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ABSTRACT 

Synthesis of novel 1,4-dihydropyridine and 3,4-dihydropyridone based fluorous 

cationic amphiphiles for possible  transmembrane delivery applications.  Smits R., Dr. 

Chem. Prof. G.W. Buchanan, Dr. Chem. Vigante B., Doctor’s Thesis , 163 pages, 48 figures, 54 

schemes, 6 tables, 266 references. In English language. 

1,4-DIHYDROPYRIDINE, 3,4-DIHYDROPYRIDONE, FLUOROUS ESTERS, 

CATIONIC AMPHIPHILES, DNA TRANSFECTION, DRUG DELIVERY,  BROMINATION, 

OXIDATION, CHLORO-FORMYLATION, HYDROGEN BONDING, SELF-ASSEMBLY,  

X-RAY DIFFRACTION, 
19

F-MRI. 

 In this work both the pharmacologically and synthetically versatile 1,4-dihydropyridines 

and 3,4-dihydropyridones in combination with the unique properties of fluorous long chain alkyl 

esters allow the generation of novel putative transmembrane delivery agents, addressing the self- 

assembly, stability, toxicity and gene transfection problems of current systems with the added 

advantage that these carriers can be tracked in vivo by non-invasive 
19

F-magnetic resonance 

imaging. Along the way some fundamental chemistry aspects, such as stereo-specific 

bromination, hydrogen bonding and oxidation of the 1,4-dihydropyridine and 3,4-

dihydropyridone heterocycles are explored. X-ray diffraction is used throughout the work to 

provide molecular interaction data and unequivocal structural proofs of the synthesized 

compounds. 
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KOPSAVILKUMS 

Fluorsaturošu katjono 1,4-dihidropiridīna un 3,4-dihidropiridona amfifīlu sintēze 

transmembrānu nogādes pētijumiem.  

Smits R., Dr. Ķīm. Prof. G.W. Buchanan, Dr. Ķīm. Vīgante B., Doktora disertācija , 163 

lappuses, 48 attēli, 54 shēmas, 6 tabulas, 266 atsauces. Angļu valodā. 

1,4-DIHIDROPIRIDĪNS, 3,4-DIHIDROPIRIDONS, FLUORĒTIE ESTERI, KATJONIE 

AMFIFĪLI, DNS TRANSFEKCIJA, ZĀĻU PĀRNESE,  BROMĒŠANA, OKSIDĒŠANA, 

HLORO-FORMILĒŠANA, ŪDEŅRAŽA SAITES VEIDOŠANA, PAŠAGREGĒŠANĀS,  

RENTGENSTARU DIFRAKCIJA, 
19

F-KMR. 

 Šajā darbā apskatīta 1,4-dihidropiridīnu un 3,4-dihidropiridonu farmakoloģiskā un 

sintētiskā daudzveidība. Kombinācijā ar garu fluorētu alkilesteru unikālajām īpašībām veidoti 

iespējami transmembrānu aģenti, risinot līdz šim zināmo sistēmu pašagregēšanās, stabilitātes, 

toksicitātes un gēnu transfekcijas problēmas ar būtisku priekšrocību – šie nesēji var tikt izsekoti 

in vivo ar maz agresīvu 
19

F-magnētisko rezonansi. Darba gaitā izskaidroti vairāki fundamentāli 

1,4-dihidropiridīnu un 3,4-dihidropiridonu ķīmijas aspekti, tādi kā stereospecifiska bromēšana, 

ūdeņraža saites veidošanās un heterocikla oksidēšanās. Lai neapšaubāmi pierādītu sintezēto 

savienojumu struktūru un iegūtu molekulāro iedarbību datus, izmantota rentgenstruktūras 

analīze. 
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ABBREVIATIONS 

Ǻ    Angstrom 

Ac    acetyl 

AcOH    acetic acid 

AIBN    azobisisobutyronitrile 

AFM    atomic force microscopy 

Ar    aromatic group 

Bn    benzyl 

°C    degrees Celsius 

cm
-1

    wavenumbers 

DCM    dichloromethane 

DHP    dihydropyridine 

DHPOD   dihydropyridone 

DLS    dynamic light scattering 

DMAP    4-(dimethylamino)pyridine 

DMF    dimethylformamide 

DMSO    dimethylsulfoxide 

DNA    deoxyribonucleic acid 

E
+
    generic electrophile 

EDC    1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

Et    ethyl 

et al.    et alii (Latin: and others) 

EtOAc    ethylacetate 

EW    electron withdrawing 
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g    grams 

h    hours 

HPLC    high performance liquid chromatography 

i.e.    id est (Latin: that is) 

IR    infra-red (spectroscopy) 

L    litre 

m    milli (prefix 10
-3

) 

Mp.    melting point 

m/z    mass to charge ratio 

MeOH    methanol 

min    minute(s) 

mol    moles 

MRI    magnetic resonance imaging 

MS    mass spectrometry 

n    normal 

NBS    N-bromosuccinimide 

nm    nanometer 

NMR    nuclear magnetic resonance (spectroscopy) 

NP    nanoparticle 

Nu
-
    generic nucleophile 

p-    para 

pH    -log10[H
+
] 

Ph    phenyl 

ppm    part per million 
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Py    pyridine 

rac    racemic 

RB    round bottom 

Rf    retention factor 

RF    perfluoroalkyl 

RT    room temperature 

T    temperature 

t, tert    tertiary 

TFA    trifluoroacetic acid 

THF    tetrahydrofuran 

TLC    thin layer chromatography 

TMS    trimethylsilyl 

δ    chemical shift, ppm 

Δ    heated at reflux 

µ    micro (prefix: 10
-6

) 

νmax    infra-red absorption maximum, cm
-1
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INTRODUCTION 

 Great hopes are placed in the use of cationic lipids for gene transfection and drug 

delivery therapy to combat a myriad of inherited or acquired diseases. These vectors possess a 

notable potential compared with those of biological origin, since they are much safer, less toxic 

and are able to incorporate larger payloads. As concerns in vivo transfection, the most severe 

limitations of the current non-viral gene delivery systems are the relatively low efficiency of 

gene transfection into the target cells, the physico-chemical instability of the DNA/vector 

complexes and the induced cytotoxicity. The major obstacles encountered during the transfer of 

foreign genetic material into the body involve in particular interactions with blood components 

and vascular endothelial cells and uptake by phagocytosis [1]. It should be borne in mind, 

however, that the use of such delivery systems are still in the initial stages of development. 

This present work seeks to build on the exceptional in vitro gene transfection efficiency 

displayed by doubly charged 1,4-dihydropyrine (1,4-DHP) cationic amphiphiles developed at the 

Latvian Organic Synthesis Institute (LOSI) Membrane Active and β-Diketone laboratory (MAS). 

It has been determined, that pyridinium and alkylamonium cationic (1,4-DHP) amphiphiles self-

assemble in aqueous solutions and as a result form nano-aggregates. This research led to the 

development of an original gene transfection agent, whose transfection efficiency is higher than 

the currently available commercial non-viral cationic transfection vectors [2-3].  

 On the other hand highly fluorinated molecular materials, fluorocarbons and fluorinated 

amphiphiles, constitute new promising components of emulsions, vesicles and other colloidal 

systems. Fluorocarbons possess high biological inertness, gas solubility, low surface tension, and 

other valuable characteristics. Fluorous amphiphiles are highly surface-active, they have a strong 

hydrophobic character, and are lipophobic as well. Therefore, they constitute unique components 

of supramolecular assemblies, especially when segregation between hydrophilic and lipophilic 

domains is desired. Their strong tendency to self-assemble result in the formation of highly 

stable vesicles, tubules and other colloidal systems. The internal fluorinated film that forms 

within bilayer membranes made from fluorinated amphiphiles reduces the permeability of this 

membrane [4]. Moreover 
19

F-MRI is presented as an alternative and emerging method to assess 

the fluorinated drug carrier movement and quantity, since the concentration of a fluorine 

compound is directly proportional to the 
19

F signal in density weighted 
19

F-MRI. 
19

F provides a 
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strong NMR signal due to the large gyromagnetic ratio, minimal background signal and exquisite 

sensitivity to changes in the microenvironment [5].  The ability to combine 
1
H and 

19
F-MRI 

offers anatomical localization as well as definitive and quantitative mapping of nanoparticle 

uptake [6]. 

The research objective of this work is the synthesis of novel potential transmembrane 

transport agents, by uniting in one molecule pyridinium and alkylamonium cationic 1,4-DHP or 

3,4-dihydropyridone (3,4-DHPOD) structures with the unique physico-chemical properties of 

amphiphilic flourous alkyl esters. The 1,4-DHP heterocycle is considered as one of privileged 

structures with a wide pharmacological profile. The most extensive research and applications of 

1,4-DHPs  have been in cardiovascular system regulation. However, in the past decade it has 

been determined that 1,4-DHPs posses a wide pharmacological spectra of acitivity: antioxidant, 

neuroprotective, anticancer, antidiabetic, and antimicrobial etc. characteristics. Therefore, 

flourous cationic 1,4-DHP or 3,4-DHPOD amphiphiles may function not only as passive DNA or 

small molecule drug delivery agents but, they may at the same time fulfill some desirable 

pharmacological activity in the target cells. 

Aim of this dissertation: synthesis and characterization of novel cationic perfluorinated 

fatty acid ester containing 1,4-DHP and 3,4-DHPOD amphiphiles as potential lipido-mimetics, 

obtaining new types of transmembrane transport agents. 

The following tasks have been proposed to reach the above objectives: 

 To work out synthetic methods for obtaining perfluorinated β-ketoesters and β-

aminocrotonoic acid esters using perfluorinated alcohols as substrates. 

 Synthesize and characterize perfluorinated fatty acid ester containing cationic 1,4-DHP 

amphiphilic compounds. 

 To work out synthetic methods for obtaining new types of fluorous ester containing 

cationic 3,4-DHPOD amphiphiles. 

 To determine the direction of dihydropyridine bromination reaction depending on the 

substrate structure and brominating agent. 

 Synthesize cationic 3,4-DHPOD-triphenylphosphonium amphiphiles. 

 Investigate the cationic 1,4-DHP and 3,4-DHPOD amphiphile self-assembly in aqueous 

solution and characterize the obtained structure dependent aggregates.  
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 Compile and analyse the cytotoxicity data of the newly synthesized compounds, and their 

structure activity relationship in gene transfection.  

The scientific novelty of this research: The theme of this dissertation, the development of 

novel transmembrane drug delivery vehicles is important and actual in medicinal chemistry. As a 

result of the work on this dissertation, new types of cationic lipids- long perfluoroalkyl ester 

containing dihydroazine compounds have been synthesized, for the further structure activity 

relationship study in gene transfection research. A preliminary study has indicated that these 

types of compounds can be useful in further transmembrane drug delivery research. The 

perfluoro groups in these carriers provide a means of non-invasive in vivo tracking of the 

delivery and drug uptake using 
19

F-magnetic resonance imaging. For the first time dynamic light 

scattering and atomic force microscopy has been used to characterize the fluorous cationic 1,4-

DHP and 3,4-DHPOD amphiphile self-assembled aggregates in aqueous solutions. Fundamental 

chemistry aspects in the 3,4-DHPOD series have been explored by a study on the importance of 

a substituent in positon 4 in directing the stereospecific bromine and methoxide addition in this 

heterocycle. For the first time a 3,4-DHPOD-6-methylenetriphenylphosphine derivative has been 

syntesized and employed in a Wittig reaction with pyridine-2-carboxaldehyde providing a 

compound with an unltra short NH∙∙∙N bond. For the first time a 3,4-DHPOD-6-methyleneazide 

derivative has been synthesized and used in „click chemistry” to provide a 3,4-DHPOD triazole 

derivative. These two reactions provide opportunities for the generation of large 3,4-DHPOD-6-

methylene subsituted libraries for further research. Single crystal X-ray diffraction has been used 

to disprove a recently published synthesis of 2-amino-1,4-DHP derivatives proving 

unambiguously that the reported derivatives were actually 4H-pyrans. 
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1. LITERATURE REVIEW 

1.1. Gene transfection 

The clinical success of gene therapy, the modality to combat a myriad of inherited 

diseases, continues to remain critically dependent on the availability of safe and efficacious gene 

delivery reagents, popularly known as transfection vectors [7]. Broadly speaking, contemporary 

transfection vectors are classified into two major categories: viral and non-viral. Viral vectors, 

although remarkably efficient in transfecting our body cells, suffer from numerous biosafety 

related disadvantages. For instance, viral vectors are capable of the following: generating a 

potentially replication competent virus through various recombination events with the host 

genome; inducing inflammatory and adverse immunogenic responses; and producing insertional 

mutagenesis through random integration into the host genome; etc., [8]. More recently, it has 

been reported that retrovirus vector insertion near the promoter of the proto-oncogene LMO2 in 

2 human patients with X-linked severe combined immunodeficiency (SCID-XI) is capable of 

triggering deregulated premalignant cell proliferation with unexpected frequency [9]. In addition, 

viral vectors have a low insert size limit for the therapeutic genes they can pack inside. 

Consequently, an increasing number of investigations are being reported on the development of 

safe and efficacious nonviral alternatives including cationic amphiphiles (also known as cationic 

transfection lipids) [10], cationic polymers [11], dendrimers [12], etc. Because of their lesser 

immunogenic nature, robust manufacture ability to deliver large pieces of DNA, and ease of 

handling and preparation techniques, an upsurge of global interest has recently been witnessed in 

developing efficacious cationic transfection lipids for delivering genes into our body cells 

[13,14].  However, transfer to the nucleus of target cells of either a functional gene, or a structure 

capable of interfering with a cellular gene, is a daunting task when considering the number of 

barriers the vector/DNA complexes must overcome. Numerous roles are required of the vector 

which include protection of the DNA from the extracellular environments, facilitated uptake into 

the target cells, escape from intracellular compartments and finally release of the plasmid, which 

must subsequently pass across the nuclear membrane before transgene expression can occur [15-

17]. Currently believed intracellular pathways (Fig. 1.1) involved in cationic lipid mediated gene 

transfer (lipofection) include the condensation of the large DNA molecule, driven by an 

electrostatic interaction between the cationic lipid and the polyanionic DNA. Spontaneous self-
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assembly into nanometric particles termed lipoplexes results (stage 1), leading to shielding of the 

DNA from the nucleases of the extracellular medium. Use of an excess of cationic amphiphile 

(quantified by the lipid/DNA ratio resulting in a mean theoretical charge ratio of the lipoplex (+/-

)) equips the lipoplex surface with a positive charge, which is presumed to mediate subsequent 

cellular uptake via interaction with negative cell surface structures such as heparin sulphates and 

other proteoglycans [18-20]. 

 

1.  Formation (via self-assembly) of vector/DNA complexes (lipoplexes). 

2.  Cellular uptake via endocytosis. 

3.  Endosomal escape to avoid DNA degradation in lysosomes (barred arrow). 

4.  Trafficking through the cytoplasm and nuclear entry. 

5.  Transgene expression in the nucleus. 

Figure 1.1. A representation of the various steps involved in gene transfection by cationic lipids 

[32]. 

 

 As a result of non-specific endocytosis, the lipoplex is encapsulated in intracellular vesicles [15] 

(stage 2), though fusion-based cellular uptake cannot be totally excluded [17]. The DNA must 

then avoid degradation in the late endosome/lysosome compartment (barred arrow) by escaping from the 

(early) endosome into the cytoplasm (stage 3) [15, 21]. Trafficking of the DNA through the 

cytoplasm precedes uptake by the nucleus of the target cell (stage 4), and subsequent transgene 

expression therein (stage 5). In the nucleus, the DNA appears to be separated from its vector [22] 
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and microinjection experiments [15] have suggested that gene expression does not occur if the 

DNA remains condensed in intact lipoplexes. It should be stressed here that the efficiency of 

cationic lipids for gene transfection can be studied in various ways. First, their efficacy can be 

evaluated in terms of gene delivery (percentage of transfected cells) or gene expression (amount 

of transgene protein produced). Second, the efficiency of any transfection reagent also strongly 

depends on the cell system chosen for its evaluation (transformed cell lines or primary cells in 

vitro, in vivo administration via various routes), efficiency gains in vitro therefore not 

automatically lead to higher efficiencies in vivo [32]. 

Advances in the field of non-viral vectors are now made in two distinct structural 

categories: cationic polymers and cationic lipids, both of which must face the barriers to gene  
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delivery, which are becoming ever clearer on both a chemical and biological level [15, 23-25]. 

A great number and an impressive variety of synthetic vectors have been prepared and their 

transfection efficiency evaluated not only in experimental studies, but also in clinical trials for 

treatment of diseases such as cancer [26, 27] and cystic fibrosis [28-31]. An exhaustive list of 

clinical trials can be found at www.wiley.co.uk/genmed/clinical. 

1.2. siRNA-mediated gene silencing 

RNA interference (RNAi) refers to the ability of doublestranded RNA (dsRNA) to cause 

sequence-specific degradation of complementary mRNA molecules. Since its discovery in 

Caenorhabditis elegans in 1998 [33], it has rapidly attracted attention from researchers in fields 

ranging from genetics to clinical medicine. A natural intracellular process likely involved in cell-

based defence against mobile genetic elements such as viruses and transposons [34], RNAi 

promises to be an invaluable tool for gene function analysis as well as a powerful therapeutic 

agent that can be used to silence pathogenic gene products associated with diseases including 

cancer, viral infections and autoimmune disorders [35–40]. 

A central component of RNAi is a double-stranded siRNA molecule that is 21–23 nt in 

length with 2 nt long 30 overhangs [41]. These siRNA effector molecules can be introduced into 

cells directly as synthetic siRNAs or indirectly as precursor long dsRNAs or short-hairpin RNAs 

(shRNAs). RNA polymerase II- or III-driven expression cassettes can be used for constitutive 

expression of shRNA molecules [42]. Both the long dsRNAs and shRNAs are cleaved by Dicer 

(RNase III family of endonucleases) into the appropriately sized siRNA effectors. Although the 

presence of dsRNA >30 nt can elicit an interferon response in mammalian cells [43], Elbashir 

and co-workers demonstrated that synthetic 21mer siRNAs evaded the interferon response and 

yet were still effective mediators of sequence-specific gene silencing in mammalian cells [41]. 

Because synthetic siRNA molecules must be transported into the cells before they can 

function in RNAi, successful delivery of siRNA is of central importance (Fig. 1.2.). Delivery 

vehicles must protect the siRNA from nucleases in the serum or extracellular media, enhance 

siRNA transport across the cell membrane and guide the siRNA to its proper location through 

interactions with the intracellular trafficking machinery. While naked siRNA molecules have 

been shown to enter cells, significantly more siRNA can be delivered using carrier vehicles [44, 

45]. Both viral and nonviral vectors deliver siRNA into cells, although viral vectors are limited 

http://www.wiley.co.uk/genmed/clinical
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to delivering siRNA-expressing constructs such as shRNA. Commercially available cationic 

lipids such as Oligofectamine can effectively deliver siRNA molecules into cells in vitro with 

 

Figure 1.2. Simplified schematic of the key steps required for siRNA delivery to and function 

within mammalian cells. Steps 1–3 are unique to in vivo application of siRNA, whereas steps 4–

9 represent the general processes on the level of an individual cell and are therefore common to 

both in vivo and in vitro application of siRNA [47]. 

 

transfection efficiencies approaching 90%. However, the high toxicity of cationic lipids limits 

their use for systemic delivery in vivo. Recent studies have shown that cyclodextrin-containing 

polycations (CDPs) can achieve safe and effective systemic delivery of siRNA in mice [46].  

1.3. siRNA delivery systems for in vivo application  

Although researchers and biotechnology companies have reported many siRNA vectors 

for delivery into the cytoplasm of cells, and although these are satisfactory for most in vitro 

applications, these delivery technologies are usually inappropriate for in vivo use [48]. Currently, 

siRNAs in clinical trials are directly administered to local target sites such as the eye and lung, 

thereby avoiding the complexity of systemic delivery. However, it is necessary to introduce 

siRNA by a systemic route to treat most cancers and other diseases. The optimal in vivo systemic 
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delivery systems for siRNA should have the following characteristics. First, the delivery systems 

should be biocompatible, biodegradable, and nonimmunogenic. Second, the systems should 

provide efficient delivery of siRNA into target cells or tissues with protection of the active 

double-stranded siRNA products from attack by serum nucleases. Next, the delivery systems 

must provide target tissue-specific distribution after systemic administration, avoiding rapid 

hepatic or renal clearance. Finally, after delivery into target cells via endocytosis, the systems 

should promote the endosomal release of siRNA into the cytoplasm, allowing the interaction of 

siRNA with the endogenous RISC [49,50]. To confer drug-like properties such as stability, 

cellular delivery, and tissue bioavailability to siRNAs, various strategies that range from 

chemical modification of siRNA to design of different non-viral vectors have been developed 

and validated. 

1.4. Lipid-based siRNA delivery 

Various lipid-based delivery systems have been developed for in vivo application of 

siRNA. Lipid-based systems include liposomes, micelles, emulsions, and solid lipid 

nanoparticles. For the delivery of siRNA using lipid-based systems, lipid composition, drug-to 

lipid ratio, particle size, and the manufacturing process should be optimized. Among synthetic 

delivery systems for siRNA, cationic liposomes have emerged as one of the most attractive 

vehicles owing to the simple manner in which such liposomes form complexes with negatively 

charged siRNA, their high transfection efficiency, their enhanced pharmacokinetic properties, 

and their relatively low toxicity and immunogenicity. Moreover, cationic liposomes can protect 

siRNA from enzymatic degradation, and provide reduced siRNA renal clearance. 

One key factor in the success of lipid-based siRNA delivery systems is the development 

of cationic lipids. Since N-[1-(2,3-dioleyloxy) propyl]-N,N,N-trimethylammonium chloride 

(DOTMA), a synthetic cationic lipid, was first used to transfer plasmid DNA into mammalian 

cells in the late 1980s, many other cationic lipids have been developed [51]. Cationic lipids can 

be readily mixed and complexed with negatively charged DNA or RNA to form nanoparticles by 

electrostatic interaction. Until the early 2000s, most cationic lipid-based systems were used to 

transfer plasmid DNA into targeted cells or tissues. Since the advent of siRNAs as potential 

innovative drugs, the use of cationic liposomes has shifted from delivery of plasmid DNA to 

delivery of siRNA.  
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The structure of cationic lipids is known to affect transfection efficiency and toxicity of 

cationic lipid-based delivery systems [52]. Different lengths of hydrocarbon chain influence the 

cytotoxicity of cationic lipids [53,54]. Given the importance of cationic lipids as core 

components of lipid-based systems, numerous cationic lipids generated by combinatorial 

synthesis have been screened for optimal siRNA delivery [55]. 

Although most lipid-based systems for delivery of siRNA have used liposomal 

formulations, other types of lipid-based systems have also been developed for efficient delivery 

of siRNA. A cationic solid lipid nanoparticle composed of cholesteryl ester, triglyceride, 

cholesterol, dioleoyl phosphatidylethanolamine (DOPE), and 3-[N-(N′,N′- 

dimethylaminoethane)-carbamoyl]-cholesterol, was complexed with a reducible conjugate of 

siRNA and polyethylene glycol (siRNA-PEG) via electrostatic interactions. Park et al. reported 

that the delivery of siRNA using solid lipid nanoparticles resulted in efficient target gene 

silencing and serum stability, with a minimal level of cytotoxicity [56]. 

For in vivo siRNA delivery, stable nucleic acid–lipid particles (SNALPs) have been 

formulated and evaluated in mice, guinea pigs, and non-human primates. A SNALP consists of a 

lipid bilayer containing a mixture of cationic and fusogenic lipids that enables the cellular uptake 

and endosomal release of siRNA. The surfaces of SNALPs were coated with a polyethylene 

glycol–lipid conjugate that provides a neutral, hydrophilic, exterior and stabilizes the particle 

during formulation [57]. SNALPs were first used to deliver HBVspecific siRNA in diseased 

mouse models. Three daily intravenous injections of SNALPs encapsulating siRNA, at a total 

dosing schedule of 3 mg/kg/day, resulted in substantial reduction of serum HBVDNA in mice. 

The SNALPs also showed an RNAi effect after in vivo delivery to guinea pigs [58]. In that study, 

Ebola virus polymerase L-specific siRNA in SNALPs or in polyethyleneimine (PEI) complexes 

was intraperitoneally administered 1 h after challenge of guinea pigs using lethal Ebola virus. 

The PEI/siRNA complexes partially protected the animals from death, but treatment with 

SNALPs containing the siRNA completely protected guinea pigs against viremia and death. 

1.5.  Cationic amphiphiles 

The molecular architectures of cationic amphiphiles (Fig. 1.3.) consist of a positively 

charged water-loving (hydrophilic) polar head group region and a nonpolar hydrophobic tail 

region (usually consisting of either two long aliphatic hydrocarbon chains or a cholesterol 
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skeleton) often tethered together via a linker functionality such as ether, ester, amide, amidine 

group, etc. Understanding the structural parameters capable of influencing the gene delivery 

efficiencies of cationic amphiphiles is essential for rational design of efficient cationic  

 

Figure 1.3. The three basic domains of any cationic lipid: hydrophobic moiety, linker and head 

group [32]. 

 

transfection lipids. To this end, the focus of many prior structure-activity investigations have 

been centered around probing the influence of each of these three lipid structural components in 

modulating the gene transfer efficacies of cationic amphiphiles. For instance, a number of prior 

reports have demonstrated that the gene transfer efficiencies of cationic amphiphiles critically 

depends on their molecular architectures including hydrophobic alkyl chain lengths, [60] nature 

of head groups [59,61] as well as on the nature of linker and spacer functionalities used in 

covalent tethering of the polar head groups and the nonpolar tails of cationic amphiphiles [61-

64].   

Cationic lipids were first introduced by Felgner et al., following early attempts to transfer 

DNA via encapsulation in liposomes [65, 66]. Thus, the first reported lipid was DOTMA (N-(1-

(2,3-dioleyloxy)propyl)-N,N,N-trimethylammonium chloride), which consists of a quaternary 

amine connected to two unsaturated aliphatic hydrocarbon chains via ether groups [67] (Fig. 1.4. 

). Synthesis of the multivalent lipopolyamine DOGS (dioctadecylamido-glycylspermine) was 

reported soon afterwards [68] and the efficiency of the vector DC-Chol (3b-[N-(N’,N’-

dimethylaminoethyl)carbamoyl)cholesterol) with cholesterol as the hydrophobic portion was 

subsequently reported [69] (Fig. 1.4.). It is noteworthy that the transfection activity of cationic 

lipids (especially those which are incapable of forming bilayers alone) can be increased by their 

formulation as stable liposomes with the neutral co-lipid DOPE (dioleoyl 

phosphatidylethanolamine), (Fig. 1.4.) [70]. Inclusion of DOPE is presumed to enhance 
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endosomal escape of the lipoplexes into the cytoplasm as DOPE is thought to have fusogenic 

properties important for endosomal membrane disruption [70-72].  

The use of these initial lipids demonstrated the transfection ability of cationic lipids. 

However, progress in improving the level of transfection efficiency up to that required for 

therapeutic use has been slow. Progress has been made in the design of cationic head groups, 

hydrophobic domain, and linkers. In brief, the choice of cationic head groups has expanded into  

 

Figure 1.4. Structures of the ‘early’ cationic lipids and of the co-lipid DOPE [32]. 

the use of natural architectures and functional groups with recognized DNA binding modes as 

well as non-amino-based cationic moieties. Modifications of the hydrophobic domain have 

shown that optimal vector structure is often dependant on this moiety, which can fall into various 
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structural classes and variants. Finally, labile linkers have been introduced which are sensitive to 

various biological stimuli, inducing DNA release at defined time-points during the intracellular 

trafficking of the lipoplex.  

1.6. 1,4-Dihydropyridine as linker 

Despite the huge potential of the 1,4-DHP heterocycle for modification there is only one 

group (OSI in collaboration with Kuopio University) who have published [2] on its utilization as 

linker in pyridinium and alkylamonium cationic (1,4-DHP) amphiphile (Fig. 1.5.) synthesis and 

gene transfection studies.  

 
Figure 1.5. Cationic amphiphiles with a 1,4-DHP linker [2]. 

 

The closest analogs to this system are the SAINT vectors (Fig. 1.6.) [32].  

 
Figure 1.6. Incorporation of ester functions into the linker: esterases and/or pH-sensitive vectors.  
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These vectors incorporating ester groups are designed to be cleaved by endogenous esterases, 

although pH variations may also serve as trigger to hydrolysis. Indeed, the fragility of the ester 

function in certain environments has been recognised by numerous groups [73,74]. The site of 

attachment of the ester group to the pyridinium heterocycle of the resulting SAINT Esters had a 

significant impact on the transfection efficiency (meta > para) which however, was in each case 

greater than that of the non-ester control SAINT-2 [75]. As foreseen, the toxicity of the ester 

analogues was also lower. However, contrary to initial expectations, the SAINT Ester vectors 

were found to be most stable at low pH, with increasing instability on increasing basicity, 

thereby confusing any mechanistic predictions for the observed increase in transfection levels 

based on pH alone. The same pH profile was observed for the latest generation of SAINT 

vectors, which incorporate an ester group between each of the two aliphatic chains (SAINT 

diEster of (Fig. 1.6.)) [76]. 

Nowadays it is clear that the 1,4-DHP nucleus is a privileged scaffold since, when 

appropriately substituted, it can selectively modulate diverse receptors, channels and enzymes. 

Therefore, the 1,4-DHP scaffold could be used to treat various diseases by a single-ligand multi-

target approach [77].  Dihydropyridines have attracted increasing interest due to their diverse 

therapeutic and pharmacological properties such as insecticidal, bactericidal and herbicidal 

effects [78]. DHP drugs, namely nifedipine, nicardipine and amlodipine, are cardiovascular 

agents for the treatment of hypertension [79]. A number of DHP calcium antagonists have been 

introduced as potential drugs for the treatment of congestive heart failure [80].  Further, 

cerebrocrast, a dihydropyridine derivative, has been introduced as a neuroprotective agent [81]. 

Together with calcium channel blocker and neuroprotective activity, a number of 

dihydropyridine derivatives have been found as vasodilators, antihypertensive, bronchodilators, 

antiatherosclerotic, hepatoprotective, antitumour, antimutagenic, geroprotective, antidiabetic and 

antiplatelet aggregation agents [82-86]. In a recent article, 4-[5-chloro-3-methyl-1-phenyl-1H-

pyrazol-4-yl]-dihydropyridines have been shown to possess significant antimicrobial activity 

[87]. In addition to the above, aromatization of 1,4-DHP has also attracted considerable attention 

in recent years as Böcker has demonstrated that metabolism of the above drugs involves a 

cytochrome P-450 catalysed oxidation in the liver [88]. Dihydropyridines find applications in 

stereo specific hydrogen transfer reduction of phenylglyoxylic and pyruvic acid to biomimetic 
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models of lactase dehydrogenase [89]. Recently, DHPs are used as organocatalysts for 

asymmetric reactions such as hydrogenation of quinolines in the synthesis of alkaloids [90], 

asymmetric reductive amination of aldehydes [91] and hydrogenation of α,β-unsaturated 

aldehydes and ketones [92].  

The first synthesis of a 1,4-DHP via a three component cyclocondensation reaction of 

acetoacetic ester, aldehyde and ammonia was reported by Arthur Hantzsch in 1882 [93]. Since 

then a lot of new variants of the original method have been developed, allowing synthesis of 

different substituted 1,4-DHPs (Scheme 1.1). Classical Hantzsch synthesis of these compounds is 

carried out in acetic acid or by refluxing in alcohol for a long time [94]. Several other methods 

are reported including use of micro-waves [95], molecular iodine [96], cyanuric chloride [97], 

ionic liquids [98], silica gel/NaHSO4 [99], TMSCl-NaI [100], metal triflates [101] and 

ultrasound irradiations [102]. As can be seen from the (Scheme 1.1), methods A and C are only 

convenient for the synthesis of symmetrical, nonchiral 1,4-DHPs (R=R') [104-106], while 

methods B (two step synthesis via Knoevenagel intermediate IV) and D (three component  

 
Scheme 1.1. Most common variants of the Hantzsch 1,4-DHP synthesis [103]. 
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cyclocondensation) are usually used for the synthesis of 1,4-DHPs having different ester 

moieties (R≠R’) [107-110]. 

As one might predict, symmetrical 1,4-DHPs are always formed as impurities in 

synthesis of nonsymmetrical 1,4-DHPs. However, formation of impurities other than 

intermediates leading to the 1,4-DHP ring is rarely described in Hantzsch condensations [111]. 

Thus, Angeles et. al. [112] have isolated four different compounds 1-4 (Fig. 1.7.) from the 

Hantzsch condensation of 2-nitrobenzaldehyde, NH4OH and acetoacetic acid ethyl ester. The 

formation of 1,2-DHP 2, cyclic amide 3 and substituted hydroxamic acid 4 is possibly due to 

steric hindrance as well as the oxidative ability of the nitro group in the ortho- position. Similar 

observations have not yet been published for other substituents (OCH3, Cl, CH3 etc.). 

 
Figure 1.7. Products formed in Hantzsch condensation using 2-nitrobenzaldehyde. 

 

Görlitzer et. al. [113] have studied the dimerisation of o-nitrobenzylideneacetic acid 

esters and isolated two diastereomeric substituted hexenes which could also be present as 

impurities in the classical Hantzsch condensation. Recently another impurity which is formed in 

substantial amounts was reported [103] when reaction path C of the 1,4-DHP synthesis was 

followed using the sterically hindered o-methoxybenzaldehyde (Scheme 1.2.). 

This type of side product formation is characteristic of Hantzsch condensations 

employing two equivalents of alkyl-3-aminocrotonates and substituted benzaldehydes, but the 

amounts formed may vary drastically, depending on the nature of the substituents present on the 

aromatic ring [103]. Also, noteworthy are the low yields in entries 2 and 3 even with long 

refluxing times. However, by using the right choice of solvent, catalyst, and reaction conditions 

it’s possible to get very reasonable yields in 1,4-DHP synthesis. 
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Scheme 1.2. Hantzsch condensation of (o-, m- and p)-methoxybenzaldehydes 5-7 with methyl-3-

aminocrotonate (8) [103]. 

 

 
 

 By using 1,4-DHP as a linker for constructing cationic amphiphiles has an additional 

benefit which is not present in conventional carries. As already indicated above, the wide 

pharmacological profile of this linker may serve not only as a construction element in DNA or 

small molecule drug delivery but, may at the same time fulfill some desirable pharmacological 

activity in the target cells. 

