y) =

1, if x1 ≤ y1

1− x1 + y1, otherwise.
,

where x = (x1, x2) and y = (y1, y2);

P2(x,y) =

1, if x2 ≤ y2

1− x2 + y2, otherwise.
.

Further we aggregate the corresponding fuzzy order relations with the help of the follow-

ing aggregation function: A(x, y) = x+y
2

which is an aggregation function preserving

TL-transitivity. Thus:

P (x,y) = A(P1(x,y), P2(x,y)) =
P1(x,y) + P2(x,y)

2
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Further we must solve the following problem:

max
y∈D

min
x∈D

P (x,y).

Let us contract the set D for the simplicity of calculations, that is we want to find a set

B such that B ⊂ D and

max
y∈B

min
x∈B

P (x,y) = max
y∈D

min
x∈D

P (x,y). (4.5)

Let us prove that if B = {(x1, x2) : x1 ∈ [0, 1], x2 = 1 − x1} then the equation 4.5

holds:

We start with the proof of the following equation:

max
y∈B

min
x∈D

P (x,y) = max
y∈D

min
x∈D

P (x,y).

Suppose contrary, that is we suppose that y = (y1, y2) ∈ D but y 6∈ B. Then there exist

points ỹ = (y1, 1− y1) and ˜̃y = (1− y2, y2) (see Figure 4.7) such that

min
x∈D

P (x,y) < min
x∈D

P (x, ỹ) and

min
x∈D

P (x,y) < min
x∈D

P (x, ˜̃y).

Let us prove the first inequality:

We will prove that for all x ∈ D it holds

A(P1(x,y), P2(x,y)) ≤ A(P1(x, ỹ), P2(x, ỹ))

and there exists x̄ ∈ D such that A(P1(x̄,y), P2(x̄,y)) < A(P1(x̄, ỹ), P2(x̄, ỹ)).

We know that P1(x,y) = P1(x, ỹ) since z1(y) = z1(ỹ).

Let us now compare P2(x,y) and P2(x, ỹ). Obviously z2(y) < z2(ỹ). To prove that

P2(x,y) ≤ P2(x, ỹ) we distinguish between the following three cases:

1. If z2(y) < z2(ỹ) ≤ z2(x) then P2(x,y) = 1− |z2(x)− z2(y)| <
< 1− |z2(x)− z2(ỹ)| = P2(x, ỹ).

2. If z2(x) ≤ z2(y) < z2(ỹ) then P2(x,y) = P2(x, ỹ) = 1 since

z2(x) ≤ z2(y) and z2(x) < z2(ỹ).

3. If z2(y) < z2(x) < z2(ỹ) then P2(x,y) ≤ P2(x, ỹ) since P2(x, ỹ) = 1.

Thus for all x ∈ D A(P1(x,y), P2(x,y)) ≤ A(P1(x, ỹ), P2(x, ỹ)) Since there ob-

viously exists x̄ ∈ D such that z2(y) < z2(x̄) < z2(ỹ) we have P2(x̄, ỹ) = 1 but

P2(x̄,y) < 1. Thus, because of the strict monotonicity of the function A

A(P1(x̄,y), P2(x̄,y)) < A(P1(x̄, ỹ), P2(x̄, ỹ)).
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By this we have finished the proof that max
y∈B

min
x∈D

P (x,y) = max
y∈D

min
x∈D

P (x,y).

We continue with the proof of the following equation:

max
y∈B

min
x∈B

P (x,y) = max
y∈B

min
x∈D

P (x,y).

Assume contrary, that is we suppose that x = (x1, x2) ∈ D but x 6∈ B. Then there exist

points x̃ = (x1, 1− x1) and ˜̃x = (1− x2, x2) such that for the fixed y ∈ B

P (x̃,y) < P (x,y) and

P (˜̃x,y) < P (x,y).

Let us prove the first inequality:

We will prove that for all y ∈ B A(P1(x̃,y), P2(x̃,y)) ≤ A(P1(x,y), P2(x,y)).

Obviously P1(x̃,y) = P1(x,y) since z1(x̃) = z1(x).

Let us now compare P2(x,y) and P2(x̃,y). Obviously z2(x) < z2(x̃). To prove that

P2(x̃,y) ≤ P2(x,y) we distinguish between the following three cases:

1. If z2(x) < z2(x̃) ≤ z2(y) then P2(x,y) = P2(x̃,y) = 1 since

z2(x) < z2(y) and z2(x̃) ≤ z2(y).

