University of Latvia

ELINA KALNINA

MODEL TRANSFORMATION DEVELOPMENT USING MOLA
MAPPINGS AND TEMPLATE MOLA

Thesis for the PhD Degree
at the University of Latvia

Field: Computer Science
Section: Programming Languages and Systems

Scientific Advisor:
Prof., Dr. Habil. Sc. Comp.
AUDRIS KALNINS

Riga — 2011

Es ESF 9 LATVIJAS
EIROPAS SOCIALAIS UNIVERSITATE
FONDS

IEGULDIJUMS TAVA NAKOTNE

This work has been supported by the European Social Fund within the project
«Support for Doctoral Studies at University of Latviay.

Scientific Advisor:
Professor, Dr. Sc. Comp. Audris Kalnins
Latvijas Universitate

Referees:
Professor, Dr. Sc. Comp. Guntis Barzdins
University of Latvia

Professor, Dr. Sc. Ing. Oksana Nikiforova
Riga Technical University

Professor, Dr. Olegas Vasilecas
Vilnius Gediminas Technical University (Vilnius, Lithuania)

The defence of the thesis will take place in an open session of the Council of Promotion
in Computer Science of the University of Latvia, in the Institute of Mathematics and
Computer Science of the University of Latvia (Room 413, Raina Boulevard 29, Riga,
Latvia) on March 7, 2012 at 4 PM.

The thesis and its summary are available at the library of the University of Latvia
(Kalpaka Boulevard 4, Riga, Latvia).

ABSTRACT

Model transformation development for three specific domains: Model-Driven
Software Development (MDSD), DSL tool development and transformation synthesis has
been studied in the thesis. It is concluded that transformation development in domain-
specific transformation languages is more straightforward and faster compared to
traditional transformation languages. A domain-specific model transformation language
has been developed for each studied domain. Two of them are based on mappings. In
both cases it was concluded that mappings better fit for typical tasks and transformations
better fit for non-standard tasks. Therefore a close integration between mappings and
transformations is required.

The research results have been published in 15 papers (6 of them have been
included in SCOPUS).

Keywords

Model transformations, Domain-Specific Languages (DSL), Model-Driven
Software Development (MDSD), DSL tool development, Higher-Order Transformations
(HOT)

CONTENTS

LIST OF FIGURES ...ttt ettt 11
LIST OF TABLES ...ttt 15
ACKNOWLEDGEMENT ...octiiiieieie ettt sttt nneans 17
INTRODUGCTION. ...ttt sttt b bbb nbenneas 19
CHAPTER 1 MOTIVATION - MDSD AND MODEL TRANSFORMATION
LANGUAGESottt b 27
1.1 IMOTEITING oo 27
1.1.1 What iS @ MOEI?......c.eoieieii e 27
1.1.2 Meta-mOdellingcoveiiieiii s 32
1.2 Model-Driven Software DevelopmMENtccccoeiieiiiieiieie e 34
L1210 IMID¥ ettt r e reenes 34
1.2.2 Model Driven ArchiteCtUIecccuoiviieieiiee s 36
1.2.3 Model Driven Software Developmentcccovieriniininieienese e 39
1.2.4 Domain-Specific Modelling Languages..........ccccovevveieerveiieseene e 40
1.3 Model TranSforMAatiONScccveriiiieiieie e eas 42
1.3.1 Model Transformation LanguUagESccceevveieerieeieieeie e seesie e 43
1.3.2 Mapping LANQUAGEScoueiuiiiiriiriiriesiieieeie et 45
1.3.3 Higher-Order Transformations...........ccccccoveveiieiisie e 45
CHAPTER 2 MOLA LANGUAGE ..ottt 47
2.1 MOLA OVEIVIBW ...ouiieiecie sttt sttt sttt et nbentesbennenneas 47
2.2 MOLA EIBMENTS ..ottt ae e sneenneenee e 48
2.3 MOLA EXAMPIE ..ottt 53
2.4 Hello World With MOLA ... 55
2.4.1 GreBtING TaASKS....ccieiieiiitieiteee sttt te et ste e este et e e steenesneesreeneeas 56
2.4.2 INStANCE COUNTINGeiuiiiieiiiieite ittt 57
2.4.3 REVEISION...cuiiiiiiiiiieiesii ettt sttt bbbt se et e et nbenbenbeene e 63
2.4.4 MOAel MIQrationccoveiiiiiiieseie e 64
2.4.5 DEIEtiON TASKS.....ciiiiieiieieieite sttt sttt bt 66
2.4.6 MOLA TOOI SUPPOIT...ccuviiiiiiieiieitcitt st 67
2.5 MOLA MEtamOdeloceiiiiiieieeee e 69
CHAPTER 3 TRANSFORMATIONS FOR MODEL-DRIVEN DEVELOPMENT
IN REDSEEDScoo ittt sttt 73
3.1 REDSEEDS OVEIVIEWovcviiiiieieeieciie e eie e ste e ssee e sae e taesteesaessaesseeneessaenseeneens 73
3.2 Requirements Specification in ReEDSEEDSccccoviiiiiiieiiiecece e 75
3.2.1 Requirements Specification Language in ReDSeeDSccccvcevirinennnn. 75
3.2.2 Example of REQUIFEMENTSccuviiiieiiicie et 77
3.3 Model-Driven Development in the ReDSeeDS Projectccooevevereieicninnnnns 78
3.3.1 Design Patterns and the Architecture Style.........c.ccoocevvieiiiiiiiie i 79
3.3.2 ThE RSL PIOfile ..ccveeieeee et 81

3.4 ReDSEEDS BaSIC STYIE....c.eiiiiiieieiiesieee e 81

3.4.1 The Platform-Independent Modelcccoooviiiieii e 82
3.4.2 The Platform-Specific Model.............ccoiiiiiiiie 85
3.5 The Keyword-Based SLYIEccccciiiiiiieiie et 85
351 IMOEIS ... e 86
3.5.2 Selected Design Patterns for the Keyword-Based Styleccccceevveinennnne 88
3.5.3 RSL Profile for the Keyword-Based Style...........ccccooviiiiiiiiiiiiencice 89
3.5.4 The Structure of the Analysis Modelc.cccovveiiiiiiiic e 91
3.5.5 Transformation of Requirements to Analysisccocovviiieieincicnennn 92
3.5.6 The Platform-Independent Modelccoooviiiiiciiiicsee e 93
3.5.7 Transformation of Requirements and Analysisto PIM ... 95
3.5.8 The Platform-Specific Model............c.coveiiiiie e 98
3.5.9 The JAVA COUEcueeiiee ettt 99
3.6 IMPIEMENTALION........oiicieee e 103
3.6.1 Model-to-Model Transformations Implementationcccccceveririnnne. 103
3.6.2 Model-to-Model Transformations in the Keyword-Based Style................. 105
3.6.3 Model-to-Code Transformation Implementationccccoovevereninnnnnne. 111
3.6.4 Integration with the Enterprise ArchiteCt..........c.coovvviiiinininieneiene e 112
KT A @70 o To] (1151 o] o SRR R 113
CHAPTER 4 MAPPING LANGUAGES........cccooiiieienee e 115
4.1 MapPING TUBA.....ceiiiiieiieiieee e 115
4.1.1 Transformation Languages and Mapping Languages............cccevvevverveeneenn. 116
4.1.2 General Purpose Mapping LangUAGES.........ccerverrerierierinieeieniesieseesiesieseeenas 118
4.2 Domain-Specific Mapping LaNQUAGEScceiieieeiieieerieeie e sie e ee s 120
4.2.1 Domain-Specific Model Transformations............c.ccooevvrierenencnenenenenn 120
4.2.2 Domain-Specific Mapping LanguUagES.........cceieevieieereeiieieesie e s 121
4.3 MALA4AMDSD — Mapping Language for MDSDcccooviiiiiieninenc e 121
4.3.1 MALAAMDSD MOLIVALION......ccciiiiiiieieieie e 122
4.3.2 BasicS Of MALAAMDSDccooiiiieiieieee e 124
4.3.3 MALAAMDSD EIEMENLS.......ccoiiiiiiiiiiieiesie et 125
434 MALAAMDSD UML Tree TYPE .vveveieieieiterieetesissteeeeaesie et sre e snaanas 132
4.3.5 More Advanced Mapping EIEMENtS..........c.ccovevviiieiicii e 136
4.3.6 Mapping Language SEMANTICScccoerurrierierieriisieseseeee e 140
4.3.7 Mapping and Transformation Comparisonccccceevevveieeieeieseesie e 144
4.3.8 Related WOTK.......cceiieeie i 147
4.4 Domain-Specific Mapping Language Definition..........cccccccoeevevicvc e, 148
441 MALAAMDSD Definition ISSUEScccveirieerieeieseenieeieseesie e siee e 148
4.4.2 Mapping Languages Definition Facilities............cccooevvivciiciice e, 149
4.4.3 Metamodel of Mapping Language Family...........c.ccoovviiiiininciencicne, 152
4.5 Other Applications of the Proposed APproachcccccevveiieiieecie e, 154
451 UMLIORDB.....ociiiee ettt 154
452 UMLTO XMI oottt 155
4.5.3 Other EXaMPIEScooiiiiiiii s 156
4.6 IMPIEMENTALION.....cccviiiii e 157
A o 4 Tod [1ES] o] SRS 158
CHAPTER 5 TRANSFORMATIONS FOR DSML TOOL DEVELOPMENT..... 161
5.1 State of the Art in DSML Tool Development........cccccvveieiiienieiienenese e 161

5.1.1 Terminology EXPlanation.........cccoeiiiiiiiienieiie e 161

5.1.2 Mapping-Based APProach.........ccccooviiiiiiiiiieie e 163
5.1.3 Model Transformation Based Approachcccocvvviiiiiiieicicncnesee 164
5.1.4 Combined APPIOACHcovviiiiiece e s 165
5.2 METACHPSE ..ot bbbt 167
521 MOLA TOOL ..ottt bbb 167
5.3 Mappings fOr METACHPSE......cviiiieeer e 169
5.3.1 The Framework from the User Point of VIeW...........ccoocevvvinenienininnne, 170
5.3.2 Mapping Definitionccoiiiiiiiiiiiieee s 170
5.3.3 Mapping and Transformation Integrationccccveveveiieeneciesecse e, 173
5.3.4 Mapping Definition Language User Interfacec.ccoovvviviineninnnnnn. 174
5.4 CONCIUSIONS ...ttt st bbb bbb ene e 176
CHAPTER 6 TEMPLATE MOLA ...t 179
6.1 Main EIBMENLS.....coiiieieece e 180
B.1.1 Template RUIEccco i 181
T O =11 o] P 1= 0T o SR 182
6.1.3 Call Statement and Parameters.........ccceveiierieeiesiee e 183
6.1.4 Template EXPreSSIONSccoveiiiieiieiie et 184
6.1.5 Template EIBMENTS.......ccooiiiiiecee s 184
6.2 Template MOLA Compared to MOLA asa HOTcccoviiiiicvececeece e 187
6.3 Template MOLA EXAMPIEccoiiiiiieieie e 188
6.4 Metamodelling ISSUBS.......c.ccviiieie e 191
6.4.1 Use of Metamodels Defining Higher-Order Transformations in MOLA ... 192
6.4.2 Metamodels in Template MOLAcoo oo 193
6.4.3 Roles of Different Metamodels in DSML Tool Development.................... 194
6.4.4 Use of Metamodel Elements in Template MOLA Transformations........... 196
6.5 Elements of Dual Nature in Template MOLAcccoooi it 196
6.5.1 IMOLA PrOCEAUIE ..ottt sttt sttt 197
6.5.2 Call Statement and Parameters.........cccooerierieeieniie e 198
6.5.3 CONIOL FIOW ..ot 198
6.5.4 ENd SYMDOL ..o 200
6.6 Graphical Template Languages Versus Textualcccccvevveveeviiieiiese e 201
6.7 Merge MECNANISIMSoouiiiiiiiiicie e 203
6.7.1 Merge EXaMPIEcoviiiiii it 204
B.7.2 RUIE IMBITE ... ettt e e aeenee e 206
6.7.3 IMEIrge SEMANTICSueiviirierieieiie ittt st 208
6.8 IMPIEMENTALION........oiieieieece e 209
8.9 CONCIUSIONS ...ttt sttt ettt reene e 210
CHAPTER 7 TEMPLATE MOLA APPLICATIONS........coo ot 213
7.1 Mapping Language Compilation Using HOTSccccooiiiiiiiiiie e 213
7.2 Implementation of Mapping Languages for MDSDc.ccocviieiinencnenennn 214
7.2.1 Editor of the Mapping Language Familyccccooeiiiiiii i, 214
7.2.2 Mapping Language Family Compilation Schema...........ccccoveiinenininnne. 214
7.2.3 Mapping Compilationccccoeiiiiiiiiiie e 216
7.2.4 Source Tree Pattern Compilation t0 MOLAcccooviiiiiiiieienene e 217
7.2.5 Implementation of “Create if Does Not EXISt”ccccovvvveiiiiiiiiiinn 221
7.2.6 Finding of Parent Instance in the Target Tree........ccccoovvvievenenencnenene 221

T.2.7 ElCMENT CrOAIIONeeeeeeeeeeeeeeeeeeeeee ettt eeeeeeeeeeeeeeeeeeneeenneeenennnes 222

T.2.8 EVAIUALION. ... et ee e 223
7.3 Implementation of Mapping Language for DSL Tool Buildingcccoeevuennee. 224
7.4 Transformation LiDIari€s.ooccee oot e s 227
7.4.1 Transformations for Generic Metamodelsoooovvvvveiiiiiiiiee e 227
7.4.2 Transformation Design Patterns...........cccevveieeiiesiee s 233
T5 CONCIUSIONS ... 234
CHAPTER 8 CONCLUSIONS et 235
BIBLIOGRAPHY ..ottt a e e e 237
APPENDIX A LIST OF ACRONYMS ...t 251

10

LIST OF FIGURES

Fig. 1. Real distance map of the Paris Metro [27]......ccccccevveieiieiieie e 28
Fig. 2. Paris metro SChema [196]coooiiiiiiiicieeee e 29
Fig. 3. Example of OMG MOF meta-level hierarchy [130]cccccooviieiiieieiiieiieie e, 33
Fig. 4. Relationship between MD™ teImMSccooviieiiiiniieeree e 35
Fig. 5. MDE VErsus MDD [L7] ...occvoiieiiie ettt 36
Fig. 6. MDA application schema with one execution environmentc.cc.ceevvevevenne 38
Fig. 7. MDA application schema with multiple execution environmentsc..c....... 39
Fig. 8. Relation between MD* and DSL approaches............ccccecveeeieieneneneneseseeeeeens 40
Fig. 9. Transformation in the nature [30]........ccccvveiiieiiiie i 42
Fig. 10. Execution scheme of model transformations.............ccocvvveieieienc s 43
Fig. 11, MOLA @XAMPIE ..c.eiiiiicieic sttt sttt reebe e nre s 54
Fig. 12. The “Hello World" metamodel and the example instance [106]...........cc.ccevvenee. 56
Fig. 13. The extended “Hello World" metamodel and the example instance [106] 56
Fig. 14. Transformation creating a constant Greeting iNStanceccccocevvrerenieieeneenn 57
Fig. 15. Transformation creating a constant Greeting instance with references................ 57
Fig. 16. Model-to-text transformation creating a greeting MesSageccocvvererereeeenn 57
Fig. 17. The simple graph metamodel [106].........ccceieiieiieiicie e 58
Fig. 18. Circle of three nodes (simplified representation of edge objects) [106] 58
Fig. 19. Transformation counting nodes in @ graphccceoeeeieeie e 59
Fig. 20. Transformation counting looping edges in a graphccocevereneniiinineiee 59
Fig. 21. Transformation counting isolated nodes in a graph...........ccccoeevveveiieceeseccieennn, 60
Fig. 22. Transformation counting circles consisting of three nodes............cc.ccoovvveenne 61
Fig. 23. Transformation counting circles consisting of three nodes, using temporary
MELAMOUE] BIEIMENTS.o e e ae e nnes 62
Fig. 24. Solution of optional task: counting of dangling edgescccevveveiieieeieciieennn, 63
Fig. 25. Transformation iNVErsing BAQEScueirieierieniie e 64
Fig. 26. The evolved graph metamodel [106].........ccooveiiiiiiiiieec e 64
Fig. 27. The even more evolved graph metamodel [106]ccooevrreneneniiiiesieeene 64
Fig. 28. Metamodel extensions for model migration tasks............cccocvevieiieiiieiieesee s, 65

Fig. 29. Model migration transformation. Migrates graph from encoding graphl (Fig. 17)
to encoding graph2 (Fig. 26).c.eoivieiieiie ettt 65

Fig. 30. Solution of optional model migration task. Migrates graph from encoding graphl
(Fig. 17) to encoding graph3 (Fig. 27). ..ccceeiie ettt 66

11

Fig. 31. Transformation that deletes the node named "nl1" (if such a node exists) in a

0] 21 o TSRS 67
Fig. 32. Transformation that deletes the node named "nl1" (if such a node exists) and its
incident edges IN @ GraPh.......ccce i 67
Fig. 33. The metamodel of the MOLA meta-modelling language [130].........c.ccccvvrvenenne. 70
Fig. 34. The metamodel of the MOLA procedure elements [130]cccccovvvvevveienieenenn, 71
Fig. 35. RSL EXAMPIE ... 78
Fig. 36. Requirements — two scenarios in a textual form............ccocceeveviiie i, 78
Fig. 37. Model chain in the ReDSeeDS BasiC Styleccocviviiiiiiiiiiiecee 82
Fig. 38. Static structure processing eXamplecccocvvveiiiie e 83
Fig. 39. BENAVIOUr EXAMPIEc.oiiiiiiiie e 84
Fig. 40. Model chain used in ReDSeeDS Keyword-Based Stylecccccevvvevveiieiinennenn, 86
Fig. 41. Requirements — scenarios of the use case in a graphical formcc.ccocene. 90
Fig. 42. Fragment of the generated Domain Model.............ccccccovveiiiicicic e, 92
Fig. 43. An example of informal mapping describing transformations to Detailed Design
.. 97
Fig. 44. An example of a sequence diagram for the ReservationsService class.............. 102
Fig. 45. Transformation eXample...........coooiiiiie i 104
Fig. 46. Creation of a message for a “System-System” sentence without an indirect object
.. 108
Fig. 47. The procedure of finding a lifeline in a sequence diagram, depending on the
object used INthe VErD Phrase..........coo i 109
Fig. 48. MOF QVT Relational eXample ..o 118
Fig. 49. Schematic roles of the mapping language family USerscccccvevvvieivenenne. 123

Fig. 50. MALA4MDSD example. UML model “PIM” is transformed to UML model
“PSM”. Package “Service” in model “PIM” is transformed to package “service” in
“PSM” model. Classes from source model package “Service” are copied to target package

RS 74 1o PRSP 125
Fig. 51. MALA4MDSD UML tree type definition............cooovvivieiiienincne e, 134
Fig. 52. Alternative tree type definition............cccoovveiiiii i 135

Fig. 53. Mapping example from the ReDSeeDS project. Transformation in
MALA4MDSD, demonstrating the edge processing and hierarchy flattening................ 138

Fig. 54. Mapping example from the ReDSeeDS project. Transformation in
MALA4MDSD is demonstrated. MOLA transformation for the highlighted part of the

same task is presented iN Fig. 55. ..ot 145
Fig. 55. Transformation example from the ReDSeeDS project. The same transformation
fragment in MALA4MDSD is coloured in Fig. 54........ccocviiiiiiiiiiieesce e 146
Fig. 56. Mapping language definition; fragment of the MALA4MDSD definition........ 151

12

Fig. 57. Type definition for the mapping language familycccoceiiiiiiiniiiiienn, 152

Fig. 58. Core metamodel of the mapping language family...........c.c.cccocvvviiieiiiciciienenn, 153
Fig. 59. UML t0 RDB €XAMPIEooiiiiiiiiiiiisieeeeiee e 155
Fig. 60. Terminology definition..........cccooviiiiiicie e 162
Fig. 61. MOLA editor implementation in METACHPSE ..o 168
Fig. 62. Metamodel fragment, describing that the design pattern field is based directly on
PIOPEITY .ttt 171
Fig. 63. Mapping and presentation type metamodel subset, describing the property dialogs
.. 172
Fig. 64. Class dialog example, general and attribute tabccccoevviiiiieii e, 173
Fig. 65. Metamodel fragment describing mapping and transformation integration 174
Fig. 66. Wizard diagram example for a domain class mapped to Nodec.ccuc...... 175
Fig. 67. An example of a template rule and the MOLA rule generated from it 182
Fig. 68. An example of a template [00P........ccoveviiiiiieie e 183
Fig. 69. Creation of the rule from Fig. 67, using MOLA asa HOTccccoovvivvenenn. 188
Fig. 70. Template MOLA example: Generator for copying UML class model instances to
OWVL INSEANCES ..ottt eteesiee e stee st ee s e teeste e sbe et esre e teesteeseesteeseeaseeseeneesseenteaneeareenseans 189
Fig. 71. The result of transformation from Fig. 70c..ccc e, 190
Fig. 72. A metamodel fragment used in a class model to the OWL transformation in Fig.
0RO O TP PRPRPRURRRTR 190
Fig. 73. Models to be used if higher-order transformations are written in MOLA 192
Fig. 74. Models to be used if the domain metamodel is analysed and higher-order
transformations are Written in MOLAc.ooi i 192
Fig. 75. Metamodels and models used for defining transformations in Template MOLA
.. 194
Fig. 76. Models used in case MOLA is used as a HOT for tool building........................ 195
Fig. 77. Metamodels and models used to define transformations in Template MOLA for
LEoT] I o1V T o [T [OSSPSR 196

Fig. 78. The left side demonstrates the procedure for copying the property values of a
class instance. On the right side there is an example of the generated transformation....204

Fig. 79. The left side demonstrates the procedure for copying the property values of a
class instance with a merge. On the right side there is an example of the generated

L= T3 0] 0 =LA o o PSSR 205
Fig. 80. Creation of a star shaped rule by using merge mechanisms...............ccccccveenee. 206
Fig. 81. Creation of a chain shaped rule by using merge mechanisms.............c.cccceevenee. 207
Fig. 82. Merge of loops and rules obtaining different control structures 207
Fig. 83. Compilation of mapping language familyccocoiiiiiiiiee, 215

Fig. 84. Template MOLA procedure processing the current mapping........c.cccoceevvenene 218

Fig. 85. Procedure AddParentsToLoophead recursively creates the loophead rule 220
Fig. 86. Template MOLA procedure implementing the element creation....................... 222
Fig. 87. A simplified domain (upper left side), mapping (upper right side) and
presentation (lower part) Metamodel ..o 225
Fig. 88. Mapping implementation for tool building in Template MOLA 226
Fig. 89. A MOLA procedure generated for Fig. 88 ..., 227

Fig. 90. An example where the traditional MOLA and Template MOLA are combined. A
MOLA procedure calling the template procedure Clone from Fig. 91 is illustrated....... 229

Fig. 91. The ClONe PrOCEUAUIEc..ecveieeiecieese et ste e sttt re e sre e enes 229
Fig. 92. The cOpyProperties ProCeAUIE.c.cuiieiereie et 230

Fig. 93. A metamodel example describing information processed by a company. The class
IndividualCustomer is used to describe the generated code in Fig. 94 and Fig. 95......... 231

Fig. 94. MOLA procedure generated from the template procedure Clone..................... 231
Fig. 95. MOLA procedure generated from the template procedure copyProperties....... 232

14

LIST OF TABLES

Table 1. Model defiNItIONS.cc.oiiiiiiiiiieeee e 29
Table 2. Terms fOr MD™ooiiiie e e s 34
Table 3. LiSt Of MOLA ElEMENTS.......coiiiiiiiieieie et 48
Table 4. MOLA procedure count in different transformations. Classified as to
processing static structure, behaviour or independent operations.ccceeveveivennenn, 114
Table 5. List 0f MALAAMDSD ElEMENTSccveiiiiiiiieiecie e 125
Table 6. Comparison of transformations from PIM to PSM, developed using the model
transformation language MOLA and the mapping language MALA4MDSD 144
Table 7. Template MOLA €lemMentsScccooiiiieiiiie i 185

15

16

ACKNOWLEDGEMENT

This work has been partially supported by the European Social Fund within the

project «Support for Doctoral Studies at University of Latviay.

The author of the thesis would like to thank:

supervisor prof. Audris Kalnins;

current and former members of MOLA team: Edgars Celms, Agris
Sostaks, Janis Iraids, Oskars Vilitis;

ReDSeeDS project partners;

colleagues in LUMII Research Laboratory of System Modeling and
Software Technologies;

prof. Rusins Martins Freivalds;

Maija Treilona;

Lasma Zacesta;

Valdis Kalnins;

Lolita Nahodkina;

Maiga Reinharde;

family;

all others who have helped me in any way.

17

18

INTRODUCTION

The present PhD thesis has been worked on from 2007 to 2011 in the Institute of
Mathematics and Computer Science (UL IMCS), and the Faculty of Computing
established as an independent unit on the basis of the Faculty of Physics and
Mathematics, University of Latvia. The thesis supervisor is professor Audris Kalnins. The
thesis elaborates further the UL IMCS DSL (Domain-Specific Language) tool
development and language design traditions that started already in the year 1986.

Relevance of the Thesis:

Lately Model-Driven Software Development (MDSD) is gaining popularity. The
idea of elaborating all software development steps on models defined in specialised
modelling languages lies at the basis of the approach. Models, defined at higher
abstraction levels, are ever more detailed in each step of Model-Driven Software
Development. Model transformations are used to automate transitions from one model to
another. Use of model transformations allows using models as a direct part of the
software development process instead of using them only as documentation.

The origin of MDSD was the Model-Driven Architecture (MDA) [111] initiative
by Object Management Group (OMG). The first document about the MDA was published
in 2000 [116]. In 2002 OMG concluded that model transformation languages are required
[119], to easily describe the required model transformations. Most of the modelling
languages are defined by using the means of metamodelling; therefore model
transformations were built to transform the models defined according to metamodels.
Metamodels were defined by using the metamodelling standard MOF (Meta Object
Facilities) [120].

OMG activities led to the creation of a new model transformation standard MOF-
QVT (MOF Queries/Views/Transformations) [128]. Moreover, many new model
transformation languages were developed, e.g., ATL [63], GReAT [7], GrGen [48],
Epsilon [92] and the model transformation language MOLA [76] that was developed in
UL IMCS. This was also a new application area for graph transformation languages, e.g.,
PROGRES [144], AGG [163], VIATRA [31] and also Fujaba [43], previously used in a
narrower context. The variety of model transformation languages could be explained by

two reasons: lack of complete MOF-QVT implementation and different model

19

transformation application domains. In different software development areas there are
different requirements for a model transformation language.

Today model transformations are a serious software component in large software
development projects. Transformation development requires a considerable amount of
resources. Transformations should be projected, tested, maintained, etc. Currently the
transformation development is rather chaotic and every developer develops
transformations according to one’s own wishes. It could be explained by the poor
experience in adaption of the classic software development steps (testing, etc.) to
transformations. Consequently, studying of the transformation development is a popular
research direction.

In the same way there are attempts to adapt the classic software development
methods to the model transformation development. One of such methods is to build a
Domain-Specific Language (DSL) to be applied to the software development in a specific
class of tasks. The thesis is devoted to researching domain-specific transformation
languages. Usage of domain-specific transformation languages could improve
transformation development, the same as the use of the domain-specific languages helps
to reduce the software development time and costs. However, it should be noted that the
use of domain-specific languages is cost-effective only in case of developing multiple

similar solutions.

Aim of the Research:

The aim of the research is to investigate the ways of defining transformations for
classes of similar tasks, requiring development of many transformations of the same type.

e Explore transformation development for Model-Driven Software
Development.

e Explore the nature of the transformations for DSL tool development.

e Explore the opportunities of defining Model-Driven Software Development
and tool building transformations in specialised languages (higher
abstraction level) and using mappings.

e Explore the definition possibilities of transformation generating
transformation. Develop a higher-order transformation language which is

specialized for transformation synthesis.

20

Main Results of the Thesis:

e Developed and implemented the transformation supported path from the
requirements to the code. The research has been carried out as a part of the
ReDSeeDS project. Transformations for Model-Driven Software
Development have been analyzed. It is concluded that some of the
transformations could be defined more effectively by using a specialised
(higher abstraction level) language.

e Developed the first version of the MOLA 2 tool within the METAclipse
framework. A conclusion has been drawn that part of the transformations
are very simple and uniform and it would be more convenient to define
them in a mapping language. Likewise, it is concluded that it would be
impossible to define everything by using a mapping language; therefore,
integration between the mappings and transformations is required.

e Developed the mapping language MALA4MDSD, which is especially
adapted for transformation development in Model-Driven Software
Development.

e Outlined the mapping language for DSL tool development.

e Developed the language Template MOLA, which is a domain-specific
language for transformation synthesis.

e Analysis of three particular problem areas leads to the conclusion that the
transformation development in a domain-specific language is possible at a
higher level of abstraction. Thus, transformations can be developed faster.
If the transformation is defined by a higher level of abstraction and the use

of mapping, then less-skilled users can define the transformations as well.

Scientific and Practical Significance of the Thesis:

Model transformation development for three specific domains, namely, Model-
Driven Software Development (MDSD), Domain-Specific Language (DSL) tool
development and transformation synthesis has been studied in the thesis.

One of the areas under research in the present thesis is a specification of
transformations for Model-Driven Software Development. While working on the

ReDSeeDS project the author of the PhD thesis developed two transformation sets for

21

Model-Driven Software Development. This type of transformations typically contains a
transformation from UML to UML and for facilitating the given transformation
development, the mapping language MALA4MDSD is offered in the PhD thesis. The
language MALA4MDSD is also of practical importance, since it makes it significantly
easier to develop transformations for Model-Driven Software Development. This could
encourage a wider use of model-driven development methods in industry, as
transformations could be defined by less experienced users - those who are experts in the
transformed problem area, but do not know anything about metamodelling. In addition,
the transformation development would become faster.

The second researched area is the model transformations for DSL tool
development. It was concluded that the best way for defining a tool for graphical DSL is
by combining mappings with transformations. Using of mappings allows a less skilled
user to configure tools as well; the tool development would become significantly faster.
However, using mappings makes it impossible to provide convenient instruments for all
possible cases of non-standard treatment; therefore there is a need for a way of processing
non-standard cases in a transformation language. Many of the existing DSL tool
development platforms offer processing the non-standard cases in a programming
language, but a transformation language for this task would be more appropriate, because
the data are model-driven, and transformation languages are adapted for processing this
type of data.

The third problem area brought an observation that a domain-specific language is
more convenient for defining transformations. However, here is chosen a different type of
language that does not use mappings. This is a specific area which describes
transformation synthesis. The task is very specific, and the existing means are very
inadequate and are difficult to use, therefore the domain-specific language has been
created. The language Template MOLA is a higher-order transformation language,
specifically adapted to the tasks of transformation synthesis. It is the first language in the
world of such a type. Later an extension, specifically for transformation synthesis, has
been developed for the language ATL [182]. It should be noted that comparing to the
language MOLA, ATL is a textual language, therefore the synthesis of ATL is an easier
task. Nevertheless, the basic idea used in the ATL extension is the same as in the

Template MOLA - using fragments of concrete syntax.

22

The language Template MOLA helps to solve a very important issue in the model
transformation world, namely, metamodel independent transformation development.
Since almost all transformations are linked to metamodels, building of a library of
transformations and reuse of transformations is still an open problem.

The research results of the thesis suggest that model transformations is a
sufficiently vast area, making it possible to choose more limited problem areas — domain-
specific transformations - and domain-specific transformation languages have to be
created for these areas. The research focused on studying mapping languages as it is the
most user-friendly way of defining transformations. Nevertheless, the existing mapping
languages are not quite appropriate as usually they can process only very simple cases.
Therefore, the research offers a new idea for defining transformations — use of domain-
specific mapping languages instead of a universal mapping language.

Publications of the Research Results and Presentations in Scientific Conferences:

The main results of the PhD thesis are presented in 10 publications; each
containing a significant (70-80%) contribution of the author of the present thesis:

“DSL Tool Development with Transformations and Static Mappings” [67]

The publication outlines the role of mapping in the DSL tool development.

e “DSL Tool Development with Transformations and Static Mappings” [68]
The publication discusses the use of the mapping language in the DSL tool
development.

e “Graphical Template Language for Transformation Synthesis” [69] The
publication describes the language Template MOLA.

e “Transformation Synthesis Language — Template MOLA” [71] The
publication describes in detail the language Template MOLA.

e “Generation Mechanisms in Graphical Template Language” [70] The
publication discusses a merge mechanism in the language Template
MOLA.

e “From Requirements to Code in a Model Driven Way” [79] The

publication outlines transformations used for the model-driven

development process realization within the ReDSeeDS project.

23

24

“A Model-Driven Path from Requirements to Code” [80] The publication
describes in detail the development of transformations for Model-Driven
Software Development within the ReDSeeDS project.

“Model Migration with MOLA” [72] The publication describes a
transformation design in the language MOLA for transforming UML 1.X
activity diagrams to UML 2.3 activity diagrams.

“Hello World with MOLA - 4 Solution to the TTC 2011 Instructive Case”
[74] (accepted for publication). The publication discusses solutions of
simple transformation tasks in the language MOLA.

“Tree Based Domain-Specific Mapping Languages” [73] (accepted for
publication). The publication describes the mapping language
MALA4MDSD and the methodology of constructing a domain-specific

mapping language.

The author of the thesis has participated in the preparation of 5 more publications
with the contribution of 5-25%.

“Building Tools by Model Transformations in Eclipse” [86] The
publication outlines the principles of the METAclipse DSL tool
development framework and its use in the MOLA 2 tool development.
“Behaviour Modelling Notation for Information System Design” [78] The
publication describes the experience, gained while working with the UML
sequence diagrams within the ReDSeeDS project.

“Comprehensive System for Systematic Case-Driven Software Reuse”
[153] The publication describes a platform developed within the
ReDSeeDS project and highlights the role of transformations in this
platform.

“Domain-driven Reuse of Software Design Models” [82] The publication
discusses software reuse facilitatation by the transformations, developed
within the ReDSeeDS project.

“Solving the TTC 2011 Reengineering Case with MOLA and Higher-
Order Transformations” [155] The publication discusses the
transformation development for transforming the Java code (coded with a

model) to a state chart model.

The author has reported on the results of the work in a number of scientific

conferences:

“Graphical Template Language for Transformation Synthesis”
International conference SLE (Software Language Engineering), 2009;
Denver, USA

“From Requirements to Code in a Model Driven Way” MDA (Model-
Driven Architecture: Foundations, Practices and Implications) workshop
of ADBIS (Advances in Databases and Information Systems), 2009; Riga,
Latvia

“DSL Tool Development with Transformations and Static Mappings”
Doctoral Symposium of MODELS (International Conference on Model-
Driven Engineering Languages and Systems), 2008; Toulouse, France
“Domeén-specifiskas attélojumu valodas™ 69" Scientific Conference of the
University of Latvia, Information Technology Section, 2011; Riga, Latvia.
“Valoda Template MOLA un tas realizacija” 68" Scientific Conference of
the University of Latvia, Information Technology Section, 2010; Riga,
Latvia.

“MDA transformacijas ReDSeeDS projekta konteksta” 67" Scientific
Conference of the University of Latvia, Information Technology Section,
2009; Riga, Latvia.

“Transformaciju un attélojumu kombinésanas lietojumi riku biivé” 67"
Scientific Conference of the University of Latvia, Information Technology
Section, 2009; Riga, Latvia.

“MOLA-2 rika biive, izmantojot METAclipse platformu”, 66" Scientific
Conference of the University of Latvia, Information Technology Section,
2008; Riga, Latvia.

The developed MOLA tool has been demonstrated at the international
conference ECMDA-FA Tool Demonstration Section (see [85]).

Structure of the Thesis:

The thesis is a logical conclusion of the previously described investigational and

practical work, thus forming a complete research. The structure of the thesis is as follows:

25

26

CHAPTER 1 briefly describes the main ideas of MDSD and the role of
model transformation languages in the software development process. A
reader is offered the basic knowledge required for understanding the
research carried out by the author, as well as the significance of the results
achieved. In this chapter a reader is familiarized with the concept of model
transformation language.

CHAPTER 2 contains a detailed description of the model transformation
language MOLA, developed in IMCS.

CHAPTER 3 discusses the role of model transformations in MDSD and
Model-Driven Software Development related experience gained while
working on the ReDSeeDS project.

CHAPTER 4 offers the mapping language MALA4MDSD which
facilitates the development of this type of transformation.

CHAPTER 5 describes another practical application of model
transformations — the DSL tool development. The DSL tool development
frameworks and the role of transformations in the DSL tool development
are outlined.

CHAPTER 6 contains a description of the higher-order transformation
language Template MOLA which should be used for transformation
synthesis.

CHAPTER 7 describes different applications of the Template MOLA.
Special attention is paid to the development of the mapping language
compilers and metamodel independent transformations.

CHAPTER 8 lists the conclusions drawn while working on the thesis,

including possible directions of future research.

CHAPTER 1

Motivation - MDSD and Model Transformation Languages

CHAPTER 1 embraces clarification of the main terms used in the thesis and
outlines the research field and the main results in the field under discussion. Results by
other researchers used while working on the present thesis are described.

Section 1.1 of this chapter is devoted to the description of modelling. The terms
model and metamodel are defined. Application of modelling in software development is
discussed in Section 1.2. In Section 1.3 the term model transformations is defined
alongside with related to the thesis the latest research results in the area of model

transformations.

1.1 Modelling
This section is devoted to the definition of the terms model and metamodel,

starting with defining what model is.

1.1.1 What is a Model?

Let us look at this issue in a little broader context, not only as a part of the
software development process. Models are used in many areas of our everyday life. Maps
are a great example of it. Compared to the original, maps are simplified representations.
They contain the necessary information, but skip unimportant details. For example, in
metro schemes the lines between stations are drawn as straight lines; however, it is not
always true in the reality. A real Paris metro map is shown in Fig. 1. The reader may
compare this map with the Paris metro scheme used in maps and tourist guides. An
example of a metro scheme is given in Fig. 2. The real metro trajectories do not matter for
metro passengers as they can leave the metro only in stations. The things that do matter
are locations of metro stations and where it is possible to change from one metro line to
another. Metro schemes are drawn keeping in mind what is important and skipping
unimportant details.

Models are used in other areas as well and they are widely used in physics.
Models are built for physical systems to be used extensively for predicting behaviour of a

27

physical system. Results obtained using models are compared to experimental results. If
the experimental results differ from the results obtained using a model it means that the
model is false. Consequently, the model of physical systems is either modified or

extended.

Fig. 1. Real distance map of the Paris metro [27]

Irrespective of the wide use of models in different areas of our life there is no
common understanding what a model is.

,»Nobody can just define what a model is, and expect that other people will accept
this definition; endless discussions have proven that there is no consistent common
understanding of models.”” Jochen Ludewig [103]

Though common understanding of a model is lacking, many definitions of it are
available and some of them are listed in Table 1. In the author’s opinion a model is

simplification of a system which could be used instead of the original for some purpose.

28

As a result, it is possible to use model, which is simpler, safer, and also cheaper, instead
of something else that is more complicated, dangerous or more expensive. This is exactly
the case of metro schemes. For metro passengers the real metro trajectory and distance

does not matter as the stations are the only exit points for them.

. 13 Asniéres — Gennevilliers — Les Courtilles

Plan schématique
du réseau de Paris e s
chematcpanf the s e s

@®
4 (saint-Denis = " 7L 1945

7\ B PRESHREGHS
W =

S/ s portedes tilas

1 Chateau de Vincennes

% e
D

_O00 4] (- s @ @@
Boulogne — Pont de Saint-Cloud 2 4_Porte dOrléans) ®
7 Mairie d'ivry '8 Crétell — Préfecture

B 7 Villejulf — Louls Aragon
Chatilion — Montrouge 13

Fig. 2. Paris metro schema [196]

Table 1. Model definitions

Author Definition

Oxford Dictionaries 1. athree-dimensional representation of a person or thing or
of a proposed structure, typically on a smaller scale than
the original,

o (in sculpture) a figure or object made in clay or
wax, to be reproduced in another more durable
material;

2. athing used as an example to follow or imitate;

o a person or thing regarded as an excellent example

29

Author Definition
of a specified quality;
o an actual person or place on which a specified
fictional character or location is based;
o (the Model) the plan for the reorganization of the
Parliamentary army, passed by the House of
Commons in 1644-5.
3. asimplified description, especially a mathematical one, of
a system or process, to assist calculations and predictions;
4. aperson employed to display clothes by wearing them;
o a person employed to pose for an artist,
photographer, or sculptor;
5. aparticular design or version of a product;
o a garment or a copy of a garment by a well-known
designer. [131]
Jeff Rothenberg “Modeling in its broadest sense is the cost-effective use of

something in place of something else for some purpose. It
allows us to use something that is simpler, safer, or cheaper
than reality instead of reality for some purpose. A model
represents reality for the given purpose; the model is an
abstraction of reality in the sense that it cannot represent all
aspects of reality.” [143]

Marvin L. Minsky

“To an observer B, an object A* is a model of an object A to
the extent that B can use A* to answer questions that interest
him about A.” [112]

Jean Bézivin

“A model is a simplification of a system built with an
intended goal in mind. The model should be able to answer

questions in place of the actual system.” [18]

Alan W. Brown

“Models provide abstractions of a physical system that allow
engineers to reason about that system by ignoring extraneous

details while focusing on the relevant ones.” [24]

Liliana Favre

“A model is a simplified view of a (part of) system and its

30

Author Definition

environments.” [40]

Michael Jackson “Here the word ‘Model’ means a part of the Machine’s local
storage or database that it keeps in a more or less
synchronised correspondence with a part of the Problem
Domain. The Model can then act as a surrogate for the
Problem Domain, providing information to the Machine that
can not be conveniently obtained from the Problem Domain
itself when it is needed. ” [61]

Thomas Kiihne “A model is an abstraction of a (real or language based)

system allowing predictions or inferences to be made.” [89]

Jochen Ludewig “Models help in developing artefacts by providing
information about the consequences of building those

artefacts before they are actually made.” [103]

OMG “A model of a system is a description or specification of that

system and its environment for some certain purpose.” [111]

Ed Seidewitz “A model is a set of statements about some system under
study (SUS).” [147]
Bran Selic “Engineering models aim to reduce risk by helping us better

understand both a complex problem and its potential
solutions before undertaking the expense and effort of a full

implementation” [148]

Wilhelm Steinmiiller “A model is information: on something (content, meaning),
created by someone (sender), for somebody (receiver), for

some purpose (usage context).” [160]

Thomas Stahl, “A model is an abstract representation of a system’s

Markus Volter structure, function or behaviour.” [159]

In software development models are used to describe a system to be built. Models
allow analyzing a system before it is really built and looking at the system in different
abstraction levels. Systems are very complex. It is not possible to represent all aspects of
a system in one diagram. Different models may contain information about different

aspects of a system to be built. For example, UML sequence diagrams describe behaviour

31

of a system. UML use case diagrams describe usage scenarios of a system. UML class
diagrams contain information about the structure of a system.

On the other hand the information level about a system in diagrams may have a
different degree of elaboration. For example, class diagrams may be used to describe the
conceptual model of a system as well as the class hierarchy of a system.

Models may be used only as documentation or as an essential part of software
development. In MDSD (see Section 1.2) formal models are used. Stahl and Volter
describe a model in MDSD:

“Models are abstract and formal at the same time. Abstractness does not stand for
vagueness here, but for compactness and a reduction to the essence. MDSD models have
the exact meaning of program code in the sense that the bulk of the final implementation,
not just class and method skeletons, can be generated from them. In this case, models are
no longer only documentation, but parts of the software, constituting a decisive factor in
increasing both the speed and quality of sofiware development.” [159]

This type of models is going to be discussed in the present PhD thesis. These
models are developed by using modelling languages which may be graphical or textual.

The focus will be on graphical and formal modelling languages as they are more popular.

1.1.2 Meta-modelling

It is necessary to model modelling languages. A model of a modelling language is
called metamodel. Traditionally a metamodel describes the syntax of a modelling
language. OMG defines a metamodel similarly: “4 metamodel is a model used to model
modeling itself.” [125] “The typical role of a metamodel is to define the semantics for
how model elements in a model get instantiated.” [127]

Stahl and Volter define a metamodel more precisely: “Metamodels are models
that make statements about modelling. More precisely, a metamodel describes the
possible structure of models — in an abstract way, it defines constructs of a modelling
language and their relationships, as well as constraints and modelling rules — but not the
concrete syntax of the language” [159]

The most popular meta-modelling language is MOF. “The MOF 2 Model is used
to model itself as well as other models and other metamodels (such as UML 2 and CWM
2 etc.). A metamodel is also used to model arbitrary metadata (for example software

configuration or requirements metadata).” [125]

32

“A model that is instantiated from a metamodel can in turn be used as a
metamodel of another model in a recursive manner.” [127] It is possible to go further this
way and introduce a metametamodel — a model of metamodelling language. It is possible
to introduce even more meta-levels. However, in practice we don’t need to introduce

more meta-levels. A scheme of meta-levels is shown in Fig. 3.

