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Abstract

The aim of sample surveys is to obtain sufficiently precise estimates of population paramet-
ers with low cost. The expected precision of estimates and the expected data collection cost are
usually unknown making the choice of sampling design a complicated task. Analytical meth-
ods can not be used often because of the complexity of the sampling design or data collection
process. The aim of this thesis is to develop a mathematical framework to compare sampling
designs of interest with respect to their expected precision of estimates and data collection cost.
As aresult a framework is developed, which employs artificial population data generation, sur-
vey sampling techniques, survey cost modelling, Monte Carlo simulation experiments and other
techniques. The framework is applied to analyse the cost efficiency of the Labour Force Survey.

Key words: cost efficiency; simulation study; survey cost estimation; survey methodology;
variance estimation.

Mathematics Subject Classification (2010): 62DO0S5.



Anotacija

Izlases apsekojumu meérkis ir iegiit pietickami augstas precizitates populacijas parametru
novertéjumus ar iespéjami mazam izmaksam. Izlases dizaina izv€le parasti ir sarezgits uzde-
vums, jo sagaidama novertejumu precizitate un sagaidamas datu vakSanas izmaksas nav zina-
mas. Analitiskas metodes bieZi nav iesp&jams izmantot izlases dizaina sarezgitibas vai datu
vakS§anas procesa sarezgitibas dél. Promocijas darba mérkis ir izstradat matematisku aparatu,
kas lauj salidzinat interes€josus izlases dizainus p&c sagaidamas novertejumu precizitates un
datu vakSanas izmaksam. Izstradatais aparats izmanto maksligu populacijas datu generéSanu,
izlases apsekojumu metodologiju, apsekojuma izmaksu modelé$anu, Monte Karlo simulaciju
eksperimentus un citas metodes. Aparats ir pielietots Latvijas Darbaspéka apsekojuma izmaksu
efektivitates analizei.

Atslégvardi: apsekojumu izmaksu novertéjums; izlases apsekojumu metodologija; izmaksu
efektivitate; novertetaju dispersija; simulaciju eksperiments.

Matematikas disciplinu klasifikacija (2010): 62DO05.
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Nomenclature

Approximation

The fractional (non-integer) part of a real number x
The integer part of a real number x
Hadamard product

Matrix

Vector

The total number of units in a set V'
The total number of elements in a set U
The set of all elements over W weeks
An element £k of a set U

The set of all elements in week w

An element ¢ of a set U,

The set of all units

A unit¢ofasetV

The total number of weeks observed



Introduction

The inspiration for this thesis comes from pure practical necessity. National Statistical In-
stitutes (NSIs) are the main providers of official statistics in most countries. A large proportion
of official statistics produced by NSIs are done so using data collected via sample surveys, with
the main customer of official statistics being the general public (or tax payers, in other words).
These days, cost efficiency is an essential consideration in all government spending; the question
is, are NSI sample surveys cost efficient?

There is not a simple answer to the question posed. A sample survey can possess one of
many different sampling designs. The simplest sampling designs do not necessarily provide
the lowest data collection cost. More complex sampling designs are considered in theory and
applied in practice to obtain statistical information with an acceptable precision at a lower cost.
In designing a sample survey, the following considerations should be decided upon: What is
the expected precision of the estimates of population parameters? What is the expected data
collection cost? Which sampling design should be chosen in order to minimise sampling errors
under a fixed data collection cost? These are commonly asked questions during the planning
stage of a sample survey. In most cases, the answers to the questions posed cannot be gained
through analytical means and NSIs are usually reliant on expert’s judgement to some extent.

The relation between the precision of estimates and survey cost has been discussed in liter-
ature for at least 70 years, though the topic has not been comprehensively addressed by any one
author. Different aspects of the relationship have been analysed and different goals of analysis
have been set by authors but it is possible to observe the lack of common foundations for the
topic.

One of the first sources relating to survey sampling, and discussing the relation between
the precision of estimates and survey cost, is a paper by Mahalanobis (1940). The paper is
devoted to sample survey methodology, applied to measuring the size of agricultural area used
for growing jute in Bengal. The author introduces a cost function to survey a zone (a primary
sampling unit here). Different components of the cost function are discussed: enumeration,
journey, miscellaneous and indirect. A variance function is introduced and one of the aims of
the paper is to minimise the variance function under the fixed cost of the survey.

Another early example is a report by Jessen (1942). It describes a sample survey methodo-
logy applied to the case of farm surveys in lowa. A cost function for the survey is given, whereby

the cost function is built on variables such as number of farms in a sampling unit, time spent



on a farm, salary and living expenses of interviewer, average distance between farms within a
sampling unit, cost per mile of travel, average speed of travel, number of sampling units in the
sample. The problem addressed by the author is to minimise sampling error under a fixed cost.

The topic is discussed extensively in a book by Hansen, Hurwitz, and Madow (1953). Op-
timal sample size and allocation regarding the fixed cost or the fixed variance in the case of
stratified sampling is given in Chapter 5. The construction of an approximate cost function in
the case of two-stage cluster sampling is discussed in Section 10 of Chapter 6. The optimisa-
tion of design parameters in the case of two-stage cluster sampling is discussed in Section 11
of Chapter 6. The optimal design parameters regarding fixed cost or fixed precision are given.
Optimality of design in the case of stratified two-stage cluster sampling and in the case of large
primary sampling units is discussed in further chapters. The authors state that survey cost es-

timation is a complex task:

The cost function is always difficult to approximate. Often, only a crude approx-
imation can be obtained. A great deal more work and empirical studies and results

are needed to improve this phase of the analysis. (Hansen et al., 1953)

All the literature sources mentioned so far in this thesis utilise the same assumption regarding
the approximation of travel distance. The travel distance is approximated by C'y/n where C is
some unknown constant and n is the number of sampled primary sampling units. The approxim-
ation works well for large n. The result is proven later by Beardwood, Halton, and Hammersley
(1959). The problem is that C' is unknown and it can vary a great deal, even between different
cases within the same survey. The authors provide their own estimates of C' but methodology for
the estimation of C' is not given. It is advised to estimate C' from other, previously undertaken,
similar surveys or by expert judgement.

Comparison of different sampling designs regarding cost efficiency is given by Kish (1965)
in Section 8.3 “Models of Cost Functions”. Practical advice is given by the author regarding
the choice of sampling design, with the aim of cost efficiency. A measure of the economy of
two sampling designs is introduced. The general cost function for an arbitrary sampling design
with four factors is given. However, the author admits to the problem that the factors of the cost

function are unknown usually:

Ordinarily the sampler has no precise data on cost factors, and must base his de-
cisions on estimates or guesses. Often he can make good enough guesses to elim-

inate designs that would be obviously uneconomical. (Kish, 1965)

A significant book regarding this topic is by Groves (1989). The author starts the discussion
with criticism of applied cost-error modelling. Very often, the cost is approximated by linear,
continuous and deterministic functions. The author claims that this approach could lead to wrong

optimisation results in practice since in reality cost functions tend to be non-linear, discontinuous



and with stochastic features. Non-sampling errors should also be taken into account in cost-
error modelling, if possible. The author admits to the fact that closed form analytical solution to
optimisation problems may not exist if complexity of cost-error model is increased. The author

advocates simulation studies as the best approach for design analysis:

With complex models, various optimisation problems can be approached with large-
scale computer simulation. These simulations can be used to address the common
design decisions of the survey statistician — optimal allocation to strata in the sample
selection, optimal workloads for interviewers, and optimal number of waves in a
panel design. The solutions will be found within the constraints implied by the total
budget for a survey. Since it is likely that closed form-solutions to such problems
will not exist with complex cost and error models, simulation approaches will be
useful to measure the sensitivity of results to changes in various design, cost, or
error parameters. (Groves, 1989)

The optimality of cost or precision for the estimation of one population parameter is a classic
problem. The selection of optimal sampling designs for multiple-objective surveys is discussed
by Malec (1995). Other recent papers regarding cost efficiency of sampling design are Kalsbeek,
Botman, Massey, and Liu (1994), Heeringa and Groves (2006) and Mohl and Laflamme (2007).

Several events have been organised recently, in the United States of America, devoted to
the topics of survey cost estimation and simulation models for survey fieldwork operations. For
example “Survey Cost Workshop” (2006) and “Workshop on Microsimulation Models for Sur-
veys” (2011). Both workshops were organised by the National Institute of Statistical Sciences in
Washington, D.C. Several papers devoted to the topic have also been presented in other events
such as “Joint Statistical Meeting” (2008) by the American Statistical Association, “Research
Conference” (2012) by the Federal Committee on Statistical Methodology and the “Statistics
and Public Policy Workshop” (2012) by the American Statistical Association. The research of
survey field operations is a brand new topic in the scope of statistical research. Several research

activities have been devoted to the topic only recently. Two quotes follow:

So far, similar work is rarely found in the literature describing the analytical or
simulation modeling of the operations. The field operation is a unique system in
the operations research field. (Chen, 2008)

The field operations of surveys can be classified as stochastic dynamic systems.
Usually the field operations cannot be modelled analytically because of the com-
plexity of the system. (Cox, 2012)

This literature review concludes with a very recent paper by Calinescu, Bhulai, and Schouten
(2013). The paper aims to solve the resource allocation problem in survey designs using adaptive
sampling design and operational research techniques:

10



Resource allocation is a relatively new research area in survey designs and has not
been fully addressed in the literature. Recently, the declining participation rates
and increasing survey costs have steered research interests towards resource plan-
ning. Survey organizations across the world are considering the development of
new mathematical models in order to improve the quality of survey results while

taking into account optimal resource planning. (Calinescu et al., 2013)

Some general observations can be drawn from this literature review. In general, the total
price for a survey, where data are collected directly from respondents, is increasing. There are
several reasons for the increase of the price, but one significant reason is decreasing response.
In today’s world, either much more effort is needed to increase the cost efficiency of surveys, or
a higher price must be paid, in order to produce the same quality of statistics as in times when
non-response was not such a big problem. However, given the current economic climate, in
most cases it is simply not possible to spend more since most government budgets for surveys
are reducing, or at best being kept the same as the previous year’s. It is clear, therefore, that
increased cost efficiency is crucial to maintaining the production of high quality statistics under
a decreasing or fixed budget. Since survey sampling emerged as a methodology, problem with
non-response and budget restrains has not been met so often. This is one of the main reasons
why survey cost efficiency has not been a very important research topic until recently.

Another observation is that, simulation experiments are getting more and more attention as
a tool used in the designing of production systems for official statistics. The expansion of the
method is possible because of a cheap computer power available currently, even a desktop or a
laptop computer nowadays can be set up to solve large scale simulation experiments.

The Latvian Labour Force Survey (LFS) is the main object of the study in the thesis. It
was organised for the first time in November 1995 (Lapins, 1997) and ran biannually. The
first redesign of the LFS sampling design was done after the 2000 Latvian Population Census
with the new sampling design launched in 2002 (Lapins, Vaskis, Priede, & Balina, 2002). It
become a continuous survey after the redesign. The second redesign of the survey occurred in
2006. The re-launch of the LFS with the new sampling design and a much larger sample size
took place in 2007. Finally, the latest redesign of the LFS sampling design was done in the
scope of this thesis by the author in 2009 (Liberts, 2010a). The main reason for redesigning the
LFS sampling design was the necessity to update the population frame used for the first-stage
sampling units. The redesign resulted with a new sample drawn which was used to run the LFS
since 2010. More information regarding the history of the LFS is given by Central Statistical
Bureau of Latvia (2012a) and European Commission (2012a, 2012b).

The goal of this thesis is to develop a framework which can be used to compare arbitrary
sampling designs by their cost efficiency. The framework should be used to analyse selected
sampling designs and determine the sampling design that leads to the highest overall precision
of estimates under a fixed survey budget. The following tasks are set to achieve the goal:

1. to update the frame of primary sampling units and implement the redesign of the LFS,

11



2. to create artificial population data representing the statistical characteristics of the target
population of the LFS,

3. to compare the sampling design of the LFS with alternative sampling design with respect
to the cost efficiency using the developed framework,

4. to provide recommendations for the choice of the LFS sampling design with respect to the
cost efficiency.

The first chapter of the thesis is devoted to the redesign of the LFS in 2009. The LFS
sampling design is defined and the process of the redesign is described. The resulting sampling
design is the basis for the analysis of the thesis. Methodology to develop artificial population
data is presented in the second chapter. Artificial population data with characteristics similar to
the target population of the LFS have been produced with this methodology. The third chapter
of this thesis is devoted to the theoretical development of the framework for the cost efficiency
analysis. The application of the framework is presented in the fourth chapter of this thesis. The
appendix of this thesis contains the description and code of the developed R procedures used to

achieve the results of this thesis.

12
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Chapter 1

Redesign of LFS

The chapter presents the two-stage sampling design used for the Latvian Labour Force Sur-
vey (LFS). It is based on the publication by Liberts (2010a) unless otherwise stated. The pub-
lication presents methodology for the third redesign of the LFS. The redesign was initialized in
2009 and methodology for the new sampling design was developed by the author.

The main reason for redesigning the LFS sample was the necessity to update the population
frame used for the first-stage sampling units. The population frame used for the first-stage
sampling was the the list of census-counting areas — a list which had not been updated since the
population census in 2000. A study analysing the coverage of the first-stage population frame
revealed that over-coverage was around 1.4% and under-coverage 2.2%. The study also showed
that the size of the primary sampling units (PSUs) was outdated. The largest discrepancies were
found in rural areas and in the capital city — Riga. For these reasons, the decision was made to
update the first-stage population frame using the latest available information.

The new sampling design is already implemented for the LFS and other surveys and is used
since 2010. It is the basis for the further studies in this thesis. Survey sampling theory is used
to provide the results of this chapter.

1.1 Target Population and Parameters of Interest

The target population of LFS is defined to be the residents of Latvia permanently living in
private households. Residents of working age (15—74 year old) compose the main domain of
interest. It is important to note that the characteristics of the target population is continuously
changing over time, for example, there are individuals who are gaining jobs and loosing jobs
every day. The target population is observed on a weekly bases using the LFS methodology
(European Commission, 2012b, p. 5). All residents of Latvia would therefore have to be ques-
tioned every week if the LFS would be done as a census' to measure the population parameters

necessary to produce.

'a full survey of the whole target population
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An individual is called a unit and denoted by v; (there are cases when households are used
as units). The set of all units is denoted by V. The size of V is M, |V| = M. The units are
labelled with an index i where i € (1, M), V = {vy,va,...,vp}.

The observation of a unit v; in week w is called an element and is denoted by w; ,,. The set
of all elements in week w is denoted by U,,. There are M elements in a set U, |U,| = M. The
elements of U,, are labelled with a double index (7, w), where i refers to the unit observed and w
refers to the week observed, Uy, = {u1 4, Ugw, - - -, Unrw }- A value y; ,, is associated with each
element v, ,, from the set U,,. The total of a variable y in week w is defined as

M
Yw = Z Yiw,
=1

and the variance of a variable y in week w is defined as

S2 — 1 iy2 _ LYQ
w M o 1 — 7,W M w N

The number of weeks observed is denoted by W and w is the week index, w € 1, W. The
set of elements over W weeks is denoted by U, U = U}Y_,U,,. Each U, consists of the same
units from V' but observed in different weeks. The size of U, is constant over time, |U,,| =
for all w. The size of U is denoted by N, |U| = Z M =WM = N. An index k is used to
label elements over W weeks, k € 1, N. The elements of each U,, are ordered according to the
order of units in V. Indices {k : ((k — 1) mod M) + 1 = i} correspond to a unit v;. The total

of a variable y over W weeks is defined as

w W M N
Z =20 Y=k

An illustration of units and elements is given in Table 1.1. The rows of the table represent
the units. There are M rows. The columns of the table represent the weeks observed. There are
W columns. The cells of the table represent elements. The dimension of the table is M x W.