1.7. 3,4-Dihydropyridone as linker 

There are no published reports of 3,4-dihydropyridones being used as a linkers (Fig. 1.8)  

N
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O

R
2

R
1

N
+

Br
-

R
1
=H or Ph

R
2
=alkyl or perfluoro alkyl

 
Figure 1.8. Example of cationic amphiphiles with a 3,4-dihydropyridone linker. 
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in cationic amphiphile synthesis. This linker is similar to the 1,4-DHP heterocycle, except with 

one less methyl group,one less carboxyl group, and an additional keto group at carbon 2. This 

3,4-DHPOD scaffold provides an opportunity for a single cation to be placed on the methyl 

group at carbon 6 and also one ester group at carbon 5 and the physico/chemical differences 

between the 1,4-DHP analogs to be compared. 

 Dihydropyridones are important intermediates for the synthesis of natural products, 

particularly alkaloids [114,115] and they have been extensively investigated as valuable building 

block for the construction of piperidines, perhydroquinolines, indolizidines, quinolizidines and 

other alkaloid systems, with a wide range of biological and pharmacological activities. These 

compounds are known for their antiproliferative and antitubolin activities [116] and as potential 

selective inhibitors of receptor tyrosine kinase [117,118]. Rho-associated kinase (ROCK1) is a 

serine/threonine kinase that has been implicated in a variety of cellular processes including 

vascular smooth muscle contraction, stress-fiber formation, cell migration, and gene expression. 

In vascular smooth muscle contraction, ROCK1 plays a central role in the calcium-sensitization 

pathway. Activation of ROCK1 indirectly regulates the phosphorylation state of myosin light 

chain, leading to increased vascular smooth muscle contraction. Inhibition of this pathway 

represents a promising strategy for the treatment of a variety of cardiovascular diseases, 

including hypertension. The 3,4-DHPOD-indazole amide (Fig. 1.9) was identified as a potent 

and selective ROCK1 inhibitor with improved pharmacokinetic parameters [119] and might have 

 
Figure 1.9. GSK429286A a 3,4-DHPOD based potent ROCK inhibitor [119]. 

 

utility in treating Parkinson's disease [120]. Their ability to induce leukaemic cell differentiation 

has been demonstrated. In addition they have potent antimalarial activity [121] and good 

anticonvulsant activity against acutely elicited Seizures [122]. 
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 Manipulation of pyridines has long been recognized as a convenient avenue to 2-

pyridones [123,124]. For instance, conversion of 2-unsubstituted pyridines to pyridines can be 

accomplished by a Polonovski-type oxidation via a pyridine N-oxide intermediate (Scheme 1.3). 

N

[O]

N
+

O
-

Ac2O

 N
H

O

 
Scheme 1.3. Polonovski rearrangement. 

 

Similarly, 2-pyridones can be accessed through hydrolysis of 2-halopyridines, which in turn, can 

be obtained from a pyridine N-oxide (Scheme 1.4) [125]. 

N
+

O
-

CO2Et

POCl3

DCM, 80 oC N CO2EtCl

aq. HCl

180 oC N
H

CO2EtO

 
Scheme 1.4. Synthesis of 2-pyridone via 2-chloropyridine. 

 

Construction of 3,4-dihydropyridones via cyclization of linear systems can be found in many 

natural product synthesis. For example condensation between 2-acetylglutarate derivatives and 

ammonium acetate provide 3,4-dihydropyridones (Scheme 1.5) [126].  

CO2Et

OEt

O O

N
H

EtO2C

O

NH4OAc

 
Scheme 1.5. Synthesis of 3,4-DHPOD from 1,5-dicarbonyl. 

 

Alternatively, 3,4-DHPODs can also be accessed through the merging of an enecarbonyl 

compound and cyanoacetamide or malonitrile (Scheme 1.6) [124]. Mechanistically, such [3+3] 

annulations generally involve an initial Michael addition of the activated methylene compound to 

give an acyclic adduct, which undergoes dehydration to furnish the corresponding 3,4-DHPOD. 

 
Scheme 1.6. [3+3] annulation to form 3,4-DHPODs. 
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The 4-aryl substituted 3,4-DHPOD synthesis has received the most attention due to the many 

works published by M. Suarez and N. Martin et. al., using a multicomponent  facile one-pot 

condensation reaction of Meldrum’s acid, methyl acetoacetate and the appropriate benzaldehyde 

in the presence of ammonium acetate (Scheme 1.7). 

OO

O O

+ OCH3

O O

+ PhCHO
NH4OAc

N
H

O

OCH3

OPh

 
Scheme 1.7. Multicomponent 4-phenyl-3,4-DHPOD synthesis. 

 

Many reaction conditions of the above reaction have been reported including solid phase [127], 

microwaves [128], ultrasound in glacial acetic acid [129], and solvent-free infrared irradiation 

[130] in order to increase yields and provide greener protocols for the 4-aryl-3,4-DHPOD 

synthesis. 

1.8. Fluorinated carriers 

A perfluorinated group has peculiar physical and chemical properties. It is both 

hydrophobic and lipophobic at the same time. As a matter of fact, perfluorocarbons prefer to 

form a separated fluorous phase rather than mix with either hydrophilic or hydrophobic 

molecules. This phenomenon, known as the fluorophobic effect, allows the self-assembly of 

highly fluorinated molecules in strict analogy to the hydrophobic effect [131,132]. 

Cationic liposomes [133-138] have been suggested as possible agents for non-viral gene 

delivery since they offer several advantages: (i) positively charged interfaces which can 

efficiently complex ssDNA through electrostatic interactions, (ii) due to their membranous 

nature, they can assist the delivery of ssDNA inside the cells. However, when designing novel 

vectors for nucleic acids one should take into account not only the hydrophilic part, usually 

responsible for the ssDNA complexation, but also the hydrophobic domain [139] responsible for 

the physical features of the bilayer (i.e. phase transition temperature, fluidity) and influencing the 

stability of the lipoplexes. From this point of view, fluorinated surfactants are of particular 

interest and many cationic fluorinated amphiphiles have been developed as transfecting agents 

[140-148]. It was suggested that the enhanced transfection efficiency was related to the fluorous 

tags, more hydrophobic and more lipophobic and therefore less damaged by biomolecules in 

vivo. Fluorinated vesicles are more stables than hydrogenated ones and are less recognizable by 
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macrophages [146,149]. Moreover, the biophysical behavior of these compounds seems to be 

related not only to the presence of the fluorinated domain in the molecule but also to its position 

with respect to the hydrophilic part [150]. 

The recently reported [151] synthesis of a novel monocatenar fluorinated surfactant 

bearing a diamino-diethoxylated head group (Scheme 1.9), provides an example of an 

amphiphile that was designed in order to respond to three criteria: (i) a fluorinated hydrophobic 

tag responsible for self-assembling and suited for spontaneous-vesicle-formation, (ii) an ethylene 

oxide moiety sufficiently hydrophilic so that the compound would be soluble at high 

concentration, up to 1 mM, and avoiding the precipitation of the surfactant–ssDNA complex and 

(iii) a protonated at physiological pH primary amine responsible for binding. Thus, the ssDNA-

fluorous surfactant interaction is made through electrostatic interactions between the external 

primary amine and the phosphate groups. By externalizing the binding site, the repulsions 

between the bulky ethylene  oxide moiety and the anionic ssDNA could be avoided, whereas the   

 

 
 

Scheme 1.9. Synthesis of fluorinated surfactant F9NH(EO)2NH2 [151]. 

 

flexibility of the polar head allowed conformational changes for an optimum complexation. The 

authors’ have provided an elegant study of ss-DNA interactions with a fluorinated surfactant 

based on the surfactant concentration, which is monitored using static light scattering (Fig. 1.10) 

the inflection points in the graph represent critical aggregate concentration (CAC). Compared to 

the formation of micelles, formation of vesicles requires a significantly higher number of 

surfactant molecules, which are partly supplied from the exterior and partly provided from 

previously generated micelles. 
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Figure 1.10. ssDNA/F9NH(EO)2NH2 interactions as monitored by static light scattering (left), 

schematic mechanism (right): (a) the surfactant is in a monomeric form and ssDNA/ 

F9NH(EO)2NH2 interactions are weak, (b) micellization of the surfactant on the ssDNA matrix 

occurs (c) maximum of monomers micellizing onto ssDNA, (d) demicellization and vesicle 

ssDNA-loading (e) only ssDNA-loaded fluorinated vesicles and (f) mixture of empty and 

ssDNA-loaded fluorinated vesicles [151]. 

 

Moreover, the combination of the spontaneously formed vesicle properties, oligonucleotide 

complexation and the non-toxicity of the fluorinated surfactant demonstrate the great potential of 

these amphiphiles for biomedical applications such as gene therapy or RNA interference.  

1.9. 19
F-imaging 

 Of the myriad of particles that have emerged as prospective candidates for clinical 

translation, perfluorocarbon (PFC) nanoparticles offer great potential for combining targeted 

imaging with drug delivery, much like the ‘‘magic bullet’’ envisioned by Paul Ehrlich 100 years 

ago. Perfluorocarbon nanoparticles, once studied in Phase III clinical trials as blood substitutes, 

have found new life for molecular imaging and drug delivery. The particles have been adapted 

for use with all clinically relevant modalities and for targeted drug delivery. In particular, their 

intravascular constraint due to particle size provides a distinct advantage for angiogenesis 

imaging and antiangiogenesis therapy [152]. MRI offers several advantages over other clinical 

modalities for molecular imaging, including high resolution, noninvasiveness, high anatomical 

contrast, and lack of ionizing radiation. 
19

F presents an excellent probe for quantitative MRI, 

which is highly enriched in perfluorocarbon nanoparticles. 
19

F has 100% natural abundance, a 

spin of ½, and a gyromagnetic ratio of 40.08 MHz/T close to the that of 
1
H (42.58 MHz/T), 

resulting in 83% of the sensitivity of 
1
H [153]. In addition, the chemical shift of 

19
F, due to its 
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seven outershell electrons, is sensitive to the molecular environment of the nucleus, including 

oxygen tension. The 
19

F spectroscopic signature manifests a range of >200 ppm, [154,155] which 

permits unambiguous identification of distinctive 
19

F-containing compounds even at low field 

strengths. Moreover, no background exists for the 
19

F signal in vivo, since there is negligible 

endogenous 
19

F MRI signal from the body, as the physiological concentrations of detectable   

 

Figure 1.11. In vivo visualization of ongoing vessel occlusion. A subgroup of animals received 

two chemically shifted PFC compounds sequentially. PFCA with a multi-resonant 

perfluorooctlybromide was administered immediately after the end of illumination while single-

resonant PFCB with a peak at -90 ppm was injected with two hours delay (A,B). [157]. 
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mobile fluorine are below the detection limit (usually less than 10−3 μmol/g wet tissue weight) 

[156], providing a unique spectroscopic signature for quantitative MRI. 

PFC nanoparticles uniquely support both 
1
H and 

19
F imaging, which now may be 

performed simultaneously, and which offers many benefits in image registration, motion 

correction, and quantitative data calibration. 3D CSI experiments with two chemically shifted 

PFC compounds were recently performed [157] which allowed differentiation of both markers 

and thus visualization of ongoing vessel occlusion in a single MRI measurement (Fig. 1.11). 

Administration of the first emulsion (PFCA) directly after induction of photothrombosis (PT) led 

to a fluorine signal throughout the cortical infarction (Fig. 1.11C). The second 
19

F marker (PFCB) 

that was applied two hours later, however, accumulated at the outer margins sparing the center of 

the infarcted zone. By merging the signals on a 
1
H background image the different spatial 

distribution of the compounds could be identified in a single measurement. Thus, the 
19

F-MRI is 

presented as an alternative and emerging method to assess the fluorinated drug carrier movement 

and quantification. 
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2. RESULTS AND DISCUSSION 

2.1. Synthesis of perfluorinated 1,4-dihydropyridine amphiphiles 

The 1,4-dihydropyridine scaffold having long chain alkyl esters in the 3,5 positions and 

bearing a double positive charge via two pyridinium bromides on the 2 and 6 methyl groups has 

shown exceptional gene transfection efficiency in in vitro experiments [2]. To elaborate this 

promising cationic amphiphile in hopes of further decreasing its cytotoxicity and enhancing 

transfection efficiency, replacement of the alkyl esters with perfluoro alkyl esters was envisioned 

as a viable option since perfluoro groups beside having toxicity lowering properties are 

chemically and biologically inert, have remarkable self-assembly properties forming stable 

aggregates. Indeed, by preventing DNA from interactions with lipophilic and hydrophilic 

biocompounds and, from degradation, fluorinated lipoplexes have been found to exhibit a higher 

in vitro and in vivo transfection potential than conventional lipoplexes or even than PEI 

polyplexes [158].  

Long chain alcohols 3 and 4 with fluorinated tails were synthesized using perfluoro 

iodides reacted with 10-undecenol and Na2S2O4 as a free radical initiator to give alkyl iodide 1 as 

a light yellow oil in 92% yield and 2 in 94% yield as an oily solid, which were then deiodinated 

with Zn in the presence of NiCl2 catalyst to give alcohol 3 as a white solid mp. 33.5°C in 78% 

yield and 4 as a white solid mp. 77.2°C in 86% yield. 

Scheme 2.1: Synthesis of long chain alkyl alcohols with perfluorinated tails. 

 

CH2

OH + CF3(CF2)nI

OH (CF2)nCF3

I

1 n=3 2 n=7

Zn

NiCl2

OH (CF2)nCF3

3 n=3 4 n=7

Na2S2O4

Acetonitrile

 

These alcohols were used to obtain esters of 3-oxobutanoic acid 5 and 6 by reaction with 2,2,6-

trimethyl-4-H-1,3-dioxine-4-one in refluxing xylene.  Ester 5 was obtained in 80% yield as an 

oily solid and ester 6 was obtained as a white solid mp. 50-51°C in 96% yield. 
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Scheme 2.2: Synthesis of fluorinated acetoacetyl esters. 
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OO

CH3
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5 was reacted with concentrated aqueous ammonia in ethanol to give enamine 7 as a white solid 

mp. 33-35°C in 65% yield. 

Scheme 2.3.  
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Two equivalents of 7 were reacted with one equivalent of benzaldehyde in ethanol at room 

temperature for six days to give after silica gel comlumn the 1,4-dihydropyridine 8 as a clear oil 

in 15% yield. 

Scheme 2.4: Synthesis of DHP 8 at room temperature. 
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In an effort to improve on the very low yield of the DHP 8 the next reaction, (Scheme 2.5) was 

carried out using microwave irradiation. Two equivalents of ester 6, one equivalent of 

benzaldehyde and one equivalent of ammonium acetate were reacted in ethanol under microwave 

irradiation at 120°C for 30 minutes to give 1,4-dihydropyridine 9 as a light yellow solid  with a 

broad melting range 82-87°C  in 25% yield. 

Scheme 2.5: Synthesis of DHP 9 using microwave irradiation. 

O (CF2)7CF3

OO

CH3 + O

N
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CH3 CH3

O

OO

OF3C(F2C)7 (CF2)7CF3

9
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By using microwaves the yield of the 1,4-dihydropyridine  9  was improved, although  not 

optimized but all the same quite low which may indicate that the reacting species may be 

entrapped in the long alkyl chains of the acetoacetate derivative and thus prohibiting the reaction 

from taking place. Another attempt at improving the product yield was to do the reaction using a 

phase transfer catalyst (PTC). In this route the perfluorinated enamine 10 was obtained by the  

Scheme 2.6: Synthesis of enamine 10 and benzylidene derivative 11. 

OO

O

F

F
FF

F

F

F

F

F
F

F

F

F

F

F

F

F

CH3

6

NH4OH

EtOH

ONH2

O

F

F
FF

F

F

F

F

F
F

F

F

F

F

F

F

F

CH3

10

O

OO

O

F

F
FF

F

F

F

F

F
F

F

F

F

F

F

F

F

CH3

11

E/Z mix

P
ip

erid
in

e

Iso
p
ro

p
an

o
l

 



38 

 

ammonium hydroxide reaction with acetoacetate 6 and the benzylidene derivative 11 was 

generated by reacting benzaldehyde and acetoacetate 6 with a catalytic amount of piperidine in 

isopropanol to give an E/Z mixture of products. When the enamine 10 and benzylidene 11 were 

reacted in diglyme at 80°C for 6 hours using n-butylpyridinium bromide as PTC the DHP 9 was 

obtained in 45% yield. The DHP 9 was further reacted with NBS in chloroform to give the 

dibromo derivative 12 which without purification was reacted with pyridine to give the charged 

DHP pyridinium compound 13 as a light yellow solid with a broad melting point 85-105°C. 
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Scheme 2.7: Synthesis of DHP 9 under PTC conditions. 

The DHP 13 was tested at the Latvian Organic Synthesis Institute’s pharmacology laboratory 

chemotherapy group, lead by Dr. I.Sestakova for cytotoxicity on HT-800 and MG-22A cancer 

cells where it showed no activity and on normal 3T3 cell where this compound was found to be 

totally nontoxic. Also a test was run by Kupio University, Finland to test its ability to complex 
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DNA and transfect cells. The test indicated that compound 13 does form a complex with DNA, 

but the complex showed no transfection of cells. Encouraged by the nontoxicity results research 

was continued to increase the transfection efficiency of these DHP amphiphiles. Thus work was 

carried on to synthesize DHPs with shorter ester groups according to (Scheme 2.8). 
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Scheme 2.8.  Synthesis of DHP 22 with shortened ester groups. 
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This time 3-Buten-1-ol 14 was used as the alkene to which the perfluorooctyl iodide  was added 

via a radical reaction to give a perfluorinated iodo alcohol 15 from which the iodine was 

removed  with Zn powder using a NiCl2 catalyst. The perfluoroalcohol 16 was reacted with 

2,2,6-trimethyl-4-H-1,3-dioxine-4-one in refluxing xylene to give the acetoacetyl ester 17 which 

was converted to the enamine 18 and benzylidene 19 and reacted in diglyme with n-

butylpyridinium chloride as a PTC catalyst at 80°C for 6 hours to furnish after recrystallization 

the DHP 20 in 45% yield as an almost white powder mp. 107-108°C. This compound was 

dibrominated with NBS in chloroform to give the dibromo DHP 21 and after addition of pyridine 

in dry acetone the DHP dipyridinium bromide 22 as a pale yellow compound. The compound 

was placed in water 1 mg/ml and sonicated with a probe type sonicator to form aggregates which 

were imaged by atomic force microscopy (AFM) in tapping mode (Fig. 3.1) at the Institute of 

Chemical Physics, University of Latvia. The free energy of transferring an amphiphile from 

water into a micelle depends linearly on chain length, so the critical micelle concentration (cmc) 

depends exponentially on chain length [159]. Vesicles are closed bilayer structures with an 

aqueous compartment. Whether micelles or vesicles are formed can be explained largely by 

packing considerations [160,161]. The balance of attractive interactions and repulsive 

interactions gives an optimal interfacial area per molecule. Amphiphiles self-assemble into 

structures having area exposed to solvent (a) close to this optimum. Spherical micelles have the 

greatest interfacial area, in which v/a = l/3 (where v = volume and l = hydrophobic chain length), 

cylindrical micelles have v/a = l/2, and vesicles have v/a = l. To a first approximation, the 

presence of two chains on an amphiphile doubles v whereas the optimal a and l are constant, so a 

consequence of these considerations is that single-chain amphiphiles tend to form micelles 

whereas double-chain amphiphiles tend to form cylindrical micelles or vesicles. Vesicle 

formation is also favored by factors that reduce the optimal interfacial area. For example, fatty 

acids form micelles at high pH when their head groups are negatively charged, but they form 

vesicles at lower pH when their head groups interact more favorably [162]. As seen in the image 

the average diameter of the aggregates are 100-200 nm which is a very good size for cell 

transport applications. 
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Figure 2.1. AFM images of self-assembled aggregates of DHP 22 and 29 in aqueous solution. 

 

Since perfluorinated hydrocarbon chains are hydrophopbic and also lipophobic there is a need to 

find the right balance of the perfluorinated content which confers stability and self-assembly 

properties to the amphiphiles and the nonfluorinated content which confers lipophilicity and may 

aid in the transport through lipid bilayer membranes. To increase the lipophilicity of the esters an 

unsymmetrical DHP was synthesized where only one of the ester group’s contains a 

perfluorinated tail (Scheme 2.9). Dodecanol 23 was heated together with methyl acetoacetate 24 

while methanol slowly distilled off to form the transesterified, dodecyl acetoacetate 25 which on 

reaction with aqueous ammonia yielded the enamine 26 as a white solid. The optimized 

conditions for the synthesis of 25 and 26 were worked out by K. Pajuste [3]. The enamine 26 and 

benzylidene 19 were reacted in diglyme at 80°C with n-butylpyridinium chloride as a PTC to 

yield the DHP 27 as a yellowish solid, which on bromination with NBS formed the dibromo 

DHP 28 and further with pyridine gave the unsymmetrical DHP pyridinium bromide 29 as a 

yellowish solid with a broad mp. 145-160°C with decomposition.  

 

 

 

 

22 29 
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Scheme 2.9. Synthesis of unsymmetrical DHP 29 containing only one ester with a perfluorinated 

tail. 
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Scheme 2.10. Synthesis of a DHP amphiphile having esters with terminal CF3 groups. 
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To decrease still further the fluorine content in the alkyl esters, 13,13,13-trifluoro-1-tridecanol 

was synthesized and used to construct a DHP derivative with 3,5 alkyl esters containing terminal 

CF3 groups (Scheme 2.10). The 13,13,13-trifluoro-1-tridecanol (31) wasn’t as straight forward to 

synthesize as the 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorodododecan-1-ol (16) 

since the triflouroethyl iodide doesn’t form radicals as efficiently as the perfluorooctyl iodide. 

Using the same procedure with Na2S2O4 as a free radical initiator there was obtained only 22% of 

the CH2CF3 addition product, therefore a different reaction sequence was tried. Undecenyl 

acetate, trifluoroethyl iodide and benzoyl peroxide (2 mol %) were placed in a pressure tube 

since the boiling point of trifluoroethyl iodide is 55°C and the pressure tube was sealed with a 

screw cap. The pressure tube was placed in an oil bath and heated to 80°C. Every 3h the tube 

was cooled down in ice and more benzoyl peroxide was added until an H-NMR probe indicated 

that most of the double bond had reacted (six cycles). The iodine was deiodinated with sodium 

borohydride in dimethyl formamide and the acetate hydrolyzed with sodium hydroxide and after 

addition of acid the 13,13,13-trifluoro-1-tridecanol was obtained as a clear oil in good yield. The 

rest of the scheme was carried out without complications to yield the DHP 34 in 32% yield and 

after bromination with NBS and reaction with pyridine in dry acetone gave the DHP amphiphile 

36 containing 3,5-alkyl esters with terminal CF3 groups in 52% yield. The CF3 group can be used 

as a convenient molecular label since the 
19

F-NMR spectra shows only a single peak (a triplet) at 

δ= -66.42 ppm for compound 36. Thus, two other CF3 labeled molecules were synthesized which 

could yield information concerning the self-assembled structures of the DHP amphiphiles 

(Scheme 2.11 and Scheme 2.12). 
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Scheme 2.11. Synthesis of a DHP amphiphile with CF3 substituted pyridines. 
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Previously substitution of the bromines in DHP 37 were tried with 2-fluoropyridine but, after 

two days of reaction no substitution took place. Apparently the fluorine in the 2 position 

withdraws the electrons from the nitrogen to such an extent that it renders the nitrogen totally 

non-nucleophilic. The 4-trifluoromethylpyridine is also quite an electron withdrawn heterocycle, 

yet it was possible after 24 hours of reaction to obtain the bis-4-trifluoromethylpyridinium DHP 

38 in 29% yield giving a single peak for the 
19

F-NMR spectrum δ= -65.25 ppm.  
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Scheme 2.12. Synthesis of DHP amphiphile with 4-p-CF3 benzene group. 

The DHP cationic amphiphile having a p-trifluoromethylbenzene group in the 4 position was 

synthesized in a straightforward manner starting with p-trifluoromethylbenzaldehyde and 

dodecyl 3-aminobut-2-enoate (26) in refluxing n-propanol to give the 4-trifluoromethylbenzene 

DHP 39 in 41% yield which was brominated with NBS and after reaction with pyridine provided 

the 4-p-trifluoromethylbenzene DHP dipyridinium bromide 41 in 73% yield as a white powder 

with a single peak in the 
19

F-NMR spectrum with δ= -62.41 ppm. 

In (Fig. 2.2) are depicted the types of micelles and unilamellar liposomes that would be expected 

to form in aqueous solution from cationic DHP amphiphiles containing the CF3 groups. 

Compound 36 would show only one 
19

F-NMR signal if either micelles or liposomes formed as 

the self-assembled aggregates. For compounds 38 and 41 if micelles formed then only one signal 

would be observed in the 
19

F-NMR spectrum but, if unilamellar liposomes formed then most  



46 

 

                                          

Figure 2.2. Micelles and  unilamellar liposomes which could form from the CF3 (green color) 

labeled DHP amphiphiles 36, 38, and 41 in water.   
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Figure 2.3. AFM images of self-assembled aggregates of 36, 41, and 38 in aqueous solution. 
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likely one would observe two signals, since the CF3 groups inside the liposome are in a different 

environment then the CF3 groups on the outside of the liposome. 

The AFM images of the self-assembled aggregates in aqueous solution of the three CF3 

amphiphiles (Fig. 2.2) indicate that the aggregates have a spherical shape and the diameters for 

aggregates from compounds 36 and 38 have a uniform distribution in the 50 nm range. The 

aggregates which formed from compound 41 show a more dispersed diameter range from about 

80-160 nm. 

To add more variation to the cationic 1,4-DHP amphiphile series the 4-phenyl group was 

replaced by a carboxylic acid group (Scheme 2.13) and alkyl groups (Scheme 2.14). 
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Scheme 2.13. Synthesis of DHP with a carboxylic acid group at position 4. 

The 1,4-DHP 4-carboxylic acid 42 was synthesized from glyoxylic acid monohydrate and  

dodecyl 3-aminobut-2-enoate (26) by stirring these components in glacial acetic acid for three 

days. After pouring the reaction mixture in ice water the precipitate was recrystallized from 

ethanol to give the compound as a pale yellow powder in 24% yield. An attempt was made to 

introduce a perfluorinated ester in position 4 by using 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-

heptadecafluorodododecan-1-ol (16) and EDC as a coupling agent but, when the reaction was 

carried out in DCM and DMAP as catalyst no reaction took place. This reaction should be 

reinvestigated with fresh EDC (since this reagent is very hydroscopic) or tried by another route, 

perhaps through the acid chloride.  
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Scheme 2.14. Synthesis of  DHP 45 which contains a perfluoro alkyl chain in position 4. 

Synthesis of DHP 45 which contains a perfluoro alkyl chain in position 4, started with the Dess-

Martin oxidation of the perfluorinated alcohol 16 in DCM solution at room temperature [163]. 

The reaction had gone to completion in 2 hours and after work up gave a yellow oil of the 

perfluorinated aldehyde 44 in 93% yield which solidified in the fridge. Further, the aldehyde was 

reacted with two equivalents of enamine 26 in the presence of thionyl chloride and pyridine in 

DCM at room temperature overnight. After removing the solvent and silica gel flash 

chromatography purification there was obtained the DHP 45 as a yellow syrup in 64% yield. An 

attempt was made to brominate the 2,6-dimethyl groups using NBS however, judging by the H-

NMR spectrum it seems that the DHP was oxidized to the pyridine without any bromination of 

the methyl groups. Therefore, reaction conditions still need to be found (perhaps by lowering 

reaction temperature) which would yield the dibrominated DHP. Finally an ethyl group was 

introduced in the 4-position of a DHP containing 3,5-perfluorinated alkyl esters (Scheme 2.15) 

by using propionaldehyde, 2 equivalents of 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-

heptadecafluorododecyl 3-oxobutanoate and ammonium acetate in refluxing ethanol to give the 

4-ethyl DHP 27 in 56% yield. The 2,6-dimethyl groups were brominated with NBS in 

chloroform and reaction with pyridine in dry acetone yielded the 4-ethyl DHP amphiphile 49 as a 

pale yellow powder in 48% yield. 
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Scheme 2.15. Synthesis of a DHP amphiphile with an ethyl group at position 4. 

In summary a series of perfluoroalkyl ester 4-phenyl and 4-alkyl substituted 1,4-DHP cationic 

amphiphiles have been synthesized with greatly reduced cytotoxicity but in rather modest yields. 

The best yield was obtained a reaction where DCM was used as solvent and the Hantzsch 

condensation was catalyzed by in situ generated pyridinium chloride, giving a respectable 63% 

of the 1,4-DHP derivative. 

2.2. Synthesis of 3,4-dihydro-2(1H)-pyridones (DHPODs) 

The 3,4-dihydropyridone is a convenient scaffold for attaching cationic head groups and 

fluorous long chain esters for the construction of cationic amphiphiles. Also it is relatively 

straight forward to synthesize from Meldrum’s acid as the second dicarbonyl component in a 

Hantzsch-like reaction [164,165] and recently by employing microwaves the yields have been 

boosted substantially [129]. The 2-pyridones possess interesting pharmacological properties such 

as reverse transcriptase inhibition of human immunodeficiency virus-1 (HIV-1) [166,167]. 

Milrinone, Amrinone [168] and their analogs are cardiotonic agents for the treatment of heart 

failure. They have also been reported to possess antitumor [169,170], antibacterial [171] and 

other biological activities [172-174]. 
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Previously Hyvonen et al. [175] have tested a series of symmetrical cationic amphiphilic double-

charged didodecyl 1,4-dihydropyridine-3,5-dicarboxylate derivatives (1,4-DHP), which have 

self-associating properties in aqueous media forming liposomes with a mean diameter in the 50–

130 nm range. The aim of this present study is to combine the properties of DHP derived cationic 

amphiphiles with the stability imparted by fluorous groups and to synthesize novel charged 

fluorous 6-methyl-3,4-dihydro-2(1H)-pyridone-5-carboxylates which are 1,4-DHP analogs 

having a single alkyl ester group. The formation of bilayers and vesicles usually requires 

bicaudal (double chain) amphiphiles but, organized supramolecular systems can be obtained 

from a single pure monocaudal nonrigid amphiphile by reinforcing the hydrophobic interactions 

in the surfactant film through the use of a highly perfluorinated tail, without recourse to classical 

steric effects or intermolecular associations [176]. The force of this self-assembling capacity is 

illustrated by the ability of single chain F-surfactants to form stable vesicles rather than micelles 

in water and as a rule, films and membranes made of F-surfactants are more stable than those of 

their hydrogenated analogs [177]. 

The general synthetic method used in this work for 4-phenyl-3,4-dihydro-2(1H)-pyridone 

synthesis employed a four component reaction using Meldrum’s acid by a heterocyclization with 

a β-ketoester and an aromatic aldehyde in the presence of ammonium acetate in refluxing glacial 

acetic acid [165], (Scheme 2.16). After pouring the reaction mixture in ice-water the resulting 

solids were isolated by filtration and recrystallized from ethanol to provide white crystalline 

compounds. 
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Scheme 2.16. General 4 component synthesis of 3,4-dihydro-2-pyridones. 

Under the reaction conditions the Meldrum’s acid forms a Knovenagel condensation product 

with the aromatic aldehyde and the β-ketoester with ammonium acetate form an enamine which 

then react together in a heterocyclization  reaction with elimination of carbondioxide and acetone 

to form the dihydropyridone (Scheme 2.17). 
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Scheme 2.17. Mechanism for the 4 component 3,4-dihidro-2-pyridone synthesis [128]. 

By using the above general method variously substituted DHPODs were synthesized in 

reasonable yields (Table 2.1). 

The X-ray diffraction structure of the Cerebrocrast analogue, compound 53 revealed an 

interesting aspect concerning the 2-difluoromethoxy group, which interacts with the ether 

oxygen of the 5-ester group and forms an intramolecular CF2H∙∙∙O hydrogen bond, (Fig. 2.4). 
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Figure 2.4. X-ray structure of compound 53 indicating a hydrogen bond (red line) between a 

difluoromethoxy hydrogen and an oxygen from the ester ether group. 
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Aldehyde Acetoacetate Entry DHPOD Yield % Mp.°C 
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Table 2.1. DHPOD’s obtained by the general method with various aryl aldehydes and 

acetoacetates. 
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Apparently the two methoxy fluorines polarize the carbon to an extent which makes it 

sufficiently positive to act as a hydrogen donor and form this rare hydrogen bond extending from 

a methyl group with rHO =2.388 Ǻ CF2H∙∙∙O hydrogen bond judging by the distance this is a 

weak interaction. This compound crystallizes as a hydrogen bonded dimer forming two NH∙∙∙O 

bonds with rHO =1.893 Ǻ.  

Compounds with long-chain alkyl groups are very difficult to crystallize in monocrystals 

which would be of sufficient quality for X-ray diffraction since the thermal energy causes these 

molecules to be in continuous motion and disorder and require cryogenic methods to slow the 

motion. Therefore, it came as a great delight that at room temperature the dodecyl 4-phenyl-3,4-

dihydro-2-pyridone compound 55 deposited crystals from ethanol from which the X-ray single 

crystal diffraction structure could be solved.  As the ORTEP representation shows the crystals 

contain 2 molecules per unit cell which are the stereo antipodes of compound 55 (Fig. 2.5).  
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Figure 2.5. Ortep representation of compound 55. 

All attempts to grow dense X-ray quality crystals from the perfluoroalkyl ester compounds so far 

have failed since the crystals are very thin and not suitable for X-ray diffraction. In a recent 
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publication however, Hans-Joachim Lehmler et al. [179] have reported on the X-ray diffraction 

structures of perfluorinated sulfonamides. Although (partially) fluorinated compounds are often 

very difficult to crystallize [180], typically forming exceedingly thin, poorly stacked platelets, 

they were able to determine the crystal structure of N,N-diethyl-perfluorooctane-1-sulfonamide 

(Fig. 2.6). Flaky platelet crystals were obtained by recrystallization from reagent alcohol/ 

dichloromethane at 4°C. These crystals proved far too small for analysis on conventional small-

molecule diffraction equipment but gave recordable, albeit weak, diffraction using Cu Kα X-rays 

on a specially configured hybrid small/macromolecule diffraction system.  

 
Figure 2.6. ORTEP view of N,N-diethyl-perfluorooctane-1-sulfonamide (A) showing the atom-

labelling scheme. (B) View along the carbon backbone to illustrate the helical conformation of 

the perfluorooctyl chain of the major component in the crystal. Displacement ellipsoids are 

drawn at the 50% probability level [179]. 

 

An interesting feature of this crystal structure is that the perfluorooctyl chains of the disorder 

components are enantiomeric—they spiral around both ways, thus resulting in a disordered 

crystal. This is not surprising because perfluoroalkane chains typically adopt a helical 

conformation resulting from the larger van der Waals radius of fluorine relative to hydrogen 

[181]. As illustrated in (Fig. 2.7), the packing diagram of thre crystal structure shows segregation 

of the electronically different parts of the perfluorooctanesulfonamide molecules to form bilayers 

with a perfluoroalkyl core which are separated by the sulfonamide groups. 