MOF

M3 layer (meta-metamodel)

Other
languages

M2 layer (metamodels)

models models

M1 layer (models)

Systems J

MO layer (real world objects)

Fig. 3. Example of OMG MOF meta-level hierarchy [130]

Layer M3: “The meta-metamodeling layer forms the foundation of the
metamodeling hierarchy. The primary responsibility of this layer is to define the language
for specifying a metamodel.” “MOF is an example of a meta-metamodel.” [127]

Layer M2: “A metamodel is an instance of a meta-metamodel, meaning that every
element of the metamodel is an instance of an element in the meta-metamodel. The
primary responsibility of the metamodel layer is to define a language for specifying
models.” “UML and the OMG Common Warehouse Metamodel (CWM) are examples of
metamodels. ” [127]

Layer M1: “4 model is an instance of a metamodel. The primary responsibility of
the model layer is to define languages that describe semantic domains, i.e., to allow users

to model a wide variety of different problem domains, such as software, business

33

processes, and requirements. The things that are being modeled reside outside the
metamodel hierarchy.” “A user model is an instance of the UML metamodel.” [127]

“The metamodel hierarchy botroms out at MO, which contains the run-time
instances of model elements defined in a model. The snapshots that are modeled at M1
are constrained versions of the MO run-time instances. ” [127]

OMG MOF 1.4 standard explains meta-levels as follows: “the MOF meta-
metamodel is the language used to define the UML metamodel, the UML metamodel is
the language used to define UML models, and a UML model is a language that defines
aspects of a computer system.” [118]

The most popular meta-modelling standard (language) is MOF (Meta-Object
Facility), developed by the international standards organisation OMG. Currently the
actual MOF version is 2.4.1 [129]. Of course, MOF is not the only meta-modelling
language, there are others, for example, KM3 [62] and EMF Ecore [166].

1.2 Model-Driven Software Development
Today software becomes more and more complicated. Software development and

management has become more challenging, especially if it refers to large-scale systems
which are developed and used by hundreds, even thousands of people. In order to ease the
development of software, particular models are used to describe different aspects of the
system to be developed. [130]

Different terms are used to refer to the use of models in software development.
This section outlines different approaches to the use of models in software development
and the role of models in each approach to the software development process. The most

popular approaches in model use are described below.

1.21 MD*

Several terms are used regarding model use in software development. The most
popular terms are listed in Table 2, starting from the narrowest to the broadest

formulation. Term relationship is given in Fig. 4.

Table 2. Terms for MD*

Term Definition

MDA — Model Driven “MDA is the OMG’s particular vision of MDD and

34

Architecture

thus relies on the use of OMG standards. Therefore,
MDA can be regarded as a subset of MDD. ” [113]

MDSD — Model Driven

Software Development

“Model-Driven Software Development is a software
development approach that aims at developing
software from domain-specific models. ” [190]

The same as MDD.

MDD — Model Driven

Development

“MDD is a development paradigm that uses models as
the primary artefact of the development process.
Usually, in MDD, the implementation is
(semi)automatically generated from the models.” [113]
“Model-driven development is a style of software
development where the primary software artifacts are
models from which code and other artifacts are
generated. ” [161]

The same as MDSD.

MDE — Model Driven
Engineering

“Software Engineering paradigm where models play a
key role in all engineering activities (forward
engineering, reverse engineering, software
evolution, ...)" [113]

MD* - Model Driven
Everything

“I use MD* as a common moniker for MDD, MDSD,
MDE, MDA, MIC, LOP and all the other abbreviations
for basically the same approach.” [189]

MDD, MDSD

Fig. 4. Relationship between MD* terms

35

MDA was the first term applied regarding the use of models in software
development. It was launched by OMG (Object Management Group) in 2000. In MDA a
chain of three consecutive models is used. More information on MDA is given in Section
1.2.2. Today MDA is considered an obsolete term. The usage of exactly three consecutive
models seems too restrictive.

The terms MDD or MDSD, carrying approximately the same meaning, are used as
well. The usage of one or another depends on the taste of the author.

Another term is MDE which has a wider application than MDD and MDSD. See
Fig. 5 for the way Jean Bezivin presents the relationship between MDD and MDE. MDE
could be applied to any usage of models, including even those we are not yet familiar

with.

Broadening application area

We have not yet seen the full application deployment of MDE

’ Ay

MDD

MDD = Model Driven (Software) Development MDE = Model Driven Engineering
Fig. 5. MDE versus MDD [17]
1.2.2 Model Driven Architecture

Model Driven Architecture (MDA) was launched by OMG in 2000. It was the
first attempt to formalize the use of models in software development. The first version of
MDA manual [117] was published in 2000 by OMG. The updated version of the MDA
guide was published in 2003 [111].

36

“The Model-Driven Architecture starts with the well-known and long established

idea of separating the specification of the operation of a system from the details of the

way that system uses the capabilities of its platform.

MDA provides an approach for, and enables tools to be provided for:

specifying a system independently of the platform that supports it,
specifying platforms,
choosing a particular platform for the system, and

transforming the system specification into one for a particular platform.

The three primary goals of MDA are portability, interoperability and reusability

through architectural separation of concerns.” [111]

The MDA guide proposed to use three consecutive models. Each of them

described a system on a different level of details, starting from a more abstract definition

and gradually elaborating the details. The following three models where offered:

CIM - “4 computation independent model is a view of a system from the
computation independent viewpoint. A CIM does not show details of the
structure of systems. A CIM is sometimes called a domain model and a
vocabulary that is familiar to the practitioners of the domain in question is
used in its specification.” [111] This model does not contain information
about the system implementation. “The CIM helps to bridge the gap
between the experts about the domain and the software engineer.” [40]
This model could be treated as requirements for a system to be built. “4
CIM could consist of UML models and other models of requirements.”
[40] However there is no common understanding what and how should be
modelled in CIM.

PIM - “4 platform independent model is a view of a system from the
platform viewpoint. A PIM exhibits a specified degree of platform
independence suitable for use with a number of different platforms of
similar type.” [111] This model describes the architecture and high-level
behaviour of a system to be built. However this description could be
adapted for different implementation frameworks.

PSM - “4 platform specific model is a view of a system from the platform
specific viewpoint. A PSM combines the specifications in the PIM with the

37

details that specify how that system uses a particular type of platform.”
[111] This model is an extension of PIM, adding specific details for the
implementation platform.

Computation Independent Model was proposed for starting software development
and continued with Platform Independent Model. Today most of industrial approaches
propose to start with PIM as there is no common understanding of CIM. Some authors
even have a disparaging attitude towards CIM; some propose to treat CIM as
requirements [101]. In case of using CIM some suggest it to be automatically transformed
to PIM. However, as it is not possible to obtain automatically all the necessary
information in Platform Independent Model, it was proposed that this model should be
extended manually. It is easy to see that it is not possible to automatically obtain system
architecture from requirements.

Already the MDA guide proposed transition from PIM to PSM to be done by
using automatic transformation. A model is not an executable system. Therefore one more
transition step from Platform Specific Model to a code is necessary. MDA application

scheme is shown in Fig. 6.

2> - Execution order
@— Model transformation
== - Manual extension

Fig. 6. MDA application schema with one execution environment

One of the goals for MDA introduction was to support reusability and application
development for different frameworks as there are cases when it is necessary to create the
same application for different frameworks. Applications for mobile phones may serve as
an example. Different phone developers support different application execution
environments. This is one of the reasons why Platform Independent Model is separated

from Platform Specific Model. When using the same Platform Independent Model it is

38

possible to develop application for different frameworks. MDA application scheme with
the support of multiple execution environments is given in Fig. 7.

It should be noted that MDA allows using only the UML language for a model
description.

2 - Execution order

Q— Model transformation

-- Manual extension

" PSM
Flatform B

—‘ﬁ
B2

Code
Platform B

\.
,.

Fig. 7. MDA application schema with multiple execution environments

As already stated above the MDA guide proposed to implement transition from
PIM to PSM by using automatic model transformation. In the context of MDA the term
model transformation was introduced. “Model transformation is the process of converting
one model to another model of the same system.” [111] The term model transformation is
described in detail in Section 1.3.

1.2.3 Model Driven Software Development

MDA process is too restrictive. This is a reason why it has not been widely
accepted in industry. Nowadays MDA is treated as obsolete term. However, the good
ideas behind MDA as models and model transformations are employed in Model-Driven
Software Development.

Compared to MDA in MDSD it is possible to use any chain of models. In MDA
there was the restriction that the UML language should be used to define models. In
MDSD there is no such restriction.

One specific type of MDSD is Domain-Specific Modelling (DSM). In DSM only
one model is used. Code is generated directly from this model which is defined in
specialised Domain-Specific Modelling Language. Domain-Specific Modelling is

described in detail in Section 1.2.4.

39

1.2.4 Domain-Specific Modelling Languages

Another specific case of MDSD have become exceedingly popular - the
specialized modelling languages. It is a common practice to create and use specialized
modelling languages for a domain area and they are called Domain-Specific Modelling
Languages (DSML). They are developed for users specialized in a concrete area, e.g. a
language for automotive software development (AUTOSAR [10]), mobile telephone
software development [88], and many others.

Domain-Specific Modelling Languages (DSML) is a subset of a more general set
of languages, namely, Domain-Specific Languages (DSL). When using Domain-Specific
Languages users can operate with familiar terms. The use of a DSL increases the
efficiency of software development in the field. DSLs are applied in many areas of
software development. A popular DSL, for example, is SQL — a specialised language for
working with databases.

Software development using DSML is called Domain-Specific Modelling (DSM).
Commonly, when applying this approach, only one model developed in DSML is used.
This model is directly transformed into an executable code. However, approaches exist of
using chains of domain-specific models when each model covers different aspects of a
system. Relation between DSM and other software development approaches is shown in
Fig. 8.

DSL

approach

Fig. 8. Relation between MD* and DSL approaches

There can be graphical or textual Domain-Specific Modelling Languages.
However, DSMLs are more often graphical. (Nevertheless it is not true for DSLs in
general.) Only graphical Domain-Specific Modelling Languages will be considered here.

40

A visual Domain-Specific Modelling Language basically consists of two parts —
the domain part and the presentation (visual) part. Sometimes they are called also the
abstract and concrete syntax respectively. The domain part of the language is defined by
means of the domain metamodel, where the relevant language concepts and their
relationships are formalized. The domain metamodel is also used for a precise definition
of language semantics. Standard MOF [120] or similar notations are used for the
definition of domain metamodel.

As regards the presentation part (concrete syntax) definition there is no
universally accepted notation. The same meta-modelling techniques are used, but with
various semantics. Most frequently, instances of classes in the presentation type
metamodel are types of diagram elements to be used in the diagram. A concrete set of
graphical element types for a diagram definition is called the presentation type model (a
typical example is the graphical definition model in GMF [172]).

Tool development for graphical Domain-Specific Languages is time consuming
and expensive. Due to the growing popularity of Domain-Specific Modelling Languages
various graphical tool building frameworks have been developed to improve the tool
(editor) building process. Two different approaches are used in these environments. The
first option is to use a mapping-based approach. During the tool design this mapping
assigns a fixed presentation type model element (a node type, edge type or label type) to a
domain metamodel element, by means of which the latter must be visualized. This
solution is quite appropriate for simple cases, where no complicated mapping logic is
required. In this case tools for simple DSMLs can be developed even during a
presentation session. However, frequently DSML support requires much more
complicated and flexible mapping logic. One of the reasons is the lack of fixed
correspondence between the domain metamodel and presentation types. In this case the
second approach is used: to define the correspondence by model transformation
languages. Transformations define the synchronisation between the domain and
presentation models and the tool behaviour in general.

Mapping based frameworks are MetaEdit+ [109], GMF framework [172],
Microsoft DSL Tools [28], Generic Modeling Tool [26] and some other. A pure
transformation based framework is METAclipse framework [86]. The other
transformation based frameworks Tiger GMF project [37], ViatraDSM framework [133]

and GrTP [15] provide also some elements of the mapping based approach.

41

There exist mapping based and transformation based tools, but usually some parts
of the same DSL are suitable for mappings and some for transformations. It means none
of the solutions is optimal. The absence of a good combined solution creates the problem
which is discussed in detail in CHAPTER 5.

1.3 Model Transformations
This Section focuses on defining the term model transformation; sketching a brief

introduction into the history of model transformations; listing the popular model
transformation languages and discussion of the need of model transformations as DSLs
for specific transformation domains. For introduction a definition of transformation is
offered:

Transformations can easily be understood when thinking about what happens in
nature: an ugly caterpillar is transformed into a beautiful butterfly (Fig. 9); tadpoles into
frogs; leaves change their colours in autumn. These transformations occur always in the
same way. It means that the occurrence and the way of transformation is predefined

somewhere in nature, most probably in DNA.

1@1‘3\%%{@/ —_—

Fig. 9. Transformation in the nature [30]

“A transformation is the automatic generation of a target model from a source
model, according to a transformation definition.” [90]

“A transformation definition is a set of transformation rules that together describe
how a model in the source language can be transformed into a model in the target
language. A transformation rule is a description of how one or more constructs in the
source language can be transformed into one or more constructs in the target language.”
[90]

Although this definition could be applied to caterpillars and butterflies in terms of
this thesis we will be concerned with transformation of data or, more precisely,
transformation of models. Model transformation execution scheme is given in Fig. 10.

This scheme directly corresponds to the definition of transformation. The source model is

42

transformed into a target model according to a transformation definition. It should be
added that model transformations are defined in terms of source and target metamodels. It
means that the same transformation could be used for all source models confirming to the
source metamodel. As transformation works in terms of metamodels all target models
will confirm to the target metamodel. Of course, it is possible that source and target

models coincide; such transformations are called in-place transformations.

Source . — Target
Transformation definition 9
metamodel | metamodel
ilnatance of idescrihes ilnstance of

¥
source Transformation execution target
model " —_model

Fig. 10. Execution scheme of model transformations

Model transformation languages are used for writing down a model
transformation definition. The most popular model transformation languages are listed in

the following sub-Section.

1.3.1 Model Transformation Languages

As already mentioned above the term model transformation for the first time was
introduced in the MDA Guide [117]. At that point there were no appropriate means for
writing down model transformations. Of course, general purpose programming languages
could be used, however, they did not have appropriate means to support working with
models. Therefore OMG requested to submit proposals on model transformation language
QVT (Queries/ Views/ Transformations) [119]. The development of QVT standard was
very slow and the first version of QVT standard was published only in April, 2008 [122].
Currently the actual version is QVT 1.1. [128].

As a result of the slow QVT development many independent model
transformation languages were developed, for example, MOLA [76, 59], Lx [13], GReAT
[7], UMLX [197, 179], ATL [63, 165], Tefkat [98, 35], MTF [56], ATOM? [96, 107],
VMTS [99, 25], BOTL [105, 58], Fujaba [42, 45], RubyTL [32, 185].

43

In CHAPTER 2 the model transformation language MOLA is discussed in detail
as it is used in model transformation applications described in the present PhD thesis.

There already existed many graph transformation languages before OMGs RFP.
The first graph transformation language PROGRESS was developed as early as the
beginning of the 1990s [145]. Influenced by OMGs RFP many graph transformation
languages were adapted for the development of model transformations, for example, AGG
[163], PROGRES [144], TGG [146, 46], VIATRA [31, 180]. In fact, there is no big
difference between typed-attributed graphs and models. At present distinguishing
between a model and a graph transformation language is sometimes quite difficult.

Model transformation language alone is not sufficient for developing model
transformation as tool support for the language is required as well. Tool support for
independent model transformation languages was mainly developed by research groups
closely associated with the authors of the language. As a result tool support for many
languages is mainly experimental and is devoid of industrial qualities. The first language
with good enough tool support was ATL. Most probably this is the reason why ATL is
the most popular model transformation language.

The situation with tool support of the QVT standard is even worse. There is no
tool supporting the QVT language completely. There are some tools supporting parts of
MOF QVT. MOF-QVT Operational is supported by SmartQVT tool [150]. Eclipse M2M
project partially implements QVT Operational and QVT Declarative (Core, Relational)
[175]. MOF-QVT Relational is partially supported by MediniQVT [57]. UML modelling
tool MagicDraw [115] uses QVT Operational plug-in implemented by Eclipse M2M
project [175].

The limited tool support of QVT and understanding that for different domains
different transformation languages are needed are the reasons for developing new
transformation languages even now, among them being Epsilon [92, 169], Henshin [9,
173], GreTL [55], IQuery [100], UML-RSDS [95], Edapt [168].

Examination of application areas of model transformations reveals that for each
different domain a different language is more appropriate. Actually many transformation
languages are developed, keeping a certain domain in mind. For example, MOLA was
developed for transformation development in the MDA process. Viatra specializes in
transformation development for simulators. IQuery is suitable to develop transformations

for the DSL tool development. Epsilon actually is a transformation language family

44

where each language is suitable for a definite set of tasks. There are domain-specific
transformation languages applicable in certain domains. One well studied domain is

model transformation for model migration.

1.3.2 Mapping Languages

When highly abstracting in the consideration of model transformations, we can
treat them as mapping that is done from the source to the target. That is the way
transformations were treated in the MDA guide [111]. However, transformations can be
subject to complicated execution conditions. It is hard to represent these conditions as
mappings. Therefore mappings can be used only in simple and declarative parts of
transformations. Hence mappings can be used as a transformation language for simple
cases.

“A mapping is specified using some language to describe a transformation of one
model to another. The description may be in natural language, an algorithm in an action
language, or in a model mapping language.” [111]

Attempts to create universal mapping languages as a certain alternative to
traditional transformation languages have been started sufficiently early. The term
mappings are used already in the MDA guide [111].

List of mapping languages is given in the Section 4.1.2.

1.3.3 Higher-Order Transformations

MDD can be naturally applied also to transformation development. It means that
transformations are used to create transformations. This special kind of transformations is
named Higher-Order Transformations (HOT). These are transformations modifying/
reading/creating model transformations. In the HOT approach transformations must be
treated as models conforming to the relevant metamodel.

Though the HOT idea can be applied to any transformation language, the largest
amount of HOTSs has been created for the ATL language [63]. A comprehensive survey of
HOT applications is given in [183] where the four main types of HOTs have been
identified. One of the HOT application types is transformation synthesis. Transformation
synthesis means transformation generation from various sources of information, including
model mappings. Such a mapping between two models can be considered as a high level

specification of the required model transformation. A large set of such mappings has been

45

obtained by applying the ATLAS Model Weaver (AMW) [39]. The idea of obtaining a
transformation from a mapping can be applied to many other transformation languages,
for example MOLA. In CHAPTER 6 a special language for transformation synthesis
Template MOLA is proposed. It is the first language [69] built specially for the
development of higher-order transformations. Afterwards a special extension of ATL for
transformation synthesis was developed as well. [182]. However ATL is textual, while
MOLA and Template MOLA are graphical languages.

One of the popular research directions related to the HOTs approach is the
development of metamodel independent transformations. In most of the model
transformation languages a transformation is attached to the metamodel it is defined for.
This makes transformation reuse almost impossible. An approach for solving this problem
is proposed by [33] and [139]. It should be noted that Template MOLA could be used to

develop metamodel independent libraries for MOLA. See Section 7.4 for details.

46

CHAPTER 2

MOLA Language

As the model transformation language MOLA was used to develop
transformations described in the thesis an overview of the MOLA language is given in
this chapter. More about the MOLA language can be found in [76], [75] and [77]. A
formal description of MOLA as well as the MOLA tool, can be downloaded at [59].

2.1 MOLA Overview

MOLA is a graphical transformation language developed at the University of
Latvia. It is based on traditional concepts of transformation languages: pattern matching
and rules defining how the matched pattern elements should be transformed.

A MOLA program transforms an instance of a source metamodel into an instance
of a target metamodel. The two metamodels are specified using the EMOF [120]
compliant metamodelling language (MOLA MOF). These metamodels, which may also
coincide, both are parts of a transformation program in MOLA. Mapping associations
may be added to link the corresponding classes in the source and target metamodels.

MOLA is a model transformation language which combines the imperative
(procedural) programming style with declarative means of pattern specification. A
transformation written in MOLA consists of several MOLA procedures, one of them
being the main. An example of a MOLA procedure is given in Fig. 11 (p.54). The
execution of a MOLA program starts with the main procedure. Procedures in MOLA may
be called from the body of another procedure by using call statements. Like in most
transformation languages, class instances, primitive and enumeration-typed variables can
be passed on to the called procedures as parameters. There are other types of statements
in MOLA as well, i.e. rule, foreach loop, text statement, etc. The execution of a MOLA
procedure starts with the start symbol. The next statement to be executed is determined by
the outgoing control flow.

The rule in MOLA represents the classical branching (if-then-else) construct of

imperative programming. The rule contains a declarative pattern that specifies instances

47

of which classes must be selected and how they must be linked. Only the first valid
pattern match is considered. The action part of a rule specifies which matched instances
must be changed and what new instances must be created. The instances to be included in
the search or to be created are specified using class elements in the MOLA rule. The
traditional UML instance notation (instance_name:class_name) is used to identify a
particular class element and specify the class the instance must belong to. Class elements
included in a pattern may have attribute constraints — simple OCL-like expressions.
Expressions are also used to assign values to variables and attributes of class instances.
Additionally, the rule contains association links between class elements. A class element
may represent an instance, matched previously by another pattern. Such class element is
called a reference class element and is specified using the name of the referenced class
element, prefixed with the symbol“@”.

Typical transformation algorithms require iteration through a set of the instances,
satisfying the given constraints. In order to accomplish this task, MOLA provides the
foreach loop statement. The loophead is a special kind of the rule used to specify a set of
instances to be iterated in the foreach loop. The pattern of the loophead is given by using
the same pattern mechanism as for an ordinary rule, but with an additional important
construct. It is the loop variable — the class element that determines the execution of the
loop. The foreach loop is executed for each distinct instance that corresponds to the loop
variable and satisfies the constraints of the pattern. In fact, the loop variable plays the

same role as an iterator in classical programming languages.

2.2 MOLA Elements

Table 3 presents a list of MOLA elements. The application context and semantics

of each element is described.

Table 3. List of MOLA elements

Image Element Description
Start Execution of a MOLA procedure starts with a
. symbol start symbol.

Execution of a MOLA transformation starts

48

Image

Element

Description

from the start symbol of the main procedure.

End

symbol

Execution of a MOLA procedure ends with an
end symbol. When the end symbol is reached in
the main procedure execution of transformation
is completed. In other procedures control is

returned to the procedure calling this procedure.

[Eai : Operation
1

Input

parameter

MOLA procedures may have parameters,
defined by name and type (@<name>:<type>).
The name should be unique in the procedure
(different from class element names). The type
is a reference to a class defined in MOLA MOF
or a primitive type. Parameters are ordered. The
order is represented by numbers.

Values of input parameters are passed to the
procedure; if the value is changed it is not
passed back.

z

Infout

parameter

The same as the input parameter: the only
difference is that the value of parameter is

passed back to the calling procedure.

[op : Operation

Variable

It is possible to define variables in MOLA
procedures. For variables the name and the type
is defined (@<name>:<type>). Variables are

used in the same way as parameters.

o : Operation

Rule

MOLA rule consists of a pattern to be matched
and an action part. Both are defined by means of
class elements and association links.

The pattern in the rule is matched only once.

If a rule without a valid match is to be executed
and it has no ELSE-exit, then the current
procedure is terminated (if this occurs outside a

loop) or the next iteration of the loop is started

49

Image

Element

Description

(within a loop body).

Loop

MOLA loop contains a loophead (the first rule)
and a loop body (0 or more loop elements whose
execution order is defined by control flows).

The loophead is a rule which contains a loop
variable. The loophead and the loop body are
executed for each distinct match of loop

variable.

o Operation

Class

element

A class element is a metamodel class, prefixed
by the element (role) name.

A class element may also contain a constraint —
a Boolean expression in a simplified subset of
OCL.

Assignments in class elements may be used to
set the attribute values of the instances.

When a pattern in a rule is matched for each
class element, an instance satisfying constraints
is found and attached to a class element
(constraints are defined in a class element and
by a pattern, e.g., connections with other class

elements).

o : Operation

Class
element,

reference

References are marked with the symbol “@”.

The previously matched instances, as well as the
parameters and the variables, may be used as
references. In this case, an instance already
attached to a referenced element is used in a

pattern matching.

{NOT}
o : Operation

Class
element
with NOT

constraint

Equivalent to NAC (negative application
condition) in graph transformation languages,
e.g., AGG [163].

A pattern is matched if there are no instances in

50

Image Element Description
(NOT- the model corresponding to the NOT-element.
element) NOT-elements are typically connected to other
class elements by using association links. Such a
pattern matches if there is no instance
corresponding to the NOT-element which
fulfills conditions defined to NOT-element and
has all specified links to the instances of
“normal part”.
Class It is possible to create instances in the rules.
5 2 B o element, Creation is marked with a red dashed line.
CEREREPER creation Assignments may be used to set the attribute
values of the newly created instances.
Class It is possible to delete instances in the rules.
__________ element, Such class elements may be references or they
"”F'ﬂ. deletion are matched before deletion. Deletion of a class
___________ element causes automatic deletion of the related
links.
Loop Loop variable is an iterator of foreach loop. A
variable foreach loop iterates through all possible
P— instances of the loop variable class that satisfies
the constraint imposed by the pattern in the
loophead.
There is only one loop variable in a loop.
Association An association link, connecting two class
2 : Cperstion link elements, corresponds to an association linking

interface
i : Interface

operati

the respective classes in the metamodel. Class
elements at the ends of links are matched to the
instances connected with a link of this type.

51

Image Element Description
— Association It is possible to create instances of association
. . link, links. An end of a create-link may be attached to
'mfrf?rir:r creation a class element included in the pattern or to the
class element, creation.
Association It is possible to delete instances of association
(B0 Dperaion link, links. An end of a delete-link may be attached to
interface i"p‘-'““"” deletion a class element included in the pattern (also the
CERLLLC class element, deletion). Association links are
deleted before the class element deletion.
Text Text statements consist of a constraint and
statement assignments. It is possible to assign values to
parameters, variables and class element
references. Assignments are skipped if the
CPF@C' constraint fails. Mainly text statements are used
to process primitive-typed elements. A text
statement containing a constraint (a Boolean
expression) may also have an ELSE-exit and
serve as an if-then-else construct.
Call Call statements are used to invoke sub-
statement procedures. Parameters are passed to the
C o invoked procedures. If the parameter is of the
type in/out to pass the value to this parameter a
referencable element (variable, parameter, class
element reference) should be used.
External Besides MOLA procedures, external (coded in
call an OOPL) procedures can also be invoked; this
showhisglHello!) statement feature is used for low-level data processing
(e.g., model data import). Parameters may be
passed to external procedures.
. Control Control flow arrows determine the execution
v flow order of MOLA statements. The element that

52

Image Element Description

follows the use of the control flow is executed
as the next one. (If the execution of the previous

element — rule, text statement — had succeeded.)

Alternative Certainly, there may be a situation when no

control match exists — then the rule is not executed at

flow all. To distinguish this situation, the rule may
:{ELSE} have a special ELSE-exit (alternative control
W flow), which is traversed in this situation.

Alternative control flow may be added also to
text statements. This control flow is used if the

constraint in the text statement fails.

2.3 MOLA Example

In order to illustrate the basic MOLA concepts, briefly listed in the previous
section, a simple MOLA transformation example is provided in Fig. 11. This example is
taken from transformations developed in the ReDSeeDS project (see CHAPTER 3). UML
(+ ReDSeeDS specific traceability framework) is used as a source and target metamodel
of the transformation.

This procedure copies the interface and all operations it contains to the provided
package in the target model. ReDSeeDS specific traceability information is created
between the original interface and its copy.

This MOLA procedure has four parameters. Three of them are input parameters
and one in/out parameter. The first parameter (@int) is the interface to be copied. The
second parameter (@pt) is a package for the copy of the interface to be placed. The third
parameter (@sa) is ReDSeeDS specific. It is a logical model (Software Artifact)
processed. All traceability links between the elements are attached to this logical model.
The fourth (in/out) parameter (@1i) is used to return the reference to the newly created
copy of the interface.

Execution of the MOLA procedure starts with a start symbol, followed by the
execution of the rule (using control flow). As already stated previously, the MOLA rule

may consist of a declarative pattern and an action description. In this case the pattern is

53

trivial as all class elements with black solid borders are references. Nothing is matched,;
the values attached to the references are used directly. Therefore execution of the rule
starts directly with the execution of actions defined in the rule. This rule creates a new
instance of an interface (newint) and the latter is set the same name as the name of the
interface to be copied (hame=@int.name). To assign values in MOLA simple OCL like
expressions are used. (For details see MOLA reference manual [6].) In the same rule
ReDSeeDS specific traceability information is created (id:isDependentOn) for which the
original interface is set as a source and the copy of the interface - as a target. The
traceability information is attached to ReDSeeDS logical model (@sa). This rule uses
references to the provided parameters (@int, @sa, @pt) and creates appropriate instances

(newint, id) and association links.

input parame ter infout param eter

start symbol

[winit : Interfacs [yt : Package @sa S-:-ftwareﬁmfact I © Interfac:
1 2
class elg;neiil flow _':__‘? fIrterfaces} [Kemel] r=clkemel) fInterfaces}
reference Ri@m'lmerfax
" : Sl (=3 : Software Artifact T @newo : Operation
nterfac:s g kemel
rle » - {sclkemel} [Kemel} { I

Lo . 'dependency Souns: D -
association link ' REPELLE :artlfa packagedElemert DmlngPackz@e variable
creation : ownedTrace + : newirt : Interface & _

cliert Dependa:t-lil:u- wid : Iz Dependerit On suppher Dependatln I It 2 rfaces TR _Et_h;lb ute
INSTANCE——F——— fookemep £ dapandancyTargd : ame =@t name 4 |assignment
creation Lesesssmmsssesd L EaaaRaiaaea
association linlk
“foreach” loop—m i’
loophead — ownedOperation |[Eint : Interface {Enewint ; Interface
: finterfaces} finterfacss}
. irterface
loop variable™ | -
: ad Operation e
call stalement s parameters il C
il kv {@Enewo : Operation
(psm_Copy Operation(i@a, '™, (@3, @nen) S {kemel}

text statement

variable assignment

Fig. 11. MOLA example

The rule is followed by a foreach loop which iterates through all operations of the

interface to be copied. The operation is used as a loop variable (0). It is checked that the

54

operation is connected to the interface using the association link ownedOperation —
interface. Only the operations satisfying this condition are processed.

For each such operation procedure “pim_CopyOperation” is called (using the call
statement). This procedure contains four parameters as well. The first is the operation to
be copied (0). The second is simply an empty string and it is not important in this context.
The third is again ReDSeeDS logical model, used to attach the traceability between the
original and the copy in the same way as in this procedure. The fourth is a reference to the
variable (@newo) defined in this procedure. This actually is in/out parameter and is used
to return the newly created copy of operation.

After the call statement the MOLA rule is executed. The copy of operation
(@newo) returned by the call statement is attached to the copy of the interface (@newi).
Association link (ownedOperation — interface) is created.

The loop and actions in it are executed while there are operations satisfying
constraints in the loophead. After execution of the loop completes the text statement is
executed. This text statement assigns a value to in/out parameter. The value of the
parameter is set to the created copy of the interface. As a result, when reaching the end
symbol, the parameter will return the reference to the newly created copy of the interface.

Reaching of an end symbol is the last element of the MOLA procedure and it
completes its execution. Control is returned to the calling procedure. The value of in/out
parameter is also returned.

To get a more detailed understanding about the usage of different MOLA

elements see the next section.

2.4 Hello World with MOLA

This section is dedicated to describing a solution for the Hello World case [106] of
the TTC 2011 [5] contest, implemented in the MOLA model transformation language:
“Saying Hello World with MOLA - A Solution to the TTC 2011 Instructive Case” [74].
This use case demonstrates the application of MOLA constructs for solving typical
transformation tasks. This section provides a more detailed understanding about the usage
of different MOLA elements in transformation development. If a reader is familiar with

the MOLA language he/she can skip this section.

55

The Hello World case consists of several very simple tasks. It confirms the
assertion that simple tasks can be solved in a straightforward and easy readable way in

MOLA. In most cases the basic part of the task is performed by one rule (or loophead).

2.4.1 Greeting Tasks

The first group of tasks is "Greeting" transformations. The first task is to “provide
a constant transformation that creates the example instance of the “Hello World"
metamodel given in Fig. 12.” [106] The next task is based on “slightly extended
metamodel given in Fig. 13.” [106] It is required to “provide a constant transformation
that creates the model with references also shown in Fig. 13.” [106] The last task in this
group is to “provide a model-to-text transformation that outputs the GreetingMessage of
a Greeting together with the name of the Person to be greeted. For instance, the model

given in Fig. 13 should be transformed into the String "Hello TTC Participants!" [106]

H Greeting [Grestng
o text ; EString ext="Hello World"

Fig. 12. The “Hello World" metamodel and the example instance [106]

H Greeting Creeling

greetigMessage

0. GreetinnMessag: | Ferson
H GreetingMessage B Person tes="Hello* name="TT¢ Participants'

| = text : EString = name : EString

Fig. 13. The extended “Hello World" metamodel and the example instance [106]

In these transformations the MOLA pattern used is very similar to the
corresponding instance diagram given in the task specification. Greeting transformations
are given in Fig. 14, Fig. 15 and Fig. 16. The transformation logic for these tasks is
described by using one MOLA rule (the grey rounded rectangle). The only requirement in
the first two tasks is to create elements (marked with red dashed lines). In the third task an
instance of the class "StringResult" is created, if the pattern (the elements with black solid
lines) is matched with the MOLA rule.

56

q : Greeting .

; Ihellowarid} D@
» bexk:="Hello warld" :

gresting Message : person E
."[:} lg;|m Greetlngl‘-.n‘lessage E ------- E-;?:;FST;.;"""": "[::@

: Thellowardext} : . Thellowordext}

: | 2 ket ="Hello" : . name ="TTiC F‘artlclpants

Fig. 15. Transformation creating a constant Greeting instance with references

i ™y
g : Greeting Opp_person_Greding

.- [opp_grestingMessage_Gresing fhelloworidext} L. D@

ratingtessas | e suingRest s person
gm : Greetinghieszage 1 frezult} ! p : Person
thelloworidext} result = (@gm text+" @0 name+T E hellowordaxt}
N Tttt A

Fig. 16. Model-to-text transformation creating a greeting message

2.4.2 Instance Counting

The next group of tasks in the task specification is the instance counting tasks.

The input models are simple graphs conforming to the metamodel given in Fig. 17 [106].

The task specification is as follows

“Provide a model query that counts the number of nodes in a graph.

Provide a model query that counts the number of looping edges in a graph, i.e. edges
where the source and the target node coincide.

Provide a model query that counts the number of isolated nodes in a graph, i.e. nodes
that are neither the source nor the target of any edge.

Provide a model query that counts the number of matches of a circle consisting of
three nodes, i.e. the pattern shown in Fig. 18 where nl, n2 and n3 are pairwise
distinct. Note that each circle in the model should be matched three times.

Optional: Provide a model query that counts the number of dangling edges in a
graph, i.e. edges where either the source or the target node is missing. ” [106]

Transformation counting nodes in a graph is given in Fig. 19. Transformation

counting looping edges is given in Fig. 20. Transformation counting isolated nodes is

57

given in Fig. 21. In MOLA the counting is implemented by using an integer counter and a
foreach loop (a rectangle with a bold border) where the counter is increased. In most

cases the loophead pattern directly specifies the set of instances to be counted.

H Node
nodes = name : EString

l o,.*
Sr g

H Graph 0.1 0.1

T edges
a.,.

_— H Edge

Fig. 17. The simple graph metamodel [106]

ni:Mode

:Edge
Eq n3:Mode
:Edge
:Edge
Y

nZ:Made

Fig. 18. Circle of three nodes (simplified representation of edge objects) [106]

A MOLA variable “sk” (a white rectangle) of type integer is used as a counter.
Each loop iteration increases the instance count by one. Text statements (yellow rounded
rectangles) are used to modify the values of the counter. Finally, to save the counting
result in the resulting model the MOLA rule creating an instance of the class "IntResult"
is used.

For all these tasks it was required to count elements in a graph. As it was not
defined whether the model contains only one graph or multiple graphs, we admitted the
worst case of many graphs in the model. For transformations to work properly when there
is more than one graph in a model we provide the graph to be processed as a parameter.

Consequently, we use another MOLA procedure where we iterate through all graphs in a

58

model (using a foreach loop) and from here we call the transformation (using the call
statement) for processing the current graph. An example of such transformation is given
on the left side of Fig. 19. (The only thing that changes is the called procedure.) A similar
graph processing is done for all tasks where the phrase "in a graph" is used. If there is
always only one graph in a model this step could be omitted. The same could be said

about transformations in Fig. 25- Fig. 32 as well.

. @] : Graph
. 1 @sk : Integer
v

fqraph1}

n : Mode EElEs £y : Graph

h1
faraph 1} opp_nodes_Greph faraph 1}

r: It Resul
Tresult}

@) "
ek © Integer

. oraph1}
are
';g: ”T& B e Edge Jadges @q - Graph
rap rg h1
farphi} opp_edges_Graph faraphi}
opp_trg_Edge

r: IntResul
fresult}

Fig. 20. Transformation counting looping edges in a graph

59

g : Graph

._ - ski=0 1 sk Integer

{graph1}
opp_sri_Edge
{HOT} — n : Mode " g : Graph
es : Bdge INOT} | app_ tra_Edge {araphi} nodes {araphi}
Tgraphil . PP1Ta_ opp_nodes_Geph
et : BEdge trg
Taraphi}

r:Int Resuk
Tre=sult}

Fig. 21. Transformation counting isolated nodes in a graph

The only counting task, processed differently, is the circle counting. In MOLA
there are two loop types: the foreach loop and the while loop (rule + appropriate control
flow). In the while loop, to ensure only distinct matches, an explicit marking of the
already found matches (using a NAC construct) is required, claiming the usage of
temporary metamodel elements to solve the task. An alternative is to use three nested
foreach loops, since multiple loop variables are not supported in MOLA. We provide
solutions using both loop types as each has some advantages and disadvantages.

We start with the solution using the foreach loop, as this loop type was used in the
previous tasks. The solution of this task is different from the previous one because we
want to find all different circles. In this case one loop variable is not sufficient and,
consequently, several loops are required.

The task specification did not clearly state whether graphs or multi-graphs should
be considered (i.e., is it possible to have multiple edges between two nodes.) As the
provided metamodel supports multi-graphs and graphs are a subclass of multi-graphs, we
decided to build our solution, providing support to multi-graphs. This being the case, if
there is a circle "n1;n2;n3" and two edges between "nl1" and "n2", then there will be two
circles "n1;n2;n3" (and 2*"n2;n3;n1" + 2*"n3;n1;n2"). The solution of this task is given
in Fig. 22. To distinguish different edges between the same nodes, the edges are used as
loop variables. There are three nested loops used in the solution. Each loop selects one

edge for the circle. Actually, finding of circles is defined in the loophead of the first loop,

60

however, when using this loop we are only able to find all edges which are a part of some
circle, but we do not have information in how many circles this edge is used. Adding the
second and the third loop we count all circles that have different edges three times, as

required in the task specification.

.. F E=k : Integer
a ™y
n{; : N:;:I: e el :Bdge | opp_trg_Edge |02 : Mode
rap foraph 1} foraph 1}
tself <> @n2} opp_src_Edge trg
=
bpp_trg_Bdge |trg opp_src_Edge
3 : Bdge opp_sr_Edge [0 @ Mode|rg a2 : Edge
h1
fgraph1} ore Lioreh 1} [onn o pae |EEn
. : A
i ™y
_ nd : Mode
23 Bdge | opp sro_Edge
faraphi] Tgraph1}
M8 rcalf < @n 1 and self <> @nd
opp_trg_Fdge ;
trg opp_trg_Edge |9
@nl : Mode 22 : Bdge | opp_sre_Edge En2 : Node
foraph1} faraph1} o |_faraph1}
" : S
@n1 : Node [el : Bdge Dpp_src_EdgEI@"S ::?de
mpht} [e | fareeh 1} | {=pht}
n
shi=sk+1

Fig. 22. Transformation counting circles consisting of three nodes

If we know that there are no multi-graphs, then the last loop can be omitted
because the existence of the third edge is already validated by the patterns in the first and
the second loop. However, understanding of this case is probably easier if nodes are used

as loop variables, but anyway three loops are needed again.

61

Solving of the task by using the foreach loop is quite lengthy; however, if we add
temporary classes it is possible to create a shorter and more elegant solution. In this case
we will use the while loop. We extend the metamodel by adding the temporary class
"Circle" and connecting it to the class "Edge". The metamodel extension is shown at the
bottom of Fig. 23. If such extended metamodel is used then we can simply write a MOLA
rule looking for circles and marking the found circles: connecting all edges of a circle to a
new instance of the "Circle" class. To ensure that each circle is found exactly once a NOT
constraint (an equivalent to NAC in graph transformation languages, e.g., in AGG [163])
is used, stating that this circle has not been marked previously. As in this solution we do
not care about the order of edge finding, the loop counter is increased by 3, to ensure that
each circle has been counted three times. The above mentioned solution is presented in
Fig. 23.

.. . - i@k : Integer
Vi

4 >,
- re opp tr
ni @ Node el : Edge PP_trg_Eoge n : Hode
faraph1} opp_sro_Edge faraphi} trg raraphi]
trg 2 edgel fzalf<>@ni}
IDDH:____ adge NOT}
opp_trg_BEdge edged - Cirole ! - e Ire
| oooa] . nl : Circle
el : Bdge loop - Stempd »loopd loopd frermp}
{araph1} adge T) ------: | P
5 loopd
opp_sre_E '
LA 352 i Node D edgel | opp_src_Edge
sre fgraphi} tr edged el E:?E
Izelf<r@n and self < End s faraph1}
opp_tr F==
' : PP_trg_Edge S
fELSE} £ :

S intResut : ""'
Tresult}
L WEER ©

(3 cirele|loop (9 graph1:Edge
adge

Fig. 23. Transformation counting circles consisting of three nodes, using
temporary metamodel elements

Next was an optional task to count the dangling edges. The solution is given in

Fig. 24. In this case two loops are used. The first one counts the edges without a source.

62

To ensure that the edges without a source and without a target are counted only once the

second loop counts only the edges with a source and without a target.

——= [i@g - Graph
k:=0

. ! i@sh : Integer
¥

faraph1}

{HOT}
zn : Hode
fgraphi1} | opp_src_Edge

sre e Bdge §adges g : Graph

raph1
fgraph1i opp_edges_Graph faraphts

v

Vi
tr
fHoT} [e : Edge | adges i®g : Graph
tn : Node | @PP_ATE_ araphil faraph1}
faraph1} opp_edges_Graph

: Mod
S{I;mp:1; aro |Dpp_src_EdQe

r: IntResul
fresult}

Fig. 24. Solution of optional task: counting of dangling edges

2.4.3 Reversion

The next task to be considered is edge reversing. It was required to “provide a
transformation that reverses all edges in a graph conforming to the simple graph
metamodel given in Fig. 17 (p.58). This is an update operation. ” [106]

We selected a solution where a new reverted edge is created and the old edge is
deleted (delete is marked by using a black dashed line). The solution is displayed in Fig.
25. Actually, a shorter solution in MOLA is possible; however, it is not supported by the

current version of the MOLA tool.

63

£ [fgp==ccocaccocaco0co0a00000000005000000E : !
5 : Node @y : Graph opp_trg_Bdge :
foraph 1} fraph1} [OPP-=d3es Breh e

edges. fgraphi} .

opp_sre_Edge |57¢ opp_edges_Grph :ﬁ:
2 e edges T Hode e Enpp_src_EdQe
fgraph1} |oPp_trg_Edge fgraphil f=-="

" trg W,

Fig. 25. Transformation inversing edges

2.4.4 Model Migration

The next group of tasks was model migration tasks. The first task was to “provide
a transformation that migrates a graph conforming to the metamodel given in Fig. 17
(p.58) to a graph conforming to the metamodel given in Fig. 26. The name of a node
becomes its text. The text of a migrated edge has to be set to the empty string.” [106]

The second optional task was to “provide a topology-changing migration that
transforms graphs of the metamodel given in Fig. 17 (p.58) to graphs as defined by the
metamodel in Fig. 27.” [106]

_ {_{?'5;1‘.-;"{9;};.;?9:?:?-’?-.;_

| -2 Graph
| &= text : ESring | gcs |
: |'|_.'"
— j_\ gre 0.1 = EI:I.J:.

trg 0..1
Fig. 26. The evolved graph metamodel [106]

] T 7 = y linksTo
= GI'C—‘1|:-|‘| | nodes | = MNode -

5> = text : EString | -

) *

Fig. 27. The even more evolved graph metamodel [106]

Implementation of such tasks requires adding of temporary traceability relations to
the metamodel. In this case it is sufficient to have an association between nodes in both
metamodels (see Fig. 28). The migration transformation from the metamodel graphl to
the metamodel graph2 is given in Fig. 29 and from the metamodel graphl to the

metamodel graph3 in Fig. 30. At first a new graph in the target model is created in both

64

cases. After that all nodes are cloned and traceability links added. (To ensure it a foreach
loop iterating through all nodes in the source graph is used.) Finally, all edges are
transformed by using the traceability information to find the appropriate source and target
nodes in the migrated model. (To ensure it a foreach loop iterating through all edges in

the source graph is used.)