Two types of population parameter are considered for estimation — quarterly average of

weekly totals and quarterly ratio of two totals. It is assumed there are 13 weeks each quarter.
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Table 1.1
The illustration of units and elements

i1 w=1 w=2 w=3 w=4 w=5> w=W
1 U1,1 U1,2 U1,3 U14 U1,5 T Ui,w
2 Uz U2,2 Uz,3 U2 4 Uz 5 T U2, W
3 U3,1 Uz 2 Uz 3 U3 4 Uz s T us,w
4 Uy 1 Ug,2 Ug,3 Ug 4 Ug,5 T Ug, W
5 Us 1 Us 2 Us 3 Us 4 Uss 0 Usw
6 Ue,1 Ug,2 Ue,3 Ug,4 Ue,5 s Ue, W
M upyy  ume UMz Uma Unms ot UMW

The weekly total of a variable y for week w is defined by

M
Yw = Z Yiw,
=1

and the quarterly average of the weekly totals of a variable y is defined by

T 1 B.M 1
}@_E;Yw_ﬁzzyi,w_l—ggyk- (1.1)

w=1 =1

The quarterly ratio of two totals is defined by

13 13 M N

Y, > w1 Yo _ D et D i1 Yiaw _ D k1 Yk

Rq - 7 = 13 - 13 M - N : (1'2)
Zq szl Ly szl i=1 Fiw Zk:l %k

1.2 Sampling Frame

There is the Population Register in Latvia (Population Register Law, 1998). The Central
Statistical Bureau (CSB) receives the data from the Population Register continuously. The data
are received in different formats:

» There is online access to the register — mainly used for data checking;

* There are data received monthly — mainly used for demographic statistics and the updating

of the Statistical Household Register.
The data from the register are kept, edited and matched with other information by the CSB in
the Statistical Household Register. The basic unit in the data is the individual. Individuals are
merged to construct dwellings. Individuals are merged by declared address of living or other
information. Dwellings are used as secondary sampling units for most of the household surveys
organised by the CSB. Dwellings are merged to construct census-counting areas — PSUs for the

household surveys.
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The first task was to update the population frame of PSUs which in our case are census
counting areas. The following changes were made. There were dwellings in the Statistical
Household Register not matched to any census counting area. There were 2.1% such dwellings
in total (4.1% in rural areas). Previously those dwellings were not included in sampling frame
and they amounted to under-coverage.

The State Land Service of the Republic of Latvia is an institution that holds information about
buildings in Latvia. The information about the buildings includes the geographical coordinates
of the building. This information is available to the CSB. Geographical coordinates were used
to match dwellings to PSUs. The coordinates for some buildings were not known in some cases.
Coordinates of the street, parish or territorial unit were used in those cases. All dwellings were
matched to PSUs in the end.

The size of the PSUs was recalculated. The size was defined as number of private dwellings
in the area. There were some rural areas where the addresses of dwellings were not defined. The
registered address of such dwellings was the name of the parish or other area. Such imprecisely
defined addresses can contain many dwellings and individuals. A new algorithm was created to
approximately define dwellings based on the surname and farm identification.

There was a reform of administrative territories in Latvia. PSUs were reordered to form a
serpentine shape by the CSB. The ordering of the areas was done in each stratum separately.
The areas were ordered so that successive areas in the ordered list were geographically close to
each other. The areas formed a closed shape. The census counting areas, ordered in serpentine
shape, are shown in Figure 1.1. Geographical coordinates, using the coordinate system LKS92
(Geodeziskas atskaites sistemas un topografisko karsu sistemas noteikumi, 2011) are used in
the figure.

The size of some PSUs was too small — there were not enough addresses to be selected for
the sample. For each stratum the minimum PSU size was defined. PSUs below minimum size
were merged with other PSUs from the same territorial area.

Geographical coordinates were computed for the centre of each PSU. The centre was defined
by the location of dwellings in the area. If the area was too small, it was merged with the closest
area of the same territorial unit. The closest area was defined by the shortest distance between

the centres of areas.

1.3 Definition of the Sampling Design

1.3.1 Rotation of Dwellings and Areas

The rotation scheme 2-(2)-2 is implemented for dwellings in the LFS sampling design.
According to European Commission (2012b), it is a scheme, “where sampled units are inter-
viewed for two consecutive quarters, than stay out of the sample for the next two quarters and

are included again two more times afterwards” (p. 7). Areas are rotated by rotation scheme 8- (),
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Figure 1.1 PSUs of rural areas ordered in serpentine shape

Table 1.2
Scheme of Rotation of Dwellings in a Sampled Area

Sample ql q2 g3 g4 q5 g6 q7 g8

Samplel 1 2 - -3 4 .
Sample 2 - -1 2 -3 4

where areas are sampled for eight consecutive quarters and then rotated out of the sample. Two
different non-overlapping samples of dwellings are selected in each sampled area. The first
sample of dwellings is used in the 1st, 2nd, 5th and 6th quarter (the first row). The second
sample of dwellings is used in 3rd, 4th, 7th and 8th quarter (the second row). The desired LFS
rotation scheme 2-(2)-2 is realised for both samples of dwellings. The rotation scheme for

dwellings and areas is illustrated in Table 1.2.

1.3.2 Sampling of Areas

A stratified systematic mps sampling design (Sérndal, Swensson, & Wretman, 1992) is used
to select areas. There are four strata. The strata are defined by the rural-urban classification:

* Riga — the capital city of Latvia,

« Cities under state jurisdiction excluding Riga (8 cities),

* Towns (68 towns),

* Rural areas (512 areas).
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A separate sample of areas is selected each week because the LFS is a continuous survey. The
weekly sample size of areas is 8 in the first stratum (Riga) and 16 in all other strata.

Assume we have ordered all PSUs from a stratum with their dwellings on a circle. A dwelling
is used as a unit v; here. PSUs are ordered in a serpentine shape, as described in Section 1.2.
Assume the length of the circle is equal to 1. The circle represents the set I of one stratum here.
Assume all units v; of one stratum are placed evenly on the circle — the equal sized arcs of the
circle represent each dwelling. If we put a point on the circle, we have selected a unit v; — by
selecting a unit v; we have selected a PSU.

There is an octagon in the circle as shown in Figure 1.2. Evidently the octagon divides the
circle in eight arcs. There are seven arcs with a length % and an arc — with a length %,
where 0, is a chosen constant for each stratum, h is the stratum index, h = {1,2,3,4}. The
number of dwellings in the PSU defines the size of PSU. A statistician can choose the value of

0y, freely. But it is reasonable to choose

maxi(Mhi) 1
i i LV Sy
S 0h) ~ T8

where Mp,; is the size of PSU i in stratum h. We will call §;, sampling displacement. Evidently

1+4d, 1-76
b ho_

7
8 8

1.

To select the necessary number of areas in a weekly sample a single octagon is needed in
stratum “Riga” (sample size 8) and two octagons are needed in each of the other strata (sample
size 16). Leta (w, h, 0, v) denote a point on the circle, where w is the week index, h € {1,2, 3,4}
is the stratum index, o € {1, 2} is the octagon index, and v € 1,8 is the vertex index.

The first point on the circle is selected randomly a (w = 1,h,0 = 1,v = 1) = &,, where
& is distributed uniformly in the interval (0, 1). The point a (w = 1,h,0 = 1,v = 1) defines a
PSU sampled for the eighth time (it will be rotated out of the sample in the next quarter). The
second point is computed as a (w = 1, h,0 = 1,v = 2) = frac (&, + ). The second point

selects a PSU sampled for the seventh time. All vertices of the octagon can be computed by
v—1
a(w=1,h,0=1,v) = frac (£h+ T(l—i—éh)) :

The selection time of an area can be computed as R (v) = 9 — v. The numbers attached to
the objects (1-8) represent the selection time of a PSU in the sample (Figure 1.2). Two non-
overlapping samples of dwellings are selected in each PSU. The circles represent the first sample
of dwellings; the squares represent the second sample of dwellings.

The number of areas already selected is enough for the weekly sample of stratum “Riga”.
Sampling eight more areas is necessary for all of the other strata. To get more areas we will

rotate the current octagon by the length of arc equal to % (1 + d5). The circles and the squares
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Figure 1.3 The first and the second octagon

represent the first octagon; the crosses and the triangles represent the second octagon in Figure
1.3.
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All 16 PSUs selected in the sample for the 1st week can be computed by the following
numbers (NB only the first eight points are used for the stratum “Riga”):

&n frac (&, + 3 (1+ 6n))

frac (&, + 2 (1 + 63)) frac (&, + 2 (1 + 6,))

frac (&, + 3 (1 +61)) frac (&, + 2 (1 + 65))

frac (&, + 2 (1 + 61)) frac (&, + £ (1 +61))
frac (&, + = (1 +61)) frac (&, + (2 + 1) (14 6n))
frac (ﬁh + (1% + %) (1+ (5h)) frac (é’h + (1% + g) (1+ (5h))
frac (& + (35 +5) (14 0n)) frac (& + (% +2) (14 64))
frac (&, + (5 +2) (1+6)) frac (& + (5 + %) (1 +6n))

The 16 points for the first week can be expressed alternatively by

a(w=1,h,o,v) = frac (&H— <%+v;1) (1+6h)),

where h € {1,2,3,4} is the stratum index, o € {1, 2} is the octagon index,

Boe{ {0}, if he{1},
0,9}, if he{234},

and v € 1, 8 is the vertex index.

The sampling step
_ qn 14 6y
13 8-13

is computed to select PSUs for the next weeks, where ¢, is an integer representing the “speed”

Ap

of rotation. The position for each point on the circle is computed by

B, wv-—1

a(w, h,o,v) = frac (fh + (—

ot >(1+5h)—|—(w— 1)Ah). (1.3)

It is possible to verify that a (w, h,0,v = 8) = a (w + 13, h,0,v = 7). The equality means
that the 7th vertex of the octagon is placed in the same position as where the 8th vertex was placed
13 weeks ago. Moreover, the expression a (w + 13 (I — 1), h,0,v = 9 — [) has the same value
for all [ = 1,8. This means that if we compare the placement of the octagon in week w and
week w + 13 the positions of seven vertices will coincide (the eighth vertex will be shifted by
0p). In other words, if a PSU is sampled for the first time in week w, then it will be also sampled
in weeks w + 13, w + 26, w + 39, w + 52, w + 65, w + 78, w + 91.

Direct calculations show that a (w + 104, h, 0,v) = frac (a (w, h, 0,v) + ;). The equality

means that if a PSU has already been sampled eighth times (at 13 week intervals) then it will not
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be sampled the ninth time (104 weeks after the first sampling of the PSU) since the corresponding
vertex of the octagon will be shifted by ¢;, from its initial position.

1.3.3 Rotation Speed

If ¢, = 0, the sampled areas of successive weeks are located geographically close to each
other. The example of areas sampled during a 13 week period where ¢;, = 0 is shown in Figures
1.4, 1.5 and 1.6. The different shapes of the objects in the figures represent each vertex of the
octagon in the figures. The geographical closeness of the sampled areas of successive weeks is
not reasonable for several reasons:

* the monthly sample (the sample of four or five succeeding weeks) is not geographically

evenly distributed, and it could lead to non-precise estimates of the monthly parameters
(NB monthly parameters are not estimated by the Latvian LFS yet),

* the sample could result in an uneven workload for interviewers over time (there is a high
probability that some interviewers will have to work for two succeeding weeks if sampled
units for both weeks are geographically close to each other).

It is advisable to choose ¢;, > 0. There is no merit in considering g, > 13, because only the
fractional part of {% influences the positions of the points on the circle. Therefore it is advised

to choose g, where g, € {1,2,...,12}. There are 12 possible designs to choose from.

1.3.4 Selection of the Design Parameters

Assume a sample of PSUs is drawn by the new sampling design and is denoted as the new
sample. The PSU sample drawn by the previous sampling design is denoted as the old sample.
There will be an overlap of the new and the old sample for five quarters because of the longit-
udinal feature of the LFS. The overlap of the samples is described by Liberts (2010b, p. 170).
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Table 1.3
Selected design parameters

h qn On
1 6 0.00169
2 2 0.00283
3 7 0.00210
4 11 0.00288

There are two design parameters for the optimisation of the sampling design — g5, and J;,. The
optimisation criteria was — minimal total overlap of the new and the old sample during the five
quarter transition period. The size of the overlap for one quarter is defined as the total number
of PSUs sampled simultaneously by both samples in a quarter. The sizes of the overlap for each
quarter are summed, achieving the size of the total overlap.

A sub-optimal solution for each stratum was found by grid searching through a subset of the

parameter space. All 13 valid values for ¢, € 0,12 and 20 possible values for

5 € 10 11 29
h 10 maxi(]\/[hi)’ 10 maxi(Mhl-) T 10 maxi(]\/[hi)

were selected. The subset of the parameter space was created as a Cartesian product from the
sets of selected values of both parameters. The size of the resulting subset was equal to 260. The
expected size of the overlap was estimated for each pair of the parameter values by simulations.
The pair of the parameter values giving the smallest size of overlap was selected as a sub-optimal
solution for the problem. The resulting values of parameters are shown in Table 1.3. We believe
the sub-optimal solution is close to the optimal solution because all valid values of the parameter

qn, were tested and the expected size of overlap is not changing much regarding the changes in
Op.

1.4 Implementation and Properties of the Design

The following steps are done to draw a sample using the two-stage sampling design de-
scribed:

* the values of ¢}, are drawn in each stratum / using a uniformly distributed random variables
in interval (1, 0),

* the values of ¢, and 9, are selected for each stratum,

» the values of a (w, h, 0, v) are computed for time period necessary (for example 5 years),

« the values of b (w, h,0,v) = a (w, h, 0,v) M}, are computed to select PSU sample, where
M, is a number of dwellings in each stratum (the PSU sample is selected according to the

numbers b (w, h, 0, v) using cumulative summation),
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* asimple random sample of dwellings with fixed sample size is drawn from each sampled

PSU for the first or the third selection time (a modified simple random sampling method is
used usually — the households previously sampled for LFS or other surveys are excluded

from the sampling frame).

The sampling design created possesses several statistical and practical properties.

1.

The sample drawn by the design is a probability sample according to Sérndal et al. (1992,

p. 8).
It is a self-weighting design in each stratum.

. The design provides the rotation of the sampled units according to the rotation pattern

2-(2)-2.
There is simple management of PSUs in a sample. The sample of PSUs can be selected
for several years in advance. It allows plenty of time for planning the interviewers’ work

schedules.

. Itis possible to coordinate different continuous household samples. Currently the samples

for LFS, Household Budget Survey (HBS) and Survey of Domestic Travellers (SDT) are
coordinated with each other. The PSU samples of HBS and SDT are sub-samples of the
LFS PSU sample. An interviewer can undertake all three surveys in a PSU with shorter
travelling distances compared to uncoordinated sampling design. The coordination allows

the total cost of the three surveys to be kept low.

6. Itispossible to use the PSU sample selected by the design for other ad-hoc sample surveys.

7. The design is suitable for application of different re-sampling variance estimation methods

(for example the method of non-independent random groups or Jackknife (Wolter, 2007)).
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Chapter 2
Artificial Population

The chapter presents the artificial population data generation methodology. Static and dy-
namic population data are generated using the proved methodology. Static population represents
the set V' of units v;, and dynamic population represents the set U of elements v, ,,. Artificial
population data are necessary to carry out the simulation experiments needed in this research.
The artificial population data are created from the data of the Statistical Household Register
(SHR) and the survey data of the LFS. Random imputation techniques, survey data analysis and

Markov Chain modelling are used to provide the results of the chapter.