55 

 

 
Figure 2.7. Packing diagram of N,N-diethyl-perfluorooctane-1-sulfonamide, viewed down the b 

axis, illustrating the bilayers of oriented paralel to the a–b plane. H atoms have been omitted for 

clarity. 

 

Specifically, N,N-diethyl-perfluorooctane-1-sulfonamide forms bilayers parallel to the a–b plane 

and the perfluorooctanesulfonamides molecules are tilted within the bilayer by approximately 

35°. The formation of bilayers by the perfluorooctanesulfonamides is not a surprising 

observation because A∙∙∙B interactions (e.g., interactions between different parts of a molecule) 

are usually less favorable than the mean of A∙∙∙A and B∙∙∙B interactions (i.e., interactions 

between similar parts of a molecule) [180]. This is particularly true for the hydrophobic and 

lipophobic perfluoroalkyl chains [179]. 

The 4-unsubstituted 3,4-dihydropyridone was synthesized by a literature method [182] 

from methyl 2-(2-cyanoethyl)-3-oxobutanoate (57) by condensation in concentrated sulfuric 

acid. The methyl 2-(2-cyanoethyl)-3-oxobutanoate was in turn synthesized from methyl 

acetoacetate and sodium ethoxide in ethanol as solvent with the drop-wise addition of 

acrylonitrile. Two products formed, the wanted mono substituted or methyl 2-(2-cyanoethyl)-3-

oxobutanoate and the doubly substituted methyl 2,2-bis(2-cyanoethyl)-3-oxobutanoate product 

58. It was not possible to get only one product, even by very slow acrylonitrile addition or by 

lowering the temperature. The bis-ethylcyano product was a solid and precipitated from the 
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reaction mixture and after high vacuum distillation the mono substituted product 57 was isolated 

as an oil in 28% yield (Scheme 2.18). 
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Scheme 2.18. Synthesis of 4-unsubstituted 3,4-dihydro-2-pyridone 59. 

 

The methyl 2-(2-cyanoethyl)-3-oxobutanoate was added drop-wise with stirring to an ice cooled 

concentrated sulfuric acid and after stirring for half an hour at room temperature the syrupy 

mixture was poured into ice water. The white precipitated product was filtered and washed with 

cold water and dried to give a white powder of methyl 6-methyl-3,4-dihydro-2(1H)-pyridone-3-

carboxylate (59) in 62% yield. The single crystal X-ray diffraction analysis indicated that this 

compound crystallizes as a dimer (a), which is reminiscent of the hydrogen bonded base pair 

formation (b) and molecular recognition in RNA and DNA and can be used as their simple 

experimental or theoretical models (Fig. 2.8). Also several attempts were made to crystallize 

compound 59 and the highly toxic anticancer drug 5-fluorouracil (5-FU) as their hydrogen 

bonded dimers (c) but, so far these attempts have failed. The idea was to use hydrogen bonding  

    

N O

H

O

O

NO

H

O

O

N

N
N

N

N

N

O O

R

H

N
H

H

R
1

N O

H

O

O

N

NH

O

H

O

F

a b c  

Figure 2.8. Representation of compound 59 as a hydrogen bonded dimer a from X-ray data, 

hydrogen bonded dimer of DNA base pairs b and hetero H-bonded pairs of 59 and fluorouracil c. 
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interactions of 5-FU to hold it inside some DHPOD derived aggregates, since in 

dipalmitoylphosphatidylcholine/cholesterol (DPPC/Chol) 5-FU entrapped liposomes there was 

observed extensive leaking of the drug from the liposomes [183]. 

The methyl ester of dihydropyridone 59 was hydrolyzed with NaOH in refluxing aqueous 

methanol and after acidifying with HCl the 6-methyl-3,4-dihydro-2(1H)-pyridone-5-carboxylic 

acid (60) was isolated as a white powder in 80% yield. Oxalyl chloride was added dropwise to 

the dihydropyridone acid (60) in dry toluene to furnish the crude 6-methyl-3,4-dihydro-2(1H)-

pyridone-5-carbonyl chloride (61) in almost quantitative yield as an orange solid. The 

dihydropyridone acid chloride was reacted further with dodecanol or 

5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecanol in dry toluene with pyridine 

as base to provide the dodecyl 6-methyl-3,4-dihydro-2(1H)-pyridone-3-carboxylate (62) and 

5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl 6-methyl-3,4-dihydro-2(1H)-

pyridone-3-carboxylate (63) respectively as pale yellow solids (Scheme 2.19). 
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Scheme 2.19. Synthesis of dodecyl and its perfluoro analog 6-methyl-3,4-dihydro-2(1H)-

pyridone-3-carboxylates. 

 

N-benzyl-3,4-dihydro-2-pyridone (65) was synthesized from methyl 3-(benzylamino)but-2-

enoate  (64) and acryloyl chloride in refluxing toluene (Scheme 2.20). The N-benzyl-
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dihydropyridone after purification was isolated as a yellow syrup.  
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Scheme 2.20. Synthesis of N-benzyl-3,4-dihydro-2-pyridone 65. 

2.3. Bromination of 3,4-dihydropyridine-2(1H)-ones 

For further elaboration of the 3,4-dihydropyridin-2-one structure, the methyl group at 

carbon 6 stands out as a convenient handle. Thus following the previously well established 

procedure for 2,6-dimethyl DHP bromination with N-bromosuccinimide (NBS) in methanol, 

attempts were made to brominate the allylic 6-methyl group of a 3,4-dihydro-2-pyridone 52 

(Scheme 2.21). The reaction took place readily and after workup gave an almost quantitative 

yield of a product. The product by NMR analysis didn’t appear to be the desired 6-bromomethyl 
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Figure 2.9. X-ray structure of compound 66 
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Scheme 2.21. Bromination of 3,4-dihydro-2-pyridone 52.  

2-dihydropyridone 67. After growing crystals and single crystal X-ray diffraction analysis the 

structure was ascertained to be an MeO and Br addition product across the double bond or 

compound 66 (Fig. 2.9). 

A noteworthy aspect about structure 66 is that the MeO- and Br+ have added across the double 

bond in a cis fashion.  This is a similar reaction which was reported by Z. Kalme et al. [184] 

(Scheme 2.22) where they observed that HO- and Br+ had added across the double bond also in a 

cis configuration. 
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Scheme 2.22. The bromohydrin reaction with a dihydro-2-pyridone derivative [184]. 
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This is a typical bromohydrin reaction, except that in the classical case the HO- and Br+ add 

across the double bond in a trans fashion, due to the bromonium ion intermediate being attacked 

by the HOH nucleophile from the back side (Scheme 2.23). 

 

Sheme 2.23. Classical bromohydrin reaction of 1-methylcyclohexene giving the trans addition 

product.[185] 

 

The spatial configuration of functional groups were assigned by 
1
H-NMR based on the observed 

J34  being < 0.5 Hz which indicates that the Ph and amide groups have to be in a trans 

configuration. However, since they didn’t have an X-ray structure for final proof, it is more 

logical that the structure would be drawn as compound 70 where the steric impediment from the 

Ph group for the incoming Br+ is minimized. 
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The MeO- and Br+ addition across the double bond for compound 52 likely follows the 

mechanism depicted in (Scheme 2.24). 
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Scheme 2.24. A postulated mechanism whereby 3,4-dihydro-2-pyridone 52 adds MeO- and Br+ 

across the double bond. 

 

It is postulated that after the Br+ electrophile reacts at carbon 5, a bromonium ion forms where 

the CO2Me and Me groups are trans with respect to each other, this is possible because the 

DHPOD heterocycle can assume a puckered conformation. The MeOH reacts at carbon 6 since 

carbon 5 is sterically crowded by the phenyl and the carboxy groups, finally deprotonation yields 

the cis substituted product. This reaction is depicted more clearly below using ACD/Chemsketch 

program providing the energy minimized structures based on molecular mechanics (Fig. 2.10). 

 

Figure 2.10. Addition of MeO to the bromonium intermediate. 

When the bromination of the 6-methyl group of dihydropyridone 52 was attempted using NBS 

with 3-chloroperoxybenzoic acid (MCPBA) as a free radical initiator in carbontetrachloride, a 
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very sluggish and messy reaction took place, giving the desired 6-bromomethyl dihydropyridone 

67 in addition to many byproducts (TLC). Bromination of the 6-methyl group of 4-

aryldihydropyridones as described in the literature has been accomplished with NBS in refluxing 

chloroform for 10-14 hours [186]. Although the 6-bromomethyl compound was not isolated its 

presence as intermediate was suggested by the subsequent lactonization producing γ-lactone 

fused 3,4-dihydropyridones. Another report on the 6-methyl group bromination utilized bromine 

in chloroform and irradiation with a 500 W lamp, in this case only the crude compound was 

isolated and not further characterized [187]. To optimize the reaction, bromination was next tried 

with pyridinium bromide perbromide in dry chloroform at 0-5°C. After 30 minutes the reaction 

had gone to completion and after work up the 6-bromomethyl dihydropyridone 67 was isolated 

in 85% yield. Finally bromination of compound 52 in dry chloroform by the drop-wise addition 

of a bromine chloroform solution at room temperature gave a clean reaction producing 

compound 67 in 95% yield. Recrystallization from methanol deposited crystals which after 

single crystal X-ray diffraction confirmed the structure, (Fig. 2.11).  

 

Figure 2.11.  X-ray structure of compound 67. 

The 
1
H-NMR spectrum has a doublet at δ=4.48 ppm, 

2
J=10.5 Hz and a doublet at 5.03 ppm, 

2
J=10.5 Hz for the CH2Br protons indicating the nonequivalence of the 2 protons. This 

phenomenon is also observed for the 4-substituted 2,6-bis(CH2X) 1,4-DHP system as recently 

reported by M.Petrova et al [189], explaining how the CH2X  protons of symmetrically 
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substituted 1,4-dihydropyridine rings become diastereotopic in the presence of different 

substituents at position 4, thereby, providing an AB system in the corresponding 
1
H-NMR 

spectra. The extent of the observed non-equivalence of the methylene protons should be 

influenced by the spatial conformation of side chains in the molecule and/or the anisotropy of the 

substituents. 

There are two questions begging an answer to the above results: a) Is the phenyl group at 

position 4 responsible for the steric hindrance which dictates the syn addition of MeO- and Br+ 

across the double bond? b) Is the phenyl group at position 4 responsible for the diastereotopic 

effect of the CH2X protons? The answer to these two questions can be provided by simply 

removing the phenyl group!  
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Scheme 2.25.  Bromination of 4-unsubstituted 3,4-dihydro-2-pyridone. 

 

Thus bromination of dihydropyridone 59 with one equivalent NBS in methanol yielded the MeO 

and Br substituted product 71 as the only isolated compound (Scheme 2.25). After growing 

crystals the X-ray diffraction analysis revealed (Fig. 2.13) that this time only the trans addition 

product had formed, indicating that if the 4-phenyl group is absent the classical bromohydrin  

 
Figure 2.12. MeO addition to the bromonium ion resulting in trans product. 
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reaction mechanism is followed and the initial bromonium ion is attacked by MeOH from the 

back side resulting in the trans addition product (Fig 2.12).    

 
Figure 2.13.  ORTEP representation of compound 71. 

The bromination of dihydropyridone 59 with 1 equivalent bromine in dry chloroform gave a high 

yield of 6-bromomethyl-3,4-dihydro-2-pyridone and after recrystallization from methanol 

deposited hexagonal crystals in 70% yield. The structure 72 was confirmed by X-ray diffraction 

analysis (Fig. 2.14). 

 

Figure 2.14. ORTEP representation of compound 72. 
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The 
1
H-NMR spectrum shows only a singlet for the CH2Br protons at δ=4.66 ppm indicating that 

the substituent at position 4 is indeed the main factor responsible for the non-equivalence of the 2 

protons, exerting steric hindrance through the 3-COOR and with additional hydrogen bonding 

augment the hinderance to free rotation about the 2-methyl bond.  

Bromination was also tried on N-benzyl subsitituted dihydro-2-pyridone to see if this has 

any effect on the bromine addition to the double bond and stereochemistry according to (Scheme 

2.26). 
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Scheme 2.26. Bromination of N-benzyl substituted dihydro-2-pyridone. 

 

In this case using either NBS in methanol or bromine in chloroform the only product isolated 

was the 6-bromomethyl dihydro-2-pyridone 73. This may indicate that in the N-unsubstituted 

case the electron pair on the N participates in the electrophilic addition of Br+ according to the 

mechanism (Scheme 2.27). 
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Scheme 2.27. Electron pair on N can participate in the electrophilic Br+ addition to the double 

bond forming the bromonium ion. 

 

Apparently in the N-benzyl substituted case this mechanism is hindered and only the normal 

allylic radical bromination takes place. 
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 Having optimized the bromination of the 6-methyl group by using bromine in 

chloroform, the following 6-bromomethyl substituted 3,4-dihydro-2-pyridones were synthesized 

in good yields (Fig. 2.15). 
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Figure 2.15. A series of 6-bromomethyl-3,4-dihydro-2(1H)-pyridones synthesized by the 

optimized bromination method. 

 

 

2.3. Synthesis of 3,4-dihydro-2(1H)-pyridone amphiphiles and their self-assembly 

 The 6-bromomethyl-3,4-dihydro-2(1H)-pyridones were reacted with pyridine in dry 

acetone undergoing a facile pyridine nucleophilic substitution of the bromine providing 3,4-

dihydro-2(1H)-pyridone-6-methylpyridinium bromides (Scheme 2.28). 
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Scheme 2.28. 6-Bromomethyl DHPOD reaction with pyridine, providing the pyridinium 

bromide salts. 

 

Using the above procedure the following DHPOD pyridinium bromide salts and amphiphiles 

were synthesized in reasonable yields, (Fig. 2.16). 
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Figure 2.16. DHPOD pyridinium bromide salts and amphiphiles synthesized from the 6-

bromomethyl DHPODs. 

 

The 4- unsubstituted DHPOD pyridinium bromide 83 after recrystallization yielded quality 

crystals which after single crystal X-ray diffraction confirmed the structure (Fig. 2.17). Also 

noteworthy is the interaction which can be seen between the bromine and NH of the 

dihydropyridone forming an NH∙∙∙Br hydrogen bond. 

 

Figure 2.17. ORTEP representation of DHPOD pyridinium bromide 83 where the bromine is 

participating in NH∙∙∙Br hydrogen bonding. 
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By substituting  N,N-dimethyldodecan-1-amine for the pyridine in the nucleophilic reaction with 

the 6-bromomethyl-3,4-dihydro-2(1H)-pyridones the following series of amphiphilic 3,4- 

dihydropyridone N,N-dimethyldodecan-1-aminium bromides were synthesized in good yields as 

white powders (Fig 2.18). 
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Figure 2.18. A series of cationic DHPOD amphiphiles synthesized by reaction of the respective 

DHPOD methylbromides with N,N-dimethyldodecylamine. 

 

Finally two 3,4-dihydropyridone-2-methylphosphonium bromide salts were synthesized by 

substituting the bromine of the 2-bromomethyl DHPODs with triphenylphosphine in acetonitrile 

and heating at 40°C for two hours when noticeable amounts of the triphenylphosphonium 

bromides started precipitating from the solution. After cooling the reaction mixture the 

compounds were isolated by filtration as yellowish powders in 82% yield (Scheme 2.29). 
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Scheme 2.29. Synthesis of DHPOD triphenylphosphonium bromide salts. 

Atomic force microscopy (AFM) and dynamic light scattering (DLS) were employed to observe 

the self-assembly of the cationic DHPOD amphiphiles (Fig. 2.19). The samples were prepared in 

a dilute (0.03%, w/v) aqueous dispersion by sonication using a probe type sonicator. Using a 

longer sonification time, it is possible to obtain nanoparticles (NPs) with a narrow size 

distribution, while after a short sonification time nanoparticles were quite different in their sizes  
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Figure 2.19. AFM images with corresponding height profiles of the self-assembled structures of 

representative cationic DHPOD amphiphiles adsorbed on a mica surface from aqueous solution 

and DLS data of the NPs in distilled water. 

 



71 

 

and shapes. For AFM observation freshly cleaved mica plates were dipped into the solution and 

kept for 30 s to allow the nanoaggregates to stick to the negatively charged surface. The mica 

samples were dried at room temperature and observed by AFM in tapping mode. AFM is a well 

established method for the characterization of nanoscale drug delivery systems (DDS) [189], 

enabling the direct observation of very small objects without the need of cumbersome and 

potentially contaminating sample preparation. Tapping mode AFM allows the investigation of 

soft samples with minimal sample alteration with a lateral resolution of several nanometers and 

height resolution of 0.1 nm [190]. 

The AFM and DLS data are summarized in (Table 2.2). 

Table 2.2. AFM data and the corresponding DLS data of hydrodynamic diameters (D[H]) with 

their % distribution of the self-assembled nanoaggregates in aqueous solutions. 

Compound                          AFM                          DLS   

 Height (nm) Diameter (nm) D[H] peak 1  

(nm) and % distr. 

D[H] peak 2 

(nm) and % distr. 

81 6 80 165  

82 8 85 250  

88 20 150 300  

89 30 200 40 (30%) 200 (70%) 

91 50 300 350  

92 6 100 80 (65%) 400 (35%) 

94 20 150 90 (65%) 395 (35%) 

 

The hydrodynamic diameters and their population percentages of the nanoparticles (NPs) 

suspended in water were determined by dynamic light scattering (DLS) and the values are 

presented in (Table 2.2). The advantages of DLS are rapidity of analysis, no requirement for 

calibration, and sensitivity [191]. The mean diameter represents the average diameter of all 

nanoaggregates in the sample and the most expected diameter depicts the diameter of the main 

population (or tip of the peak) of the nanoaggregate sample. The NPs with a single long chain 

fluorinated ester group (compound 82) had a larger hydrodynamic diameter or approximately 

250 nm and the nonfluorinated analog 81 had a smaller diameter of approximately 165 nm. Both 

of the compounds formed NPs in a relatively narrow size distribution range. For the 
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phosphonium amphiphile 94 which has a larger polar head group two populations of NPs were 

observed, one at about 90 nm and the other at 395 nm diameters in approximately 3:1 ratio. 

Since micelle diameters are usually not more than about 30 nm these NPs could not be micelles, 

they could be liposomes or some other nanoaggregates but, without freeze-fracture electron 

microscopy it cannot be proved conclusively. There is a diameter size discrepancy between the 

AFM and DLS methods as observed for example in compound 94. This could be due to the fact 

that DLS is performed on NPs in water which makes them fully hydrated, whereas, in AFM the 

samples are dried on a mica slide surface and are flattened which may influence the size and 

shape of NPs. The polydispersity of the sample for compound 94 could be explained by 

recognizing that DLS measures average size ranges whereas AFM visualizes only a small 

number of NPs. In general given the higher atomic size of fluorine than hydrogen, the reduced 

conformational freedom of the perfluorinated tails leads to bulky and stiff chains, and to 

aggregate structures with less curvature which give rise to a larger diameter NPs. Fluorinated 

amphiphiles have then the property that even single chain amphiphiles can form bilayer 

aggregates or vesicles, although this is usually unfavorable for single chain hydrocarbon ones 

[192]. 

 

2.4. Oxidation potential determination of DHP and DHPOD derivatives using CV 

 

The oxidation of 1,4-dihydropyridines and analogs to the corresponding pyridines is of 

interest because of its relevance to the biological NADH redox processes as well as to the 

metabolic studies pertaining to 1,4-DHPs [193,194]. The electrochemical oxidation of 1,4-DHPs 

has extensively been reported in different electrolytic media [195-206]. There are several in vitro 

findings that DHP calcium antagonists possess antioxidant properties, mainly during the 

development of atherosclerosis and some cardiovascular oxidative processes [207-213]. 

Furthermore, the Hantzsch 1,4-DHP is widely used as a safe, easy to handle and environmentally 

benign reagent for the reduction of organic functional groups [214], as antioxidant, 

antimutagenic, radical scavenger, and growth stimulator.  
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Figure 2.20. Cyclic voltammetry traces showing the oxidation potentials of representative 

DHP’s. 

 Due to the clean  2-methyl bromination of dihydropyridones with bromine in 

chloroform, consideration was given to the possibility of using this reaction to brominate the 2,6-

dimethyl groups in 1,4-DHP’s but since bromine can act as an oxidant,  Br2 + 2e
-
→ 2Br

-
 with a 

standard reduction potential of +1.09 volts it’s possible that instead of bromination an oxidation 

of the DHP to pyridine would take place instead. Thus cyclic voltametry measurements were 

performed to determine the oxidation potentials of representative DHP’s (Fig. 2.20). 

These cyclic voltammetry diagrams were obtained by B.Turovska, using a PARSTAT 2273 

apparatus at the Latvian Organic Synthesis Institute. The oxidation of 1,4-DHP’s with bromine 

would take place according to the following equation: 

N
H

R
2

R
4

R
3

R
5

R
1

N

R
2

R
4

R
3

R
5

R
1

+ 2e
- + 2H

+

Br2 + 2e
- 2Br

-

N
H

R
2

R
4

R
3

R
5

R
1

+ Br2

N

R
2

R
4

R
3

R
5

R
1

+ 2HBr

 



74 

 

Indeed the DHP with oxidation potential of -1.07 volts would be oxidized with bromine 

spontaneously since the above overall reaction potential is +0.02 volts, but as more fluorines are 

added in the esters the oxidation becomes more difficult or higher potential is needed for 

oxidation, nevertheless this reaction was not tried since the potentials are low enough to cause 

oxidation as a side product. The CV diagrams also show that the oxidation occurs through a one 

irreversible step. The overall oxidation mechanism of 1,4-DHPs is depicted in (Figure 2.21). The 

transfer of the first electron is followed by elimination of a proton from position 4 and after the 

second electron transfer the pyridinium cation is formed which upon elimination of another 

proton generates the pyridine in an overall ECEC (E-electron transfer; C-proton transfer) 

mechanism. 

 

Figure 2.21. The overall electrochemical oxidation mechanism of 1,4-DHP in aprotic media 

indicating the ECEC sequence [215]. 
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The oxidation is strongly pH dependent since if in the second step which is the rate determining 

step of the above reaction, there is a base present which could abstract the NH proton then the 

oxidation should proceed much more readily. (Figure 2.22) shows that the oxidation potentials of 

various DHP’s in basic solution are almost half compared to the oxidation potentials obtained in 

acid solution. The oxidation is also influenced by electron withdrawing groups which are 

attached to the DHP heterocycle rendering the removal of electrons (oxidation) more difficult. 

The opposite effect or easier oxidation is attained by attaching electron donating groups to the 

DHP-heterocycle. 

 

Figure 2.22. Chemical structures of 1,4-DHP’s with their corresponding peak potential values in 

acidic and basic media [215]. 

To obtain CV measurements for the 1,4-DHP dipyridinium dibromides it was necessary to 

convert them to the perchlorates (Scheme 2.30) since at 1.08 V the bromine was observed to 

oxidize. The 1,4-DHP pyridinium dibromide was dissolved in ethanol and concentrated 

perchloric acid was added drop by drop until no more precipitate of the diperchlorates formed. 

The salts were filtered and washed with diethyl ether and dried. The oxidation potentials of the 

1,4-DHP pyridinium diperchlorates are summarized in (Table 2.3). It can be seen that longer 

alkyl ester groups require slightly higher oxidation potentials as does the fluorine content in the 

ester groups but this is a very slight effect. The dipyridinium diperchlorates however, have a 

strong electron withdrawing effect on the DHP cycle raising the oxidation potential by about 0.5 

V. 
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Scheme 2.30. Transformation of the 1,4-DHP dipyridinium dibromides into diperchlorates. 

Table 2.3. Oxidation potentials of 1,4-DHP dipyridinium diperchlorates obtained by CV. 

Entry R1 R2 R3 E
ox

(V) 

1. C2H5 C2H5 H 1.57 
[32]

 

2. C12H25 C12H25 H 1.58 

3. C12H25 C4H8C8F17 H 1.70 

4. C4H8C8F17 C4H8C8F17 H 1.69 

5. C12H25 C12H25 CF3 1.63 

6. C12H24CF3 C12H24CF3 H 1.57 

 

Figure 2.23. ORTEP representation of the oxidation product of entry 1. [216]. 
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The first entry in the above table is from the published work of A. Plotniece et al. [216] where 

the electrochemical oxidation was done on a preparative scale and the product as a pyridine was 

confirmed by X-ray (Fig. 2.23). 

 In the 3,4-dihydropyridone series there is only one published report on their 

electrochemical oxidation at a rotating graphite electrode to obtain a quantitative characterization 

of the capacity of these compounds to undergo oxidation [217]. The DHPOD compounds can 

exist in two tautomeric forms- as derivatives of 2-oxo-1,2,3,4-tetrahydropyridine and 2-hydroxy-

1,4-dihydropyridine. The NMR spectra taken in anhydrous acetonitrile show that these 

compounds at the selected experimental conditions for electrochemical study are in the 

undissociated oxo form. The E1/2 value of the first, well-defined, wave was in the 0.9-1.5V range 

indicating that DHPOD’s are oxidized with considerably greater difficulty than the 3,5-

diethoxycarbonyl-1,4-dihydropyridines. The overall equation of the first stage of 

electrooxidation can be written as in (Scheme 2.31). 
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Scheme 2.31. 3,4-Dihydropyridone electrochemical oxidation in acetonitrile [217]. 

The electrochemical results indicate that the oxidation takes place monotypically by an ECEC 

mechanism but, they didn’t permit an unambiguous prediction of either the position of the first 

detachment of an electron or of the sequence of detachment of protons and electrons from the 

various positions of the ring DHPOD’s.  

 The oxidation potentials of DHPOD’s synthesized in this work were obtained by CV at a 

glassy carbon electrode in dry acetonitrile (Figure 2.24) in a single irreversible oxidation wave 

and the results are summarized in (Table 2.4). 
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Figure 2.24. 3,4-Dihidropyridone electrochemical oxidation on glassy carbon (GC) electrode in 

CH3CN/ 0.1 M NaClO4 
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Scheme 2.31. Electrochemical oxidation of substituted DHPODs in acetonitrile / 0.1M NaClO4. 

 

Table 2.4. Oxidation potentials of substituted DHPODs. 

Entry R
1
 R

2
 R

3 
E, V 

1. H H CH3 1.63 

2. CH2C6H5 H CH3 1.62 

3. H H C12H25 1.63 

4. H H C4H8C8F17 1.64 

5. H Ph CH3 1.65 

6. H Ph C4H8C8F17 1.64 
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As can be seen in the above table the oxidation potentials for the substituted DHPODs are not 

influenced by the length of the ester or if there is a phenyl group at position 4 or not. The 

potentials are however, about 0.5 V higher than for the DHP series and this gives a clear answer 

as to why the DHPODs can be brominated with elemental bromine without any oxidation of the 

ring taking place. Compound in entry 5 was oxidized electrolytically on a preparative scale and 

after 24 hours at a 2.2 V potential the 4-phenyl-2-pyridone (95) was obtained quantitatively. The 

acetonitrile was evaporated and the compound was recrystallized from EtOH giving X-ray 

quality crystals which after X-ray diffraction confirmed the structure of the oxidized DHPOD 

(Figure 2.25). 

         

Figure 2.25. ORTEP representation of compound 95 and crystals in EtOH. 

 

Compound 95 crystallized from ethanol in approximately 2-3mm diameter discs as the above 

photo indicates with a clear prismatic crystal in the center of the disc, these were taken and 

submitted for X-ray analysis. The X-ray analysis also indicated that the compound crystallizes as 

hydrogen bonded dimers with 1.810 Ǻ NH∙∙∙O bond length. A series of DHPOD pyridinium 

perchlorates were again prepared from the pyridinium bromides and their oxidation potentials are 

summarized in (Table 2.5). 
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Scheme 2.32. Electrochemical oxidation of substituted DHPOD pyridinium perchlorates in 

acetonitrile / 0.1M NaClO4. 

 

Table 2.5. Oxidation potentials of DHPOD pyridinium perchlorates. 

Entry R
1
 R

2
 R

3
 E, V 

1. H H CH3 2.10 

2. CH2C6H5 H CH3 2.35 

3. H H C12H25 2.27 

4. H H C4H8C8F17 2.22 

5. H Ph CH3 2.15 

6. H Ph C4H8C8F17 2.04 

 

In the DHPOD pyridinium pherchlorate series there is a 0.6 V jump in the oxidation potentials 

compared to the DHPODs of the 6-methyl series, this is due to the strong electron withdrawing 

effect of the pyridinium cation on the dihydropyridone ring. The oxidation potential is lowest in 

the 4- unsubstituted case (entry 1) and is increased as the length of the ester group increases or 

when a phenyl substituent at postion 4 is added. The highest oxidation potential is observed for 

N-benzyl substituted DHPOD (entry 2). Compound in entry 5 was oxidized electrolytically on a 

preparative scale and after 24 hours at a 2.2 V potential the 4-phenyl-2-pyridone pyridinium 

perchlorate (96) was obtained quantitatively as judged from the LC/MS chromatogram and after 

removal of solvent and recrystallization the structure was confirmed by NMR analysis. In 

summary the 1,4-DHP compounds in this work had oxidation potentials at 1.1-1.2 V and their 

pyridinium perchlorate salts at 1.6-1.7 V or 0.5 V higher due to their strong electron withdrawal 

from the DHP ring. The DHPOD series had oxidation potentials at 1.6 V and their pyridinium 

perchlorates at 2.0-2.4 V about 0.6 volts higher. The DHPODs oxidize at about 0.5 V higher than 
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the DHPs. The oxidation potentials also provide confirmation to why the DHP 2,6-methyl groups 

can’t be brominated by bromine (Vox 1.08) but, cause oxidation of the DHP to pyridine instead. 

The DHPOD with a substantially higher oxidation potential can be brominated with bromine 

without problems. The cationic DHP and especially DHPOD amphiphiles wouldn’t function as 

good antioxidants based on their oxidation potentials since good antioxidants such as ascorbic 

acid (Vox 0.42) and glutathione (Vox 0.33) have substantially lower oxidation potentials. 

However, eventhough the antioxidant ability of  antioxidants can be predicted quite accurately 

from the CV measurements,  properties beside oxidation potential must be considered when 

antioxidation and prooxidation activity are evaluated [218]. 

2.5 The 6-bromomethyl-3,4-dihydro-2(1H)-pyridones as versatile synthons 

 The bromine in the 6-bromomethyl-3,4-dihydro-2-pyridone systems reacts in 

nucleophilic reactions as normal allylic or benzylbromides and thus these compounds can be 

used as versatile synthons for elaboration of the 3,5-dihydropyridone heterocyle. As already 

mentioned in the previous section, the bromine can be displaced by an intramolecular acyl group 

and form dihydro-2-pyridone lactones spontaneously without isolation of the bromomethyl 

intermediate [128]. Thus refluxing methyl 4-phenyl-6-bromomethyl-3,4-dihydro-2-pyridone-5-

carboxylate in ethanol for several hours resulted in the lactonization to the fused 

dihydropyridone lactone (Scheme 2.33). 
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Scheme 2.33. Lactonization of  methyl 6-bromomethyl-3,4-dihydro-2-pyridone-5-carboxylate in 

refluxing ethanol [128]. 

 

The bromine was also substituted by azide by reacting the 6-bromomethyl DHPOD in DMSO 

with sodium azide overnight and after addition of water the DHPOD azide precipitated in 96% 

yield. The azide was reacted further with 2-ethynylpyridine according to the „click chemistry” 

protocol with Cu(OAc)2 and sodium ascorbate in acetonitrile to furnish the DHPOD triazole 99 



82 

 

(Scheme 2.34) in 94% yield. The pyridine group can be replaced by a wide variety of groups 

providing a large library of subsituted DHPOD triazoles. 
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Scheme 2.34. Synthesis of DHPOD azide which undergoes „click chemistry” with 2-

ethynypyridine to give the DHPOD pyridinyl triazole. 

 

"Click Chemistry" is a term that was introduced by K. B. Sharpless in 2001 to describe reactions 

that are high yielding, wide in scope, create only byproducts that can be removed without 

chromatography, are stereospecific, simple to perform, and can be conducted in easily removable 

or benign solvents. This concept was developed in parallel with the interest within the 

pharmaceutical, materials, and other industries for generating large libraries of compounds for 

screening in drug discovery research. The mechanism of the copper catalyzed azide alkyne 

cycloaddition (CuAAC) is depicted in (Fig. 2.26). 

 

Figure 2.26. Proposed mechanism for the CuAAC reaction [219]. 
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The active Cu(I) catalyst can be generated from Cu(I) salts or Cu(II) salts using sodium 

ascorbate as the reducing agent. Addition of a slight excess of sodium ascorbate prevents the 

formation of oxidative homocoupling products. Disproportionation of a Cu(II) salt in presence of 

a Cu wire can also be used to form active Cu(I). Coordination of Cu(I) to the alkyne is slightly 

endothermic in MeCN, but exothermic in water, which is in agreement with an observed rate 

acceleration in water. However, coordination of Cu to the acetylene does not accelerate a 1,3-

dipolar cycloaddition. Such a process has been calculated to be even less favorable than the 

uncatalyzed 1,3-dipolar cycloaddition. Instead, a copper acetylide forms, after which the azide 

displaces another ligand and binds to the copper. Then, an unusual six-membered copper(III) 

metallacycle is formed. The barrier for this process has been calculated to be considerably lower 

than the one for the uncatalyzed reaction. The calculated rate at room temperature is 1 s
-1

, which 

is quite reasonable. Ring contraction to a triazolyl-copper derivative is followed by protonolysis 

that delivers the triazole product and closes the catalytic cycle [219]. 

Finally by using the DHPOD 6-methyltriphenylphosphonium bromide in a Wittig 

reaction with 2-pyridinecarboxaldehyde in THF and tBuOK as base (Scheme 2.35) the cis 

addition product 100 was obtained. 
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Scheme 2.35. Wittig reaction with DHPOD 6-methyltriphenylphosphonium bromide and 2-

pyridinecarboxaldehyde using KOtBu as base to generate the cis addition product 100. 

The product was isolated using preparative HPLC and after solvent removal was recrystallized 

from ethanol in light green needles which were submitted for single crystal X-ray diffraction 

analysis providing the structure confirmation (Fig. 2.27). 
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Figure 2.27. ORTEP representation of compound 100 having an ultra short NH∙∙∙N hydrogen 

bond. 