(3 graphi:Hode| graph @ graph2:Hode (2 graph1:Hode| grap {= graph3:Hode
name : String[0..1] araph niarme : String[0..1] graphd |text : String[0..1]

Fig. 28. Metamodel extensions for model migration tasks

Eg : Graph

Tqraph 1}

= : Node rodes Eg : Graph
fgraphi} opp_nodes_Graph fgraph}

'graphl
. FrEsmmmsamE. L
i : g2n : Mode oS g2 : Graph
S IS ECEEELEEEREEEE
graphz :&- opp_ges_Graph fgraph}

T A @
v

i Ty
= & N::'E = e : Bdge opp_trg_Edge tn : Mode
faraph 13 pp_src_Edge fgraph1} trg {graph1}
raphl
A pp_edges_Graph |2095S B graphz [3F2PMT
g : Graph | gess “PP_ges_Graphs gZtn : Mode
graphz phth | fhe " Eager | @92 Graph || jgrapha}
g2sn : Mode [opn + Jgraphz} faraph} i
fgraphz} [REtsssesssases : e
P opp_src_Edge « text:=" v opp_trg_Edge :
e T —

Fig. 29. Model migration transformation. Migrates graph from encoding graphl
(Fig. 17) to encoding graph2 (Fig. 26).

65

@ : Graph

igraph1}
£ ™
5 : Hode rodes iEg : Graph
faraph1y opp_nodes_Greph fgraph1}
:grapl'? ____________ g3 : Graph
E ' g3n:Mode O Igraph3}!
..... » fgraph3}l . .
ropp_nodes_ Gl
araphs 2 text = (@s name '-l‘::cl'?_ -
L | |
. ,f
- ™,
=n : Node e e : Edge T Hode
fgraphi} opp_sre_Edge faraph1} trg faraphi}
raphil
SR opp_edges_Grph [2dges graphi
hraphd iEg : Graph graph
q3sn : Mode faraphi} g2tn : Mode
fgrapha} opp_linksTo_Hode farapha}
N limksTo W,

Fig. 30. Solution of optional model migration task. Migrates graph from encoding
graphl (Fig. 17) to encoding graph3 (Fig. 27).

2.45 Deletion Tasks

Deletion tasks constitute the last group of tasks. The task definition was as
follows:

“Given a simple graph conforming to the metamodel of Fig. 17 (p.58), provide a
transformation that deletes the node with name “nl”. If a node with name “nl” does not
exist, nothing needs to be changed. It can be assumed that there is at most one occurrence
of a node with name “nl”.

Optional: Provide a transformation that removes the node “nl” (as above), but
also all its incident edges. ” [106]

The last mandatory transformation is deletion of the node named "nl". This
transformation is very straightforward (see Fig. 31). We try to find such a node by using a
MOLA pattern and delete it, in case of finding it. Deletion is represented by a black
dashed line. It was required to delete all incident edges in the extension as well. The

solution of extension is given in Fig. 32. In this case the sequence of deletions is as

66

follows — at first the node is found, all outgoing edges deleted, followed by deletion of all
incoming edges and finally the node itself is deleted.

. ®yg : Graph
1

¥ {graphi}
' n:Hode
fgraph1} Tniodes i@ : Graph
' name="n1"l | opp_nodes_Geph fgraph1;
-,

1{ELSE}

Fig. 31. Transformation that deletes the node named "n1" (if such a node exists) in

a graph
. Eg : Graph
1
w7 |t
1 : Mod {ELSE}
n{gmp:1; niodes g : Graph [p===ns==mmmsmsmsnsmss -
Iname="r1"} opp_nodes_ Graph BEphly
3
e Bdge 7
opp_src_Edge @n1 : Hode
h1
{graph1} oo | faraphil
Vi
e Bdge 3
opp_trg_Edge En1 : Mode
faraphi} i fgraphil

Fig. 32. Transformation that deletes the node named "n1" (if such a node exists)
and its incident edges in a graph

2.4.6 MOLA Tool Support
This section describes the technical details regarding the solution of the task.
MOLA has an Eclipse-based graphical development environment (MOLA tool

[59]), incorporating all the required development support. A transformation in MOLA is
compiled via the low-level transformation language L3 [13] into an executable Java code

67

which can be run against a runtime repository containing the source model. For this case
study Eclipse EMF is used as such a runtime repository, but some other repositories can
be used as well (e.g., JGraLab [64], mii_rep [11]).

The MOLA tool has a facility for importing existing metamodels, in particular, in
EMF (Ecore) format. Though the MOLA metamodelling language (MOLA MOF) is very
close to EMOF, and consequently Ecore, there are some issues to be solved. The current
version of MOLA requires all metamodel associations to be navigable both ways (this
permits to perform an efficient pattern matching by using simple matching algorithms).
Since a typical Ecore metamodel has many associations navigable one way, the import
facility has to extend the metamodel. Another issue is the variable coding of references to
primitive data types.

Metamodel import facilities in MOLA are able to perform all these adjustments
automatically. In such a way the provided metamodels were imported into the MOLA
tool. Transformation development of some tasks in MOLA requires additional metamodel
elements, for example, in migration tasks to store relations between the source and target
models. These metamodel elements have to be added manually. In migration tasks, these
are the associations between the node classes in different graph encodings.

Since the metamodels have been modified during import, the original source
model does not conform directly to the metamodel in the repository mainly due to the
added association navigability. Therefore a source model import facility is required. The
MOLA execution environment (MOLA runner) includes a generic model import facility,
which automatically adjusts the imported model to the modified metamodel. Now the
transformation can be run on the model. Similarly, a generic export facility automatically
strips all elements of the transformed model which do not correspond to the original
target metamodel. Thus, a transformation result is obtained which directly conforms to
the target metamodel. (For an inplace transformation the source and target metamodels
coincide, as a result nothing has to be stripped.) The transformation user is not aware of
these generic import and export facilities, he/she directly sees the selected source model
transformed.

An executable version of the solution is available online, using the SHARE [186]
system. A SHARE image of the solution is provided in [4]. By using the SHARE image a
reader can access an executable version of this case study. All transformation sources are

available in the transformation definition environment. It is also possible to compile and

68

execute all “Hello World” transformations in MOLA. To access the SHARE image a
reader should register in the SHARE system and require access to the SHARE image in
[4]. When the access is granted a reader should connect to the SHARE server by using
Remote Desktop Protocol (RDP). It is possible to work with a copy of the image, using a

remote desktop connection.

25 MOLA Metamodel

In CHAPTER 6 the Template MOLA language is defined. This language is based
on MOLA. To facilitate a reader’s understanding of the Template MOLA language the
MOLA metamodels are provided in this section.

As already mentioned above the transformation definition in MOLA consists of a
metamodel definition and a transformation procedure definition. The metamodel of
MOLA MOF, MOLA meta-modelling language is given in Fig. 33. This package of the
MOLA metamodel is named “Kernel”. The metamodel of MOLA procedure elements is
given in Fig. 34. This package is named “MOLA”.

69

1o

pu3paumo|

uoge1d0ssyBuluMo

ﬁ

Lo

L0

aysoddo

[} ol4afay : 4addn

[} 0l4aBapy) @ 2an0|

[} pluesjoog : aysodwods
[1 oluesioog : paiapios!

Ayadoigd (5]

AuS [aweu|

uoeIoSSY ()
10t voerdosse :oaaN__Eo:om_ ¢
pulaquiaw apoads @ 1 uoiezije1auas)
x@ohouhowu..r +| voneziernads
ri3uab =.
; Ela)juonelawnug
it i ﬁ Mt {paiapio},| ey paumo 0
{paiapio}, ssep .@wu_oo P103. p
_ Uone I3WINUSEL "0
1 uone IaWnUy
] PAY 10 adAL @) | 24
) Jusiiaignadhy 0 R adf) _ T 2 —
anuwil
eaud@| orowe
U quswagoiqeteysed (5] o ‘ 17
L | sequapwpeumo e
e abe)aed
Y ogoaan:_cﬁ. ©

AUS @ Apog| JURWIWIOD

| B ITPIUEN 0

T

*

pRWW) E) |+

|

JauIajgpajouue

ueajoog : Aelodwa) s

Jusuisl3 €)

F1Yy. 595. LlIE [ewdinouuer Ul uie IVivLA Tliewa-tnouctiny idiiyuaye LLOO]

70

anguye

[j=———

e ——— doo)| 4207 €©) _,‘l
& dooyaealio
aean WRuREISIA] €) L Ao cnie 0
Rwion doof| jg UersiogBumol | ¥ ——
addpjurjpossy =: Bulys Juiesjsuod LI APUBTDPUTMO}S E)
agenesdoo] any &) N swseisuisiosg (5] Jauejuo)bulumo § (1}
pugmojjpaumol 7
14O EEIET| 1 §amybuiumo [
10N aealn L — [T _ P
R nsuodpIe) = SN wowalelsed € | T pugmo (5] |
adAjwagg =: ungpaumo| .}
1wl = X o|fapae2 1 % liea o Jwoy | [—
¥ {3
a0Inos b ; uoneunsap(, aunos|, _E_
P adAjwa)3 : adAjwa@ Jabaqur ¢ Jaquinpueled
*...E-a:_vwo_u BUIS & JUIRAISUOD Buis : adxa ueajoog : as|3s!
0 [Eeckiths = JUIBASUODPIED | JUIRAISUODPAED wereaes 6 Mo ©
wawagsse]d) V3
P R sm__‘..w._@m.._i,..‘ ~3 BULS | 3%8)
r t ¥
, uwgiaal| 1o uonejouuy &)
y ufissypaumo 4 ; L vonejouue
Bulis : awepyyad 4
wRURBISSE Ty niuiBissy ©) sl S S uea|00g | UBlys!
2 JIUATAGEIUNINIY €)
.| weunBisse e_ - TP €) ampado1dy10M €) I]
Ly LN wepgejow| —
s i 7 £ , ampaooidbulumoP 170 _uﬁﬁog.:.__a:hoﬁm O_
adA [yquinaossy | adA Uy 2L ol ! = i
JUIBNSUCDPARD | JUIBAISUODPIED el aceen O i e | = uea|oog : Juns!
HaR0SSY €) _ , | 1abayu] : Jaquinpwesed B v = g abexoed €©)
Sue e & 7
% 4 || MIR0Se T ppiawagsser) _ uea|00g | JNOUI 201 p ﬁ aBexoeBUIUMO 10 %
puppjurpposse JRISHUII0SSE .
Fpueted mv Bunys : aweu| 4 -

11}
doidysap| pdoigasnos| |

sosse| Lo

adf)| 1o

Apadoag:puiay 0

_ m UoyeINOSSYAUIAY E) m

_ adA) ijausay (3] ﬂ

JusuiaF 2y) _

10|lepopejow
Ppowssep| |

PPOW:3UIay 0

Fig. 34. The metamodel of the MOLA procedure elements [130]

71

72

CHAPTER 3

Transformations for Model-Driven Development in ReDSeeDS

In this chapter transformations for Model-Driven Software Development are
analyzed. Transformations described in this chapter are developed within the ReDSeeDS
project [3] therefore a short overview on ReDSeeDS seems appropriate. Further on
Requirements Specification Language (RSL) used in the ReDSeeDS project is described,
this being the entry point for transformations. General principles regarding MDD in
ReDSeeDS are outlined in Section 3.3, continued with the description of two
transformation supported paths from the requirement to the code (Section 3.4 and 3.5).
These paths are based on different architecture styles. The chapter is concluded with

implementation aspects in Section 3.6 and conclusions in Section 3.7.

3.1 ReDSeeDS Overview

Requirements Driven Software Development System (ReDSeeDS) [3, 38] is an
EU funded project (Contract No. IST-2006-33596 under 6FP). The project was realized
from September 2006 till December 2009 and it was coordinated by Infovide (Poland)
with the technical lead of Warsaw University of Technology (Poland) and University of
Koblenz-Landau (Germany); Vienna University of Technology (Austria); Fraunhofer-
Gesellschaft (Germany); Institute of Mathematics and Computer Science, University of
Latvia (Latvia); Hamburger Informatik Technologie Centre e.V., University of Hamburg
(Germany); Heriot-Watt University (United Kingdom); PRO DV Software AG
(Germany); C/S Enformasyon Teknolojileri Limited Sirketi (Cybersoft, Turkey) and
Algoritmu Sistemos (Lithuania).

The author of the thesis was involved in the project from January 2007 till the end
of the project (December, 2009). The author’s responsibility was to develop model
transformations to support a full model-driven path from the requirements to the code.
The author of the thesis participated in the development of 11 project deliverables [65, 83,
84, 81, 94, 19, 8, 136, 134, 135, 151], as well as in the preparation of 4 publications
related to the project results [79, 80, 153, 82].

73

The motto of the ReDSeeDS project was as follows: “Fulfilling the promise of

comprehensive software reuse by bringing it to the level of requirements linked with

precise model-based solutions.” [3]

“The main objective of the project is to create an open framework consisting of a

scenario-driven development method (precise specification language and process for the

“how-to”), a repository for reuse and tool support throughout. The basic reuse approach

will be case-based, where a reusable case is a complete set of closely linked (through

mappings or transformations) software development technical artefacts (models and

code), leading from the initial user’s needs to the resulting executable application.” [3]

The following were the main elements in the ReDSeeDS project:

Use (and development) of formal and at the same time easily usable,
understandable Requirements Specification Language (RSL). (See Section
3.2.1)

Transformation supported model-driven part from the requirements to the
code. All artefacts produced were related with traceability information.
Software Case Repository for storing artefacts of past software cases
(models and code).

Query engine to find similar past software cases in the repository.

Slicing to extract appropriate parts (models and code) from past software

cases to the one under development.

In the ReDSeeDS project a prototype of the ReDSeeDS system was developed.

The usage scenario of the system could be as follows:

74

Requirements for the system to be built are sketched in RSL.

The Software Case Repository is queried for similar past software cases.
Sketched requirements are used as a query.

A list of similar software cases is presented. For each software case a
similarity coefficient is given. A user can analyze similar software cases.
Similar slices are found and imported in the current software case. A slice
is set of related elements from the requirements through all models to the
code. The set of requirements is selected and all elements implementing
these requirements (in the models and the code) are automatically added to

the slice.

e Imported slices are adapted, if necessary.

e Requirements specification is improved, if necessary.

e The Model-Driven Software Development path described in Section 3.4 or
Section 3.5 is applied.

e The developed software case is saved to the Software Case Repository for
reuse.

If not needed, reuse of the previously defined software cases could be skipped.
The usage scenario without reuse is as follows:

e Requirements for a system to be built are specified in RSL.
e The Model-Driven Software Development path described in Section 3.4 or
Section 3.5 is applied.

In the thesis a model-driven path from the requirements to the code skipping reuse
aspects will be described in detail. It should be noted that the ReDSeeDS approach for
Model-Driven Software Development has a value of its own even without reuse aspects.
It is a real example of a MDSD path with several models. Most of MDSD approaches
proposed in commercial tools use only one model, e.g. Model2code [21]. In commercial
tools there is no path from the requirements. Typical MDSD approaches in these tools
start with PIM. Nevertheless, there exist other approaches starting from the requirements,
e.g. [101].

We will start with a short description of Requirements Specification Language,
continued with a discussion of the possible use of these requirements in a model
transformation supported path from the requirements to the code. Two different model-

driven paths supporting different architecture styles will be considered.

3.2 Requirements Specification in ReDSeeDS

In the ReDSeeDS project Requirements Specification Language (RSL) was
introduced. In this section RSL is described and the usage of RSL is demonstrated.
3.2.1 Requirements Specification Language in ReDSeeDS

RSL [66, 65, 152] is a semiformal language for specifying requirements for a
software system. The elements of RSL which can be directly transformed into the system

design are described below.

75

RSL employs use cases for defining precise requirements for the system
behaviour. Each use case is detailed by one or more scenarios, in turn consisting of
special controlled natural language sentences. The main sentence type is the SVO(O)
sentence [152], consisting of a subject, a verb, and a direct object (optionally, also an
indirect object). These sentences express the actions to be performed in the scenario. In
addition to SVO(O), there can also be conditions, rejoin sentences (“gotos” to a point in
the same or another scenario) and invoke sentences (invoke another use case).
Alternatively, the set of scenarios for a use case can be visualized in a natural way as a
profile of an UML activity diagram. SVO(O) sentences serve as the nodes of the diagram,
and conditions and rejoins as control flows (in addition to the natural “next sentence”
control flow).

Another part of RSL is the domain definition which consists of actors (system
users), system elements, and notions. A reader may think about actors and system
elements as actors in UML use case diagrams. Notions correspond to the elements
(classes) of the conceptual model of the future system. It is also possible to define notion
generalization and simple associations between notions. In the second version of RSL
[65] it is possible to define one notion as an attribute of another notion. Actually, the
notion part in the second version of RSL describes a conceptual model of the system to be
built, only alternative syntax is used instead of traditional class diagrams.

The precise syntax of RSL is defined by means of a metamodel [66]. All elements
of requirements specification in RSL are stored as model elements, corresponding to the
metamodel. Even SVO(O) sentences are processed as model elements, although they
seem to be a plain text to a user. The behaviour and domain parts in a valid RSL
requirements model must be strictly related. The subject of a SVO(O) sentence must be
an actor or a system element. An object (direct or indirect) must be a notion. In principle,
an object is an element of the conceptual model, affected by the action described in a
SVO sentence.

A SVO(O) sentence is given in Listing 1. The syntax used in the RSL editor is
used here. In this sentence the nouns (or noun phrases) - user, facility, reservable facility
list - are coloured blue, the verb (selects) is coloured red. The preposition (from) is
coloured green. “User” is the subject of the sentence. In this case the actor is used as a
subject. “Facility” is a direct object. “Reservable facility list” is an indirect object. For

both objects the notions should be defined in RSL.

76

Listing 1. SVO(O) sentence

User selects facility reservable facility list

The informal meaning of each noun and verb must be defined in a vocabulary
(currently, WordNet [41]). In the ReDSeeDS tool support it is possible to extend WordNet
by adding new words and new meanings. Typically complex notions as “reservable
facility list” should be added manually to the vocabulary which is used as the domain
dictionary, describing the meaning of domain terms. In addition to the vocabulary
keywords are introduced in the second version of RSL. Compared to the vocabulary,
elements for keywords predefined semantics is introduced in the RSL profile (see
Sections 3.3.2 and 3.5.3).

3.2.2 Example of Requirements

The proposed ideas are illustrated on a fragment of an example of the Fitness Club
system. One use case Reservations is taken — how a club customer can book regular
access to the selected fitness facility of the club. A simple example of this type is given in
Fig. 35. The activity diagram representation of the requirements is on the left side of the
figure. The right side of the figure contains the textual representation of the requirements
where notions and system elements, related to the SVOO sentences, are also given.

This scenario consists of four consecutive SVO sentences. Actor or system
element is used as the subject of these sentences. There is one actor “User” and one
system element “System”. There are three notions “facility”, “reservable facility list” and
“reserved facility list”. They are used as direct and indirect objects in the SVO(O)
sentences.

Textual representation was used as the main representation of the requirements in
ReDSeeDS. The colour marking in the textual representation of the requirements helps to
distinguish more clearly the parts of the SVO(O) sentences — subjects, verbs, and objects.
The subjects and the objects are blue. The verbs are red. The prepositions preceding the
indirect object are marked green. The whole following group of words marked blue is an
object with a complex name (there must be an equally named notion in the domain part of
the requirements). Note that in the textual syntax, each scenario is one continuous path in

the diagram.

77

Activitylnitial

l(User wants to reserve facility :) user

|

1. User wants fo reserve facility e e B
System shows reservable facilitie]
[list] 2. system s70n= reservable facilitie Iise%
3. User s=ict= facility servable facilitie list f,"'
4. System zd7= facili reserved facility list 4——— hlohing

(User selects facility from j

resery able facilitie list
[Eystem adds facility to reserved]
facility list

System
®

SuCCEss

«Motions

&
; reserv ed facility list
!]
bz
«Motions

facility

Fig. 35. RSL example

Fig. 36 provides a fragment from a more elaborated example from this use case

displaying two scenarios from it. They are given in a textual form as they were entered by

using the RSL editor. This to be a correct requirements model, the relevant notions must

also be defined (facility, reservable facility list, etc.). The activity diagram for this use

case is given in Fig. 41 (p.90).

Mame: |Reservations
precondition: wants-to-do fadlity reservation
1. System builss reservable facility list
2. System shows reservable facility list form
==zcond: dick Select link

.+ Customer s2/=cf= facility reservable facility list

3
4. System Auits reservable time slot list o facility
3. System buils reserved time slot list

6. System shows reserved time slots form

==xcond: dick Confirm button
7. Customer confims reserved time slot list

3. System reserves reserved time slot list

9. System shows reservation summary form
==cond: dick OK button
10. Customer zccesfs reservation summary

Mame: | Loop
precondition: wants-to-do fadlity reservation
1. System bfuilss reservable facility list
2. system shows reservable facility list form

==cond: dick Select link
+ Customer sa/=ct= facility reservable facility list

. System builds reserved time slot list
. System sH0i= reserved time slots form

=xcond: dick Select link
6.2.1 Customer s=i=cts time slot reservable time slot list

5
4. System buits reservable time slot list o facility
5
[

6.2.2 System z4ds time slot o reserved time slot list

6.2.3 system removes time slot reservable time slot list

==rejoin: IReservations j ISystem shows reserved time slots form

Fig. 36. Requirements — two scenarios in a textual form

3.3 Model-Driven Development in the ReDSeeDS Project

The ReDSeeDS approach covers a complete chain of models for model-driven

development — from the requirements to the code. Each transition in this chain is to a

78

great degree assisted by formal model transformations. Although two specific chains of
models are described here, the approach could be applied to any similar setting of models.

The first in the both chains is the Requirements Model built in a special
semiformal requirement language RSL (described in Section 3.2). The required behaviour
specification in this controlled natural language is defined by the model; therefore, this
specification can be processed by model transformations in order to generate initial
versions of the next models.

Both architecture styles, implemented in the ReDSeeDS project, contain
“Architecture” and “Detailed Design” models corresponding to PIM and PSM in the
MDA approach. In the Keyword-Based Style additional “Analysis” model between “RSL”
and “Architecture” (PIM and CIM) is used. All transitions between the models are
assisted by model-to-model transformations.

It should be noted that we use for our models a pre-selected consistent set of
design patterns and other design rules, called an architecture style in our approach (this
concept is described in Sections 3.3.1 and 3.5.2). Transformations are adjusted to this
style to get maximum results in extracting the required behaviour from RSL. The best
results are obtained if the requirements are specified in RSL in an appropriate way — there
is used an RSL profile, associated with the architecture style (see Section 3.5.3).

All model-to-model transformations in our approach are implemented in the
model transformation language MOLA [76]. If the selection of patterns and the
architecture style are changed, the transformations should be rebuilt, too.

Another issue to be solved by transformations is the inevitable modifications of
models and the necessity to reapply the transformations and merge the results.
Transformation development is discussed in Section 3.6.

3.3.1 Design Patterns and the Architecture Style

Today large enterprise systems are developed by using a set of design patterns as
a rule. There are two types of design patterns: platform-independent and platform-
specific. The traditional GoF design patterns [47] represent the former type. The modern
Java EE environments (based on the POJO [158] idea and declarative ORM) also share a
large set of common enterprise patterns (and so do the latest .NET environments based on
POCO [114]). On the other hand, low level patterns, such as an adequate usage of Spring

framework annotations, are still platform-specific.

79

Usage of design patterns is vital to efficient application of MDD and
transformations. However, patterns alone are not sufficient for deciding what the
generated models look like. Therefore, we use the concept of architecture style, which
includes the structure of the system and the model, a related set of design patterns (with
indications where they should be used), the applied general design principles, and finally,
the rules by which model elements are obtained from the models preceding in the
development chain. This last feature is formalized by a model transformation set
associated with the architecture style. The most important content of an architecture style
is the selected set of design patterns, tied up to the chosen model structure. Namely,
patterns are the style element which helps most in specifying efficient transformation
rules. In addition, for transformations supporting the given architecture style to produce
maximum results, the requirements must be specified in an appropriate style, too;
therefore, the concept of RSL profile (associated with the given architecture style) is
introduced.

Two different architecture styles are considered in the thesis: the Basic style (see
Section 3.4) and the Keyword-Based Style (see Section 3.5).

The goal of the Basic Style is to prove the feasibility of the approach in which the
model-driven development, starting from the requirements, is combined with the
requirement-based reuse of software. The initial version of the ReDSeeDS tool support
was based on this style. However, the possibilities to extract behaviour from the
requirements in the Basic Style are significantly weaker than in the Keyword-Based Style.

The main goal of the Keyword-Based Style is to extract as much as possible
behaviour from the requirements. The in-depth analysis of requirements is based on
keywords to be found in the RSL sentences which the style is named after. The RSL
profile associated with the Keyword-Based Style is described in Section 3.5.3.

In no case the described architecture styles should be considered the only possible
solutions; other styles are also possible. To a great degree, the choice of the most
appropriate architecture style depends on the domain of the system to be created. For
example, the Keyword-Based Style could be an adequate solution for simple web-based
information systems. The selection of architecture style could be formalized on the basis
of non-functional requirements for the system; however, this topic is completely out of
the scope of the thesis. Furthermore, it should be reminded that creation of a new

architecture style also requires creation of an appropriate transformation set.

80

3.3.2 The RSL Profile

Transformations can be applied to any valid set of requirements in RSL for a
system. Nevertheless, in order to ensure that these transformations generate a really
substantial fragment of the software system to be built, some more constraints on the
requirements should be put. Thus, a concept of the RSL profile is introduced. The profile
defines the set of keywords with predefined semantics to be used in the scenario
sentences (verbs, nouns, and prepositions) and some rules on how these keywords should
be used. Moreover, there are constraints on the order of these sentences (or nodes in the
activity form). All these rules are “soft” rules in the sense that the requirements do not
become invalid if they violate some of these rules; simply, the transformations can do
less. At the same time, profiles are defined so that they never make the requirements less
readable to domain area specialists (however, more skills may be required by requirement
engineers to create them). A profile is always associated with an architecture style so that
the corresponding transformation set can produce the largest possible part of the PIM and
PSM maodels from the requirements.

When defining requirements, keywords are not specially marked, they are used as
all other words in the scenario sentences. The same could be said about a specific order of
sentences in an architecture style. So it is completely left to the requirements definer to
follow or disregard these soft rules. The use of RSL profile is analysed only by
transformations. If the rules are followed, the transformation produces more detailed
models of the system to be built. If the rules are ignored, the following models in the
model driven path are of lower quality. It means that more manual work is required for
adding the missing information.

In the RSL profile for the ReDSeeDS Basic Style only assumptions about the
order of sentences are used. The full power of the RSL profile mechanism is used in the
Keyword-Based Style. A detailed description of the RSL profile and keywords used in this

architecture style is given in Section 3.5.3.

3.4 ReDSeeDS Basic Style

This architecture style was defined by Warsaw University of Technology (Poland)
and transformations for it were implemented by the author of the thesis. This was the first

architecture style defined in the ReDSeeDS project.

81

CIM ‘ Requirements madel (RSL) }.7

Transformation
rules in MOLA

PIM ‘ Architecture model (UML) S
D

____________________ Transformation

rules in MOLA
PSM ‘ Detailed design model (UML) ;,.

Fig. 37. Model chain in the ReDSeeDS Basic Style

The RSL profile for this architecture style has no keywords, only some constraints
on sentences. The usage of this style has confirmed the feasibility of the used
technologies and approaches; however, the part of a system, generated by transformations
in this style, is small. The model chain used in this architecture style is presented in Fig.
37.

3.4.1 The Platform-Independent Model

The PIM model is going to be described in greater detail since its relation to the
CIM model in RSL is the most interesting in our approach. PIM defines the static
structure of the system to be built by means of classes, components and interfaces. Draft
behaviour of the system is described by means of sequence diagrams.

According to the chosen architecture style, a four-layer architecture is used with
the following layers: Data Access, Business Logic, Application Logic and User Interface.
Additionally, Data Transfer Objects (DTOs) are used as data containers for data
exchange between the layers. Component and interface based design style is used at all
layers. Components encapsulate groups of related elements of the system. Interfaces
appear as provided interfaces of the respective components. The main patterns used in
this architecture style are data access objects (DAO) for the Data Access layer and MVC
for the Application Logic layer.

There are seven static structure packages in PIM, one for each layer, one for the
DTOs, one for the Interfaces and one for the Actors. The package Actors contains actors
of the system to be built. They are directly copied from the requirements. The package
Data Transfer Objects contains DTOs created from notions. Each notion is transformed

into one DTO class. Thus, this package serves also as a sort of conceptual domain model.

82

The package Data Access contains data access objects (DAQ) for the persistence
related operations. Each lowest level notion package is transformed in one DAO
component. Each notion contained in this package is transformed into an interface of this
component. The relevant CRUD (create-read-update-delete) operations are added for
each interface.

The package Business Logic contains business level components and interfaces.
Components and interfaces are created in the same way as in the Data Access layer.
However, only notions, participating in business level operations, are used therein. In
other words, only interfaces, containing business level operations, are created. Creation of
the latter will be described together with the behaviour sequence diagram creation.

The packages Application Logic and Ul are based on the MVC (model-view-
controller) pattern. Components in Application Logic are created from use case packages
of the lowest level in the package tree. Provided interfaces of these components are
created from use cases written in RSL. One interface is created for each use case.
Methods of these interfaces are created by analyzing the system behaviour. This will be
described together with the sequence diagram creation. Currently, only a placeholder for
the Ul part is created. It could be replaced by a real Ul support, but it is out of the scope
of this chapter.

- 'Ei Requirements Specification E|---- ﬂ Actors
E| m Facility user
=- C::' Facility reservation E‘ D] ApplicationLogic

------ i Fadlity reservation = E Fadiity
E‘ |—| Du:umaln Spedification e @ TFaclityReservation: IFaclityReservation

EI J BusinessLogic

E| Actors
: -% User E FacilityServices
e IReservedFadiitylist: IReservedFadiitylist
E| |_| Motions
58 Fed - J DataAccess
. '-' aciity - - ﬂ FadlityDataAccess
BB fadiity » . ~@ [FaciityDAO: IFadlityDAO
B reservable faciitieTist ¥ =@ TReservableFadlitiel istDAO: ReservableFadiitiel istDAC
P l ‘B reserved fatllltv list— # L. =@ IReservedFadilitylistDAO: IReservedFadiityListDAC
. Bl General | S - 8] GeneralDataAccess
: - list | ~. B~ u:ﬂ DataTransferOb_]ecE
-4l SystemElements - & FadlityDTO
‘- system FR i ReservableFadilitielistDTO
*... B ReservedFadiityListoTO

4. system 3455 facility 1o reserved facility list

Fig. 38. Static structure processing example

The above rules for generating the static structure of the system introduced in Fig.
35 (p.78) are illustrated in Fig. 38. On the left side of Fig. 38 the static structure of
requirements in RSL (as in the RSL editor) is given. On the right side of Fig. 38 the static

83

structure of PIM (Architecture, as displayed in EA) is shown. Both sides are connected
with mappings relating the source and the target of some transformation rule described
above. These mappings are similar to the ones used in the Model Transformation by
Example (MTBE) approach [199]. However, when replacing concrete instances with
patterns for finding relevant instances, a new mapping language could be obtained
(similar to the one described in CHAPTER 4).

(Uszer interface) (User interface) [Application logic) (Business logic)
2 UlComponent ul:w xinterfaces xinterfaces
i :UIComponant IFacilityReservation IReservedFacilityList
user -usar :IFacilityResarvation [|IReservedFacilityList

A ! -TL

| I

| |

| |
oowanistorEseve g

T

I

I

tagility) wantsToResarneFacility) :

I I

| showsReservablaFacilitieList]) |

____________ |

! I + I

selects fadlity from _!_ : : :

res=rvable facilitie selecisFacilityFromResanvdbleFacilitieLigt) _ | :
list) T

1=t | sddsFacilityTof |

| [RessrvedFacilityLisDT o, ™

N N ! ™ FacilityDTC) !

User wants fo reserve facility |(actor — system)
System shons reservable facilitie list (#vEtph — actor)

User ==i=ci= facility reservable facilitie list (actor — system)

Eo R

System 25 facility o reserved facility list [zystem — system)
Fig. 39. Behaviour example

Certainly, the most complicated part is the description of the system behaviour.
The sequence diagrams, describing the system behaviour, are created by analyzing
scenario sentences. There can be three types of SVO sentences. The first one is an actor —
system sentence. In this case the subject of the SVO sentence is the actor. For two other
sentence types the subject of the sentence is a system element. The sentence types are
distinguished by using the recipient link. Recipient is a SVO sentence element; it defines
where to the behaviour described in the sentence is directed. The second type of the
sentence is system — actor. In this case the subject is the system and the recipient is the
actor. The third sentence type is system — system. In this case the subject and the recipient
is the system. It is used to describe the internal actions of the system. The type of the
particular message generated in the sequence diagram depends on the sentence type. Fig.

39 illustrates the behaviour sequence diagram of the example described above. It shows

84

that the operations in the Business Logic layer are created only for the system — system
sentences. The actor-system sentences are used for the creation of the Application Logic
methods. Ul methods are created from the system — actor sentences.

PIM can be manually extended after the initial generation. Afterwards it is
transformed to PSM.

3.4.2 The Platform-Specific Model

The same four layers and DTOs are used in PSM. In this model the factory pattern
Is used, enabling the management of classes and interfaces. Each component in PIM is
transformed into a package and a factory class in PSM. Every interface is transformed
into an interface and an implementing class. Classes and interfaces are located in
packages, created from components. Factory classes, created from components, have
methods for getting provided interfaces. For each layer one more factory class is created.
It manages all other factory classes in this layer.

The platform-specific model can be extended manually in the same way as the
platform-independent one. Then this model can be transformed to the code.

Transformation, creating PSM, uses two transformation libraries. The copy library
was used to copy DTOs from PIM to PSM. For the other layer the transformation library,
converting components with its interfaces to factory classes, was used. Here the copy

library for interfaces was used as well.

3.5 The Keyword-Based Style

This style is defined by the author of the thesis in cooperation with her supervisor
and the UL IMCS ReDSeeDS team. All model-to-model transformations have been
implemented by the author of the thesis. Model-to-text transformations in EA CTF have
been implemented by Agris Sostaks.

In this section only the main ideas the Keyword-Based Style rests upon are
outlined. A detailed description of the Keyword-Based Style model structures and
transformation algorithms is given in Section 6.3 of ReDSeeDS deliverable D3.2.2 [84].

Introduction into the Keyword-Based Style starts with the description of the
model and system structure and some general design rules. We have chosen a four-layer

architecture because it is the most popular and accepted information system architecture

85

style today. As already mentioned we use the following layers: Data Access or Repository
layer, Service or Business layer, Application Logic, and User Interface. We also have
domain objects as data containers (available to any layer, former DTOs [104]). Another
general principle of our approach is based on a declarative Object-Relational Mapping
(ORM). The particular ORM in our approach is Hibernate [16]. Whenever possible, we
use an interface-based design style for all layers, meaning there is an interface (where the

operations are specified) and its implementation class.

3.5.1 Models

In this section we present a short rationale behind our selection of the specific

model chain. The selected model chain is given in Fig. 40.

CIM [Requirements model (RSL) }‘7}\%_“‘3 Ao,
ReDSe

PIM ‘ Architecture model (UML) ._@
¢)

i Enterprise

Architect
. -
Transformation

PSM ‘ Detailed design model (UML) .‘:’:
i rules in MOLA and EA

. . I
Code ‘Code (Java + Spring + Hlbernate)}—%_.@E CTF language

Fig. 40. Model chain used in ReDSeeDS Keyword-Based Style

Requirements are specified in the requirement specification language RSL [66]
[152] which lies at the basis of the approach. We are interested mainly in the
requirements for the system behaviour specified by use case scenarios and draft domain
concepts (which are called notions in RSL).

Starting from the requirements, a chain of models for a model-driven development
of the software system is proposed. To a great degree, this chain has been inspired by the

classical MDA approach. However, the specific structure and construction principles of

86

the models in our approach are determined by the chosen architecture style, the most
important feature of which is the set of the selected design patterns. A more precise
description of the concept of the architecture style is given in Section 3.3.1. All the
models are built in UML2 [121], using an appropriate profile.

Initially the Analysis model is extracted by transformations from the requirements.
This model has no direct counterpart in the classical MDA chain. It corresponds more to
the Analysis model in the standard OOAD [97] approach. Therefore, we call this model
the Analysis model. The most important part of it is the class diagram, describing the
main concepts of the software system to be created (the Domain Model). Stereotypes are
used to distinguish different types of concepts according to the Analysis Profile. The
Analysis Model is described in a greater detail in Section 3.5.4.

The most important model in the proposed model chain is PIM, which is very
close to the corresponding model in the MDA approach. This model is built according to
the selected design patterns and contains the description of structure and detailed
behaviour of the would-be system in a platform-independent way. In this model the
implementation structure is represented according to the behaviour extracted from use
case scenarios. This model is platform-independent and could be used as a basis for the
development of a code on any enterprise platform (Enterprise Java, .NET, etc.). This is
the model where the selected design patterns and sophisticated analysis of the
requirements permit to generate a non-trivial part of solution behaviour. Transformations
which generate the initial version of this model use both Requirements and Analysis as
inputs. In the whole chain of transformations, this step contributes most to the rich system
functionality inferred directly from the requirements. The contents of PIM are described
in Section 3.5.6.

The final model in the chain is the PSM in a fairly standard MDA style (Section
3.5.8). It is built by transformations from PIM by adding platform-relevant details.
Currently the chosen target platform is Java in the Spring/Hibernate framework, but any
similar platform can be used as well. In this model stereotypes corresponding to Spring-
specific annotations are used. Finally, PSM is transformed to the Java code with
Spring/Hibernate annotations. The main value of the approach lies in the fact that a large
fraction of a non-trivial prototype of the system can be obtained from the requirements

without a manual extension of intermediate models. Certainly, a true model-driven

87

development should follow, where in each step the required details of the real system are
filled in manually. PSM is described in detail in Section 3.5.8.

It should be noted that in the ReDSeeDS project an alternative model naming is
used — PIM is also called the Architecture model and PSM the Detailed Design model.

3.5.2 Selected Design Patterns for the Keyword-Based Style

In this section we will describe the design patterns chosen for the Keyword-Based
architecture style. The patterns are grouped according to models and system layers chosen
for the style. The patterns used at the PIM level are as much platform-independent as
possible. Since we have chosen Java + Spring + Hibernate framework as the target
platform, the design patterns popular in the Spring community are used at the platform-
specific level. This choice has also slightly influenced our PIM level, when we had to
choose one of several equivalent options.

We use the DAO design pattern [138] at the Data Access layer. Data access
objects are introduced as the main actors for explicit ORM-related actions. Therefore,
each DAO has the basic CRUD and typical Find operations. A data access object is
created for each persistent domain concept. The DAO classes are assumed to have the
standard transaction support for their operations.

Manager is the main design pattern used for Business Logic (see [108] for its
version in the .NET world). It means that for each domain concept participating in
Business Logic, a class (and interface) is created, which encapsulates all business level
operations related to this concept.

The Application Logic and User Interface layers are governed by the MVC
pattern, which is used in almost every four-layer architecture. Moreover, the fagade
pattern [47] [104] is used for the Application Logic. For each Use Case in the
requirements, we create one Application Logic interface and an implementing class. This
class implements all operations invoked by the MVC controllers within this use case.

The Ul part is kept as simple as possible. It contains only calls to the application
layer. This research does not include the specific issues of building user interfaces from
the requirements, which is a separate topic in the ReDSeeDS project (see [87]).

We also use the domain object design pattern. It means we use domain objects as
data containers, in other words, as standard “POJO” (not mandatory Java) objects.

Persistent domain objects are treated as the basis for the ORM definition; therefore,

88

platform-independent ORM features, such as identifying attributes and persistent
relations, are included.

The design in general relies on the Dependency Injection Pattern (which will
appear later as platform-specific dependency annotations) for referencing other classes;
therefore, the Factory Pattern is not used explicitly.

Platform-specific design patterns are used in PSM and in the code. These are
domain objects that have the most of platform-specific features. The POJO pattern is
used, adapted to the Spring style. We use the declarative ORM definition (Spring +
Hibernate) based on annotations which are coded as appropriate stereotypes in PSM. The
transactionality of relevant classes is also defined by annotations. For reference
initialization, the dependency injection pattern is used.

For Ul layer, the MVC design pattern is used in a standard (“Spring-Basic”) way.

3.5.3 RSL Profile for the Keyword-Based Style

As stated in the previous section Java + Spring + Hibernate framework was
chosen as a target platform for this architecture style. This decision is closely related to
typical application areas of this architecture style which is suitable for web application
development. Examples of typical applications are online shops, online reservation
systems, etc.

Terms related to this type of systems are selected as keywords. Actions typical to
this type of systems are selected as verb keywords. Objects used in these systems are
selected as noun keywords. When selecting some terms as keywords, predefined
semantics is added to them.

In this profile the verb keywords for SVO(O) sentences are show, select, build,
add, and remove. The noun keywords are form and list — when used as parts of complex
notion names (and, consequently, objects in SVO(O) as well). Conditions (which
otherwise are arbitrary sentences in RSL) can contain the verb keyword click and the
noun keywords button and link. The adjective (modifier in RSL terms) empty is also
treated as a keyword.

A Dbrief description of the meaning of keywords and some context rules in
scenarios is given below. The keyword show means that the system must display a form
defined by the direct object of this sentence. This object, in turn, must correspond to a

notion whose complex name ends with the noun keyword form. For example, the SVO(O)

89

sentence “System shows reservable facility list form” specifies that the form “reservable
facility list form” must be displayed at this point.

Similarly, the sentence “System builds reservable time slot list for facility” uses
the verb build, which means data creation. The direct object “reservable time slot list”
denotes a list, since the last noun in it is list.

The sentence “Customer selects facility from reservable facility list” means that
the user has performed element selection from the data table in the form. The indirect
object (preceded by the preposition “from”) specifies the data table contents (“reservable
facility list”, i.e., a list notion), the selected element is an instance of the notion “facility”.

The condition “click Select link” means that the user clicks on an active element
(link) in a form table with selectable rows. Normally this condition should be on the
control flow, which goes from the shows sentence/node (see the example above) to the
selects sentence (the previous example). This order of sentences should be followed to
enhance the following models produced by transformation. A recommended order of

sentences is a part of the RSL profile.

.%(Eymem builds reservable facility Ii5t>
W wrejoine
@rm&m shows reservable facility list fnmL—;(&Mnm display t:riteria)

- - click Change button]
[click Select link] \1{

lick C: | buth
gustnmer selects facility from reserv able ﬁnii‘quisD' [glick Cancal button]

QETEm builds reservable fime slot list for hnii@ failure

@yEtem builds empty reserved time slot |iED [click Cancel button]

Customer confirms reserved
stem shows reserved time slots form time slot list
[click Select link \l([click Confimn button] 14(

Customer EEIEDT_E —E 5"# . GyEtem reserves reserved fime 5Int>
om reserv able time slot list «rejoins TTET

G‘IETE”" adds time slot TED (Systemn shows reservation Eummary' form)

reserved tIITIE slot list
[click OK button]

System removes fime slot Customer accepts
om reservable time slot list resery ation summary
SuCCess

Fig. 41. Requirements — scenarios of the use case in a graphical form

90

The condition “click Confirm button” means that the form button has been
clicked. The meaning of the remaining keywords is self-explanatory. The example in Fig.
41 completely complies with the rules described above.

It should be noted that the use of keyword and predefined order of sentences is
voluntary. However, it affects the quality of the following models. If keywords are used
appropriately, more complete models are obtained in the following steps.

The described profile for the Keyword-Based Style is supported in the current
version of the ReDSeeDS tools. Currently for a term to be treated as a keyword exactly
this predefined term should be used. Nevertheless, extending keyword support and using
WordNet [41] it should be possible to treat synonyms of predefined terms as keywords as

well.

3.5.4 The Structure of the Analysis Model

The main part of the Analysis model in the Keyword-Based Style is the Domain
Model — a conceptual class model for the system to be built. The Domain Model is
generated by appropriate transformations from the domain (notion) part of Requirements.
It contains classes corresponding to all notions in Requirements. Class attributes and
associations are also extracted from the notions part of Requirements (if they have been
defined there). A special Analysis profile is defined in ReDSeeDS which contains
stereotypes to be applied to the Domain Model. Classes generated from persistent notions
would have the <<entity>> stereotype (there also are some heuristic rules how to find
persistent notions when they have not been properly marked in the requirements). Other
classes with the stereotype <<form>> would correspond to forms — notions with the
suffix form in their names. In a similar way, collection classes (for example,
ReservableFacilityList) will have the <<list>> stereotype. In the design stage, these
classes will be converted into generic list classes. Control elements in forms (such as
buttons and links) are also represented by stereotyped classes in the Domain Model, with
stereotypes <<button>>, <<gridLink>>, <<link>>, and some others. Additional
associations, having a special meaning for the design model (e.g. aggregations linking a
form to a list to be visualised as a data grid in this form), can also be generated. These
associations are also given special stereotypes (<<owned>>, <<formElement>>, a.0.).
See more on the principles how the Domain Model is generated from Requirements by

transformations in Section 3.5.5. Fig. 42 presents a part of the generated Domain Model

91

in the Fitness club example. It shows that the proposed approach can transfer a significant
part of the intended semantics of the requirements into the stereotyped Domain Model

(this, in turn, will guarantee a rich behaviour to be generated into the PIM model).