2.1 Static Population

2.1.1 Statistical Household Register data

The data from SHR are given on the 30th January 2011. The list of residents living in
private households is extracted from SHR using the standard procedures for creation of popula-
tion frame.

The following procedures are applied to the data:

* Individuals aged 15-74 on the 30th January 2011 are selected. Other individuals are de-

leted.

* Individuals declared in dwellings with 12 or more individuals (aged 15-74 on the 30th

January 2011) are deleted.
The result is a data frame with 1 705 048 records (individuals) and variables described in Table

2.1. These variables will be auxiliary information variables used in a simulation.

2.1.2 Labour Force Survey Data

LFS data are used to create study variables for the artificial population. The LFS data from
the period 2007-2010 are used. The data describing individuals aged 15—74 are used. The result
is a data frame with variables described in Table 2.2.
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Table 2.1

SHR Variables
Variable Description
1ec2010 The number of census counting area
ATVK The code of administrative territory
ind_maja The ID of building
ind_dziv The ID of flat (if there are flats in a building)
MAJOKLIS The artificial ID of dwelling (if necessary)
coord x Geographical coordinate (X) of a building
coord y Geographical coordinate (Y) of a building
PERSKODS Individualal ID
DZIMUMS  Sex
dzdat Date of birth
vec Age (on the 30th January 2011)
Table 2.2
LFS Variables

Variable  Description

apsek Survey Period (year and quarter)

FPrimary Household ID

Instance  Sequence number of individual in the household

ATVK The code of administrative territory

Bl1l1 Sex

vec Age (on Sunday of a reference week)

J100 Registered unemployment status

eka Economic activity status by LFS methodology

E59 Number of hours per week usually worked in the main job
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2.1.3 Data Merge

The units in SHR data are individuals and dwellings. The units in LFS data are individuals
and households. The relation between units is:

1. There is one or more households in a dwelling.

2. There is one or more individuals in a household.

There is an assumption — the dwellings in SHR data correspond to the households in LFS
data. There is a single household in each dwelling in other words. The assumption is close to
reality because there is not many dwellings with several households in Latvia. The dwellings in
SHR data will be called households hereinafter.

The aim of the data merge is to assign information from the LFS data to all households in
the SHR data. This data merge can be considered as a data imputation where recipients are the
households in the SHR data and donors are the households in the LFS data (United Nations,
2010). 53 variables were created to perform the imputation (see Table 2.3).

Imputation is done in seven levels. Households are imputed at the first five levels. Im-
putation units (households or individuals) are grouped by imputation groups as shown in Table
2.4.

There are GG imputation groups in the imputation level k. The population of (households or
individuals) from SHR is denoted by U. The population of (households or individuals) from LFS
isdenoted by V. U and V is split in GG imputation groups. The groups are numbered sequentially
—-1,...,9,...,G. Both populations are split in subsets by the imputation groups — U, and V,
where ¢ is an index of the groups — g = 1, ..., G. The units from the populations U and V" are
denoted by w; and v; accordingly. The steps done for each unit (household or individual) in each
imputation level:

1. Compute |V,| — the number of units in the group V}, (in LFS population).

2. If|V,| < 10, a unit v, is not imputed in the imputation level .

3. If |V,| >= 10, a unit v; is randomly selected from the subset V, and attached to the unit

u;. Data from unit v; is imputed to the unit u;.
The number of units imputed in each level is shown in Table 2.5.

The resulting file contains 1 705 264 records and 12 variables shown in Table 2.6.

2.2 Dynamic Population

The next task is to generate a dynamic population according to the description in Section
1.1. A variable — eka (economic activity status by LFS methodology) is extrapolated from the
static population to the dynamic population. There are several assumptions incorporated in the
population model:

* the set of units is fixed over W weeks,
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Variables defining the imputation groups

Variable  Values Description

GR A0l 0,1 Male in age group 15-19
GR A02 0,1 Male in age group 20-24
GR A1l 0,1 Male in age group 65-69
GR Al12 0,1 Male in age group 70-74
GR Al13 0,1 Female in age group 15-19
GR A14 0,1 Female in age group 20-24
GR A23 0,1 Female in age group 65-69
GR A24 0,1 Female in age group 70-74
GR B0l 0,1 Male in age group 15-19
GR B02 0,1 Male in age group 20-24
GR B03 0,1 Male in age group 25-34
GR B04 0,1 Male in age group 35-44
GR B0O5 0,1 Male in age group 45-54
GR B06 0,1 Male in age group 55-64
GR B07 0,1 Male in age group 65-74
GR BI3 0,1 Female in age group 15-19
GR B14 0,1 Female in age group 20-24
GR B15 0,1 Female in age group 25-34
GR Bl6 0,1 Female in age group 35-44
GR B17 0,1 Female in age group 45-54
GR B18 0,1 Female in age group 55-64
GR B19 0,1 Female in age group 65-74
GR C01 0,1 Male in age group 15-19
GR C02 0,1 Male in age group 20-24
GR C03 0,1 Male in age group 25-44
GR C04 0,1 Male in age group 45-64
GR C05 0,1 Male in age group 65-74
GR C13 0,1 Female in age group 15-19
GR Cl14 0,1 Female in age group 20-24
GR CI5 0,1 Female in age group 25-44
GR Cl6 0,1 Female in age group 45-64
GR C17 0,1 Female in age group 65-74
Strata 1,2,3,4 Stratum

Reg 1,2,3,4,5,6 Region

Dzimums 1,2 Sex

Vecgr 1,2,...,12 Age group (five-year intervals)
Vec 15-74 Age
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Imputation levels

Table 2.4

Level (k) Imputation Unit Variables Used

NN Nk W~

Household GR_AO0I-GR A24, Strata, Reg
Household GR_BO0I-GR B19, Strata, Reg
Household GR _CO01-GR _C17, Strata, Reg
Household GR _CO01-GR _C17, Strata
Household GR _CO01-GR C17

Individual Strata, Reg, Dzimums, vecgr, vec
Individual Strata, Reg, Dzimums, vecgr

Table 2.5
SHR population split by the imputation levels
Level (k) Households Individuals
Count Proportion (%) Count Proportion (%)
1 413 799 54.1 583 884 34.2
2 90 696 11.9 227 085 13.3
3 72 136 9.4 201353 11.8
4 68 069 8.9 206 228 12.1
5 56 609 7.4 182 443 10.7
6 NA NA 303438 17.8
7 NA NA 617 0.0
Total 764 946 100.0 1705 048 100.0
Table 2.6

Variables of the resulting data file

Variable Description

H ID Household ID

P ID Sequence number of individual in the household

1ec2010 The number of census counting area

reg Region code

nov County code

DZIMUMS Sex

vec Age (on the 30th January 2011)

eka Economic activity status by LFS methodology

E59 Number of hours per week usually worked in the main job
J100 The status of registered unemployment

coord x p  Geographical coordinate (X) of a building (with random noise)
coord y p  Geographical coordinate (Y) of a building (with random noise)
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* the background variables such as age and place of residence are fixed for all units during
the W weeks,

* the study variables (for example employment status) attached to elements can change from
week to week,

+ the membership of individuals to households is fixed over W weeks.

2.2.1 Theoretical Model

Let y; be the value of the economic activity status for the ith individual. Markov chain model
(Carkova, 2001) is used to generate the dynamic population. Variable y; can take three different
values: y; € {1,2,3}:

* y; = 1 if individual 7 is employed,

* y; = 2 if individual 7 is unemployed,

* y; = 3 if individual ¢ is inactive.

The value of y; is defined once in a week (on Sunday by LFS methodology). Let y; ., be the
value of the economic activity status for the 7th individual on the wth week. Let y; ,, be random
variables and the sequence v; o, ¥i 1, ¥i 2, . . . be a time-inhomogeneous Markov chain. The state
space for the Markov chain is {1, 2, 3}. The probability of going from state & to state [ in a week
is

Piktwwil = P Wiws1 = UYiw = k),

and let the time-dependent transition matrix be

Pi1iww+l P12wwt+l  P13ww+l
Pi,w,w—i—l = Pw,w+1 = | P2.iww+1 P22ww+l  P2,3ww+1

D3 1,ww+l P32ww+l P33 ww+l

2.2.2 Estimation of Transition Matrices

The LFS data are used to estimate P, ,,413 = P, 441 (¢ is an index of quarter). The feature
of rotating panel of LFS (see Section 1.3.1 for more details about the LFS rotation) is used in
the estimation. It is possible to estimate the transition matrix of Markov chain after 13 weeks
P, ., +13 because of the rotation period is a quarter or 13 weeks.

The LFS data collected during the period from the 1st quarter of 2007 till the 4th quarter
of 2011 (2007Q1-2011(Q4) are used in the estimation. Four variables extracted from the LFS
database are described in Table 2.7.

The LFS data covers 20 consecutive quarters. Two indexes are used for quarters. See Table
2.8 for details:
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Table 2.7
Variables from the LFS data used for the estimation of the transition matrix

Variable  Description

apsek Survey Period (year and quarter)
FPrimary Household ID
b06 ip Individualal ID — traceable over waves
eka Economic activity status by LFS methodology
Table 2.8
Indexes ¢ and Q)
Period ¢ @
20071 1 1
20072 2 2
20073 3 3
20074 4 4
20081 5 1
20082 6 2
20083 7 3
20084 8 4
20111 17 1
20112 18 2
20113 19 3
20114 20 4

» g € 1,20 — index referring to 20 consecutive quarters (there are 20 quarters in the LFS
data used),
* Q € 1,4 — index referring to 4 seasonal quarters (there are 4 quarters in a year).
It is possible to observe 19 pairs of consecutive quarters. See Table 2.9 for an illustration.
The P, .,+13 is estimated from each pair of quarters. The set of respondents is defined for
each pair of quarters. The set of respondents for quarters ¢ and ¢ + 1 is defined as respondents
who responded in both quarters — ¢ and ¢ + 1. Firstly the frequency matrix for each pair of

quarters is computed as

2 Wagn = (L1 Z @hgaer = (1.2D) (g = {1.3)
(iaasr = {2.3)
(Vigas1 = 13.3)

Aggrr = | 2 Wigar = {211 2 Wigerr ={2,2}) 2

4 . 2

2 Wigern = 1{3,1}) 2 Wigern = {3,2}) X
where Y . (¥i4.0+1 = {1, 1}) is the count of respondents who were employed in quarter ¢ (y; , =
1) and where employed also in quarter ¢ + 1 (y; 941 = 1), D, (Yig.q+1 = {1,2}) is the count of

respondents who where employed in quarter ¢ (y; , = 1) and where unemployed in quarter g + 1
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Table 2.9
Pairs of quarters

Period 1 Period2 Q1:Q2 Q2:0Q3 @Q3:0Q4 (Q4:Q1

20071 20072 v :

20072 20073 . v .

20073 20074 . . v .
20074 20081 . . . v
20101 20102 v .

20102 20103 . v .

20103 20104 . . v :
20104 20111 . . . v
20111 20112 v .

20112 20113 . v :

20113 20114 . . v

(Yiq+1 = 2) etc. P, 4.1 for each pair of quarters is estimated as

Zi(yi,q,ﬁl:{l’l}) Z'(yz g,q+1={1,2}) Zi(yi,q,q+1:{1v3})

Zi(yi,qzl) Z (yz =1) Zi(yi,qzl)
P — 2iWiga+r1=12,1Y) X Wigq+1={2,2}) X ¥iq.0+1={2,3})
2,q+1 > i (Yi,q=2) > i (Yi,q=2) > (Yi,q=2)
2iWig,q+1=13,1}) Zi(yi,q,q+1:{3v2}) 2iWisg,q+1=13,3})
22 (Yi,q=3) 22 (Wi,q=3) 22i(Yi,q=3)

There are five estimates of transition matrix available for the each pair of seasonal quarters
—Q1:Q2,Q2: Q3 and )3 : Q4. There are four estimates of transition matrix available for
the pair Q4 : Q1 (see Table 2.9). The estimates of transition matrix for the pairs of seasonal

quarters are computed as average of transition matrices from according pairs of quarters.

Z Pq7q+1

((g—1) mod 4)+1=Q & ¢€1,19

>(((g—1)mod4)+1=0Q &q € 1,19)

Pg o1 =

Please note
Q+1, if Q<4,

Q+1::(Qmod4)—|—1:{17 iF Q—u4

The estimate of P,, ., is computed as 13th root of the estimates of quarterly transition matrices

(

Y/Pyy if (w—1)mod52)+1€T,13
Poom Ey 1:3273 if (w — 1) mod 52) + 1 € 14,26

N/ Ps, if ((w— 1) mod 52) + 1 € 27,39

¥/Pyy if ((w—1) mod 52) + 1 € 40, 52



Table 2.10
The Estimates of Transition matrices and their stationary distributions

~

Q w PQ7Q+1 Pw,w—i-l T
0.950 0.021 0.029 0.996 0.002 0.002 0.649
1 1,_13 0.251 0.541 0.209 0.025 0.952 0.022 0.063
0.058 0.052 0.890 0.004 0.006 0.990 0.289
0.944 0.021 0.035 0.995 0.002 0.003 0.612
2 14,26 0.253 0.540 0.206 0.026 0.952 0.022 0.066
0.055 0.055 0.891 0.004 0.006 0.990 0.321
0.937 0.028 0.035 0.995 0.003 0.003 0.541
3 27,39 0.199 0.609 0.192 0.019 0.962 0.019 0.080
0.048 0.042 0.910 0.004 0.004 0.992 0.379
0.930 0.033 0.037 0.994 0.003 0.003 0.482
4 40,52 0.183 0.596 0.221 0.018 0.960 0.022 0.085
0.042 0.043 0.915 0.003 0.004 0.993 0.433

13th root of P 1,2 1s computed by the help of eigen decomposition of the matrix. The eigenvalues
and eigenvectors of the matrix are computed by the R function eigen (R Core Team, 2013).

13th root of 151,2 is computed as

\/Poqi1=AVDA™

where A is the matrix of eigenvectors of the matrix PQ,QH and D is diagonal matrix with the
eigenvalues of the matrix PQ,QH on the diagonal. The estimate of stationary distribution 7 is
computed as

# = diag <k1im 2 wﬂ)
—00 ’

2.2.3 Generation of Dynamic Population

The dynamic population is generated using the estimated transition matrices (Table 2.10).
The population is generated for 312 weeks (six years). The resulting distribution of variable eka
is displayed in Figure 2.1.
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value

0.2+

I I I I I I I I I
0 26 52 78 104 130 156 182 208 234 260 286 312
w

Figure 2.1 The distribution of eka in dynamic population. Colours represent three states of eka.
Solid line — weekly proportion, dashed line — quarterly stationary distribution, dotted

line — initial state (week 0) from the static population, dot-dashed line — the average
stationary distribution.
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Chapter 3

Cost Efficiency — Theoretical Model

Definition of design cost efficiency is introduced in the chapter. Modified stratified simple
random sampling design is defined and the expression of variance for population parameter
estimates (total and ratio of two totals) under the design is given. The estimation formulae of
the Monte Carlo simulation experiment are provided. Theory of survey sampling, mathematical
statistics, linearisation techniques and Monte Carlo simulation experiments is used to provide

the results of the chapter.

3.1 Definition of Cost Efficiency

Assume an arbitrary population parameter 6. Assume there is a probability sample s drawn
by sampling design p (s). 0 can be estimated using an estimator ép. The variance of ép is denoted
by Var (ép). There is a cost function ¢ (s). The cost of sample s can be computed by the cost
function ¢; = ¢(s). The cost ¢s is a random variable because s is a random sample. The
expectation of ¢, under sampling design p (s) is denoted as E (¢,) = C,,.