The structure contains an ultra short intramolecular NH∙∙∙N hydrogen bond (forming a seven 

membered ring) measuring 1.765 Ǻ which is also reflected in the 
1
H-NMR spectra where the NH 

proton signal is shifted downfield from about 8 ppm in the parent DHPOD to almost 14 ppm in 

the product.  A recent example of a compound with ultra short NH∙∙∙N bond was published by M.  

 

Scheme 2.36. Chemical structures of substituted 2,3-dipyrrol-2-ylquinoxalines (DPQ) and their 

deprotonated mono- and dianions. 1: 2,3-dipyrrol-2-ylquinoxaline, 2: 6-nitro-2,3-dipyrrol-2- 

ylquinoxaline, 3: 6,7-dinitro-2,3-dipyrrol-2-ylquinoxaline. The monoanions are subject to a fast 

proton tautomerism between two forms labeled as a and b. AH = trifluoroacetic acid [220]. 
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Pietrzak et al. [220] the bond was generated by deprotonation of one hydrogen from a dipyrrol 

(Scheme 2.36). DPQs have been synthesized and studied as colorimetric anion receptors for 

charge-dense species, such as fluoride [221]. However, their unusual geometry makes it likely 

that their monodeprotonated forms would have unusually short NHN hydrogen bonds and thus 

unusually large 
15

N–
15

N coupling constants (more than 16 Hz). The equilibrium hydrogen-bond 

geometries of 1−, 2−, and 3− were calculated using DFT at the B3PW91/6–31 +G** level and 

determined to be between 1.49-1.52 Ǻ. 

2.6 Vilsmeier-Haack chloroformylation of DHPODand subsequent reactions 

The Vilsmeier–Haack reagent (halomethyleneiminium salt) formed from the interaction 

of dialkyl formamides such as DMF with POCl3 has attracted the attention of synthetic organic 

chemists since its discovery in 1927.[222] It is one of the most commonly used reagents for the 

introduction of an aldehydic (CHO) group into aromatic and heteroaromatic compounds. [223] 

Acetanilides, particularly deactivated acetanilides, undergo Vilsmeier–Haack cyclisation in 

micellar media to afford the corresponding 2-chloro-3-formyl quinoline derivatives in good 

yields either by traditional methods [224-233] or by using microwaves [234] or ultrasonic 

irradiation [235]. In the present context the Vilsmeier-Haack reaction is a powerful tool for the 

rapid introduction of molecular diversity in the DHP heterocycle which is of relevance to 

medicinal and synthetic chemists alike. Some 6-chloro-5-formyl-1,4-dihydropyridine derivatives 

have been prepared by reaction of alkyl 2-methyl 6-oxo-1,4,5,6-tetrahydropyridine-3-

carboxylates with Vilsmeier-Haack reagent (POCl3, DMF) [236-238]; however, these reactions 

require long times (18 h) to obtain moderate or good yields.  
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Scheme 2.37. Vilsmeier-Haack chloroformylation of DHPOD derivatives. 
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Recent reports on the ultrasound [129] and microwave-assisted synthesis [239] of these 

derivatives have found considerable improvements over conventional Vilsmeier-Haack 

chloroformylation. Thus employing the general Vilsmeier-Haack reaction (Scheme 2.37) the 6-

chloro-5-formyl DHP derivatives were obtained in good yield. The X-ray structure analysis of 

compound 102 revealed that this compound crystallizes as a hydrogen bonded dimer with NH of 

the DHP ring extending to the ester ether oxygen, thus making a sandwich type of structure with 

the NH∙∙∙O bond distance being 2.029 Ǻ (Fig. 2.28).  
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Figure 2.28. The sandwich type of NH∙∙∙O hydrogen bonded dimer of compound 102 obtained 

from X-ray data. 

 

These 6-chloro-5-formyl DHP derivatives can undergo many of the reactions which are 

characteristic of aromatic aldehydes as depicted for compound 101 in (Scheme 2.38). The oxime 

was easily prepared by refluxing compound 101 in ethanol with hydroxylamine hydrochloride 

and pyridine as base for 30 minutes. After cooling the reaction mixture the oxime 103 

precipitated as crystals which were submitted for X-ray analysis providing the ORTEP 

representation (Figure 2.29). Also compound 101 undergoes a fascile NaBH4 reduction in 

methanol of the aldehyde group to give the DHP-5-methanol 104 in high yield. Since the  
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Scheme 2.38. Some possible reaction which the 6-chloro-5-formyl-DHPs can undergo. 

 
Figure 2.29. ORTEP representation of compound 103. 
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chlorine at position 6 can be displaced by nucleophiles this provides a route to further 

transformations into other heterocyclic-fused 1,4-DHPs. Thus in general when the 6-chloro-5-  

formyl-DHPs are refluxed in ethanol for 6 hours with equimolar amounts of hydrazine hydrate 

the fused DHP pyrazolo compounds are obtained in about 60% yield [178]. This reaction was 

tried with compound 101 and the desired compound 105 was obtained in 61% yield as a pale  
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Scheme 2.39. Erlenmeyer-Plöchl reaction with compound 101. 
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Figure 2.30. ORTEP representation of compound 108. 
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yellow solid. As indicated in the scheme 6-chloro-5-formyl 1,4-DHPs can be used to introduce 

an amino acid in the 3 position using the Strecker reaction, hydantoin reaction and Erlenmeyer-

Plöchl reaction. The latter was tried according to (Scheme 2.39). However, after growing crystals 

of the product from the reaction sequence the X-ray diffraction analysis indicated the structure as 

compound 108 (Figure 2.30) and not the expected compound 107. This could result from the 

reaction of the aldehyde 101, with acetic andhydride and hydrolysis of the chlorine to give the 

pyridone. 

2.7. The unexpected 4H-pyran synthesis under solvent-free and grinding conditions 

 Finally in the continued efforts to provide molecular diversity in the 1,4-DHP 

heterocycle, an attempt was made to introduce an amino group in postion 2. A survey of recent 

literature revealed an attractive environmentally friendly synthesis of ethyl 6-amino-5-cyano-4-

aryl-1,4-dihydropyridine-3-carboxylate derivatives using a multicomponent room temperature 

grinding procedure of ethyl acetoacetate, [(2-aryl)methylene]malononitriles, and ammonium 

acetate (Scheme 2.40) [241]. 

CN
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Scheme 2.40. Reported synthesis of ethyl 6-amino-5-cyano-4-aryl-1,4-dihydropyridine-3-

carboxylates under grinding and solvent-free conditions [241]. 

 

On repeating the above reported multicomponent grinding procedure with thiophene-2-

carbaldehyde, malononitrile, and ammonium acetate to give the thiophenemethylene-

malononitrile 109 and subsequent addition of methyl acetoacetate  to generate the expected 

methyl 6-amino-5-cyano-2-methyl-4-(thiophen-2-yl)-1,4-dihydropyridine-3-carboxylate, it was 

surprising that the X-ray single crystal structure analysis of the recrystallized crystals (Fig. 2.31) 

proved that the compound was not a 1,4-DHP derivative, but a 4H-pyran derivative or methyl 6-

amino-5-cyano-2-methyl-4-(thiophen-2-yl)-4H-pyran-3-carboxylate (110) (Scheme 2.41).  
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Scheme 2.41. Synthesis of methyl 6-amino-5-cyano-2-methyl-4-(thiophen-2-yl)-4H-pyran-3-

carboxylate (110). 

 

 
Figure 2.31. ORTEP representation of compound 110. 

 

The exact procedure from the publication was then carefully repeated with 3-nitrobenzaldehyde, 

malononitrile, and ammonium acetate to give the m-nitrophenylmethylenemalononitrile 111 with 

subsequent addition of ethyl acetoacetate and again the product which had the identical melting 

point of 187-188 °C and 
1
H-NMR spectrum to the published compound when subjected to an X-

ray single crystal structure analysis proved to be a 4H-pyran derivative 112 (Fig. 2.32). 

Furthermore the literature melting points for 1,4-DHP derivatives differ significantly from the 

4H-pyran derivatives, in particular for the above compound by more than 30°C. 
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Figure 2.32. ORTEP representation of compound 112. 

 

In both structures the geometrical parameters of pyran systems are usual for 4H-pyran 

heterocycles with the envelope conformation. The deviations of C(4) atom from the O(1), C(2), 

C(3), C(5), C(6) plane are equal 0.271(4) Å for methyl 6-amino-5-cyano-2-methyl-4-(thiophen-

2-yl)-4H-pyran-3-carboxylate (110) and 0.359(3) Å for 112. Both crystal structures are 

characterized by intermolecular hydrogen bonds of NH∙∙∙O and NH∙∙∙N types. The hydrogen 

bond lengths in 110 are 2.904(4) Å (N(7)–H(7A)∙∙∙O(16) bond) and 3.051(4) Å (N(7)–

H(7B)∙∙∙N(9) bond). In 112 these bonds are stronger and the lengths are 2.820(3) Å (N(7)–

H(7A)∙∙∙O(20) bond) and 2.987(3) Å (N(7)–H(7B)∙∙∙N(9) bond). The 4H-pyrans exhibit an 

extensive range of biological and pharmacological activities, such as spasmolytic, diuretic, anti-

coagulant, anti-cancer, and anti-anaphylactic properties. They may be useful in treatment of 

neurodegenerative disorders, including Alzheimer’s disease, amyotrophic lateral sclerosis, 

Huntington’s disease, and Parkinson’s disease.[242] Polyfunctionalized 4H-pyrans also 

constitute a structural unit of many natural products,[243,244] having antiallergic,[245] 

antitumor,[246] and antibacterial [247-249]
 
activities. 4H-pyran derivatives are also potential 

calcium channel antagonists which are structurally similar to the biologically active 1,4-
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dihydropyridines[250]. Recent publications which report on the multicomponent synthesis of 

4H-pyrans, use an aryl aldehyde, malononitrile, ethyl acetoacetate, and magnesium oxide as a 

basic catalyst, with grinding without solvent [249], another using silica nanoparticles as a 

catalyst and ethanol as solvent [251], and Cu(II) oxymetasilicate as a reusable catalyst in 

methanol as solvent [252].
 
In these reactions the catalyst had to be separated from the reaction 

medium. In the present work ammonium acetate was used as catalyst and after completion of the 

reaction was simply washed away with ethanol. The residual product was recrystallized to give 

high yields of the 4H-pyran derivatives. 

Since the initial interest was to synthesize 1,4-DHP derivatives a reaction was tried where 

the ethyl acetoacetate in (Scheme 2.40) was substituted with ethyl 3-aminobut-2-enoate. 

Analysis of the product by NMR revealed that the compound formed was an intermediate (113), 

whith an acyclic structure, and an intramolecular NH∙∙∙O hydrogen bond (Scheme 2.42). 
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Scheme 2.42. Formation of intermediate 113 with an internal NH∙∙∙O bond. 

 

The structure of intermediate 113 was further proved by single crystal X-ray diffraction (Fig. 

2.33). The generation of this intermediate with a strong internal NH∙∙∙O bond with rOH =1.903 Ǻ 

in a six-membered ring configuration may explain why no further reaction takes place at room 

temperature to produce the dihydropyridine derivative. For the intermediate to react further the 

amino group must turn about the double bond and face the cyano group, which is possible 

through tautomerization, but apparently for this molecule the activation energy is rather high. 

Even when intermediate 113 was boiled in ethanol for 6 hours with DMAP as catalyst the 

starting material only slowly reacted to form a mixture of products which were not seprated or 

further analysed. From this reaction it is also apparent that ethyl acetatoacetate is deprotonated 

by the ammonium acetate catalyst and reacts in a Michael reaction first with compound 111 and 

then cyclizes to the 4H-pyran before it could form the enamine (Scheme 2.43).  
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Scheme 2.43. A plausible mechanism for 2-amino-4H-pyran synthesis indicating that during the 

grinding procedure the acetoacetate (not enamine) reacts with the phenylmethylenemalononitrile 

which then efficiently cyclizes to the 4H-pyran.   

 

Figure 2.33 ORTEP representation on the intermediate 113. 

 

Intramolecular hydrogen bonding interactions are essential in biochemical reactions and 

enzymatic processes [253,254]. Malonaldehyde (MA) has been studied extensively not only 

because of the system’s biological connections, but additionally because it is the prototypical 
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model that shows a short intramolecular hydrogen bonding for which proton transfer occurs 

between two oxygen atoms. In this study, a series of trends were examined to explore the effect 

of various substituents on the intramolecular hydrogen bonds. When placing substituents on the 

carbons, it was found that bulky electron donators on C1 and C3 and strong electron-

withdrawing groups bonded to the unique carbon C2 created the strongest intramolecular 

hydrogen bonds. Thus the shortest hydrogen bond was found for NMe2 groups at C1 and C3 and 

the strong electron-withdrawing group BH2 on C2 with an O∙∙∙O distance of 2.394 Ǻ (Fig. 2.34) 

[255]. 

 
Figure 2.34. Malonaldehyde substituted with electron-donating NMe2 on C1 and C3 and 

electron-withdrawing BH2 on C2 resulting in a very short intramolecular hydron bond [255]. 

 

When the possibility of an internal hydrogen bonding is eliminated, as in the case of reacting 

compound 111 with dimedone in refluxing glacial acetic acid 5 hours,[256] the dihydropyridine 

structure 114 is formed readily in 70% yield (Scheme 2.44). 

 

NO2

CN

NC +

O O
NH4OAc

AcOH to
NC

N

O

NH2

NO2

N
H

NH2

O

NC

NO2

111
114  

Scheme 2.44. Arylidenemalononitrile reaction with dimedone and ammonium acetate in 

refluxing glacial acetic acid to form a 1,4-dihydropyridine derivative 114 [256]. 

 

This reaction was repeated except instead of refluxing in glacial acetic acid the reaction was 

carried out by grinding with mortar and pestle, the product was washed with ethanol and 
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recrystallized. When the crystals were analysed by X-ray diffraction the product again turned out 

to be a 4H-pyran derivative with dimedone 115 (Fig. 3.35) instead of the expected 1,4-DHP 

derivative. The X-ray structure reveals a molecule of ethanol which has crystallized along with 

the pyran and forms an OH∙∙∙O hydrogen bond with the keto group rHO=1.860 Ǻ. This same 

reaction was carried out using microwaves in solvent-free conditions and in this case too only the 

4H-pyran was isolated eventhough this exact reaction has been published by Shujiang Tu et al. 

[257] indicating that a 1,4-DHP derivative was obtained. These reactions warrant a closer 

reexamination. Thus it is apparent that the hydrogen bonding interaction is not the only 

 

 
Figure 2.35. ORTEP representation of compound 115. 

 

determining factor in this reaction which leads to the 4H-pyran derivatives instead of to the 

desired 1,4-DHP derivatives. 

2.8 Biological activities 

 The first criterion for any drug, drug delivery vehicle, or gene trasfection agent to pass 

into the next phase of testing is their cytotoxicity. Thus the cytotoxicity data for various DHP 

amphiphiles and DHPOD amphiles on normal (3T3) cells, as well as their cytotoxicity on two 

cancer cell lines is provided in (Table 2.6). 
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Table 2.6. Cytotoxicity data obtained on HT-1080, MG-22A and 3T3 culture cell lines 
 

 

No. 

 

 

Formula 

 

HT-1080 MG-22A 3T3 

IC50 

CV 

IC50 

MTT 

NO 

100% 

CV 

IC50 

CV 

IC50 

MTT 

NO 

100% 

CV 

IC50 

NR 

LD50 

mg/kg 

 

 

1 
N
H N

+
N

+

O(CH2)11(CF2)7CF3

OO

F3C(F2C)7(H2C)11O

Br
-

Br
-

 

 

 

* 

 

 

* 

 

 

8 

 

 

* 

 

 

* 

 

 

6 

 

 

* 

 

 

>2000 

 

 

2 
N
H N

+
N

+

O(CH2)4(CF2)7CF3

OO

F3C(F2C)7(H2C)4O

Br
-

Br
-

 

 

 

100 

 

 

100 

 

 

4 

 

 

* 

 

 

* 

 

 

3 

 

 

* 

 

 

>2000 

 

 

3 
N
H N

+
N

+

O(CH2)11CH3

OO

F3C(F2C)7(H2C)4O

Br
-

Br
-

 

 

 

50 

 

 

47 

 

 

9 

 

 

47 

 

 

75 

 

 

6 

 

 

477 

 

 

3448 

 

 

4 

N
H N

+
N

+

O(CH2)12CF3

OO

F3C(H2C)12O

ClO4

-
ClO4

-

 

 

 

18 

 

 

10 

 

 

75 

 

 

10 

 

 

19 

 

 

50 

 

 

16 

 

 

771 

 

 

 

5 N
H N

+
N

+

O(CH2)11CH3

OO

H3C(H2C)11O

CF3 CF3

Br
-

Br
-

 

 

 

 

2 

 

 

 

4 

 

 

 

18 

 

 

 

49 

 

 

 

19 

 

 

 

11 

 

 

 

12 

 

 

 

619 

 

 

6 

N
H

Cl

O

O

O

O

OCHF2

 

 

 

* 

 

 

100 

 

 

5 

 

 

5 

 

 

56 

 

 

61 

 

 

300 

 

 

1547 

 

 

 

7 N
H

O

O

F2HCO

O

N
+

Br
-

 

 

 

 

* 

 

 

 

* 

 

 

 

2 

 

 

 

>100 

 

 

 

* 

 

 

 

4 

 

 

 

1132 

 

 

 

>2000 

 

 

8 Br
-

N

O

O

O

N
+

 

 

 

* 

 

 

* 

 

 

3 

 

 

* 

 

 

* 

 

 

3 

 

 

972 

 

 

>2000 

 

 

9 

N
H

O

O(CH2)4(CF2)7CF3

O

P
+

PhPh

Ph
Br

-

 

 

 

10 

 

 

9 

 

 

350 

 

 

30 

 

 

39 

 

 

55 

 

 

127 

 

 

1779 
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Continuation of Table 2.6. 

 

 

No. 

 

 

Formula 

 

HT-1080 MG-22A 3T3 

IC50 

CV 

IC50 

MTT 

NO 

100% 

CV 

IC50 

CV 

IC50 

MTT 

NO 

100% 

CV 

IC50 

NR 

LD50 

mg/kg 

 

 

 

10 N
H

O

O(CH2)4(CF2)7CF3

O

N
+

Br
-

 

 

 

 

3 

 

 

 

3 

 

 

 

33 

 

 

 

3 

 

 

 

3 

 

 

 

100 

 

 

 

15 

 

 

 

604 

 

 

 

11 N
H

O

O(CH2)4(CF2)7CF3

O

N
+

ClO4

-

 

 

 

 

3 

 

 

 

3 

 

 

 

100 

 

 

 

2 

 

 

 

3 

 

 

 

100 

 

 

 

15 

 

 

 

618 

 

 

12 
N
H

O

O

O

N
+

CH3

CH3

Br
-

 

 

 

2 

 

 

1 

 

 

100 

 

 

2 

 

 

2 

 

 

40 

 

 

4 

 

 

269 

 

 

13 

N
H

O

O

O

N
+

CH3

CH3

Br
-

 

 

 

2 

 

 

2 

 

 

300 

 

 

3 

 

 

<1 

 

 

150 

 

 

6 

 

 

346 

 

 

14 
N
H

O

O

O

N
+

CH3

CH3

F

F

F
F

F

F
F

F
F

F
F

F
F

F
F

F
F

Br
-

 

 

 

3 

 

 

30 

 

 

200 

 

 

26 

 

 

30 

 

 

100 

 

 

27 

 

 

898 

 

15 

 N
H

O

O

O

N
+

CH3

CH3

Br
-

 

 

2 

 

 

1 

 

 

100 

 

18 

 

16 

 

67 

 

63 

 

831 

 

16 
N
H

O

O

O

N
+

CH3

CH3

Br
-

 

 

2 

 

3 

 

150 

 

3 

 

1 

 

200 

 

7 

 

369 

 

17 
N
H

O

O

O

N
+

CH3

CH3

F

F

F
F

F

F
F

F
F

F
F

F
F

F
F

F
F

Br
-

 

 

3 

 

2 

 

100 

 

4 

 

 

<1 

 

100 

 

11 

 

553 

 

The cytotoxicity and anticancer activity of 17 compounds was determined at the OSI department 

of medicinal chemistry. The anticancer activity was tested on HT-1080 (human lung 

fibrosarcoma) and MG-22A (mouse hepatome) cell lines and the normal NIH 3T3 (mouse 

embryonic fibroblast) cell line. IC50 is the compound concentration (µg/ml), at which 50% of the 

cells die. CV or crystal violet dye stains lipids in live cell membranes and thus is used to 
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determine the number of live cells based on the concentration of the dye which remains after 

staining. MTT is a standard colorimetric assay used to measure cellular proliferation. Yellow 

MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide is reduced to purple 

formazan in the mitochondria of living cells. 

N

N

N

N
+

N

S
Br

-

mitochondrial
reductase NH

N

N
N

N

S

yellow purple  

 This reduction takes place only when mitochondrial reductase enzymes are active, and therefore 

conversion is directly related to the number of viable cells which can be quantified by the 

absorbance of the solution between (λ=500 to 600 nm) using a spectrophotometer. NO2 levels in 

the cell cultures were determined by the Greiss method.  

 

Nitrite is detected and analyzed by formation of a red pink color upon treatment of a NO2
-
 

containing sample with sulphanilic acid the nitrites form a diazonium salt and when the azo dye 

(α-napthylamine) is added a pink color develops. LD50 is determined using 3T3 cell culture 

based on the accepted Committee on the Validation of Alternative Methods (ICCVAM) protocol. 

From the (Table 2.6) it is evident that the perfluorinated DHP amphiphiles (entries 1-3) are 

nontoxic and as the fluorine content in the esters is reduced the toxicity increases substantially 

(entries 4 and 5) also when the long ester groups are replaced with short ester groups like methyl 

for example, the cytotoxicity again is reduced (entries 7 and 8). The DHPOD series amphiphiles 

with a pyridinium polar head group are more toxic to normal cells than the DHP amphiphiles. 

The DHPOD amphiphile with a triphenylphosphonium polar head group (entry 9) is about 3 

times less toxic than the analogous DHPOD with a pyridinium head group (entry 10). Some of 
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the DHPOD series cationic amphiphiles show a marked cytotoxicity towards cancer cells (entries 

10-13, 15-17) this anti-cancer activity should be further explored which may lead to novel anti-

cancer delivery or potentiation systems. A preliminary potentiation test with the fluorous DHP 

amphiphile (entry 2) and anti-cancer drug 5-FU indicated a synergistic effect on the MDA-MB-

435 (human breast cancer) cell lines. 

 

Figure 2.36. Gene transfection efficiency represented by the expressed green fluorescence gene 

at 80%, >50%, and no activity levels. 

Gene transfection studies revealed that the fluorous DHP amphiphile entry (2) and fluorous 

DHPOD amphiphile (entry 10) had minimal transfection efficiencies but, the DHPOD 

amphiphiles (entries 13, 14, 16, 17) had greater than 50% gene transfection efficiencies (Fig 

2.36). 

2.9. 
19

F-MRI of Fluorinated Sucrose Octaoleate-F104 

 It is known [258] that the human lipase enzyme cannot metabolize sucrose polyesters in 

which more than five of the eight OH groups have been esterified with long-chain fatty acids. 

Indeed, the commercial non-caloric fat substitute OLESTRA is a mixture of hexa-, hepta- and 

octaesters of sucrose with a variety of unsaturated and saturated fatty acids [259]. Although no in 

vivo experiments have been done to prove the point, it is very likely that the corresponding 

fluorinated fatty acid esters will also pass unchanged through the human gastrointestinal tract. 

Hence these materials may have application in biocompatible delivery systems for magnetic 

resonance imaging (MRI) of gastrointestinal disorders. 

We have synthesized perfluorinated oleic acid analogs [260,261] and utilized them to 

construct perfluorinated sucrose octaoleate-F104 [262], (Scheme 2.45), and used it in an 

emulsion containing egg yolk phospholipid (EYP) to encapsulate hyperpolarized xenon gas. In 

this work, we explored the possible use of this system in vitro as part of an eventual 

biocompatible in vivo delivery systems for hyperpolarized xenon in functional 129Xe MRI 

[263,264]. 
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Scheme 2.45. Synthesis of sucrose octaoleate-F104. 

The success of hyperpolarized xenon imaging will depend ultimately on the rate of the xenon 

depolarization, hence long 129Xe spin lattice relaxation times (T1) are of critical importance. 

The observed T1 value in above-mentioned EYP emulsion was 15 s [262], which would appear 

to present a substantial impediment for the eventual use of such a method for MRI applications. 

However, the high fluorine content of sucrose octaoleate-F104 and its likely physiological 

inertness make it an attractive candidate for use as a 
19

F imaging agent, provided that a 

biocompatible delivery system can be devised. 
19

F MRI has been reported previously, in 

particular the use of perfluorononane as a contrast agent for gastrointestinal imaging has been 

demonstrated [265]. There is, nevertheless, merit in examining other inert fluorinated imaging 

agents, since image resolution and sensitivity will depend on the agent employed. A number of 

vesicles of fat-like molecules have been approved for consumption, namely Intralipid 

(Pharmacia) in which aqueous suspensions of lipid vesicles of approximately 0.1 mm in diameter 

can be tolerated by humans and are used clinically as nutrient supplements. 

We have prepared aqueous suspensions of lipid vesicles containing sucrose octaoleate-

F104 and employed these vesicles to obtain high quality 
19

F magnetic resonance images in vitro 

in time frames of the order of a few seconds. (Fig. 2.37) shows a typical image obtained from 

four scans using the spin–echo method with an echo delay of 6 ms and a repetition time of 1.2 s. 

116 

117 
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The internal diameter of the NMR tube containing the vesicles and the inner glass capillary can 

be estimated from the dimension bar on the right hand side of the image. With such an intense  

 

Figure 2.37. 
19

F NMR image of vesicles of sucrose octaoleate-F104, obtained from four scans 

using the spin–echo technique with echo delay of 6 ms and repetition time of 1.2 s. The internal 

diameter of the 5 mm NMR tube and the 1 mm capillary tube can be estimated from the 

dimension bar on the right hand side of the image. 

 

image and very high planar resolution, it should be possible to employ much smaller 

concentrations of the imaging agent when working in vivo [266]. 
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3. CONCLUSIONS 

1. In the bromination of 4-aryl-6-methyl-3,4-dihydropyridones with NBS in dry methanol the 

bromine adds across the double bond or to carbon 5 and MeO adds to carbon 6 in a cis geometry. 

Furthermore, due to steric effects the bromine adds to the opposite face with respect to the aryl 

group, as has been proved by single crystal X-ray diffraction analysis. 

2. In the bromination of 4 unsubstituted 6-methyl-3,4-dihydropyridones with NBS in dry 

methanol the bromine adds to carbon 5 and MeO adds to carbon 6 in a trans fashion (proved by 

X-ray diffraction) just like in the classical bromohydrin reaction which proceeds through a 

bromonium ion intermediate. 

3. Bromination of N-benzyl-6-methyl-3,4-dihydropyridone with NBS in dry methanol the 

bromine adds to the 6-methyl group, giving the 6-bromomethyl DHPOD exclusively. 

4. Optimized bromination of the three different types of DHPODs listed above, with bromine in 

dry chloroform solution give high yields of 6-bromomethyl DHPODs. 

5. The standard reduction potential of bromine is +1.09 V and the oxidation potentials of various 

1,4-DHP derivatives determined by cyclic voltammetry are in the -1.07 V to -1.15 V range and 

for this reason they would oxidize to the pyridines if bromine is used as brominating agent. 

6. The oxidation potentials of 3,4-dihydropyridones are -1.63 V to -1.65 V and thus they can be 

brominated with bromine without any oxidation to the pyridones taking place. 

7. The 1,4-DHP bispyridinium diperchlorates and DHPOD pyridinium perchlorates being 

positively charged have oxidation potentials still higher or at -1.57 V to -1.70 V and -2.04 V to -

2.35 V respectively. 

8. X-ray diffraction has provided data on the DHPOD hydrogen bonding with 4-phenyl-3,4-

dihydropyridones crystallizing as dimers with NH∙∙∙O distance about 1.893 Ǻ and the oxidized 4-

phenyl-pyridones with a smaller NH∙∙∙O distance of 1.810 Ǻ. 

9. An ultra short NH∙∙∙N hydrogen bond was observed in the X-ray structure of a compound 

which was obtained through a Wittig reaction with a DHPOD triphenylphosphine derivative and 

a pyridine-2-carboxaldehyde with a bond distance of 1.765 Ǻ and a large 
1
H-NMR downfield 

shift from 8 ppm in the parent DHPOD to 14 ppm in the product. 
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10. The DHPOD heterocycle was elaborated through the 6-methyl group by a Wittig reaction 

and through copper catalyzed “Click-chemistry” providing a means to large libraries of original 

DHPODs with a double bond or triazole linkage respectively.  

11. A recently published work (2011) on the room temperature synthesis of 2-amino-DHP 

derivatives was proved wrong by providing unequivocal X-ray diffraction data establishing that 

in fact 4H-pyrans had been synthesized.  

12. A reaction intermediate with an internal hydrogen bond of the above reaction was isolated 

which couldn’t be cyclized to the DHP heterocycle in room temperature conditions, providing 

evidence for the reaction mechanism i.e., the acetoacetate (not the enamine) reacts with 

arylmethylenemalononitrile and cyclizes to the 4H-pyrans. 

13. A series of novel 1,4-DHP based fluorous cationic amphiphiles were synthesized, some of 

which are non-toxic i.e., (LD50 > 2000 mg/kg) however, their gene transfection efficiency is 

minimal. 

14. A series of novel 3,4-DHPOD based fluours cationic amphiphiles were synthesized, some of 

which exhibited >50% gene transfection efficiency at the same time some of these amphiphiles 

proved highly cytotoxic to cancer cell lines while being only marginally cytotoxic to normal 

cells.  

15. These fluorous cationic amphiphiles have the added advantage that their movement through 

an organim can be tracked by the non-invasive 
19

F-MRI technology. A high resolution 
19

F-MR 

image of a capillary tube was obtained in sucrose octaoleate-F104 emulsion. 
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4. EXPERIMENTAL 

4.1. General 

 

All reagents were purchased from Aldrich, Acros, Fluka or Merck and used without further 

purification. TLC was performed on 20 cm _ 20 cm Silica gel TLC-PET F254 foils (Fluka). The 

onedimensional 1H (400 MHz), 19F (376.2 MHz), 31P (161.86 MHz) and 13C (100.61 MHz) 

and two dimensional 1H–1H COSY, 19F–19F COSY, 13C–1H HMBC, 13C–1H HSQC NMR 

spectra of compounds were recorded on a Varian-Mercury BB 400 MHz. The 1H–13C-HMBC 

spectra were recorded with the evolution time of 62.5 s delay for the generation of long-range 

correlations. For all two dimensional 13C–1H HMBC, 13C–1H HSQC spectra 4096 _ 1024 data 

matrix was used, which ensured t2max = 100 ms for 1H and t2max = 50 ms for 13C along the F1 

and F2 axes, correspondingly. In order to improve the signal-noise ratio, the data matrix before 

Fourier transformation was zero-filled twice and multiplied with a cosine function. The chemical 

shifts of the hydrogen and carbon atoms are presented in parts per million and referred to the 

residual signals of the CDCl3 solvent 7.25 (1H) and 77.0 ppm (13C) ppm respectively. The 

chemical shifts of fluorine and phosphorus atoms were referred to internal software standards 

CFCl3 and H3PO4 correspondingly. Mass spectral data were determined on an Acquity UPLC 

system (Waters) connected to a Q-TOF micro hybrid quadrupole time of flight mass 

spectrometer (Micromass) operating in the ESI positive or negative ion mode on an Acquity 

UPLC BEH C18 column (1.7 mm, 2.1 mm _ 50 mm) using a gradient elution with 

acetonitrile/phosphate buffer (pH 2.2; 0.05 M) in water (10:90 by volume) at a flow rate of 

1mL/min. Peak areas were determined electronically with a DP-800 (GBC Scientific 

Equipment). Melting points were determined on an OptiMelt (SRS Stanford Research Systems). 

The nanoaggregates were prepared by dispersing the compounds in water using a Cole Parmer 

probe type ultrasonic processor CPX 130W, U.S.A. and observed with MFP-3DBIOTM atomic 

force microscope in dynamic mode using Olympus AC240TM tips. The characteristics of the 

formed nanoaggregates were determined by the Dynamic Light Scattering technique (DLS). 

For DLS measurements, we employed a Zetasizer Nano instrument. Nano–Nano S90: size range 

1 nm–3 mm. Laser 633 nm and software of Malvern Instruments Ltd. 

OH (CF2)3CF3

I

 

12,12,13,13,14,14,15,15,15-Nonafluoro-10-iodopentadecan-1-ol (1) 

To a solution of 10-undecen-1-ol 3.43 g (0.02 mol) in CH3CN (20 mL) and deionized H2O (20 

mL) was added perfluorbutyl iodide , 8.24 g (0.024 mol)  NaHCO3 1.72 g (0.02 mol) and 85% 

Na2S2O4 4.12 g  (0.02 mol) at 0 °C, and then this mixture was stirred for 4 h at room 

temperature. The mixture was diluted with deionized H2O, and then extracted with CH2Cl2. The 

organic layers were washed with satd NaCl aq, and then dried over MgSO4. After filtration and 

evaporation of the solvent, there was obtained 9.54 g of 1 as a light yellow oil in 92% yield. 
1
H NMR (CDCl3) d: 1.16–1.48 (12H, m, H3–H8), 1.48–1.68 (2H, m, H2), 1.70–1.90 (2H, m, 

H9), 2.68–2.83, 2.83–3.00 (1H, 1H, m, m, H11), 3.65 (2H, t, J = 6.71 Hz, H1), 4.33 (1H, tt, J = 

4.41, 8.88, 17.60 Hz, H10). 
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OH (CF2)7CF3

I

 

12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-Heptadecafluoro-10-                             

iodononadecan-1-ol (2) 

This compound was synthesized using the same procedure as for compound 2 giving an oily 

solid in 94% yield. 
1
H NMR (CDCl3) d: 1.16–1.48 (12H, m, H3–H8), 1.48–1.68 (2H, m, H2), 

1.70–1.90 (2H, m, H9), 2.68–2.83, 2.83–3.00 (1H, 1H, m, m, H11), 3.65 (2H, t, J = 6.71 Hz, 

H1), 4.33 (1H, tt, J = 4.41, 8.88, 17.60 Hz, H10). 

OH (CF2)3CF3 

12,12,13,13,14,14,15,15,15-Nonafluoropentadecan-1-ol (3) 

1  9.5 g (18.5 mmol) was added to a mixture of Zn powder 3.9 g  and NiCl2_6H2O 0.75 g in dry 

THF (45 mL) and deionized H2O (77 drops). This mixture was stirred for 4 h at room 

temperature. The mixture was quenched with satd NaHCO3 aq, and was extracted with CH2Cl2. 