1 +form
FormElements 1 ReservableFacilitylistForm:: L ﬂbil— abuttons
ReservableFacilityListForm «FomElemants 1 |Recerv ableFacilityListForm:
*arm w—~=farm Cancel
sealact +reservableFacilityListFom 1Fﬁh‘“‘--q_
== - 0.1 xFormElements
coridLinks aCrwnedns oc'.:-u‘l't?l.'lx- i}
4 +change 4 |ReservableFacilityListForm::
Reserv ableFacilityListForm::
Select wentity » e
. Faciliies::Facility |+faclity
+==lact 1 "
«GridRows - active: boolean 1" E _I.o.cen.t.l_':_y.» 5
sow |1 +resarvebleFacilitylist |_ capacity: int e ISR L 2 s
alicte 1 titamg| - description: String HimeSlots - date: Date
Facilities:: ',"/) ?FE: f:fm = CEE 5_1-"1-;
ReservableFacilityList | =Listltemss |~ shortinfo: St - Dl Lo
aPKx +timeSlot| - isReserved: boolaan
+reservableFacilitylist g 4 - facilityNumber: lang - baOT: Dats
. 1]- wussgs: int
+reservations . ”
wentity » titems/ Fitems
Customers :Custome r . Sl]) / wListltemss
+resarvations | FacilityReservation: sreserved TimeSlotlist|D..1
- firstnamea: String H FacilityReserv ation - - -
- lastname: String i - j) alicts
- status: String +customer |- comment: String “L'?Itemﬂ' FacilityReserv ation:
aunigques +reservableTimeSlotlist™ g 1 ReservedTime Slotlist

- usemame: String alicts +resarved 1 +meserved |1

oW - .
FacilityReserv ation:
« GridRows i L ReservableTime SlotList
+reservableTimeSlotlist I| 1

Fig. 42. Fragment of the generated Domain Model

The full strength of the transformations is revealed only if requirements are built
in RSL according to the appropriate RSL profile (see 3.5.3). If requirements in RSL
cannot provide sufficient information for building this Domain Model, it is highly
recommended to extend this model manually in the Analysis step. Only in this case the
next steps will provide the desired results.

The structuring of the Domain Model is based on notion packaging (provided in
RSL).

3.5.5 Transformation of Requirements to Analysis

The main task of this transformation is to create the Domain Model from the
notion part of Requirements, taking into account some elements of scenarios as well. The
basic transformation is very straightforward since notions, their attributes, and
relationships in RSL actually are in one-to-one correspondence to the class model. The

stereotypes <<list>> and <<form>> are added if the respective keywords are present in

92

the notion names. An additional analysis is done for list classes. If an entity name is
contained within the list notion name (such as “facility” within “reservable facility list”),
the entity class is assumed to be the element of that list (a <<listltems>> association is
generated).

Classes for control elements can be generated from scenarios. We are looking for
a click-condition (click ... link or click ... button) which follows a show-sentence (...
shows ... form). If such (new) situation is found, a class is generated with the name equal
to the name in the click-condition and the stereotype <<gridLink>> or <<button>>,
respectively. The association (with the stereotype <<formElement>>) linking the control
element to its form is also generated.

More form-related associations can be generated from scenarios. Select-sentences
(such as ... selects facility from reservable facility list) allow us conclude that the relevant
form (that in the preceding show-sentence) permits to select elements exactly from this
kind of list. Hence, this list (here, ReservableFacilityList) is visualized in the form (the
<<owned>> association can be built), and each gridLink element in the form corresponds
to a row in the list (the <<gridRow>> association is built).

Using these relatively simple principles, the Domain Model in the example in Fig.
42 can be generated from notions and the scenario in Fig. 41 (p.90). Implementation of

these transformations in the MOLA language is also quite straightforward.

3.5.6 The Platform-Independent Model

This model is the most important to our approach since all platform-independent
functionality is generated in this model. This is done by revisiting the use case scenarios
and analyzing them repeatedly, taking into account the (possibly manually extended)
Domain Model from Analysis. In combination with the keyword-based sentence analysis,
a significant part of application and especially Business Logic can be generated. This
model is created according to the platform-independent design patterns described in
Section 3.5.2.

The main result of the PIM step is the design class model: packages and classes
(and interfaces) with all attributes and operations. The operations will have all parameters
defined. All the other data such as persistence info for ORM-related classes are coded by

platform-independent stereotypes, which constitute the PIM profile.

93

The other essential results of this analysis are stored as sequence diagrams, also
covering a significant part of the Business Logic method bodies. All method invocations
with appropriate parameters that can be generated are coded this way. Whenever possible,
the invocation logic up to the DAO level is documented. These sequence diagrams are
kept in the behaviour package and are grouped in the same way as use cases in the
Requirements Model. Some small practical extensions of sequence diagram syntax are
used, for example, FOREACH iterator in loop fragments.

The design class model is split into the following packages: applicationlogic,
businesslogic, dataaccess and domainobjects. The first three are further subdivided into
Interfaces and Implementation parts, containing interfaces and implementing classes,
respectively. Each interface name has the prefix “I” added to the corresponding class
name.

For application logic, the facade design pattern is used. For each use case, a class
corresponding to this use case is generated (with the suffix “Service” added to the name).
Further structuring of the applicationlogic package is done according to the use case
packages.

The content of businesslogic is generated according to the Manager Pattern. Here
classes correspond to persistent classes (entities) whose usage in Business Logic can be
inferred from sentences with keywords and the Domain Model. Classes/interfaces have
the suffix “Service” added to the entity name.

For dataaccess, an updated version of the DAO pattern is used, and practically
applicable methods are generated for DAO classes. Each class corresponds to a persistent
domain object; the class name is generated from the object name with the suffix “DAO”.
Classes are grouped in the same way as domain objects. For each class, CRUD and some
typical find operations are generated. Bodies of these operations are similar in all classes,
only the types vary. Therefore, we propose to implement them once in a template class
which contains parameterized types. All the other classes will inherit them from this
template class (with parameters set to the relevant values in each case). We remind that
this specialization of the classical DAO pattern is platform-independent since it can be
directly implemented in most of typical platforms.

For the domainobjects package, the domain object design pattern is used. This
package represents a platform-independent Object Relational Mapping (ORM) model for

all entities with platform-independent annotations. Associations (relations) are also

94

included in a way typical of an ORM definition. A database schema for a specific
platform can also be easily generated from this model (in the next PSM step). Names of
domain objects are taken from the corresponding domain concepts. For each persistent
class, a unique identifier attribute is defined as well.

3.5.7 Transformation of Requirements and Analysis to PIM

Transformations for building a platform-independent model are more complicated
than for building the Domain Model in Analysis. They use the behaviour part of the
Requirements model as input, as well as the updated Domain Model.

The transformation of domain objects is very straightforward. Domain classes are
transformed to PIM domain objects, retaining all attributes. For each persistent class
without a primary key, an artificial primary key is created. Here the copy library is used.

For each persistent domain class, a DAO class and its interface is created in the
dataaccess package. They specialise the template-based implementation of CRUD and
filter operations.

In the Business Logic layer, classes and interfaces have a structure, similar to that
in DAO, with the exception that classes, devoid of business level methods, are excluded.
The generation of business methods is done in the general context of behaviour
generation by analyzing scenarios in the requirements.

In the Application Logic layer, for each use case, a class and interface is
generated. For this interface/class, one “main” method is generated (which means
invoking this use case from another one). Its name corresponds to the Use Case name.
Other methods for this class are generated for Ul-related sentences in the scenario that are
detected by analyzing the subject of the sentence. If the subject of the sentence is an actor,
then it is actor-system sentence (or Ul-related sentence).

Behaviour generation, described below, is the most complicated part. Here we
greatly rely on the meaning attached to the keyword. We use heuristics describing how
the resulting model should look if one or another keyword is used. The transformation
algorithm is complicated. A detailed description of the transformation algorithm is quite
lengthy (see [84]).

Now we present the main ideas transformations rest upon and typical examples,

representing the use of keywords in transformation algorithms.

95

Behaviour is grouped in the same way as Use Cases. For one Use Case, one or
more sequence diagrams are generated by processing its scenario. The behaviour of a Use
Case begins with invocation of the “main” method of the Application Logic class
corresponding to the Use Case.

In order to build an Application Logic method body, we look for consecutive
scenario sentences with the subject System and the recipient system (in other words, any
verb other than “System shows ...). All these sentences correspond to calls to the
Business Logic layer. At first the verb used in this sentence is analyzed. If the verb is a
keyword, the sentence is analyzed according to the rules used for this keyword. If the
verb used is not a keyword, the structure of the sentence alongside with the object
keywords is analyzed. Default behaviour generation principles corresponding to the
sentence structure are applied. The immediate recipient of this call depends on the
sentence structure. If the indirect object (e.g., ... for facility) is present, the call is directed
to the manager of the corresponding entity (here, FacilityService). Another typical case is
when an indirect object is absent and the direct object corresponds to a notion/class with
the stereotype <<list>>. Then the invocation is created to the manager class
corresponding to the entity class which is the list element. There are also some other
“patterns” of sentences, corresponding to the Business Logic calls (or simple actions
directly in the Application Logic layer).

The grouping of the generated Business Logic calls is done in a simple way — all
these calls up to the next UI call (corresponding to the next “System shows ...” sentence)
are included in the body of the current Application Logic method body (see Fig. 43). The
“System shows ... form” sentence generates a call to the User Interface layer (to the
controller of the relevant form), which completes the current body. The next sentence
(which in fact follows the “click ...” condition) corresponds to the invocation of another
Application Logic method. Then building of the body of this method starts.

Fig. 43 illustrates in detail a typical application of the transformation rules
described above by an informal “model mapping diagram”, with arrows going from the
source model instances (bottom) to the corresponding target model instances (top). The
first sentence in the scenario fragment (“Customer selects facility from reservable facility
list”) follows the “click Select link” condition; therefore, it implies the method invocation

selectFacilityFromReservableFacilityList() to the Application Logic class

96

(ReservationsService). The two following sentences in the scenario correspond to the

actions in the body of this Application Logic method.

ploa (JUIENISSSW]] 30eAES S WtIH}o| S3WI 13335
proa - (uilEr A e e g e EEy wod i) 108 45108 35

pion : (JEI0SSW | pEJSEEHS WIU0D

ploa : (JSucENESE

+ o+ o+

DB SEWILE BN S | panusss
LB SEWI =B B
Appoe4=E EeEedsgeuEsE

WIid

o|gewll Jogswg -

1S 19e43ge AlasaY
ISa|I0EY
sl

L0 _m_._.ﬂ___um“_m_nmamm:

LUITY 5}0|5 LG
P2 AI3SEl SMOYS WESAS

]S | S| 08AUESE

fpoeyq Auposy -
IzluoEny JswoEns -

39| Al35 SUDOE AJRS mt:.._,du.nm Alasay

I} =Emo|ssw | pawJass II%I
1

e

Aé_am“_vm_._ [

.xmh._._qp_m__._..__wt._. 151] 530S AR PaAIES u
_ ; wa spling wajshs
Bua) Jsqu =T
g __?
Bums oyupous -l S | PHIIOEY J04 151 J0|S 3w
O —=ood __/(m_nm..r_mmE sSp|Ing Eﬂmhm
Bums uogduss

.ﬁs. « fpuae

Apoeg:sapoey ~H

(ApeaEriuee 43| geass sy Wal 441 196 £193|35
] Biuil 12e1Es ¥ou]

151 Aupo8 aqe Auasad
LTI a.._.___u.W._. 5132|3835 J3LLOISN

s

fosgsgeuassypng T

X

INET= XM 1-ET .
LEGTITETIES

SI|EEL

SIS CIUCIIEAEE S| I UCIIEASE Y

ASIEPSIUIS

ULDS] | S3UI | pRAEsE: N
®IIEPSIUIS

I
|
|
|
|
IBWCENT I8||E
e 4Er A EEd3|gEAESSY N MW

LEG T TIES Mm O

Fig. 43. An example of informal mapping describing transformations to Detailed
Design

Fig. 43 presents a detailed analysis of the first sentence. The sentence “System

builds reservable time slot list for facility” implies the Business Logic method invocation

buildReservableTimeSlotList(). According to the rules described above, there is an

97

indirect object (“for facility”); therefore, the method must go to the corresponding
manager class (to the class FacilityService). Because of build-semantics (build is the
keyword) of the verb and list-semantics of the direct object, the return type of the method
is List<TimeSlot>. The returned value must be stored in the attribute
reservableTimeSlotList (of the same list type) of the invoking application class
(ReservationsService). The next sentence corresponds to an action in the body
(assignment to the attribute reservedTimeSlotList) because of the semantics of the
keyword empty. Note that all lifelines correspond to the interfaces because any invocation
goes via the corresponding interface in our style (certainly, the body behaviour relates to
the relevant class).

There are some more rules in the approach quite similar to those explained in the
example. We do not examine the interaction with the Ul layer in a greater detail.

3.5.8 The Platform-Specific Model

This model is a specialisation of the platform-independent model to a specific
platform. The choice was Java with Spring + Hibernate 3 with the greatest possible
declarative (annotation-based) style.

For this platform, the model is quite similar to the platform-independent model.
The class structure in PIM corresponds more or less to the required structure in PSM. The
main task is to convert annotations to the specific style required by Spring and Hibernate.
However, some new model elements should be added as well. In this step the copy library
is widely used which is characterized by the feature to do copying and make some
modifications depending on the transformation type

A new model is the database diagram generated from the domain objects. This is a
typical database design diagram (with tables, columns, PK, FK, etc.) in EA.

The domain objects are “copied” with the same package structure. They are used
to describe Hibernate-specific ORM functionality. All Hibernate- and Spring-specific
annotations are added (coded as stereotypes) to the domain classes, attributes, and
operations. The relevant getters/setters and some predefined methods are added to the
classes. Traceability links between PIM and PSM elements are generated by
transformations and used to maintain various annotations related to mappings between

different parts of the model.

98

For each DAO class, the annotation <<@Repository>>is added. These classes
have also annotations describing the transactional mode, the default “required” is used.
The template-based mechanism is directly taken from PIM.

The Application Logic layer classes are included in the Business Logic layer.
Classes in these layers are given the annotation <<@Service>> (to mark them as Spring
beans). The annotation <<@Autowired>> is used to initialize references to other beans.

The structure of PSM corresponds directly to the potential Java class structure
typically used in Spring (with the packages domain, repository and service). These
packages are further structured in accordance with the already defined model structuring.

In order to have a more or less complete design class structure and behaviour in
sequence diagrams, some elements in the Ul area have to be specified as well. The basic
source for that — forms, attached data, and actions (buttons and links) are available in the
Analysis model. Currently a rudimentary solution directly based on Spring MVC is
proposed. In this solution, we can use JSP for data visualisation and controllers to manage
user actions. We use one controller per form, adding a method for each user action in the
form. Typically a controller method directly calls the appropriate Application Logic
method. Nevertheless, this should be treated only as a “stub” which can be replaced by a
more appropriate Ul feature definition. Such a prototype form structure definition could
be incorporated in the requirements since the RSL language contains features for that
purpose. Some experiments in this direction have been performed.

Sequence diagrams, defining behaviour within method bodies, are also refined
according to the Spring requirements. The most significant changes refer to the User
Interface part. At this level, a simple version of Ul and the Application Logic interaction
can be precisely defined. In particular, a special “executable” solution (including DAO
methods) could be provided for finding the object selected by the user via a data grid in a
form. This way, the form behaviour sufficient for simple prototyping could be provided.
We do not describe the Ul aspects of PSM in a greater detail since the tool support for
them has not been fully implemented.

3.5.9 The Java Code

The provided PSM can be used for the Java code generation. This generation is
quite straightforward — at first all information must be transferred into a properly

stereotyped class model using the MOLA transformations (the body behaviour must also

99

be transferred from sequence diagrams to the code sections of operations in EA). Then
the properly modified EA Java code generation scripts can be used. The main issue of
modification concerns adding scripts for processing all relevant annotations.

The structure of the Java code directly corresponds to the structure of PSM.
Methods are generated according to the model. Predefined method bodies are generated
for some methods. This is widely used for domain objects (almost all methods are
generated). Bodies of getters, setters, hashCode, equals, toString are generated in
particular. A template-based generator is used and the method body vary according to the
object properties for which the method is generated.

There are also generated predefined method bodies of the TemplateDAO class and
concrete DAO classes extending the TemplateDAO class with appropriate types.
Appropriate Hibernate configuration file describing, for example, the data base
connection is also necessary. An initial version of this file can be generated. It should be
noted that a data base script can also be generated from PSM.

The Business logic- and Application Logic-related functionality is generated
according to the class structure. The behaviour (described in sequence diagrams) is
generated as well. Concerning the Ul part, currently only a placeholder is generated.

The generated Java project can be inserted into an Eclipse IDE project template
containing references to the required Spring and Hibernate libraries. Thus, a ready-to-
compile project is obtained. All this constitutes a significant part of a simple prototype —
mainly the Ul part has to be added manually. However, if the complete set of
transformations described here was implemented, a “near to executable” prototype would
be obtained.

Some examples of the generated Java code are given below. The example in

Listing 2 presents apart of the code generated for the Facility entity.

Listing 2. Generated Java code for the entity class “Facility”.

@Entity
@Table (name="facility")
public class Facility {

private Boolean active;
private Boolean capacity;
private String description;
private String facilityNumber;
private String id;

@Override
public boolean equals (Object obj) {

100

if (this == obj) return true;
if (!super.equals(obj)) return false;
if (getClass() != obj.getClass()) return false;
Facility other = (Facility) obj;
if (active == null) {
if (other.active != null) return false;
} else if (!active.equals(other.active)) return false;
if (capacity == null) ({
if (other.capacity != null) return false;
} else if (!capacity.equals (other.capacity)) return false;
if (description == null) {
if (other.description != null) return false;
} else if (!description.equals (other.description)) return false;
if (facilityNumber == null) {
if (other.facilityNumber != null) return false;
} else if (!facilityNumber.equals (other.facilityNumber)) return false;
return true;

}

@Column (name = "active", nullable = false)
public Boolean get Active () {
return active;

}
public void set Active (Boolean p) {
active=p;

}

}
The code fragment in Listing 3 illustrates the code generated for the Application

Logic methods. They represent three methods for the Application Logic class
ReservationsService. To understand the context, one sequence diagram from the PSM
model is given in Fig. 44. There are three method invocations on the ReservationsService
lifeline (reservations, selectsFacilityFromReservableFacilityList, and
selectsTimeSlotFromReservableTimeSlotList). The methods invoked within the
corresponding fragments of the lifeline (until the return) appear within the corresponding
body.

Listing 3. The generated code, describing the system behaviour for the
ApplicationLogic class “ReservatinService”

@Service ("ReservationsService")
public class ReservationsService implements IReservationsService {

@Autowired

private IChangeDisplayCriteriaService iChangeDisplayCriteriaService ;
@Autowired

private IFacilityService iFacilityService ;

QAutowired

private IReservedTimeSlotListService iReservedTimeSlotListService ;
private List<Facility> reservableFacilityList;

private List<TimeSlot> reservableTimeSlotList;

private List<TimeSlot> reservedTimeSlotList;

public void reservations() {
reservableFacilityList=iFacilityService .buildsReservableFacilityList();

}
public void selectsFacilityFromReservableFacilityList (Facility facility) {

101

.buildsReservableTimeSlotListFor (

iFacilityService

reservableTimeSlotList

facility);

reservedTimeSlotList= new ArrayList<TimeSlot>();

}

public void selectsTimeSlotFromReservableTimeSlotList (TimeSlot timeslot) {

reservedTimeSlotList.add (timeslot) ;

reservableTimeSlotList.remove (timeslot) ;

(10/s2WN)an 0LUAI SIT10[SAWI | D [HRAISS3Y,

)

(JojsawWil)ppe 151710 S a1 | paAISsal

CAuEm,mE 11 =151 BNy M3U =ISM10|S3LUI| PaAIasal

oo

104181 TI0[SAWI |2 |qBAISSIHS P|ING=ISI 10|53 | 3 JeAasal

|l _

TN (AnjioB) MOS0 |S Al | 9|QBAISSEP]| NG

(0155w)50 153W1 L 31gBAISS RO 0| SBW 1510935
I
I
I

()51 7101531 | 3|qBAIRS Y0 H10|S LIS |35

e

ol

OBITAIPEL3IqGRAIZS2NS P|ING=151TA11| PR 4RI dRAISS D

il

(OmAII0e131qBAISS3MSPIING

(17431 IDE-Je|gRAIBsRY a3 0B 45102 |38

somiaghylje|
“aomiaghyedl

S0IAISSSUOIBAISSAY|

30IM3GSUOIBAISSSY |

()suonenasal

3]01U0DLULLI0LSI0[SILUI | PAAISSSY:
TULO4S10|SAW I | PAAISSa)

13]0NUODUWLOJIS AN 1984 3|qBAISS DY

BTG ED S IS TR ET IV ESE]

JMUOEM . IMUOEY

5

13|80 13][BD

\ *'07 T SUOIIEAJ3S3Y T SUONEAIISIY PS

Fig. 44. An example of a sequence diagram for the ReservationsService class

102

3.6 Implementation

In the ReDSeeDS project an experimental tool support for the approaches
described above has been built. The tool support is named the ReDSeeDS engine. It (and
its sources) is available from SourceForge.net [2].

The ReDSeeDS engine contains the RSL editor, integrated transformation
execution environment, and the entry point to the UML editor. The Enterprise Architect
(EA) tool [156] used as the UML editor. A tool support for automatic data exchange with
EA was built. For details see Section 3.6.4.

Model-to-model transformations supporting the MDSD path were implemented in
the model transformation language MOLA [76]. More about transformation in general
can be found in Section 3.6.1. The transformations algorithms used in the Keyword-
Based Style are described in Section 3.6.2. Model-to-text transformations implementing
code generation are described in Section 3.6.3.

3.6.1 Model-to-Model Transformations Implementation

Transformation algorithms described in style definitions (see Sections 3.4 and 3.5)
are implemented in the model transformation language MOLA [76]. The transformations
are implemented using the MOLA tool [59].

The metamodel used for transformations is the same as for other ReDSeeDS tool
components — it consists of a RSL metamodel merged with the relevant parts of the
standard UML metamodel and extended by special traceability elements. Transformations
also build the relevant traceability links in every step.

Fig. 45 presents a MOLA transformation example which creates (or finds an
existing) lifeline in a sequence diagram. The first rounded rectangle represents the most
typical construct in MOLA — the rule (for details see CHAPTER 2). This concrete rule
searches for a lifeline in a sequence diagram.

While implementing transformations, some transformation libraries were
developed and they were reused in different layers of the models and in different
transformation steps. The most powerful and most widely used library was the copy
library, used to copy some element with all its child elements to another model. For each
UML element type it was necessary to develop transformation in the library,

103

implementing the copy logic. In MOLA it is not possible to define the copy logic

independently of element types.

Vi
£ ™

@int : Interface | type cel : GonnectableElement
{Interfaces} typed {Internal Structures}

lifeline repregentg

11 : Lifeline
{Basiclnteractions}
{tname=@int.name;

@i : Interaction interaction
{Basiclntera... Icl lifeline

ps . . -
\{ELSE} 1

@I_Findstereutype("interfam": @Dg;:].! ‘o Param:=@I1 [>©<]_.
T Faraml:=@&int

Vi

@i - Interactior|interaction © ne:LifEline element @s : Stereotypd

{Basiclntera...[" rrarea e e e ;tere::-tg.rp-e 1 {Kernel

Fig. 45. Transformation example

In fact, when using this library it was possible to incorporate also typical changes
of the resulting model. Each use of the library was given a name. By using this name a
check-up was performed on the need for any adaption of the model elements. It was easy
to combine the library with the extensions attached to the name of the library use.

The copy library was mainly used when working with a static structure. There
were other transformation libraries used in the ReDSeeDS project, e.g., string processing,
sequence diagram creation and processing, traceability creation, etc.

Another aspect of transformation implementation should be pointed out as well.
All transformations in the chain must support repeated runs — the requirements always
change. What is even more important, for the same transformations to be applicable to the
manual model-driven development, all models in the chain should allow manual
modification. Therefore, support for various result merge actions must be included in the
transformation set. In our approach, this support mainly relies on traceability links.
Currently one kind of the merge procedure — the so-called Simple Merge - is
implemented, but more sophisticated merge procedures could be implemented, too.

Transformations were used not only to support a path from one model to another,

but also to implement such technical tasks as merge or model import/export. As a result

104

the following model-to-model transformations were developed: for the Basic style: RSL
to PIM, PIM to PSM; for the Keyword-Based Style: keyword analysis, RSL to Analysis,
Analysis to PIM, PIM to PSM, PSM to code; technical transformations: RSL scenario
visualization by UML activity diagrams, export to EA, import from EA and Simple
Merge. It should be noted that some transformation rules are reused in several

transformations.

3.6.2 Model-to-Model Transformations in the Keyword-Based Style

In this section, we briefly describe the implementation of transformation
algorithms for building the chain of models in the Keyword-Based Style.

Missing Features

Not all model transformation features outlined in the Keyword-Based Style
description have been implemented. Mainly the features related to the generation of Ul
functionality are missing. The delay of transformation support for the Ul functionality is
due to the fact that it would be natural to combine the generation of Ul features from
scenarios with a direct specification of the Ul structure in RSL (as is usually done during
the requirements specification). Although this possibility exists in the RSL language, as
already stated, currently there is minimum tool support for this.

Consequently, the Ul part in the generated models is implemented minimally;
only some basic Ul classes and interfaces have been created. All the remaining details of
Ul, such as form elements, are not generated in the current version. Therefore, the code
generation for the Ul part is not supported either, although the generation of some code
skeletons is technically feasible.

One deviation from clean usage of UML in models is also observable in some of
the examples. Assignments in sequence diagrams are emulated by the message text and
some tagged values because this feature is defined in UML in a very complicated way
and virtually supported in no UML tools. This workaround has made some

transformations more complicated.

Keyword-Based Analysis and Analysis Model

Some non-trivial aspects of transformation implementation are described below.

105

Transformation for keyword analysis (which is the first to be applied in the chain)
scans nouns, verbs and modifiers used in the scenario sentences, and fills in the keyword
field of the relevant RSL elements. This permits to specify the same keyword with several
synonyms. It could be improved further by using the WordNet meaning as the keyword.
This way it would be possible to distinguish different meanings of the same term and to
use all synonyms with the same meaning.

The next transformation is from RSL to the Analysis Model. The logic of this
transformation is relatively simple — it analyses the notion model in RSL and transforms it
directly into an UML class diagram, adding stereotypes based on the keywords set by the

previous transformation.

Creation of PIM

The most important transformation is from the Requirements and the Analysis
model to PIM. This transformation has two logical parts. The first part is the creation of a
static structure — package hierarchy, classes, and interfaces. The second part is the
creation of behaviour stored as UML sequence diagrams.

For creation of a static structure, a universal “package hierarchy copier” library is
used. The package hierarchy copier receives as input the root of the source package
hierarchy, the target package, and the copy mode. The package copier copies a hierarchy
of packages and their elements (classes, interfaces, etc.) in a way specific to the given
model. For example, it is possible to define that for some mode either a suffix should be
added to the class name or class attributes should be ignored, etc. The universal package
hierarchy copier is used in several contexts during the creation of PIM and PSM models.
In PIM the Data Access objects and the Business Logic objects are based on the Analysis
class diagram. In PIM the Data Access class should be created for each persistent class in
the Analysis model. This is ensured by using an appropriate copy mode. The same copy
package hierarchy mechanism is even more widely used in the creation of PSM since it is
based on the PIM model with some modifications.

Another important part of PIM is the behaviour description, using UML sequence
diagrams. In this case the RSL scenarios are analyzed and sequence diagrams are created.
For each scenario, one UML sequence diagram is created. The content of this sequence
diagram depends on the RSL sentences, used in this scenario. Objects, generated from a

106

sentence, depend on the kind of the sentence. There are three kinds of sentences: an actor-
system sentence defines the interaction of an actor with the system. It can be recognized
by the subject of the sentence — an actor. The subject of the two other kinds of sentences
must be a system element. The next kind is a system-actor sentence. Such sentence
typically means that the system shows something to the user or asks for some input from
the user. The third kind is system-system sentences. These sentences are used to describe
internal actions of the system, typically some Business Logic. There are different sub-
kinds of these sentences, depending on the keywords used in the sentence.

The sequence diagram elements generated from a sentence depend on the kind and
sub-kind of the sentence. At first the sub-kind of the sentence is determined, followed by
the creation of elements of the sequence diagrams. Since the UML sequence diagram
metamodel is quite complicated, a library has been created for the basic element creation
and used accordingly. The procedure for one sub-kind of a sentence consists of calls to
procedures for creating/finding the basic sequence diagram elements. It helped to separate
the transformation algorithm from the technical sequence diagram metamodel processing.

Fig. 46 provides an example of the procedure for creating the sequence diagram
elements for a system-system SVO sentence without keywords. At first the lifeline,
corresponding to the object, is found or created. Then a message to this lifeline is created.
Afterwards an operation corresponding to this message is found or created, followed by
association of this operation with the message created. Then a return message is created.
Each of these tasks is implemented as a MOLA procedure, invoked by the given
procedure. These procedures for the sequence diagram element processing are used as
building blocks. The content of one such MOLA procedure is shown in Fig. 47, which
demonstrates the search of lifeline in a sequence diagram depending on the object used in
the verb phrase. In the first rule, the notion corresponding to the noun used in the verb
phrase is found (the long chain of associations necessary to locate this correspondence is
implied by the RSL metamodel [66]). Then it is determined whether this notion or its
parent should be used and the interface corresponding to this notion is found (it has been
created during the static structure generation). In this case, the Business Logic interface is
found. Finally, the lifeline for this interface is found or created. This procedure is very
typical of transformation implementation in ReDSeeDS — it uses the MOLA patterns for
finding complicated correspondences between model elements (such complicated

correspondences are enforced by the structure of RSL and UML metamodels).

107

)

r'”_“a

i@s ;- 5% Sentence 1 : Intaractian iE=m : hiodel i@ea : Softwaretitac
2 3
1
. rewiSentences) 1BasicInteractions} Miodelz} {sclhemel;
igzelf : Lifelne
§
S0 Sent - -
@sws me SR | souree p:Predicate | predicate s : §imple‘verb Phrase rBiasic nteractione]
i Entencest predicate [[5W0Sentences} target {Phrazes}
plm Dbjec'thfellne(@sv i, Ehl, @=a, ‘businesslogic’,)) P Yy R— .
{BasicIrteractions) @0 : Dperation
Tkemel}
utl_Get DpemtlonTen(@E [@op Mame, “actor- Ey*sbanj) @bl : Lifeline [@m=g : Message
tBasicirteractions} | \rpasic Interactions}
(Eint : Interface —
by I:reateh-'lessage(@! E=elf, (@bl, @opMames, ™, "™ | (EmeEg)) Irterfaces} (EopName : String

T

N

pim flndEreateremtlnnl:@nt map Mame, @j)

£

bhw Createh-'lessage Operation] [Ems=g, [@))

T

B

bhw Ereatehn‘lessage(@ whl, @=elf, @opMame+1-1", "™, "retum”, @T:sgﬁ)

Fig. 46. Creation of a message for a “System-System” sentence without an
indirect object

108

L

.O& "LIngRuE | WA IERIEL) 5 H TN _u_umu_@

il

m [Wni=Em uem |, A AR E.mm._n_lE_n_u

P

m_“h@ ‘BB JUED) IR SE] [RILE RO o [N

Buuls : 1=

{sunnop}
uofop © | U

EHE] e

5 t
Buuls : yoedm

- ™
(=TT, fewaypas) | THNELHBHEIRIE Isuonon}
e Hay| e 0] pRIEaal S| El EAMOS U eSO B ooy | W
adit] q54oLUoEa0) &
pad) phile] U0 pEI0| &
13573} T fannoe e oiseg]| {AnoEIa| JIsEg)
Apadayg : dod A4 AUEY | HRRREUL uonoeta) - 6
fl=:wng=d GUEEEEEEEEEE o __b.. .
mﬁﬁm&_ "W e __.@umumtmE__u_._EuE@..A_
75 {3513k
_ 0oy} ooy s ed
h U waued@ =y qﬂﬂ_ wonoy : W waued Tzuonop}
SN U LS RO nopop W
Fil)
- ™
noug
wnunou| isesewd} [—— uEd Tsuonot}
Hurunap) - gl= BUNSE e yguney ;gL LOROLH wanap o
& YUy - G|
J=biE]
palqe Isasel
ud}
{suna)} i Tzasen)y} ki {=azEnyd} 2RI q30 | aseiyy qian, - diid)
unoy : Apa HOUREY | i ney g1 e FLNOS | mzpygunop du
e - vy
fwayast {BwnoeR aseq} {amnpaesE azeg} T=zaseyg} T
m N | ®
PEHIRIEMYOS | EST) AUl © N USRI 6 ASEI] s, - Al

Fig. 47. The procedure of finding a lifeline in a sequence diagram, depending on

the object used in the verb phrase

109

PSM Model and Initial Code

The next step in the chain is the transition from PIM to PSM. For the creation of
PSM, the package hierarchy copier described above is widely used. Only appropriate
modes are defined. The transformation algorithm, creating static structure of PSM from
PIM, is mainly based on the package hierarchy processing. There are many repetitive
steps. Most of transformations in this step could be defined by using a higher-level
language than MOLA (see CHAPTER 4). Behaviour processing in this step actually is
also copying of sequence diagrams with some small fine tuning.

The transformation from PSM to the initial code analyses the sequence diagrams
and creates the initial code. The code is attached to each relevant method. All messages
from a lifeline starting from a method invocation on the lifeline to the return message (a
message describing return to the caller of this message or a message to Ul) are
transformed to actions in the code for this method. For storing a code, corresponding to
an operation, the UML comments are used (the initial code is not a standard UML
metamodel element). The transformation for code creation iterates through all messages
in the sequence diagram. The search is performed in a recursive way (based on a stack).
When it detects a call of some operation, it means the following messages will constitute
the body of this operation. If a call to another operation follows this operation, the call to
this other operation is added to the code body of this operation and this operation is added
to the stack; and the newly created operation is set to be the current. If return from this
operation to the previous operation is detected, the previous operation is popped out from
the stack. If self messages are detected, an appropriate code is simply added to the
message body. The stack is implemented by using the UML comments since it was not
possible to extend the metamodel with temporary classes (due to the requirements of

other tool components).

Summary

Implementation of these transformation rules in the Keyword-Based Architecture
Style took approximately 3 person months. Implementation of these transformation rules
consists of about 140 MOLA procedures (of a size similar to the one given Fig. 46, or
Fig. 47, p.109). Implementation of rules, currently missing, would be a small part of the

existing code.

110

3.6.3 Model-to-Code Transformation Implementation

Many MDD-based tools offer code generation from the UML models. The
Enterprise Architect (EA), the modelling tool used in the ReDSeeDS project, has the
Code Template Framework (CTF) which also provides code generation features. Just like
most of code generation tools in the MDSD world, EA does not provide a full code
generation, but code skeletons (classes, interfaces, fields and operation declarations) can
be obtained. Only packages, classes, and interfaces are used by these templates, the other
UML elements are ignored. These templates are called base templates. The latest versions
of EA (not used in the project) provide some code generation features for behavioural
UML diagrams as well (sequence, state).

Since the ReDSeeDS project uses EA for UML support, there is a possibility to
reuse all CTF capabilities of code generation. It is a significantly easier way to obtain a
code than to generate a Java model as the first step and then convert this model to a
proper code.

Base templates can be used directly for the ReDSeeDS Basic style. These
templates are applied to a Detailed design model of this architecture style. The package
hierarchy, declarations of all classes (DAO, DTO, etc.), and methods are included in the
generated code. Bodies of the obtained methods should be filled in manually since the
detailed design model in this style contains no behaviour.

For the Keyword-Based style, significantly more code can be generated, including
the behaviour aspects. Base templates do not generate the declarative annotations used in
the Keyword-Based architecture style. We underline that these annotations are specified
in the platform-specific model as appropriate stereotypes of classes, attributes, and
associations. However, code generation templates are defined by using the model-to-text
language (the CTF language) in EA. Thus, it is possible to customize the way in which
CTF generates a source code. The extension of the Java code generation template for the
Spring framework has been built. The generated code contains Spring annotations
obtained from the stereotypes.

Although behavioural diagrams cannot be properly used for code generation in
EA, they can be processed by model transformations before the code generation step. For
example, a MOLA transformation converting a message and action sequence in a

sequence diagram into a part of the code of the appropriate method body has been

111

implemented by using an intermediate model. Then such an enriched intermediate model
can be further processed by the code generation templates in EA. Since such pre-
processing is done, a great portion of the code (for example, method invocations from
sequence diagrams) is being generated, using EA. This way a meaningful executable
prototype code could be obtained directly from the requirements. If the models in the
software platform-independent and platform-specific models have been extended

manually, a true model-driven development can be carried out by this approach.

3.6.4 Integration with the Enterprise Architect

As already stated the Enterprise Architect (EA) tool [156] was used as the UML
editor in the ReDSeeDS project. However, it was necessary to exchange the UML models
between the ReDSeeDS repository and EA, as EA was used to visualize and modify the
UML models created by model transformations.

The data exchange was done by using import/export procedure. It was possible to
export the data to EA and then the user could modify the data using EA. After that the
data were imported back to the ReDSeeDS repository.

The data export to EA was done in two steps. In the first step the UML model was
transformed to the EA encoding of UML. A metamodel describing the structure of EA
Application Programming Interface (API) was used as the EA encoding of UML. The
first step was implemented in model-to-model transformation. The second step was
implemented by a Java program that was reading the data in the EA encoding of UML
and feeding them in EA by using EA API.

The data import from EA was performed similarly in two steps. At first the data
from EA API were transferred to the EA encoding of UML by using a Java program. As
the second step the data from the EA encoding of UML were transformed to the UML
model.

This two step data exchange was selected because the UML encoding in the
ReDSeeDS repository and in EA was very different. These differences were mainly due
to a strange encoding of the UML models in EA. For example, enumeration was encoded
as a class with the stereotype “enumeration”.

The author of the thesis implemented model transformations from EA encoding of
UML to UML and back. The transformation from UML to EA was implemented by using

112

23 of the MOLA procedures. The transformation from EA to UML was implemented by
using 39 MOLA procedures.

3.7 Conclusions

In this chapter a model-driven path from the requirements to the code is studied.
Two different paths built in the ReDSeeDS project are analyzed. Transformations
supporting these paths are typical transformations used in Model-Driven Software
Development. This is a great case study in building transformations for Model-Driven
Software Development from which various conclusions can be drawn.

Almost each model consisted of a static structure description and behaviour
description. When creating static structure descriptions, mainly the copy library for the
selected UML subset was used. Creation of static structure usually meant copying
elements from one model to another with some small modifications. Although the copy
library helped a lot in static structure transformation development, here still was a lot of
routine job and the amount of static structure transformations was big enough. Creation of
static structure could be described by using the mapping similar to the ones used in Fig.
38 (p.83). The effort required to build all these different cases of static structure
processing in the project was the main stimulus to develop the mapping languages to be
described in the next chapter.

Transformations, creating the behaviour part of models, were more advanced. The
most complicated part was creation of sequence diagrams from the requirements. This
task required quite complicated analysis of the requirements to produce appropriate
sequence diagrams. The algorithm was very complicated. Another issue was work with an
annoying UML metamodel for sequence diagrams. To ease work with sequence diagrams
a library for processing the sequence diagrams was created and widely used. The library
helped to separate logical work from technical processing of the UML model. In general,
the classical pattern and the rule based transformation paradigm seemed to be the most
appropriate for this part of task — thus making MOLA a very adequate implementation
language for it.

The most complex transformations were transformations generating the initial
code. Here a stack was required to keep track in which operation the code, corresponding

to this sequence diagram message, should be included. In MOLA there is no natural

113

support for a stack. Therefore, it was necessary to emulate all stack operations by using
transformations. It was also hard to determine whether this is a forward call or a call back
when using sequence diagram metamodel instances. Though MOLA could be used for
this task, clearly a specific language extension for collection processing (similar to such
libraries in the OOP languages) would be of high value.

The number of MOLA procedures for each task is given in Table 4. The number
of transformations related to static structure processing and behaviour processing is also
provided.

Table 4. MOLA procedure count in different transformations. Classified as to
processing static structure, behaviour or independent operations.

Type Transformation Static structure | Behaviour | Other | Total
Basic Style RSL to PIM 12 19 3 34
PIM to PSM 8 1 9
Keyword Analysis 4 4
RSL to Analysis 8 2 10
Keyword- RSL, Analysis to |16 32 5 53
Based Style | PIM
PIM to PSM 14 2 2 18
PSM to Code 9 9
Copy library 23 9 32
Sequence processing 9 9
Libraries Traceability library 4 4
Delete 7 7
Other 24 24
RSL visualization 19 19
Merge 26 26
Technical UML -> EA 35 35
EA -> UML 41 41
Test 22 22
Total 81 71 204 356

114

CHAPTER 4

Mapping Languages

4.1 Mapping ldea

Transformations could be treated as mappings between the source and the target
models. However, not any transformation language is a mapping language. The author of
the thesis believes that mapping should be defined in terms of simple relations, most
probably represented by simple arrows from one element to another. Simplicity is the
key. However, in traditional transformation languages it is possible to write down very
complicated conditions. For example, in one sub-case A should be transformed to B, in
another sub-case A should be skipped, and in a third sub-case A should be transformed to
C. To describe these complicated options, all kinds of conditions spoil the simplicity of
these languages.

However, in many transformation languages, especially in declarative ones, there
appear some elements of mappings. A pattern with the source and the target elements
separated could be considered a mapping element. One side of the diagram describes
what should be transformed and the other side — what should be created. . Mapping
elements in transformation languages are described in detail in Section 4.1.1.

Although in OMG RFP [119] and in the MDA guide [111] the term mappings has
been used, today transformation languages are not treated as mapping languages. We may
consider that in general the mapping idea in transformation languages has failed.
Irrespective of that there have been attempts to create universal mapping languages.
Usually these languages are incomplete. They are practically applicable only in simple
cases when the relation between the source and the target is simple. To make them
applicable in all transformation tasks they should possess a full power of model
transformation languages. It means that they should have the same complexity as in
model transformation languages. These languages are described in detail in Section 4.1.2.

An interesting approach is used in Atlas Model Weaver (AMW) [39]], proposing
a universal mapping language. However, this mapping language is only a basis for

defining specialized mapping languages.

115

To specialise this general purpose mapping language, in fact, a new mapping
language should be built. This new mapping language should contain details specific to
the domain processed — a feature typical of domain-specific languages. As a result we can
speak about domain-specific mapping languages that could be more expressive than
general purpose languages, not loosing simplicity and understandability of the language.
Domain-specific mapping languages are discussed in Section 4.4.

Another view on mappings holds that they should be treated as an initial skeleton
of transformations to be built. An approach of this type is proposed in [50]. Mappings
build a skeleton of transformations and details are filled in the transformation language.
In this case the transformation sources are generated from mapping. To describe
transformation generation from mappings higher-order transformations could be used. A
mapping language compilation using higher-order transformations is described in Section
7.2.

4.1.1 Transformation Languages and Mapping Languages

There is no formal generally accepted definition on considering a language either
a model transformation language or a mapping language. However, in practice there is a
more or less common understanding and we present our interpretation of it.

A model transformation language focuses on a precise executable transformation
definition (that results in “Turing model completeness”). Currently, most of the
transformation languages rely on the pattern-rule paradigm. A pattern specifies what
fragment is to be found in the source model and a rule specifies what is to be done on the
basis of this fragment (in-place update or creation in the target model). Certainly, there
are big differences how the rule execution order is controlled — in a non-deterministic way
aided by various guards (NACs, when and where conditions, etc.) or within some classic
control structure.

The main paradigm of a mapping language is a direct specification of a set of
correspondences between the source metamodel and the metamodel elements. The idea of
correspondence is as follows — for each instance of the source metamodel element the
corresponding target instance is created (or its existence is checked). An additional
standard requirement claims for the language to be very easily readable; therefore
frequently the correspondences are visualized as simple arrows between the metamodel

elements. Other features of a mapping language depend on its use. A mapping language

116

may simply serve as a facility for defining transformation drafts (abstractions). Then a
transformation is manually created on this basis (with a possible automatic skeleton
generation). Alternatively, a mapping language may serve as a precise, but still easily
readable transformation specification. Then mappings are used as a source for generation
of the actual transformation definition in a transformation language. To increase the
expressiveness various additional features are added (filters, constraints, assignments,
etc.) while trying to preserve the readability; however, completeness is not so easily
reachable this way. To illustrate the main ideas behind the mapping concept a short
overview of mapping specification languages is given in the next section.

An alternative way to meet both criteria (expressiveness and readability) is to
narrow the application domain of a language — build a domain-specific mapping
language. In this chapter we present a language exactly of that kind. Such a language will
cover all typical cases of mappings in the given domain and will satisfy the readability
requirement. Certainly, there is always an option to extend the generated transformation
definition manually.