2. If z2(y) ≤ z2(x) < z2(x̃) then P2(x̃,y) = 1− |z2(x̃)− z2(y)| <
< 1− |z2(x)− z2(y)| = P2(x,y).

3. If z2(x) < z2(y) < z2(x̃) then P2(x̃,y) ≤ P2(x,y) since P2(x,y) = 1.

Thus for all y ∈ B it holds A(P1(x̃,y), P2(x̃,y)) ≤ A(P1(x,y), P2(x,y)). Since

there obviously exists ȳ such that z1(x) < z1(ȳ) < z1(x̃) we have P1(x, ȳ) = 1 but

P1(x̃, ȳ) < 1. Thus, because of the strict monotonicity of the function A

A(P1(x̃, ȳ), P2(x̃, ȳ)) < A(P1(x, ȳ), P2(x, ȳ)).

Thus max
y∈B

min
x∈B

P (x,y) = max
y∈D

min
x∈D

P (x,y), where B is the set of Pareto optimal

solutions. It is an important fact which makes calculations much easier.

Let us come back to our initial example and by the following figures we demonstrate

the dependence of the value min
x∈B

P (x,y) on the choice of y. The horizontal axes are the

set B of Pareto optimal solutions:

B = {(y1, y2) : y1 ∈ [0, 1], y2 = 1 − y}, where the elements y = (y1, y2) of the set B

are presented by its first coordinate:
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Figure 4.8: Figure 4.9:

Figure 4.10: Figure 4.11:

Figure 4.8 and Figure 4.9 demonstrate the results when we use Łukasiewicz t-norm

and A(a1, a2) = a1+a2
2

and A(a1, a2) = 2a1+a2
3

respectively. The results are quite ex-

pected: when the weights are the same (1/2 and 1/2) the maximum point is exactly in

the middle, but if the weights are 1/3 and 2/3 then the maximum point divides the unit

interval respectively as 1/3 and 2/3. The results for the problem max
y∈B

min
x∈B

P (x,y) are the

same when we use the product t-norm, but the shape of the function f(y) = min
x∈B

P (x,y)

is slightly different, see Figure 4.10 and Figure 4.11.

4.3.4 Conclusions on MOLP

We proposed a solution approach for multi-objective linear programming problem where

we have used fuzzy order relations instead of the membership functions prescribing the

satisfaction degree of reaching the solution of individual problems. Further, to get an op-

timal compromise solution fuzzy order relations were aggregated and the ”maximum”
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with respect to the aggregated fuzzy order relation has been found. Although the ap-

proach described in our work is more complicated in computations it has the following

advantages:

1. This approach generalizes the classical linear programming approach which testi-

fies to its naturality.

2. There is a reasonable explanation of the choice of the ”shape” of fuzzy order re-

lation. In classical fuzzy approach more often the choice of linear membership

functions is not explained or is explained by ”facilitation computation for obtain-

ing solutions”. The choice in our approach is caused by the fuzzy environment

(determined by a t-norm) in which we are working.

3. There is a reasonable explanation of the choice of aggregation function. The

choice in our approach is caused by the necessity to preserve the properties of

initial fuzzy order relations.

We see the following two possible directions for future research:

1. We see that in our example the results do not depend on the choice of a t-norm.

It is interesting to investigate how the choice of a t-norm affects the results in

general.

2. The usage of fuzzy order relations are investigated only for the simplest fuzzy ap-

proach for solving multi-objective linear programming problems. It is interesting

also to involve fuzzy order relations for two-level (multi-level) linear program-

ming problems.

4.4 A-T -aggregation

This section is devoted to the concept of aggregation of fuzzy relations and, in particular,

to the concept of A-T -aggregation. This tool employs a t-norm and an aggregation

function to define the degree to which two elements are in relation when it is known

(correspondingly pairwise) for all vectors aggregated into these elements. In our work

we apply A-T -aggregation to fuzzy equivalence relations and fuzzy order relations and

define necessary conditions for preservation of some relevant properties.