The organic layers were washed with satd NaCl aq, and then was dried over MgSO4. After 

filtration and evaporation of the solvent, the residue was purified by a column chromatography 

(EtOAc/n-hexane, 30%) to give 3 5.63 g  as a white solid mp. 33.5°C , 78%. 
1
H NMR (CDCl3) 

d: 1.26–1.45 (12H, m, H3–H9), 1.52–1.65 (4H, m, H2, H10), 2.05 (2H, tt, J = 8.24, 18.87 Hz, 

H11), 3.65 (2H, t, J = 6.46 Hz, H1). 

 
OH (CF2)7CF3 

12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-Heptadecafluorononadeca-1-ol (4) 

Compound 4 was synthesized using the same procedure as for compound 3 giving a white solid  

mp. 77.2°C  in 86% yield. 

1
H NMR (CDCl3) d: 1.29 (m, 14 H, (CH2)7 and s, 1H, OH); 1.56 (m, 4H, CH2CH2OH and 

CH2CH2CF2); 2.05 (m, 2H, CH2CF2); 3.64 (t, 2H, J=6.6 Hz, CH2OH).   

O (CF2)3CF3

OO

CH3  

12,12,13,13,14,14,15,15-Nonafluoropentadecyl 3-oxobutanoate (5) 

To a 20 mL round bottomed flask was added (5.30 g,  14 mmol) of 3 and (2.0 g, 14 mmol) 2,2,6-

trimethyl-4H-1,3-dioxin-4-one in 5 mL xylene.  The mixture was stirred and refluxed for 2 h. 

After the xylene was removed on the rotary evaporator and the residue eluted through a silica gel 

column with CH2Cl2 there was obtained 5.3 g of a white oily solid in 80% yield.
1
H NMR 

(CDCl3) d: 1.26–1.45 (14H, m, H3–H9), 1.52–1.65 (4H, m, H2, H10), 2.04 (2H, tt, J = 8.24, 

18.87 Hz, H11), 2.25 (2H, s, CH3), 3.44 (2H, s, CH2)  4.13 (2H, t, J = 7.00 Hz, H1). 
13

C NMR 

(CDCl3) d: 200.52, 167.16, 122-108 (4m, CF2CF2CF2CF3), 65.52, 50.11, 31-28.6 (11 C’s). 
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O (CF2)7CF3

OO

CH3  

12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-Heptadecafluorononadecyl 3-

oxobutanoate (6) 

Compound 6 was obtained by the same procedure as for compound 5 as a white solid mp.50-

51°C in 96% yield. 
1
H NMR (CDCl3) d: 1.26–1.45 (14H, m, H3–H9), 1.52–1.68 (4H, m, H2, 

H10), 2.04 (2H, tt, J = 8.24, 18.87 Hz, H11), 2.26 (3H, s, CH3), 3.44 (2H, s, CH2)  4.13 (2H, t, J 

= 7.00 Hz, H1).  

O (CF2)3CF3

ONH2

CH3  

12,12,13,13,14,14,15,15,15-Nonafluoropentadecyl 3-aminobut-2-enoate (7) 

To a 50 mL round bottomed flask was added 5 (5.3 g, 0.01 mol) in 10 ml ethanol and to this 

solution was added 7 mL 25% aqueous ammonia solution (0.05 mol).  The solution was stirred at 

room temperature for 2 days and after cooling in the refrigerator the precipitated white solid was 

filtered and washed with cold ethanol giving 3.4 g of a white flaky solid mp. 33-35°C in 65% 

yield. 
 1

H NMR (CDCl3) d: 1.26–1.45 (12H, m, H3–H9), 1.52–1.65 (4H, m, H2, H10), 1.89 (3H, 

s, CH3), 2.04 (2H, tt, J = 8.24, 18.87 Hz, H11),  4.03 (2H, t, J = 6.06 Hz, H1), 4.52 (1H, s, CH), 

7.87 (2H, bs, NH2).  

N
H

CH3 CH3

O

OO

OF3C(F2C)3 (CF2)3CF3

 

Bis(12,12,13,13,14,14,15,15,15-nonafluoropentadecyl) 1,4-dihydro-2,6-dimethyl-4-

phenylpyridine-3,5-dicarboxylate (8) 

To a 25 mL round bottom flask was added 7 (1.5 g,  3 mmol) in 10 mL ethanol and to this 

solution was added benzaldehyde (0.17 g, 1.5 mmol) and 3 drops of glacial acetic acid.  The 

solution was stirred at room temperature for 6 days.  The solvent was removed on a rotary 

evaporator and the residue eluted with 10% EtAc/Hexane to give 230 mg of a clear oil in 15% 

yield. 
1
H NMR (CDCl3) d: 1.26–1.45 (28H, m, H3–H9), 1.52–1.68 (8H, m, H2, H10), 1.98 (4H, 

tt, J = 8.24, 18.87 Hz, H11), 2.27 (6H, s, CH3), 3.96 (4H, t, J = 6.46 Hz, H1), 4.92 (1H, s, CH), 

5.51 (1H, bs, NH), 7.04-7.22 (5H, m, Arom). 
13

C NMR (CDCl3) d: 167.70, 147.70, 143.0, 

127.80, 126.04, 122-108 (4m, CF2CF2CF2CF3), 104.08, 63.89, 39.52,  30.74 (t ) 29.45-28.68 (m), 

26.04, 19.46. 
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N
H

CH3 CH3

O

OO

OF3C(F2C)7 (CF2)7CF3

 

Bis(12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-heptadecafluorononadecyl) 1,4-

dihydro-2,6-dimethyl-4-phenylpyridine-3,5-dicarboxylate (9) 

To a 15 mL glass pressure tube was added 6 (1.5 g, 2 mmol) and freshly distilled benzaldehyde 

(0.12 g, 1 mmol) and ammonium acetate (0.08 g, 1 mmol) in 5 mL ethanol.  The tube was 

capped and placed in a temperature controlled microwave oven and heated at 120°C for 30 min.  

The tube was cooled and the precipitated yellowish solid filtered and washed with cold ethanol.  

The product was recrystallized from ethanol and ethyl acetate to give a light yellow solid 350 mg 

with a broad mp. 82-87°C in 25% yield.  
1
H NMR (CDCl3) d: 1.26–1.45 (28H, m, H3–H9), 

1.52–1.68 (8H, m, H2, H10), 2.04 (4H, tt, J = 8.24, 18.87 Hz, H11), 2.33 (6H, s, CH3), 4.01 (4H, 

t, J = 6.46 Hz, H1), 4.99 (1H, s, CH), 5.63 (1H, bs, NH), 7.10-7.28 (5H, m, Arom). 

N
H

O

OO

OF3C(F2C)7 (CF2)7CF3

Br Br  

Di-12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-heptadecafluorononadecyl 2,6-

bis(bromomethyl)-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (12) 

 The dihydropyridine 9 (0.7g, 0.5mmol) was suspended in 20 ml methanol and 

carbontetrachloride was added until the solid dissolved then (0.18g, 1mmol) NBS was added and 

the solution was stirred overnight.  The solvent was removed using rotary evaporation and most 

of the solid dissolved in carbontetrachloride and the succinic acid was filtered off.  The solvent 

was removed by rotary evaporation to yield a yellowish solid 0.6g  or 80% yield of 12. The 

compound was used in the next reaction without purification since it is unstable in solution. 
1
H 

NMR (CDCl3) d: 1.26–1.45 (28H, m, H3–H9), 1.52–1.68 (8H, m, H2, H10), 2.04 (4H, tt, J = 

8.24, 18.87 Hz, H11), 4.01 (4H, t, J = 4.03, 6.46 Hz, H1), 4.61 (2H, d, J=11.4 Hz, CH2Br), 4.92 

(2H, d, J=11.4 Hz, CH2Br), 5.01 (1H, s, CH), 6.46 (1H, bs, NH), 7.10-7.28 (5H, m, Arom). 

N
H

O

OO

OF3C(F2C)7 (CF2)7CF3

N
+

N
+

Br
- Br

-

 

Bis(12,12,13,13,14,14,15,15,16,16,17,17,18,18,19,19,19-heptadecafluorononadecyl)1,4-

dihydro-2,6-dimethyl-4-phenylpyridine-3,5-dicarboxylate-2,6-dipyridinium bromide (13)   
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The bisbromodihydropyridine (7)  (0.19g, 0.12mmol) was dissolved in dry acetone and dry 

pyridine (0.025g, 0.3mmol) was added.  The solution was stirred over the weekend by which 

time the dipyridiumbromide (8) had precipitated as a light yellow solid 0.14g  or 70% yield mp. 

85-105°C.  
1
H NMR (CDCl3) d: 1.26–1.45 (28H, m, H3–H9), 1.52–1.68 (8H, m, H2, H10), 2.04 

(4H, tt, J = 8.24, 18.87 Hz, H11), 4.01 (4H, t, J = 4.03, 6.46 Hz, H1), 5.08 (1H, s, CH), 5.88 (2H, 

d, J=13.8 Hz. CHBrPy), 6.39 (2H, d, J=13.8 Hz. CHBrPy), 7.10-7.28 (5H, m, Arom), 8.18 (4H, 

t, J=7.6, 6.6 Hz, Py), 8.57 (2H, t, J=7.8, 7.8 Hz, Py), 9.33 (4H, d, J=5.8 Hz, Py), 10.93 (1H, bs, 

NH). 

 

OH

F

F

F

F

F
F

F
F

F
F

F
F

F
F

F

F

F

I

 
 

5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluoro-3-iodododecan-1-ol (15) 

In a 250 ml 1 neck round bottomed flask in 40 ml acetonitrile added 10.92 g (0.02 mol) 1-

Iodoperfluorooctane and 1.44 g (0.02 mol) 3-Buten-1-ol. To this solution was added 1.72 g 

NaHCO3 (0.02 mol) dissolved in 20 ml DI water whereby two layers were formed. The solution 

was cooled in an ice bath with magnetic stirring and 4.12 g (0.02 mol) of Na2S2O4 (85%) was 

added slowly.  After all of the sodium dithionite was added the flask was removed from the ice-

bath and left to stir overnight. The white suspension was diluted with 100 ml DI water and 

extracted with ethylacetate 3X50 ml and the organic fractions were dried with MgSO4, filtered 

and the solvent removed on the rotary evaporator to give 11.37 g of a white solid in 92% yield. 

C12H8F17IO  MW. 618.07 Mp. 82-83 °C. 
1
H NMR (CDCl3): δ=4.56-4.47 (m, 1 H, CHI), 3.91-

3.73 (m, 2 H), 3.07-2.75 (m, 2H), 2.10-1.94 (m, 2 H), 1.46 (br s, 1 H, HO).  
19

F NMR (CDCl3): δ= -81.3 (t, 
3
JFF = 9.2 Hz, 3 F, CF3), -111.8 (dm, 

2
JFF =272 Hz, 1 F), -114.6 

(dm, 
2
JFF = 272 Hz, 1 F), -122.1 (m, 2 F), -123.2 (m, 4 F), -124.1 (m, 2 F), -126.6 (m, 2 F), -

122.4 (m, 2 F). MS (EI); m/z (%): 618 (3) [M
+
], 491 (100) [M

+
 - I], 473 (32) [M

+
 - I, - H2O], 441 

(32), 395 (5), 219 (1) [CF3(CF2)3
+
], 169 (4) [CF3(CF2)2

+
], 119 (6) [CF3CF2

+
], 69 (1) 

[CF3
+
]. - C12H8F17OI (618.06): calcd. C 23.32, H 1.30; found C 23.95, H 1.38. 

 
F

F

F
F

F
F

F
F

F
F

F
F

F
F

F
F

F

OH 
 

5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorodododecan-1-ol (16) 

A 250 mL round bottomed flask was charged with 15 (9.74 g, 15.76 mmol), Bu3SnH (9.27 g, 

31.86 mmol), AIBN (0.26 g, 1.61 mmol, 10 mol-%) and toluene (40 mL). The solution was 

stirred at 70 °C. After 4 h, the solvent was removed by rotary evaporation. The residue was 

dissolved in hexane (10 mL) and cooled to -20 °C. The resulting white crystals were collected on 
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a frit. The filtrate was concentrated (10 mL) and cooled to -20 °C. A second crop of crystals was 

similarly collected. The crops were combined and dried by oil pump vacuum to give 7.42g. 

C12H9F17O  MW. 492.17 
1
H NMR (CDCl3): δ = 3.68 (t, 

3
JHH = 6.0 Hz, 2 H, HOCH2), 2.19-2.01 

(m, 2 H, CH2CF2), 1.75-1.61 (m, 4 H, CH2CH2CH2CF2), 1.36 (br s, 1 H, HO). 
19

F NMR 

(CDCl3): δ= -81.3 (t, 
3
JFF = 9.2 Hz, 3 F, CF3), -115.0 (m, 2 F), -122.2 (m, 2 F), -123.2 (m, 4 F), -

124.0 (m, 2 F), -126.6 (m, 2 F), -122.4 (m, 2 F). 

 

OO

CH3 O

F

F

FF

F
F

F

F

F
F

F
F

F
F

F
F

F

 
 

5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl 3-oxobutanoate (17) 

In 100 mL round bottom flask equipped with a water cooled condenser a CaCl2 guard tube and a 

magnetic stir bar was placed 6.45 g (0.0131 mol) 16 and 2,2,6-Trimethyl-4H-1,3-dioxin-4-one 

1.86 g (0.0131 mol) in 50 mL p-Xylene. The flask was heated in an oil bath while stirring at 

160°C for 2 hours. The solvent was removed on a rotary evaporator to give 6.89 g of a light 

yellow oil. The oil was purified by a silica gel column using EtAc/Hexane as eluent 800 mL 5% 

and 500 mL 10% in EtAc , the fractions were monitored on TLC plates with phosphomolybdic 

acid developer. Fractions with Rf=0.1 were collected and concentrated to give 4.43 g 64%  yield 

of oil which solidified. C16H13F17O3  MW. 576.25. 
1
H NMR 400 MHz (CDCl3): δ =4,13 (t, J = 

6.2 Hz, 2H, OCH2), 3.42 (s, 2H, COCH2CO), 2,21 (s, 3H, COCH3), 2.12-1.99 (m, 2H, CH2CF2), 

1.75-1.61 (m, 4H, CH2CH2). 
13

C-NMR 100.3 MHz (CDCl3,): δ=200.15, 166.95, 123-105 (m, 

CF), 64.34, 49.74, 30.28 (t, J =16.5 Hz, CH2CF2), 29.81, 27.81, 16.81 ppm. 

 

ONH2

CH3 O
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FF

F
F

F

F

F
F

F
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F
F

F
F
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5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl 3-aminobut-2-enoate (18) 

In a 10 mL RB was weighed 1.50g (0.0026mol) compound 18 and dissolved in 2 mL EtOH, then 

3 mL of concentrated aqueous ammonia was added and the flask was stoppered. The mixture 

was stirred magnetically overnight and the flask was put in the fridge to cool. The precipitated 

solid was filtered and washed with DI water. After drying in air there was obtained 0.94 g of a 

white powder in 63% yield. Mp. 75-76°C. C16H14F17NO2 MW  575.26 Composition C(33.41) 

H(2.45) F(56.14) N(2.43) O(5.56) 
1
H NMR 200 MHz (CDCl3): δ =4.46 (s, 1H, -CH=C-), 4.02 (t, 

J= 6 Hz, OCH2), 2.11-2.00 (m, 2H, -CH2CF2-), 1.85 (s, 3H, -CH3), 1.66-1.65 (m, 4H, CH2CH2). 

LC/MS: MS(+ESI) m/z (rel.intensity): 598 ([M+Na]
+
, 100). 
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5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl 2-benzylidene-3-

oxobutanoate (E/Z mix) (19) 

Compound 17, 2.88 g (0.005mol) and benzaldehyde 0.53 g (0.005mol) were dissolved in 40 mL 

benzene and 3 drops of glacial acetic acid and 5 drops of piperidine were added. The mixture 

was stirred magnetically overnight. The solvent was removed on a rotary evaporator and the 

residue was purified by silica gel chromatography (eluent: 10% EtOAc / Hexane) providing 2.47 

g of a yellow oil in 74% yield. C23H17F17O3, MW  664.35. 
1
H NMR 200 MHz (CDCl3): δ =7.60 

(s, 1H, -CH=C-), 7.41 (m, 5H, Ph), 4.28 (t, J= 6.2 Hz, 2H, -OCH2-), 2.44 (s, 3H, CH3CO), 2.02 

(m, 2H, -CH2CF2-),1.49-1.79 (m, 4H, -CH2CH2-). 

 

N
H

O

O O

O

CH3 CH3

F3C(F2C)7(H2C)4 (CH2)4(CF2)7CF3

 
 

Bis(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) 1,4-dihydro-2,6-

dimethyl-4-phenylpyridine-3,5-dicarboxylate (20) 

In a round bottomed flask was weighed 1.33 g (0.002mol) compound 19 and 1.15 g (0.002 mol) 

compound 18 then 11 mol % or 0.038 g 1-butylpyridinium chloride was added and the mixture 

was dissolved in diethyleneglycol 10 mL. The flask was stoppered and placed in an oil bath and 

was stirred magnetically at 80°C for 6 h. The flask was left stirring overnight (without heating) 

and the contents were poured in ice-water. The mixture was extracted with EtOAc 3x40 mL. The 

organic extract was dried with anh. Na2SO4, filtered and the solvent was removed at reduced 

pressure on a rotary evaporator. The yellow residue (2.57 g) was recrystallized from EtOH to 

give 1.10 g of a pale yellow compound in 45% yield. Mp. 107-108°C 
1
H NMR 400 MHz (CDCl3): δ = 7.20-7.04 (m, 5H, Ph), 5.60 (br s, 1H, NH), 4.89 (s, 1H, 4-CH), 

4.06-3.95 (m, 4H, 3,5-CO2CH2-), 2.28 (s, 6H, 2,6-CH3), 2.04-1.91 (m, 4H, 3,5-CH2CF2-), 1.63-

1.52 (m, 8H, 3,5-CH2CH2-). 
13

C-NMR 100.3 MHz (CDCl3,): δ =167.34, 147.51, 144.31, 127.95, 

127.81, 126.32 , 107.30-120.86 [(CF2)7CF3], 103.99, 62.88, 39.54, 30.43 (t, J=21.6 Hz, 

CH2CF2), 28.22 , 19.54, 17.01 ppm. 
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N
H

O

O O

O
F3C(F2C)7(H2C)4 (CH2)4(CF2)7CF3

BrBr  
 

Di-5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl 2,6-bis(bromomethyl)-4-

phenyl-1,4-dihydropyridine-3,5-dicarboxylate (21) 

0.62 g (0.0005 mol) of compound 20 was dissolved in 6 mL chloroform and 4 mL MeOH 

solution. The solution was cooled in ice bath and 0.18 g (0.001 mol) NBS was added in small 

portions. After all the NBS was added the reaction was left stirring overnight. The solvent was 

removed at reduced pressure on the rotary evaporator. The residue was triturated with 

carbontetrachloride and filtered from the solid succinimide. The solvent was removed in vacuum 

providing 0.53 g of a yellow solid in 75% yield. 
1
H NMR 200 MHz (CDCl3): δ =7.26 (m, 5H, 

Ph), 6.93 (br s, 1H, NH), 4.98 (s, 1H, -CHPh), 4.78 (dd, 4H, J=11.6 and Hz, J=56.4 Hz, -CH2Br), 

4.12 (m, 4H, -OCH2-), 2.22-1.99 (m, 4H, -CH2CF2-), 1.62-1.56 (m, 8H, -CH2CH2-). 

 

N
H

O

O O

O
F3C(F2C)7(H2C)4 (CH2)4(CF2)7CF3

N
+

N
+

Br
-

Br
-

 
 

Bis(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) 1,4-dihydro-2,6-

dimethyl-4-phenylpyridine-3,5-dicarboxylate-2,6-dipyridinium bromide (22) 

In a 10 mL RB was placed 0.45 g (0.33mmol) compound 21 and dissolved in dry acetone 2 mL 

then was added dry pyridine 0.05 g (0.66mmol) and left stirring overnight. The precipitate was 

filtered and washed with diethyl ether to provide 0.30 g of a pale yellow powder in 60% yield. 

Mp. 172-177°C.  
1
H NMR 400 MHz (DMSO-d6): δ = 10.30 (br s, 1H, NH), 8.98 (d, 4H, J=6 

Hz,Py), 8.59 (t, J=8.4 Hz, 2H, Py), 8.11 (m, 4H, Py), 7.28-7.22 (m, 5H, Ph), 5.85(dd, 

J=100.8 and 15.2 Hz, 4H, CH2PyBr), 5.00 (s, 1H, CHPh), 4.04 (m, 4H, OCH2), 2.35-2.05 (m, 

4H, CH2CF2), 1.81-1.58 (m, 8H, CH2CH2 

 

 

O CH3

ONH2

CH3  

Dodecyl 3-aminobut-2-enoate (26) 

In a 10 mL RB was weighed 1.30 g (0.0048mol) of dodecyl 3-oxobutanoate then 2 mL EtOH 

and 3 mL conc. aqueous ammonium hydroxide solution were added. The flask was stoppered 

and stirred overnight. The flask was then placed in the fridge and the cold precipitate was filtered 

and washed with DI water. After drying in air the white product weighed 0.90 g or 70% yield. 
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1
H NMR 200 MHz (CDCl3): δ =4.53 (s, 1H, -CH=C-), 4.04 (t, J= 6.6 Hz, 2H, - 

OCH2-), 1.90 (s, 3H, -CH3), 1.64-1.25 (m, 23H, (CH2)10CH3). 
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Dodecyl 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl 1,4-dihydro-2,6-

dimethyl-4-phenylpyridine-3,5-dicarboxylate (27) 

In a round bottomed flask was weighed 1.88 g (0.003 mol) compound 26 and 0.75 g (0.003 mol) 

compound 19. The compounds were dissolved in diethyleneglycol  0.038 g 1-butylpyridinium 

chloride (11 mol%) was added and the flask was heated in an oil bath at 80°C for 5 hours. The 

heat was turned off and the flask was left stirring overnight. The contents were poured into ice-

water and extracted with EtOAc 3x40 mL. The organic extract was dried with Na2SO4, filtered 

and the solvent distilled off under reduced pressure leaving an oily residue 2.63g which was 

recrystallized from EtOH giving 1.10g of a pale yellow compound in 43% yield. 
1
H NMR 400 MHz (CDCl3): δ =7.20-7.03 (m, 5H, Ph), 5.63 (br s, 1H, NH), 4.91 (s, 1H, 4-CH), 

4.07-3.91 (m, 4H, 3,5-CO2CH2-), 2.28 (s, 3H, 2-CH3),  2.26 (s, 3H, 6-CH3), 2.03-1.89 (m, 2H, 

CH2CF2-), 1.62-1.49 (m, 6H, OCH2CH2CH2-), 1.86 (m, 18H, (CH2)9), 0.81 (t, J= 6.2 Hz, 3H, 

CH3). 
13

C-NMR 100.3 MHz (CDCl3,): δ =167.62, 167.45, 147.60, 144.46, 143.64, 127.89, 

127.80, 126.20, 121.58-107.20 [(CF2)7CF3], 104.43, 103.74, 64.03, 62.80, 39.57, 30.45 (t, J=21.8 

Hz, CH2CF2), 19.59, 14.05 ppm. 
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Dodecyl 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl 2,6-

bis(bromomethyl)-4-phenyl-1,4-dihydropyridine-3,5-dicarboxylate (28) 

0.60 g (0.0007 mol) of compound 27 was dissolved in chloroform 6 mL and 4 mL MeOH and 

cooled in ice-bath. While the mixture was stirring magnetically during 10 min. was added 0.24 g 

(0.0014 mol) NBS. The mixture was left stirring overnight and then the solvent was removed 

under reduced pressure. The residue was triturated with carbontetrachloride and filtered to 

remove the precipitated succinimide. The solvent was removed on the rotary evaporator to 

provide 0.52 g of a yellow compound in 69% yield which was not further purified. 

C39H44Br2F17NO4  MW  1073.55  
1
H NMR 200 MHz (CDCl3): δ =7.26 (m, 5H, Ph), 6.93 (br s, 

1H, NH), 4,98 (s, 1H, -CHPh), 4.95-4.60 (dd, 4H, J=11.6 Hz, J=56.4 Hz, -CH2Br), 4.12 (m, 4H, 

-OCH2-), 2.22-1.99 (m, 4H, -CH2CF2-), 1.62-1.52 (m, 6H, OCH2CH2CH2-), 1.86 (m, 18H, 

(CH2)9), 0.81 (t, J= 6.2 Hz, 3H, CH3). 
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Dodecyl 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl 1,4-dihydro-2,6-

dimethyl-4-phenylpyridine-3,5-dicarboxylate-2,6-dipyridinium dibromide (29) 

In a round bottom flask in 2 mL dry acetone was dissolved 0.50 g (0.047 mmol) of compound 28 

and after adding 0.07 g (0.93 mmol) dry pyridine the flask was stoppered and stirred 

magnetically. After 1h some precipitate started forming. The flask was left stirring overnight. 

The solid was filtered and washed with diethyl ether to give a pale yellow solid 0.28 g in 49% 

yield. Mp. 140-147°C. C49H54Br2F17N3O4  MW 1231.75. 
1
H NMR 400 MHz (CDCl3): δ =10.92 (s, 1H, NH), 10.18 (d, 4H, J=9.2 Hz, Py), 9.55 (t, J=6.4 

Hz, 2H, Py), 9.30 (m, 4H, Py), 7.22-7.16 (m, 5H, Ph), 6.12 (dd, J=194 and 14 Hz, 4H, 

CH2PyBr), 5.03 (s, 1H, CHPh), 4.06-3.98 (m, 4H, OCH2), 1.98-1.95 (m, 4H, CH2CF2), 1.63-1.51 

(m, 6H, OCH2CH2CH2-), 1.86 (m, 18H, (CH2)9), 0.81 (t, J= 6.2 Hz, 3H, CH3). 

LC/MS: MS(+ESI) m/z (rel.intensity): 1151 ([M-Br]
+
, 100). 
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F
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13,13,13-Trifluoro-1-tridecanol (31) 

10-Undecenyl acetate 10.6 g (50 mmol) and trifluoroethyl iodide 12.6 g (60 mmol) were place in 

a pressure tube with a magnetic stir bar and 0.32 g (1.0 mmol) of 75% benzoyl peroxide was 

added. The tube was sealed with a screw cap and placed in an oil bath. While stirring 

magnetically the temperature was raised to 80°C and the reaction continued for 3h. The tube was 

cooled in an ice bath and a fresh portion of benzyol peroxide was added. The cycle was repeated 

until  an H-NMR probe indicated that most of the double bond had reacted (six cycles) giving an 

orange solution. NaBH4 4.75 g (125 mmol) in 255 mL DMF was cooled to 0°C (ice bath) and the 

crude iodoalkane in 45 mL DMF was slowly added within 45 min. After 3h at 0°C the reaction 

mixture was allowed to warm to RT and was stirred a further 2h and cooled again to 0°C and 100 

mL of H2O was added to hydrolyze the excess borohydride. The deiodinated trifluorotridecyl 

acetate was extracted with petroleum ether 3x100 mL dried, filtered and concentrated and then 

hydrolyzed in aqueous ethanolic NaOH and after acidification with HCl there was obtained a 

clear oil in 86% yield. C13H25F3O, MW 254.33 
1
H NMR 400 MHz (CDCl3): δ =3.61 (t, J= 6.6 Hz, 2H, OCH2), 2.12-1.95 (m, 2H, CH2CF3), 1.65 

(br s, OH), 1.58-1.47 (m, 4H, CH2CH2), 1.36-1.22 (m, 16H, (CH2)8). 

 

O

F
F

F

OO

CH3  
 

13,13,13-Trifluorotridecyl 3-oxobutanoate (32) 
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10.00 g (0.039 mol) of alcohol 31 was dissolved in p-xylene with warming then 2,2,6-trimethyl-

4H-1,3-dioxin-4-one 5.59 g (0.039 mol) was added and the mixture was refluxed 2h in an oil 

bath. The reaction mixture was cooled and the xylene removed on a rotary evaporator. The 

residue was purified on a silica gel chromatography column (EtOAc / hexane 1:3 eluent) 

providing 11.86g (89%) of an orange oil. C17H29F3O3  MW  338.41. 
1
H NMR 200 MHz (CDCl3): δ =4.12 (t, J=7.4 Hz, 2H, OCH2), 3.44 (s, 2H, COCH2CO), 2.26 (s, 

3H, -CH3), 2.11-1.94(m, 2H, -CH2CF3), 1.54-1.44 (m, 4H, OCH2CH2 and  CH2CH2CF3 ), 1.31-

1.18 (m, 16H (CH2)8). 
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F

ONH2

CH3  
 

13,13,13-Trifluorotridecyl 3-aminobut-2-enoate (33) 
In a 10 mL RB was weighed 1.40 g (0.0041 mol) compound 32 and 2 mL EtOH was added and 

then 3 mL concentrated aqueous ammonium hydroxide was added. The flask was stoppered and 

vigorously magnetically stirred overnight. The flask was placed in the fridge to cool. The 

precipitated product was filtered and washed with DI water to provide a white compound 1.06 g 

in 77 % yield. C17H30F3NO2  MW 337.42. 
1
H NMR 200 MHz (CDCl3): δ =4.52 (s, 1H, CH=), 4.03 (t, J= 6.6 Hz, 2H, OCH2), 2.13-1.94 (m, 

2H, -CH2CF3), 1.89 (s, 3H, CH3), 1.64-1.46 (m, 4H, OCH2CH2 and  CH2CH2CF3), 1.26 (s, 16H,  

(CH2)8). 
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Bis(13,13,13-Trifluorotridecyl)1,4-dihydro-2,6-dimethyl-4-phenylpyridine-3,5-

dicarboxylate (34) 
0.99 g (0.0029 mol) of compound 33 was dissolved in 12 mL n-propanol, then 0.16 g (0.0015 

mol) benzaldehyde was added and 1 mL glacial acetic acid. The reaction mixture was refluxed 

for 4h, the heating was stopped and left stirring overnight. The solvent was removed under 

reduced pressure and the residue weighed 1.17g. The compound was recrystallized twice from 

EtOH, filtered  and washed with cold EtOH. After air drying there was obtained 0.35 g of a pale 

yellow compound in 32% yield. Mp. 49-53°C. C41H61F6NO4 MW 745.92. 
1
H NMR 400 MHz (CDCl3): δ =7.21-7.02 (m, 5H, Ph), 5.50 (br s, 1H, NH), 4.93 (s, 1H, CHPh), 

4.01-3.90 (m, 4H, OCH2), 2.27 (s, 6H, CH3), 2.05-1.93 (m, 4H, CH2CF3), 1.53-1.44 (m, 8H, 

OCH2CH2 and  CH2CH2CF3), 1.31-1.18 (m, 32H (CH2)16). 
13

C-NMR 100.3 MHz (CDCl3): δ 

=167.62, 147.65, 143.78, 127.88, 127.83, 126.07, 104.23, 63.92, 39.53, 33.71 (q, J=28.5 Hz, 

CH2CF3), 29.52, 29.51, 29.34, 29.27, 29.18, 28.68, 26.06, 21.87, 21.84, 21.81, 19.64 ppm. 

LC/MS: MS(-ESI) m/z (rel.intensity): 744 ([M-H]
-
, 40). 
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Di-13,13,13-Trifluorotridecyl 2,6-bis(bromomethyl)-4-phenyl-1,4-dihydropyridine-3,5-

dicarboxylate (35) 

0.45 g (0.60 mmol) of compound 34 was dissolved in 3 mL chloroform and 2 mL MeOH. The 

solution was cooled in an ice bath and during 10 min. 0.21g (1.20 mmol) of NBS was added in 

small portions. After all the NBS was added the reaction was stirred for 4h at RT and put in the 

fridge overnight. The solvent was removed on the rotary evaporator and to the residue was added 

hexane to precipitate the succinimide. The mixture was filtered and the hexane was distilled off 

under reduced pressure to give the dibromide 0.54g in 99% yield which was not purified further. 
1
H NMR 200 MHz (CDCl3): δ =9.25 (br s, 1H, NH),7.23-7.09 (m, 5H, Ph), 5.01 (s, 1H, CHPh), 

4.83 (d, J= 10.4 Hz, 1H, CH2Br), 4.54 (d, J= 10.4 Hz, 1H, CH2Br), 4.06 (t, J=6.8 Hz, 4H, 

OCH2), 2.10-1.96 (m, 4H, CH2CF2), 1.59-1.44 (m, 8H, OCH2CH2 and  CH2CH2CF3), 1.31-1.18 

(m, 32H (CH2)16). 

 

N
H

O

O

N
+

O

O

N
+

F

F

F
F

F
F

Br
-

Br
-

 
 

Bis(13,13,13-trifluorotridecyl)1,4-dihydro-2,6-dimethyl-4-phenylpyridine-3,5-

dicarboxylate-2,6-dipyridinium bromide (36) 

In a 10 mL RB was weighed 0.54g (0.60 mmol) of compound 35 and dissolved in 1.5 mL dry 

acetone. Pyridine 0.09 g (1.20 mmol) was added and the reaction mixture was left stirring 

overnight. The reaction mixture was triturated with diethyl ether to precipitate the product. The 

precipitate was filtered and washed with diethyl ether to give 0.33g of a pale yellow compound 

in 52% yield. 
1
H NMR 400 MHz (CDCl3): δ =10.95 (s, 1H, NH), 9.33 (d, 4H, J=6.2 Hz, 4H, Py), 8.62 (t, J=7.8 

Hz, 2H, Py), 8.20 (m, 4H, Py), 7.26 (m, 5H, Ph), 6.36 (d, J=13.5 Hz, 4H, CH2PyBr), 5.93 (d, 

J=13.5 Hz, 4H, CH2PyBr) 5.07 (s, 1H, CHPh), 4.05 (t, J=6.8 Hz, 4H, OCH2), 2.12-1.98 (m, 4H, 

CH2CF2), 1.58-1.24 (m, 40H, (CH2)10). 
13

C-NMR 100.3 MHz (CDCl3): δ=166.43, 146.61, 

145.51, 144.88, 138.01, 128.86, 128.60, 128.05, 127.50, 126.85 (q, J=27.3 Hz, CF3), 110.41, 

65.52, 57.32, 39.76, 33.69 (q, J=28 Hz, CH2CF3), 29.54, 29.34, 29.25, 29.18, 28.66, 28.39, 

25.94, 21.83, 21.80 ppm. 
19

F NMR (CDCl3): δ= -66.42 (t, J=11.6 Hz, 3F, CF3). 
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1,1’-[(3,5-Bis(dodecyloxycarbonyl)-4-phenyl-1,4-dihydropyridin-2,6-diyl)bis(methylene)] 

bis(4-(trifluormethyl)pyridinium) bromide (38) 

Dibromomethyl DHP 37 0.40g (0.52 mmol) was dissolved in 3 mL dry acetone and 0.16 g (1.1 

mmol) of 4-trifluoropyridine was added. The RB was stoppered and stirred overnight. The 

precipitated product was filtered and washed with diethyl ether to give 0.16 g of a pale yellow 

compound in 29% yield. 