We conclude the section with some remarks on using the mapping ideas within
some transformation languages. Thus, in MOF QVT Relational [128] (especially the
graphical form) each relation reminds of a visual mapping in the case when both patterns
are reduced to the corresponding metamodel elements. Fig. 48 presents a small
transformation example in MOF QVT Relational [128]. The left side of the figure
contains a fragment of the source model and the right side of the figure contains a
fragment of the target model. Actually, MOF QVT Relational is bidirectional, therefore
the source and the target models could be exchanged. In fact, this small example reminds
of a mapping which defines that one source model fragment should be transformed to
another target model fragment. However, as soon as more constraints are added the set of
relations becomes significantly less readable and a transformation with complicated
constraints does not remind of mappings anymore. So we can conclude that there are
mapping elements in MOF QVT Relational.

It should be noted that the MOF QVT Operational Mapping sublanguage has
preserved the term mapping for denoting an operation of creating a target model element
from a source model element. However, this operation is more an elementary
transformation element with various conditions and helper operations around than a
relation in MOF QVT Relational.

117

«domain»

C. LIass
umit:UML rtRDBMS [<OTAM o
¢ e
totcols = 0
{not}:Attribute

Fig. 48. MOF QVT Relational example

A similar effect appears in some other languages as well, e.g., in ATL [63], AGG
[163]. A special situation is with the TGG [146] that has so many mapping features that
sometimes is considered to be on the borderline. TGG is a graph transformation language
extended with mapping elements. An intermediate model or a mapping model is used
explicitly defining a transformation in TGG. In this model relations between the source
and the target are directly represented. However, when the full power of patterns and
NACs is used in TGG, it is more a traditional transformation language.

Another remark concerns bidirectionality that is an important issue for
transformations, but it is out of the scope for this research since it is not so significant for
our domain.

Some mapping elements could also be observed in the model transformation
language MOLA (described in CHAPTER 2), although they are not as direct as in some
other languages. The MOLA rule consists of a pattern and action part, although these
parts are not strictly separated. The pattern part could be treated as a source of mapping
and the action part — as a target of the mapping.

4.1.2 General Purpose Mapping Languages

Attempts to create universal mapping languages as a certain alternative to
traditional transformation languages have been started sufficiently early.

An attempt to describe the mapping concept more precisely was made in the paper
by Hausmann and Kent [51] in 2003. They used the term mapping to address the general
understanding of connection between models and offered a graphical mapping language

118

to specify mappings. However, the precise functionality of mappings had to be defined in
OCL thus these relatively simple diagrams actually meant a complicated programming in
OCL, in addition, their primary concern was bidirectionality.

In the thesis of Lopes [102] the Hausmann's and Kent's ideas have been developed
much further — a mapping specification language (no special name was given to it) has
been created and implemented as an Eclipse plug-in Lopes considered the universal
approach - the specification of mappings between two arbitrary metamodels. Mapping
specification (mapping model) has been used to generate the actual model transformation
definition in ATL, more or less complete transformations could be generated if mappings
were detailed by appropriate OCL expressions. In addition, the usage of abstract syntax
(standard UML metamodel) has led to complicated mappings even for simple tasks.

Atlas Model Weaver (AMW) [39] provides a generic infrastructure and editor to
declaratively specify weaving models between two arbitrary models. The weaving models
are used to capture different kinds of links between model elements. The links have
different semantics, depending on the application scenario. In fact, AMW provides a
generic mapping (core) metamodel which should be extended in particular case. The
Higher-Order Transformations (HOT) generate actual model transformations.

The most recent approach uses composite Mapping Operators (MOps) [198]. The
basic mapping operators called kernel MOps provide the basic types of possible mappings
(like class to class, attribute to attribute, relation to relation, etc.). Kernel MOps can be
composed into more advanced mapping operators — composite MOps. Composite MOps
can be easily reused further once defined. This approach has been implemented on the
basis of AMW and also generates ATL using HOTs. All abovementioned mapping
languages are general purpose ones, applicable to any domain and are based on the
abstract syntax.

Another view on mapping languages is given in Guerra et al. [50], where it is
proposed to use mappings as requirements specification for transformations. Mapping
diagrams of transML (a language family for development of model transformations) are
used for high-level design of model transformations; from these diagrams only
transformation skeletons can be generated.

We believe that a mapping language should not be universal and complete in
order to preserve the readability. If a mapping language is complete, then really it is a

new transformation language. The mapping language should be used only for typical

119

cases. There should be a close integration with a model transformation language and the

rest should be written in this traditional model transformation language.

4.2 Domain-Specific Mapping Languages

As it was stated in Section 1.2.3 specialised modelling languages - Domain-
Specific Modelling Languages — are used for specialised modelling areas. These
languages are suitable for use in concrete domains. Domain-specific languages contain
terms specific to the domain as language elements. Consequently, language users can
operate with terms familiar to them. It raises the abstraction level and increases
productivity as well.

4.2.1 Domain-Specific Model Transformations

Similarly to modelling languages there are model transformation languages
suitable for certain domains. Actually, each model transformation language is more or
less dedicated to a certain domain. For example, MOLA is suitable for model
transformation development in MDSD. In the Epsilon project [93] a multi language
framework has been built. This framework consists of several languages. Each of these
languages is dedicated to a specialised group of transformation tasks. These languages
are: Epsilon Transformation Language (ETL), Epsilon Validation Language (EVL),
Epsilon Generation Language (EGL), Epsilon Wizard Language (EWL), Epsilon
Comparison Language (ECL), Epsilon Merging Language (EML), Epsilon Flock (a
language for model migration).

Model migration could be mentioned as a concrete transformation domain.
Currently, there are two specialised languages for model migration: COPE [52] and
Epsilon Flock [141]. In some sense these languages are mapping languages as there
declarative means are used to specify relations between the source and the target models.
It should be noted that specialised transformation languages perform better than
languages of general purpose. In TTC 2010 the same model migration task [142] was
implemented in 9 model transformation languages. The best results [140, 184] were
reached by the specialised languages COPE [52] and Epsilon Flock [141].

120

4.2.2 Domain-Specific Mapping Languages

There are domain-specific mapping languages suitable for certain domains and
based on concrete metamodels. The following are examples of such mapping languages:

e The language R2RML to map RDB to RDF [191] is currently under
development by W3C. A draft is available [195].

e D2RQ Mapping Language [44] is a declarative language for describing the
relation between a relational database schema and the RDFS vocabularies
or the OWL ontologies.

e DZ2R map [20] is a database to the RDF mapping language.

e Silk-LSL (Silk Link Specification Language) [1] is provided by the Silk
framework. It is a declarative language for specifying which types of RDF
links should be discovered between the data sources, as well as which
conditions the data items must meet in order to be interlinked.

e RDB to OWL [22] defines mappings to transform the RDB data to the
OWL data.

e Epsilon Flock [141] and COPE [52] for model migration.

Domain-specific mapping languages may be graphical, textual or tool driven. For
example, Epsilon Flock [141] is textual, COPE [52] is tool driven and MALA4MDSD,
proposed in Section 4.3, is graphical.

There are not so many domain-specific mapping languages, therefore research on
the creation of such languages is of importance. In the present thesis two mapping
languages of this type are proposed. A mapping language for MDSD is described in
Section 4.3 and a mapping language for the DSL tool development is described in Section
5.3.

4.3 MALA4MDSD - Mapping Language for MDSD

In this section a mapping language for MDSD - MALA4MDSD is proposed. This
language is domain-specific. It is built to transform one UML model to another UML
model. A typical application of such language is transformations from PIM to PSM in the
MDA lifecycle. Actually, the language does not support full UML - it supports only a
UML subset typically used in MDSD. More precisely, the described subset is meant for

121

transforming only the static structure of an UML model (however, it could be easily
extended to include many behaviour-related elements as well).

Unlike the mapping language approaches described in Section 4.1.2, we propose
to base the mapping language on a concrete syntax of the source and the target languages.
A similar idea has already been applied to transformation languages, e.g., in AToM?® [96]
and [49].

The language demonstrates the cornerstones of our approach — the source and the
target model structures are represented by trees. Tree nodes specify what kind of model
elements appear in the given context and the mapping relations (arrows) from the source
to the target tree nodes specify which kind of the target model elements are created from
which source elements. Tree nodes do not correspond directly to UML metamodel classes
(abstract syntax, as in [102, 39]), but to concrete syntax elements — types of nodes
typically found in UML model trees in various UML tools (a sort of de-facto tree syntax
of UML). This makes the tree notation significantly more readable (no large amount of

abstract classes is to be shown).

4.3.1 MALA4MDSD Motivation

The usage of model transformation languages requires highly skilled specialists
with deep knowledge of metamodelling. That is one of the main reasons why the industry
has not yet widely accepted the MD* approaches and most of model transformation
languages are used only by a small group of people closely related to language
developers.

Domain-Specific Modelling (DSM) proposes to use modelling languages that use
notation and concepts specific to the domain actually being modelled. It narrows the gap
between languages being used to describe the problem and the solution. Similar principles
may be applied to model transformation languages. Instead of using a general purpose
model transformation language we propose to use domain-specific transformation
languages that use elements specific to the models being transformed. Most of the model
transformation languages (including the standard MOF-QVT) use abstract syntax
(metamodels) to specify model transformation definitions. However, users of the
modelling languages use only the concrete syntax of the language. Thus, the domain-
specific model transformation language should use familiar concepts for modelling

experts: the concrete syntax of the modelling language.

122

This should lead to the shift of roles of developers in the Model-Driven Software
Development (MDSD) process (see Fig. 49). Metamodelling experts (highly skilled
professionals) would be the developers of domain-specific modelling languages, using all
the arsenal of technologies they have. The software developers (modellers) would become
the actual developers and users of model transformations. Thus, the former model
transformation users would become model transformation developers (and users), but the
former model transformation developers would become model transformation language
developers.

Mapping language definition Mapping language

specifies tree types for

P —a mam

R

e — L
t‘ I———r_ S — |__c. {copy} ” =

Language developer Language user

Fig. 49. Schematic roles of the mapping language family users

Another crucial aspect for a domain-specific model transformation language is the
use of convenient means to represent the correspondences between the source and the
target model elements in the model transformation definition. The most intuitive option to
define model transformations is to use mappings. Mappings permit to specify
transformations in a simple way, frequently by very intuitive graphics. From the very
beginning of model transformation languages there has been an intention to define
transformations as simple mappings. The expressive power of such general purpose
mapping languages is limited; however, we demonstrate that mappings are expressive
enough for transformations in specific domains.

In this section we propose an approach for building domain-specific
transformation languages based on simple mappings and the concrete syntax of models
being transformed so as to reach simplicity, readability and sufficient expressiveness of
the language at the same time.

This section proceeds with the description of one domain-specific mapping
language — MALA4MDSD. Actually, the approach proposed could be applied to a
mapping language family. The mapping language described in this section is only one
instance of the mapping language family. Mapping languages in the family differ by the

used concrete syntax trees. The MALA4MDSD description contains occasional remarks

123

whether the described feature is specific to MALA4MDSD or common to all mapping
language family.

Section 4.4 is devoted to the description of obtaining languages of the mapping
language family.

4.3.2 Basics of MALA4MDSD

The UML model structure is greatly determined by the composition relationship
in general. Therefore, in practice it is sufficient to represent the UML model structure as
trees. The source and the target in this domain-specific language are UML models within
the same subset; consequently, both trees can contain the same kinds of nodes. For the
chosen UML subset there is a predefined set of nodes to be used in a tree. It is natural to
think of trees in this mapping language as UML instance tree patterns. They represent a
possible structure of an instance tree in a typical UML tool containing the source or the
target model. For example, it means that if a specific mapping requires that there should
be a package inside a package there will be two hierarchical package nodes in our tree.

The source and the target tree nodes are connected by using mapping relations. A
mapping relation means that if an instance corresponding to the source node is found in
the source model then an appropriate instance should be created in the target model (here
we should think of both models to be represented by their instance trees). The source tree
is traversed in a top — down manner. For each valid instance of the source node the
outgoing mappings are executed (i.e., target instances created). The validity of an instance
is checked by using the containment relationship to the parent and the filter conditions.
For the target nodes it is possible to use attribute assignment expressions to define the
attribute values of the newly created instance.

A simple mapping example is presented in Fig. 50. The topmost mapping relation
is executed first. It maps two UML models. In the source a UML model named “PIM” is
sought for. For each such model a UML model named “PSM” is created in the target. In
the real transformation context from which this example is taken there is only one model
instance named “PIM” available in the source, but we do not distinguish this situation
syntactically in our language. Then the second mapping is executed. The packages named
“Service” in the UML model “PIM” are found. For each such package (in this case again
actually only one) the corresponding package named “service” in the target UML model

“PSM” is created. The third mapping relation copies all classes in the source model

124

package “Service” to the target model package “service”. Classes with all child elements
(here — attributes and operations) are copied because the copy modifier is used (for details
see Section 4.3.5). The name of the target class is calculated using an expression. The
prefix “i” is added to the source model class name; pay attention to the use of the
reference “~c” to navigate the mapping named “c” from the target to the source. Thus, the

expression “~c.name” gives us the name of the mapping source node (class).

C m
name="FIn" | {1} | name="PsmM”
name="Service" | {2 O | name="service"
{3 ==class== G =<Clazs==
131 C, CoOpy . | name="i"+~c.name

Fig. 50. MALA4MDSD example. UML model “PIM” is transformed to UML
model “PSM”. Package “Service” in model “PIM” is transformed to package “service” in
“PSM” model. Classes from source model package “Service” are copied to target package

“service”.

4.3.3 MALA4MDSD Elements

The list of MALA4MDSD elements is given in Table 5, consisting of two parts.
The first part of the table presents MALA4MDSD tree elements, defining the role of each
element in the UML model, the attributes usable in MALA4MDSD and the possible child

elements. In the second part the elements of the mapping language family are presented.

Table 5. List of MALA4MDSD elements

Image Element Description

Tree type elements

{al Model node Corresponds to UML model.
Attributes: name;

Child elements: package node,

recursive package node.

H Package node Corresponds to UML package.

Attributes: name;

125

Image

Element

Description

Child elements: package node,
recursive package node, class
node, interface node,
component node, enumeration
node, data type node, actor

node, interaction node.

Recursive

package node

Describes the package
hierarchy of arbitrary depth in
the UML model. All elements
in the hierarchy independently
of depth are treated as children.
Attributes: name;

Child elements: class node,
interface node, component
node, enumeration node, data
type node, actor node,
interaction node;

Description: see Section 4.3.5.

@' <<class>>

Class node

Corresponds to UML class.
Attributes: name, stereotype;
Child elements: attribute node,

operation node.

2 <<interface>>

Interface node

Corresponds to UML interface.
Attributes: name;
Child elements: attribute node,

operation node.

&

Component
node

Corresponds to UML
component.
Attributes: name;

Child elements: interface node.

126

Image

Element

Description

= <<enumeration>>

Enumeration

node

Corresponds to UML
enumeration.

Attributes: name;

Child elements: enumeration
literals (in this use case not

used explicitly).

H <<dataType>>

Data type node

Corresponds to UML data type.
Attributes: name.

Actor node

Corresponds to UML actor.
Attributes: name.

Interaction node

Corresponds to UML
interaction (sequence diagram).
Attributes: name;

Child elements: in this use
case the child elements are not
used explicitly. However, all
sequence diagram elements
should be treated as child

elements.

Operation node

Corresponds to UML operation.
Attributes: name, stereotype,
type (primitive type name or
reference to type: class node or
enumeration node);

Child elements: parameter

node.

Parameter node

Corresponds to UML operation
parameter.

Attributes: name, direction
(enumeration: set of fixed

values), type (primitive type

127

Image Element Description

name or reference to type: class

node or enumeration node).

o Attribute node Corresponds to UML attribute
(coded as property without

association in UML model).

Attributes: name, stereotype,
type (primitive type name or
reference to type: class node or

enumeration node).

B -cclasses Association Corresponds to UML
] edge association.
'@' ==classe=s
Source node type: class node;

Target node type: class node;
Attributes: stereotype, source

role, target role.

Generalization ~ Corresponds to UML
%7 edge generalization.
Source node type: class node;

Target node type: class node.

. Realisation edge Corresponds to UML
realisation.

Source node type: interface
node;

Target node type: class node.

Dependency Corresponds to UML

£ |

edge dependency.
Source node type: class node;
Target node type: class node.

128

Image Element Description

Mapping elements

== Constraint In the source tree it is possible
name="businesslogic" or to define constraints in a tree
narme="applicationlogic"

element. Constraint means that
only instances satisfying this
constraint will be processed.
Constraint language is a
simplified wversion of OCL.
Here it is possible to reference

tree type elements.

G Attribute In the target tree it is possible

name=“domain” assignment to assign values to attributes

defined in the tree type.
Assignments are described as
follows:
<attribute>=<expression>.
Expression is defined in a
simplified version of OCL. It
describes how the attribute
value to be assigned is
evaluated. Expressions are
described in detail in Section
4.3.5.

> Mapping Mapping relates the source and

the target trees. It describes
from which source tree element
which target tree element
should be created.

Default mapping When
mapping creates a node in the

129

Image

Element

Description

target model a traceability link
is created. Before creation of
the target instance a traceability
link is used for checking
whether there is a node in the
target corresponding to
mapping in this target context.
If such an instance is found it is
used and nothing is created. In
case such an instance is missing
a new instance is created.

Mappings are ordered top
down. Mappings have names
that could be used in the OCL
expressions. If mapping is
traversed in the opposite
direction the name is prefixed

with the “~” symbol.

cl2cl, {copy}

Mapping copy

Copy modifier means that this
child
elements should be copied to

element and all its
the target model. This modifier
could be used only on mapping
relating nodes of the same type.
If assignment is used in the
target node it rewrites the
default value of the attribute
obtained using copy.

Description: see Section 4.3.5.

cl, {copyAttributes},

Mapping
copyAttributes

CopyAttributes modifier is used

to copy the node and all its

130

Image Element Description

attribute values. Child elements
are not processed.

This modifier could be used
only on mapping relating nodes
of the same type.

If assignment is used in the
target node it rewrites the
default value of the attribute
obtained using copyAttributes.

Description: see Section 4.3.5.

clZel fcheck Mapping check Check modifier means that a

"""" AT node in the target model must

be found. Creating a node in the
target model a traceability link
corresponding to the mapping
used is created. In this case the
traceability link is used to find
the node already created by
mapping with this name.

Description: see Section 4.3.5.

Pattern In the source tree patterns could

O <<class> be used to describe complicated

stereotype="list”

mapping application conditions.
stereotype="listltems Description: see Section 4.3.5.

{3 cl <<class>>

(Wini])) Custom MOLA It is possible to call custom

procedure MOLA procedures. For these
procedures the first parameter
should be the parent of

131

Image Element Description

“Custom MOLA procedure”
node. The type of this tree type
element should correspond to
the MOLA parameter. All other
parameters are of the type
infout and are represented as
child nodes. In this case the
types should correspond again.
Description: see Section 4.3.5.

4.3.4 MALA4AMDSD UML Tree Type

To be able to define transformations it should be clear to a user what kind of
elements in the source and the target trees could be used. For each tree type element the
possible attributes and child elements should be defined.

For the UML tree type used in MALA4MDSD the root node is always Model that
can contain Packages. Package can contain other Packages, Classes, Interfaces,
Components, DataTypes, Actors, Interactions and Enumerations. Class and Interface are
allowed to contain Attributes and Operations. Operations contain their Parameters. Each
of the node types has a predefined set of attributes (name, etc.).

In Table 5 all elements of MALA4MDSD tree type are listed. For each element
the possible child elements and attributes are listed. However, it would be easier for a
user if he/she could see these possible containments graphically and there are two
alternative ways for their graphical representation. One of them is to show the tree
containing the possible elements in each position. It is possible to give a name to a sub-
tree and explicitly define it only once, if the sub-tree is used multiple times. Such a tree is
presented in Fig. 51. This tree is very useful as a reader can easily see what kind of
elements could be used as sub-elements of the given element. However, if the language
has many elements this tree may get very large. Even for the UML subset used in
MALA4MDSD it is hard to fit this tree on one page. An alternative option is to use the
syntax similar to the context free grammars [149]. In this case the non-terminal symbols

are the names attached to tree fragments. A complete tree is built by replacing the non-

132

terminal symbols with the appropriate tree fragments. This type of representing the UML
tree type used in MALA4MDSD is given in Fig. 52. This syntax is more useful for large
tree types as it is possible to split it in several small images. Both representations are
equivalent: the first is more suitable for small tree types and the other — for larger tree
types.

The source and the target trees in mapping languages are defined according to the
tree type definition. The tree node type of root elements in the source and the target trees
should be the same as in the tree type definition. Only the parent-child relations defined in
the tree type are permitted in the source and the target trees. However, a child of the same
type could be repeated multiple times in different contexts. Children of some type could
be omitted if they are not needed in the defined mapping diagram (transformation).
However, it is not possible to skip some intermediate elements from the tree. For
example, it is not allowed to use Parameter directly as a child of Class. The parent of
Parameter should be Operation.

In the source tree it is possible to add constraints to elements. It means the same
tree node type could be used multiple times as a child of the same element with different
conditions. In the target tree it is possible to add assignments to elements and the same
element type could appear multiple times as well. It is used if different mappings describe

the creation of elements in the same context.

133

B

name: 3tring

FPackages H

name: String
ju]
Packages (5 ccclaze=s [EET
Fackagable elements
narme: String o |
Packagable elements
[EET— [EET——
narme: String s
Packagable |elemnets I — Ic P—
i= ==enumetation==
| |
H ==dataType== ' :
v ¥
name: String P O ==class==

X

name: String

—_—

£

narme: 3tring

Intetface

(5 =eclazse=
name: String
Etereotype: String

Dperations, Attributes

Interface -
D =<interfaces=

name: String
Operations| Attributes

5 narme: 3tring
stereatype: String
type:Object

B narme: String
type:Object
Stereotype:Strin
narme: String

direction: Enum
l type: Object

Fig. 51. MALA4MDSD UML tree type definition

134

i B =<classe= {a =zclgsg==
narne: String
Packages 47
(B =<classs [P
name: String o
Fackagable elements O =-class=> T
Packages ' !
i i
@ + |
¥
namea: String b0 cainterfacess O ==class=>
Packages

Packagable elements

F

name: String EL!“”

Packagable elements Interface

Packagable elemnets o el

i= ==enumeration== el Sl
Operations, Attributes
H ==dataTypes=
name: String
x
Cperations, Attributes
_ o name:String
name: String stereotype: String
type: Ohject
E—
£l Hname: 3tring
type:Object
name: String Stereotype: Strin
[i name: String
direction:Enum
Interface l type Object

G ==clgzg==
name: String
stereotype: String

Operations, Attributes

Interface

Fig. 52. Alternative tree type definition

135

4.3.5 More Advanced Mapping Elements

Elements described in Section 4.3.2 are the core of the proposed mapping
language. To facilitate the transformation development in this mapping language some
more features are introduced.

For some tasks large source and target trees with many mapping relations must be
built, therefore there is a need to divide mappings into smaller sub-diagrams. One
mapping program (transformation) consists of several ordered mapping diagrams. They
are executed separately in the given order. The root of each tree in the mapping diagram
should be the tree node of the root type in the used tree type.

Mapping Modifiers

As it was mentioned in Section 4.3.2 there are special mapping modifiers. A
mapping with the copyAttributes modifier specifies that in the target node for each
attribute an implicit assignment is performed, setting it to the value corresponding to that
value in the source node.

The copy modifier is even more powerful. It specifies that implicit mappings are
performed with the copyAttributes modifier for all children types of the node (at any
depth, according to the tree type definition). This is a very powerful feature for copying
tree fragments where nothing has to be modified. Certainly, the node types for copy must
be the same. In Fig. 53 (p.138) the copy modifier is used for enumeration and class nodes.
For enumeration the copied child elements are enumeration literals. For classes the child
elements are attributes and operations, operations in turn are copied with their parameters
—according to the type hierarchy in the tree type.

The third mapping modifier check means that nothing is created in the target tree,
only the relevant node is found by using traces between the source and the target (another
kind of arrowhead is used here). Such mappings are necessary, and as an example here

may serve the location of edge endpoints in the target tree as in Fig. 53 (p.138).

Expressions

Constraint can be used for tree nodes in the source tree. Constraints are used to
restrict the set of instances corresponding to the tree node. Constraints are defined by

using an OCL subset. In expressions a supported OCL subset is similar to a supported

136

OCL subset in MOLA. In the OCL expressions tree type attributes could be used.
Actually, the most popular constraint type implies adding a condition which checks that
the values of attributes satisfy the conditions defined by the constraint. It is also possible
to navigate the tree upwards; in this case “.parent”” navigation is used.

Expressions are used in the target tree to define the attribute value assignments. It
is possible to traverse mappings in these expressions. If mapping is traversed in the

(132

opposite direction, the name is prefixed with the symbol. Mapping traversion is
defined as navigation in the OCL expression. Similarly to constraint the attribute values

could be used in these expressions as well.

Recursive Elements

As it was already mentioned in the previous section a UML package can contain
other packages. It means there could be a package hierarchy with arbitrary depth.
Sometimes we want to process this hierarchy in a generic way. Therefore, in our mapping
language for packages it is possible to use a special type of node representing the whole
package hierarchy (see Fig. 53, the 3 node in the source tree). It means that the mapping
applies not only to the packages in this level, but to all packages in the hierarchy. This
modifier could be used in the source tree, as well as in the target tree. If the modifier is
used in the source and the target trees it means that the package hierarchy must be
preserved in the target as well. If the modifier is used only in the source tree it means that
in the target tree the package hierarchy must be flattened. It is possible to add child
elements to this package hierarchy, e.g., classes: if it is done, all classes in this hierarchy

(satisfying other constraints) should be processed.

Edge Processing

So far we have considered only nodes in a UML model. However, there are also
edges in UML (in the sense of diagram syntax). These edges should be processed some
way as well. Therefore we add to our language edges typical of a UML model:
Association, Generalization, Implementation and Dependency. These edges are
represented as links between the tree nodes. Edges can be used both in the source and the
target trees, edges can be mapped as well. The edge processing is done after both nodes
connected by this edge are processed. In general, the edge end instances in the target are

137

determined by maps of the corresponding line ends in the source; in more complicated

cases patterns should be used.

F] F]

[name="Arc:hiten:ture"]! m2m narme="Detailed Design” |

r‘ p2p |r|

[name="DataTransferObjects"] I =Iname=tUaner(~p2p.namejl

1 '

L

— - {CODV} » [[= ==enumeration==
5 ccclazae CI20|! {CODV} (8 <aclazz=s
| N
N N
'@' =eclass== | | (__2' l_?_(__‘,_L__{_Q_h_e_gl_(l _____ - {:'} ==class==
(B <=class== - e (D) =<=ClamE==
cl2cl, {check}
_______________ B

Fig. 53. Mapping example from the ReDSeeDS project. Transformation in
MALA4MDSD, demonstrating the edge processing and hierarchy flattening

An edge mapping is given in Fig. 53. All Associations and Generalizations
between classes in the predefined package hierarchy are copied to the target. All classes
in this hierarchy have already been copied before the edge processing (by the mapping
cl2cl). To find for an association the other end class in the target the mapping cl2cl is
duplicated from another class node in the source (the other end of edge in the source), but

this time with the Check modifier.

Patterns and Conditional Expressions

If the value to be assigned depends on some source element properties,
conditional assignments (assignments included in if-then block) can be used. Of course, it
is possible to code these source elements with different property values as different kinds

of the source node. However, if only the attribute values in the target depend on these

138

conditions it is not effective to introduce additional source nodes. Conditional assignment
is used in 4™ target node of Fig. 54 (p.145).

The same could be said about the application of constraints on mapping relations.
It is possible to create different source node sets using filter conditions; however, if only
something specific should be added to the target model while general mapping is the
same it is not effective to add special nodes to the source tree. Adding an additional
constrained mapping relation to a source node is a significantly more readable way.

Sometimes composition relationships alone are not sufficient to define the
mapping application context. Therefore it is possible to use source patterns, mapping
relations with application condition and conditional assignments in the target. Patterns are
needed to increase the expressiveness of the mapping language — to add some of the
power of pattern and rule based transformation languages. Typically patterns are used to
add constraints to nodes, especially when a node should be connected to another node
using some edge. However, patterns in this language are not as expressive as patterns in
MOLA. The difference is that only the node types and edge types defined in the tree type
may be used in a pattern, but not arbitrary domain metamodel classes and associations as
in MOLA.

At least one of the nodes in a pattern should be connected with the source tree by
using a parent-child relation. It is possible to give names to pattern elements, in the same
way as to class elements in MOLA rules. Only one mapping from a pattern is supported.
The node (or edge) used as the source of mapping is the main node in the pattern. If the
mapping from a pattern is traversed in the opposite direction, then the tree element
located by default is the source of mapping, however, navigation expression could be
continued with the name of the pattern element. It is useful, if the attribute values of other

pattern elements are required.

Integration with Custom Transformations

Although features have been introduced to raise the language expressiveness it is
not possible to write an arbitrary transformation between the models in this mapping
language. Therefore, it should be possible to extend the mappings defined in this
language by explicit custom transformations. We have chosen MOLA as the language for

custom transformations. We have introduced a special tree node type named “custom

139

MOLA procedure”. In this node it is possible to specify the MOLA procedure name to be
applied when the given node is executed. The MOLA procedure can have parameters.
Rules are defined how to represent these parameters in the mapping tree.

The first parameter for these procedures should be the parent of the custom MOLA
procedure node. A type of this tree type element should correspond to the MOLA
parameter. All other parameters are of the type in/out and are represented as child nodes.
In this case the types again should correspond. It is possible to use the already found
elements as child nodes, references to these elements are defined as a path to the tree
nodes.

A study of typical application contexts of custom procedures is left for future
research. This study might reveal the need to introduce new mapping modifiers to
enhance the use of custom transformations.

This feature enables the possibility to apply the mapping language to
transformation tasks when transformation is defined by combining simple mappings with

explicit transformations for complicated fragments.

4.3.6 Mapping Language Semantics

The previous sections contained a description of the mapping language syntax.
Below a description of the mapping language semantics is offered.

Multiple mapping diagrams are supported in the proposed mapping language. As
already stated in Section 4.3.5 these diagrams are ordered. The mapping diagrams are
executed according to the ordering.

Multiple mappings are used in the same mapping diagram. Mappings in a diagram
are ordered as well. It is possible to explicitly define this ordering; in this case an explicit
ordering is used. Mappings are ordered top—down according to the source end if the
ordering is not defined explicitly. It should be noted that multiple mappings from the
same source node are also ordered top—down.

The only exception is mappings from edges. In the ordering they are placed
directly after the second node (the end node of the edge, located farther in the mapping
ordering).

For target nodes without incoming mappings (nodes created with a parent),
mapping is introduced. The source of the mapping is the same as the source of the parent

node mapping. In the mapping ordering these mappings are inserted directly after the

140

parent node mapping. If the multiple children of the parent node have no mappings, these
newly introduced mappings are ordered top—down according to the target.

Using the principles described above it is possible to obtain a mapping ordering
for any mapping diagram. Mappings in the diagram are executed according to the

mapping ordering in the top—down manner.

Mapping Semantics

Although we use mappings to define a transformation from the source tree to the
target tree, actually we want to transform models. These models are related to a tree type.
For details see the mapping language definition facilities in Section 4.4. A transformation
defined in terms of tree nodes could be translated in a transformation defined in terms of
the source and the target models.

To execute a mapping we should find an instance set satisfying the mapping
application conditions defined by the source tree. This condition is defined by the source
tree fragment from the source node of the mapping, including all its parents, to the source
tree root. Of course, conditions defined for these nodes should be included in this
constraint. This could be treated as a pattern describing the application context of
mapping.

When executing a transformation, the pattern defined in terms of the tree type
should be transformed in the pattern defined in terms of model. It should be noted that it
is possible to perform such transformation by using the tree type definition described in
Section 4.4. A pattern defined in terms of model will be used to find the model instances
to be transformed.

When processing the current mapping in instance level, the target instance created
by the mapping should be attached to the appropriate parent instance in the target tree. It
is necessary to find this parent instance corresponding to the parent tree node. The parent
tree node should be related to the source tree by using some already processed mapping
relation. Besides, the already processed mapping relation (from the target node parent)
should go to the parent of the current mapping source node. If these conditions are not
satisfied, it means the mapping diagram is semantically incorrect.

As the parent in the source tree (the source of the already processed mapping
relation) is included in the pattern describing a possible application condition of the

141

mapping, it is possible to create a pattern describing how to find an instance of the source
parent node from the source node instance of the current mapping. It is also possible to
define it in terms of models.

For mappings in our mapping language there is the semantics “Create, if does not
exist” and for each performed mapping traceability information is created. It means that
by using this traceability information from the source node instance of the already
processed mapping it is possible to find a corresponding target node instance. This feature
together with the previously described pattern could be used to find the parent instance
for the target node instance of the current mapping.

Before execution of the current mapping it should be checked whether such
mapping has not been executed before. Traceability links are saved in models, therefore,
it is possible to define this check in terms of the source and the target models. Checking
of the existence of such mapping is done by using the mapping name.

If nothing is found we should create an instance of the target model. This again
should be done in terms of model. The target tree node type is transformed in terms of
model element creation. The mapping source node again should be transformed in terms
of the domain metamodel. Between the source node (defined in terms of model) and
between the target node creation (defined in terms of model) the traceability creation
should be defined in terms of model. Creation of the relation between the target tree node
and its parent should be defined in terms of model as well.

The property values of target element are assigned according to the assignment
description in the target tree. This description again is translated in terms of models.

In this way it is possible to translate the execution of mapping in terms of the
source and the target models. This translation is described in detail in Section 7.2.

Mapping Modifiers

In addition to simple mappings it is possible to use mappings with mapping
modifiers. In the latter case the execution semantics is modified a little.

If the check modifier is used, the mapping execution stops at the point of checking
whether such a mapping exists. The test of the mapping existence is done for each node

satisfying the mapping application conditions. If mapping does not exist for some node,

142

then error is produced. Child elements of this element are excluded from the application
context of the mapping following this mapping in the mapping ordering.

It should be noted that copy and the copyAttributes modifiers could be used only if
the node types in both ends of the mapping are the same.

If the copyAttributes modifier is used, the mapping execution semantics is as
described in the previous section. Only when transforming the target tree node to its
creation in this element, the attribute value assignments are added.

If the copy modifier is used, the execution semantics is the same as for mapping
with the copyAttributes modifier. The extension means that child cloning should be done

as well which is performed by a call to the universal instance copier.

Edge Processing

Mappings outgoing from the edges should be processed as well. For edge
mapping an application condition in the source tree is defined by the trees for both ends
of the edge. It means that in the pattern describing the edge mapping application two
paths to the root node are added. This pattern defined in terms of tree nodes again should
be transformed in terms of the source model.

The ends of the edge in the target model should be linked with mappings to the
nodes included in the pattern defining the application context of the edge mapping. This
way, similarly to the location of the parent node, it is possible to locate the ends of the
edge to be created in the target.

The rest is similar to the mapping processing for nodes.

Other Elements

Conditional mapping is treated as an additional constraint added to the mapping
application context. The pattern adds additional constraints to the mapping application
context as well. The pattern is translated in the pattern defined in terms of the domain
metamodel. The rest is similar to the mapping execution semantics defined above.

Conditional assignment does not affect the mapping execution semantics. The

only change is in translation of the attribute value assignments to the model terms.

143

4.3.7 Mapping and Transformation Comparison

In this section we will compare UML to UML transformation development in the
mapping language MALA4MDSD and in a traditional transformation language. As
already mentioned above a typical application of this language is transformations from
PIM to PSM in the MDA lifecycle.

In the IST 6™ framework project ReDSeeDS a model-driven path from the
requirements to the code is investigated [3], as already described in CHAPTER 3. Two
different transformation sets (“styles”) from the requirements to the code have been
developed. Each set contains a different structure of Platform Independent (PIM) and
Platform Specific Models (PSM) and different transformations between them. These
transformations have been developed in the model transformation language MOLA [76].
For a detailed description see CHAPTER 3 and [84].

We have rewritten the static structure processing of PIM to PSM transformations
in the language MALA4MDSD. Table 6 contains statistics about transformations in
MOLA and transformations in MALA4MDSD. For the simplest — the Basic style
transformations - 19 MOLA procedures (diagrams) were needed while it was possible to
write the same in MALA4MDSD with only 19 mapping links.

Table 6. Comparison of transformations from PIM to PSM, developed using the
model transformation language MOLA and the mapping language MALA4MDSD

Basic style Keyword-based style
MOLA procedures 19 51
MOLA rules 84 137
MOLA class elements | 265 418
Mapping diagrams 3 8
Mapping links 19 41
Mapping nodes 29 (source:11; target:18) | 66 (source:27; target:39)

In Fig. 54 one mapping diagram from the Keyword-based style transformations is
presented. In this diagram copying of Classes, Interfaces and Interface realizations from
the PIM model to the appropriate place in the PSM model is presented. Classes and
Interfaces in the PIM model can be located in the sub-package hierarchy under the

packages “businesslogic” and “applicationlogic” (the 3™ node in the source tree

144

represents the package hierarchy). The same sub-package hierarchy should be retained in

the target model. In Fig. 54 edge processing and conditional assignment is used as well.

ot , o
=" o M<m -
[name="F "] ¥ arme="PS "
2sr
H
5 Z2ce narme="src"

[name="businesslogic" ar
name="applicationlogic]”

2p
=

5= name= |f ~p2p.name =

= "businesslogic" Then "Domain”
2h Else "UseCaze" Endlf
s
Po

cl2cl, {copv}
€]

|

l sterectype="EService!
! r2r, {copy} >
, Rt S

¥

-0 ==interfaces=

[

narme="service"

{3} ==clazz==

==clazs==

-0 ==interfaces=

i2i, {copy} N

Fig. 54. Mapping example from the ReDSeeDS project. Transformation in
MALA4MDSD is demonstrated. MOLA transformation for the highlighted part of the
same task is presented in Fig. 55.

In Fig. 55 (p.146) a part of MOLA transformations implementing the same logic
is presented. Actually, here only the package hierarchy is processed and the class and the
interface copiers are invoked. It corresponds to the coloured part of MALA4MDSD
diagram in Fig. 54. All the copy logic is defined directly in other MOLA procedures. This
copy logic description is quite long as there has to be described that attributes, operations
and operation parameters should be copied and how they should be copied in terms of
UML metamodel. The mapping part above the package hierarchy symbols is described in
another MOLA procedure. Interface realization processing is not presented in this MOLA

transformation either.

145

. {Bsource © Fackage1 E¥anget : FackagEE> @ea Snﬁwareﬁ-tifa:t3> @mode - Sting
4 :

? Ikemell THemel} {zclkemel}
< ™y
@=ource : Package orwming Packane =ubP : Package _qe_p_elﬁljf_nlc].rSDLme
EEE packagedElermert Kemel} 5

client DependertOn

@=a ; Softwareftifact . ddiaecasssusa=s
artifact b - Iz Depandent On ;

Isolkemel fFaceeeecesssmmsssssaas . -
ounedirace; _{schemel
AR f
dependencyTargd *supplier DependertOn
[Etarget : Package . e R (0
owning Package " newP :Package °
Tkemel} [se=eefeccecccccccmanana e .
packagedElermert « Tkemel}]
2 name:=i@subP name |
T AR EEEEE R L}
p iy
Vi
pim_processPackagel@subP, @newP, [sa, @rn-:-dej)
Girn_c-:npﬁ,r_Fackage Hierarchy (i@sub P, i@newP, @sa, @'I‘!:-:'E))
Vi
e : Class
Tkemel}
@source | Fackage | owningPackage ¢ Class
e packaged Elernert e I Interface
TInterfames)
Vi
Gim_cnpﬁ,r_class(@c. [Etarget, (@3, @'ﬂ))
Vi
Ginu:nn:ncess Clas=(i@ne, @mods, @, @))

Iinterface : Interface packagedElemert (@=ource : Package

Irterf
trerfaces} owmi ng Package tkemel}

v

Gim_cnpy_imerface(@nterface. [Etargs, (@3, (&))

k¥i
Gimjmcesslmerface(@i. @mode, @nterfacs, [E))

®

Fig. 55. Transformation example from the ReDSeeDS project. The same
transformation fragment in MALA4MDSD is coloured in Fig. 54.

A reader may get the impression that MOLA is not a suitable language for this

task and other transformation languages would do better. However, it is not the case.

Transformation languages usually deal with UML in its abstract syntax. Therefore, all

146

processing of all classes and associations according to the UML metamodel should be
precisely defined. In the mapping language UML logical elements (a sort of concrete
syntax) are processed and a user should not care whether this logical element is
represented with an instance of one class or with instances of two classes connected with

an association (and so on) in the UML domain.

4.3.8 Related Work

All mapping languages mentioned in Section 4.1.2 are general purpose languages,
applicable to any domain and they are based on an abstract syntax. Differing from the
approaches described in Section 4.1.2, we propose to base the mapping language on a
concrete syntax of the source and the target languages. For transformation languages a
similar idea has already been applied, e.g., in AToM?® [96], and by Grenmo in [49]. A
concrete syntax is used directly in model (graph) transformation rules that lead to a more
familiar representation for modellers. However, this approach lacks the simplicity and
power of representation of correspondences between model elements offered by the
mapping languages.

There is also a similarity between our approach and a Model Transformation by
Example (MTBE) [199] where transformation examples are specified as mappings in a
concrete syntax. However, the MTBE approach requires a reasoner for transformation
synthesis from examples while in our approach the defined mappings are complete
transformation definitions.

Although models in the context of model-driven software development are graphs
and not pure trees, we have made a brief overview on several areas where transformation
languages are operating on the data represented by trees.

XML is the most popular and widespread technology. XSLT [194] is the
transformation language used to transform data in the XML format. Although XSLT itself
is an XML-based textual language, there are tools that use mappings to represent XSLT
transformations, e.g., Stylus Studio XSLT Mapper [132] and xsl:easy [154]. The source
and the target schemas are represented by fixed trees and all transformation logic is
specified by using much more complex mapping features than it has been done in our
approach.

Another field of data being trees is program rewriting. Though, the tools and

languages, like Stratego/XT [23] or TXL [29], are intended for the analysis, manipulation

147

and generation of programs, their features make them useful for transforming any

structured documents.

4.4 Domain-Specific Mapping Language Definition

So far very few responsibilities of a mapping language developer have been
described, namely, only to create definitions of the relevant tree type. In fact, this is only
a small part of the job. The precise definition of the general mapping language execution
(semantics) as far as provided in the previous sections was only from an instance tree to
another instance tree. However, in real life there are only models (compliant to their
metamodels) in various modelling languages and in various forms — exports from
modelling tools, models in repositories, such as Eclipse EMF [166], a.0. So there must be
facilities how to get from a model to a tree and vice versa. To make our mapping

language family usable in practice a uniform solution has to be provided for these tasks.

441 MALA4AMDSD Definition Issues

The previous section presented one specific mapping language for transforming
the UML models. Now we want to discuss the basic principles according to which this
language was defined and their possible application to similar model transformation
cases.

The first issue is an appropriate selection of the model elements to be represented
in the tree (source, target or both) — the nodes of the tree type. A natural hierarchical
subset of the modelling language concepts has to be selected for the chosen domain.
Containment has to be the most important relation in this subset since all its elements are
represented in one tree. For example, the tree type defined in Section 4.3.4 described the
static structure of the UML class model for typical MDSD. The chosen subset
corresponds to the one represented in the model tree in most of the UML tools for a class
model structure. Another selection criterion implies the elements to be represented by
nodes or their subparts in the relevant diagram notation — a class diagram in the given
case. The corresponding diagram notation is also the main source for the choice of
elements to be represented as edges in the tree type — associations, generalisations,
dependencies and realisations in the example. Lines are not shown as tree nodes, they are

attached to the nodes when required (many modelling tools show also lines directly in the

148

model tree). The notation used in our approach is a more convenient way to show how the
end points of lines are defined during the mapping process (when selected in the source or
created in the target).

Since the choice of the tree type elements is based on the existing diagram (or
tree) notation of the model, it certainly represents the concrete syntax of the modelling
notation. The concrete syntax is normally much more compact than the corresponding
abstract syntax — the domain metamodel. The ratio is about 1 to 3 for the selected UML
fragment. Certainly, this concrete syntax has to be unambiguously mapped to the domain
metamodel (abstract syntax) since our approach to the mapping language implementation
finally converts a mapping definition to transformation in MOLA working upon the
domain. The traceability between the source and the target is also defined at the domain
level. Such a mapping is obvious in our example, but it should be easy to define it in other
cases as well.

Another feature of the language definition is the attribute list for each element in a
tree type. Certainly, the attributes of the domain metamodel class mapped to the given
tree element can be used in this role. However, non-containment associations navigable
from the domain class (with multiplicity 1 or 0..1, playing the role of references) can also
be defined as attributes — their type is the target class in the metamodel. Again, the
inspiration for such attribute selection is the diagram notation — they are visualised within
the main element. For example, in our mapping language, such attributes are operation
type and class stereotype.

A specific mapping language is uniquely defined by its complete source and target
tree type and the mapping of the tree elements to the domain metamodel. There are no
domain-specific features in the mapping definition facilities and various expressions are
used there. Only the mapping modifiers could be domain-specific — copy and
copyAttributes are meaningful only if the source and the target trees are of the same type,

otherwise some other domain-specific processing of complete sub-trees could be added.