The concept of A-T -aggregation employs ideas of the extension principle. Let us

recall the definition of T -extension of the n-argument function ϕ : X1 × ...×Xn → Z:
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Definition 4.4.1. (c.f. [45]) Let a mapping ϕ : X1 × ... × Xn → Z be given, then the

mapping ϕ̃ : F (X1)× ...× F (Xn)→ F (Z) defined by the formula

ϕ̃(M1, ...,Mn)(z) = sup
(x1,...,xn)

{T (M1(x1), ...,Mn(xn)) :

x1 ∈ X1, ..., xn ∈ Xn, ϕ(x1, ..., xn) = Z},

where M1, ...,Mn are fuzzy sets is called the extension of the function ϕ defined on set

X1 × ...×Xn to the function ϕ̃ defined on set F (X1)× ...× F (Xn).

However aggregation of fuzzy relations can’t be considered just as a special case of

generalization of aggregation process by its extension to the set of all fuzzy subsets (see

e.g. [40],[31],[30],[34]) since a fuzzy relation is a function of two arguments. Although

these two approaches have many common features they still differ. In this work we

focus on aggregation of fuzzy equivalence relations and fuzzy order relations and we

study necessary conditions for preservation of relevant properties.

4.4.1 Motivation and definitions

In this subsection we define A-T -aggregation.

Definition 4.4.2. Let Ri : [0, 1]× [0, 1]→ [0, 1], i ∈ {1, ..., n} be binary fuzzy relations,

A : [0, 1]n → [0, 1] be an arbitrary aggregation function, T be an arbitrary t-norm.

Then R̃A,T : [0, 1]× [0, 1]→ [0, 1] given by

R̃A,T (x, y) = sup{T (R1(x1, y1), ..., Rn(xn, yn)) :

A(x1, ..., xn) = x,A(y1, ..., yn) = y}

is called an A-T -aggregation of fuzzy relations.

We consider aggregation functions defined on [0, 1]n, thus we require the domain

of Ri to be [0, 1] × [0, 1]. Nevertheless extension to the class of aggregation functions

defined on In (A : In → I), where I is a nonempty real interval, is a matter of rescaling.

In this case the domain of the relation R̃A,T would be I × I (R̃A,T : I × I → [0, 1]). To

be more flexible on domains we propose the following generalized definition:

Definition 4.4.3. Let Ri : Xi × Xi → [0, 1], i ∈ {1, ..., n} be binary fuzzy relations,

fi : Xi → [0, 1] be mappings, A : [0, 1]n → [0, 1] be an arbitrary aggregation function,

T be an arbitrary t-norm then R̃A,T : A([0, 1]n)× A([0, 1]n)→ [0, 1] given by

R̃A,T (x, y) = sup{T (R1(x1, y1), ..., Rn(xn, yn)) :
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A(f1(x1), ..., fn(xn)) = x,A(f1(y1), ..., fn(yn)) = y}

is called A-T -aggregation of fuzzy relations.

The aim of A-T -aggregation is similar to the aim of pointwise aggregation (see e.g.

[39]): to compare two elements which are described by n-ary vectors by fusing values of

binary fuzzy relations acting on corresponding coordinates. The difference here is in the

representation of comparable elements - these are n-ary vectors in the case of pointwise

aggregation but we take into account the aggregation of corresponding vectors in the

case of A-T -aggregation.

Remark 4.4.1. In our work we will use the above definition of A-T -aggregation of fuzzy

relations, but if the task is to compare elements which are given by vectors, the definition

presented further is equivalent to the definition 4.4.2. Let Ri : [0, 1] × [0, 1] → [0, 1],

i ∈ {1, ..., n} be binary fuzzy relations, A : [0, 1]n → [0, 1] be an arbitrary aggregation

function and T be an arbitrary t-norm, then

R̃A,T (x,y) = sup{T (R1(x′1, y
′
1), ..., Rn(x′n, y

′
n)) :

A(x′1, ..., x
′
n) = A(x1, ..., xn),

A(y′1, ..., y
′
n) = A(y1, ..., yn)}

is called T -A-aggregation of fuzzy relations (x = (x1, ..., xn),y = (y1, ..., yn)).

In this case

R̃A,T : [0, 1]n × [0, 1]n → [0, 1].