Usual desire is to minimise Var (ép) and C,,. Unfortunately these are conflicting tasks. One
has to increase cost to reduce variance and variance goes up when cost is reduced. The task of
a statistician is to find sampling design p (s) so that C and Var <ép> would be in “balance”.
There is a need for a measure of cost efficiency. Assume two sampling designs:

* Simple random sampling — srs

* Alternative sampling design — p ()

The classical design effect for sampling design p (s) by Kish (1965) is the ratio of variances

under condition of equal sample sizes defined by

~

Var, (8,, E(n,) = n>

VarST‘S (087”5

deff <p, 0, n) _

)
Ngrs = n)
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where ép denotes estimator of # under sampling design p (s), 0, denotes estimator of @ under

simple random sampling. Alternative design effect is introduced by

Var, (ép

VarST'S (987‘8

Cp = 7)
Cors ~ 7)

deff* (p, ép, 7) =

where 7 is a survey budget available for survey fieldwork. It is defined as a ratio of variances
under condition of equal expected cost. Approximate equality (=) is used in the definition of
alternative design effect because «y can take any positive value, but the values of C, and C,
can take only values from a finite subset of R™. The alternative design effect could be used as

a measure of cost efficiency. Assume two sampling designs — p (s) and ¢ (s).

Definition 1. The sampling design p (s) is more cost efficient than the sampling design ¢ (s)
for estimation of 6 with survey budget ~ if deff* (p, ép, 7) < deff* (q, éq, 7).

Definition 1 is equivalent to Definition 2.

Definition 2. The sampling design p (s) is more cost efficient than the sampling design ¢ (s)
C, ~ 7) < Var, (éq Cy~ 7).

for estimation of ¢ with survey budget  if Var, (ép

3.2 Aim of the Research

The aims of this chapter and the next chapter are to:
* describe the methodology for comparing sampling designs regarding the cost efficiency,
» compare several sampling designs with the developed methodology.
Definition 2 is used to compare the sampling designs. The aims are achieved in several steps.
1. Selection of population parameters for the analysis.
2. Definition of the cost function c¢; = ¢ (s).
3. Selection of sampling designs and definition of the estimators for the population paramet-
ers selected at the step 1.
4. Calculation of sample size for each chosen sampling design to achieve approximately
equal expected cost for all designs.
5. Calculation of variance for the estimates of population parameters selected at the step 1.

6. Determination of the most cost efficient sampling design.

3.3 Sampling Designs

The selection of sampling designs is restricted by the requirements of LFS:
* LFS is a continuous survey. The population is observed weekly. The sampling units have

to be allocated evenly by weeks (European Commission, 2012b, p. 5).
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» Two questionnaires are used — a household questionnaire and an individual questionnaire.

* The response burden on respondents has to be minimised if possible.

3.3.1 mSRS Design

Modified simple random sampling design (denoted as mSRS further) is introduced. The
target population is described in Section 1.1. The classical simple random sample (SRS) by
selecting n < NN elements from the population U would violate two requirements of the LFS:

 sample would not be evenly distributed by weeks for most of realised samples by SRS,

* it would be possible to select more than one element corresponding to the same unit during

W weeks (observe a unit (individual or household) more than once during W weeks).
These are the reasons for introduction of the mSRS sampling design.

New notation is introduced. Let 5 denote the set of sampled units, s C V, s,, denote the set
of sampled elements in the week w, s,, C U, and s denote the set of sampled elements over W
weeks, s = UY_ s, C U,

The weekly sample size m is chosen. Total sample size n is computed as mW. The value of
m has to be chosen so that n = mW < M, because each unit can be sampled only once during
W weeks.

The goals of the mSRS sampling design are:

« all elements of U have sampling probabilities equal to m, = & = 7},

» all weekly samples are realised with equal sample size Vw : |s,,| = m,

* total sample size is equal to n, n = |s| = Wm,

+ all n sampled elements refer to n different units (one and only one element u; ,, may be

sampled for the unit v;).

There are several techniques to achieve the sample by mSRS design. An example is presen-
ted here. The sample is selected in two steps, where n units are selected by simple random
sampling without replacement from M units and sorted in the random order at the first step.
The ordered sample of units is systemically split in W blocks with length m at the second step.
The units of the first block determine sampled elements for the first week. The units of the
second block determine sampled elements for the second week. The procedure is continued till
finally the units of the last block determine sampled elements for the last week.

For example, assume M = 100, W =3, N = MW = 300, m = 5, n = mW = 15 < 100,
i € 1, M is the index of units. Then

* the realisation of randomly ordered list of sampled units is:

s = {U307U87U927U687U80a V91, V37, Urs5, V9, V13, U39, V29, U33, U587U76}7
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* the realised weekly element samples are

S1 = {Us,h U30,1, U68,1, USD,15 U92,1} )
S2 = {U9,2, U13,2, 37,2, U752, U91,2} )

§3 = {U29,37 U33,3, U39,3, Us8,3, U76,3} )

* total realised element sample with indices k € 1, NV is

s = {Us, U3p, Ues, UgD, U92, U109, U113, U137, U175, U191, U229, U233, U239, U258, U276} .

Probability to select the unit 7 in the sample of units at the first step is 1;. The probability
of unit ¢ to be located in the block w after random ordering is % The sampled element is

determined by the index ¢ of the sampled unit and the index w of the block containing the unit

n 1 _ m

i. Therefore the sampling probability of any element is equal to 7; , = T = 77 - 77 = ;-

3.3.2 mSSRS Design

Stratified mSRS is realised if the population units are stratified in H strata and mSRS is
applied independently in each stratum. This design is denoted mSSRS.

The population of units V' is stratified in non-overlapping strata V;, V5, ..., Vy where H is
the number of strata, UL |V}, = V. The number of units in the population of each stratum is
denoted by M}, Zthl Mj, = M. The number of weeks W is chosen and weekly sample size
my, for each stratum is set. Then mSRS is applied independently in each stratum. The sampling
probabilities for elements depending on stratum h are equal to 7, ; ,, = T 1 =

Mp
My *

3.3.3 Choice of Sampling Designs for the Cost Efficiency Study

Three sampling designs are chosen for the cost efficiency study.

1. mSSRS with individuals as sampling units (denoted mSSRSi). Each sampled individual
is interviewed by the individual questionnaire and also the household questionnaire.

2. mSSRS with households as sampling units (denoted mSSRSh). Each sampled household
is interviewed by the household questionnaire and all household members are interviewed
by the individual questionnaires.

3. Stratified systematic two-stage sampling design used in practice for Latvian LFS and de-
scribed in Chapter 1 (denoted TSSh). Households are sampling units for this design. Each
sampled household is interviewed by the household questionnaire and all household mem-
bers are interviewed by the individual questionnaires.

It is possible to draw conclusions about the expected precision of the designs under the as-
sumption of equal expected sample size with analytically based considerations. Sample size is
defined as expected number of sampled individuals in this example. Assume the same stratifica-
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tion for all designs and only individual questionnaires are used in survey. The expected interview
cost is approximately equal for all designs because of equal expected sample sizes (number of in-
dividual questionnaires to be filled). The expected travel cost is highest for the mSSRSi (sample
is well spread and a single individual is interviewed from each household in most cases), lower
for the mSSRSh (sample is well spread but two individuals are interviewed from each household
on average) and the lowest for the TSSh (sample is geographically clustered and two individuals
are interviewed from each household on average). The expected fieldwork cost is the sum of
expected interview cost and the expected travel cost — so the expected fieldwork cost is highest
for the mSSRSi, followed by the mSSRSh and the lowest expected fieldwork cost is for the
TSSh.

The precision of population parameter estimates is driven mainly by two effects — stratific-
ation and clustering. Both effects can increase or decrease the variance of population parameter
estimate depending on the population under study and sampling design used. Equal stratification
is assumed in this example. Clustering of units is the technique used in sampling when popula-
tion units are grouped in clusters and clusters are used as sampling units. Clustering is not used
by mSSRSi. The clustering of individuals in households is used by mSSRSh. The clustering
of individuals in households and clustering of households in census counting areas are used in
TSSh design. Some calculations have shown that units tend to be more homogeneous in clusters
(households and census counting areas) compared to whole population in the case of Latvian
LFS. The level of homogeneity of units in clusters is described by the coefficient of intraclass
correlation. Positive coefficient of intraclass correlation is the sign that clustering of population
units in sample can result with higher variance of population parameter estimates compared to
non-clustered sampling design. It is possible to conclude that clustering tends to increase the
variance of population parameter estimates in the case of Latvian LFS. The effect of increasing
variance of estimates due to clustering is called cluster effect. See Kish (1965, p. 161) for more
details regarding clustering and the coefficient of intraclass correlation.

The cluster effect will be highest for TSSh (because of geographical clustering and clustering
of individuals by households), lower for mSSRSh (only clustering of individuals by households)
and the lowest for mSSRSi (no clustering of individuals). The expected precision in this case is
reverse to cluster effect (because of equal sample sizes). Therefore it is possible to draw a rough
conclusion that mSSRSi would be the most precise design followed by mSSRSh and TSSh under
the assumption of equal expected sample size.

See Table 3.1 for illustration. The stars denote the order of sampling designs by a chosen
variable, for example, travel cost is the lowest for the TSSH (*), it is higher for the mSSRSh
(**) and the highest for the mSSRSi (***). Equal number of stars means that order can not be
determined.

The situation is different if the expected fieldwork cost is set to be approximately equal for
all designs. The expectation is that travel cost will be highest for mSSRSi followed by mSSRSh

and TSSh. Interview cost will be lowest for mSSRSi to compensate the highest travel cost,
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Table 3.1
Rough precision evaluation under assumption of equal sample size

Design  TravCost IntCost FWCost SamplSize ClustEff Precision

mSSRSi sk k 3k sk %k * #ksk
mSSRSh sk 3k 3k 3k sk 5k
TSSh * 3k * ek koK *

Table 3.2

Rough precision evaluation under assumption of equal fieldwork cost

Design  TravCost IntCost FWCost SamplSize ClustEff Precision

mSSRSi ook * *% * * 9
mSSRSh ko * % * % * % sk ?
TSSh * *kk * % *okok *okok 9

the second highest interview cost will be for mSSRSh and the highest for TSSh. Travel cost
and interview cost will be chosen so to equalise the expected fieldwork cost for all designs. The
equalised fieldwork cost will result with the lowest sample size for mSSRSi, higher for mSSRSh
and the highest for TSSh. The designs will have the same cluster effect as described before —
the highest for TSSh, followed by mSSRSh and mSSRSi. It is not possible to give an evaluation
about the precision in this case without an additional in-depth analysis. mSSRSi has the lowest
cluster effect but at the same time also the lowest sample size. On contrary TSSh has the highest
sample size but also the highest cluster effect. There is no obvious answer to the question which
of the chosen sampling design is the most precise under the assumption of approximately equal
fieldwork cost (see Table 3.2).

3.4 Estimators of Population Parameters

The sample of individuals is generated by all three designs and it is possible to compute the
sampling probabilities of individuals for each design. The estimators for Y, and R, (see the

equations 1.1 and 1.2) are constructed using 7 estimator (Sarndal et al., 1992, p. 42, 176):

9 1 Yiw
Y, =— ’ 3.1
q 13 vt 7Ti7w7 ( )
~ }A/ Z 1, W)ES ii-’w
R — q — (7 )G 7w (32)

q - Zi,w *
Zq Z(i,w)és

T, w
where s is a probability sample of observations from U, s C U, y; ,, and z; ,, are values assigned

to observation u, ,,, and 7; ,, is the probability of observation w; ,, to be included in sample s.
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3.5 Variance under mSRS Sampling Design

3.5.1 Variance for Estimator of Total

The target population is described in Section 1.1 and the mSRS design is described in Section
3.3. Some notation is repeated here for clarity purposes. Population V' is a finite set of units.
The units of V' are individuals (there are cases when households are used as units). The size of
V' is M. A weekly sample size is denoted by m. The values of M and m are constant over time.

The index 7 is used to label units, ¢ € 1, M. The total of variable y in week w is defined as

M
Yw = Zyi,w- (33)
=1

The number of weeks observed is denoted by IW. The index w is used to label weeks,
w € 1, W. The number of elements in population U is denoted by N = W M (see Table 1.1 as
an example). The sample size of elements is denoted by n = mW. The index k is used to label
elements, k € 1, N. The value of m has to be chosen so that n = mWW < M, because each unit
can be sampled only once during W weeks.

The column vector of values y;, is denoted by y = (y1, %2, ..., Yk, ..., yn) . Alternatively
y= v, ....Y,,. .., Yy), where y, is a column vector of values %; ,, at the week w. The

total of y over W weeks is defined as!
M N
V=3 Yu=2.D tw=2
w w  i1=1 k=1
and the m-estimator is given by

SIS M BB+
w ’ €s

w  1ES

where s is a probability sample of elements, and 7; ,, (7;) is inclusion probability of element u; ,,
(ur) in a sample. The variance of the estimator is derived using the general variance expression
from Sérndal et al. (1992, p. 44) as

NN N 2
Var (Y) = Z ﬁykyz - (Z yk) ) (3.4)
— T P

where 7, is the probability that both elements u; and wu; are simultaneously included in the
sample, T = TETkes = p(k € s)p(l € s|k € s). Assume the order of elements each week

equal to the order of units — indices {k : kK mod M = i} correspond to the unit v;. Then 7, =

'The notation ) is used instead of szvﬂ further to simplify notation
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7 = = 3; for all k, but there are four possible values of my;:
no i (=1,
) e (U = L) & (D),
0 if (kmod M =Imod M) & (k#1),
momoif (5] # [5E]) & (kmod M # I mod M) .

Some explanation of 7;:

* (k =1): elements u, and u; is the same element, sop (I € s|k € s) = 1 = 7 = T = §}.

« (|52 =|5E]) & (k#1): elements uy and u; are sampled from the same week, but
ug # u;. Assume element wuy, is sampled in week w. There are M — 1 other elements in the

population of the week w and m — 1 elements of them are sampled, so p (I € sk € s) =

1 _ m m—1
M—1 = Tkl = pa—1-

* (kmod M =Ilmod M) & (k #1): elements uy and v; refer to the same unit, but they
are sampled in different weeks. The mSRS design does not allow a unit to be sampled

m—

more than once in a period of W weeks, sop (I € s|lk € s) =0 = 1 = 0.

« ([51] #|5E]) & (kmod M # [ mod M): elements uy, and v, are sampled from dis-
tinct weeks and wu;, and w; refer to different units. Assume element wy, is sampled in week
w, so element w; is sampled from any other week different from w, and element u; can not

refer to the same unit as element uy. There are N — M — (W — 1) possible candidates for

w; and n — m elements of them are sampled, so p (I € s|k € s) = —Nf]\?:(n;[/fl) = T =
m_ Wm-m  _ m_W-Dm _ m_m
MWM-M—(W—1) — M (W-1)(M-1) M M-1
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The matrix of 7y is denoted by II. II is a square matrix with size N x N. An example of II

for the parameters M =6, W =3, N = 18, m = 2 and n = 6 is given below.

T % * *10 : iO
* Ty x x| 0 . 0
T 0o - L 0
* ok Kk M K * | 0 L 0
*  * Ty, *i -0 i 0
r o Mg oo b 0
0 T ok x Kk % x| 0
0 :* TE % * *:- 0
0 - T *  x o 0
0 i* * Kk M x *i- 0
0 SR S S R T 0
0, % * * * * 7, - 0
0 0 T ok x x ok
0 i 0 i* T *  x Kk ok
0 | 0 S SV S
0 | 0 Lk kK T k%
0 : 0 Lk ok k% T, %
0; O}* S S S S

It is observable that:

Matrix IT consists of W2 square blocks of size M x M. There are 9 blocks with size 6 x 6
in the example.