C51H69Br2N3O4 MW 1061.91 Mp. 159-161°C 
1
H NMR 400 MHz (CDCl3): δ =10.75 (br s, 1H, NH), 9.81 (d, J=6.4 Hz, 4H, Py), 8.27 (d, J=6.4 

Hz, 4H, Py), 7.37-7.21 (m, 5H, Ph), 6.49 (d, J=13.8 Hz, 2H, HCPy), 5.19 (d, J=13.8 Hz, 2H, 

HCPy), 5.16 (s, 1H, CHPh), 4.05-4.01 (m, 4H, OCH2), 1.59-1.56 (m, 4H OCH2CH2), 1.32-1.23 

(m, 36H, (CH2)9CH3), 0.88 (t, J=6.8 Hz, 6H, CH3). 
13

C-NMR 100.3 MHz (CDCl3): δ =164.61, 

145.77, 143.89, 143.52, 143.15, 134.17, 126.54, 125.49, 122.99, 120.15, 117.41, 109.99, 63.70, 

56.77, 29.99 27.76, 27.71, 27.64, 27.44, 27.37, 26.43, 24.02, 20.76, 12.18 ppm. 
19

F NMR 

(CDCl3): δ= -65.25 ppm. LC/MS: MS(+ESI) m/z (rel. intensity): 899 ([M-2Br]
+
, 30). 
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Didodecyl 2,6-dimethyl-4-[4-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3,5-

dicarboxylate (39). 

p-Trifluoromethylbenzaldehyde 1.75g (0.01 mol) was weighed in a 100 mL RB then dodecyl 3-

aminobut-2-enoate (26) 5.39 g (0.02 mol) was added and 3 drops of glacial acetic acid with 25 

mL n-propanol. The reaction mixture was refluxed 6 hours and the heat turned off. The reaction 

mixture was left stirring at RT overnight and poured in ice water. The precipitated product was 

filtered and recrystallized from EtOH to yield a white powder 2.76 g in 41% yield. C40H62F3NO4 

MW 677.92 Mp. 64-67°C. 
1
H NMR 400 MHz (CDCl3): δ =7.44 (d, J=8.4 Hz, 2H, Ar), 7.37 (d, J=8.4 Hz, 2H, Ar), 5.58 (br 

s, 1H, NH), 5.04 (s, 1H, CHAr), 4.06-3.98 (m, OCH2), 2.34 (s, 6H, CH3), 1.58-1.54 (m, 4H 

OCH2CH2), 1.32-1.23 (m, 36H, (CH2)9CH3), 0.88 (t, J=6.8 Hz, 6H, CH3). 
13

C-NMR 100.3 MHz 

(CDCl3): δ =167.28, 151.49, 144.21, 128.20, 124.86, 124.82, 103.71, 64.11, 31.91, 29.64, 29.61, 

29.55, 29.35, 29.28, 28.70, 26.08, 22.68, 19.68, 14.10 ppm. LC/MS: MS(-ESI) m/z (rel. 

intensity): 676 ([M-H]
-
, 100). 
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Didodecyl 2,6-bis(bromomethyl)-4-[4-(trifluoromethyl)phenyl]-1,4-dihydropyridine-3,5-

dicarboxylate (40). 

In a 10 mL RB was weighed 0.68 g (0.001 mol) of compound 39 and dissolved in 5 mL MeOH. 

NBS 0.36 g (0.002 mol) was added and the reaction mixture was sonicated in an unltrasonic bath 

for 14 min. The MeOH was removed on a rotary evaporator and the residue was triturated with 

carbontetrachloride to precipitate succinimide. The solids were filtered and the solvent removed 

to give the crude dibromide as an orange oil 1.05 g in quantitative yield. C40H60Br2F3NO4 MW  

835.71. 
1
H NMR 200 MHz (CDCl3): δ =7.49 (d, J=9.0 Hz, 2H, Ar), 7.37 (d, J=9.0 Hz, 2H, Ar), 

6.57 (br s, 1H, NH), 5.08 (s, 1H, CHAr), 4.86 (d, J=11.4 Hz, 1H, CH2Br), 4.66 (d, J=11.4 Hz, 

1H, CH2Br),  4.07 (t,  J=6.6 Hz, OCH2), 1.58-1.54 (m, 4H OCH2CH2), 1.32-1.23 (m, 36H, 

(CH2)9CH3), 0.87 (t, J=6.8 Hz, 6H, CH3). 
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1,1’-[(3,5-Bis(dodecyloxycarbonyl)-4--[4-(trifluoromethyl)phenyl]-1,4-dihydropyridin-2,6-

diyl)bis(methylene)] bis(pyridinium) bromide (41). 

The above crude dibromide 40, 1.05 g (0.001 mol) was dissolved in diethyl ether and 0.17 g 

(0.002 mol) pyridine was added. The mixture was stirred overnight and the precipitated product 

was filtered through a glass fritted funnel, washed with diethyl ether and dried to give 0.61 g of a 

white powder in 73% yield. Mp 174-186°C. C50H70Br2F3N3O4 MW 993.91. 
1
H NMR 400 MHz (CDCl3): δ =11.04 (br s, 1H, NH), 9.38 (d, 4H, J=6.1 Hz, 4H, Py), 8.56 (t, 

J=8.0 Hz, 2H, Py), 8.19 (m, 4H, Py), 7.55 (d, J=8.0 Hz, 2H, Ar), 7.46 (d, J=8.0 Hz, 2H, Ar), 6.39 

(d, J=13.8 Hz, 4H, CH2PyBr), 5.92 (d, J=13.8 Hz, 4H, CH2PyBr), 5.17 (s, 1H, CHAr), 4.05 (t,  

J=6.9 Hz, OCH2), 1.58-1.54 (m, 4H OCH2CH2), 1.32-1.23 (m, 36H, (CH2)9CH3), 0.87 (t, J=6.9 

Hz, 6H, CH3). 
13

C-NMR 100.3 MHz (CDCl3): δ = 166.08, 149.30, 146.31, 145.08, 138.41, 

128.84, 128.76, 125.53, 125.50, 125.37, 123.94 (q, J=272 Hz, CF3), 109.91, 65.65, 57.34, 40.02, 

31.89, 29.62, 29.56, 29.34, 29.26, 28.39, 25.98, 22.66, 14.09 ppm. 
19

F NMR (CDCl3): δ= -62.41. 

LC/MS: MS(+ESI) m/z (rel. intensity): 834 ([M-2Br]
+
, 50). 
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3,5-Bis(dodecyloxycarbonyl)-2,6-dimethyl-1,4-dihydropyridine-4-carboxylic acid (42). 

In a 100 mL RB flask was place glyoxylic acid monohydrate 0.92 g (0.01 mol) and dodecyl 3-

aminobut-2-enoate (26) 5.4 g (0.02 mol) the components were dissolved in glacial acetic acid, 

the flask was stoppered and the contents stirred magnetically for 3 days. The reaction mixture 

was poured into ice water and the precipitated product filtered and washed with ice cold water. 

The solid was recrystallized from EtOH and dried to give 1.37 g of a pale yellow powder in 24% 

yield. Mp. 57-64°C C34H59NO6  MW 577.84 Composition C(70.67) H(10.29) N(2.42) O(16.61) 
1
H NMR 200 MHz (CDCl3): δ =6.74 (br s, 1H, NH), 4.62 (s, 1H, CHCO2H), 4.16 (t, J=6.6 Hz, 

4H, OCH2), 2.24 (s, 6H, CH3), 1.65 (m, 4H, OCH2CH2), 1.25 (m, 36H, (CH2)9), 0.87 (t, J=6.6 

Hz, CH3). 

 
(CF2)7CF3

O  
 
5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecanal (44). 

5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorodododecan-1-ol (16) 3.59 g (0.0072 

mol) was dissolved in 50 mL DCM and in about 10 min. added drop-wise with stirring to a 45 

mL DCM solution containing Dess-Martin periodinane 3.71 g (0.0086 mol). After 2h 100 mL of 

diethyl ether was added and the solution passed through a silica plug. The solvent was removed 

using a rotary evaporator to give 3.29g of a yellow oil 93% which solidified in the fridge. 

C12H7F17O MW 490.6. 
1
H NMR 200 MHz (CDCl3): δ =9.80 (s, 1H, CHO), 2.60 (t, J=7 Hz, 2H,  

OCHCH2), 2.27-1.70 (m, 4H, CH2CH2CF2). GC/MS : 490 [M-H]
+
. 
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4-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-Heptadecafluoro-undecyl)-2,6-dimethyl-1,4-dihydro-

pyridine-3,5-dicarboxylic acid didodecyl ester (45). 

A solution of thionyl chloride 0.71g (6mmol) in 6 mL DCM was cooled to 0°C. Then a solution 

of pyridine 0.47g (6mmol) in 3 mL DCM was added dropwise followed by the aldehyde 2.45g 

(5mmol) in 3 mL DCM and the mixture was stirred for 1h –then 3.5g (13mmol) of the enamine 

was slowly added and reacted overnight. The DCM was evaporated using a rotary evaporator 

and the residue subjected to a silica gel column using 10% EtOAc in Hexane as eluant to provide 

a yellow oil 3.17g in 63.8% yield. C44H64F17NO4  MW 993.96   
1
H NMR 400 MHz (CDCl3): δ =5.76 (br s, 1H, NH), 4.10 (t,  J=6.4 Hz, 4H, OCH2), 3.63 (t, 

J=6.4 Hz, 1H, CH), 2.29 (s, 6H, =CCH3), 2.07-1.94 (m, 2H, CH2CF2), 1.67-161 (m, 6H, 

OCH2CH2 and CHCH2), 1.54-1.48 (m, 2H, CH2CH2CF2), 1.37-1.20 (m, 36H, (CH2)9), 0.87 (t, 
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J=7.2 Hz, CHCH3). 
13

C-NMR 100.3 MHz (CDCl3): δ =167.82, 145.24, 102.66, 63.97, 36.15, 

32.50, 31.89, 30.96 (t, J=21.97 Hz, CH2CF2), 29.63, 29.58, 29.34, 29.29, 28.76, 26.15, 22.65, 

19.41, 14.03 ppm. LC/MS: MS(-ESI) m/z (rel. intensity): 993 ([M-H]
-
, 100). 
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2,6-Bis-bromomethyl-4-(4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,11-heptadecafluoroundecyl)-1,4-

dihydropyridine-3,5-dicarboxylic acid didodecyl ester (46). 

1.03g (1mmol) A dissolved in MeOH and CHCl3 0.37g (2mmol) NBS added and sonicated for 

about 20min. The solvent was removed on the rotary evaporator and to the residue was added 

CCl4 and filtered to remove the succinamide to give the dibromide as a yellow syrup 1.35g, 

theoretical 1.15. MW 1151.75 By spectra looks like got the oxidation product!!! 
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Bis(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) 1,4-dihydro-2,6-

dimethyl-4-ethylpyridine-3,5-dicarboxylate (47). 
In a 50 mL RB was placed 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl 3-

oxobutanoate (17) 5.00 g (0.0087 mol), propionaldehyde 0.25 g (0.0043 mol) and ammonium 

acetate 0.50 g (0.0065 mol). The mixture was dissolved in 25 mL abs. EtOH and 5 drops of 

glacial acetic acid were added. The mixture was refluxed for 4 h and after cooling deposited a 

yellow precipitate. The precipitate was filtered and recrystallized from EtOH to give a white 

powder 2.85 g in 56% yield. 

C35H29F34NO4  MW 1173.55. 
1
H NMR 200 MHz (CDCl3): δ =5.53 (br s, 1H, NH), 4.15-3.95 (m, 

4H, 3,5-CO2CH2), 3.89 (t, J=7.7 Hz, 1H, 4-CH), 2.31 (s, 6H, 2.6-CH3), 2.17-1.99 (m, 4H, 3,5-

CH2CF2), 1.75 (m, 2H, 4-CHCH2), 1.57-1.31 (m, 8H, 3,5-CH2CH2), 0.74 (t, J=7.6 Hz, 3H,  

CH2CH3). 
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Bis(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl) 1,4-dihydro-2,6-

dimethyl-4-ethylpyridine-3,5-dicarboxylate-2,6-dipyridinium bromide (49). 

In a 50 mL RB was weighed DHP 47 1.20 g (0.0010 mol) and dissolved in dry chloroform. To 

this solution was added NBS 0.36 g (0.0020 mol) in portions. After all the NBS was added the 

reaction mixture was stirred for 1h. The solution was transferred to a separatory funnel and 

washed with water to remove the succinimide. The layers were separated and the chloroform 

phase was dried with MgSO4 filtered and the chloroform removed on the rotary evaporator to 

give the dibrominated DHP 48 as a yellow compound 1.37 g in quantitative yield. The product 

was not purified further. In a 25 mL RB was placed 1.37 g (0.0010 mol) of compound 48, 

dissolved in dry acetone and 0.15 g (0.0021 mol) of dry pyridine was added. The flask was 

stoppered and stirred magnetically overnight. The precipitated product was filtered and washed 

with diethyl ether to give 0.73 g of a pale yellow product in 48% yield.  

C45H37Br2F34N3O4 FW 1489.55 
1
H NMR 200 MHz (CDCl3): δ =11.01 (br s, 1H, NH), 9.29 (d, 4H, J=5,8 Hz, 4H, Py), 8.57 (t, 

J=7.2 Hz, 2H, Py), 8.19 (m, 4H, Py), 6.38 (d, J=14 Hz, 4H, CH2PyBr), 5.76 (d, J=14 Hz, 4H, 

CH2PyBr), 4.29-4.02 (m, 4H, 3,5-CO2CH2), 3.89 (t, J=7.7 Hz, 1H, 4-CH), 2.17-1.99 (m, 4H, 3,5-

CH2CF2), 1.75 (m, 2H, 4-CHCH2), 1.58-1.31 (m, 8H, 3,5-CH2CH2), 0.73 (t, J=7.6 Hz, 3H,  

CH2CH3). LC/MS: MS(+ESI) m/z (rel. intensity): 1330 ([M-2Br]
+
, 70). 
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5-Methoxycarbonyl-6-methyl-4-phenyl-3,4-dihydro-2(1H)-pyridone (50). 

A mixture of benzaldehyde (40 mmol), Meldrum's acid (40 mmol), methyl acetoacetate (40 

mmol), and ammonium acetate (42 mmol) in acetic acid (40 mL) was refluxed for 10 h. and 

then poured into ice-water. The solid that precipitated was collected by filtration. Further 

purification was accomplished by recrystallization from ethanol. 59 % yield, m.p, 197-198°C 

 νmax/cm
-1

 3209 (NH), 1706 (C=O, ester), 1685 (C=O) and 1619 (C=C); 
1
H-NMR(CDCl3): δ= 

8.66 (br s, 1H, NH), 7.50-7.22 (m, 5H, Ph), 4.25 (dd, 1H,  H-4, J = 8.4 Hz, J = 1.5 Hz, X part of 

ABX), 3.64 (s, 3H, OCH3), 3.01 (dd, 1H,  H-3, J = 16.5 Hz, J = 8.4 Hz, A part of ABX), 2.70 

(dd, 1H,  H-3', J = 16.5 Hz, J = 1.9 Hz, B part of ABX) and 2.39 (s, 3H, CH3). Anal Calcd. for 

C14H15NO3 (245.28) C, 68.56; H, 6.16; N, 5.71. Found: C, 68.62; H, 6.21;  

N 5.92. 
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Methyl 2-methyl-6-oxo-4-phenyl-1,6-dihydropyridine-3-carboxylate (95). 

This compound was synthesized by oxidation electrolytically of the above compound by passing 

2.2 V  in acetonitrile for 24 h. The solvent was evaporated and the residue recrystallized from 

EtOH  providing almost quantitative yield of white crystals. 

C14H13NO3 MW 243.26 Composition C(69.12) H(5.39) N(5.76) O(19.73) 
1
H-NMR 400 MHz (CDCl3): δ= 7.42-7.27 (m, 5H, Ph),  6.44 (s, 1H, =CH), 3.48 (s, 3H, OCH3), 

2.55 (s, 1H, CH3). 
13

C-NMR 100.3 MHz (CDCl3): δ=167.43, 164.61, 154.69, 147.54, 139.02, 

128.64, 128.47, 126.90, 116.90, 112.70, 51.84, 18.14 ppm. 

 

N
H

O

O

O

Br  
5-Methoxycarbonyl-6-bromomethyl-4-phenyl-3,4-dihydro-2(1H)-pyridone (74). 

1.5g (0.006 mol) of 5-Methoxycarbonyl-6-methyl-4-phenyl-3,4-dihydro-2(1H)-pyridone in 50 

ml RB was dissolved in 25 ml chloroform and while being stirred 4.20 ml of 0.232 g/ml solution 

of Br2 in chloroform (0.006 mol) was added drop-wise. The flask was stoppered and stirred for 

30 min. The solvent was removed on a rotary evaporator and the residual 1.98g orange syrup was 

dissolved in MeOH and left to crystallize. After several days the deposited crystals were washed 

with cold MeOH to give a yellowish compound 1.51g in 76% yield. Mp.237-240°C. 

 
1
H-NMR 400 MHz (CDCl3): δ= 8.63 (br s, 1H, NH), 7.29-7.17 (m, 5H, Ph), 4.75 (d, J=10.7 Hz, 

1H CHBr), 4.61 (d, J=10.7 Hz, 1H CHBr), 4.30 (dd, J= 8.1 and 1.9 Hz, 1H, CHPh), 3.69 (s, 3H, 

OCH3), 2.95 (dd, J=16.7 and 8.01 Hz, 1H, CHHCO), 2.73 (dd, J=16.7 and 1.9 Hz, 1H, , 

CHHCO). 
13

C-NMR 100.3 MHz (CDCl3): δ=170.62, 166.16, 144.68, 140.91, 128.98, 127.32, 

126.629, 109.45, 52.04, 37.90, 26.20 ppm. 

 

N
H

O

O

O

 

5-Oxo-4-phenyl-1,2,3,4,5,7-hexahydrofuro[3,4-b]-2(1H)-pyridone (97). 

A solution of 5-methoxycarbonyl-6-methyl-4-phenyl-3,4-dihydro-2(1H)-pyridone (1,15g, 5 

mmol), N-bromosuccinimide (0.89g, 5 mmol), in 10 ml of dry chloroform was refluxed for 12 

hours. The reaction mixture was cooled and the solid that precipitated was collected by 
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filtration. Further purification was accomplished by recrystallization from ethanol. 55 % yield, 

m.p.239-240°C; 
1
H-NMR (DMSO-d6) δ= 10.74 (s, 1H, NH); 7.35-7.18 (m, 5H, aryl protons), 

4.91 (dd, 2H, OCH2), 4.01 (dd, 1H, H-4 J= 8.9 Hz, J= 3.8 Hz, X part of ABX), 3.12 (dd, 1H, 

H-3a, J= 16.7 Hz, J= 8.9 Hz, A part of ABX), 2.57 (dd, H-3b, J= 16.6 Hz, J= 3.7 Hz, B part of 

ABX); 
13

C-NMR (DMSO-d6) δ= 170.9 (C2), 169.6 (C5), 160.7 (C7a), 144.8, 128.7(2C), 126.9, 

126.5 (2C) (aryl), 101.7(C4a), 65.3(C7), 38.5(C3), 33.3 (C4). 

Anal Calcd. for C13H11NO3 (229.24) C, 68.05; H, 4.80; N, 6.11. Found: C, 68.22; H, 4.92; N 

5.99. 

 

N
H

O

O

O

CH3

N
+

Br
-

 
1-((3-Methoxycarbonyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridin-2-yl)methyl)pyridinium 

bromide (79). 

5-Methoxycarbonyl-6-bromomethyl-4-phenyl-3,4-dihydro-2(1H)-pyridone 0.33g (0.001mol) 

was dissolved in 5 mL dry acetone in a 10 mL RB and 0.08g (0.001mol) pyridine was added. 

The flask was stoppered and stirred for 2 days. The solid was filtered on a glass fritted funnel 

and washed with diethyl ether to give a white fine powder 0.41g in 58.5% yield. 

C19H19BrN2O3 MW. 403.27, Mp. 189-191°C. 
1
H-NMR 400 MHz (CDCl3): δ= 10.67 (br s, 1H, NH), 9.55 (d, J=5.6 Hz, 2H, Py), 8.55 (t, J=7.6 

Hz, 1H, Py), 8.14 (t, J=7.2 Hz, 2H, Py), 7.30-7.23 (m, 5H, Ph), 6.42 (d, J=13.6 Hz, 1H, HCPy), 

6.19 (d, J=13.6 Hz, 1H, HCPy), 4.24 (dd, J=2 Hz and J=8.4 Hz , 1H, CHPh), 3.67 (s, 3H, 

OCH3), 3.02 (dd, J=7.6 Hz and 16.4 Hz, 1H, CH2CO), 2.62 (dd, J=1.6 Hz and J=16.4 Hz, 1H, 

CH2CO). 
13

C-NMR 100.3 MHz (CDCl3): δ= 168.93, 166.60, 145.77, 145.13, 141.24, 140.51, 

128.77, 128.12, 127.13, 126.23, 112.42, 57.21, 52.14, 37.82, 37.61ppm. LC/MS: MS(+ESI) m/z 

(rel.intensity): 323 ([M-Br]
+
, 100). 

 

N
H

O

O

O

CH3

N
+

ClO4

-

 
 

1-((3-Methoxycarbonyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridin-2-yl)methyl)pyridinium 

perchlorate (79b). 

In a 25 mL RB flask was weighed the above DHPOD pyridinium bromide 0.45g (0.0011 mol) 

and dissolved in abs. EtOH. While the mixture was stirred conc. HClO4 was added by drops (15 
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drops). The white solid was filtered and washed with diethyl ether to give 0.26g of a white 

powder in 55% yield. 

C19H19ClN2O7 MW 422.82 Composition  C(53.97) H(4.53) Cl(8.38) N(6.63) O(26.49) 
1
H-NMR 200 MHz (CDCl3): δ= 10.15 (br s, 1H, NH), 9.32 (d, J=6.0 Hz, 2H, Py), 8.39 (t, J=8.0 

Hz, 1H, Py), 8.03 (t, J=6.0 Hz, 2H, Py), 7.30-7.14 (m, 5H, Ph), 6.35 (d, J=14.0 Hz, 1H, HCPy), 

5.98 (d, J=14.0 Hz, 1H, HCPy), 4.23 (d, J=8 Hz, 1H, CHPh), 3.63 (s, 3H, OCH3), 3.09 (dd, 

J=8.0 Hz and 16.0 Hz, 1H, CH2CO), 2.58 (d, J=16.0 Hz, 1H, CH2CO). 

 

N
H

O

O

O

CH3

N
+

ClO4

-

 
1-{[3-(Methoxycarbonyl)-6-oxo-4-phenyl-1,6-dihydropyridin-2-yl]methyl}pyridinium 

perchlorate (96). 

C19H17ClN2O7 MW 420.80 Composition C(54.23) H(4.07) Cl(8.43) N(6.66) O(26.61) 
1
H-NMR 400 MHz (CDCl3): δ= 10.15 (br s, 1H, NH), 9.22 (d, J=6.0 Hz, 2H, Py), 8.44 (t, J=7.0 

Hz, 1H, Py), 8.11 (t, J=7.0 Hz, 2H, Py), 7.41-7.37 (m, 5H, Ph), 6.65 (s, 1H, =CH), 5.86 (s, 2H, 

H2CPy), 3.49 (s, 3H, OCH3). 
13

C-NMR 100.3 MHz (CDCl3,): δ=167.67, 163.70, 153.61, 146.11, 

145.48, 145.03, 138.07, 128.76, 128.47, 128.21, 126.98, 118.04, 115.84, 61.45, 52.59 ppm. 

LC/MS: MS(+ESI) m/z (rel.intensity): 321 ([M-ClO4]
+
, 100). 

 

N
H

O

O

CH3

O

N
+ CH3

CH3

CH3

Br
-

 
N-((3-(methyloxycarbonyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridin-2-yl)methyl-N,N-

dimethyldodecan-1-aminium bromide (87). 

Following the general synthesis there was obtained 79% yield of a white solid. C28H45BrN2O3 

MW 537.57 
1
H-NMR 400 MHz (CDCl3): δ=10.18 (br s, 1H, NH), 7.29-7.12 (m, 5H, Ph), 5.46 (d, J=12 Hz 

1H, CHN
+
), 5.15 (d, J=12 Hz, 1H, CHN

+
), 4.28 (m, 1H, CHPh), 3.62 (s, 3H, OCH3), 3.60-3.34 

(m, 2H, NCH2 and 6H, N(CH3)2), 2.58-2.54 (m, 2H, NCOCH2), 1.36-1.27 (m, 20H, (CH2)10), 

0.89 (t, J=8 Hz, 6H, CH3).
  13

C-NMR 100.3 MHz (CDCl3,): δ=167.08, 164.73, 138.83, 136.99, 

127.08, 125.32, 124.73, 114.42, 66.33, 56.49, 50.28, 36.50, 29.97, 27.66, 27.65, 27.52, 27.39, 

20.75, 12.19 ppm. LC/MS: MS(+ESI) m/z (rel.intensity): 457 ([M-Br]
+
, 100). 
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1-((3-Methoxycarbonyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridin-2-

yl)methyltriphenylphosphonium bromide (93). 
5-Methoxycarbonyl-6-bromomethyl-4-phenyl-3,4-dihydro-2(1H)-pyridone 2.12g (0.0065mol) 

was dissolved in 25 mL dry acetonitrile and 1.72 g (0.0066mol) of triphenylphosphine was 

added. The reaction mixture was stirred at 40°C for 2h by which time the whole mixture 

solidified. The mixture was put in fridge to cool and then filtered and washed with cold EtOH. 

After drying the white powder weighed 3.16g or 82.3% of theoretical yield. 

C32H29BrNO3P MW. 586.46, Mp. 211-213°C. 
1
H-NMR 400 MHz (CDCl3): δ= 10.08 (br s, 1H, NH), 7.88-7.61 (m, 15H, PPh3), 7.25-7.07 (m, 

5H, Ph), 5.98 (t, J=14.4 Hz, 1H, CHP), 5.70 (t, J=14.4 Hz, 1H, CHP) 3.97 (dd, J=4.4 Hz , 1H, 

CHPh), 3.24 (s, 3H, OCH3), 2.70 (dd, J=8.4 Hz and 8 Hz, 1H, CH2CO), 2.49 (d, J=16.4 Hz, 1H, 

CH2CO). 
13

C-NMR 100.3 MHz (CDCl3): δ= 168.02, 166.49, 135.19 (d, J=3.2 Hz, CP),134.63, 

134.52, 130.03, 129.90, 128.95, 127.21, 126.77, 117.83, 116.96, 111.45 (d, J=9.2 Hz, CP), 

51.54, 37.80, 37.39, 27.45, 26.98 ppm. TLC silica, 5%EtOH/CHCl3 Rf=0.6. LC/MS: MS(+ESI) 

m/z (relat. intensity): 506 ([M-Br], 100). 

 

N
H

O

O

O

F2HCO

 
 

Methyl 4-[2-(difluoromethoxy)phenyl]-2-methyl-6-oxo-1,4,5,6-tetrahydropyridine-3-

carboxylate (52). 

C15H15F2NO4  MW 311.28 Mp. 206-208°C. Composition C(57.88) H(4.86) F(12.21) N(4.50) 

O(20.56) 
1
H-NMR 400 MHz (CDCl3): δ=8.03 (br s, 1H, NH), 7.23 (m, 1H, Ar), 7.12 (m, 3H, Ar), 6.57 (t, 

J=74.1 Hz, 1H, OCHF2), 4.63 (d, J=8.4 Hz, 1H, CHAr), 3.61 (s, 3H, OCH3), 2.90 (dd, J=8.5 and 

16.6 Hz, 1H, CHHCO), 2.64 (ddd, J=16.6, 1.9, and 1.0 Hz, 1H, CHHCO), 2.45 (s, 3H, CH3). 
13

C-NMR 100.3 MHz (CDCl3,): δ=170.50, 167.02, 149.00, 147.42, 132.51, 128.48, 127.64, 

125.61, 118.77, 116.41 (t, J=258.2 Hz, CF2), 105.67, 51.44, 36.86, 31.94, 19.13 ppm. 
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Methyl 2-(bromomethyl)-4-[2-(difluoromethoxy)phenyl]-6-oxo-1,4,5,6-tetrahydropyridine-

3-carboxylate (67). 

C15H14BrF2NO4  MW 390.18 

Composition  C(46.17) H(3.62) Br(20.48) F(9.74) N(3.59) O(16.40) 
1
H-NMR 400 MHz (CDCl3): δ=7.83 (br s, 1H, NH), 7.25 (m, 1H, Ar), 7.15 (m, 3H, Ar), 6.58 (t, 

J=73.9 Hz, 1H, OCHF2), 5.04 (d, J= 11.06 Hz, 1H, CH2Br), 4.69 (dd, J=8.41 and 1.64 Hz, 1H, 

CHAr), 4.49 (d, J= 11.06 Hz, 1H, CH2Br), 3.65 (s, 3H, OCH3), 2.95 (dd, J=8.3 and 16.5 Hz, 1H, 

CHHCO), 2.68 (ddd, J=16.8, 1.7, and 0.83 Hz, 1H, CHHCO). 
13

C-NMR 100.3 MHz (CDCl3,): 

δ=169.44, 165.90, 148.86, 145.26, 131.61, 128.79, 127.33, 125.81, 118.70, 116.30 (t, J=258.6 

Hz, CF2), 108.42, 52.06, 36.64, 31.93,26.15 ppm. 
 

N
H

O

O

OBr

O

F2HCO

 
 
Methyl (2R,3R)-3-bromo-4-[2-(difluoromethoxy)phenyl]-2-methoxy-2-methyl-6-

oxopiperidine-3-carboxylate and (2S, 3S) racemate (66). 

C16H18BrF2NO5 MW 422.22 
1
H-NMR 200 MHz (CDCl3): δ=7.81 (br s, 1H, NH), 7.35-6.90 (m, 4H, Ar), 6.55 (t, J=71.4 Hz, 

1H, OCHF2), 4.97 (dd, J=11 and 8.2 Hz, CHAr), 3.84 (s, 3H, CO2CH3), 3.48 (s, 3H, OCH3), 3.07 

(dd, J=18.4, and 11.2 Hz, 1H, CH2), 2.72 (dd, J=18.4, and 8 Hz, 1H, CH2), 2.48 (s, 3H, CH3). 

LC/MS: MS(+ESI) m/z (relative intensity): 392 ([M-OCH3]
+ 

100). 

N
H

O

O

O

F2HCO

N
+

Br
-

 
1-({4-[2-(Difluoromethoxy)phenyl]-3-(methoxycarbonyl)-6-oxo-1,4,5,6-tetrahydropyridin-

2-yl}methyl)pyridinium bromide (80). 

C20H19BrF2N2O4 MW 469.28 Mp. 181-183°C Composition C(51.19) H(4.08) Br(17.03) F(8.10) 

N(5.97) O(13.64) 
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2-Propoxyethyl 4-[2-(difluoromethoxy)phenyl]-2-methyl-6-oxo-1,4,5,6-tetrahydropyridine-

3-carboxylate (53). 

C19H23F2NO5 MW 383.9 Mp. 136-138°C.  
1
H-NMR 400 MHz (CDCl3): δ=7.89 (br s, 1H, NH), 7.22 (m, 1H, Ar), 7.09 (m, 3H, Ar), 6.58 (t, 

J=72.8 Hz, 1H, OCHF2), 4.64 (d, J=8.4 Hz, 1H, CHAr), 4.14 (t, J=4.8 Hz, 2H, CO2CH2), 3.47 

(m, 2H, CH2O), 3.24 (t, J=6.8 Hz, 2H, OCH2),  2.91 (dd, J=8.4 and 16.8 Hz, 1H, CHHCO), 2.63  

(dd, J=16.8,  and 2.0 Hz, 1H, CHHCO), 2.45 (s, 3H, CH3), 1.47 (m, 2H, CH2CH3), 0.83 (t, J=7.6 

Hz, 3H, CH2CH3). 
13

C-NMR 100.3 MHz (CDCl3,): δ=170.45, 166.60, 149.22, 147.62, 132.84, 

128.58, 127.81, 125.83, 119.24, 116.76 (t, J=271.0 Hz, CF2), 105.82, 72.94, 68.54, 63.67, 37.01, 

32.17, 22.86, 19.35, 10.56 ppm. 
 

N
H

O

O

(CH2)11CH3

O

 
Dodecyl 2-methyl-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (55). 

In a 100 mL RB flask was placed Meldrum’s acid 2.88g (0.02 mol), benzaldehyde 2.12g (0.02 

mol), dodecyl acetoacetate 5.41g (0.02 mol), and ammonium acetate 2.1g (0.025 mol) in 25 mL 

glacial acetic acid. The contents was stirred magnetically and refluxed for 8 hours. The solution 

was cooled and left stirring overnight then poured in ice-water which gave an orange syrup. The 

reaction mixture was extracted with EtOAc 3X60 mL, washed with brine, dried with MgSO4, 

filtered and the solvent removed with a rotary evaporator which left an orange syrup (9.77g). The 

syrup was transferred to an Erlenmeyer flask with EtOH and put in the freezer to crystallize. The 

precipitated solid was filtered and washed with cold EtOH and after drying in air gave a light 

yellow flakes 1.84g, 23% yield, m.p. 79-80°C. 

C25H37NO3  MW 399.57 Composition C (75.15) H(9.33) N(3.51). Found: C(75.01) H( 9.49) 

N(3.41). 
1
H-NMR 400 MHz (CDCl3): δ= 7.99 (br s, 1H, NH), 7.27-7.14 (m, 5H, Ph), 4.23 (d, J=7.2 Hz, 

1H, HCPh), 4.07-3.99 (m, 2H CO2CH2), 2.92 (dd, J=8.0 Hz and 16.4 Hz, 1H, CH2CO), 2.68 (d, 

J=16.2 Hz, 1H, CH2CO), 2.40 (s, 3H, CH3),  1.52-1.47 (m, 2H, CO2CH2CH2), 1.24-1.15 (m, 

18H, (CH2)9), 0.87 (t, J=6.4 Hz, 3H, CH2CH3). 
13

C-NMR 100.3 MHz (CDCl3,): δ=170.72, 

166.88, 145.95, 142.09, 128.70, 126.91, 126.62, 107.29, 64.35, 38.13, 37.99, 31.90, 29.61, 29.54, 

29.46, 29.33, 29.17, 28.57, 25.91, 22.67, 19.10, 14.10 ppm. 
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Dodecyl 2-(bromomethyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (75). 