This definition shows similarity of approaches and it could be useful if we want

to compare the results of pointwise and T -A-aggregations. And now we explain the

motivation for our definition of A-T -aggregation. The definition of monotonicity for

an aggregation function A says that if for all i ∈ {1, ..., n} it holds xi ≤ yi, then

A(x1, ..., xn) ≤ A(y1, ..., yn). Then for results of aggregation x and y we definitely

know that x ≤ y whenever there exist vectors (x1, ..., xn) and (y1, ..., yn) such that

A(x1, ..., xn) = x and A(y1, ..., yn) = y and xi ≤ yi for all i ∈ {1, ..., n}.
Now assume that for each coordinate we have different order relations:

x1 ≤1 y1, . . . , xn ≤n yn.

Then if we continue by using ”fuzzy language” we can rewrite:

x ≤ y as R̃(x, y)
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and

xi ≤i yi as Ri(xi, yi) for all i ∈ {1, ..., n}.

As a connective we use a t-norm T , and, finally, as it is usually done in the context of

fuzzy set theory we use supremum in the place where quantifier ∃ is used. Thus we get

R̃(x, y) = sup{T (R1(x1, y1), ..., Rn(xn, yn)) :

A(x1, ..., xn) = x,A(y1, ..., yn) = y},

what is exactly the definition 4.4.2. In this example we spoke about order relations but

the same reasoning works also for equivalence relations.

Example 4.4.1. We consider a data set describing progress in studies of students. For

each student the estimations in tree main courses are given in a table. The data set is

shown in Table 4.5.

Table 4.5: Evaluation of students

Student Course

1

Course

2

Course

3

Agg.

re-

sult

s1 0.8 0.7 0.6 0.7

s2 0.8 0.9 0.6 0.77

s3 0.6 0.7 0.5 0.6

s4 0.8 0.5 1 0.77

s5 0.9 0.5 0.8 0.73

s6 0.7 0.9 0.6 0.73

s7 0.7 0.8 0.8 0.77

In this table the students’ results are given as well as the aggregated values of the

results in three different courses, the arithmetic mean is used to aggregate the results.

Assume now that we have to compare all students. We not only want to know for the

pair of students si and sj which student is better, but we want to know the degree to

which student si is better than student sj . Let us introduce the fuzzy order relations Ri

to compare the marks of students in course i by the following way:

Ri(ai, bi) =

1, if ai ≤ bi

max(1− |ai − bi|, 0), otherwise
.

86



A-T -aggregation

In this example we introduce the same fuzzy order relations for all coordinates i ∈
{1, 2, 3}, but generally they can differ. Let us compare the students s6 and s7 or,

namely, let calculate the degree to which the student s6 is worse than student s7

(or, in other words, the degree to which student s7 is better than student s6). If

we use pointwise aggregation and arithmetic mean as an aggregation function (the

other aggregation function can be also used), the result will be R̃(s6, s7) = 0.97.

However if we want to compare the results of students, taking into account the ag-

gregation of the results, we should use A-T -aggregation (A - arithmetic mean). If

we use minimum t-norm, then the result will be: R̃A,T (s6, s7) = 1 since there ex-

ists a vector (0.8, 0.9, 0.6) such that A(0.8, 0.9, 0.6) = A(0.7, 0.8, 0.8) = 0.77 and

min(R1(0.7, 0.8), R2(0.9, 0.9), R3(0.6, 0.6)) = 1.

In the sequel we observe only fuzzy relations on interval [0, 1] and we write simply

R instead of R : [0, 1]× [0, 1]→ [0, 1].

4.4.2 Preservation of properties of fuzzy relations by A-T -
aggregation

We study which properties of fuzzy relations are preserved in the process of aggregation.

We focus only on the aggregation of fuzzy equivalence relations given by (2.1) and fuzzy

order relations (2.3). Preservation of reflexivity and symmetry is trivial, so we leave

these results without proofs.

Proposition 4.4.1. Let Ri for all i ∈ {1, ..., n} be reflexive fuzzy relations, then R̃A,T is

also reflexive.

Proposition 4.4.2. Let Ri for all i ∈ {1, ..., n} be symmetric fuzzy relations, then R̃A,T

is also symmetric.

More interesting question is about preservation of transitivity and compatibility for

fuzzy equivalence relations. In the next results we show that for special aggregation

functions and in the case when TM is minimum t-norm

R̃A,T (x, y) = TM(R1(x, y), ..., Rn(x, y)).