Values of diagonal elements of IT are 7;,; = 7, = < in the example.

|| Wl

Values of the cells marked by the star (x) are m, %J\”}—j Here 7y, is the probability to
select two different units simultaneously in the sample of a week, m; = 5+ = & in the

example.

Values of the diagonal elements of all non-diagonal blocks are 7m,; = 0. Here 7y is the
probability to select a unit simultaneously in the samples of two different weeks. The
design does not allow the unit to be sampled more than once during W weeks, so this

probability is zero.

m _m

M M—1
to select two different units simultaneously in the samples of two different weeks, 7 =

Values of the cells marked by the dot (-) are m,; = . Here 7, is the probability

12 _ 2 ;
3% = 7z in the example.
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The matrix Y = yy’ includes all cross-products y;y;. The structure of Y is the same as for
IT - the size of Y is N x N andY consists of W2 square blocks each with size M x M,

A1,1 B1,2 B1,3 te B1,W
32,1 A2,2 32,3 T Bz,w
Y = B3,1 B3,2 A3,3 T B3,W )

Bw: Bws Bws -+ Aww

where Ay, » = Yu¥,, and By, , = Y.,

New notation is introduced:

C=) > V.Y,

wH#v
M
D = Z Z Z YiwYv i,
w#v =1

where Y, and Y, is defined by (3.3), C' is the sum of the elements of the B,, , matrices, and D

is the sum of the diagonals of all B,, , matrices.

1:11,1 Bl,2 Bl,3 o Biw
. By, Ay; B3 --- Byw

Y = ) MIeoY)=| B3y Bss Asz; -+ By |,
BW,l BW,Q BW,3 e AW,W

where m = 77, symbol © is a Hadamard product and Y is the N x N matrix.
The double sum in (3.4) is equal to the sum of the elements of Y matrix and it can be ex-

pressed by three addends as

N T ~ M 2
NN oy =1Y1= (—) V(MOY)L=T+A+A,
™ m

where 1 is a column vector with length N and all entries equal to 1, and addends are

M M
F:ZFw:EZZ?JZW

w =1
M
S = ]
M
A:M—l(C_D)7
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where [, is the sum of the diagonal elements of Aw,w, A, is the sum of Aww elements outside

diagonal, and A is the sum of all BW, elements. The last addend in (3.4) can be rewritten as

N 2 2
(L) - (2n) ~xwve
k=1 w w
and the alternative expression for (3.4) is

Var(Y/>:F+A+A—C—ZYg. (3.5)

It is possible to derive for the week w:

M Mm-—1
2 E 2 2 E 2 2 _
Fw"‘Aw_Yw_m yz’w+mM—1<Yw_ y’i,w>_Yw_
1 -

M (M —m) 5 m—M _,
= yzw+ Yw_
m(M —1) 22:1: : M-1) (3.6)
m M m
_MQ(l_M)ZyQ _M21\14(1_M)Y2
m(M—1) & m(M-1) ¥
1—m l 1
= M? M P— V)
s (D g
21_% 2
=M S,
m
and it is equivalent to Var (Yw). From (3.6) follows
1_m
P+A—Zyj:M2TMZSEU. (3.7)

The (3.7) is equal to ) |, Var (Yw> , and it is equal the variance of Y if stratified simple random

sampling without replacement stratified by weeks with even sample allocation by weeks would
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be used. There is a remainder from (3.5) and (3.4)

Var (V) - ZVar( W) =A-C =

———(C-D)-C=
M (1

:M—1(MC_D): (3.8)
M (1 al
1 <M 27&2 Yw}/v - 27&2 Zl yi,wyv,i> -

— M (ggsw,v—gsf,)).

The expression (3.8) is a correction term of the dependency of weekly samples. Interesting
observation is that the correction term is a population parameter — it does not depend on a sample.
From (3.7) and (3.8) follows that (3.4) for the current sampling design is equal to

Var(Y):MQ%ZSSJ—M<ZZSMU—ZSEJ>:
Mgy S

(3.9)

It is interesting to observe that MWQ 3., 52 is the variance of Y if stratified simple random
sampling with replacement stratified by weeks with the same sample size and allocation would

be used.

3.5.2 Variance for Estimator of Ratio

The ratio of two population totals is

M N

w Y _ Zw Zi:l Yiw Zk:l Yk
= M Y )

Zuw Zw Zi:l Ziw Zk:l %k

Zw Eies 7yriw Zkes T
Zw ZiES ::ZJ, Zkzes Tk

N> ~<>

fzgz
Z7%,

Approximate variance of R is derived. Taylor linearisation technique is applied to derive an

approximate variance of R (Sirndal et al., 1992, p. 178).
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So called linearised variable r is introduced where the values of r are computed as
e = Yr — Rz,

or
Tiw = Yiw — Rzi,uw

. ! !/
The structure of r is the same as fory, r = (ry, 7o, ..., 76, ..., *N) = (P, 75 . 70 o T ),

» T w?

where r,, is a column vector of values 7; ,, at the week w. Ris approximated as follows
A 1 <~ yp — R, RN
R=Ry=R+ — = — =R+ — —,
0 + Z ; Tl + Z ; Tl

where = stands for approximation. Approximate variance of Ris given by

) A 1 NN N 2
AVar (R) = Var (R()) =7 Z Z K]erm — (Z rk>

k=1

Approximate variance of R under the m-SSR design is expressed using (3.9)
- 1 [ M? 9
AVar <R> = ﬁ (W ; Sw (7’) - M ; ; Sw,v (T>) -
M\ [ 1 ) 1
- (%) (azsw“") - M%:;Swv”(”> ,

w

where S2 (r) is the variance of r, and S,, , () is the covariance of r,, and r,,.

3.5.3 Variance under mSSRS

The population of units is split in non-overlapping strata in the case of stratified sampling.
There are H strata, V = Uthth, and M), = |V},| is the population size of stratum A, Zthl M, =
M. The stratification of the unit population I determine the stratification of the element popula-
tion U. The weekly sample size of stratum £ is denoted by m,,, and Zle myp, = m. The vector
Yn = (yr : ui € Up,) is the vector of yy, values in stratum h, and Yy, , = (Yiw : Wiw € Uypp) 18
the vector of y; ,, values in stratum h. The variance ofy,, j, is denoted by S, ;, and the covariance
of y,, », and y,, 5, is denoted by S , 1.

The expression (3.9) is used to compute the variance of the estimate of total in stratum h,

Var (1) = o520, 30 S
h w w v
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Variance of the estimate of the population total in the case of stratified sampling is equal to
(Sdrndal et al., 1992, p. 102)

Var() ZVar( ) é(%;si’h_thgs‘”’”’h) (3.10)

Approximate variance of the estimate of the ratio of two population totals in the case of stratified

sampling is given by

A (a2
AVar (R) = % ; (m—: zw: ng,h (T) - Mh Xw: zv: Sw,v,h (’f‘)) )

where 7 is the so called linearised variable of R (more information regarding linearisation of
ratio is available in Section 3.5.2).

Since Y, = 1—13Y, we have
1 & (M2
V<> V():— ThNT g M Swon | |

and because of R, = R, we have

AVar (R ) AVar (]%)

3.6 Estimates by Monte Carlo Simulation

Section 3.6 is based on Mood, Graybill, and Boes (1974) unless otherwise stated.

Let X be a random variable with average p and finite variance 0> < oco. The sample =
(1,29, ...,xy) is generated from X by Monte Carlo simulation. The sample z is treated as
realisation of m independent and identically distributed (iid) random variables. The Monte Carlo

estimate of y is

1 m
foy = Ty = — X (3.11)
ma3
The Monte Carlo estimate of o2 is
&stzz;i(x»—x ) (3.12)
m m m — 1 (] m .

Both estimates (3.11) and (3.12) are unbiased estimates, E (7,,) = pand E (s2)) = o2
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3.6.1 Normally Distributed Variable

Let X be a normally distributed random variable with mean p and variance o2. Then the

distribution of Z,,, is normal z,, ~ N (u, ) The variance of z,, is

o2
Var (z,,) = —, (3.13)
m
and the variance estimate is
var (Z,,) S
Tm) = —.
" m
The distribution of s2, is described by "= 1)8 ~ x2,_,. The variance of s2, is
20
2
Var (s2,) = —
and the variance estimate is
var (s3,) = 250
mm =1
The random variables 7,, and s2, are independent by Cochran’s theorem. The result Z2-£ ~
Jm
tm—1 Tollows from the distributions of 7, and s, and the independence of 7,,, and s?2,.
A two-sided 100« percent confidence interval for p is constructed as
_ Sm Sm _q
D\ Tm — \/mtm 11-g <P < Ty + \/_mtm—l,l—% =1l—-a.
A one-sided 100« percent confidence interval for o2 is constructed as
m — 1)s?
p <02 < (2#) —1—a (3.14)
m—1,«

3.6.2 Unspecified Distribution of Variable

Let X be a random variable with mean 4 and finite variance o2 but the distribution of X
is not specified. The distribution of z,, tends to the normal distribution as m tends to infinity

Ty —— N (u, ) by the Central limit theorem.

m—0o0
The variance of z,, is expressed by (3.13). It is because the elements of x are iid random

variables. The variance of s2, is

Var (s3,) = % <,u4 — :nl:il))(fl) :

where 14 is the fourth central moment of the X (Mood et al., 1974, p. 229).
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3.6.3 Nonparametric Bootstrap

Section 3.6.3 is based on Wasserman (2006) unless otherwise stated.

Nonparametric bootstrap can be used to construct bootstrap percentile intervals for the estim-
ates of Monte Carlo simulations. Bootstrap sample is a sample selected with replacement from
x with sample size m. Several bootstrap samples are drawn, the number of bootstrap samples
drawn is denoted by J. Bootstrap samples are labelled with the index j = {1,2,...,J}. j-th
bootstrap sample is denoted by z;. The elements of the j-th bootstrap sample are denoted by
Z; = (Tj1,%j2,...,Tjm), Tj; € x forall j and for all 7.

The estimate of ;1 computed from the j-th bootstrap sample is

m
_ 1 -
J m E : J
=1

The estimate of 02 computed from the j-th bootstrap sample is

m

1
2 _ - L2
Smj = —m_lz(%’i—ﬂj) :
=1
The distribution of the vector Z,,, = (Zyn1, Tm2, - - -, Tmy) Oof J bootstrap estimates of p

asymptomatically approximates the distribution of Z,,. The distribution of the vector 2, =

2

(821,829, -, 52 ;) asymptomatically approximates the distribution of s2,.

A two-sided bootstrap percentile interval for y is constructed as

~

p(Qs @) << Qug @) ~ 10,

where Q% (Z,,) and Ql_% (Z,s) are the estimates of quantiles at probabilities § and 1—§ of the
unknown distribution of z,,,. The quantiles are estimated from the vector of bootstrap estimates

Z,.. A one-sided bootstrap percentile interval for o2 is constructed similarly
P (02 < Ql,a (silb)) ~1-—a, (3.15)

where Q, (82 ,) is the estimate of a-quantile of the unknown distribution of s2,. The quantile is
estimated from the vector of bootstrap estimates s2 .

Confidence bands are used to monitor the variance of the Monte Carlo simulation results. A
100« percent confidence band is constructed by computing a 100« percent confidence interval

for each simulation iteration k£ (Robert & Casella, 2004, 2010).
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Chapter 4
Cost Efficiency — Practical Application

The cost efficiency of three sampling designs is analysed in the chapter. Fieldwork cost
modelling, travelling salesman problem solving, Monte Carlo simulation techniques, survey

sampling techniques and hypothesis testing are used to provide the results of the chapter.

4.1 Fieldwork Cost Estimation

The research of survey field operations is a brand new topic in the scope of statistical re-

search. Chen (2008) is writing about the research of survey field operations:

So far, similar work is rarely found in the literature describing the analytical or
simulation modeling of the operations. The field operation is a unique system in

the operations research field.

The field operations of surveys can be classified as stochastic dynamic systems. Usually the
field operations cannot be modelled analytically because of the complexity of the system (Cox,
2012). Discrete-event simulation modelling could be a tool for performance evaluation of survey
field research.

The aim of this section is to estimate the fieldwork cost of the survey. Sampled dwellings
assigned to interviewer are split by weeks. Cost is expressed in Latvian currency — Latvian lats.
Two components of fieldwork cost are assumed:

* travel cost,

* interview cost.

Travel cost is the most complicated component to be estimated. Estimation of travel cost is
done in several steps:

+ simplified model for travel cost is developed,

* expected travel cost for two-stage sampling design computed by the simplified model is

estimated using simulation,

* adjustment of the simplified model is made if necessary to achieve modelled cost to be

approximately close to real cost.
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Figure 4.1 The scatter plot of the geographical coordinates of dwellings in the population frame

Several assumptions are made to develop a simplified model for interview cost:

data collection is done by personal interviews,

full response model is assumed,

full response is achieved at the first visit of the dwelling — revisiting of dwellings is not
done,

interviewer visits all assigned dwellings for a week once,

trip done by interviewer starts at the residence of interviewer, goes through all assigned
dwellings by shortest distance and ends at the residence of interviewer,

interviewing for a weekly sample can be done in the time of a week — a trip never takes
more time than a week,

car is a mode of transport for interviewers for all distances.

The function

C1 (8) = dKfoKd (41)

is provided as a simplified model for modelling travel cost where d is the total travelling distance

done by all interviewers expressed in kilometres, K is average fuel consumption expressed

in Vkm, C/ is an average price of fuel expressed in Ls/l and K is an adjustment coefficient

specified by a user (default value of K, is 1).

The information available for modelling travel distance is the geographical coordinates of

all dwellings in the population frame and the geographical coordinates of all residences of in-

terviewers. Figure 4.1 shows all dwellings mapped on the scatter plot.
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The total travel distance is computed as

G w
d=2_ > dyw

g=1 w=1

where G is the number of interviewers, 11 is the number of weeks observed, d, ,, is the length
of the path done by the interviewer g during the field work operation in the week w. The d, ,, is
computed by the help of the travelling salesperson problem (TSP) (Hahsler & Hornik, 2007).
The input arguments for the procedure to compute d, ,, are:
* matrix A, ,, with two columns where each row of the matrix represents the coordinates of
sampled dwellings assigned to the interviewer g from the sample of week w, the number
of rows is denoted by 7,
* vector v, (length two) with the coordinates of the residence of interviewer g.

Matrix B, ,, is constructed by attaching v, to A, ., as extra row

v
B,, = g .
g’ ( Ag7w )

The size of By ,, is 2 columns and n,,, + 1 rows.

Rows of the B, ,, define the set of nodes for TSP. Distances between nodes are computed as
euclidean distances (Chen, 2008, p. 16). TSP is defined by the nodes and the distance function.
The TSP is solved by the nearest insertion algorithm (Rosenkrantz, Stearns, & Lewis, 1977,
p. 572). The result of the nearest insertion algorithm is not necessarily optimal. The tour length
obtained by the nearest insertion algorithm is shorter than doubled length of the optimal tour. It
is proved by Rosenkrantz et al. (1977, p. 573). Practical solving of a TSP is implemented by the
following steps.

1. The D, ,, is a square matrix with size (ng,,, + 1) X (ng. + 1), where d, ; is an euclidean
distance between the points represented by the rows i and j of the B,,,. All diagonal
elements of D, are equal to 0, Vd; ; = 0. The lower triangle of D, ,, is computed from
B, ., by the R function dist (R Core Team, 2013).