In a 10 mL RB was placed 1g(0.0025mol) of the above dodecyl dihydropyridone and dissolved 

in 5 mL dry chloroform. The flask was cooled in ice and while stirring 0.4g (0.0025mol) Br2 in 1 

mL dry chloroform was added drop-wise and the mixture was left stirring for 1h. The chloroform 

was removed using a rotary evaporator and the residue was dissolved in MeOH and left in the 

freezer to crystallize. The precipitate was filtered and washed with cold MeOH and dried in air to 

give a white product 1.04g in 87% yield. Mp. 48-54°C. MW. 478.46 

Anal Calcd. for C25H36BrNO3 (478.46), Composition C(62.76), H(7.58), N(2.93). Found: 

C(63.15), H(7.50), N(2.85). LC/MS: MS(+ESI) m/z (relative intensity): 478 ([M+H]
+
 50). 

1
H-NMR 200 MHz (CDCl3): δ= 8.10 (br s, 1H, NH), 7.28-7.14 (m, 5H, Ph), 4.83 (d, J=10.2 Hz, 

1H, CHBr), 4.59 (d, J=10.2 Hz, 1H, CHBr), 4.27 (d, J=8.2 Hz, 1H, CHPh), 4.06 (t, J=6.4 Hz, 2H 

CO2CH2), 2.96 (dd, J=8.0 Hz and 17.0 Hz, 1H, CH2CO), 2.70 (d, J=16.6 Hz, 1H, CH2CO), 1.55-

1.49 (m, 2H, CO2CH2CH2), 1.24-1.15 (m, 18H, (CH2)9), 0.87 (t, J=6.4 Hz, 3H, CH3). 

 

N
H

O

O

O

N
+

CH3

Br
-

 
1-[3-(Dodecyloxycarbonyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydro-pyridin-2-ylmethyl]-

pyridinium bromide (81). 

Dodecyl 2-(bromomethyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate 0.48g 

(0.001mol) was dissolved in dry acetone 10 mL and pyridine 0.09g (0.0011mol) was added. The 

RB flask was stoppered and the mixture was stirred over the weekend, by which time a white 

solid had precipitated. After filtration and washing the solid with ethyl ether there was obtained 

0.46g of a white powder in 82% yield. 

C30H41BrN2O3 MW. 557.56, Mp. 147-149°C. Composition  C(64.62) H(7.41) Br(14.33) N(5.02) 

O(8.61), Found N(4.92) C(64.55) H(7.54). 
1
H-NMR 400 MHz (CDCl3): δ= 10.60 (br s, 1H, NH), 9.56 (d, J=6 Hz, 2H, Py), 8.49 (t, J=8.0 

Hz, 1H, Py), 8.14 (dd, J=6.0 Hz and J=8.0 Hz, 2H, Py), 7.30-7.13 (m, 5H, Ph), 6.40 (d, J=13.9 

Hz, 1H, HCPy), 6.30 (d, J=13.9 Hz, 1H, HCPy), 4.18 (d, J=5.8 Hz , 1H, CHPh), 4.00 (t, J=6.4 

Hz, 2H CO2CH2), 3.13 (dd, J=8.2 Hz and 16.6 Hz, 1H, CH2CO), 2.59 (d, J=16.6 Hz, 1H, 

CH2CO), 1.52-1.40 (m, 2H, CO2CH2CH2), 1.24-1.15 (m, 18H, (CH2)9), 0.87 (t, J=6.4 Hz, 3H, 

CH3). 
13

C-NMR 100.3 MHz (CDCl3,): δ= 169.22, 166.66, 145.83, 145.36, 141.38, 141.25, 

128.98, 128.46, 127.30, 126.64, 113.08, 65.44, 57.25, 38.46, 38.05, 31.90, 29.61, 29.54, 29.44, 

29.34, 29.13, 28.31, 25.76, 22.67, 14.10 ppm. LC/MS: MS(+ESI) m/z (relat. intensity): 477 ([M-

Br]
+
, 100). 
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N-((3-(dodecyloxycarbonyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridin-2-yl)methyl-N,N-

dimethyldodecan-1-aminium bromide (88). 

A general synthesis for obtaining these salts follows: in a 25 mL RB flask was placed 0.25g 

(0.00052 mol) of 5-methoxycarbonyl-6-bromomethyl-4-phenyl-3,4-dihydro-2(1H)-pyridone and 

dissolved in dry acetone (10 mL). While stirring 0.12 g (0.00052 mol) of N,N-dimethyldodecyl-

1-amine was added and the flask was stoppered. The mixture was stirred overnight and the 

precipitated solid was filtered and washed with diethyl ether to give 0.28g of a white solid in 

78% yield. C39H67BrN2O3 MW 691.86 Mp 152.8-154.0°C 
1
H-NMR 200 MHz (CDCl3): δ= 10.26 (br s, 1H, NH), 7.27-7.09 (m, 5H, Ph), 5.47 (d, J=12 Hz 

1H, CHN
+
), 5.20 (d, J=12 Hz, 1H, CHN

+
), 4.20 (d, J=5.8 Hz, 1H, CHPh), 4.15 (t, J=6 Hz, 2H, 

OCH2), 3.58-3.46 (m, 2H, NCH2), 3.41 (s, 6H, N(CH3)2), (2.82-2.55 (m, 2H, NCOCH2CH2), 

1.52-1.40 (m, 2H, CO2CH2CH2) 1.34-1.25 (m, 20H, (CH2)10), 1.24-1.15 (m, 18H, (CH2)9), 0.87 

(t, J=6 Hz, 6H, CH3). LC/MS: MS(+ESI) m/z (rel. intensity): 612 ([M-Br]
+
, 100). 
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C25H20F15NO3 MW.705.4 

5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl 2-methyl-6-oxo-4-phenyl-

1,4,5,6-tetrahydropyridine-3-carboxylate (56). 

An RB flask fitted with a water cooled condenser and a CaCl2 guard tube was charged with 

Meldrum’s acid 1.03 g (7.2 mmol), benzaldehyde 0.76 g (7.2 mmol), the above  perfluoroalkyl 

acetoacetate 4.13 g (7.2 mmol), ammonium acetate 0.83 g (10 mmol), and 12 mL glacial acetic 

acid. The reaction mixture was stirred magnetically and heated to reflux in an oil bath for 6.5 h, 

after which the heating was stopped and left stirring overnight. The reaction mixture was poured 

into ice water and extracted with 3x50 mL EtOAc, and washed with brine, dried with Na2SO4 

filtered and concentrated on the rotary evaporator to a light brown mass and after addition of 10 

mL EtOH was left in the fridge to crystallize. The crystals were filtered on a glass frit and 

washed with cold EtOH to yield a light yellow compound 1.59 g 31% yield with Rf 0.36 on a 

silica TLC  in 9:7:1 chloroform:petroleum ether:acetone under UV light mp 114-120°C. 
1
H 

NMR, 400 MHz (CDCl3): δ =7.53 (br s 1H, NH), 7.26 (t, 
3
JHH=7,8 Hz, 2H, m-Ph), 7.19 (t, 

3
JHH=7.8Hz, 1H, p-Ph), 7.15 (d, 

3
JHH=7,8 Hz, 2H, o-Ph), 4.23 (dm, 

3
JHH=8.1 Hz, 1H, C4H), 4.11 

and 4.03 (dt, 
2
JHH=11.5, 

3
JHH=6.0 Hz, 2H, AB-sys, OCH2)  2.71 (dd, 

2
JHH=16.5, 

3
JHH=8, C5HA), 

2.94 (ddd, 
2
JHH=16.5, 

3
JHH=2, 

4
JHH=0.9, C5HB), 2.43 (s, 3H, CH3), 1.96 (m, 2H, CH2CF2), 1.59 
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(m, 2H, OCH2CH2), 1.47 (m, 2H, CH2CH2CF2).
13

C NMR, 100.6 MHz (CDCl3): δ=170.04 (C6), 

166.65 (COO), 146.40 (C2), 141.95 (i-Ph), 128.79 (m-Ph), 127.05 (p-Ph), 126.50 (o-Ph), 120-

108 (6m, 8CF’s), 106.84 (C3), 63.21 OCH2), 38.23(C4), 38.16(C5), 30.50 (t, 
2
JCF=23Hz, 

CH2CF2), 28.10(OCH2CH2), 19.23 (CH3), 16.93 (CH2CH2CF2). 
19

F NMR (CDCl3): δ= -80.76 (t, 
3
JFF = 10.4 Hz, 3F, CF3), -114.4 (m, 2F CH2CF2), -121.72 (m, 2F CH2CF2CF2 ), -121.91 (m, 4F 

CF2C2F5 and CH2C2F4CF2), -122.69 (m, 2F CF3CF2), -123.51 (m, 2F C3F7CF2), -126.1 (m, 2F 

C4F9CF2,).LC-MS: MS(+ESI) m/z (relative intensity): 728 ([M+Na]
+
 100) actual C25H20F15NO3 

MW 705.40. 
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5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl 2-(bromomethyl)-6-oxo-4-

phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (76). 

The above dihydropyridone 0.71 g (1mmol) was dissolved in 5 mL chloroform. While stirring 

magnetically 0.7 mL of a 0.232 g/mL Br2 solution in chloroform (1mmol) was added drop-wise 

and the flask was stoppered and stirred 30 min. Then the flask contents were transferred to a 100 

mL round bottom flask with an additional chloroform wash and the solvent was removed on a 

rotary evaporator (foaming) and dissolved in about 1 mL MeOH and left to crystallize in the 

dark.  The precipitated solid was filtered after 3 days as a light yellow solid powder 0.57 g, 72% 

yield and mp 100-104°C. 
1
H NMR 400 MHz (CDCl3): δ =7.95 (bs, 1H, NH), 7.28 (t, 

3
JHH=7.8 

Hz, 2H, m-Ph), 7.21 (t, 
3
JHH=7.8Hz 1H, p-Ph), 7.15 (d, 

3
JHH=7.8 Hz, 2H, o-Ph), 4.88 (d, 

2
JHH=11.2 Hz, 1H, CHABr), 4.57 (dd, 

2
JHH=11.2, 

4
JHH=0.7 Hz, 1H, CHBBr ), 4.26 (dd, 

3
JHH=8, 

3
JHH=1.8 Hz, C4H), 4.15 and 4.07 (two dt, 

2
JHH=11.3, 

3
JHH=6.1 Hz, 2H, OCH2) 2.95 (dd, 

2
JHH=16.5, 

3
JHH=8.3 Hz, C5HA), 2.72 (ddd, 

2
JHH=16.5, 

3
JHH=2.1, 

4
JHH=0.9 Hz, C5HB), 1.96 (m, 

2H, CH2CF2), 1.60 (m, 2H, OCH2CH2), 1.47 (m, 2H, CH2CH2CF2). 
13

C NMR 100 MHz 

(CDCl3): δ=169.60 (C6), 165.57 (COO), 144.46 (C2), 141.01 (i-Ph), 129.02 (m-Ph), 127.38 (o-

Ph), 126.44 (o-Ph), 120-108 (6br m, 8CF’s), 109.41 (C3), 63.95 (OCH2), 38.33 (C4), 38.04 (C5), 

30.34 (t, 
2
JCF=22.5 Hz, CH2CF2), 27.93 (OCH2CH2), 26.16 (CH2Br), 16.90 (CH2CH2CF2). 

19
F 

NMR 376.2 MHz (CDCl3): δ= -80.78 (t, 
3
JFF = 10.4 Hz, 3F, CF3), -114.34 (m, 2F, CH2CF2), -

121.73 (m, 2F, CH2CF2CF2), -121.91 (m, 4F, CF2C2F5 and CH2C2F4CF2), -122.71 (m, 2F, 

CF3CF2), -123.51 (m, 2F, C3F7CF2), -126.1 (m, 2F, C4F9CF2,). LC-MS: MS(+ESI) m/z (relative 

intensity): 806 ([M+Na]
+
 100) actual C25H19BrF15NO3 MW 784.30. 
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1-[3-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluoro-dodecyloxycarbonyl)-6-oxo-4-

phenyl-1,4,5,6-tetrahydro-pyridin-2-ylmethyl]-pyridinium bromide (82). 

0.30g (0.38 mmol) of the above compound (3) was dissolved in 0.5mL dry acetone and while 

stirring magnetically 2-3 drops (> 2 equiv.) dry pyridine were added and the flask was stoppered. 

The reaction mixture was left stirring overnight, filtered and the solid was washed with diethyl 

ether to provide 0.26g of a white powder in 79% yield, mp 145-151°C. 

 
1
H NMR 400 MHz (CDCl3): δ = 10.56 (bs, 1H, NH), 9.51 (d, 

3
JHH=5.6 Hz, 2H, o-Py), 8.42 (t, 

3
JHH=7.6 Hz, 1H, p-Py), 8.12 (dd, 

3
JHH=7.6, 

3
JHH=5.6 Hz, 2H, m-Py), 7.25 (t, 

3
JHH=7.6 Hz, 1H. 

m-Ph), 7.21 (t, 
3
JHH=7.6 Hz, 1H, p-Ph), 7.14 (d, 

3
JHH=7.6 Hz, 2H, o-Ph), 6.39 and 6.25 (two d, 

2
JHH=13.5 Hz, 2H, AB-syst, CH2Py), 4.18 (dd, 

3
JHH=6.4 Hz, 

4
JHH=1.5, 1H, C4H), 4.06 and 4.02 ( 

two dt, 
2
JHH=11.3, 

3
JHH=5.4 Hz, 2H, AB-syst, OCH2), 3.16 (dd, 

2
JHH=16.1 , 

3
JHH=7.7 Hz, 1H, 

CHACOO), 2.57 (d, 
2
JHH=16.1 Hz, 1H, CHBCOO), 1.94 (m, 2H, CH2CF2), 1.54 (m, 2H, 

CH2CH2O), 1.37 (m, 2H, CH2CH2CF2). 
13

C NMR, 100 MHz (CDCl3): δ=169.29 (C6), 166.47 

(COO), 145.97 (p-Py), 145.40 (o-Py), 141.74 (C2), 141.14 (i-Ph), 129.05 (m-Ph), 128.56 (m-Py), 

127.39 (p-Ph), 126.53 (o-Ph), 120-108 (6bm, 8CF’s), 112.78 (C3), 64.33 (OCH2), 57.42 (C2CH2), 

38.59 (C4), 38.29 (C5), 30.28 (t, 
2
JCF=22.3Hz, CH2CF2), 27.87 (OCH2CH2), 16.83 (CH2CH2CF2). 

19
F NMR, 376.2 MHz (CDCl3): δ= -80.78 (t, 

3
JFF = 9.3 Hz, 3F, CF3), -114.32 (m,

 
2F, CH2CF2), 

121.73 (m, 2F, CH2CF2CF2), -121.91 (m, 4F, CF2C2F5 and CH2C2F4CF2,), -122.71 (m, 2F, 

CF3CF2,), -123.51 (m, 2F, C3F7CF2), -126.11 (m, 2F, C4F9CF2,). LC-MS: MS(+ESI) m/z 

(relative intensity): 784 ([M-Br]
+
 100) actual C30H24BrF17N2O3  MW 863.40. 
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N-((3-((5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyloxy)carbonyl)-6-oxo-

4-phenyl-1,4,5,6-tetrahydropyridin-2-yl)methyl-N,N-dimethyldodecan-1-aminium bromide 

(89). 

Using the general synthesis there was obtained a white solid in 63% yield. C39H50BrF17N2O3 

MW 997.70 Mp. 173.1-174.1°C. 
1
H NMR 400 MHz (CDCl3): δ = 10.26 (br s, 1H, NH), 7.27-7.09 (m, 5H, Ph), 5.47 (d, J=12 Hz 

1H, CHN
+
), 5.20 (d, J=12 Hz, 1H, CHN

+
), 4.20 (d, J=5.8 Hz, 1H, CHPh), 4.15 (t, J=6 Hz, 2H, 

OCH2), 3.58-3.46 (m, 2H, NCH2), 3.41 (s, 6H, N(CH3)2), 2.82-2.55 (m, 2H, NCOCH2CH2), 
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2.25-1.80 (m, 2H, CH2CF2), 1.78-1.69 (m, 4H, CH2, CH2), 1.34-1.25 (m, 20H, (CH2)10), 0.87 (t, 

J=6 Hz, 3H, CH3) LC-MS: MS(+ESI) m/z (relative intensity): 918 ([M-Br]
+
 100). 
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1-[3-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluoro-dodecyloxycarbonyl)-6-oxo-4-

phenyl-1,4,5,6-tetrahydro-pyridin-2-ylmethyl]-triphenyl-phosphonium bromide (94). 

0.50g (0.64mmol) of compound (3) and 0.17g (0.64mmol) triphenylphosphine were dissolved in 

5mL of dry acetonitrile. The yellow solution was stirred magnetically at 40°C for 2h and then 

cooled in the fridge. The precipitated product filtered and washed with diethyl ether to give 

0.55g (82%) of a yellowish powder mp 162-167°C. 
1
H NMR 400 MHz (CDCl3): δ =10.06 (bs, 1H, NH), 7.85 (dd, 

3
JHH=7.6, 

3
JHP=13.5 Hz, 6H, o-

Ph), 7.76 (td, 
3
JHH=7.6, 

5
JHP=1.7 Hz, 3H, p-Ph), 7.63 (td, 

3
JHH=7.6, 

4
JHP=3.7 Hz, 6H, m-Ph), 7.20 

(t, 
3
JHH=7.6 Hz, 2H, m-Ph), 7.16 (t, 

3
JHH=7.6 Hz, 1H, p-Ph), 7.04 (d, 

3
JHH=7.6 Hz, 2H, o-Ph), 

5.86 and 5.66 (two dt, 
2
JHH=14.9 , 

2
JHP=14.7 Hz, 2H, AB-syst., C2CH2), 3.90 (m, 1H, C4H ), 3.75 

and 3.52 (two dt, 
2
JHH=11, 

3
JHH=6.2 Hz, 2H, OCH2), 2.70 (dd, 

2
JHH=16, 

3
JHH=8.7 Hz, 1H, C5HA), 

2.42 (dd, 
2
JHH=16, 

2
JHH=1.9 Hz, 1H, C5HB), 1.87 (m, 2H, CH2CF2), 1.35 (m, 2H, OCH2CH2), 

1.27 (m, 2H, CH2CH2CF2). 
13

C NMR 100 MHz (CDCl3): δ=167.92 (C6), 165.96 (d, 
3
JCP=3 Hz, 

COO), 141.21 (d, 
5
JCP =3.9 Hz, i-Ph), 140.96 (d, 

2
JCP =11.3 Hz, C2), 135.24 (d, 

4
JCP=3.3 Hz, 3C, 

p-Ph), 134.62 (d, 
2
JCP=10.4 Hz, 6C, o-Ph), 130.01 (d, 

3
JCP=13.2 Hz, 6C, m-Ph), 128.9 (m-Ph), 

127.26 (p-Ph), 126.62 (o-Ph), 117.43 (d, 
1
JCP=86.6 Hz, 3C, i-Ph) , 111.41 (d, 

3
JCP=9.3 Hz, C3) 

120-108 (6bm, 8CF’s), 63.57 (OCH2), 38.33 (d, 
4
JCP=2.4 Hz, C4), 38.04 (C5), 30.21 (t, 

2
JCF=23.2 

Hz, CH2CF2), 27.73 (OCH2CH2), 27.32 (d, 
1
JCP=48.9 Hz, CH2Br), 16.78 (CH2CH2CF2). 

19
F 

NMR 376.2 MHz (CDCl3): δ= -80.79 (t, 
3
JFF = 9.74 Hz, 3F, CF3), -114.32 (m,

 
2F, CH2CF2), -

121.72 (m, 2F, CH2CF2CF2), -121.92 (m, 4F, CF2C2F5 and CH2C2F4CF2), -122.71 (m, 2F, 

CF3CF2), -123.52 (m, 2F, C3F7CF2), -126.11 (m, 2F, C4F9CF2,). 
31

P NMR 161.86 MHz (CDCl3) 

δ= 24.77 ppm. LC-MS: MS(+ESI) m/z (relative intensity): 966 ([M-Br]
+
 100) actual 

C43H34BrF17NO3P  MW. 1046.59. 
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2-cyanoethyl 2-methyl-4-(3-nitrophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate 

(54). 

m-Nitrobenzaldehyde 9.74 g (0.06 mol) was dissolved in 80 mL glacial acetic acid and to this 

solution was added 10.0 g (0.06 mol) 2-cyanoethyl-3-oxobutanoate, 9.29 g (0.06 mol) 

Meldrum’s acid, and 6.13 g (0.06 mol) ammonium acetate. The reaction mixture was refluxed 
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for 12h and the solvent was removed under reduced pressure. The brown syrupy residue was 

crystallized from ethanol to give 6.61 g of a yellowish powder in 33% yield. Mp. 165-168°C. 
1
H NMR 400 MHz (DMSO-d6): δ =10.12 (br s, 1H, NH), 8.08 (m, 1H, Ar), 8.00 (t, J=2.0 Hz, 

Ar), 7.62 (m, 2H, Ar), 4.29 (d, 1H, CHAr), 3.04 (m, 2H, OCH2), 2.67 (m, 2H, CH2CO), 2.37 (s, 

3H, CH3), 2.33 (m, 2H, CH2CN). 
13

C-NMR 100.3 MHz (DMSO-d6): δ= 206.0, 169.1, 165.5, 

150.0, 147.9, 144.8, 133.2, 130.0, 121.7, 121.0, 118.2, 102.9, 58.6, 30.2, 18.3, 17.2 ppm. 

LC/MS: MS(+ESI) m/z (relative intensity): 330 ([M+H]
+
 97) actual C16H15N3O5  MW 329.31. 
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2-methyl-4-(3-nitrophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylic acid 

The above 2-cyanoethyl 2-methyl-4-(3-nitrophenyl)-6-oxo-1,4,5,6-tetrahydropyridine-3-

carboxylate 5.0g (15 mmol) was dissolved in 50 mL EtOH and 1.11 g (20 mmol) KOH which 

was dissolved in 10 mL H2O  was added. The reaction mixture was stirred at room temperature 

for 6h. The EtOH was removed under reduced pressure and the residue was dissolved in water. 

The solution was cooled and made acidic with dilute HCl. The precipitate was filtered and 

washed with minimal amount of cold EtOH to give 4.0g of a yellow powder in 98% yield. Mp. 

197-200°C. 
1
H NMR 400 MHz (DMSO-d6): δ =12.11 (br s, 1H, CO2H), 9.93 (br s, 1H, NH), 

8.08 (m, 1H, Ar), 7.99 (m, 1H, Ar), 7.62 (m, 2H, Ar), 4.26 (d, J=7.1 Hz, 1H, CHAr), 2.99 (m, 

2H, CH2CO), 2.08 (s, 3H, CH3). 
13

C-NMR 100.3 MHz (DMSO-d6): δ= 169.1, 167.8, 148.2, 

147.7, 145.0, 133.4, 130.0, 121.5, 121.0, 104.3, 37.6, 37.0, 17.8 ppm. LC/MS: MS(+ESI) m/z 

(relative intensity): 277 ([M+H]
+
 98) actual C13H12N2O5 MW 276.24. 

 

O

OO

CN  
 

Methyl 2-(2-cyanoethyl)-3-oxobutanoate (57). 

In a 500 mL RB was added 250mL dry MeOH, methyl 3-oxobutanoate 58g (0.57mol) and 2g 

MeONa. While stirring magnetically and cooling in an ice-bath acrylonitrile 26.5g (0.57mol) 

was added dropwise. After all the acrylonitrile was added the stirring was continued overnight at 

room temperature. The reaction mixture was cooled to precipitate out the bis-ethylcyano addition 

product and after filtration the MeOH was removed on the rotary evaporator. The residue was 

washed with water containing acetic acid and then vacuum (0.1mm Hg) distilled and the fraction 

boiling at 120-125°C (oil bath 170°C) collected to provide a clear liquid 26.8g in 28% yield. 

MW. 169.18 
1
H NMR 200 MHz (CDCl3): δ =3.78 (s, 3H, OCH3), 3.67 (t, J=7 Hz, 1H, COCHCO), 2.45 (t, 

J=7 Hz, 2H, CH2CN), 2.30 (s, 3H, CH3), 2.23-2.10 (m, 2H, CHCH2CH2). 
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Methyl 6-methyl-3,4-dihydro-2(1H)-pyridone-5-carboxylate (59). 

In a 100 mL Erlenmeyer flask was added 5 mL conc. H2SO4 and a magnetic stirrer. While 

stirring methyl 2-(2-cyanoethyl)-3-oxobutanoate 5g(0.03mol) was added dropwise. When the 

solution became warm and started bubbling, it was cooled in ice-water. After all of the 

oxobutanoate was added the stirring was continued for 0.5h at room temperature and poured into 

ice-water whereby a white compound precipitated. After filtering and drying there was obtained 

a white powder 3.1g in 62% yield. MW. 169.18, mp. 149-152°C. Comp. C(56.80) H(6.55) 

N(8.28) Found: C(56.83) H(6.54) N(8.22). 
1
H NMR 400 MHz (CDCl3): δ =7.88 (br s, 1H, NH), 3.72 (s, 3H, OCH3), 2.65 (t, J= 8 Hz, 2H, 

CH2C), 2.48 (t, J=8 Hz, 2H, CH2CO), 2.30 (s, 3H, CH3). 
13

C NMR 100 MHz (CDCl3): δ=172.02, 

167.55, 145.62, 104.01, 51.31, 30.13, 21.36, 18.82. LC/MS: MS(+ESI) m/z (relative intensity): 

170 ([M+H]
+
 100). 
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Methyl 6-bromomethyl-3,4-dihydro-2(1H)-pyridone-5-carboxylate (72). 

In a 50 mL RB was weighed 2.20g (0.0130 mol) of methyl 6-methyl-3,4-dihydro-2(1H)-

pyridone-5-carboxylate and dissolved in dry CHCl3. To the stirred solution was added a Br2 

CHCl3 solution drop by drop via a dropping funnel. When all the Br2 (0.014 mol) was added the 

reaction mixture was left stirring overnight. The solvent was removed and the residue 

crystallized from MeOH to give a white solid 2.10g and an additional 0.41g was deposited after 

concentrating the mother liquors for a total of  78% yield. 

C8H10BrNO3   MW. 248.07, Mp. 140°C (changes appearance) ~200° dec. Comp. C(38.73) 

H(4.06) N(5.65) Found: C(38.74) H(3.89) N(5.53). 
1
H NMR 400 MHz (CDCl3): δ =7.66 (br s, 1H, NH), 4.62 (s, 2H, CH2Br),  3.78 (s, 3H, OCH3), 

2.72 (t, J= 7.8 Hz, 2H, CH2C), 2.52 (t, J=7.8 Hz, 2H, CH2CO). 
13

C NMR 100.3 MHz (CDCl3): 

δ= 170.90, 166.35, 143.25, 106.96, 51.96, 29.71, 26.20, 21.79 ppm. LC/MS: MS(+ESI) m/z 

(relative intensity): 248 ([M+H]
+
 100). 
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Methyl (2S,3R)-3-bromo-2-methoxy-2-methyl-6-oxopiperidine-3-carboxylate and the 

(2R,3S) racemate (71). 
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Methyl 6-methyl-3,4-dihydro-2(1H)-pyridone-5-carboxylate 0.5 g (0.003 mol) was dissolved in 

dry MeOH and NBS 0.55g (0.003 mol) was added to the stirred suspension. After addition of 

NBS all the solids went into solution and the reaction mixture was stirred for 1h. The solvent was 

removed on the rotary evaporator and the residue recrystallized form EtOH to give a white 

crystalline solid 0.77g in 92% yield. C9H14BrNO4 MW 280.12 Mp. 99-101°C. 

Composition  C(38.59) H(5.04) N(5.00) Found: C(38.60) H(4.93) N(4.94)  
1
H NMR 400 MHz (CDCl3): δ =8.06 (br s, 1H, NH), 3.79 (s, 3H, CO2CH3), 3.25 (s, 3H, OCH3), 

2.89 (ddd, J=14.9, 11.9, and 6.7 Hz, 1H, CH2), 2.66 (ddd, J=14.9, 11.9, and 6.7 Hz, 1H, CH2), 

2.47 (ddd, J=15.1, 7.7, and 1.1 Hz, 1H CH2), 2.28 (ddd, J=15.1, 7.7, and 1.1 Hz, 1H CH2). 
13

C 

NMR 100.3 MHz (CDCl3): δ=172.44, 168.71, 88.32, 62.58, 53.22, 50.37, 28.68, 28.43, 21.50 

ppm. LC/MS: MS(+ESI) m/z (relative intensity): 289 ([M-OCH3+K]
+
 100). 

 

N
H

O

O

O

N
+

Br
-

 
1-{[3-(Methoxycarbonyl)-6-oxo-1,4,5,6-tetrahydropyridin-2-yl]methyl}pyridinium bromide 

(83). 

In a 10 mL RB was weighed methyl 6-bromomethyl-3,4-dihydro-2(1H)-pyridone-5-carboxylate 

0.25g (0.0010 mol) and dissolved in dry acetone. Pyridine 0.10g (0.001 mol) was added and the 

flask was stoppered and stirred overnight. The precipitated salt was filtered and washed with 

diethyl ether to give 0.28g of a white solid in 85% yield. C13H15BrN2O3 MW 327.17 Mp. 179-

181°C. Composition  C(47.72) H(4.62) N(8.56) Found: C(47.72) H(4.54) N(8.51). 
1
H NMR 400 MHz (CDCl3): δ = 10.52 (br s, 1H, NH), 9.65 (d, J=5.6 Hz, 2H, Py), 8.51 (t, J=7.6 

Hz, 1H, Py), 8.14 (dd, J=6.0 Hz and J=7.4 Hz, 2H, Py), 6.28 (s, 2H, CH2Py), 3.78 (s, 2H, 

OCH3), 2.75 (t, J=8.0 Hz, 2H, CH2C), 2.51 (t, J= 8.0 Hz, 2H, CH2CO). 
13

C NMR 100.3 MHz 

(CDCl3): δ= 170.16, 167.35, 145.67, 145.45, 141.35, 128.39, 109.96, 56.84, 52.32, 29.73, 21.59 

ppm. 

 

N
H

O

O

O

N
+

ClO4

-

 
 

1-{[3-(Methoxycarbonyl)-6-oxo-1,4,5,6-tetrahydropyridin-2-yl]methyl}pyridinium 

perchlorate (83b). 

In a 10 mL RB was placed 0.10g (0.31mmol) of the above DHPOD pyridinium bromide and 

dissolved in abs. EtOH. With stirring conc. HClO4 was added drop by drop until no more 

precipitate formed (13 drops). The solid was filtered and washed with diethyl ether to give .09g 

as white powder in 83% yield. 

C13H15ClN2O7 MW 346.72 Composition C(45.03) H(4.36) Cl(10.23) N(8.08) O(32.30) 
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1
H NMR 200 MHz (DMSO-d6): δ = 10.16 (br s, 1H, NH), 9.03 (d, J=6.0 Hz, 2H, Py), 8.65 (t, 

J=7.4 Hz, 1H, Py), 8.17 (dd, J=7.0 Hz and J=7.4 Hz, 2H, Py), 5.67 (s, 2H, CH2Py), 3.69 (s, 2H, 

OCH3), 2.68 (t, J=7.8 Hz, 2H, CH2C), 2.50 (t, J= 7.8 Hz, 2H, CH2CO). 

 

N
H

O

O

CH3

O

N
+ CH3

CH3

CH3

Br
-

 
N-((3-(methyloxycarbonyl)-6-oxo-1,4,5,6-tetrahydropyridin-2-yl)methyl-N,N-

dimethyldodecan-1-aminium bromide (90). 

Following the general synthesis there was obtained a white solid in 79% yield. C22H41BrN2O3  

MW 461.48 
1
H NMR 400 MHz (CDCl3): δ =10.08 (br s, 1H, NH), 5.15 (s, 2H, CH2N

+
), 3.75 (s, 3H, OCH3), 

3.57-3.53 (m, 2H, NCH2), 3.45 (s, 6H, N(CH3)2), 2.76 (br s, 2H, NCOCH2), 2.67 (br s, 2H, 

NCOCH2CH2), 1.89 (br s, 2H, NCH2CH2), 1.38-1.27 (m, 20H, (CH2)10), 0.89 (t, J=8 Hz, 6H, 

CH3). 
13

C NMR 100.3 MHz (CDCl3): δ=168.21, 164.81, 136.34, 111.96, 66.15, 56.94, 50.23, 

29.97, 27.66, 27.64, 27.52, 27.48, 27.39, 27.22, 24.46, 21.03, 20.74, 12.18 ppm. LC/MS: 

MS(+ESI) m/z (relative intensity): 382 ([M-Br]
+
 100). 

 

 

N
H

O

OH

O

 
6-Methyl-3,4-dihydro-2(1H)-pyridone-5-carboxylate (60). 

The above dihydropyridone methyl ester 2.85g(0.017mol) was place in a 100mL RB and a 50% 

solution of MeOH/H2O containing 1.2g(0.03mol) NaOH. The mixture was heated at 60°C for 3h 

and after cooling in ice acidified with conc. HCl. The white precipitate was filtered and washed 

with cold water and dried to give 2.08g, 80% yield of a white powder. MW. 155.15. 
1
H NMR 400 MHz (DMSO-d6): δ = 11.90 (br s, 1H, CO2H), 9.60 (br s, 1H, NH), 2.49 (t, J=6.0 

Hz, 2H, CH2C=), 2.30 (t, J=6.0 Hz, CH2CO), 2.16 (s, 3H, CH3). 
13

C NMR 100.3 MHz (DMSO-

d6): δ= 170.84, 168.34, 146.28, 102.64, 29.96, 21.34, 17.77 ppm. 

 

N
H

O

Cl

O

 
 

6-Methyl-3,4-dihydro-2(1H)-pyridone-3-carbonyl chloride (61). 

In a 50mL RB was added 25mL anhydrous DCM and 2 drops of DMF and the above 

dihydropyridone carboxylic acid 1.7g (0.011mol) and while stirring oxalyl chloride 1.95g (0.015 

mol) was added drop-wise and the solution stirred for 1h at RT. The DCM was evaporated on a 

rotary evaporator and 25ml toluene was added and again the solvent was evaporated on the 

rotary evaporator giving an orange residue in quantitative yield of the crude acid chloride, which 

was not further purified. MW. 173.6. 
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1
H NMR 200 MHz (CDCl3): δ =8.00 (br s, 1H, NH), 2.86-2.54 (m, 4H, CH2CH2), 2.29 (s, 3H, 

CH3). 