Obviously idempotence of the aggregation function is crucial here. Further we find a

class of functions leading to this result. Let Ax denote the set of vectors x such that

A(x) = x, similarly we denote Ay.
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Theorem 4.4.1. If Ri for all i ∈ {1, ..., n} are fuzzy relations, T = TM (minimum

t-norm), A is an idempotent aggregation function such that:

Ri(x, y) ≥ TM(Ri(x1, y1), Ri(x2, y2), ..., Ri(xn, yn))

for all (x1, ..., xn) ∈ Ax, (y1, ..., yn) ∈ Ay and for all i ∈ {1, ..., n}, then

R̃A,T (x, y) = TM(R1(x, y), ..., Rn(x, y)).

Proof. Using

Ri(x, y) ≥ TM(Ri(x1, y1), Ri(x2, y2), ..., Ri(xn, yn))

by idempotence of TM we get

TM(Ri(x, y), ..., Ri(x, y)) ≥

≥ TM(Ri(x1, y1), Ri(x2, y2), ..., Ri(xn, yn))

for all relations Ri, i ∈ {1, ..., n}.
Therefore, by monotonicity of TM we get

TM(TM(R1(x, y), ..., R1(x, y)), ..., TM(Rn(x, y), ..., Rn(x, y))) ≥
≥ TM(TM(R1(x1, y1), ..., R1(xn, yn)), ..., TM(Rn(x1, y1), ..., Rn(xn, yn))).

Using associativity of TM we continue in the following way:

TM(TM(R1(x, y), ..., Rn(x, y)), ..., TM(R1(x, y), ..., Rn(x, y))) ≥
≥ TM(TM(R1(x1, y1), ..., Rn(xn, yn)), ..., TM(R1(x1, y1), ..., Rn(xn, yn))).

Using idempotence of TM from the previous we deduce that

TM(R1(x, y), ..., Rn(x, y)) ≥ TM(R1(x1, y1), ...Rn(xn, yn)).

Since previous inequality holds for arbitrary vectors (x1, ..., xn) ∈ Ax, (y1, ..., yn) ∈
Ay it also holds for supremum:

TM(R1(x, y), ..., Rn(x, y)) ≥
≥ sup

(x1,...,xn)∈Ax,(y1,...,yn)∈Ay

{TM(R1(x1, y1), ..., Rn(xn, yn))} = R̃A,T (x, y)

But (x, ..., x) ∈ Ax, (y, ..., y) ∈ Ay thus

R̃A,T (x, y) = TM(R1(x, y), ..., Rn(x, y)).
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Remark 4.4.2. We denote by ẼA,T the A-T -aggregation of fuzzy equivalence relations

E1, E2, ..., En.

It is easy to see, that if a fuzzy relation E is given by formula (2.1), then the property

E(x, y) ≥ TM(E(x1, y1), E(x2, y2), ..., E(xn, yn)) (4.6)

is equivalent to the property:

|x− y| ≤ max
i

(|xi − yi|).

Now we show that ẼA,T constructed by an additive aggregation function has property

described in the previous theorem.

Proposition 4.4.3. If E is a fuzzy relation given by formula (2.1), TM is the minimum

t-norm, A is an additive aggregation function, then

E(x, y) ≥ TM(E(x1, y1), E(x2, y2), ..., E(xn, yn)),

for all (x1, ..., xn) ∈ Ax, (y1, ..., yn) ∈ Ay and for all i ∈ {1, ..., n}.

Proof. We need to show for arbitrary (x1, ..., xn) ∈ Ax and (y1, ..., yn) ∈ Ay that

E(x, y) ≥ TM(E(x1, y1), E(x2, y2), ..., E(xn, yn)). Equally, because of the nature of

the fuzzy equivalence relation E (see formula (2.1)), it is sufficient to show that

|x− y| ≤ max
i

(|xi − yi|).

Let us observe the case, when x > y: |x − y| = x − y = A(x1, ..., xn) − A(y1, ..., yn).

Now we substitute arguments of A(x1, ..., xn) standing on the positions l : xl ≤ yl by

the corresponding coordinate from the vector (y1, ..., yn). So, by monotonicity of A we

estimate:

x− y = A(x1, ..., xn)− A(y1, ..., yn) ≤

≤ A(x1, ..., yl, ..., xn)− A(y1, ..., yl, ..., yn).