2. Symmetric TSP (Hahsler & Hornik, 2007, p. 2) is created by the R function TSP from
the package TSP (Hahsler & Hornik, 2011) using the lower triangle of the D, ,, as an
argument.

3. The TSP is solved by the R function solve_ TSP from the package TSP (Hahsler & Hornik,
2011) using the nearest insertion algorithm. The residence of interviewer is set as the first
node of the tour.

4. The attribute tour_length is extracted from the result of the function solve_TSP. The
value of the attribute tour_length is taken as a value of d, ,,. The d,,, 1s expressed in

metres.
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Interview cost is computed by the function ¢, (s) = mC), + nC, where m is number of
dwellings in the sample s, n is the number of individuals in the sample s, C, is the interview
cost for a household questionnaire, C), is the interview cost for a individual questionnaire.

The cost function

G
c(s)=c1(s) +e2(s) = K;CrKy Z dy + mCy, + nC, 4.2)

g=1

is used to measure the cost of the survey in Monte Carlo simulations.

4.2 Procedures for Monte Carlo Simulations

There is a number of R (R Core Team, 2013) procedures (functions by R conception) de-
veloped by the author to run Monte Carlo simulations. The description and code of procedures is
given in Appendix 1. The code of procedures and additional code related to running the Monte
Carlo simulations are available online at “GitHub” repository (Liberts, 2013b). Please refer to
the online repository for the most up-to-date version of the code.

1. Sample generation functions:

(a) Simple random sampling
(b) Simple random sampling with even distribution of sampled units by weeks
(c) Stratified Simple random sampling with even distribution of sampled units by weeks
(d) Cluster sampling
(e) Stratified cluster sampling
(f) Cluster sampling with even distribution of sampled units by weeks
(g) Stratified Cluster sampling with even distribution of sampled units by weeks
(h) Two-stage sampling
2. The calculation of interviewing expenses:
(a) TSP solver for single interviewer
(b) TSP solver for multiple interviewers
(c) The calculation of interviewing expenses
3. The estimation of population parameters:
(a) The estimation of the primary population parameters from sample data
(b) The estimation of the secondary population parameters
4. Other functions:
(a) The extraction of data from the dynamic population data according to the sampled
individuals and weeks

(b) Monte Carlo simulations
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4.3 Cost of Two-Stage Sampling Design

The survey budget ~ has to be set to evaluate the cost efficiency by Definition 2. The field
work budget v is set equal to the survey budget necessary to run the LFS with current sampling
design (see Chapter 1) for a quarter. The aim of the first phase simulation is to estimate the
expected field work cost for the LFS with the two-stage sampling design. The expected total
field work cost and the expected field work cost allocation by three strata (“Riga”, “Cities” and

“Towns and rural areas”) are estimated.

4.3.1 Information Available from the Real LFS

Some information about the LFS cost in 2010 is available. The information available is
based on some assumptions. The information available does not necessarily conform with the
real situation, though it can be used for this research.

The travel distance done by interviewers for LFS in 2010 has been 191 063 km. It makes
travel distance equal to 47 766 km per quarter on average. The travel cost for LFS in 2010 has
been 13874 Ls. It makes travel cost equal to 3468 Ls per quarter on average. The average
retail price of Gasoline A-95 and Diesel fuel in 2010 has been 0.768 Ls/l and 0.752 Ls/I (Central
Statistical Bureau of Latvia, 2012b). It makes the average price of fuel equal to 0.760 Ls/I
under the assumption of equal share of Gasoline A-95 and Diesel fuel used by interviewers.
The amount of fuel consumed by interviewers on average per quarter was 45641 in 2010. It
makes the average fuel consumption equal to 0.0955 1/km.

Interviewers get paid approximately three lats 3 Ls for a completed household questionnaire

and 1 Ls for a completed individual questionnaire.

4.3.2 Estimation of Field Work Budget

The first simulation experiment is done to estimate the expected fieldwork cost for the current
sampling design used for LFS. The results are compared with the information available from the
real survey. The adjustment of the cost function is introduced.

Simulation setting:

* Design: Two-stage sampling design

s A B Wd Q w M m

I 8 1 13 0 13 256,556 10
® Designparameters: 2 8 2 13 0 13 157,709 7

3 8 2 13 0 13 129,823

4 8 2 13 0 11 13 198,515

* The number of iterations: 6000
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» Estimates to be calculated each iteration:

Parameter Description

Nok the total number of individuals in sample
N1k, Mok, N3k the number of individuals in sample by strata
Mok the total number of households in sample
Mg, Mok, M3, the number of households in sample by strata
dok the total distance done by interviewers

dig, day, dsp. the distance done by interviewers by strata

There are four strata defined by sampling design. The stratum “towns” (h = 3) and the
stratum “rural areas” (h = 4) is merged during the cost estimation. The merged strata are
defined by h = 3. It is done because the same interviewers are working in both strata. It is
possible that an interviewer is doing a field work in both strata during a week. Therefore the
travelling cost can not be separated by both strata. There are separate interviewers in the strata
“Riga” (h = 1) and “Cities” (h = 2).

nok, Mok and dy, are computed for a verification purpose. The following equalities are
verified.

h=1
3
E Mpk = Mok
h=1
3
E dpy, = dog,
h=1

Simulation of Distance

The main characteristics of the simulated travel distances are displayed in Table 4.1. All
results are displayed for domains: “Riga”, “Cities”, “Towns & Rural” — towns and rural areas,
and “Latvia” —the whole population. There are mean distance 7,,, standard deviation of distance
Sn, the p-value of the Anderson-Darling test (AD) for normality (Anderson & Darling, 1952)
and the p-value of the Lilliefors test (Li) for normality (Lilliefors, 1967). Density plots and
Quantile-Quantile plots (Q-Q plots) of the simulated distances by domains are in the first and
second columns of Figure 4.2.

The null hypothesis (the distribution is normal) is rejected at the 5% level of significance
(all p-values of the tests are less than 5%). The density and Q-Q plots clearly show the density
of distance in Riga and Cities is not normally distributed.

The 99% confidence bands based on normal distribution and 99% bootstrap confidence
bands are plotted in the third column of Figure 4.2. 2000 bootstrap replicates were used. Note
the 99% confidence bands (based on normal distribution) are centred on Z,,, not on 7. It is done
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Table 4.1
The summary statistics of simulated travel distance

domain Tn s, AD p-value Li p-value
Riga 296.578 11.072 0.000 0.000
Cities 912.865 20.684 0.000 0.000
Towns and rural areas 12981.201 142.833 0.000 0.001
Latvia 14190.644 145.324 0.000 0.001

Table 4.2
The 99% confidence intervals for expected travel distance

domain ZTn CI normal CI boot

Riga 296.6 296.2 296.9 296.2 297.0
Cities 912.9 912.2 913.6 912.1 913.6
Towns and rural areas 12981.2 12976.4 12986.0 12976.7 12986.0
Latvia 14190.6 14185.8 14195.5 14185.6 14195.6

for easier comparison of both bands. It is possible to observe that both bands are quite close to
each other.

The precision estimates for the estimates of expected travel distance expressed as confidence
intervals are given in Table 4.2. There are confidence interval based on normal distribution (CI
normal) and bootstrap confidence interval (CI boot).

The mean simulated distance dy = do,, = % ZZ:1 dor 1 14 191 km. The observed distance
in the real LFS 2010 d,, was 47 766 km. The difference is significant. The main reasons of the
difference is the assumptions used for the simulation (defined in Section 4.1). The adjustment
coefficient /; for the cost function (4.2) is computed as Ky = %.

Travel cost is computed by (4.1). The precision estimates for expected travel cost are presen-
ted in Table 4.3.

Simulation of Interview Cost

The results of the simulated interview cost are in Table 4.4. The normality of interview cost

can not be rejected (at the 5% level of significance) by the Anderson-Darling test. The density

Table 4.3
The 99% confidence intervals for expected travel cost

domain ZTn CI normal CI boot

Riga 90.6 90.5 90.7 90.5 90.7
Cities 278.8 278.6 279.0 278.5 279.0
Towns and rural areas 3964.2 3962.8 3965.7 3962.7 3965.7
Latvia 4333.6 4332.1 4335.0 4332.0 4335.0
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Figure 4.2 Density plots, Q-Q plots, MC convergence plots; variable: distance



Table 4.4
The summary statistics of simulated interview cost

domain Tn s, AD p-value Li p-value
Riga 5304.572  38.900 0.222 0.014
Cities 7440.758  44.598 0.126 0.036
Towns and rural areas 18925.870  87.352 0.624 0.150
Latvia 31671.199 105.391 0.808 0.589

Table 4.5
The 99% confidence intervals for expected interview cost

domain ZTn CI normal CI boot

Riga 5304.6 5303.3 53059 5303.3 5305.9
Cities 7440.8  7439.3 74422 74393 74423
Towns and rural areas 18925.9 18923.0 18928.8 189229 18928.7
Latvia 31671.2 31667.7 31674.7 316674 31674.8

plots, Q-Q plots and MC convergence plots of simulated interview cost are in Figure 4.3. The

estimates of the 99% confidence intervals for expected interview cost are in Table 4.5.

Fieldwork Cost

The simulated travel cost and interview cost are added to compute the estimates of total
fieldwork cost. See the details in Table 4.6, Table 4.7 and Figure 4.4. The normality of fieldwork
cost can not be rejected (at the 5% level of significance) by both tests.

The estimated value of the expected fieldwork cost for the current sampling design used
for LFS is 36 004.8 Ls with the 99% confidence interval (36 001.0;36 008.5). The total survey
budget v is taken to be equal to 36 004.8 Ls. The expected allocation of the fieldwork cost by
three strata (71, 72 and 3) is taken according to Table 4.7.

Table 4.6
The summary statistics of simulated fieldwork cost

domain Tn s, AD p-value Li p-value
Riga 5395.141 39.858 0.586 0.695
Cities 7719.531  45.809 0.489 0.348
Towns and rural areas 22890.098  95.524 0.323 0.308
Latvia 36004.770 113.175 0.511 0.626

63



Riga
0.0100 — =
0.0075 -
2
2 0.0050
(0]
©
0.0025 -
0.0000 -
1 1 1
5200 5300 5,400
cost_interview
Cities
0.0075 -
P
‘% 0.0050 -
c
[
©
0.0025 -
N
0.0000 -

T T T T
7,300 7,400 7,500 7,600
cost_interview

Towns and rural areas

0.004 -
30.003 -
2
@ 0.002
©

0.001 -

0.000

T T T
18,800 19,000 19,200
cost_interview
Latvia
\\

0.003
2
@ 0.002
3]
©

0.001

0.000

I I I I
31,400 31,600 31,800 32,000
cost_interview

sample

Q
=N
IS
@©
n

Q
S
IS
©
n

Riga

theoretical
Cities
7,600 -
7,500 -
7,400 -
7,300
T T T T T
-4 -2 0 2 4
theoretical
Towns and rural areas
19,200 - e
19,000 -
18,800 -
I- 2 T T T T
-4 -2 0 2 4
theoretical
Latvia
32,000 =
31,800 -
31,600 -
31,400 -
I- I I I I
-4 -2 0 2 4
theoretical

mean cost_interview

mean cost_interview

lew

mean cost_interv

lew

mean cost_interv

Riga

5,310 = ;
{
5,307~
ji
|5’305_ i VMW%
5302 - //’/
5,299
1 1 1 1
0 2,000 4,000 6,000
iteration
Cities
7,448
7,444
17,441
7,437 -
7,433
T T T T
0 2,000 4,000 6,000
iteration
Towns and rural areas
18,945
18‘935_ L;
18,926 - P e
18,916_ V"
18,907 =
T T T T
0 2,000 4,000 6,000
iteration
Latvia
31,703 1
. .L\
. |
31,671 W_.._...-—/
31,655 .
31,640 "
I

i i i
0 2,000 4,000 6,000

iteration

Figure 4.3 Density plots, Q-Q plots, MC convergence plots; variable: interview cost
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Table 4.7
The 99% confidence intervals for expected fieldwork cost

domain Tn CI normal CI boot

Riga 5395.1 5393.8 5396.5 53939 5396.5
Cities 7719.5  7718.0 7721.1 7717.9  7721.0
Towns and rural areas 22890.1 22886.9 22893.3 22886.9 22893.3
Latvia 36004.8 36001.0 36008.5 36001.1 36008.6

4.4 Sample Size of the Alternative Designs

The aim of the second phase simulation is to estimate sample size and sample allocation by
three strata for the two other designs (see Section 3.3) so that expected fieldwork cost allocated

by three strata for these designs would be approximately equal to 7;, 72 and 73 (Table 4.7).

4.4.1 Expected Cost and Sample Size

There are two designs and three strata for each design. The sample size is estimated inde-
pendently for each design and stratum (six cases). Modified simple random sampling of indi-
viduals or households is done in each stratum. Stratum sample size ny, is the only variable para-
meter here, s, = s, (ny,). The valid values of ny, are nj, : (0 < n, < N, & n;, mod 13 = 0)
where N}, is the population size of the stratum h.

The relation between the expected cost and sample size has to be studied to find the necessary

sample sizes. The cost function is defined by (4.2)
c(sn) = K;CrKqd (sp) + Cpmy, (s) + Cpymy, (Sh)

where K¢, Cy, K4, C}, and C), are constants. d (distance), 1, (the number of household ques-
tionnaires) and m,, (the number of individual questionnaires) are random variables depending
on sample s;,. d = d (sp), my, = my, (s,) and m, = m,, (s5). Expected values of d, m;, and m,,
depend on s;,. E(d) = D = D (sp), E(my,) = M), = M), (sp) and E (m,,) = M, = M, (sp).

The expected cost is expressed as

E(c(sn)) = C(sp) = KyCrKyD (sp) + CrMy, (sn) + Cp M, (sp,) -
The expected cost can be rewritten as the function of n;, because s, = s, (n,)

E (¢(nn)) = C (n) = K;CrKyD (ny) + Ch My, (ng) + Cp M, (ng)

All three functions D (ny,), M), (ny) and M, (n;) are monotonically increasing functions. The
statement that C' (n;,) is a monotonically increasing function follows from the monotony of the

three functions.
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The aim is to find ny, so that C' (ny,) = -, where -y, is the budget for stratum h. The solution
is defined as
ny = argmin C(ny).
{nn:C(np)>vn}
The solution belongs to the set n, = {13,26,39,...,nf 9"} where n] " is the expected

sample size (individuals or households) under two-stage sampling.

4.4.2 Sample Size Estimation

The first step is to approximate the relation between n;, and C' (n;,). Eight evenly distributed
sample sizes are selected from the set n;, and expected cost is estimated with each selected
sample size. The estimation of the expected cost is done by Monte Carlo simulation for each
sampling design and each stratum. The eight selected points are plotted in Figure 4.5.

The relation can be described with non-linear regression in the form of

C (nn) ~ Bo + Binn + Bav/nn

where C' (n;,) is the expected cost and ny, is sample size. The estimates of the regression coeffi-
cients are computed by the function 1mList from the R package nlme (Pinheiro, Bates, DebRoy,
Sarkar, & R Core Team, 2012). The fitted regression line is added to the plots in Figure 4.5.
The green horizontal line represents the budget line ~y,.

The possible value of n; is computed from the regression equation

Y = Bo + Buis + Por/. (4.3)

The solution of (4.3) is

(\/822 — 46 (Bo — %) - 62)2

-2
461

A%
ny, =

The point (7}, ;) is marked in the plots with blue cross.

The second step is to estimate the cost for sample sizes around 7} to find the solution nj.
Seven sample sizes are selected for the simulation: 7} — 39, ny; — 26,1y — 13, n;, ny, + 13, 1) +
26,1y + 39.