4.4.2 Mapping Languages Definition Facilities

We propose a uniform solution for relating the models in a modelling language
(such as UML) to the trees conforming to a tree type describing the selected part of the
language in the form of trees extended by some edge types (e.g., the tree type simpleUML
for MALA4MDSD). Certainly, we assume the metamodel of the language in MOF to be

149

given. The solution — domain-to-tree mapping — is based on the tree type itself. It extends
the tree type by the OCL expressions based on the metamodel and a few predefined
keywords. Our mapping definition will directly show how a mapping defined in terms of
tree nodes could be translated in a transformation defined in terms of models.

We will specify which metamodel class is at the basis for each node type (by
using the Class keyword). In addition, a selection expression in OCL can also be provided
if not all class instances qualify. Further, for each attribute we want to include in the node
type an OCL expression describing how a relevant value from a model should be
extracted. If that expression is to return a reference to another node type in our tree type,
the Node function is used (certainly, its argument must have a type equal to a class
mapped to a node type). The Node function is used to define the finding of association
end nodes in the tree type definition, demonstrated in Fig. 56.

For each containment (parent-child) relation an OCL navigation expression
specifying how child instances can be reached from the parent in a model must be
provided (after the keyword Path). A node with a transitive containment (such as Package
in UML) must provide a special Path expression (marked with an icon) within it,
indicating how the next contained instance of the same type may be reached.

Similarly, the metamodel class the edge types are based on must be specified.
Attributes are specified the same way as for nodes. A new element is the path in a model
by which the relevant end node instance can be found.

It is possible to name branches of the tree type definition and to use this name as a
reference to the tree type branch supported in this position, similarly as it was done for
the MALA4MDSD tree type described in Section 4.3.4. Actually, the tree type
description similar to the one used in Section 4.3.4 is obtained from the tree type
definition throwing out the OCL expression.

A mapping language developer has to define one or two domain-to-tree mappings
to specify the language.

Fig. 56 illustrates how the tree type simpleUML can be defined on the basis of the
standard UML 2 metamodel. A slightly simplified version of the metamodel is assumed,
e.g., such as used for the UML 2 tool in Eclipse [178] — just to avoid unnecessary
packages, etc. All OCL expressions are assumed to be based on this metamodel. Only the
top three node types: Model, Package and Class are visible in the fragment, but the

continuation is quite similar. For all three node types the name attribute is defined in a

150

natural way (the OCL self points to the node base class). The containment relation in all
cases is defined by the same OCL navigation expression self.packagableElement — the
UML metamodel is built this way. Only the Association edge is visible in the fragment.
The role and stereotype attributes are defined for it (their definitions rely on the fact that
only binary associations (with two ends) are used in our UML subset). Since both ends of
an association are attached to classes, two similar end specifications are given.

ca

Model Class= UML:Model
narne=self narme
Path: self packagableElement

FPackage Class= ML Package
narne=self. name
Yo Path: self packagableElement

Path: self packagableElerment

==clazs==

© Class Class=UML: Class classhode!=Node(ssif memberEnd-=at{1).type);
hatne=self. name; _ classhodeZ=Node(seif memberEnd-=at(2) type);
stereotyne=self extension.name raleT=zeR. memberEnd-=ai[1).name,

| odel W ode? role2=self memberEnd-=at(2).name;
rnﬂﬁ] sterentype=aalf. extension. name
AszsociationEdge: Class=UML:: Association

Fig. 56. Mapping language definition; fragment of the MALA4MDSD definition

The completion of Fig. 56 for all node and edge types is sufficient for the
definition of MALA4MDSD. It should be completely clear now how it is possible to
translate the transformation definition in terms of metamodel elements. The given
mapping clarifies also how the node and edge typed parameters can be converted to
metamodel elements (and vice versa) when a transformation language procedure is
invoked from a mapping.

Another element to be defined is the “implementation” at the model level of the
special trace edge between the trees. Since keeping the transformation traceability is of
value for model management, typically a special class with associations should be added
to metamodels (as it was done in the ReDSeeDS project).

This mapping definition is also sufficient for creating an implementation of a
mapping language. The compiler and the editor could be generated from the tree type

definition in a generic way (see Section 4.6).

151

To conclude some suggestions are offered for defining a specific mapping
language. When an appropriate domain and a modelling language (together with the
metamodel) for it have been selected, the tree type definition should include all relevant
language concepts representable in a hierarchic way. Containment relations are typically
based on compositions in the metamodel, but it is not mandatory (see the example in Fig.
59 p.155). Only those edge types which are relevant to the tasks to be solved in the

domain should be included. The same holds true for attributes of the types.

4.4.3 Metamodel of Mapping Language Family

In this section metamodels of the mapping language family are considered. There
is a core metamodel common for all mapping language family. This metamodel is
presented in Fig. 58. A metamodel for the definition of the mapping language is given in
Fig. 57.

+child
Domain:Clas s Mala4:: NodeTy pe ChildRealtion
TreeElement -
sparant - isRecursive: Boolsan
#+class \3..1 - oclExpression: String
“\ +slament | * 0.1
wlllllly
\ allllly +sourceType * +targetType
+treeType * +ype 0.1
o
namedType
styp= |~ name: String {:]_ EdgeType
- oclExpression: Snng
*=yle 0.1
Style +attributes|*
- colorn String i i]
o Sl TypeAttributes MappingDiagramEiement
C +attnbute +azsEgnmeant| Malad: TreeAssignment
neColor String — =
~ i type: String i
shape: String 0.1 e "|- expression: String
sareotype: String

Fig. 57. Type definition for the mapping language family

152

{pauspo} nhm.__
WEWwesEe | UBWa|Jaad] ﬂu.LJ
abp3aa4abie]
fuziun}| puguii+ fuciun} | pugIno+
{uiun} o+ fuciun} LU+

E —

wiawa|3aal 3abae) [

0]+

L0

aponaadiabie]

SPOU+

Bums sweu -

wesbeigBuiddey

e [

Bums sweu -

welBousgBuidd ey

==1-2

. juzwub

Buins uocssmudxs -

wawubissyaal)

et

r..HV. abp3aau]

abp3zeaijaaunog

ulaEney

fuoiun} | puguy{uoiun}| pugIno/+

Buws JuiBREUoT -

fuziun}

|ovs way+

fuoiun

SEpoUL]

apoyaal]

o E—

JuUBLUS (e8] a0UNo g

W

IpoNIad] FIN0S

IU=sIE0+

L Hw

w4 Burd dews

{puspua} .

adh | Buiddepy :=df
Buws swesu

- {passpio}

Y

Burddew+

Buddepy

o] Buddews+

uawwaFuwesfeigbuidde y

SUT
saIngupyidos
Adoo

Sucu

“nuz»

ad A Buddey
=T LTI, TV

INPII0UJLUIDISN]

Bums swep=inpsooud - .

= aLlUEIE

Fig. 58. Core metamodel of the mapping language family

153

4.5 Other Applications of the Proposed Approach

A wider application of the proposed mappings to UML-to-UML transformations is
possible. For example, the UML subset for MALA4MDSD can be extended to include
several behaviour aspects important for the MDSD tasks. The creation of interactions
(sequence diagrams) in the basic cases can be described just by adding interaction and
lifeline nodes and the message edge to the tree type definition (the message ordering can
be emulated by the target tree element ordering). The gain with respect to explicit
transformation specification of the same task is huge since the UML metamodel here is

very “verbose”.

45.1 UML to RDB

The approach is appropriate for many other cases where UML is not involved at
all or only one of the sides (source or target) is related to UML. A brief description of an
example of this kind follows. It is a classical model transformation task solved almost by
every model transformation language — Class Model to Relational Database (RDB). The
precise task description can be found in the appendix of the MOF-QVT standard [128],
therefore we do not repeat it here in detail.

The task is to transform the persistent classes of a simplified UML model to tables
of a simplified RDB model. A persistent class maps to a table containing a primary key
and an identifying column. Primitive-typed attributes, including the inherited ones, map
to columns of the table. An association between two persistent classes maps to a foreign
key relationship between the corresponding tables. The only simplification of the original
task is removing the recursive processing of attributes having complex data types. The
solution of the task by using our approach is given in Fig. 59.

Containment relations in the source and the target trees are based mainly on the
composition hierarchy in the source and the target metamodels. For example, Table node
in the target tree may be owned by Schema node, but Key and Column may be owned by
Table node. This is a natural representation and similar trees can be found in almost every
database management tool.

However, we want to emphasize the flexibility of our approach — the containment
relations represented by the highlighted lines in Fig. 59 are not based on composition. The

first one shown as a double filled arrow represents the transitive closure of all super-

154

classes of the given class. It can be defined by means of OCL due to the closure operation
introduced in OCL 2.3 [126] (see tree type definition fragment in Fig. 59). The second
non-composition containment relation represents the association in the simplified UML.
In fact, there are many cases when the model can be represented completely as a pure tree
using different containment relations depending on the needs of concrete developers. As
one can see in Fig. 59 the shapes of containment relations may be adjusted according to

the concrete syntax of the used modelling languages.

Prlml‘tl'!.l'ET!,l'ﬂ!JE j PT23 - UL “MUMBER"
[hame ="Inte ger”] l
— PT2%
PrimitiveType STRIMG i
[name ="string"] > “WARCHAR
EI—‘ P23 - <=Schemaz=

name = “P2%.name

G =<cleEms T [<<Tables>
[kind="Persistent”] name="C2T .name

28 za ey
name=~C2Key.name+”_pk”

o

[type.isTypeCfiPrimitiveDataType]]

F=«Column==

A2Cal hame=~C2Col.name+"_tid";
X @<<c|ass>> type="MUMBER";
—1 1 key = ~C2Cal . C2Key

E <<Columnz>
hatme="A2Col.narme;

a
L [type isTypeOfiPrimitiveDataTypel] K type="42Cal type.PT2S
F««Column==

D) crrme harne=~A2Col.harne;
sl AS2FE type=~A2Col type PT25
‘\. a8 <<FKz>
As2Cal name=parent.name+” _"+~As2FK.name;

refersTo="as2FK.C2T key

Part of tree type definition

F««Columnz==

I_D:) Path: self-=closure [general) name= parent.name +*_"+ ~As2Cal name +*_tid";
type="MUMBER";

key="as2Cal .C2Key

Fig. 59. UML to RDB example

4 Path: selffreverse.destination

452 UML to XMl

There are several other transformation examples that could be very adequately
specified by using the proposed mapping language approach. One such example is
transformations from UML to XML. In this case the source tree could be similar to the
one described in Section 4.3.4.

The XML tree could be used as a target tree. Since the XML document already

has a tree structure, the target tree can be built straightforward. The root node in the XML

155

tree should be XML document which contains XML nodes that in turn may contain other
XML nodes and XML attributes. This mapping language, for example, could be used for
writing a transformation from UML to WSDL. Of course, such transformation is already
implemented in many UML tools and has been described in [102]. However, in our
approach the mapping between the source and the target is visible. If you have a concrete
WSDL file generated from some source model it is easier to understand how elements in
this WSDL file have been created. You can select one XML node in the WSDL file, it is
easy to find the corresponding node in the target tree as the structure of the target tree and
the resulting XML file are similar. Using mapping relations it is easy to understand which
UML model elements influenced the creation of such node. Consequently, this mapping
definition could be useful as documentation.

Of course, UML to WSDL is not the only case when XML files from UML
models are generated. Almost all UML tools have XML export. Usually XMI export is
used, however, sometimes tools use their own custom formats. The export semantics
could be described by mapping from UML to XML. UML models could be also used to
describe the data interchanged by applications. In this case it is possible to generate XSD
schemas (actually XML) describing the interchanged XML files. The same could be said

about Hibernate configuration files, all kind of XML data stores, a.o.

4.5.3 Other Examples

Other examples where this approach should work could be migrating data from
RDB to the existing ontologies with a similar structure (similar to the task discussed in
[53]) and even for more complicated relational data transformation.

The transformation algorithm from RSL static structure to PIM static structure in
Fig. 38 (p.83) has already been described by applying informal mappings which was
demonstrated by means of an example. However, this example demonstrates that the
source and the target models of transformation could be naturally described using trees.
By replacing concrete instances from the example with tree type elements a mapping
language could be obtained. The mapping language for the static structure transformation
in RSL to UML could be easily created. It would be an adequate means to describe the
transformations defined in the ReDSeeDS project.

However, in no way the proposed domain-specific approach is intended to replace

model transformation languages in general. The pattern and rule based paradigm

156

supported by most of the transformation languages is much better for transformation tasks
which involve a complicated graph-based source model analysis. For example, tasks
involving a graph structure analysis, such as finding well-structured components during
the compilation of BPMN to BPEL [36], are inappropriate for the proposed mapping
language.

It is likely that the mapping language would not be appropriate for defining
transformations creating the behaviour part of PIM. In these transformations the pattern
based analysis of the scenario sentences is widely used. Transformation languages like
MOLA are more appropriate for this task.

Other limitations are related to the DSL approach in general — a certain amount of
similar transformation tasks in a domain should be required to be implemented in order to

outweigh the costs for the language support development.

4.6 Implementation

The main difficulty of successful adoption of a domain-specific language is the
rather complex and expensive development of the language implementation.
MALA4MDSD has not yet been implemented fully, however, the implementation
principles are clear and the feasibility has been tested. The planned implementation
scenario is the main topic of this section. We propose a universal implementation of the
described mapping language family instead of implementation just for MALA4MDSD.

From the language user perspective a graphical development environment for
transformations in this language and its compiler/interpreter must be created.

From the language developer perspective a tool support for the tree type definition
is required. It should support the definition of a tree type on the basis of the
corresponding metamodel. In the tree type definer definition facilities for the following
elements are required: tree node types, tree node styles, permitted tree node containment,
tree node type attributes, edge types, edge styles, edge context and finally relations
between the tree type elements and the given metamodel. This involves creation of
relatively simple graphical elements and property dialogs. To implement such editor, a
graphical tool building framework could be used, e.g., GMF [172], Microsoft DSL Tools
[28], GRAF [12] or METAclipse [86].

157

On the basis of the defined tree type (or a pair of them) a mapping
(transformation) development tool for the defined mapping language should be created.
Such a tool would embrace universal features and domain-specific ones. The universal
features would include a generic support for creating a pair of trees, mappings between
them and simple patterns. The domain-specific features are the specific tree node styles,
edge styles, possible attributes and restrictions describing the permitted node/edge type
containment. This tool could be created by using a model based DSL tool development
framework. Appropriate candidates are transformation based tools GRAF [12] or
METAclipse [86]. There the universal behaviour could be defined by using the tool
definition facilities. Transformations describing the language specific behaviour of the
tool could be generated by using higher—order transformations. In this case special
languages for transformation synthesis would be useful, e.g., Template MOLA [69] or the
extension of ATL described in [182]. Since the behaviour of METAclipse framework is
defined by using the model transformations in MOLA [76] and Template MOLA is
adapted to synthesise model transformations in MOLA, METAclipse + Template MOLA
are selected for implementation of the mapping language editors.

Another issue is the mapping language compiler/interpreter. In this case a
universal mapping interpreter/compiler could be built. The input data for the mapping
interpreter/compiler will be the mapping language specification (domain-to-tree mapping
based on the given metamodel) and a concrete mapping model in this language. One of
the possible implementation scenarios is a compiler to model transformation language
using higher-order transformations. Template MOLA could be used for this task again.
However, an interpreter solution also looks feasible.

The compiler and the editor development of the mapping language family by
using Template MOLA is described in detail in Section 7.2.

To conclude, appropriate means for the implementation of such a mapping

language family does exist, only its implementation requires a certain technical effort.

4.7 Conclusions

In this chapter the use of domain-specific mapping languages is discussed. It is
proposed to define model transformations by using simple mapping relations and tree

syntax of the source and the target models. As a result it is possible to define typical

158

model transformations in terms familiar to modellers and therefore these domain-specific
mapping languages could be applied by a much wider class of users.

The proposed general principles have been applied to a family of the mapping
languages where a language for a specific domain is defined by specifying the tree syntax
for the source and the target. One specific mapping language — MALA4MDSD for
transformations from PIM to PSM (a UML subset to a UML subset) — is discussed in
greater detail. A concrete syntax similar to the model trees in UML tools is used for the
source and the target models. The transformation development in this language is
compared to the transformation development in a traditional model transformation
language. A significant gain both in transformation size and understandability has been
noticed since there is no need to deal with the technical details of the UML abstract
syntax.

We propose a generic approach to the creation of domain-specific mapping
languages. To define a mapping language, the tree types of the source and the target trees
and their relations to models should be defined. This should be done by an expert in
metamodelling and OCL. However, this should be done only once for a mapping
language. Of course, the creation of a mapping language pays off only if multiple
transformations in the same domain should be defined.

In no way the proposed domain-specific approach is intended to replace model
transformation languages in general. For transformation tasks which involve a
complicated source model analysis the pattern and rule based paradigm supported by
most of transformation languages is much better. For example, tasks involving graph
structure analysis, such as finding well-structured components during compilation of

BPMN to BPEL [36], are inappropriate for the proposed mapping language.

159

160

CHAPTER 5

Transformations for DSML Tool Development

DSML tool development is another application area of model transformations.
Transformation development for DSL tools is discussed in this section. The use of

transformations and mappings in DSML tool development will be considered.

5.1 State of the Art in DSML Tool Development

The existing approaches for DSL tool development are briefly described further

on.

5.1.1 Terminology Explanation

To start with, some terminology clarification is required as today different DSML
development frameworks use completely inconsistent terminologies, even the terms
model and metamodel are used differently depending on the context. For example, the
mapping-based GMF [172] speaks only of two layers: model and metamodel, everything
a tool builder creates is termed a model. We propose to combine both the transformations
and the static mapping context. To avoid misunderstanding, a consistent terminology and
its relations to be used in this chapter are defined in Fig. 60.

As we can see the domain metamodel is defined using MOF [120] as a meta-
metamodel. A domain model is created according to the domain metamodel. It should be
noted that alternative domain meta-metamodels used in some approaches in fact play the
same role as MOF (and are similar to it).

The situation is not so simple with the presentation part. In every framework there
is a fixed presentation type definition environment. Possibilities supported in this
environment can be described with a presentation type metamodel. Presentation types for
a concrete domain-specific language constitute a presentation type model defined
according to the presentation type metamodel. Presentation types describe the relevant
graphical element types. When data are created in this concrete DSML tool, instances of

presentation model are created, but data in this model are not an instance in the

161

presentation type model. It is an instance of the presentation metamodel describing
supported graphical elements in the tool in general, e.g., line, box, label, etc. For example,
in the presentation type model we can describe that we want to represent this type as a
grey rounded rectangle with green lines and containing one label. In this case instances of
the rounded rectangle, label and colours will be created in the presentation model with the
appropriate properties set according to the presentation metamodel). After the instances
have been created a user can change the colour of the rounded rectangle (if this feature is
supported by the tool). In this case the presentation model is modified, but it does not
affect the presentation type model. The presentation type describes only the default look
of this node. Due to this reason the presentation model and the presentation type model

are two separate models.

Abstract syntax Concrete syntax

Environment
description

I Mapping
metamodel

Presentation
» Type model
| i ; i
Domain Data in specific DSI._ tool - resentationl
I model ® presentation 8 model

= {00| definition environment 4 instance of
= = ryntime abstraction level

Fig. 60. Terminology definition

It is important to define a mapping model and it should be done according to the
mapping metamodel. The mapping model describes the relationship between the domain
metamodel and the presentation types. Mappings are not used directly at the data level.

When defining a new DSML tool in a tool definition framework, a user has to
define a domain metamodel, a presentation type model and a mapping model. It should be

noted that the presentation metamodel is needed directly only if mappings are defined by

162

using model transformations. Models required at runtime for the tool created from the
definition depend on whether the tool definition framework is an interpreter or a
generator. If the framework is an interpreter the mapping and the presentation type
models are needed to interpret them in runtime. If the framework is a generator, these
models are not needed in runtime because the tool code is generated according to the data
in these models.

Most of the known DSML tool definition frameworks can be correctly categorized
in the framework of this terminology schema.

5.1.2 Mapping-Based Approach

A mapping-based approach prescribes which presentation type model element
must be used to visualize each domain metamodel element. Thus, functionality of the
graphical tool is basically defined by this mapping which itself can be defined as a
mapping model according to the mapping metamodel. The mapping typically may be
complemented by use of constraints, but only at a few selected points.

Most of the frameworks (GMF [172], Microsoft DSL tools [110], etc.) use the
generation step, by means of which language classes are generated in the corresponding
OOPL (Java, C#, etc.) from the involved models. The generated code ensures the relevant
synchronization between the domain and the presentation models in runtime. If the
generated functionality is insufficient, the language code can be extended manually.
Actually, mapping may be used without the generation step as well — examples of it are
MetaEdit+ [109] and Generic Modelling Tool [26], which are model interpreters.

It must be noted that the mapping approach is easy to use. If the generated code is
sufficient (or should be accompanied by a small amount of manual code), the tool
definition is mainly declarative and very fast. However, when the presentation type model
is dissimilar to the domain metamodel, a lot of code in OOPL must be added. To avoid
this, it is a common practice for simple DSMLs to create custom domain metamodels
nearly isomorphic to the corresponding presentation type metamodels (one class to one
node type, etc.). However, there can be situations when it is not possible to select the
domain metamodel freely, for example, if it is used for compiling, integration with other
tools, etc.

Mapping definition capabilities of a framework depend on mapping design

patterns supported. The most expressive static mapping language is implemented in GMF

163

[172]. But even this is not expressive enough. For example, every domain class mapped
to a diagram node must be contained in a domain class mapped to the diagram itself
(canvas in GMF). Therefore, it is impossible to implement by pure mappings standard a
UML class diagram where a class is contained in a package (in the UML domain) and is
visualised in several diagrams independently of its package containment.

There is also the EUGENia [170] framework based on GMF where the tool is
defined by using the annotated Ecore model. The GMF models (gmfgraph, gmftool,
gmfmap) are generated from the annotated Ecore model. EUGENia supports only a subset
of GMF; however, it is possible to support full GMF modifying generated GMF models
by using model transformations in EOL [91]. Although model transformations are used
this is still a mapping-based approach as transformations are only used to compile an
alternative tool language to the mapping-based approach in GMF. Transformations do not
support full tool behaviour. However, if the GMF mapping definition facilities are not
sufficient then extensions should be implemented in Java.

Let us consider some DSML language examples where the mapping approach is
clearly insufficient. Evidently, one such group is model transformation languages. A
typical example is MOLA [76, 59], which is a graphical language with a lot of semantic
dependencies between language elements. It is important to use the native MOLA
metamodel as a domain metamodel for the MOLA tool, since only this way complicated
syntax checks can be performed during editing and context-sensitive lists of the valid
references proposed. If the goal of the tool is to create syntactically correct models as far
as it is possible, clearly it is impossible to implement this tool by using only static
mappings. The same can be said about tools for other transformation languages, e.g.,
MOF QVT [122], where the native domain metamodel is even farther from the

presentation. Another such group could be complicated workflow languages.

5.1.3 Model Transformation Based Approach

A complete alternative to the mapping-based approach is the model
transformation based approach. The correspondence between the domain and the
presentation is defined by transformations in a model transformation language, e.g.,
MOLA [76, 59]. These transformations define what modifications must be done in one of
the models, if the other one changes (due to the user actions or other internal activities).

Therefore, the correspondence between the domain metamodel and the presentation type

164

model may be arbitrarily complicated here. In fact, transformations control the complete
tool behaviour.

At first glance this approach seems more complicated for use though experience
reveals that programming model element mappings in an adequate model transformation
language is much easier than in a standard OOPL. The usability of the approach is also
ensured by the fact that a significant part of the transformations are domain-independent
and are built only once as part of the framework itself. Clearly, the transformation driven
approach is more time consuming in simple cases.

The first pure transformation based project is the Tiger project [37]. However, a
specific domain modelling notation is used there, making the domain metamodel of a
language still to be close to the presentation metamodel. Standard editing actions (create,
delete, etc.) are specified by graph transformations which act on the domain model, and
the presentation model is updated accordingly. The main goal of the Tiger approach is to
provide the building of syntactically correct diagrams only.

The most advanced transformation based framework is METAclipse [86] that uses
the MOLA transformation language and a powerful presentation engine in Eclipse which
is an extension of GEF [171], GMF runtime [172] and some other plug-ins. It is based on
a presentation metamodel specially adapted for defining transformations. The current
version of the MOLA editor [86] is built on this framework (using a bootstrapping
approach). This editor provides an advanced support for ensuring the syntactical
correctness of MOLA programs and a high usability. The developed editor confirms the

suitability of the framework for implementing complicated DSLs.

5.1.4 Combined Approach

Usually, for some parts of the tool the correspondence from the domain to the
presentation is simple (fit for mappings) while for some it is complicated (fit for
transformations). The best solution would be to combine both approaches. In this case for
simple one-to-one relations between the domain and the presentation the mapping-based
approach could be used, but model transformations could be written for complicated
parts. For example, for the abovementioned MOLA Editor [86] the transformation size
could be reduced approximately by 50% if mappings were applicable. Simple
visualisation could be defined by mappings, but transformations would still be needed for

complicated consistency maintenance.

165

Currently there are only known a few attempts to combine both approaches in a
limited way. The frameworks, using this combination to a certain extent, are the Tiger
GMF Transformation project [162] and the ViatraDSM framework [133].

The Tiger GMF Transformation project [162] (related to the original Tiger
project) proposes to extend GMF by complex editing commands. The mapping between
the domain and the presentation models is defined by standard GMF facilities. But new
complex model editing commands can be defined by transformations acting only on the
domain model. However, this approach does not permit to define more complicated
(transformation based) mappings between the domain and the presentation, which is the
main goal of the approach proposed in Section 5.3.

The ViatraDSM framework [133] is based on the Viatra2 [180] transformation
language [31]. In this framework a mapping from the domain to the GEF-level
presentation concepts has to be defined. This static mapping is interpreted by the
ViatraDSM engine. The transformation based mapping (defined by Viatra2 [180] rules)
can be combined with the static mapping approach. The goal of ViatraDSM seems to be
the closest to our proposal. However, a lot of principal issues are not solved there. First of
all, the static mapping mechanisms support only very limited mapping possibilities — only
the basic mapping patterns are supported. Mapping and transformation integration
possibilities are very limited as well. Each object can be mapped using either
transformations or mappings. The mapping definition for ViatraDSM framework has no
adequate notation. Solutions to all these issues are the themes of the DSML tool
development framework proposal described in Section 5.3.

We propose to use a more detailed mapping and transformation integration
granularity, for example, to use transformations as pre-processors or postprocessors for
mappings. A more expressive mapping language and a mapping definition notation are
proposed as well.

There is one more framework GRAF [12] which combines both approaches to a
certain extent, but in a different setting. This framework is based on an advanced tool
definition (presentation type) metamodel and the corresponding configuration tool [157],
by means of which the desired diagram structure and property dialogs are defined. The
framework contains a large set of predefined transformations that implement all standard
user actions related to the defined diagram type. All these predefined actions can be

extended or replaced by custom transformations. The main application area for this

166

framework is various conceptual modelling languages; consequently, there is no built-in
support for domain models. If required, synchronisation with the corresponding domain
can be supported by custom transformations. Complex validations and other additional
options can be implemented in the model transformation language as well. It should be
underlined that GRAF is based on the Transformation-Driven Architecture (TDA) [14]
which is a system and tool building approach where multiple presentations and services

can be linked by model transformations. Tools built by GRAF are based on TDA as well.

52 METACclipse

METACclipse [86] is a graphical DSL tool development framework built in the
University of Latvia, Institute of Mathematics and Computer Science. The METAclipse
framework was proposed in the PhD thesis of Oskars Vilitis [188]. This framework is
suitable for DSL tool developments were verification of syntaxes and semantics is
required.

The METACclipse framework is based on Eclipse [167]; it uses many Eclipse plug-
ins and GMF runtime is one of them.

The METAclipse framework provides functionality common to all DSL tools. A
concrete DSL tool is built by using model transformations that have to processes only the
semantic events of the DSL tool. Other events are processed by the tool building
framework. Typically model transformations for the METAclipse framework are defined

in the model transformation language MOLA [76].

521 MOLA Tool

The author of the present PhD thesis has developed the first version of MOLA 2
tool [85] in the METAclipse framework [86]. The MOLA 2 tool was the main test-bed for
the METACclipse framework, since MOLA is clearly in the DSML category for which
transformation based approach is more appropriate. In MOLA there are complicated
dependencies between the abstract and concrete syntaxes, therefore, it would be
complicated to build the MOLA editor in a tool building framework based on mappings.

The MOLA environment has been developed in a bootstrapping manner [59] with

the previous prototype editor built by using the Generic Modelling Tool [26] framework.

167

The new editor implements a lot of validity checks and a smart prompting during the

diagram building.

The MOLA 2 tool consists of two parts — the metamodel editor and the model

transformation editor. The UML class editor actually is the simplest part of the MOLA

environment. The MOLA procedure editor requires much more sophisticated domain-

specific logic during element building or updates. Both editors are interdependent: for

example, the modification of a class name must be reflected in all class element instances

in the MOLA rules that reference the given class.

In addition to the editors, the MOLA 2 tool contains also the MOLA compiler
(built in a lower level transformation language L3 [137], also developed at UL IMCS),

running on the same repository. The MOLA compiler is described in detail in the PhD

thesis of Agris Sostaks [130].

= METAclipse - ClassDiagram1 - Eclipse SDK

BEX]

Fle Edt Mavigate Search Project Diagram Run Window Help

Table - pley:Calumn
/" Fareignkey:FKey - cols:Col
ewiner Table - cols: Colurnr
/" owner:Table - Fkeys:Frey
/ references:Table - :Fey
E WithInheritance
E WithoutInheritance
iClass - classTaTable: Table
attributeToColumn:Column -
'E} MolaMaodel
= E‘ WithInheritance
(@) Delstelnheritancelnfo

classToTable (0.1

1|owner 1 owner

[L
© ey eys
name : Skring

il

PTIi-E L R L e Tl
T *METAclpse Explorer ©2 = 0|81 #classDiagram £
=& v |*
=5 Kernel
= E] (® Kernel:Class
5 i T
{% ClassDiagrami T.u_ izdhstract : Boolean
- Column isPersistent ; Boolean
#- (3 Frey
@ Table 1

. (@ Table
p name ; Skring |Il..1

100% |»

- g 3‘;" *ProcessAssociation

pkey |p.1

.| © Column

cols

type : String
niame : String

0.1 T:l]ls

@ Main 0..1 |foreignKey
[&) Resolvelnheritedassociati
E Resolvelnheritedattyibute
= E‘ WithoutInheritance
&) CompleteFareignkeys
&) Main
=
(O Processhssociation
E Processaktribuke ™
< td <
[= H
o= Outline &2

[Properties &2

Ends Association: Table <-> Column

Column
Table

pkey 0.1
0.1

P

gl

7

1 Palette
[Select

[, Marquee

O Foreach loop
@ Rule

0 Class clement
%y Comment:

- Mote link

& Gt

) End

4 Flow line

> Parameter

&= Text Stakement
52 Call Statement
while loop
2 External call
Assoriation
L Wariable

End class: | Role: | Multiplicty: | Composite: | Ordered: | Mavigable:

| & METAclpse
=0
@prop : Property i@thl: Table
1 2
{Kernel} HSEL)
~
@prap Froperty |typed destCl: Class
iHernel} {Kermel}
== Pe i persistent=true
S/
™\

fk: Fidey
{56L}

name:=@destCl.name+"_FK"

references

thiDest: Table | classToTable
isaLy
 —

Theys @thl: Table
{5aL}
e ——————

@desICl: Class
{Kermel}
———— 1

S

S

Fig. 61. MOLA editor implementation in METAclipse

Fig. 61 demonstrates the editor in action — with both a sample class and the

MOLA diagrams visible. After the first version of METAclipse was completed (including

about 180 domain-independent MOLA procedures), the implementation of the initial

MOLA 2 editor required about one man-month to develop and test it (containing about

168

120 procedures in the domain-dependent part; there are about 30 essential classes in the
domain metamodel). Adding additional services to the MOLA tool, all tool behaviour
description was described by using approximately 450 MOLA procedures (including the
domain independent procedures). The developed MOLA 2 tool was successfully applied
in the European IST project ReDSeeDS [3].

However, developing model transformations for the MOLA tool required a lot of
routine work. There were transformations similar to one another. Such transformations
could be generated automatically from the mapping between the domain of the language
and the presentation types of the language.

Still it is also necessary to describe the way the language specifies the tool
behaviour. Model transformation languages are the most appropriate means for these
tasks, implying that in simple cases mappings could be used, while complicated cases
could be described by using transformations. The approach of this type is proposed in
Section 5.3.

5.3 Mappings for METAclipse

This section focuses on the description of the way of adding mappings to a
transformation based tool development framework. The METAclipse framework [86] and
the model transformation language MOLA built by UL IMCS is chosen as the basis for
the realisation of the proposed approach. The choice is based on the following — the
framework is completely transformation based, it provides flexible ways of extension and
it itself can be used in a bootstrapping manner for implementing the extended features.

To ensure usability of the proposed approach, mappings and transformations
should be smoothly integrated. The proposed mapping language could be implemented by
using an interpreter or a generator generating transformations in a model transformation
language (MOLA in our case). This implementation decision affects integration
possibilities. In both cases there could be used extension points where custom
transformations can be added to the functionality defined by mappings. If the generator
approach is used we can allow also manual modifications of the generated
transformations.

The main extension mechanism should be extension points; the latter should be

selected appropriately for the mechanism to suffice in the majority of cases. The

169

extension points should permit to replace or extend the built-in mapping possibilities by

custom transformations.

5.3.1 The Framework from the User Point of View

The proposed tool definition framework will be metamodel based. At the
beginning the domain metamodel of a domain-specific language should be built (e.g., by
the MOLA metamodel editor). The next step would be defining the presentation type
model and mappings between the domain metamodel and the presentation type model.
All this will be done, using graphical wizard-style dialogs in the tool development
framework.

If the built-in mapping possibilities are not suitable for some task, the tool builder
will be able to select/create a custom MOLA procedure (using the built-in MOLA editor).
Appropriate parameters to and from this procedure should be passed to ensure integrity
with the mappings. For each extension point there are predefined parameters passed to the
procedures used in this extension point.

When the tool development is complete, the tool builder can press the button
“Build tool”. Thus, the tool executable in one step is obtained. Alternatively, if there is

such a need the generated transformations can be edited and then compiled.

5.3.2 Mapping Definition

Mappings are based on typical mapping patterns. A large set of mapping patterns
has been identified in Generic Modelling Tool [26] and they will be reused in the
proposed approach.

The mapping definition is based on the mapping and presentation type
metamodels as the abstract syntax of the “mapping language”.

The visible form of this mapping language will differ from the one used for the
mapping languages in CHAPTER 4. It is frequently required to define more complicated
transformation logic using mappings in the DSL tool building, therefore, the tree based
syntax is not appropriate. This language will show up as wizard-style dialogs that will
build instances of mapping and presentation type metamodels. The appropriate tool
support can be built with little effort using the METAclipse framework. A more detailed

description is given in the following sections of this chapter. A simplified version of the

170

mapping language from the domain to the presentation is also given in Section 7.3 where
a compilator development for such languages is discussed.

The presentation definition in a graphical tool consists of several parts: property
dialogs, diagrams, as well as a model tree, menus, etc. Informal mapping examples
mentioned so far all have been related to mapping the domain to the diagram element
types. Now we switch over to another part of the presentation — the property dialogs. It is
because the proposed ideas can be easier demonstrated on this part and the corresponding
metamodels are smaller. Here only an essential subset from the property dialog part of the
presentation type and mapping metamodels is briefly sketched (in Fig. 63). We assume
here that typical Eclipse-style dialogs are used.

When a property dialog for a domain class is to be defined, at first an appropriate
property dialog type (i.e., its structure, element types and functionality) is designed, then
it is mapped to the domain metamodel elements. A property dialog consists of tabs that
can be either a field list (for displaying class attributes and linked class instances) or a
grid (for displaying child instance properties in a tabular form). The basic element of both
is a field whose type definition is the central point in the approach. It must be defined
what must be shown for each field type when the corresponding class instance is selected.
For many field kinds (e.g., combo box) the valid value set (e.g., a set of appropriate class
instances) must be obtained and visualized. Finally, it must be defined what has to be
done when the value is modified (in the Eclipse-style dialogs the model update follows
immediately).

As the metamodel in Fig. 63 demonstrates, for all these situations possible typical
cases are defined via mappings to the domain metamodel elements (e.g., which class
attribute must be visualized in a field in the simplest case, see the fragment in Fig. 62).

= field 0.1 {Ei' IFaines:: Yaine Calculiation
(3 Field
0.1 wvalue
narme : String
t g I 0.1 {3} Kernel:Property
vie : fieldType .@ Values:PropertyVale value i
readonly | Boolean * property

Fig. 62. Metamodel fragment, describing that the design pattern field is based
directly on property

The metamodel contains also structuring elements defining various typical ways
how these elementary mappings can be combined, e.g., expressions built over elementary

mapped values. In all cases the corresponding mapping-based definition can be replaced

171

by a call to a specified custom MOLA procedure. Another novel idea is using the MOLA

patterns for defining custom instance set filters, e.g., for the selection of relevant child

instances.

Pus - uoisasd=g4s

unsaldxyisanien _E_

angquye

i ssppaulajed

* anqypewapuiaped

auUpYWaIUIaNEd (3)

¥

anepuadolgssanien _mr_._

< anjen rpuaned £) pRwLRIUIRNE &)
fpadoad| sasn| 10 &es.ﬁ..:m_u
puUjI0sSEe
wae

3
sseauIeed | 2gpqulaied £)

¥

k

Apadoagiauiay _mr__
10| SnquIpyuopaseq

anpasoudwiojsnoisanies (=)

Ul N3|ean|en

.| pasn

anep)ab| Lo

MESFIUSLIUIEIUDD

¥

waped &)

LODEII DS SYIUILLLIEIIND &)

anpaso1dy 10WY10M 6)

ad(1)sIp1ay &)

BRI B SRE
mrw (R} ssepluoL SN AIQISS0d &) ;E._..Emv
L] anjen =
pisy| 1 upaen 10| senepapqissod | AApalayy
¥
abueysuo SHUEAHAES @) papagesueisur| g
10 Uea|00g ;| AUopead ¢| SHERAIQISSIIIE L0 aJuepsUl
afey s 1ae add] play adA) LB JASaIuRE| £)]
al = TSI G
10 AUy - aweu _u_._. Y e 10| Emasaaueisul
afiynalojaq PR € 10 puB| 1p ssepa| 10
Lo {pasapio},| sue p 10
¥| SUIRU0D 0] Guidde
posri adA 1 puo €) sse|5 ._m_mﬂu 106mddey &)
0 - ojpaddew
BuLS - awey Dojer adod| 10 m_w.w_u« __L._“u
Auus gy | S0 i___v fulns @ e S5
TS {patapio}, upasii| S0MboRIAIEd0Id ©) sse|D:auIay) 0

Fig. 63. Mapping and presentation type metamodel subset, describing the property

dialogs

172

For example, we can use this mapping language to describe a property editor for
the UML 2 class diagrams (based on the standard UML 2 metamodel [120]). For UML
Class a property dialog type could be defined, consisting of two tabs. The first tab will
contain a field list describing the UML Class itself. The attributes name and isAbstract
are directly mapped to the fields in this tab. A uniqueness check (within a package) before
the change is needed for the attribute name, and for this task a custom MOLA procedure
can be invoked. The second tab could be a grid describing class attributes (see Fig. 64). In
this case, the grid InstanceSetDefiniton feature is mapped to the Property class. The basic
instance selection is via ownedAttribute master-detail association and additional filtering
is defined by using the MOLA pattern selecting only those properties that are attributes
(but not association ends).

Patterns are a very powerful tool; it allows the selected instance set to be easily
specified. The use of MOLA pattern here is similar to the use of tree patterns in
MALA4MDSD. Patterns are a very useful and universal tool for definition of constraints

on the selected instance set.

= Properties 52 =) fle=y Properties S\ R)
Class: MetaModel::Kernel::Property Class: MetaModel::Kernel::Property

WI Name: Property | Generaigf | Name: | Type: | multipiicity: | Is temporary: | Add |
Attbutes | Abstract O " Attributes visibility VisibilityKind | 0..1 [

isStatic Boolean 0..1
upper Integer

0.1
isDerived Boolean 0..1

<

Fig. 64. Class dialog example, general and attribute tab

The metamodel part for the diagram mapping and presentation types can be built

the same way, only more classes would be present since it is more complicated.

5.3.3 Mapping and Transformation Integration

The most important task for the mapping metamodel is a seamless integration of
mappings with custom MOLA procedures. MOLA is a procedural transformation
language, therefore MOLA procedures are chosen as the integration unit. It does not
restrict the integration possibilities, since any set of statements can be included in a
procedure. Actually, it even allows reusing the same procedure in different contexts.

The mapping metamodel granularity and structure should be chosen so that each

action could be extended or replaced by an appropriate custom MOLA procedure. The

173

transformation based approach permits to use a more detailed mapping granularity than in
the traditional mapping-based tools.

For each extension point, the set of required parameters for custom procedure is
predefined. The predefined set should be compatible with the parameter set of the
selected procedure.

In Fig. 65 an integration example is given. When a property dialog field is
modified, a custom transformation can be executed as a pre-processor, postprocessor or
instead of the action implied by the static mapping. A custom procedure can be used as

well to calculate the field value to be displayed.

z 0.1
(3 Field
2 afterChange {3 MOLA:MOL Aprocedure
name : String 0.1
type : fieldType
beforeChange
readOnly : Boolean 0.1
0.1 |field onChange 0.1 |getvabe
value |0..1 used |*
G Values:\Value Calculation | G Values::CustomProcedure

Fig. 65. Metamodel fragment describing mapping and transformation integration

The close integration of mappings and the transformation based approach is a key
factor in reaching the goal when the transformations generated from mapping only need
to be combined with the specified custom MOLA procedures, but require no direct

manual modification.

5.3.4 Mapping Definition Language User Interface

We propose to use wizard style dialogs for the definition of presentation type
model and mappings. These wizards will create instances according to the relevant
metamodel. The presentation type and mapping definition will be integrated.

To generate presentation types and mapping for a domain class, the user will be
asked to select the appropriate tool design pattern and enter additional properties of the
presentation types to be created (for property dialog, diagram node type, etc.). The
relevant mapping instances will be created automatically. The palette element, if needed,

will be created simultaneously as well.

174

Wizards will be organised in several levels for the whole domain metamodel (as
in GMF [172]) or on one domain class to see or modify the features related only to this
class.

In addition to the presentation and mapping definition, wizards will allow for
complicated cases to select custom MOLA procedures for the relevant extension points.
These procedures will be created by using the built-in MOLA editor.

A natural way to implement the proposed mapping definition editor in the
METAclipse framework is to build it as an extension of the existing MOLA tool [86].
Then a slightly extended metamodel definition editor can be reused for the domain
metamodel creation and the MOLA editor can be used directly for creating custom
procedures.

The mapping/presentation wizard itself could be implemented in several ways. A
classical wizard style dialog sequence could be built, but this requires certain extensions
to the METACclipse property engine. A more interesting and user friendly way could be
the creation of wizard diagrams. The dashboard in GMF [172] could serve as a simple
prototype for such diagrams. The possibilities of METAclipse permit to create dynamic
wizard diagrams where each node represents some wizard dialog “page”. The dialog in
such a page can be defined by using standard METAclipse property dialog facilities. The
edges in such a diagram represent the order in which these pages must be visited. At the
next step nodes and edges will be created and the existing ones enabled/disabled in
response to the values the user has entered in the current node. A simplified sketch of a
wizard diagram for a domain class mapped to a node can be seen in Fig. 66. It is assumed
that the user currently defines tabs for the property dialog.

Elements

Node type
drawing

Mapping
properties | Properties &3 v =2 H
Property
dialog
Tab list [Mame: | Kand: | Based on: ||| add

Palete
properties

Fig. 66. Wizard diagram example for a domain class mapped to Node

General key value group
[Attributes ownedAtiributes

175

The same visual representation can be used to modify the defined mappings. After
opening the appropriate wizard diagram the user can select a node and update the
properties. If this modification influences dependencies to other wizard nodes, the user is
asked to update these nodes as well.

We can think about other mapping visualisation possibilities, too. For example, a
“mapping diagram” similar to the one in Microsoft DSL Tools [28] can be used with the
domain metamodel on one side of the diagram and the presentation type model on the
other, and with mapping lines connecting them. Actually, this mapping language would
be rather similar to the mapping languages discussed in CHAPTER 4. Here mapping
would be defined between the domain metamodel and the property dialogs, as well as
between the property dialogs and the domain metamodel. It should be noted that these
mappings would be bidirectional compared to the mappings discussed in CHAPTER 4.
However, it seems that the tree is not the most appropriate representation of the domain
metamodel; the class diagram representation is more appropriate. On the other hand, the
tree seems a quite appropriate representation for the property dialog definition.

The domain part could be visualised by a standard class diagram. A palette
element (if needed) can be given together with the presentation type. A presentation type
can be visualized close to the node visualisation with this type. Instead of a label a short
form of the template about the calculation of this label value can be shown. Sub-element
mappings could be presented in a similar way, too.

5.4 Conclusions

In this section the graphical DSL tool development domain is discussed. The
model transformation based tool METAclipse has been selected. The author of this thesis
has developed transformations for the METAclipse framework and transformations for
the first version of MOLA 2 tool in the METAclipse framework. To do it, in total about
450 MOLA procedures had been developed.