N
H

O

O

O

 
 

Dodecyl 6-methyl-3,4-dihydro-2(1H)-pyridone-3-carboxylate (62). 

In a 50 mL RB flask was added dihydropyridone carboxylic acid 0.80g(0.0052mol) and thionyl 

chloride 6 mL and the mixture refluxed for 1h the resulting black solution was evaporated on the 

rotary evaporator which gave a dark residue 1.24g of the acid chloride. To the residue was added 

25 mL toluene, dodecanol 0.96g(0.0052mol), and pyridine 0.41g(0.0052mol) after stirring for 2h 

the solution was transferred to a separatory funnel and washed with 50 mL saturated Na2CO3 

aqueous solution and brine, dried with MgSO4 and the toluene removed on the rotary evaporator 

giving a light brown compound 1.7g and recrystallized  from ethanol. MW. 323.47, calcd. 

anal.for  C19H33NO3=  C(70.55),  H(10.28),  N(4.33), O(14.8) 
1
H NMR 200 MHz (CDCl3): δ = 7.56 (br s, 1H, NH), 4.12 (t, J= 6.6 Hz, 2H, OCH2), 2.65 (t, J=7 

Hz, 2H, CH2C), 2.47 (t, J= 7 Hz, 2H, CH2CO), 2.29 (s, 3H, CH3), 1.65 (m, 2H, OCH2CH2), 1.25 

(m, 18H, (CH2)9), 0.87 (t, J= 6 Hz, 3H, CH2CH3). 
13

C NMR 100.3 MHz (CDCl3): δ=170.67, 

166.00, 142.68, 107.44, 65.16, 31.90, 29.74, 29.62, 29.55, 29.50, 29.33, 29.23, 28.57, 26.31, 

26.04, 22.67, 21.87, 14.10 ppm. 
 

 

N
H

O

O

O

Br  
 

Dodecyl 6-bromomethyl-3,4-dihydro-2(1H)-pyridone-3-carboxylate (77). 

MW 402.37, Calcd. anal. for C19H32BrNO3 C(56.72), H(8.02), Br(19.86), N(3.48), O(11.93) 
1
H NMR 400 MHz (CDCl3): δ = 7.35 (br s, 1H, NH), 4.62 (s, 2H, CH2Br), 4.16 (t, J= 6.6 Hz, 

2H, OCH2), 2.72 (t, J=7 Hz, 2H, CH2C), 2.52 (t, J= 7 Hz, 2H, CH2CO), 1.71-1.57 (m, 2H, 

OCH2CH2), 1.25 (m, 18H, (CH2)9), 0.87 (t, J= 6 Hz, 3H, CH2CH3).  

 

N
H

O

O

O

N
+

Br
-

 
 

1-[3-(Dodecyloxycarbonyl)-6-oxo-1,4,5,6-tetrahydro-pyridin-2-ylmethyl]-pyridinium 

bromide (85). 
In a 10 mL RB was placed dodecyl 6-bromomethyl-3,4-dihydro-2(1H)-pyridone-3-carboxylate 

0.2g (0.0005mol) and dissolved in 5 mL dry acetone then pyridine 0.04g (0.0005mol) was added 
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and the flask stoppered. The mixture was stirred magnetically overnight and the precipitated 

solid was filtered and washed with diethyl ether to give white flakes 0.22g in 92% yield. Mp. the 

compound softened 127-131°C and melted completely at 156°C. 

C24H37BrN2O3 MW 481.47 Composition C(59.87) H(7.75) Br(16.60) N(5.82) O(9.97) found 

C(59.88) H(7.79) N(5.76). 
1
H NMR 400 MHz (CDCl3): δ = 9.62 (d, J=6.0 Hz, 2H,o-Py), 8.53(t, J=8.0 Hz, 1H, p-Py), 8.16 

(m, 2H, m-Py), 6.26 (s, 2H, CH2Py), 4.14 (t, J=6.4 Hz, 2H, OCH2),  2.74 (t, J=8.0 Hz, 2H, 

CH2C=), 2.52 (t, J= 8.0 Hz, 2H, CH2CO), 1.69-1.62 (m, 2H, OCH2CH2), 1.25 (m, 18H, (CH2)9), 

0.87 (t, J= 6.8 Hz, 3H, CH2CH3). 
13

C NMR 100.3 MHz (CDCl3): δ=170.31, 166.94, 145.81, 

145.36, 140.97, 128.47, 110.42, 65.54, 56.85, 31.88, 29.77, 29.60, 29.55, 29.49, 29.32, 29.21, 

28.48, 25.99, 22.66, 21.63, 14.10 ppm. LC/MS: MS(+ESI) m/z (relative intensity): 402 ([M-Br]
+
 

100). 
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N-((3-(dodecyloxycarbonyl)-6-oxo-1,4,5,6-tetrahydropyridin-2-yl)methyl-N,N-

dimethyldodecan-1-aminium bromide (91). 
Following the general procedure there was obtained a white solid in 87% yield. C33H61BrN2O3 

MW 615.77 Mp. 157.3-158.2°C. 
1
H NMR 200 MHz (CDCl3): δ = 10.26 (br s, 1H, NH), 5.18 (br s, 2H, CH2N

+
), 4.15 (t, J=6 Hz, 

2H, OCH2), 3.58-3.46 (m, 2H, 
+
NCH2), 3.41 (s, 6H, 

+
N(CH3)2), 2.82-2.55 (m, 2H, 

NCOCH2CH2), 1.52-1.40 (m, 2H, CO2CH2CH2) 1.34-1.25 (m, 20H, (CH2)10), 1.24-1.15 (m, 18H, 

(CH2)9), 0.87 (t, J=6 Hz, 6H, CH3). LC/MS: MS(+ESI) m/z (relative intensity): 536 ([M-Br]
+
 

100). 
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5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl 6-methyl-3,4-dihydro-

2(1H)-pyridone-3-carboxylate (63). 

In a 50 mL RB was placed dihydropyridone-3-carbonyl chloride 0.71g (0.0041 mol), dry toluene 

25 mL, 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecanol 2.00g (0.0041 mol) 

and pyridine 0.32g (0.0041mol) and the reaction mixture was stirred for 2h. Added chloroform to 

the mixture for complete dissolution and transferred to a separatory funnel and washed with an 

aqueous solution of saturated Na2CO3 and brine. The organic layer was separated and dried with 

Na2SO4 filtered and the solvent was removed on a rotary evaporator to give a yellow compound 

1.30g in 50% yield. After recrystallization from ethanol was a light yellow powder. 

MW. 629.31 Anal calcd. for C19H16F17NO3 C(36.26), H(2.56), F(51.32),N(2.23), O(7.63) 
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1
H NMR 400 MHz (CDCl3): δ = 7.01 (br s, 1H, NH), 4.17 (t, J= 6.2 Hz, 2H, OCH2), 2.65 (t, 

J=8.0 Hz, 2H, CH2C=), 2.49 (t, J=8.0 Hz, 2H, CH2CO), 2.28 (s, 3H, CH3), 2.18-2.03 (m, 2H, 

CH2CF2), 1.79-1.69 (m, 4H, CH2CH2). 
13

C NMR 100.3 MHz (CDCl3): δ=171.18, 166.93, 

145.51, 103.98, 63.40, 30.53 (t, J=20.3 Hz, CH2CF2), 30.10, 28.18, 21.38, 19.74, 19.06, 17.19 

ppm.  
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5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluorododecyl 6-bromomethyl-3,4-

dihydro-2(1H)-pyridone-3-carboxylate (78). 

C19H15BrF17NO3 MW 708.20 Composition  C(32.22) H(2.13) Br(11.28) F(45.60) N(1.98) 

O(6.78) 
1
H NMR 400 MHz (CDCl3): δ = 7.35 (br s, 1H, NH), 4.41 (s, 2H, CH2Br),  4.21 (t, J= 6.0 Hz, 

2H, OCH2), 2.72 (t, J=8.0 Hz, 2H, CH2C), 2.53 (t, J=8.0 Hz, 2H, CH2CO), 2.18-2.06 (m, 2H, 

CH2CF2), 1.82-1.70 (m, 4H, CH2CH2). 
13

C NMR 100.3 MHz (CDCl3): δ=170.48, 165.81, 

143.30, 64.10, 30.50, 29.68, 28.07, 26.16, 21.80, 17.16, 17.13 ppm. 

 

Br
-

N
H

O

O

O

F

F

F
F

F

F
F

F
F

F
F

F
F

F
F

F
F

N
+

 
1-[3-(5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heptadecafluoro-dodecyloxycarbonyl)-6-oxo-

1,4,5,6-tetrahydro-pyridin-2-ylmethyl]-pyridinium bromide (86). 

In a 10 mL RB was weighed 5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyl 6-

bromomethyl-3,4-dihydro-2(1H)-pyridone-3-carboxylate 0.1g (0.00014mol) and dissolved in 5 

mL dry acetone. While the solution was being stirred magnetically pyridine 0.02g (0.00014mol) 

was added, the flask was stoppered and left stirring overnight. The precipitated solid was filtered 

and washed with diethyl ether to give 0.08g of a grey powder in 72% yield. The compound 

softened at 168-171°C and melted at 187°C. 

C24H20BrF17N2O3 MW 787.30  
1
H NMR 400 MHz (CDCl3): δ =9.68 (d, J=5.6 Hz, 2H, o-Py), 8.48 (t, J=8 Hz, 1H, p-Py), 8.13 

(m, 2H, m-Py), 6.30 (s, 2H, CH2PyBr),  4.20 (t, J= 6.0 Hz, 2H, OCH2), 2.74 (t, J=8.2 Hz, 2H, 

CH2C=), 2.52 (t, J=8.2 Hz, 2H, CH2CO), 2.19-2.06 (m, 2H, CH2CF2), 1.82-1.69 (m, 4H, 

CH2CH2). 170.03, 145.52, 128.36, 109.73, 64.48, 29.74, 28.00, 21.60, 17.11 ppm. LC/MS: 

MS(+ESI) m/z (relative intensity): 708 ([M-Br]
+
 100). 
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N-((3-((5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-heptadecafluorododecyloxy)carbonyl)-6-oxo-

1,4,5,6-tetrahydropyridin-2-yl)methyl-N,N-dimethyldodecan-1-aminium bromide (92). 

Following the general procedure there was obtained a white solid in 76% yield. 

C33H46BrF17N2O3 MW 921.61 Mp.158-159.6°C. 
1
H NMR 200 MHz (CDCl3): δ =10.17 (br s, 1H, NH), 5.18 (br s, 2H, CH2N

+
), 4.15 (t, J=6 Hz, 

2H, OCH2), 3.58-3.46 (m, 2H, NCH2), 3.41 (s, 6H, N(CH3)2), 2.82-2.55 (m, 4H, NCOCH2CH2), 

2.25-1.80 (m, 2H, CH2CF2), 1.78-1.69 (m, 4H, CH2, CH2), 1.34-1.25 (m, 20H, (CH2)10, 0.87 (t, 

J=6 Hz, 3H, CH3). LC/MS: MS(+ESI) m/z (relative intensity): 842 ([M-Br]
+
 100). 

NO

O

O

 
 

Methyl 1-benzyl-2-methyl-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate (65). 

Methyl 6-methyl-3,4-dihydro-2(1H)-pyridone-5-carboxylate 5.07 g (0.03 mol) was placed in a 

100 mL RB and dissolved in 50 mL of dry THF under an Ar atmosphere. The flask was cooled 

in an ice-bath add 1 mol equiv. or 1.20 g (0.03 mol) NaH (60% in oil) was added by portions. 

The reaction mixture was stirred for 30 min and benzyl bromide 5.13 g (0.03 mol) was added 

and the mixture stirred for 2 h at room temperature.  Cold water was slowly added and the 

organic layer was separated via a separatory funnel. The organic layer was washed with brine 

and dried with MgSO4. The THF was removed on a rotary evaporator to give the product as a 

yellow syrup. After silica gel chromatography there was obtained 6.61g of a  yellow oil in 85% 

yield. C15H17NO3 MW 259.30 Composition  C(69.48) H(6.61) N(5.40) O(18.51) 
1
H NMR 200 MHz (CDCl3): δ = 7.34-7.10 (m, 5H, Ph), 5.01 (s, 2H, CH2Ph),  3.71 (s, 3H, 

OCH3), 2.62 (m, 4H, CH2CH2), 2.34 (s, 3H, CH3). LC/MS: MS(+ESI) m/z (relative intensity): 

260 ([M+H]
+
 100). 

 

NO

O

O

Br

 
 
Methyl 1-benzyl-2-(bromomethyl)-6-oxo-1,4,5,6-tetrahydropyridine-3-carboxylate (73). 

Method A: In a 25 mL RB was weighed 0.51g (0.00020mol) of the above N-

benzlydihydropyridone and dissolved in dry CHCl3. While stirring a Br2 solution in CHCl3 

(0.00020 mol) was added drop-wise and stirred an additional 30 min. The CHCl3 was evaporated 

using a rotary evaporator to give 0.77g of an orange syrup in quantitative yield. The syrup was 

passed through a silica gel plug with 10% EtOAc in pet.ether and after removing the solvent 

there was obtained 0.31g of a yellow oil in 50% yield. 
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Method B: In a 10 mL RB was weighed 0.51g (0.00020mol) of the above N-

benzlydihydropyridone and dissolved in dry MeOH and while stirring NBS 0.36g (0.0020 mol) 

was added after 1h the solvent was removed and the solids filtered and washed with CHCl3. 

After removing the solvent there was obtained a dark colored oil 0.46g in 70% yield. 

C15H16BrNO3 MW 338.20 Composition C(53.27) H(4.77) Br(23.63) N(4.14) O(14.19) 
1
H NMR 200 MHz (CDCl3): δ = 7.35-7.10 (m, 5H, Ph), 5.18 (s, 2H, CH2Ph),  4.61 (s, 2H, 

CH2Br), 3.76 (s, 3H, OCH3), 2.72-2.03 (m, 4H, CH2CH2). LC/MS: MS(+ESI) m/z (relative 

intensity): 279 ([M+K]
+
 100). 

 

N
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O
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O

N
+
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-

 
 

1-{[1-Benzyl-3-(methoxycarbonyl)-6-oxo-1,4,5,6-tetrahydropyridin-2-yl]methyl}pyridinium 

perchlorate (84b). 

In a 25 mL RB flask was weighed the above N-benzyl DHPOD methylbromide 0.38g (0.0011 

mol) and the oil was dissolved in dry acetone. Pyridine 0.09g (0.0011 mol) was added and the 

reaction mixture was stirred overnight. No pyridinium bromide salt precipitated so the solvent 

was removed to give a brown syrup which was dissolved in abs. EtOH and conc. HClO4 was 

added by drops. Again no precipitate formed. The solvent was removed and after addition of 

diethethyl ether the oil solidified to give a pink solid 0.41g in 77% yield. 

C20H21ClN2O7 MW 436.84 Composition C(54.99) H(4.85) Cl(8.12) N(6.41) O(25.64) 
1
H NMR 400 MHz (CDCl3): δ =8.56 (d, 2H, J=4 Hz, Py), 8.22-8.18 (m, 1H, Py), 7.73-7.70 (m, 

2H, Py), 7.07-6.93 (m, 5H, Ph), 5.92 (s, 2H, CH2Ph),  5.12 (s, 2H, CH2Py), 3.84 (s, 3H, OCH3), 

2.91-2.80 (m, 4H, COCH2CH2). ). 
13

C NMR 100.3 MHz (CDCl3): δ= 168.73, 164.80, 143.27, 

141.65, 138.38, 134.27, 127.15, 126.09, 125.61, 123.99, 117.72, 55.53, 50.86, 43.09, 28.23, 

19.43 ppm. LC/MS: MS(+ESI) m/z (relative intensity): 382 ([M-Br]
+
 100). 

 

N
H

O

O

O

N3  

Methyl 2-(azidomethyl)-6-oxo-4-phenyl-1,4,5,6-tetrahydropyridine-3-carboxylate (98). 

In a 50 mL RB was placed 0.06 g (0.85 mmol) of NaN3 and dissolved in 10 mL DMSO then 2-

bromomethyl-4-phenyl-3,4-dihydropyridone 0.26 g (0.8 mmol) was added and the solution was 

stirred overnight. To the orange solution was added 25 mL DI water and the stirring was 

continued until a solid precipitated. The solid was filtered and washed with water and dried to 

give 0.22g of a white solid in 96% yield.  

C14H14N4O3 MW 286.29 Composition  C(58.73) H(4.93) N(19.57) O(16.77) 
1
H-NMR 200 MHz (CDCl3): δ= 7.79 (br s, 1H, NH), 7.32-7.14 (m, 5H, Ph), 4.91 (d, J=16.8 Hz, 

1H CHN3), 4.77 (d, J=17 Hz, 1H CH N3), 4.26 (d, J= 7.4, 1H, CHPh), 3.67 (s, 3H, OCH3), 2.93 
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(dd, J=16.4 and 7.6 Hz, 1H, CHHCO), 2.72 (dd, J=16 Hz, 1H, , CHHCO). LC/MS: MS(+ESI) 

m/z (relat. intensity): 285 ([M-H]
+
, 100). 

 

N
H
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O

O

N
N

N

N

 

Methyl 6-oxo-4-phenyl-2-{[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]methyl}-1,4,5,6-

tetrahydropyridine-3-carboxylate (99). 

 In a 25  mL was RB  was placed Cu(OAc)2  0.01g and dissolved in 5 mL acetonitrile (blue 

color) to this was added 0.5 mL aqueous solution containing 0.1 g sodium ascorbate (the solution 

went yellow). Then 0.09g (0.30 mmol) of the azide 98 was added and 2-ethynylpyridine 0.03g 

(0.30 mmol). The solution was stirred magnetically overnight and the acetonitrile was removed 

under reduced pressure. The residue was dissolved in DCM and washed with conc. NH4OH and 

water then dried with Na2SO4 filtered and the solvent removed to give a tan solid 0.11g  or 94% 

yield. C21H19N5O3 MW 389.41 
1
H-NMR 200 MHz (CDCl3): δ=8.53 (br s, 1H, NH), 8.36 (d, 

J=6.0 Hz, 1H, Py), 7.76 (m, 1H, Py), 7.62 (m, 1H, Py), 7.47 (d, J=7.2 Hz, 1H, Py), 7.25-7.08 (m, 

5H, Ph),  5.98 (d, J=15 Hz, 1H, CHN), 5.77 (d, J=15 Hz, 1H, CHN), 5.28 (s, 1H, CH=), 4.27 (d, 

J=6.8 Hz, 1H, CHPh), 3.70 (s, 3H, OCH3), 2.90 (dd, J=6.8; 16 Hz, 1H, OCHH), 2.67 (d, J=16 

Hz, 1H, OCHH). 
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Methyl 6-oxo-4-phenyl-2-[(Z)-2-(pyridin-2-yl)ethenyl]-1,4,5,6-tetrahydropyridine-3-

carboxylate (100). 

In a 50 mL RB was placed 0.59g (0.001 mol) of the DHPOD 6-methyltriphenylphosphonium 

bromide and dissolved in 25 mL dry THF. Under an Ar atmosphere while stirring magnetically 

0.22g (0.001 mol) of tBuOK was added. The orange solution was stirred for 30 min and 0.11g 

(0.001 mol) of 2-pyridinecarboxaldehyde was added. The solution was allowed to stir at RT 

overnight,  3 mL of aqueous solution containing 0.6 g NH4Cl was added and after stirring 15 min 

the layers were separated. The THF was removed under reduced pressure and the sticky reaction 

product was dissolved in min. EtOAc. After addition of hexane the precipitated 

triphenylphosphine oxide was filtered off and the solvent removed to leave 0.55 g of product. 

The product was purified using prep. HPLC with 50% EtOAc / DCM as eluent. The solvent was 
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removed providing 0.21 g of product (62% yield) which was recrystallized from EtOH giving 

100 mg of light green needles. C20H18N2O3  MW 334.37 Mp. 136-138°C.  
1
H-NMR 400 MHz (CDCl3): δ=13.90 (br s, 1H, NH), 8.68 (ddd, J=5.0; 1.7; 0.82 Hz, 1H, Py), 

7.77 (td, J=7.8; 1.82 Hz, 1H, Py), 7.72 (d, J=14.1 Hz, CH=), 7.37 (dt, J=7.9; 1.2 Hz, 1H, Py), 

7.28-7.23 (m, 5H, Ph), 7.20-7.17 (m, 1H, Py), 6.62 (d, J=14.1 Hz, 1H, CH= ), 4.35 (dd, J=7.79; 

2.19 Hz, 1H, CHPh), 3.67 (s, 3H, OCH3), 2.91 (dd, J=16.1; 7.6 Hz, 1H, COCH), 2.70 (ddd, 

J=16.3; 2.4; 0.8 Hz, 1H, COCH ). 
13

C-NMR 100.3 MHz (CDCl3): δ=170.51, 167.37, 153.12, 

147.61, 144.74, 141.76, 138.01, 132.06, 128.73, 126.99, 126.87, 126.43, 123.13, 110.41, 51.74,  

51.72, 38.87, 37.65 ppm. 
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Methyl-4-aryl-6-chloro-5-formyl-2-1,4-dihydropyridine-3-carboxylate 
General procedure for synthesis. A solution of anhydrous N,N-dimethylformamide 3.1 mL (40 

mmol) in dry chloroform 10 mL was added dropwise to a stirred solution of POCl3 3.85 mL (40 

mmol) under a nitrogen atmosphere at RT. After 30 min. a solution of the methyl 4-aryl-6-

methyl-2-oxo-1,2,3,4-tetrahydropyridine-5-carboxylate (10 mmol) in 40 mL dry chloroform was 

added. After 18 h stirring at RT, a solution of sodium acetate (40g) in water (60mL) was slowly 

added. After 0.5 h the mixture was partitioned between water and chloroform, and the aqueous 

phase was extracted with EtOAc. The organic phase was dried with MgSO4. The organic solvent 

was removed in vacuo and the solid recrystallized from EtOH to give a pale yellow solid in 80% 

yield. C15H14ClNO3  FW 291.73 Mp. 181-182°C Calcd. Comp. C(61.76) H(4.84) N(4.80) Found: 

C(61.9) H(4.9) N(4.9). 
1
H-NMR 400 MHz (DMSO-d6): δ=10.36 (br s, 1H, NH), 9.69 (s, 1H, 

HCO), 7.23-7.12 (m, 5H, Ph), 4.95 (s, 1H, CHPh), 3.55 (s, 3H, OCH3), 2.34 (s, 3H, CH3).  
13

C-

NMR 100.3 MHz (DMSO-d6): δ=186.5 (CHO), 166.6 (CO2), 145.6 (C6), 142.7 (C2), 145.5, 

128.3 (2C), 127.1 (2C), 126.5 (Ar), 111.2 (C5), 104.5 (C3), 51.1 (OCH3), 37.6 (C4), 17.7 (CH3). 
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Methyl 4-aryl-6-methyl-4,7-dihydro-1H-pyrazolo[3,4-b]-pyridine-5-carboxylates 
General procedure for synthesis: A mixture of the corresponding 6-chloro-5-formyl-DHP (2 

mmol) and hydrazine hydrate 99% (2 mmol) in ethanol 20 mL was heated at reflux for 6 h. The 

reaction mixture was then cooled to 0°C and the solid that precipitated was collected by 

filtration. Further purification was accomplished by recrystallization from ethanol. Thus 

employing the procedure 61% yield of the product was obtained. C15H15N3O2, FW 269.30, Mp. 

278-279°C. Calcd. Comp. C(66.90), H(5.61), N(15.60). Found: C(67.0), H(5.8), N(15.7). 
1
H-

NMR 400 MHz (DMSO-d6): δ=10.01 (s, 1H, NH), 9.98 (s, 1H, NH), 8.35 (s, 1H, CH=N), 7.22-

7.13 (m, 5H, Ph), 5.18 (s, 1H, CHPh), 3.55 (s, 3H, OCH3), 2.31 (s, 3H, CH3). 
13

C-NMR 100.3 
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MHz (DMSO-d6): δ=166.9 (CO2), 156.4 (C3), 146.2 (C6), 133.0 (C7a), 146.0, 128.0 (2C), 127.2 

(2C), 126.2 (Ph), 107.7 (C3a), 102.5 (C5), 50.8 (OCH3), 38.4 (C4), 18.0 (CH3). 

 

 

O

O

O

NH2

CN

 
 Preparation of Ethyl 6-Amino-5-cyano-2-methyl-4-phenyl-4H-pyran-3-carboxylate 

Typical Procedure  
A mixture of benzaldehyde (10 mmol, 1 ml), malononitrile (10 mmol, 0.66 g), and ammonium 

acetate (15 mmol, 1.15 g) was thoroughly mixed in a mortar by grinding until the completion of 

reaction as indicated by thin-layer chromatography (TLC) (15 min). The mixture solidified 

during the grinding. Then, ethyl acetoacetate (10 mmol, 1.26 ml) was added to the same vessel. 

The mixture, which initially was in a partial liquid state, solidified during the process of grinding 

(15 min). The pure product was obtained by recrystallized from ethanol (2.21 g, 78%). 

Mp 190–192 °C; IR (KBr) ν= 3402 (s), 3328 (s), 3223 (m), 2966 (w), 2189 (s), 

1693 (s), 1259 (s), 1060 (s) cm
-1

; 
1
H NMR (300 MHz, CDCl3): δ=1.10 (t, J=7.20 Hz, 3H, CH3 

ester), 2.38 (s, 3H, CH3-2), 4.05 (m, 2H, CH2 ester), 4.45 [s, 1H, C(4)-H], 4.50 (br, s, 2H, NH2), 

7.17–7.35 (m, 5H, Ar-H) ppm; 
13

C NMR (75 MHz, CDCl3): δ=13.86 (CH3 ester), 18.37 (CH3-2), 

38.75 (C-4), 60.64 (CH2 ester), 62.58 (C-5), 108.00 (C-3), 118.80 (CN), 127.17 (C-4’), 127.50 

(C-3’,5’), 128.56 (C-2’,6’), 143.72 (C-1’), 156.76, 157.39 (C-2, 6), 165.83 (CO) ppm. 
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Methyl 6-amino-5-cyano-2-methyl-4(thiophen-2-yl)-4H-pyran-3-carboxylate (110)  

This compound was synthesized by the above procedure except 1.12g (10mmol) thiophene-2-

carbaldehyde was used and 1.16g (10mmol) methyl acetoacetate instead of ethyl acetoacetate. At 

the end of the grinding procedure the sticky yellow substance was recrystallized from ethanol to 

give white crystals (1.98 g, 72%). Mp 142-144°C; 
1
H NMR (400 MHz, DMSO-d6): δ=2.28 (s, 

3H, CH3), 3.64 (s, 3H, CH3 ester), 4.65 [s, 1H, C(4)-H], 6.85 (d, J=3.6 Hz, 1H, Ar), 6.93 (dd, 

J=5.1, 3.5, 1H, Ar), 7.05 (br, s, 2H, NH2), 7.36 (d, J=5.1, 1H, Ar) ppm; 
13

C NMR (100 MHz, 

DMSO-d6): δ= 18.22, 33.81, 51.69, 56.93, 107.61, 119.55, 123.55, 124.78, 126.97, 149.34, 

156.90, 159.09, 165.76 ppm. 
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Ethyl 6-amino-5-cyano-2-methyl-4-(3-nitrophenyl)-4H-pyran-3-carboxylate (112)  
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Mp 187–188°C; IR (KBr) ν=3402 (s), 3328 (s), 3221 (m), 2987 (w), 2190 (s), 1672 (s), 1531 (s), 

1344 (s), 1063 (s) cm_1; 1H NMR (400 MHz, CDCl3): δ=1.12 (t, J=7.20 Hz, 3H, CH3 ester), 

2.41 (s, 3H, CH3-2), 4.05 (m, 2H, CH2 ester), 4.58 (s, 1H, C(4)-H), 4.69 (br, s, NH2), 7.49 (t, 

J=8.00Hz, 1H, Ar-H5’), 7.58 (td, J1=8.00 Hz, J2=0.80 Hz, Ar-H6’), 8.06 (t, J=1.60 Hz, 1H, Ar-

H2’), 8.11 (md, J=8.00 Hz, 1H, Ar-H4’) ppm; 1H NMR (400 MHz, DMSO-d6):δ=1.01 (t, 

J=7.20 Hz, 3H, CH3 ester), 2.07 (s, 2H, NH2), 2.34 (s, 3H, CH3-2), 3.95 (m, 2H, CH2 ester), 4.52 

[s, 1H, C(4)-H], 7.60–7.70 (m, 2H, Ar-H5’, H6’ ), 7.98 (s, 1H, Ar-H2’), 8.10 (dt, J1=7.50Hz, 

J2=1.92Hz, 1H, Ar-H4’) ppm; 
13

C NMR (100MHz, CDCl3): δ=12.90 (CH3 ester), 17.64 (CH3-2), 

37.75 (C-4), 59.95 (CH2 ester), 63.50 (C-5), 105.93 (C-3), 117.33 (CN), 121.39 (C-4’), 121.55 

(C-2’), 128.51 (C-5’), 133.01 (C-6’), 145.10 (C-1’), 147.47 (C-3’), 159.77, 156.95 (C-2, 6), 

164.26 (CO) ppm. 
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(Z)-Ethyl 3-amino-2-(2,2-dicyano-1-(3-nitrophenyl)ethyl)but-2-enoate (113) 

This intermediate was synthesized according to the typical grinding procedure using 3-

nitrobenzaldehyde 1.52 g (10mmol) and (Z)-ethyl 3-aminobut-2-enoate (1.29g 10mmol) instead 

of ethyl acetoacetate. The yellow sticky mixture was washed with ethanol and recrystallized to 

give light green needles (1.9 g, 58%). 

Mp 142-144°C; 
1
H NMR(400 MHz, DMSO-d6): δ=1.02 (t, J=7.0 Hz, 3H, CH3, ester), 2.17 (s, 

3H, CH3), 3.67-4.12 (m, 2H, CH2, ester), 4.75 (d, J=11.4 Hz, 1H, CH(CN)2), 5.73 (d, J=11.4 Hz, 

1H, CH-Ar), 7.46 (br, s, 1H, NH), 7.58 (t, J=7.9 Hz, 1H, Ar-H5), 7.73 (d, J=7.6 Hz, 1H, Ar-H6), 

8.07 (d, J=8.0 Hz, 1H, Ar-H4), 8.14 (s, 1H, Ar-H2), 8.61 (br, s, 1H, NH
…

O) ppm; 
13

C NMR 

(100 MHz, DMSO-d6): δ=13.99, 20.92, 26.69, 43.34, 58.45, 88.97, 113,79, 114.38, 121.92, 

122.24, 129.47, 135.03, 141.99, 147.38, 163.10, 167.55 ppm. 
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2-Amino-7,7-dimethyl-4-(3-nitrophenyl)-5-oxo-5,6,7,8-tetrahydro-4H-chromene-3-

carbonitrile (115) 

A mixture of m-nitrobenzaldehyde 0.76 g (5.0 mmol), dimedone 0.70 g (5.0 mmol), 

malononitrile 0.33 g (5.0 mmol), and NH4OAc 0.6 g (7.5 mmol) was mixed thoroughly in a 

mortar with pestle followed by grinding till the completion of reaction as indicated by TLC (10-

20 min). The resultant material was washed with water to remove any unreacted ammonium 

acetate and was air-dried to afford the crude product. The pure product was obtained by 

recrystallization from EtOH to give 1.06 g of a white crystalline compound in 67% yield. Mp 

214-216°C. 
1
H NMR(400 MHz, DMSO-d6): δ=8.06-8.04 (m, 2H, Ph), 7.65-7.62 (m, 1H, Ph), 
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7.52-7.48 (m, 1H, Ph), 6.30 (s, 2H,  NH2), 4.47 (s, 1H, CHPh), 2.52 (s, 2H, CH2), 2.26 (d, J=16 

Hz, 1H, H-6a), 2.17 (d, J=16 Hz, 1H, H-6b), 1.12 (s, 3H, CH3), 1.03 (s, 3H, CH3). 

 

Representative single crystal X-ray diffraction experiments and data 

For ethyl 6-amino-5-cyano-2-methyl-4-(3-nitrophenyl)-4H-pyran-3-carboxylate (112), methyl 6-

amino-5-cyano-2-methyl-4-(thiophen-2-yl)-4H-pyran-3-carboxylate (110) and intermediate 113 

diffraction data were collected at –100°C (for 112 and 110) and at room temperature for 113 on a 

Bruker-Nonius KappaCCD diffractometer using graphite monochromated Mo-Kα radiation (λ = 

0.71073 Å). Both crystal structures were solved by the direct method and refined by full-matrix 

least squares. All non-hydrogen atoms were refined anisotropically.  

Crystal data for 110: C13H12N2O3S, triclinic, a = 8.6311(2), b = 9.0785(3), c = 9.6055(3) Å, α = 

96.548(2), β = 115.097(2), γ = 95.679(2)º; V = 668.02(3) Å
3
, Z = 2, μ = 0.250 mm

–1
, Dcalc = 

1.374 g∙cm
–3

, space group is P1. A total of 3256 independent reflection intensities were 

collected at room temperature. For structure refinement, 2055 reflections with with I > 3σ(I) 

were used. The final R-factor is 0.059.  

Crystal data for 112: C16H15N3O5, triclinic, a = 8.3621(2), b = 8.4736(3), c = 12.0001(5) Å, α = 

82.192(1), β = 71.039(2), γ = 76.176(2)º; V = 779.29(5) Å
3
, Z = 2, μ = 0.106 mm

–1
, Dcalc = 1.403 

g∙cm
–3

, space group is P1. A total of 3911 independent reflection intensities were collected at 

room temperature. For structure refinement, 2546 reflections with with I > 3σ(I) were used. The 

final R-factor is 0.047.  

Crystal data for 113: C16H16N4O4, monoclinic, a = 19.8757(7), b = 8.4327(3), c = 20.637(1) Å, β 

= 106.330(1)º; V = 3319.3(2) Å
3
, Z = 8, μ = 0.097 mm

–1
, Dcalc = 1.314 g∙cm

–3
, space group is 

P21/n. A total of 8959 independent reflection intensities were collected at room temperature. For 

structure refinement, 3496 reflections with with I > 3σ(I) were used. The final R-factor is 0.074. 

For further details, see crystallographic data for these structures deposited with the Cambridge 

Crystallographic Data Centre as Supplementary Publication Number CCDC 865274 (for 1), 

865275 (for 3c) and 870203 (for ’intermediate’). Copies of the data can be obtained, free of 

charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK. 
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