It is obvious from the plots in Figure 4.6 that selected seven sample sizes contains the solu-
tion. The solution is marked with green circle. The confidence intervals are drawn for expected
cost (in red colour). The numeric results are shown in Table 4.8. Stratified random sampling
design of individuals is denoted by SRS and stratified random sampling design of households is

denoted by Cluster in the table.
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Table 4.8
The sample allocation in line with defined fieldwork budget

design strata n cost cost.sd cost.cil cost.ciu Yh

SRSStrWeek 1 1261  5439.8 11.6  5438.5 5441.1 5395.1
SRSStrWeek 2 1781  7759.2 159 77573 7761.0  7719.5
SRSStrWeek 3 2834 22933.1 148.0 22916.0 22950.2 22890.1
1
2
3

ClusterStrWeek 1001 54594 36.9 5455.1 5463.6  5395.1
ClusterStrWeek 1404  7756.5 433 77515 7761.6  7719.5
ClusterStrWeek 2340 22930.4 1634 22911.5 229493 22890.1

4.5 Precision of Population Parameter Estimates

The aim of the section is to compute the precision of estimates under the considered sampling
designs and under condition of the approximately equal expected cost. The precision of the
estimates is expressed as their variance. The variance is necessary for the estimates of two
population parameters (3.1) and (3.2).

Variance of the estimates under mSSRSi and mSSRSh is calculated using (3.10). The nu-
merical computation of variance was supported by the R package data.table (Dowle, Short,
& Lianoglou, 2012) because of the high dimension of the population data (the dimension of a
matrix for individual economic status over 13 weeks is 1651 126 x 13).

Monte Carlo simulation experiment is used to estimate the variance of the estimates under
the two-stage sampling design. Monte Carlo simulation experiment is chosen because it is more
efficient technique in this case compared to analytical derivation of variance for estimates under
this design (the main complication is computation of II for the current design).

The values of }A/q and Rq are computed each iteration. Var <§A/q> and Var (Rq> are computed

by (3.12). Confidence interval for Var (}A{]) and Var (]%q> are constructed by (3.14) and (3.15).

The simulation is done with the same sampling design parameters as in the simulation for
estimating the cost of two-stage sampling design (Section 4.3). The number of iterations is
20000.

4.6 Results of Cost Efficiency Analysis

90 population parameters (45 totals and 45 ratios of two totals) were selected for the cost
efficiency analysis (see Table 4.9). There are parameters representing the whole population and
also population domains. Two sets of domains are considered:

* strata (4) — Riga, cities, towns and rural areas,

* age group (2) — individuals aged 15-24 and 25-74 years.

The three selected designs are compared by cost efficiency using Definition 2 for estimation

of each population parameter. Hypothesis testing is used for comparing variance under TSSh

70



Table 4.9
Population parameters chosen for the cost efficiency analysis

Q
2
=
—

Parameter Notation Domain

Number of employed individuals t.empl All

Number of unemployed individuals t.unempl All

Number of inactive individuals t.inact All

Number of employed individuals t.empl Strata (4)

Number of unemployed individuals t.unempl Strata (4)

Number of inactive individuals t.inact Strata (4)

Number of employed individuals t.empl Age group (2)

Number of unemployed individuals tunempl Age group (2)

Number of inactive individuals t.inact Age group (2)

Number of employed individuals t.empl Strata (4) x age group (2)
Number of unemployed individuals t.unempl Strata (4) x age group (2)

[o-ollo <IN o < I \© TN \O I N I SN SN SN Ao i o e o B \O I NG TN N IR NG SN SN

Number of inactive individuals t.inact Strata (4) x age group (2)
Activity rate r.act All

Employment rate r.empl All

Unemployment rate runempl All

Activity rate r.act Strata (4)

Employment rate r.empl Strata (4)

Unemployment rate r.unempl Strata (4)

Activity rate r.act Age group (2)
Employment rate r.empl Age group (2)
Unemployment rate runempl Age group (2)

Activity rate r.act Strata (4) x age group (2)
Employment rate r.empl Strata (4) x age group (2)
Unemployment rate runempl Strata (4) x age group (2)
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design with variance under mSSRSi or mSSRSh. Assumption is made that the estimates of

population parameters under TSSh design are normally distributed:

~

0~ N (u,0%),

where o2 is unknown. It is estimated by s* = s (x) from data of simulation experiment denoted
by z. The length of z is equal to the number of iteration in simulation, || = n = 20000 in this
case. The aim is to compare o by TSSh design with known o2 by another design. One-sided

hypothesis test according to Wasserman (2004) is done:

Hy:0* > op,
(4.4)
H: 0'2 < O'g.

Test statistic is computed as

Rejection region R is defined as
R={z:T(z) <c},

where ¢ = F !, () is the value of the inverse cumulative distribution function of y2_, distri-

n—1

bution at o. The following statements regarding H,, are set:

T (xz) < ¢ = reject H,

T (z) > ¢ = retain (do not reject) Hy.

The type I error to reject Hy when Hj is true is less or equal to .
n—1)s?
p(r@) el —p (" <o

Ho):
0
. 2 2

o2 o2
H0> =,
i

_ 2
<y (M <e
where inequality holds because —§ < 1, if Hy is true, and the last equality follows from the

o2

distribution of ("_0—952 ~ X2 _,. The smallest o, which rejects Hy is called p-value. In this case

p-value is equal to the value of the cumulative distribution function of x? _, distribution at the
(n—1)s2

0(2) :
The most cost efficient sampling design for estimation of each population parameter is de-

point

tected by the following procedure:

1. o2 is computed as min (02, ggpgis 02 55R50H)-
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2. Hypothesis test is done by computing p-value. The p-values are displayed in Figures 4.7
and 4.8 where grey dashed vertical line represent o = 0.01.

3. TSSh sampling design is chosen as the most cost efficient sampling design for chosen
population parameter and procedure stops if the p-value is less than 0.01. The procedure
is continued to the step 4, if the p-value is not less than 0.01.

4. mSSRSi is chosen as the most cost efficient sampling design for chosen population para-
meter if 02 45p5i < O2s5rsn- MSSRSh is chosen as the most cost efficient sampling
design for chosen population parameter if 02 ¢ pg; = 02,55R5h-

The expected precision of population parameter estimates by three sampling designs is given
in Tables 4.10, 4.11, 4.12 and 4.13. The columns of the tables:

 parameter: the name of population parameter,

* domain: geographical domains (0 “Latvia”, 1 “Riga”, 2 “Cities (excluding Riga)”, 3

“Towns”, 4 “Rural areas”),

» age: age group (0 “15-74”, 1 “15-14", 2 “15-74"),

+ value: the true value of the population parameter,

* sd.mSSRSi: expected standard deviation of the population parameter estimate under the

mSSRSi,

* sd.mSSRSh: expected standard deviation of the population parameter estimate under the

mSSRSh,

* sd. TSSh: estimated standard deviation of the population parameter estimate under the

TSSh,

» p-value: p-value of hypothesis test 4.4,

* des: the most efficient design selected (1 “mSSRSi”, 2 “mSSRSh”, 3 “TSSh”).

The parameters for the whole population and split by age groups are observable in Tables
4.10 and 4.11. The TSSh is the most efficient design in 17 cases from 18. The exception is the
estimation of a parameter “total number of employed individuals” where mSSRSi is selected as
the most efficient design.

The parameters split additionally by geographical domains are observable in Tables 4.12 and
4.13. The mSSRSi is selected as the most efficient design for two parameters here — “total num-
ber of employed individuals” in domains “Riga” and “Cities (excluding Riga)”. The mSSRSh is
selected as the most efficient design for 10 parameters where all of them represent the population
of domains “Riga” and “Cities (excluding Riga)”. The TSSh is selected as the most efficient for
24 parameters in domains “Riga” and “Cities (excluding Riga)”. TSSh is selected as the most
efficient for all 36 parameters in domains “Towns” and “Rural areas”.

It is visible that TSSh is definitely the most efficient design for the parameters representing
domains “Towns” and “Rural areas”. It is because the travelling distances are higher in these
domains compared to the domains “Riga” and “Cities (excluding Riga)”.

The conclusions are not so straightforward in the case of domains “Riga” and “Cities (ex-
cluding Riga)”. Each of the three designs has been selected as the most efficient at least for
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Figure 4.8 The p-values of hypothesis test for ratios
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Table 4.10
The expected precision of total estimates by three sampling designs for domain “Latvia”

parameter age value sd.mSSRSi sd.mSSRSh sd.TSSh p-value des

t.empl 0 972 327 11 034 12 061 11 437 1.000 1
tunempl 0 133 746 6173 4958 4654  0.000 3
t.inact 0 545 052 10 513 9109 8 605 0.000 3
t.empl 1 102 838 5410 4 344 4097  0.000 3
tunempl 1 27 693 2 868 2191 2034  0.000 3
t.inact 1 157 176 6 487 5373 5078  0.000 3
t.empl 2 869 489 11 204 10802 10150  0.000 3
tunempl 2 106 054 5565 4393 4121 0.000 3
t.inact 2 387 876 9499 7 800 7282  0.000 3

some parameters. The TSSh has been determined as the most efficient in 24 cases, mSSRSh
in 10 cases and mSSRSi in two cases, though the difference of standard deviations is marginal.
The conclusion is that TSSh is selected as the most efficient designs also in domains “Riga” and
“Cities (excluding Riga)”.

The cost efficiency analysis is done from a conservative position with respect to the TSSh.
Firstly, the total sample size of each stratum for the mSSRSi and the mSSRSh is chosen slightly
larger compared to the TSSh (Section 4.4). Secondly, the TSSh is chosen as the most efficient
design only in the cases when it is supported by a strong evidence (p-value of the hypothesis
testing is less than 0.01). The mSSRSi and the mSSRSh are preferred in the cases when there
is uncertainty in the determination of the most efficiency design. For example, there are several
cases when the precision of estimates achieved by the mSSRSh and the TSSh is quite similar.
The TSSh can be used reasonably well in some of these cases even if the mSSRSh has been
chosen as the most efficient design, for example, in cases for the estimation of the totals of
inactive individuals in the domain “Riga” and the totals of employed individuals aged 25-74 in
the domain “Riga” (these are the cases when p-value is slightly higher than 0.01).

The TSSh has achieved the highest precision of estimates in most cases despite the conservat-
ive position with respect to it. Therefore it is recommended to use the currently used two-stage
sampling design for the Latvian LFS to achieve the highest overall precision under the current
budget constrains. Switching to a simpler sampling design will result with one of two negative
effects. The first possible negative effect is the loss of overall precision if the survey cost is kept
in the current budget level. The second possible negative effect is the increase in survey cost if

overall precision level is kept equal to the current level.
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Table 4.11

The expected precision of ratio estimates by three sampling designs for domain “Latvia”

parameter age value sd.mSSRSi sd.mSSRSh sd.TSSh p-value des
r.act 0 0.670 0.00637 0.00485 0.00452  0.000 3
r.empl 0  0.589 0.00668 0.00514 0.00475  0.000 3
runempl 0 0.121 0.00546 0.00427 0.00396  0.000 3
ract 1 0.454 0.01607 0.01219 0.01128  0.000 3
r.empl 1 0.357 0.01550 0.01175 0.01089  0.000 3
runempl 1 0.212 0.01967 0.01484 0.01379  0.000 3
ract 2 0.716 0.00674 0.00533  0.00499  0.000 3
r.empl 2 0.638 0.00721 0.00573 0.00532  0.000 3
runempl 2 0.109 0.00557 0.00435 0.00404  0.000 3
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Table 4.12
The expected precision of total estimates by three sampling designs and domain

parameter domain age value sd.mSSRSi sd.mSSRSh sd.TSSh p-value des

t.empl 1 0 330 855 7381 8272 8329 1.000 1
tunempl 1 0 47 160 4284 3569 3504  0.000 3
t.inact 1 0 160 949 6 938 6 062 6009  0.040 2
t.empl 1 1 31245 3543 2903 2 960 1.000 2
tunempl 1 1 8 152 1 851 1452 1435 0.011 2
t.inact 1 1 40 138 3980 3300 3301 0.508 2
t.empl 1 2 299610 7533 7509 7430  0.017 2
tunempl 1 2 39007 3928 3222 3184  0.008 3
t.inact 1 2 120 810 6322 5329 5250  0.001 3
t.empl 2 0 196 200 3 870 4304 4126 1.000 1
tunempl 2 0 26 352 2125 1746 1713 0.000 3
t.inact 2 0 110 307 3703 3250 3261 0.754 2
t.empl 2 1 19779 1 860 1532 1500  0.000 3
tunempl 2 1 5362 991 782 764 0.000 3
t.inact 2 1 30430 2267 1903 1846  0.000 3
t.empl 2 2 176 421 3926 3878 3736  0.000 3
tunempl 2 2 20990 1913 1 536 1510  0.000 3
t.inact 2 2 79 877 3360 2 839 2850  0.784 2
t.empl 3 0 166 623 5991 6 139 3325 0.000 3
tunempl 3 0 23376 2 493 1935 1395 0.000 3
t.inact 3 0 96 256 4 808 4206 2549 0.000 3
t.empl 3 1 17418 2160 1 687 1203 0.000 3
tunempl 3 1 5101 1179 873 639  0.000 3
t.inact 3 1 29 682 2797 2284 1593 0.000 3
t.empl 3 2 149 205 5749 5487 2967  0.000 3
tunempl 3 2 18 275 2212 1676 1224 0.000 3
t.inact 3 2 66 574 4 085 3361 2167  0.000 3
t.empl 4 0 278 650 7 004 7761 5583 0.000 3
tunempl 4 0 36 859 3103 2 405 2085 0.000 3
t.inact 4 0 177 540 6 129 5698 4516  0.000 3
t.empl 4 1 34396 3001 2401 2043 0.000 3
tunempl 4 1 9078 1 568 1165 1023 0.000 3
t.inact 4 1 56 926 3 802 3252 3013 0.000 3
t.empl 4 2 244 254 6779 6 787 4821 0.000 3
tunempl 4 2 27781 2710 2043 1754  0.000 3
t.inact 4 2 120 615 5285 4461 3473 0.000 3
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Table 4.13
The expected precision of ratio estimates by three sampling designs and domain

parameter domain age value sd.mSSRSi sd.mSSRSh sd.TSSh p-value des

r.act 1 0 0.701 0.01287 0.01013  0.00993 0.000 3
r.empl 1 0 0.614 0.01369 0.01091 0.01062  0.000 3
runempl 1 0 0.125 0.01110 0.00903  0.00881 0.000 3
r.act 1 1 0.495 0.03661 0.02872  0.02810  0.000 3
r.empl 1 1 0.393 0.03576 0.02807 0.02765  0.001 3
runempl 1 1 0.207 0.04215 0.03287 0.03288  0.542 2
r.act 1 2 0.737 0.01341 0.01086 0.01067  0.000 3
r.empl 1 2 0.652 0.01451 0.01187 0.01160  0.000 3
runempl 1 2 0.115 0.01133 0.00919  0.00903 0.000 3
r.act 2 0 0.669 0.01113 0.00876  0.00861 0.000 3
r.empl 2 0 0.589 0.01163 0.00920 0.00906  0.001 3
runempl 2 0 0.118 0.00934 0.00749  0.00733 0.000 3
r.act 2 1 0.452 0.02879 0.02266 0.02208  0.000 3
r.empl 2 1 0.356 0.02769 0.02175 0.02126  0.000 3
runempl 2 1 0.213 0.03524 0.02750 0.02689  0.000 3
r.act 2 2 0.712 0.01173 0.00965 0.00954  0.013 2
r.empl 2 2 0.636 0.01246 0.01026  0.01019  0.069 2
runempl 2 2 0.106 0.00946 0.00753 0.00740  0.000 3
r.act 3 0 0.664 0.01462 0.01051 0.00787  0.000 3
r.empl 3 0 0.582 0.01526 0.01105 0.00815  0.000 3
runempl 3 0 0.123 0.01248 0.00921 0.00689  0.000 3
r.act 3 1 0.431 0.03589 0.02629 0.01947  0.000 3
r.empl 3 1 0.334 0.03416 0.02493 0.01839  0.000 3
runempl 3 1 0.227 0.04618 0.03344 0.02464  0.000 3
r.act 3 2 0.716 0.01544 0.01162 0.00874  0.000 3
r.empl 3 2 0.637 0.01645 0.01247  0.00920  0.000 3
runempl 3 2 0.109 0.01261 0.00928 0.00695  0.000 3
r.act 4 0 0.640 0.01132 0.00825 0.00721 0.000 3
r.empl 4 0 0.565 0.01169 0.00857 0.00738  0.000 3
runempl 4 0 0.117 0.00947 0.00699 0.00608  0.000 3
r.act 4 1 0.433 0.02589 0.01881 0.01660  0.000 3
r.empl 4 1 0.343 0.02479 0.01798 0.01561 0.000 3
runempl 4 1 0.209 0.03228 0.02335 0.02043 0.000 3
r.act 4 2 0.693 0.01219 0.00927 0.00813 0.000 3
r.empl 4 2 0.622 0.01281 0.00977 0.00844  0.000 3
runempl 4 2 0.102 0.00961 0.00707 0.00611 0.000 3
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Main Results

The aim of this thesis was to develop a framework for the analysis of the cost efficiency

of sampling designs. The study started with an in-depth analysis of the two-stage sampling

design used for the Latvian Labour Force Survey (LFS). The study continued with the creation of

artificial population data representing the target population of the Latvian LFS at the individual

level. The final part of the study was the development of a framework for the analysis of the

cost efficiency of sampling designs. The main results of thesis are published in three scientific
publications (Liberts, 2010a, 2010b, 2013a).