When analysing these transformations, it became clear that the simple part of
transformations is more appropriate for mappings and the logically complicated part — for
transformations.

As a result it was concluded that the tool building framework with options to

combine mappings and transformation would be most appropriate for the tool

176

development of DSLs with complicated dependencies between the domain and the

presentation. Such a framework is proposed in this section.

177

178

CHAPTER 6

Template MOLA

One of the Higher-Order Transformation (HOT) application types in [183] is
transformation synthesis. Transformation synthesis means transformation generation from
various sources of information, including model mappings. A survey on HOTs [183]
reveals that most of the HOTs have been written in ATL. In the case of ATL synthesis
[183] the relevant ATL model is created and then extracted as a transformation text. The
same task could be considered for graphical transformation languages, e.g., MOLA [76].
A MOLA transformation in abstract syntax could be created in the same way as the
abstract syntax of ATL transformations. The transformation visualisation task for
graphical languages is harder, but still feasible. Consequently, for graphical
transformation synthesis the HOT approach is usable; however, the experience shows that
usage of abstract syntax for the definition of HOT is inconvenient and time-consuming. It
seems to be true for most of transformation languages, including ATL. A better template-
based solution is proposed in this chapter.

There are many template-based model-to-text languages, e.g., the popular ones
JET [174] and mof2text [123]. The basic application of these languages is to create a code
from PSM model in the standard MDSD process. These languages typically contain
facilities to navigate the given model according to its metamodel. However, the main
advantage of these languages is the possibility to define the text fragment to be generated
by the given rule as a textual template in the relevant concrete syntax. The variable parts
in the text to be generated are specified by means of template expressions that typically
contain model class attributes and variables.

An ATL transformation text could be created by using some template-based
model-to-text language as well. Since MOLA is a graphical transformation language,
textual template languages could not be applied here. In this chapter the problem of
MOLA transformation synthesis by using template-based mechanisms is addressed.

New graphical template-based language Template MOLA for MOLA
transformation synthesis is proposed. In this language elements to be created in MOLA
can be defined explicitly in syntax close to the traditional MOLA statements. The

179

generation logic in Template MOLA is described by facilities close to the standard
MOLA. This part of the description is executed during the generation process. The
elements to be placed in the created transformation are described in a MOLA extension
consisting of template statements. The given extension is similar to the basic MOLA, but
having a possibility to incorporate also template expressions that are replaced by the
corresponding generation time values during the generation. Thus, the idea of textual
template languages is adapted to a graphical language. The main advantages of the
template approach are retained — adequate facilities to process and navigate the source
model, and concrete syntax based descriptions of elements to be created as a result. The
proposed solution is significantly more convenient for transformation generation than
pure use of MOLA as a HOT.

All MOLA elements are retained in Template MOLA. Additionally, special
template elements for easy MOLA transformation synthesis are included. They make it
possible to define explicitly in a graphical syntax which MOLA elements should be
created.

The Template MOLA language is an adaption of template mechanisms used for
textual template languages (of the model-to-text kind) to a graphical language. Template
MOLA is used for easy generation of transformations in MOLA from various input

models as a substitute for the classical HOT approach.

6.1 Main Elements

In this section, the basic constructs of Template MOLA are described. The
proposed Template MOLA language contains two kinds of MOLA statements: generation
statements and template statements.

Generation statements are executed during the transformation generation process.
They are used to define the logic of generation process on the basis of the provided input
metamodel. All ordinary MOLA statements may be used as generation statements.

Template statements are meant to be “copied” to the generated “MOLA code” (in
fact, a model) with template expressions replaced by the appropriate generation time
values. Template statements look similar to ordinary MOLA statements but can be

distinguished by their graphical style — the green colour. The most used template

180

statements are template rule and template loop; however, other MOLA statements may be
used as template statements, too.

Statements in Template MOLA are organized into procedures in the same way as
in the traditional MOLA described in CHAPTER 2. A procedure may contain both
generation and template statements; however, generation statements alone should
constitute a valid MOLA procedure. Template statements may be interspersed between
generation statements. Thus, the general idea of Template MOLA is that the “generation
part” of a procedure is executed in the same way as the traditional MOLA. The only
difference is that template statements to be executed in this process are copied to the
resulting traditional MOLA procedures (instead of directly executing them). Certainly,
there are some more complex situations to be described further, but at first glance
Template MOLA means exactly that.

6.1.1 Template Rule

The most used template statement is template rule. In the generation time it is
copied to the generated “code” (i.e., to the relevant generated MOLA procedure).
Elements of the template rule may contain variable textual parts — template expressions
(expressions enclosed in angle brackets followed (preceded) by a percent sign). These
expressions are replaced by the corresponding generation time values.

An example of a template rule can be seen in Fig. 67. In this rule, the constraint in
the class element b:Class2 contains the template expression <% @p.name%> where @p
is a known generation time reference (defined in the procedure containing this rule).
Another kind of a variable part in a rule is a template expression specifying the class of a
class element (here c:<%@tc:Class%>). The generation time reference @tc must point
to an appropriate metamodel class, i.e., it must point to an instance of Kernel::Class (the
::Class suffix in the syntax emphasizes that), and it must be set before the rule under
discussion is to be executed. In the resulting traditional MOLA rule, this template
expression is replaced by the referenced class name. Association links may also be
specified by a template expression in order to adapt to a variable class element in the end.
Association links are specified using Property at one end of the Association. Property at
the other end and the Association is inferable from this Property. This template
expression (<%@prop:Property%> in Fig. 67) must reference a property in the

metamodel. The value of this reference must certainly be set correctly during the

181

generation; in the presented example only the properties (related to Class2) of association
linking classes Class2 and Class3 are valid. In the generated rule, the standard MOLA

notation for association links (both role names) is used.

a: Clas=1 b:Class? [e ieaeaeeaaa
vl pi} [FFaEprop:Fropertyf o : ¥ @eiClass %o |
" Ep name ') SRR e]

Generation
: Clas=1 laz=1 b:Class? | oo ;
) {:1?5 - class2 {:1?5 e j &Gl :
TKind="Box"} class3 : o1} :

Fig. 67. An example of a template rule and the MOLA rule generated from it

The lower part of Fig. 67 shows the generated MOLA rule obtained from the
template rule above. Here we assume that the reference @p.name has a string value
“Box”, the reference @tc points to the class Class3 and @prop to the role name class2 of

the association class2 - class3.

6.1.2 Template Loop

Similarly to rules, the loop constructed in MOLA — the foreach loop statement —
also has its template form in Template MOLA. The template loop is copied to the
generated procedure during the generation process, including its body (which may also
contain generation statements, see an example in Fig. 88, p. 226). The template loop in its
loophead rule can use all the extensions introduced for the template rule. Fig. 68 gives an
example of a template loop, a simple construct for creating copies of all instances of an
arbitrary class. In the loophead of this loop, the class to be used in all class elements
(including the loop variable orig) is defined by the template expression
<%@type:Class%> which means that the reference @type must be set to the required
class before the given template loop. Then a traditional MOLA loop is generated from
this template loop, and the generated loop performs the instance copying for the given
class. The additional class element orig_exists with NOT constraint is used as NAC
(negative application condition) prevents a repeated copying of the copies. The example

presents a very simple case of another area of a typical application of HOTs for

182

transformation generation in [183] — building a generic transformation for a previously

unknown metamodel. (This application is also discussed in Section 7.4.1.)

onig - <% @type:Class %> Pariginal soopy <% @type:Class ¥ :

{NOT}

orig_sxists | <% @type:Class W=

v

GamepenE{@em. @y, @nw)

Fig. 68. An example of a template loop
6.1.3 Call Statement and Parameters

The body of the loop in Fig. 68 contains another template-related construct — a
MOLA procedure call with arguments of previously unknown types (@orig and @copy).
The type of these arguments is learned only during the generation process. The given
procedure call contains one more argument — the reference to the type itself. This last
argument is a generation-time argument which is not included in the generated invocation
(it has no sense in that context). Yet for the generation of the procedure copyProperties,
which has to perform copying of all attributes of the arbitrary class, such a parameter
could be of high value for defining an appropriate generation time loop (traversing the
attributes).

The exact kind of procedure parameters is visible in its declaration. There are
three types of parameters that can be declared in a Template MOLA procedure —
template, generation and type parameters. Template parameters are created in a generated
procedure. Generation parameters are used in the generation time and are not created in a
generated procedure. Appropriate arguments must be passed in call statements for the
template and generation parameters. The type parameters are also used in the generation
time, but they are inferred from other parameters instead of passing them explicitly. Since
the types of parameters in MOLA are described by using the class Kernel::Type, type
parameters may refer to the instances of Kernel::Type (Class, PrimitiveType or

Enumeration) only.

183

6.1.4 Template Expressions

We have already given an insight into the template expressions used in Template
MOLA; however, the example does not cover all possible use cases. Therefore, a short
summary on template expressions follows. The most common elements where template
expressions appear are class elements within a template rule. A template expression can
be used to specify the class of the class element. In this case, the template expression
must be a reference to Kernel::Class instance. If template expressions are used to specify
the name of the class element, constraint or expressions in the assignment, a string
expression is used for this purpose. These expressions may contain the generation time
variables, parameters and attribute specifications, but no template element references.
References to instances of appropriate classes can be used to specify references to objects,
e.g., the attribute to be used in an assignment within a class element (a reference to
Kernel::Property), or the source/target end of an association link (a reference to
Kernel::Property as an end of Kernel::Association). Template expressions can also be
used in template text statements and in call statements to specify arguments that conform

to the template parameters of the called procedure.

6.1.5 Template Elements

On the whole, the idea of generating template procedures in Template MOLA and
providing appropriate naming conventions for them is based on the principles similar to
those in the OOP languages, such as C++ and Java, also containing some template
mechanisms.

A list of all Template MOLA elements is given in Table 7. The name, image and a
short description are given for each element. Elements are divided in two groups: the
Template MOLA elements — new elements (compared to MOLA) introduced in Template
MOLA — and MOLA elements with a modified semantics, achieving modification by
adding additional generation time semantics for some MOLA elements in Template
MOLA. This issue is discussed in detail in Section 6.5.

184

Table 7.

Template MOLA elements

Image Name

Description

Template MOLA Elements

Template rule

c : Customer
{Company}

This element creates the MOLA rule
in a synthesised transformation. The
rule is created one to one. Template
expressions are replaced with their
generation time values (see Section
6.1.1).

Template loop

o1 Customer

{Company}

This element creates a loop in a
synthesised transformation. The

Template loop may contain

generation time elements, describing
the algorithm for the loop body
elements

generation. Template

executed in the loop body are
generated in the loop body (see

Section 6.1.2).

This

parameter should be generated for a

element indicates that a

generated MOLA procedure.

Template
i@p ; Package
{Packagest parameter
1
Type parameter
il Class
2
Tkemel}

This is an implicit parameter. It is
used when a Template MOLA
procedure may be called from a
MOLA procedure.
describe the

It is used to
type of template

parameter.

i@d : Department
iComparny}

Template variable

Creates a variable in the generated
MOLA procedure.

185

Image

Name

Description

Template control

Describes generation of the control
flow explicitly. May be used
between the Template elements and
elements of dual nature: template
rule; template loop, template end
symbol, template text statement,
template call statement, template
external call statement start symbol,
end symbol, call statement (see
Section 6.5.3).

®

Describes generation of the end
symbol in a MOLA procedure (see
Section 6.5.4).

c.name<:"aaa"

flow

Template end
symbol

Template text
statement

Text statement generations

showhtzg*Hellla ')

Template external

call statement

External call statement generations

MOLA Elements with Modified Semantics

. Start symbol Describes start of the procedure and
generation of the start symbol.
End symbol Describes end of the procedure and

®

generation of the end symbol, if the
current control flow has no end

symbol (see Section 6.5.4).

copy Propertie=C)

Call statement

Executed as a call to another
procedure and generation of a call
statement to the generated procedure
corresponding to the call. If marked
as inline, the generation is omitted
(see Section 6.5.2).

186

Image Name Description

Control flow Describes the execution logic. If the
template control flows are not
shown explicitly, execution control

W flows are used to determine the
template control flows to be
generated (see Section 6.5.3).

6.2 Template MOLA Compared to MOLA asa HOT

A question may arise about the advantages of transformation synthesis in
Template MOLA in comparison with the traditional MOLA. Writing higher-order
transformations for transformation synthesis directly in MOLA requires defining of the
creation of all MOLA metamodel elements explicitly (i.e., according to the abstract
syntax of MOLA). To create one rule, we have to create the rule, all its class elements, all
association links, all their sub-elements, and to map them to the appropriate types from
the metamodel of this transformation. Fig. 69 demonstrates a transformation for the
creation of one rule by using the traditional MOLA as a HOT language. Creation of the
same rule in Template MOLA was demonstrated in Fig. 67 (p.182).

It is easy to see that the code for creation of this rule in Template MOLA is
significantly more readable than in the traditional MOLA. First of all, the size of the rule
creation pattern differs significantly. Note that in this example we considered the creation
of a very simple rule. The difference is even more significant for more complicated rules.
The same situation holds true for loops since they mainly consist of rules.

The same issue of complexity arises in regard to other transformation languages
usable for HOT tasks.

Template MOLA allows to implement the same HOT tasks with much less effort
and with a smaller amount of errors since the structure of the resulting MOLA statements

is clearly visible already in the templates.

187

@proc ; MOLAprocedure .QE'.r!".-'.gRr.D. cedef =N CIassEIemerrtDef molaElem
MOLA} owningProceduore ownedElement : MOLAY Feeeee- h;l'-: 3
--- H
owningProcedure 'owningProt:aj_l'e : :r?F_P-_Ja_m_e:rc" : i@te : Class
ownedElement owningRule ;""" TttttTtntessmessss Prmmmmmmmm e Eder {Kernel}
""""""""""""""" et nwmngRue ' DwnedBEI'n elemn :
: riRule 0 meeeeacieaaaaaaaa- Prmmmemmeee oibolioooitoooaTT
1 fMOLS Y nwnlngRl.le H : clelem =N CIassEIement
S : P MOLA}

: H clelem_k CIassEIemerrt

: ownedBem : T {MoLa

5 clelem _a: CIassEIemerrt : s constraint: ="Kind="-+@p. name """" ':'E)
{MOLA} E I i

cedef - CIassEIementDef Messsmssmepenemnnnnt . 1
(MOLAT : tassocl ink der: MoLa) : @asoc 2 zsociation

. assuc. s refMame: = I:- . {Kernel}

s refMame: =" a . emn|| T .

---------------------- 2 asoc_cl : Association type ' moIaEIE'-n

muIaEIem iKernel}
type class? : Class

classt Class association association {kernel}
{Kernel} memberfnd | Mmembertnd

{name="Clazs1"} propd : Property prop2 : Property | byped type

|type— {Kernel} {Kernel}

typed [iname="clas=1"} {name="clas=2"}

Fig. 69. Creation of the rule from Fig. 67, using MOLA as a HOT

6.3 Template MOLA Example

A simple Template MOLA example is demonstrated in Fig. 70. In this example
we consider a simplified data migration from a model based repository to the OWL/RDF
[192, 193] based repository built according to the ODM metamodel (see [124]). We
assume that we have an UML class diagram describing the structure of the model based
repository and a mapping information describing the way this model should be modified
when transferring it to the OWL based repository. In particular, this mapping
demonstrates which classes together with their instances should be transferred and the
way the classes should be renamed. The transformation in Fig. 70 iterates through all
classes mapped to OWL. For each such class it creates a rule creating an OWL class and
it creates a loop copying model instances of this class to the OWL instances of this class.
We can run this Template MOLA on a class/mapping model and we will obtain an
efficient data migration tool just for this model. In this example the main template MOLA
statements are demonstrated as well. In the template rule the value of template expression
is assigned to the attribute name. This value will be determined in the generation time and

then used in the generated code. The loophead also contains a class element with the

188

template type that will also be determined in the generation time and replaced with the
appropriate value. On the other hand, the types of other class elements are constant and

the same in all generated transformations from this template MOLA program.

. Generation loop Class element
Vi -

om : Classhiapping [clazsmapping o : Class Template expreSion
Tviapping} class | {Kemell_— as element name

<% ac_"+Hiem.owlname % > | DWWLCIass FETIERTCECTRCCT o E """ I H?L:Tc-ah\-la-ra;""-i
« uri fief 1 '

Towl} T Towl} .

+ fragmertidertifier ” '

................ MAme:=+< %@cm.nu*‘uame ks
hssmnsn -A- -----------
Template
expresion
CENe_HEcm.oowiname E <% @c:Class %
Template
_ " rule
<R HiEem owlname % Individu ed Resourse |E % oc_"+cm.owlname % DWILClass
foul} RO Ftype fowl} <«—Template
loo
v p
(Se‘tlndividuall:letails(@cm. <% ce_"ri@cm.oowliname % x, @48 wi_ Hem owlname s, (@) :I ¢ | Ca" statement

®

Fig. 70. Template MOLA example: Generator for copying UML class model
instances to OWL instances

The transformation example in Fig. 70 contains also a call statement. This call
statement contains two types of parameters. The parameters “@cm” and “@c” are the
generation time parameters, while “@ce _...” and “@ci_...” are the template parameters.
The generation time parameters are used only for transformation synthesis. The template
parameters will appear in the generated code as well. It means that we will obtain a call in
the generated code only with two parameters. The generation loop creates several rules
and loops in one procedure. These generated rules will contain elements with different
types. We need also different names for the generated elements to distinguish between
them. Therefore the template expressions are used also to determine the generated
element names and reference to them.

A simple example of MOLA transformations obtained by executing the Template

MOLA transformation from Fig. 70 can be seen in Fig. 71. A rule and a loop is generated

189

for each class with the mapping. In this case two classes are considered. The class
Department together with its instances is copied without renaming to the OWL
repository. The class Employee is transformed to the OWL class Person. Thus, a specific
transformation has been obtained, for migrating the instance level (MO0) data for these two
classes to the OWL repository. We remind that the example illustrates a simplified
instance level data migration, but not the general ontology migration from UML coding to
OWL (as in [124] for example).

foc_Depariment - OWLCEs irasource ur: UFIRafaroes “uriRd §In:Localtiame { | | too_Persen :OWLCIaS Srasaurce ur: UbiReterans {rife In: LocalName
....... - EEECTTErr e B . | R it .
: Sowl} C R fowl} ! Fragmentldentifier - foulp 3 {ow} urift ‘L" agrivent Idertifier '&'
Copy————r L pp————— sname:="Depatment’ ! | [TTTTTTITANAAAAAS 0 Meeeeeeeeeeaes + name ="Person” ¢

e _Department : Department E e _Person : Employes
{Compary} H {Comparny}
____________________ i@oc_Department : 0WLChss H Rt
c| i_Department : Individa 'typed Resource foul} H tci_Person : Individud + typed Resource |@0c_Person : OVLClass
. Jowl} T RbRye 1 [I mRmmmmemesne Jowl} -
RN L) S ¥pe S TV B
____________________________________ LUl e—
Get' dividual Detailz_D @ce_D (@i _Depatmernt)) GetIndi\ridualDetails_Person(@ce_Person. @ci_Pasm))

Fig. 71. The result of transformation from Fig. 70

In these transformations as in any transformations metamodels are used. In a
generated code, instances of some metamodel are transformed to the OWL metamodel
instances. It means that the metamodel used in the generated code consists of two parts —
the OWL metamodel and the domain metamodel. A fragment of the OWL metamodel,

used in this example, is shown on the left side of Fig. 72.

() oWl Clas= (© RDFSClass
name : 3tring {3 ClassMapping
ROFt:
Vpe awlnarme @ String
typed Resource (3 ROFSResource classmapping
(& Individual |
clazs
0. ifkesourc: —
(=} Kernel::Class
uri R [*
@ LocalHame | fragmentidertifier * {3 URIReference
name : String | 0.1 uri Rt

Fig. 72. A metamodel fragment used in a class model to the OWL transformation
in Fig. 70

According to the task specification the domain metamodel is the UML class
model describing the given repository to be transformed. In Template MOLA this domain

metamodel is used as input data affecting the generated code. It means when generating

190

transformation the domain metamodel is treated as instances of the UML metamodel.
When executing the generated transformation, the domain metamodel is treated as a
metamodel.

In the description of transformation logic besides the domain metamodel also
ClassMapping (on the right of Fig. 72) is used describing how the UML classes should be
transformed to the OWL classes. As a result ClassMapping and Kernel::Class (from the
domain metamodel) are used in the generation time statement (rule).

An input for the Template MOLA transformation is a model defined according to
the metamodel sketch shown on the right side of Fig. 72. When executing this Template
MOLA transformation the result is a MOLA program. The input model consists of the
domain metamodel (the repository structure description) and mappings, describing
representation of this domain metamodel in OWL. From the domain metamodel
description only Kernel::Class is shown in Fig. 72. Instances of Kernel::Class are classes
of the processed domain metamodel. Other classes from the UML class diagram
metamodel are required, for a complete definition of the transformation. Here only the
class mapping is shown from the mapping metamodel. There will be other mapping
classes in the complete transformation definition as well. It should be noted, that the
mapping and the UML class diagram metamodels are related. This relation should be
treated as a part of the mapping metamodel.

The OWL metamodel classes are used in the template rules. The pointer to the
instance of Kernel::Class is used as well, however, here the instances of metamodel are

used. Metamodelling in Template MOLA is discussed in detail in the next section.

6.4 Metamodelling Issues

As in any other transformation language, transformations in MOLA are based on
the appropriate metamodel definition, frequently containing the source and the target part.
The definition of a metamodel for Template MOLA is more complicated because the
relevant HOT level features for defining the generation logic have to be supported. At the
same time, the use of template statements requires the presence of the appropriate parts in
the metamodel.

191

6.4.1 Use of Metamodels Defining Higher-Order Transformations in MOLA

In order to have a deeper understanding of metamodelling issues in Template
MOLA, we start with the comparison to the metamodel structure required for defining a
traditional HOT in MOLA for synthesis of a MOLA transformation (an example of which
is in Section 6.2 above). Fig. 73 demonstrates the structure of this metamodel. The source
of the HOT s the source model (a mapping definition or something similar)
corresponding to the source metamodel. The HOT must create a complete MOLA
transformation definition consisting of a specific metamodel for this transformation
(frequently containing the source and the target parts) and the proper transformation (a set
of MOLA procedures). Similarly, at the metamodel level, the definition of HOT is based
on two metamodel parts that serve as a target metamodel for this HOT. Firstly, there are
MOLA metamodelling facilities named MOLA MOF MM (actually, the Kernel package
mentioned in 2.1). Secondly, the MOLA procedure metamodel (MOLA MM) is required.

Source MM MOLA MOF MM L] Mola MM

A A A
Instance of: HOT : :

Source I Métamodel for Based on Transfo'rmation
model transformation in Mola

Fig. 73. Models to be used if higher-order transformations are written in MOLA

[A HOT A

1
Source t\lletamodel_foﬂ Metamodel for| Constant Transformatlon
model ransformation, transfon'natlon metamodel in Mola

| copy

Fig. 74. Models to be used if the domain metamodel is analysed and higher-order
transformations are written in MOLA

Actually, the approach presented in Fig. 73 is a simplified view on metamodels in
HOTSs. Very often, besides mapping the domain metamodel is analysed (as in Fig. 70) as
well. This domain metamodel is used in a transformation logic description as instances of
MOLA MOF, however, in the generated code it is used as a metamodel — types of class
elements. Besides this domain metamodel also some constant metamodel could be used
as types of class elements in the generated code. If we consider the example discussed in

the previous section (actually, the generated result), the domain metamodel and the OWL

192

metamodels were used there. The domain metamodel was the transformation source
metamodel and OWL was the transformation target metamodel. In this case OWL plays
the role of a constant metamodel.

It should be noted that there may be cases when one of these metamodels is
empty. For example, the instance cloning, discussed in Section 7.4.1, uses only the
domain metamodel. Generation of transformation between fixed metamodels may use

only a constant metamodel.

6.4.2 Metamodels in Template MOLA

Now we can focus on the differences in a metamodel structure if Template MOLA
is used instead of a standard HOT approach for the same tasks. Fig. 75 shows the general
transformation synthesis by Template MOLA (an analogue of Fig. 73). As a rule the
“runtime” metamodel for the generated transformation (more precisely, its variable part),
must also be provided as an input to the Template MOLA-based HOT implementation.
This situation could certainly occur in the general case of Fig. 73, but in Fig. 75 this
situation is clearly syntactically visible. Such metamodel division was already introduced
in Fig. 74 where MOLA was used as HOT. It is due to the necessity to use template
expressions for accessing the classes of this variable metamodel part in template rules in a
generic way (see Fig. 68, p.183). A typical example of such variable part is the domain
metamodel (as in Fig. 70, p.189). The difference from Fig. 74 is the necessity to provide
the constant part of this “runtime” metamodel for the definition of Template MOLA-
based HOT. This is due to the fact that the classes of this constant part are used to define
“constant” class elements in template rules. Therefore, these classes must be defined
before the definition of Template MOLA rules. Although this constant part of the
metamodel is clearly an instance of the MOLA MOF metamodel, in order to be
referenced in “constant” Template MOLA elements, it must be provided alongside the
MOLA MOF metamodel itself. Metamodel packages, included in a complete
transformation definition in Template MOLA, belong to two adjacent metalevels.
However, it is not confusing since the usage of their elements is clearly distinguished.
Classes form different metamodels may be used in different contexts in Template MOLA.
This issue is discussed in Section 6.4.4.

All different metamodel types used in Template MOLA (given in Fig. 75) are
used in the example discussed in Section 6.3. The Template MOLA transformation for

193

this example was shown in Fig. 70 (p.189) and its metamodel sketch was presented in
Fig. 72 (p.190). The OWL metamodel (the left side of Fig. 72, p.190) is used as a
constant metamodel. The mapping metamodel is used (in this case the class
ClassMapping) as the source metamodel. A UML class diagram is used as a variable
metamodel. In Template MOLA, the MOLA MOF metamodel is used, in the generated
code its instances are used. Only Kernel::Class is given in Fig. 72 (p.190). However,
other classes could be added as well. This metamodel is connected to the mapping
metamodel (the source metamodel). The connection should be treated as a part of the

source metamodel. In fact, this is a typical situation for mapping languages.

Constant
Source MM | MOLAMOF MM metamodel MOLAMOFE MM [‘:] Mola MM
4 4 3 3 3
1 1 \ : :
‘ Source [\Aetamodel_fo’j Metamodelfor || Constant |[Transformation
model ransformatio transformation | | metamodel in Mola
’ copyT copy b

Fig. 75. Metamodels and models used for defining transformations in Template
MOLA

The same way as in MOLA, in Template MOLA depending on the task specific
requirements some metamodels could be omitted, as in the example of instance cloning
only the domain metamodel (the metamodel for transformations) is required. In this use
case the source metamodel and the constant metamodels are empty. Building a compiler
for the mapping language MALA4MDSD the constant metamodel is empty. In the DSL

tool building all three metamodel types are required.

6.4.3 Roles of Different Metamodels in DSML Tool Development

A typical application of HOTs in general and Template MOLA in particular is the
generation of transformations from mappings for metamodel-based graphical DSL tool
building. The tool building platforms, really requiring it, are METAclipse [86] and
ViatraDSM [133]. However, the basic ideas can also be demonstrated in the popular
Graphical Modelling Framework (GMF) [172] in Eclipse (we assume for a moment that
transformations are generated in MOLA instead of Java for all actions). Fig. 76 illustrates
the specialisation of the metamodelling situation in Fig. 73, when MOLA transformations

are generated by HOT for a DSL tool — i.e.,, we assume that the GMF generator is

194

implemented as a HOT instead of being written in Java. The source metamodel now
consists of several parts with different roles. A definition of DSL normally is based on the
relevant domain metamodel (abstract syntax) using, in turn, a version of MOF as a
metamodel (in particular, the MOLA MOF could be used in such a role). Another part of
the metamodel used by GMF and similar platforms is the presentation type metamodel
(named graphical definition metamodel in GMF) and the mapping metamodel. Together
they provide the means for graphical syntax definition of a diagram and mapping
definition from the domain metamodel classes to presentation types in the diagram (by
these means the instances of these classes must be visualized). The generated
transformations in the runtime should use the same domain metamodel; therefore, this
metamodel must be copied by the HOT to the generated transformation. There is also a
constant part of the metamodel — the presentation metamodel (named notation metamodel
in GMF) — which defines possible diagram elements at the runtime. This constant part
should also be created by the HOT. One of the tasks the generated transformation should
do in the runtime is to create a visual diagram element for a new domain class instance
(according to the defined mapping). Thus, two important special features have appeared
in this application: the use of the domain metamodel in two different roles (a part of the
HOT source and a part of the created transformation metamodel), and the constant
(independent of the source) presentation metamodel is included in the created
transformation. In fact, the reuse of a part of the HOT source as a variable part of the
metamodel for the created transformation is quite typical when transformations are
generated by HOTs from mappings (as it was already underlined in the comments to Fig.
74).

Source
MOLA Mapping MM, MOLAMOF MM []| MolaMM
MOF MM Presentation type MM
ry ry ‘ ‘ ‘
T T HOT : : :
Dornain Mappings Domain Presentation Transformatio
metamodel Presentation types metamodel metamodel in Mola
| copy T TBuiIt in creation

Fig. 76. Models used in case MOLA is used as a HOT for tool building

Finally, we analyse the application-to—metamodel-based tool building in Template
MOLA (Fig. 77). The main difference from Fig. 76 is that the presentation metamodel

plays the role of the constant part of the metamodel for transformation. Therefore, it must

195

be provided before the definition of Template MOLA. Note that classes for mappings and
presentation types can only be used in the generation (non-template) rules and loops of
Template MOLA (they play the role of the source metamodel). The domain metamodel is
clearly the variable part of the metamodel for transformation. An example of this kind of

application is presented in Section 7.3.

Mapping MM, Presentation
Presentation type MM MOLAMOEMM | e tamodel MOLAMOF MM [:::] MolaMM
4 4 A)
: ' | | |
Mol } ‘ Domain ’ Domain || Presentation | {Transformatio
Sresentananiypes metamodel metamodel|| metamodel in Mola
‘ copy T copy T

Fig. 77. Metamodels and models used to define transformations in Template
MOLA for tool building

6.4.4 Use of Metamodel Elements in Template MOLA Transformations

Now, some remarks on the permitted use of metamodel elements in Template
MOLA constructs. The source metamodel elements can be used directly only in the
generation (non-template) statements of Template MOLA. They can also be used inside
the template expressions in template statements. Elements of the variable part of the
metamodel for transformation (the “runtime” metamodel) can be referenced via the
corresponding classes of the MOLA MOF in the generation statements as well. The same
elements can be referenced in template statements only via template expressions for the
types. The elements of the constant part of the metamodel for transformation can only be

used in “constant” class elements in template rules.

6.5 Elements of Dual Nature in Template MOLA

There are some elements in Template MOLA which are used on the one hand for
the description of the transformation generation logic and on the other hand reflected in
the generated code. Such elements are call statements, start symbols, end symbols and
control flows.

The situation with start symbols is very simple. If such an element is come upon it
is created in the generated code and then executed according to its semantics in the
generation process.

Semantics of other elements is described in this section.

196

6.5.1 MOLA Procedure

The most important structuring element in Template MOLA is template
procedure. In some sense it has a dual nature. It structures the generation algorithm into
smaller parts and at the same time is reused to describe the structure of what should be
generated. It should be mentioned that it is possible to generate several MOLA
procedures from one Template procedure. The generated code may depend on the
generation parameter values, therefore it may be required to generate one procedure for
each value used (more precisely, invoked with this parameter value). In such cases we
should distinguish between these procedures and give them different names. It is possible
to use the default name generator or to define a template expression describing how the
procedure name should be created. The default name is generated from the procedure
name and the values of generation time parameters (parameter and type parameter),
however, typically the custom name expressions are used. This is also the case of the
example described in Section 6.3, where the owlname attribute from the cm parameter is
used as a suffix in the generated procedure names. The procedure name expression is
defined by using the property editor, though it is not visualised graphically.

The generated procedure name is also used to determine when a new procedure
should be created and when an existing one could be reused. When a call statement is
processed during the generation, the name expression of the invoked procedure is
evaluated. If the value of the name expression matches the name of an existing procedure,
the existing procedure will be reused. Typically, this name expression contains constants
and values of the generation time parameters. The described mechanism permits to have
the required control over the procedure duplication.

There can also be cases when the amount of the code generated by a template
procedure is very small. So we may want to include the code generated by this procedure
into the procedure it is called from (by replacing the call statement). To solve this
problem we allow the “inline” annotation for call statements. It means that the code
generated by an invoked procedure is embedded in the current one. In the generated code
references to the template parameters are replaced by the values of the corresponding call
parameters.

Besides optimizing the generated procedure structure, the “inline” annotation is

vital for supporting the use of merge mechanism (see Section 6.6).

197

6.5.2 Call Statement and Parameters

Semantics of call statements is similar in this sense. They are used both for calling
of procedures describing the generation logic and at the same time reused in the generated
code. Unless the inline option is used the call statement is generated to invoke the
appropriate procedure (according to the name generation expression in the called template
procedure).

However, a call statement is directly related to the parameters of the called
procedure. The procedure may contain the template parameters and the generation time
parameters. The template parameters are kept in the generated code. The generation time
parameters are used only for the description of the code to be generated by the called
procedure. They are omitted in the generated call statement.

Let us consider the call statement in Fig. 70 (p.189) as an example. It has 4
parameters: 2 generation time (the first and the last) and 2 template parameters. In the
generated transformation example in Fig. 71 (p.190) the generated calls have 2
parameters corresponding to the template parameters. In this case the generation time
parameters are used for the description of how the body of the procedure
SetIndividualDetails should be generated.

6.5.3 Control Flow

As already presented in Table 7, there are two types of control flows in Template
MOLA: template control flow and (MOLA) control flow. Template control flows are
used to explicitly define how control flows should be built in the generated code. Control
flows describe the execution order of Template MOLA elements, however, frequently
they are also used to infer control flows in the generated code.

A typical Template MOLA program describes synthesis of a MOLA
transformation. Typically the synthesis of MOLA elements is described in a top-down
manner (from the start symbol to end symbol). In this case the generation order of MOLA
elements reflects also the way these elements should be connected with control flows. In
this case control flows in the generated code can be easily inferred from the generation
control flows; it means that only control flows describing the generation logic must be
defined in simple case. This typical case is supported in Template MOLA using the

heuristics described bellow. However, if more complicated control flows (e.g., branching)

198

are required then it is necessary to use template control flows to define explicitly the
control flows to be generated or even the merge mechanism to create arbitrary
complicated control flow structures.

Now we will shortly describe the execution semantics of template control flow.
Template control flows can go from one element to another element. Only the forward
control flows are processed. By a forward control flow we understand a control flow
whose outgoing flow end is created before the incoming flow end. If a template control
flow goes from/to a template element then the element generated from this template
element is used as a flow end of the control flow. If a control flow goes from/to a
generation time element then this end of the control flow is moved to the next created
element in the generated code. The only exception is a template control flow from foreach
loop. The outgoing flow end of this control flow is the last element generated by foreach
loop. If nothing is generated by foreach loop, then this control flow is skipped. A template
control flow whose source end is processed, but the target end is not processed is skipped
as well. It should be noted that there are rules restricting the usage of template control
flows, e.g., outgoing template control flows from end statements are prohibited.

If something more specific is required, e.g., backward control flows, the merge
mechanisms described in Section 6.6 should be used.

If all template control flows were defined explicitly the Template MOLA
diagrams would become unnecessary complicated. Therefore, in simple cases the
generated control flows are inferred from the template element execution order. It means,
control flows used for the description of the generation algorithm are used also to decide
what kind of control flows are to be included in the generated code. In fact, some
heuristics are used there to infer how control flows should be created. In most cases the
default principle described below is sufficient.

If there are two template elements in the description of the generation logic
following each other and there are no explicit control flows defined, then a control flow
between them is created in the generated code (more precisely, between the elements
generated from these template elements). The same holds true if instead of one or both of
the template elements a node with dual nature is used. Actually, this rule is more general
when a new element is generated in the code, then a flow from the previously generated
element to the new one is created. The same rule holds true for generation time loops as

well. 1t means a flow between the last element generated in the previous iteration and the

199

first element of the next iteration is created. For example, in Fig. 71 (p.190) a flow
between the loop dealing with Departments and the rule dealing with Persons is created.
At the beginning of the loop a flow from the previously generated element is created.
After the loop a flow to the next element is created.

This automatic inference of flows simplifies transformation creation in Template
MOLA. A user, creating a transformation generation procedure, does not have to define
additional control flows describing the code to be generated. It should be noted that in all
Template MOLA examples included in the thesis it is possible to define transformation
synthesis using only (MOLA) control flows. However, if it is necessary it is possible to
specify the control flows explicitly. If something even more specific is required, the
merge mechanisms described in Section 6.6 should be used. By using the merge
mechanism it is possible to obtain any control flow structures.

6.5.4 End Symbol

Similarly to control flows there are also a template end symbol and an end
symbol. Template end symbols are used to describe the generation of end symbol:
however, in simple cases the end symbol in the generated code could be inferred from the
end symbol.

In these cases by executing the end symbol it is created in generated code as well.
Here heuristics are used to support typical cases. It is applicable if the last template
element was not an end symbol, it was not merged to the other element (see Section 6.7)
and there were no explicit control flows from the last template element.

If the end symbol should be generated before the generation procedure completes
its execution or multiple end symbols are required, then the template end symbol should
be used. The next template statement following the template end symbol should be the
element with merge (see Section 6.7) or an element with explicit incoming template
control flows defined. Between them many generation time elements could be used. It
should be noted that the outgoing template control flows are not allowed from the

template end symbol.

200

6.6 Graphical Template Languages Versus Textual

Section 6.1 gives the basics of the proposed Template MOLA language for
generation of MOLA programs.

In this section we want to elaborate the discussion on the principles of template-
based languages for generation (both textual and graphical) and the way these principles
influence the constructs chosen for Template MOLA. Textual template based languages
served as a rational for introducing some more advanced constructs in Template MOLA.

We will briefly analyze the principles of those languages where the generation
source is a model. These are the popular textual template languages mof2text [123],
MOFScript [176], Acceleo [164], Xpand [181], TCS [177], a.0. The only specifically
template oriented graphical generation language seems to be Template MOLA, but
similar issues could appear also in languages using a concrete graphical syntax for
transformation definition (ATOM? [96], a.0.).

Template-based languages (textual or graphical) for program generation from a
model consist of two parts — the model navigation part and the generation part. The
generation part specifies the object which has to be created. In fact, only the generation
part is fully based on the template mechanism corresponding to the given concrete syntax
(textual or graphical). The navigation part is based on the control structures for traversing
the source model in the order required by the generation algorithm to be implemented (the
so-called visitor principle). The basic control structures always are sequence, alternative,
some form of loop (iteration) and invocation of a “procedure” (or something similar).
However, this basic set is not always sufficient.

Another part of languages is facilities for data extraction (query) from the model.
The extracted data typically are held in some temporary data structures, including various
collections. They are used for a direct substitution of the relevant variable parts of
templates (variable expressions etc.) and for organizing additional generation loops. This
query part may be more or less incorporated into the model navigation mechanisms or
may be a more independent sublanguage. For most of the considered textual languages,
the query mechanism is an independent one based on OCL or a similar language. This
query mechanism as a rule supports recursion, thus, transitive closure-type queries (such

as all inherited attributes of a class) can also be specified.

201

An essential property of textual template languages is the fact that an appropriate
loop construct can surround any part of a textual template. This permits to create in a
simple natural way any nested iterative structure as a result.

Another feature of textual languages is the concrete syntax for coding a reference
defined in the corresponding metamodel (from a variable usage to its declaration, from a
procedure call to its definition, etc.). In a textual language such a reference as a rule is
coded by using a sort of a name of the referenced object (certainly, it must be unique in
the given namespace). Such a reference name can be easily generated from the model by
using a navigation mechanism (or query in more complicated cases). But in any case the
reference can be created “in-place” from the generation algorithm point of view (no return
to it is required later).

These two features determine that in most cases the above mentioned control
structures are sufficient for defining the generation algorithm. The transformation
algorithms are basically “single-pass” (with various distant data lookups implemented by
queries). Certainly, it is true if the source metamodel contains a fragment which in a sense
is isomorphic to the target object to be generated. Since textual template languages in
practice are not supposed to implement arbitrary model transformations but only perform
the final step of a transformation chain, this is virtually always the case.

However, for the 2D world of graphical languages the situation is not so simple
even in the standard case when the source and target structures are isomorphic. First of
all, it is not always so easy to enclose any part of a graphical template in a generation
loop. In Template MOLA the main “regular” cases are well supported from this point of
view. These include a sequence of rules or loops to be created by a generation loop. Then
a template for such rule or loop is contained in the generation loop body. This case was
illustrated in the example in Fig. 70 (p.189). The only issue there is the convention how
flows should link the results of iteration steps. This case covers a significant part of the
usage of generator loops in Template MOLA.

However, there may be other “iterative” situations, too. The first one is a number
of assignments per class element dependent on some repeating element in the source
model (e.g., see Fig. 79, p.205). A similar situation in textual templates creates no
problems at all. But in Template MOLA it would be quite awkward to define a generation

loop within a template class element.

202

The other big difference is referencing. The name-based referencing is used in
graphical languages as well, but mainly for proper “distant” referencing — such as a
procedure call to its graphical definition. However, frequently graphical edges represent a
“local” reference in the concrete syntax. One such situation has already been presented. A
control flow in the MOLA procedure generated by the Template MOLA example in Fig.
70 (p.189) must go from the loop generated in the previous iteration of the generation
loop to the rule generated in the current iteration. This fact cannot be easily visualized in
Template MOLA,; it is an assumption in the generation semantics.

A similar situation can occur also with edges representing association links in a
rule. There may be a necessity to create a variable number of class elements in a rule all
linked by association links forming a chain (see the example in Fig. 81, p.207). It would
be natural to assume that each class element is generated by one iteration of the
corresponding generation loop. The corresponding association link must go from a class
element generated in one iteration to the one generated in the next. No implicit
assumption can be made for association links since they represent specific associations. A
direct graphical notation in Template MOLA for association links, connecting two
iterations of a loop, would also look quite strange.

The described situations (and other similar ones) with the necessity to relate
several graphical template elements appearing in adjacent iterations of a generation loop
require some generic and visually easy readable solution. The merge construct is
proposed for this purpose. This construct is defined not only with Template MOLA in
mind, but also other graphical template language applications.

Another issue worth mentioning relates to the generation part of Template MOLA
— in fact, the normal MOLA language — which has no specific model query sublanguage.
Queries are implemented by means of the standard pattern mechanism in rules. Therefore
recursive queries (of the transitive closure type) require explicit recursive calls of MOLA
procedures. This enforces the requirement that the merge principle should be applicable

not only to generation loops, but also to recursive calls in the generation time.

6.7 Merge Mechanisms

One of the use cases where Template MOLA could be applied is transformations

for generic metamodels. We may consider one simple transformation of such type —

203

instance cloning (instance cloning is discussed in detail in Section 7.4.1). In order to
clone an instance we should create another instance and copy the values of all attributes.
Fig. 78 demonstrates a transformation cloning values of all attributes of a class in
Template MOLA. Functionally, this template MOLA procedure performs the required
task. However, the generated code is a spaghetti code (see the right side of Fig. 78). More
precisely, in a “normal” MOLA all attribute assignments should be placed in the same

class element (and not a new class element generated for each one).

@orig <% @ot:Class °.-"~:-:='><@cnpy ¢ =% @ok:Class °.-"o:=-> @type ! Class
1 2 3

kv Iemel}
mernberEnd [{MOTH
azsociztion [1 Pesociation sup_type : Chss {Eype : Class
TKemel} {Kemel} IKemel}
class |ownedittribote .
generd |gen : Generalization specif
genefalizdi

Tkemel}

specialization

kv [i
Enwr*mpeniesc@orig. @eopy. @sup_type)

e
T
H
e
)
ps
O]

Fig. 78. The left side demonstrates the procedure for copying the property values
of a class instance. On the right side there is an example of the generated transformation.

Ecopy @ <% @ot:Class Er
4 @ E =R @ong. e name §

To solve this problem we introduce a merge mechanism in Template MOLA
which is introduced in a generic way so that it could be applied to synthesis of code in

any graphical language.

6.7.1 Merge Example

The general principle is very simple. We introduce the merge expression for all
template elements. Elements are merged if the value of the merge expression is equal to
the merge expression of a previously generated element (of the same kind). For elements
already containing a unique identifier in a container, it is possible to use this identifier in
a role of the merge expression. For template MOLA it means that the merge expression is
required for the template rule and template loop. For class elements the class element

name is reused in the role of the merge expression.

204

i@orig ¢ <% @ot:Class % @copy @ <% @ot:Class %= b, [PEype : Class by |@ot @ Class
i h 3 4 l @orig : Class
IKemel]} Kemel 1
? d i {Packages]}
@copy & Class
p: Property QmemberEnd [{HOTH 2
[kemel} azoniation |3 : Assosiation sup_type : Cles 1Eype : Class [Packages}
[Kemel} TKemel} TKemel}
class |oowmed Mt bt .
. generd |gen : Generalization specif
ype : Class ¢ [Kemel} genefalizdi
{kemel} specialization @eopy : Class
_ {Packages}
Vi [v attr = Borig.atrd
copy Properties(i@org, @copy, @sup_type, attr = @orig athl
(P‘I p (@orig, @oopy, @sup_type @IJ) -
@eopy <% [@ot:Class & ' attr4:= Borig atrd
<% @p % r=< R o Ep name E ??