Further by additivity of A we get:

x− y ≤ A(x1 − y1, ..., 0, ..., xn − yn)

Since additivity implies idempotence we have:

x− y ≤ max
k:xk>yk

(xk − yk) ≤ max
i

(|xi − yi|).

Thus we have shown that the condition holds. The same considerations are valid when

we observe the case when x < y:

|x− y| = y − x ≤ maxk:yk>xk(yk − xk) ≤ max
i

(|xi − yi|).
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But not only additivity of aggregation function can assure necessary property. Propo-

sitions 4.4.4 and 4.4.5 contain results for non additive aggregation functions.

Proposition 4.4.4. If E is a fuzzy relation given by formula (2.1), TM is the minimum

t-norm, A is partial minimum:

A(x) = MINK(x) =
∧
i∈K

xi,

where K ⊆ {1, ..., n}, then

E(x, y) ≥ TM(E(x1, y1), E(x2, y2), ..., E(xn, yn)),

for all (x1, ..., xn) ∈ Ax, (y1, ..., yn) ∈ Ay.

Proof. If E(x, y) = g(|x− y|), where g is a non-increasing mapping, then the condition

E(x, y) ≥ TM(E(x1, y1), E(x2, y2), ..., E(xn, yn))

is equivalent to the condition

|x− y| ≤ max
i

(|xi − yi|).

Let us prove the last: Let x > y and let
∧
i∈K

yi = yk. Then |x− y| =
∧
i∈K

xi −
∧
i∈K

yi =

=
∧
i∈K

xi − yk ≤ xk − yk ≤ max
xi>yi,i∈K

(xi − yi) ≤ max
i

(|xi − yi|). Now let x ≤ y and let∧
i∈K

xi = xk. Then |x− y| =
∧
i∈K

yi −
∧
i∈K

xi =
∧
i∈K

yi − xk ≤ yk − xk ≤

≤ max
yi>xi,i∈K

(yi − xi) ≤ max
i

(|xi − yi|). The both considerations (when x < y and when

x ≥ y) lead to the fact that

|x− y| ≤ max
i

(|xi − yi|).

By this we finish the proof.

Proposition 4.4.5. If E is a fuzzy relation given by formula (2.1), TM is the minimum

t-norm, A is partial maximum:

A(x) = MAXK(x) =
∨
i∈K

xi,

where K ⊆ {1, ..., n}, then

E(x, y) ≥ TM(E(x1, y1), E(x2, y2), ..., E(xn, yn)),

for all (x1, ..., xn) ∈ Ax, (y1, ..., yn) ∈ Ay.
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Proof.

As in the previous proof it is sufficient to prove that

|x− y| ≤ max
i

(|xi − yi|).

Let x > y and let
∨
i∈K

xi = xk. Then |x−y| =
∨
i∈K

xi−
∨
i∈K

yi = xk−
∨
i∈K

yi ≤ xk−yk ≤

≤ max
xi>yi,i∈K

(xi − yi) ≤ max
i

(|xi − yi|). If x ≤ y, we denote
∧
i∈K

yi = yk and then

|x−y| =
∨
i∈K

yi−
∨
i∈K

xi = yk−
∨
i∈K

xi ≤ yk−xk ≤ max
yi>xi,i∈K

(yi−xi) ≤ max
i

(|xi−yi|).

By this the condition is proven.

Additive aggregation functions are nothing else but the weighted arithmetic means

WAMw:

WAMw(x) =
n∑
i=1

wixi,

where weights wi ∈ [0, 1] and
n∑
i=1

wi = 1, for details see [17] Proposition 4.21. By the

last three propositions we have proven that for every aggregation function A from the

class A = {MINK ,MAXK : K ⊆ {1, ..., n}}∪

∪{WAMw : wi ∈ [0, 1] for all i,
n∑
i=1

wi = 1}

the following condition holds:

E(x, y) ≥ TM(E(x1, y1), E(x2, y2), ..., E(xn, yn)),

where x = A(x1, ..., xn), y = A(y1, ..., yn), E is a fuzzy relation given by formula

(2.1) and TM is the minimum t-norm. In [32] it is proven that the class A is the class

of all increasing, bisymmetric and stable for positive linear transformations aggregation

functions.

Theorem 4.4.1 implies:

Corollary 4.4.1. If Ei for all i ∈ {1, ..., n} are fuzzy equivalence relations given by

(2.1), TM is the minimum t-norm, A ∈ A, then

ẼA,TM (x, y) = TM(E1(x, y), ..., En(x, y)).