Fig. 79. The left side demonstrates the procedure for copying the property values
of a class instance with a merge. On the right side there is an example of the generated
transformation.

Now we can take a look at the previous example with the merge mechanism
enabled. The left side of Fig. 79 demonstrates the transformation from Fig. 78 with the
merge annotations. In this case the rules created in the first loop are merged, since their
merge expressions all are equal. Each rule contains one class element and their class
element name (which is used in the role of merge expression) is equal. Therefore the class
elements are merged — all attribute assignments are placed in the same compartment.
Consequently, we generate the transformation on the right side of Fig. 79. This is evident
in the case when all instances of rule R1 are generated in the same loop. However, since
the template definition contains a recursive call to the same procedure, it is possible that
instances are generated by a loop in another procedure instance. To ensure that instances
generated in all invocations are merged together, the procedure call should be marked
with inline annotation. It means that all elements generated by this call will be included in
this procedure. Since in the generated code all elements are included in the same
procedure, we can use merge mechanisms also for them. In this case the rules generated
by a recursive call will have the same merge expression. It means we can merge them
with the existing rules. Class elements will also be of the same type and with the same
name (used as the merge expression). (Actually, this procedure has one more generation
parameter when compared to the procedure in Fig. 78. This parameter is introduced to
enable the element merge so that they will have the same type in all recursive calls
instead of cast to a super class in recursive calls in Fig. 78.) It means we can merge also

the class elements. As a result all assignments will be placed in one class element. We

205

should also consider the assignment merge, as there can be inheritance diamonds and in
such a case one attribute will have multiple assignments. Assignments are merged by the

attribute, keeping the first assignment, the others are ignored.

6.7.2 Rule Merge

There are also other cases when the merge construct is useful. For example, it is
the case when the set of class elements in a rule should vary depending on some
condition. Such a case can occur when we have to iterate through some data and create a
class element for each instance. We consider a case when we want to obtain a star-shaped
rule of class elements. Fig. 80 demonstrates the way of obtaining such a rule by using the
merge mechanism. We merge the rules and the class element at the centre of the star.
Using a generation loop we can create as many peripheral nodes as needed in our star
shaped rule. The basic semantics of the merge operation determines that all generated
association links go to this merged centre node.

®

@karget Pau:kage>

@source ; Package
{Packages}t
'\":? kemell 7
igsource : Fackage | owningPackage Child};:aclltage @target : Parkage
iEEE orwTied Member iFemeal} . 1
TPachkages}
VooV VeSS T =,
B :Ghl|dJ:l1 F‘ackage] 'chlldJ:-E Package ! :
—
- s name:="p1" : : » name:="p2" .
LT R Lemmm : -------- L)
lemert ! towning Packeg shmingPachage | * cwnedElemert
""""""""""" == = q(@target : Package L1
<*%"child +@ch|ld name %> : Package § owmingPackage @t {rgackages} 9% pwming Package
{Fackages} : ownedElermert = |ngF'acka;e
T - ohlo 4 Facksgn | RN
- .c I {#:cka E:S}EQE .. -'Ghl|dJ:13 Fackage '
' : : :! :m'medElema't ' IPackages} °
é :TE.T?:.IP : » name:="pa" .
P .
b -

Fig. 80. Creation of a star shaped rule by using merge mechanisms

Similarly to the star structure described above we can also obtain an element chain
in a rule. A chain example is given in Fig. 81. Combining the chain and star mechanisms
we can obtain any rule structure by using merge mechanisms.

The question may arise: “Why should we create rules partially?” It is because not
all elements that should be used in a rule can be created at the same time. There are no

other ways to add new elements to an existing rule. Of course, we may try to split the

206

rules in smaller ones. However, in this case we will end up with a spaghetti code. It can
also affect the efficiency of the generated code. This is because each rule is matched at
once in MOLA while splitting it may cause some elements to be matched repeatedly and
spoil the pattern matching optimization.

. @elem : Package
1
{Kernel}

1 'Chl|dJ:l1 Package 2 ;
{Fackages}] * {Packages} :
, yname:="pl" .
LI FEEREER] u
? JELSE} towning Fackaoe

iEelem : Package owning Package child : Package | [77°°7 e E.Ifl:n?:t.l.

{kemal} sl EmEET {Kemel} 'Ghl|dJ:12 Fackage .

elemn = @child v {Packagesl .

: » name:="p2 -

? e
i . sowningFacHae
my O . owr|ed El ernert -
<% child_"+i@elem.name % : Package Y | peeeearaaaeaa.

{Packanes} . :chlldJ:G Package ! :

' » {Packages} |

n:*m'ungPacka;e - rame="p3 :

edElerert |

Fig. 81. Creation of a chain shaped rule by using merge mechanisms

@d ; Class -
1 I i@d: Clasz |class a : Property i : Package
fkemel} E ikemel}l |ownedtitribote | {Kemel} {Packages} .
Merge: L1 L
Vi

IPachkages}

herge: L1
Merge: B2

pr: Class =
[{Packages]

E pr: Class
- {Packages} ;

Fig. 82. Merge of loops and rules obtaining different control structures

The same mechanism, demonstrated for the rule merge to obtain different
patterns, could be reused for obtaining different control structures between the loops and
the rules. For this purpose it is possible to repeat an empty rule or loop only with the
merge name defined. In this case it will be used to define the outgoing point of the control

207

flow. Fig. 82 demonstrates how such construct works. In this case the default control flow

semantics defined in Section 6.5.3 is redefined.

6.7.3 Merge Semantics

A brief description of the merge semantics is given in this subsection. Two rules
are merged if the merge expression of a rule to be created is the same as the merge
expression of an existing rule in this procedure. Rule merge means that class elements
and association links to be created in the new rule will be included in the rule it is merged
with according to the merge semantics of elements and links. Semantics of loop merge is
similar, only instead of class elements the loop elements (rules, call statements, etc.) are
treated the same way. Loop elements are created in the merged loop according to their
merge semantics.

Class elements are merged if the name of the new class element is equal to the
name of some existing class element in this rule. When merging class elements their types
are also checked. If their types are different a merge process error message is generated
and the creation of this class element and its association links is skipped. Assignments are
the most important part of class element from the merge perspective. New assignments
are added to the relevant existing element. If the element already contains an assignment
to this attribute, the new assignment is ignored and a warning is produced. If the merged
class element has a condition while the original one does not, the condition is added. If
the original element already has a condition, then the condition in the merged element is
ignored and a warning is produced. The same principle is applied to other features of
class element. When defining a merge of class elements users should take care to avoid
generation errors.

Concerning association links, it is possible only to add new association links by
using the merge mechanism. If there is no link between these two class elements in the
rule, then a new link is added. Otherwise the link is ignored. Association link properties
are not merged.

Flow merge in a sense is similar to the association link merge. Always new flows

are added. However, it is not checked whether such flow already exists.

208

6.8 Implementation

To implement Template MOLA, we have to consider two aspects — editing and
processing of Template MOLA.

The Template MOLA editor was built as a part of the Master Thesis of Janis
Iraids [60] and it has been built in a METAclipse framework using the MOLA editor as a
basis. Model transformations, implementing the traditional MOLA language within a
METAclipse framework, have been extended to support the desired functionality in the
new editor. Since Template MOLA reuses the syntax from the traditional MOLA
language, many of the MOLA procedures implementing the editing actions can be reused.
The template elements can be regarded as subclasses of their related “regular” elements,
thus inheriting all their required editing behaviour. A template text statement, for
example, is almost equivalent to the traditional text statement from the editor’s point of
view. New and unique functionality can be easily included where appropriate. So even
though a substantial number of new diagram elements have been introduced, the volume
of the code has not grown proportionally, but much less than that. In addition, the sub-
classing approach eliminates any need for non-trivial migration when converting pure
MOLA transformation models to the Template MOLA transformation models.

Another aspect is the execution of Template MOLA. Several solutions were
considered, including an interpreter and a Template MOLA pre-processor.

The author of the present Thesis proposes to use the pre-processor that converts
Template MOLA to traditional MOLA with a later reuse of the MOLA compiler to obtain
transformations for generation. This approach is similar to pre-processing of macros in
C++ environments. The pre-processor replaces the Template MOLA statements with
traditional MOLA rules that create corresponding instances of MOLA statements. For
example, the template rule in Fig. 67 (p.182) is replaced with the MOLA rule in Fig. 69
(p.183). The newly-created MOLA transformation is compiled by using the compiler of
the traditional MOLA language. Finally, the obtained transformation is used as a HOT.
An experimental implementation of a pre-processor was built. The experiments
confirmed that it is possible to build a pre-processor. The most complicated part was
work with multiple meta-levels at the same time.

In the Master Thesis of Janis Iraids [60] the Template MOLA interpreter was
considered. To create the Template MOLA interpreter, a MOLA interpreter is required.

209

The creation of a MOLA interpreter is the most time consuming task. Extension of a
MOLA interpreter to the Template MOLA interpreter is not very labour intensive. In the
MOLA interpreter the most important and also the most complicated part is the
implementation of pattern matching. Currently there is only a compiler available for
MOLA. The MOLA interpreter would be valuable per se, as by using an interpreter it
could be possible to debug the MOLA programs.

Evaluation has revealed that the implementation of the pre-processor solution
requires less effort. However, the interpreter solution is also feasible and it has other
advantages.

Another issue to be considered is the readability of the MOLA sources, generated
by using Template MOLA. The easiest solution is to create transformations, using only
the abstract syntax of MOLA. The abstract syntax is sufficient if we want to execute these
transformations without a manual extension. However, to obtain a concrete graphical
syntax for the generated transformations, an abstract-to-concrete syntax transformation
and an automatic diagram layout generator must be used. Some experiments have been
performed in the field practice by Edgars Didrihsons, confirming that it is technically
feasible to automatically create a usable concrete syntax of the generated MOLA
transformations.

Note that the transformations in Template MOLA actually contain some layout
information for the MOLA procedures to be generated. For example, the layout of
elements in a template rule could be reused in the generated transformation. However,

this issue requires further research.

6.9 Conclusions

A new graphical template-based language Template MOLA for the MOLA
transformation synthesis is proposed in this section. This language leverages the
advantage of template-based model-to-text languages (easy specification of the language
elements to be generated) to graphical languages. These are the graphical template
statements of Template MOLA — template rules and template loops that are transferred to
the new transformation to be generated. Certainly, they can contain variable elements —
template expressions to be replaced in the generation process which itself depends on the

input model and is defined by means of the generation statements — ordinary MOLA

210

statements included in Template MOLA. These generation statements are executed in a
standard way during the generation process.

The merge mechanism for templates is proposed, enabling the possibilities to
define the generation of nested graphical structures in a simple way. Even the generation
of large text compartments in graphical elements (such as an attribute compartment in a
class symbol) requires this mechanism in a general case. Still this mechanism has a much
wider application — a graphical element has to be extended by several steps of the
generation process everywhere.

It is described that it is much easier to specify a transformation synthesis task in
Template MOLA than to specify the same task in the traditional HOT style (using MOLA
asa HOT).

Implementation of Template MOLA is under development. The editor has already
been built. For the execution of Template MOLA an interpreter is selected due to its
positive side effects (e.g., the MOLA interpreter). Implementation of the interpreter is
under development.

Template MOLA applications are discussed in CHAPTER 7. These applications
were used to validate the applicability of Template MOLA language. The experimental
usage confirmed that Template MOLA is suitable for the definition of synthesis

transformations.

211

212

CHAPTER 7

Template MOLA Applications

The chapter dedicated to the discussion of Template MOLA applications focuses
on the two main application areas: the mapping language compilation and the

development of transformation libraries.

7.1 Mapping Language Compilation Using HOTs

In addition to the mapping language definition facilities an interpreter or a
compiler is required for mapping languages. As stated in CHAPTER 4 domain-specific
mapping languages could be incomplete, therefore integration with transformation
languages is needed. One of the ways for achieving the integration is compilation of
mapping languages to transformation languages. In this case it could be possible to extend
the code generated by mapping in the transformation language.

Higher-order transformations (of synthesis type) could be used to compile
mapping languages to transformation languages. Such approach was also used in AMW
[39] proposing to compile mapping languages using ATL [63]. As a result it is not
surprising that most of HOTs have been implemented in ATL [183], although it is
possible to define HOT in any transformation language.

Thus, defining HOTs can also be done in the model transformation language
MOLA, although the HOT definition using the abstract syntax of MOLA is not very
suitable. The Template MOLA language defined in CHAPTER 6 is more appropriate for
this task, as it was shown in Section 6.2.

Similarly, instead of standard ATL for transformation synthesis it is proposed to
use ATL extension [182], by means of which the lines of code in ATL synthesis
transformation could be reduced by 43.81% [182].

These specialised languages, like Template MOLA and ATL extension, are the
best choices for the development of mapping language compilers. In a mapping language
compiler to model transformation the mapping model should be analysed and

transformations should be synthesised. We have selected to use Template MOLA for the

213

mapping language compilation as in both studied mapping domains integration with
MOLA transformations is required. Ideas for the development of mapping language

compilers are described in the following sections.

7.2 Implementation of Mapping Languages for MDSD

As it was described in Section 4.6 it is planned to implement MALA4MDSD and
the mapping language family by using higher-order transformations for the development
of both — the editor and the compiler and each of them will contain the static part
common to all languages in the family and the specific part. The latter will be generated
by analyzing the language definition.

7.2.1 Editor of the Mapping Language Family

The mapping language definition will be used as an input for this higher-order
transformation, generating the editor of a language. The definition will be analysed to
find the graphical primitives in a language, as well as palette elements. This will be
concluded from the tree type elements and their concrete syntax definition, as well as
used for deciding for which elements the recursive elements could be used.

The possible child elements of the tree node will also be concluded from the tree
type definition. It will be used to generate transformations for checking whether one
element can be used as a child of another element.

Processing of the mapping part of the language is metamodel independent and
predefined transformations will be used there. The only thing to be checked from the
language definition will be whether the modifiers “copy” and ‘“copyAttributes” are
supported (whether the tree types are the same).

When creating a new mapping diagram in a mapping language, the root nodes are
always included in the diagram. For each node in the diagram there are context menu
points for creating child elements of the appropriate type. The list of context menu points
depends on the tree type.

7.2.2 Mapping Language Family Compilation Schema

Another issue relates to the compiler development of mapping languages. Like the

editor, part of the compiler could be developed in a generic way for the entire mapping

214

language family. In addition to the specified mappings the mapping language definition
will be used by these parts of compiler.

The mapping language compiler should transform the mapping defined in terms of
tree types to a transformation defined in terms of the domain metamodel. The tree type
definition could be used for the purpose. This definition states the way each tree type
element is represented in terms of the domain metamodel. This information is widely
used in the mapping language compiler.

As already stated above, the compiler defined in Template MOLA is used for the
compilation of the mapping language family. The metamodels described in Section 4.4
are used as the source metamodel of Template MOLA transformation. There is used the
metamodel describing the mapping language definition, as well as the mapping
metamodel. Metamodels corresponding to the source and the target trees should be used

as the domain metamodel.

mp : hBppingProgram
L T

Imd: happing Diagram | diagram Emp : Mapping Program
ot e AP}

program

Vi

Im :happing | mapping @md : kapping Diagram
L et it}

di=ag

¥,

(Mapping; @m))
®

Fig. 83. Compilation of mapping language family

There are ordered mapping diagrams in the mapping program. Diagrams should
be executed according to this ordering. Each mapping diagram consists of multiple
mappings that are ordered in the diagram. Mappings are executed in a top-down manner,

if the ordering is not specified explicitly. When executing the mapping, all instances,

215

corresponding to the constraints defined for the source of the mapping, are processed. It
means we can process each mapping separately according to the mapping ordering.
Transformation defining the mapping execution order is given in Fig. 83. It should be
noted that some mappings are not defined explicitly; we assume that these mappings have
already been inserted in the pre-processing step.

Compilation of a mapping is discussed in the next section with some mapping

compilation aspects dwelt on in detail in the other following sections.

7.2.3 Mapping Compilation

The main ideas on mapping compilation are presented in this section. A
transformation implementing the application of the mapping is created from each
mapping. This transformation is generated by using higher-order transformations. We
define the transformation generation algorithm in Template MOLA.

The first thing the generated transformation should do is to select an instance set
for the transformation to be applied. If we think in terms of tree instances, then instances
of the source node of the current mapping should be transformed. Besides, these instances
should satisfy constraints defined for this node and should have as ancestors instances
satisfying constraints defined for the ancestor nodes. We can treat the tree as a pattern,
describing an appropriate instance set. In this pattern all nodes (and their constraints)
between the root and the source node of the current mapping should be included.

As a transformation should be defined in terms of model, not tree, it means that
the tree pattern should be translated in a MOLA rule defined in terms of the source
metamodel elements (metamodel corresponding to the source tree). It is possible to
translate a pattern defined in terms of tree in a pattern defined in terms of model by using
the tree type definition. This issue is discussed in detail in Section 7.2.4.

Our mapping language has the semantics “create if does not exist”. Next we
should create a rule checking whether this instance has not been processed before. In
creation of this rule traceability information is used. Special attention should be paid here
to mappings with the check modifier. This issue is discussed in detail in Section 7.2.5.

If no instance is found, then an appropriate instance in the target should be
created. To create an instance in the target, it is necessary to find the appropriate parent
instance. The parent node of the current mappings target node should have a mapping to

some already processed source tree node. Besides, this source tree node should be in the

216

tree between the source node of the current mapping and the root node. An instance of the
source tree node could be located by using a pattern similar to the one used for the
selection of instance set (or even using reference to the already found instance in this
pattern). To locate the appropriate target instance again traceability could be used. The
parent finding is discussed in detail in Section 7.2.6.

Finally, it is possible to implement creation of the target tree node instance. Here a
rule is created by translating the target tree node creation in terms of model element
creation; traceability creation should be added as well. This issue is discussed in detail in
Section 7.2.7.

The last thing is processing of the copy or copyAttributes modifiers if they are
used. To solve these tasks a universal instance copy library is created. In mapping
compilation only a call to the library is added, if required. The library uses the tree type
definition to create appropriate transformations for the tree node types.

In the following sections details regarding mapping compilation are discussed. A
description is given on what should be generated in each compilation step to result in the
MOLA procedure. For some steps the generation algorithm description in Template
MOLA is given as well. We focus on the algorithm supporting typical cases; the other

issues are only slightly touched upon.

7.2.4 Source Tree Pattern Compilation to MOLA

In this section we consider the creation of transformation that selects an
appropriate instance set for the mapping application. As already stated above, this
instance set should satisfy conditions defined by a tree fragment from the root node to the
source node of the current mapping. The tree fragment should be translated in the MOLA
program defined in terms of the source metamodel (a metamodel corresponding to the
source tree) elements.

We are interested in all distinct instances of the source node of the current
mapping. To process the instance set we should create foreach loop in the generated code,
where a class element corresponding to the source node of the current mapping is used as
a loop variable.

We assume here that there are no recursive tree nodes in the source tree, therefore
it is possible to transform the whole pattern defined by the source tree in a loophead rule.

Each tree node type is replaced with a class element. The type of the class element should

217

be the domain class associated with the tree node type in the tree type definition. If the
domain class in the tree node type definition is restricted by using the OCL constraint,
then this OCL constraint is added to the appropriate class element.

Parent-child relations in the tree should be replaced with appropriate association
links in the generated loophead rule. If classes corresponding to the parent and the child
nodes are directly related by using the parent-child association, then an association link is
simply added. If a longer OCL path is used, then intermediate class elements are added as
well.

If expressions are used for some tree nodes, then these expressions are translated
in terms of metamodel and added to appropriate class elements. It is required to translate
these constraints as they were defined in terms of tree elements.

A simplified version of Template MOLA procedure processing mappings is given
in Fig. 84. This procedure processes the current mapping that is received as a parameter.

Here the source tree node of the current mapping is found by using the MOLA rule.

@m Mapping
. 1 ‘@t i Class
IV Liamai {Kemnel}

@m : happingf rmappingTo =n : SourceTres Node
futaL et} from sl

i@cons @ Skring

¥
cindTree MNode Domain ClassliEsn, 2, @cm*sj)

Vi

herge: Map

. AddParertsToLophead(i@sn, @, "mi"
Merge: Head '[:’()
Vi
Find Createq@m, (@mi))

mi <% @t Class %
4% mocons %] (

B

Fig. 84. Template MOLA procedure processing the current mapping

The Template MOLA procedure FindTreeNodeDomainClass is used to find the
domain class corresponding to this tree node by using the tree type definition. This
procedure has one input parameter — the source tree node — and two output parameters:

the domain class corresponding to the tree node and constraints. The values of the output

218

parameters are stored in two variables. The domain class is used as a type of the loop
variable in the template loop. Constraints are used in the class element corresponding to
this tree node. Constraints used in the node type definition as well as constraints used in
the tree node, defined in terms of domain metamodel, are included in the returned
constraint string. In the given procedure only the local constraints are supported. To
support more complicated constraints, adding of additional elements to the loophead rule
IS required.

The next element in the procedure is the template loop. It generates a loop
processing all appropriate instances of the source node of the current mapping. The
generated loop will iterate through all instances of the source tree node. It means the type
of the loop variable will be the domain class corresponding to the source node (the class
found by using the procedure FindTreeNodeDomainClass). If required, then constraints
are added to the loop variable as well. They are found by using the procedure
FindTreeNodeDomainClass.

Other tree pattern elements are added to the loophead rule by using inline call to
the procedure AddParentsToLoophead (given in Fig. 85). This procedure adds elements
one by one to the loophead recursively processing the tree upwards. Elements to the
loophead are added by using the merge mechanism. Therefore, the merge expressions for
the template loop and the loophead are defined in Fig. 84. When the loophead rule
defining the instance set has been created, the procedure implementing the semantics
“find if does not exist” is called in the template loop in Fig. 84. It completes the
processing of the current mapping.

The procedure AddParentsToLoophead (given in Fig. 85) is used to add the other
tree elements to the loophead rule. We remind that here we still assume that there are no
recursive nodes in the source tree. This procedure is recursive, it processes the parent of
the current tree node and calls itself on the parent of this tree node. When the root node is
reached, nothing is done.

In the first rule the parent of a tree node is found. If there is no parent (the root has
been reached), the procedure completes its work. If the parent is found, the domain class
and constraints corresponding to this parent are found by using the procedure
FindTreeNodeDomainClass. After that the association relating the parent and the child
tree nodes in the domain metamodel is found by using the procedure

findChildRelationAssociation. It should be noted that only navigation expressions of

219

length one (direct associations) are supported in the Template MOLA procedure given in
Fig. 85, however, it could be easily extended to support more complicated navigation
paths. In this case intermediate class elements (nodes in the path from parent to child) and

multiple associations should be added to the loophead rule.

i@k TreeNDde> i@tr_dc Class> i@el_name @ String > @cons | String
. 1 2 3
7 MALAL {Hemel} i@a | Properky
Tkemel}

TreeNode | ghi
@n{rﬂ&}n = |shild p:TreeMode | | - FindTree ModeDomainClass(i@gn, @, @eos) | (20 Class
parert | Mialad) Tkemell

E{ELSE} @nd Child Relation A= socigtionEtn, [Ep, [@j)

Merge: Map

herge: Head CLDel_Name+ T %y 1 <% Do Class %y
E < @el_Mame % ;<% @tn_ds:Class%r Ty

. BT Fropertyt

: Vi

_______ E@‘ﬂ' . _Gdd Parenits ToLophead{ @, @, <% @el_Namea+1"% >D

Fig. 85. Procedure AddParentsToLoophead recursively creates the loophead rule

Finally, the parent element is added to the loophead of the template loop. This is
done by using the merge mechanism. This procedure was called using the inline mode
and the merge expression of the template loop and the loophead rule are equal to the
merge expressions used in the procedure processing mappings (Fig. 84). As a result all
elements appearing in the loophead in this procedure will actually appear in the loophead
iterating through the source tree node instances (Fig. 84).

It should be reminded that there is also a merge of class elements where the
element name is used as a merge expression. When executing the loophead given in Fig.
85, actually only one class element is added to the merged loophead as the class element
corresponding to the child node has already been added previously. The element added to
the loophead is connected by using the association link to the child element previously
created in the loophead. This link corresponds to the parent-child relation in the domain
metamodel. The association implementing the parent-child relation was found by using

the procedure findChildRelationAssociation.

220

To create the loophead from the source tree pattern a merge was very appropriate
as here the rule has to be created recursively.

To support recursive nodes the loophead pattern is split in several patterns and
recursive calls are used. Constraints to the supported instance set are added gradually.

Consequently, the Template MOLA program becomes quite complicated.

7.2.5 Implementation of “Create if Does not Exist”

In MALA4MDSD the semantics “create if does not exist” is used. The instance is
created if it has not been created previously by the mapping with the same name. To
support this feature it is required to generate a simple rule with three class elements:
reference to the processed instance (a loop variable in the previous section), a class
element with the type traceability class and the domain representation of the target node.
For the traceability class element constraint is added checking whether the trace name is
equal to the mapping name. The domain representation of the target node is obtained
similarly to the way the domain representation of the source node has been obtained.

Control flows are generated from this rule. If the rule fails, then the transformation
should go on with instance creation, however, prior to that the parent instance in the
target model should be found. If the rule succeeds, the mapping execution should be
completed. A special issue are mappings with the “check” modifier. If they fail, error is

produced.

7.2.6 Finding of Parent Instance in the Target Tree

To create an instance in the target model, it is required to find the appropriate
target instance to which the newly created instance should be attached.

It is done by finding a mapping from the parent node in the target model and by
finding the appropriate instances of this mapping. In the MOLA pattern generated in the
loophead (see Section 7.2.4) the source instance of this mapping should already be found.
The source instance and traceability links are used to find the appropriate target instance.
It should succeed as this mapping should already be processed according to our ordering

of mappings.

221

7.2.7 Element Creation

Finally we are able to generate a transformation for the creation of target instance.

A simplified version of this transformation is given in Fig. 86.

This procedure has two template parameters: one of them contains reference to the
source node instance being processed and the other — reference to the instance to be used
as the parent in the target model. At first the appropriate association is found relating the

child to the parent. (Here again only simple relations are supported, similarly to the

loophead creation in Section 7.2.4.)

Then the MOLA rule is created. It has four elements: reference to the source
instance, traceability instance creation, target instance creation and reference to the parent

instance in the target model. We assume that traceability is implemented by using the

constant class Trace in the Template MOLA rule given in Fig. 86.

. i@k : Class :
1 2z
Tl Rt} Tkemel}
W

@Dsn <% @snkiClass = > ‘@tpni 4% @tpnt:Class °.-"o:=->
3 4

imsnt : Class
i@m : MBEpping | mapping From tn : Target Tree Node | =hild tpn : Target Tree Hode g
AL} bo AL parert MaLad] themel}
. @tpnt : Class
? G
: . . . Tkemel}
@nd Child RelationAssociation@tn, Epn, [@j)
T [@a : Property
Tkemel}
_____________ ™y
@en ;<% @snt:Class L roe : tr : Trace :
ButgoingTrece + _{Traceabiity}
» NAMe = [@m.name |
e A —— .
simeornrni ng Trace
[Etpni ;< Ftpnt:Class % . .ta.r.g.ef s iire -
Property®F « toi <EiEtc:Classte o
........... - k
e ')/
fEm : hiapping [= :Treefesignment | azzigrment |@tn : TargetTreeNode
AL - f SOpY M. @en, @l L Ll [AL e} — laLed]
im .ty pe=copy}
‘!}_{ELSE} ¥
copy Attributesi@m, @sn, @nj). Gerfnrrnﬁ«ssignment(@na. (&1, @n’))
@m : hiapping b '[::’
it et} ‘,:':":.‘ .

Ity pe=copy Atrboes]

Fig. 86. Template MOLA procedure implementing the element creation

222

If for mapping the modifier copy or copyAttributes is used, then a call to the copy
library is created, respectively copying all child elements or only the attribute values. The
copy library supports copying of the tree node instances. It is implemented in a generic
way, however, for each node type the appropriate copy transformation is generated by
using the tree type definition. It is similar to the copy library discussed in Section 7.4.1. If
only the attribute values should be processed, the procedure copyAttributes could be
called directly.

The explicitly defined assignments are performed after the copy operations to
replace the default values set by the copy. Here the assignment defined in terms of tree
nodes is translated into the assignment defined in terms of metamodel elements. Each
assignment is processed separately and it is done by using the Template MOLA

procedure PerformAssignemnt.

7.2.8 Evaluation

Only the main ideas used in the compilation algorithm have been presented here.
It is described what should be generated in each compilation step. The Template MOLA
procedures implementing the creation of the loophead and the element creation are given
as well. The use of merge is demonstrated in the loophead creation; the merge mechanism
is required here as the loophead creation algorithm is recursive. On the other hand the
creation of the element is very simple and is defined by using one template rule.

In the described solution, many details and exceptional cases were skipped;
however, a complete compiler requires support also for these cases. Full implementation
of the compiler is left for the future. Nonetheless, the experiments have confirmed that the
proposed approach is technically feasible and that Template MOLA is appropriate for this
task.

The overall conclusion is that Template MOLA seems appropriate for the
development of a mapping language compiler. The only inconvenient issue concerns the
limited OCL expression support in MOLA. It requires performing a complicated
transformation of the OCL expressions to the MOLA patterns. There are two possible
solutions: one is to restrict the supported OCL subset used in the mapping language (and
its definition) to the subset used in MOLA, the other is to extend the MOLA constraint

language with a complete coverage of OCL features.

223

7.3 Implementation of Mapping Language for DSL Tool Building

In this section a simplified example of tool building is presented. It is a sort of
continuation of the topics discussed in Section 5.3.

As stated in Section 5.3, there are approaches combining mappings and
transformations. In this case mappings are used to generate transformations. The
transformation synthesis required there provides a perfect opportunity for application of
Template MOLA.

We use a specific task from the tool building field as an example in this section.
We assume that we have instances of some graphical DSL in the abstract syntax (a
domain model), and we want to generate the corresponding visualisation (instances of the
presentation metamodel). We can certainly write manually a MOLA transformation,
solving the task for this concrete DSL.

In our tool building environment we have means for the domain metamodel
definition, as well as for the mapping and the presentation type definition; therefore,
visualisation transformation for each DSL can be created in a generic way. It means we
can build a generic transformation in Template MOLA from which the transformation for
visualisation creation in a concrete DSL can be generated automatically. It should be
noted that here only one tool building aspect is considered. In the complete mapping
language compiler the other aspects, discussed in CHAPTER 5, e.g. property dialogs,
palette elements, element update, etc., should be supported as well.

To write the transformation, we need the corresponding metamodels (built
according to the general schema in Fig. 77, p.196). A simplified metamodel version is
used in this example. The domain metamodel is defined using a small subset of UML (see
the upper left side of Fig. 87). Presentation types and a mapping metamodel are also
needed. Instances of this metamodel are used as the input in the generation time. Here we
present a very simple integrated mapping and presentation type metamodel where
minimal information on the intended graphical form is included directly in the mapping
definition (see Fig. 87, the upper right side). Instances of a domain class can be visualised
as a box (ClassToBox) or as a line (ClassToLine). If the class is visualised as a box it may
contain several text fields in which the values of some class properties are usually
displayed (PropertyToField). The user syntax of this simple mapping language could be
built in a way similar to the property mapping language, discussed in Section 5.3.4.

224

During the visualization of classes, the generated transformation has to create
instances of a fixed presentation metamodel supported by the tool (see the lower part of
Fig. 87). These instances appear only in the generated transformations. Therefore, the
presentation metamodel is the constant part of the metamodel for the generated
transformation (compare to Fig. 75, p.194 and Fig. 77, p.196). It describes a graph
diagram with Nodes and Edges. There are CompositeNodes containing other Nodes and

Labels for text visualization.

{E} GeneralMapping

{} Kemnel: Type (-} Kernel::Class
cla
017 type isAbstract: Boolean 01
0.1 class mapping (*
typed |* = (3 CiazssMsppi
; pping
{3} Kernel TypedElement mappi © PropertyMapping :
name : 5tring

ownedAttribute |* {ordered} @ PropertyToField

(= Kemel::Property | proheny (3 ClassToLine
0.1 = fordered} |field
*{ordered} |memberEnd ‘rwnEdEnd ‘ ‘
Line incomipgLine
(=} Kernel:NamedESiement el box 0.1 cutdeing g
- pwningAssociaion .1 @ ClassToBox source (0.1 target (0..1
name: String 0..1|{:} Kernel::Association ® PropertyTolineEnd
association boxType : String
elements |* dizgram ‘ 1
{3} DisgramEiemant {2 Node () Diagram
1|endElement 1 |startElement shapeType : shapel... name : String

* | containedMode

incomingEdge |* outpoingEdpe |*

@ Edge
edge 0.1
startStyle : LineEndShapeType g—— (5 Label -
= SR CompositeMode
end5tyle : LineEndShapeType p.q '2DEIs : container © ?
- - text ; String
routingStyle : RoutingStyle

Fig. 87. A simplified domain (upper left side), mapping (upper right side) and
presentation (lower part) metamodel

When metamodels and their roles are specified, we can move on to transformation
definition in Template MOLA (see Fig. 88). We remind that the proper input for this
generation transformation is a specific domain metamodel and a related mapping model.
The transformation starts with the loop iterating through all instances of the class to box
mapping. This loop is a generation loop and is executed in the generation time. As a
result, a traditional MOLA procedure is built, containing a loop for each such mapping

instance (generated from the template loop which constitutes the body of the generation

225

time loop). The generated loops simply follow each other linked by control flows. The
template loop contains the loop variable with the name being generated. The loop variable
name is a concatenation of the letter “i”” and the name of the appropriate class given by
the template expression <%@c.name%=>. The type of the loop variable is defined by the
template expression <%@c:Class%>. In each generated loop the type (@c) is replaced
with the concrete domain class corresponding to the mapping instance this loop is
generated from. In each loop the value assigned to shapeType attribute is explicitly
defined. This value is calculated in the generation time using the corresponding mapping
data (the template expression <%@cm.boxType%> directly references the boxType
attribute of the current mapping instance). Now in runtime each generated loop iterates

over all instances of the corresponding domain class and creates a box for each of them.

v
om @ ClassTobox | mapping c: Class
fapping} class | iFemel}
v
___________________________ ™y
i< %ic name Ly 2L @e:Class L . on : Composite Hode :
c IPresentation)]
EshapeT}rpe:=<‘°& @em boxType %> |
..........................),

i

(@om : ClassToBox |box fpf : Property ToFigd rapping | p : Property
fhiapping} figld hiapping} {remel}

property

[Een Enmpnsi‘teNnd& : E """" I-:-L-aaél- seEEes ':
AT i 1 IPresentation} :

2 bent:=(@. <% @p.name & E

Fig. 88. Mapping implementation for tool building in Template MOLA

We must also generate transformations to create fields and set their values.
Therefore, a rule for processing each field has to be generated in the loop body. To ensure

this, in the template loop a generation time loop is included. This loop checks which field

226

mappings are included into the given class mapping. A rule is created for each such field
which adds a label to the box and sets its value. To set the value of the label, the relevant
property value of the runtime instance should be used. To access this property, the
template expression <% @p.name%> is used within the assignment in the template rule.
During generation the generation time loop ensures that the template expression is
replaced with the relevant property each time. It is not difficult to see that the generated
sequence of rules will do exactly the required label creation. The structure of the
generated procedure is given in Fig. 89.

EE =T S BT

Fig. 89. A MOLA procedure generated for Fig. 88

7.4 Transformation Libraries

Another application area of synthesis transformations is the development of
transformation libraries. It is important for the model transformation languages which do
not support the work with multiple metalevels. In these languages model transformations
are attached to the metamodel they are defined for. As a result it is not possible to define
metamodel independent transformations. HOTs could be used to solve this problem. It is
possible to define a transformation which reads the metamodel and creates the appropriate
transformation for this metamodel. When using this approach, it is possible to create
metamodel independent transformation libraries. The given HOT application is discussed

in this section.

7.4.1 Transformations for Generic Metamodels

Template MOLA can be used to write transformations for generic metamodels
(the metamodel is unknown at the time of writing). For example, we can write a generic

instance cloning procedure. More precisely, we can write an instance cloning generator in

227

Template MOLA, then execute it for a concrete metamodel and run the generated
traditional MOLA to clone instances of this metamodel.

Such approach can be used to create reusable transformation libraries. Model
transformation reuse has been considered an important topic [34]. One of the obstacles is
the complete dependency of the transformation definition on the used metamodel.
Generic transformations (transformation generators) in Template MOLA could be used to
create a reusable library of common metamodel independent algorithms for model
processing.

This approach is less important if the transformation language contains features
for work with several meta-levels at a time. However, it is useful for transformation
languages like MOLA (and most of others that include the OMG standard MOF QVT
[122]), which have no support for work with different meta-levels.

Generic Template MOLA procedures can be combined with the traditional
MOLA. The analogy with C++ templates and Java generics is used here. For example, it

is also possible to write such a template based cloning procedure in C++ (see Listing 4).

Listing 4. Template based cloning procedure in C++
template <class T> void Clone (T orig, T& copy) {...}.

In C++ this template procedure can be called with parameters of a concrete type.
To process this template procedure, the pre-processor generates an instance of this
procedure for every type it is called with. The same idea is used to combine MOLA with
Template MOLA. This feature is required if we want to invoke reusable transformations
from a transformation library.

Calls to template procedures can be used in ordinary MOLA transformations. In
Fig. 90 calls to the template procedure Clone are demonstrated. The same pre-processor
technology is applied when combining MOLA with Template MOLA as in C++ when
generating procedures for each type they are called with.

Since several MOLA procedures should be generated from one template
procedure, the procedure names should be generated, too (several procedures with the
same name are not allowed in MOLA). Here the default name generation is used. For a
template procedure, it is possible to define an expression of how the procedure name

should be generated exactly, however, the default naming conventions are also provided.

228

One of the pre-processor tasks in combining MOLA and Template MOLA is to replace

calls to the template procedure with calls to the appropriate generated procedures.

1 2

@l IndividuaICustDmer>

Ddep Department>

{Company} {Compariyg
Clone(@el. @el_Copy) @cl_Copy + IndividualCustomer
{Compariy}
Vi
Glﬂnei@dep- @dep_.:,:,WD i@dep_Copy @ Department
{Company}

5

* & @

Fig. 90. An example where the traditional MOLA and Template MOLA are
combined. A MOLA procedure calling the template procedure Clone from Fig. 91 is
illustrated

@orig : <% @hypeClass %:=> <@cnpv : <% @type:Class "".-".:.:=-> @type : C'asg
1 Z
Tkemel}
."@ =]

k¥

Gﬂpv Properties(i@ang, @eopy, Ehyps=))’ - '[>©

Fig. 91. The Clone procedure

Fig. 91 demonstrates the content of the template procedure Clone. It contains two
template parameters. It means that two parameters will be created in the generated
procedure. Instead of the type, these parameters contain the template expression
<%@type:Class%>. This template expression is evaluated in the generation time and
replaced with the appropriate values in the generated procedures. The procedure contains
one more kind of parameter — a type parameter (the parameter @type). This parameter
has an analogy to C++ code, where the template parameter T was explicitly defined in the
procedure definition. In the same way as in C++, the value of the parameter is not defined
in a call, but it is inferred from other parameters. Note that the type parameter is used for
this type of transformations only (transformations for generic metamodels) and is not
required for typical HOT use cases. Since this template procedure is invoked from the
ordinary MOLA, the referenced metamodel must be MOLA MOF itself (the Kernel
package).

229

In the Clone procedure one rule and one call is generated. In the rule, the template
expressions (which specify types of class elements) are replaced with their generation
time values in the same way as in the template parameters. The call statement contains
one generation time parameter and two template parameters. The template parameters are
kept in the generated call. Actually, instead of a call to the template procedure, a call to
the appropriate instance of the procedure generated from the template procedure is
created (taking into account the name generation).

The template procedure in Fig. 92 generates the procedure to copy instance
properties. It contains two template parameters and one generation time parameter. The
generated procedure will have two parameters created from the template parameters.

Generation time parameter is only used in the generation time.

@

@orig ;<% @ot:Class %> > <@|:|:|p':,-' | <% @okiClass %;.> @hype ! Class
1 2 3

w Tkemel}
|r : Property mmemberEnd [HMOT}
{Kemel} az=ociation |7 Assosiation sup_type : Ches @ype : Class
{Kemel} Tkemel} Tkemel}
lass |ownedittribute .
{@ype : Class generd [gen : Generalization S?E:.f
Kernal genefaliz
{Kemel} spec alization ikemel}

oopy @ <% @at:Class 5
4P E =R mong . HEp . name T

.

Fig. 92. The copyProperties procedure

GﬂvamPeniES(@oﬁg. (Beopy, @sup_type)

The procedure copyProperties contains two generation time loops. The first loop
(on the left in Fig. 92) iterates through all direct attributes of the class. For each attribute,
it generates a rule containing a class element with an assignment in it. The value of the
same attribute in the instance orig is assigned to this attribute. In the generated class
element, all template expressions are replaced with their values. The template expressions
are used for the class element type, for the attribute to be assigned and for the assigned
expression. A remark on the template expression syntax: the left hand side of the
assignment must be an attribute reference in MOLA. Formally, both the notation @p (the

reference to the attribute) and @p.name (a string expression equal to the attribute name)

230

could be used here. Our choice is @p since it expresses more directly that the left hand
side is a reference (it is preferred for the implementation as well).

The second loop (on the right in Fig. 92) iterates trough all immediate super-
classes of this class. For each super-class, it generates a call to a procedure that copies
direct attributes of this super-class. In this way, using recursion in Template MOLA,
values of all attributes are finally copied. It should be noted that the generated MOLA
procedures are not recursive due to the fact that procedure names are generated when
several MOLA procedures are created from one template procedure. Fig. 94 and Fig. 95

explain this situation by means of an example.

{3} Peraoh
B @ Customer
{3 Department name : String
surname | String custamerld ;© String
departrnert
(3 IndividualCustornes
(3 Employee| |ievel: String (3 Legal_Enity
ermpl oyes loyaltyCardhlumber © String

Fig. 93. A metamodel example describing information processed by a company.
The class IndividualCustomer is used to describe the generated code in Fig. 94 and Fig.
95

iDorig IndividuaICustDmer> <@l:l:||:|':.-' : IndividuaICustDmer>
1 2

{Comparn} {Company}

. . {@enig : Individual Customer :-@Et:p-y-:-laai:ri-dll;rc-usb ' ' alelaly’
{Eampany} 1 ICampany} E
Gﬂp\,r Properties_ [ndividual Customeni@ong, [Eeopy’) } R {;@

Fig. 94. MOLA procedure generated from the template procedure Clone

Now let us consider MOLA procedures generated from the Clone algorithm as
described above by using Template MOLA. We will demonstrate the generated result for
the first call of the procedure Clone in Fig. 90. The type of the instance to be cloned is
Company::IndividualCustomer. The metamodel for this fragment is described in Fig. 93
(the package containing the fragment is assumed to be Company). This could be a
simplified metamodel describing the information processed by a company. Fig. 94
presents the code generated form the template procedure Clone. The type parameter value

231

is the type of the instance the call statement was invoked with. In this case, it is the class
Company::IndividualCustomer. In the generated code, the type parameter @type is
replaced with this class. The procedure call is replaced with a call to the generated
procedure with appropriate types. Note that procedure names are generated in Template
MOLA as well (according to the default name generation rules, which can be modified if
required). The procedure name here will be appended by the class name from the type
parameter. The procedure name generation is necessary because the generated procedure
code depends on the type (or generation) parameter value (as shown in Fig. 95). The type

parameter itself is not included in the generated code.

4
k¥

@arig IndividuaICustDmer> <@cnp':.f : IndividuaICustDmer>
1 2

{Campariy} {Eampaniy}
@eopy - IndividualCustomer | copy Properties_Customer(@orig, @xopy]
ICompany} .
leel ;= @arig lewv . '-;i?
{? GﬁpyFmperties_Fersnn(@orig. @mp'g.rj)

Eeopy : Individual Customer
{Comparny}

loyatty Card Mumber:= @orig . Joywaktw Cadhumber

Fig. 95. MOLA procedure generated from the template procedure copyProperties

Fig. 95 presents the structure of a MOLA procedure generated from the
copyProperties procedure in Fig. 92 (p.230) when the class specified by the generation
time parameter is Company::IndividualCustomer (i.e., it is the procedure copyProperties_
IndividualCustomer). The left side shows two of the generated rules for assigning direct
attribute values of the IndividualCustomer class (to the attributes level and
loyaltyCardNumber). The attribute assignments are followed by calls to the
copyProperties procedures generated for the superclasses of IndividualCustomer (calls
for the superclasses Person and Customer are shown). Note that the generated names of
the procedures include the class name from the generation time parameter, thus there is
no recursion in the generated code.

In this example the generated MOLA source is a kind of spaghetti code. However,
it would be sufficient to have one class element containing assignments for each property.

This issue could be solved using the merge mechanism described in Section 6.7. A

232

solution of the same task using the merge mechanism is described in Section 6.7.1, the

Template MOLA procedure and an example of generated code is given in Fig. 79 (p.205).

7.4.2 Transformation Design Patterns

The higher-order transformations could be used to apply transformation design
patterns. It means it could be p