Now we study preservation of T -transitivity.
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Theorem 4.4.2. If Ei for all i ∈ {1, ..., n} are T -transitive fuzzy equivalence relations,

A ∈ A then ẼA,TM is also a T -transitive fuzzy equivalence relation, where TM is the

minimum t-norm.

Proof. Since TM dominates every other t-norm T (for details see e.g. [39]) and all

relations Ei are T -transitive we have:

T (ẼA,TM (x, y), ẼA,TM (y, z)) = T (TM(E1(x, y), ..., En(x, y)),

TM(E1(y, z), ..., En(y, z))) ≤ TM(T (E1(x, y), E1(y, z)), T (E2(x, y), E2(y, z)), ...,

..., T (En(x, y), En(y, z))) ≤ TM(E1(x, z), ..., En(x, z)) = ẼA,T (x, z).

Let ≤ be a crisp order. We consider the preservation of compatibility with ≤ when

we aggregate fuzzy equivalence relations compatible with ≤.

Theorem 4.4.3. If Ei for all i ∈ {1, ..., n} are fuzzy equivalence relations compatible

with ≤, TM is the minimum t-norm, A ∈ A, then ẼA,TM is also compatible with ≤.

Proof. We have to prove that if x ≤ y ≤ z, then ẼA,TM (x, z) ≤ ẼA,TM (y, z)

and ẼA,TM (x, z) ≤ ẼA,TM (x, y) taking into account that all relations Ei are com-

patible with ≤: If x ≤ y ≤ z, then ẼA,TM (x, z) = TM(E1(x, z), ..., En(x, z)) ≤
≤ TM(E1(x, y), ..., En(x, y)) = ẼA,TM (x, y). The same considerations work when we

prove that ẼA,TM (x, z) ≤ ẼA,TM (x, y) if x ≤ y ≤ z.

The choice of a t-norm is not important in the previous result, but it plays important

role in other results and therefore we take it into considerations.

Corollary 4.4.2. If Ei for all i ∈ {1, ..., n} are fuzzy equivalence relations given by

(2.1), TM is the minimum t-norm, A ∈ A, then ẼA,TM is a fuzzy equivalence relation

compatible with ≤.

Consider aggregation of fuzzy order relations given by (2.3). Propositions 4.4.3-

4.4.5 could be proven for fuzzy order relations defined by (2.3) and by that and Theorem

4.4.3 we have the following result:

Proposition 4.4.6. If Ri for all i ∈ {1, ..., n} are fuzzy order relations given by (2.3),

TM is the minimum t-norm, A ∈ A, then

R̃A,TM (x, y) =

1, if x ≤ y

TM(R1(x, y), ..., Rn(x, y)), oth.
.

92



A-T -aggregation

Corollary 4.4.3. If Ei for all i ∈ {1, ..., n} are T -equivalences given by formula (2.1),

Ri are T -Ei-orders given by formula (2.3), then R̃A,TM is a T -ẼA,TM -order.

4.4.3 Conclusion on A-T -aggregation

In this section we focused on aggregation of fuzzy equivalence relations and fuzzy order

relations. Some results are obtained for special cases, when t-norm is minimum t-norm

and aggregation function has some special properties. In the future we are going to

expand obtained result to the more broad classes of t-norms, aggregation functions and

fuzzy relations.
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Chapter 5

Conclusion

In our work we have obtained the following results:

• An L-valued analogue of POS category has been constructed; the properties of

the constructed L-valued category have been investigated;

• The degree of monotonicity and the degree of α-monotonicity have been defined

and studied;

• The aggregation of fuzzy relation has been studied and applied for MOLP prob-

lems; new concepts of aggregation of fuzzy relations have been involved and in-

vestigated.

The motivation of the first part (categorical) of the work was to construct a new cate-

gory using L-valued category theory and also develop further L-valued category theory

working with the concrete examples. The ideas for the second part of the work came

from categorical aspects of fuzzy order relation but each direction of the second part was

also motivated by the real-world examples.

Each part of the research has some own concluding remarks, so here we just want

to mention that, although each part is a accomplished research, it could be also further

developed in the future and the ideas of future research are mentioned in the concluding

remarks in each chapter or section.
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