The main goal of this thesis has been achieved and the following results have been obtained:

1.

The sampling frame of the primary sampling units (areas) was updated. The updated
sampling frame of areas is used for several sample surveys run by the Central Statistical
Bureau of Latvia. The update of the frame reduced significantly the coverage errors of

the frame.

. The redesign of the sampling design used for the LFS, the Household Budget Survey and

the Survey of Domestic Travellers has been done in the scope of this thesis. The new
design has been successfully implemented and has been in use since 2010.

A methodology for generating artificial population data has been developed. The meth-
odology allows for the generation of artificial population data close to the real population
data, according to the dimension and statistical properties of the real population. Both
static and dynamic artificial population data can be created using this methodology.

The artificial population data has been created using the developed methodology. The
data from the Statistical Household Register and the LFS were used as the input data. The
data created are similar (in statistical properties) to the LFS target population data. The
artificial population data are dynamic. The changes over time in the artificial population
data are similar to the changes over time observed in the LFS. The artificial population
data are used in the Monte Carlo simulation experiments carried out in the analysis.
Modified stratified simple random sampling design (mSSRS), ensuring even sample al-
location by weeks, is introduced as an alternative to the currently used two-stage sampling
design. The mSSRS allows sampling of a unit not more then once in a defined time period.
The variance formula for the 7-estimator of a population total and the approximate vari-
ance formula for the m-estimator of a ratio are derived. The design can be used to sample

individuals or households.
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6. The framework for the analysis of sampling designs with the respect to cost efficiency
has been developed. The framework is based on analytical methods and Monte Carlo
simulation experiments. The framework allows the user to gain information about the
sampling design properties (for example, expected fieldwork cost, expected precision) in
a relatively short time and with relatively low cost. This information is very valuable
information for the survey planning and decision making process. The advantage of the
framework is that no extra data collection is required. The framework utilises data already
available to a statistical institute (administrative records, population census data or sample
survey data).

7. The set of procedures is developed to support the implementation of the framework in
practice. The procedures are developed in R, which is a free software environment for
statistical computing and graphics. The procedures are used for Monte Carlo simulations
of sampling designs. The procedures are modular — it allows for the extension of the set
with additional procedures. There are no limitations on the types of design that can be
analysed by the procedures. The only requirement is that it must be possible to write the
sampling process of the sampling design under analyses as an R function.

8. The cost efficiency of three sampling designs is estimated using the developed frame-
work. The properties of the chosen sampling designs are explored and recommendations
regarding the appropriate sampling design for the LFS are given.

9. Itis proven that the two-stage sampling design used currently for the LFS, when compared
to two other sampling designs, provides more precise population parameter estimates un-

der the condition of fixed fieldwork cost.
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Appendix 1

R Functions for Monte Carlo Simulations

1.1 Sample generation functions

1.1.1 SRS

The name of procedure is SamplingSRS. The aims of the procedure are:
* Drawing a simple random sample without replacement from a given population frame
according to Sarndal et al. (1992, p. 66).
* Computing design weights for the sampled units according to the inclusion probabilities
(Sarndal et al., 1992, p. 30).
The arguments of the procedure:
» frame.1: population frame with rows as sampling units and columns as variables.
* n: sample size of units.
* name.weight: the name of a weight variable.
The steps of the procedure:
» The package bigmemory is loaded. It is necessary to manipulate arguments with the
big.matrix class (Kane & Emerson, 2012a).
» Converting class of the arguments if necessary.
* Population size N is computed as the number of rows of frame.1.
* Testing the coherence of the arguments.
* The data frame s. 1 is created by selecting randomly n rows from frame.1 without re-
placement. The function sample is used for a random selection (R Core Team, 2013).

The sampled units are randomly sorted.
N

¢ Weight variable with name name . weight is computed as -
» Weight variable is attached to s. 1.

* s.1is returned as an output of the procedure.

SamplingSRS <- function(frame.l, n = 30, name.weight = ".dw") {

# Libs
require (bigmemory)
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# Argument class conversation
if (!is.big.matrix(frame.1)) frame.l <- as.data.frame(frame.1)
n <- as.integer(n[1])
name.weight <- as.character (name.weight[1])
# Testing
N <- nrow(frame.1)
if (n<=0 | n>N) stop("n has to be in O-N")
if (name.weight %in% colnames(frame.1))
print ("WARNING: Weight variable exists, it will be overwritten")
# Sampling

s.1 <- as.data.frame(frame.1[sample(N, n), 1)
s.1[name.weight] <- N/n

return(s.1)

1.1.2 SRS by Weeks

The name of procedure is SamplingSRSWeek. The aims of the procedure are:

* Drawing a simple random sample without replacement from a given population frame
according to Sarndal et al. (1992, p. 66).

* Partitioning the sample in number of random sub-samples with equal number of units in
each sub-sample. The sub-samples are distributed by weeks.

» Computing design weights for the sampled units according to the inclusion probabilities
(Sarndal et al., 1992, p. 30).

The arguments of the procedure:

+ frame. 1: population frame with rows as sampling units and columns as variables.
* n: sample size of units.

* name.weight: the name of a weight variable.

* name.week: the name of a week variable.

» weeks: the number of weeks denoted by .

The steps of the procedure:

* The package bigmemory is loaded. It is necessary to manipulate arguments with the
big.matrix class (Kane & Emerson, 2012a).

» Converting class of the arguments if necessary.

* Population size N is computed as the number of rows of frame. 1.

+ Sample size n is rounded to the closest multiple of V.

* Testing the coherence of the arguments.

* The data frame s.1 is created by selecting randomly n rows from frame.1 without re-
placement. The function sample is used for a random selection (R Core Team, 2013).

The sampled units are randomly sorted.
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* Weight variable with the name name . weight is computed as % and attached to s . 1.

* Week variable with the name name . week is computed by the procedure: the number 1 is
assigned to the first ;- sampled units, the number 2 is assigned to the next 77> sampled
units and so on till the number W is assigned to the last 37> sampled units.

* Week variable is attached to s . 1.

* s.1 is returned as an output of the procedure.

SamplingSRSWeek <- function(frame.l1,

n = 30,
name.weight = ".dw",
name.week = ".week",

weeks = 1) {

# Libs
require (bigmemory)

# Argument type convertion

if (!is.big.matrix(frame.1)) frame.l <- as.data.frame(frame.1)
n <- as.integer(n) [1]

name.weight <- as.character(name.weight) [1]

name.week <- as.character(name.week) [1]

weeks <- as.integer (weeks) [1]

# Testing
if (weeks < 1) weeks <- 1

N <- nrow(frame.1)
n <- round(n / weeks) * weeks

if (n < weeks) n <- weeks
if (m > N) n <~ N %/% weeks * weeks

if (n %% weeks > 0) stop("n is not a multiple of weeks")

if (name.weight %in% colnames(frame.1))

print ("WARNING: Weight variable exists, it will be overwritten")
if (name.week %in)% colnames(frame.1))

print ("WARNING: Week variable exists, it will be overwritten")

# Sampling

s.1 <- data.frame(frame.1[sample(N, n), 1)
s.1[name.weight] <- N/n

s.1[name.week] <- rep(l:weeks, each = n / weeks)
return(s.1)

1.1.3 Cluster Sampling

The name of procedure is SamplingCluster. The aims of the procedure are:

* Drawing a simple random cluster sample without replacement from a given population
frame according to Sérndal et al. (1992, p. 129)

» Computing design weights for the sampled units according to the inclusion probabilities
(Sarndal et al., 1992, p. 30)
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The arguments of the procedure:

» frame.1: population frame with rows as sampling units and columns as variables

« frame.2: population frame with rows as clusters of units and columns as variables

* n: sample size of clusters

* name.weight: the name of a weight variable

* name.cluster: the name of a cluster variable in frame. 1 and frame.2

The steps of the procedure:

* The package bigmemory is loaded. It is necessary to manipulate arguments with the
big.matrix class (Kane & Emerson, 2012a).

» Converting class of the arguments if necessary.

* Population size N is computed as the number of rows of frame. 2.

* Testing the coherence of the arguments.

* n clusters are selected randomly from the frame .2 without replacement. The function
sample is used for a random selection (R Core Team, 2013). The sampled clusters are
randomly sorted.

* The data frame s. 1 is created by selecting sampling units belonging to sampled clusters.

* Weight variable with the name name .weight is computed as % and attached to s . 1.

* s.1is returned as an output of the procedure.

SamplingCluster <- function(frame.l, frame.2, n=30, name.weight=".dw",
name.cluster) {

# Libs
require (bigmemory)

# Argument type convertion

if (!is.big.matrix(frame.1)) frame.l <- as.data.frame(frame.1)
if ('is.big.matrix(frame.2)) frame.2 <- as.data.frame(frame.2)
n <- as.integer(n)

name.weight <- as.character(name.weight)

name.cluster <- as.character(name.cluster)

# Testing
N <- nrow(frame.?2)

if (n <= 0 | n > N) stop("ERROR: n has to be in O-N")
if (name.weight %in% colnames(frame.1))
print ("WARNING: Weight variable exists, it will be overwrited")
if (!name.cluster %inJ), colnames(frame.1))
stop("ERROR: Can not find cluster variable in frame.l1")
if (!'name.cluster %in’% colnames(frame.2))
stop("ERROR: Can not find cluster variable in frame.2")

# Sampling
s.2 <- as.vector(frame.2[, name.cluster] [sample(N, n)])

s.1 <- as.data.frame(frame.1[frame.1[,name.cluster] %in% s.2, 1)
s.1[name.weight] <- N/n
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return(s.1)

}

1.1.4 Cluster Sampling by Weeks

The name of procedure is SamplingClusterWeek. The aims of the procedure are:

Drawing a simple random cluster sample without replacement from a given population
frame according to Séarndal et al. (1992, p. 129).

Partitioning the sampled clusters in number of random sub-samples with equal number of
clusters in each sub-sample. The sub-samples are distributed by weeks.

Computing design weights for the sampled units according to the inclusion probabilities
(Sarndal et al., 1992, p. 30).

The arguments of the procedure:

frame. 1: population frame with rows as sampling units and columns as variables
frame.2: population frame with rows as clusters of units and columns as variables
n: sample size of units

name.weight: the name of a weight variable

name.cluster: the name of a cluster variable in frame. 1 and frame. 2

name . week: the name of a week variable

weeks: the number of weeks denoted by W/

The steps of the procedure:

The package bigmemory is loaded. It is necessary to manipulate arguments with the
big.matrix class (Kane & Emerson, 2012a).

Converting class of the arguments if necessary.

Population size NV is computed as the number of rows of frame. 2.

Sample size n is rounded to the closest multiple of .

Testing the coherence of the arguments.

n clusters are selected randomly from the frame.2 without replacement. The function
sample is used for a random selection (R Core Team, 2013). The sampled clusters are
randomly sorted.

Week variable with the name name . week is computed by the procedure: the number 1 is
assigned to the first {j; sampled clusters, the number 2 is assigned to the next 3; sampled
clusters and so on till the number 1 is assigned to the last ;> sampled clusters.

The data frame s. 1 is created from units belonging to the sampled clusters.

Weight variable with the name name . weight is computed as % and attached to s . 1.
Week variable is attached to s . 1.

s.1 is returned as an output of the procedure.

SamplingClusterWeek <- function(frame.1,

frame.2,
n=30,
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# Libs
require (bigmemory)

name.weight=".dw",
name.cluster,
name.week = ".week",
weeks = 1) {

# Argument type convertion

if (!is.big.matrix(frame.1)) frame.l <- as.data.frame(frame.1)
if (!is.big.matrix(frame.2)) frame.2 <- as.data.frame(frame.2)

n <- as.integer(n) [1]

name.weight <- as.character(name.weight) [1]
name.cluster <- as.character(name.cluster) [1]
name.week <- as.character (name.week[1])

weeks <- as.integer (weeks[1])

# Testing

if (weeks < 1) weeks <- 1

N <- nrow(frame.2)

n <- round(n / weeks) * weeks

if (n < weeks) n <- weeks
if (n > N) n <- N %/% weeks * weeks

if (n %% weeks > 0) stop("n is not a multiple of weeks")

if (name.weight %in% colnames(frame.1))
print ("WARNING: Weight variable exists, it will be overwritten")
if (name.week %in) colnames(frame.1))

print ("WARNING: Week

if ('name.cluster %inY%
stop("ERROR: Can not
if ('name.cluster %inY%
stop("ERROR: Can not

# Sampling

s.2 <- as.vector(frame.

tmp <- data.frame(s.2,

variable exists, it will be overwritten")
colnames(frame.1))
find cluster variable in frame.1")

colnames (frame.2))
find cluster variable in frame.2")

2[, name.cluster] [sample(N, n)])

rep(l:weeks, each = n / weeks))

names (tmp) <- c(name.cluster, name.week)

.1[name.week] <- NULL
.1 <- merge(s.1, tmp,

nnnonn

return(s.1)

.1 <- data.frame(frame.1[frame.1[, name.cluster] %in% s.2, 1)
.1[name.weight] <- N/n

by = name.cluster, sort = F)

.1 <= s.1[c(colnames(frame.1), name.weight, name.week)]

1.1.5 Stratified Cluster Sampling

The name of procedure is SamplingClusterStr. The aims of the procedure are:
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Drawing a simple random stratified cluster sample without replacement from a given pop-
ulation frame according to Sédrndal et al. (1992, p. 100, 129)

Computing design weights for the sampled units according to the inclusion probabilities
(Sarndal et al., 1992, p. 30)

The arguments of the procedure:

frame. 1: population frame with rows as sampling units and columns as variables
frame.2: population frame with rows as clusters of units and columns as variables
n: the vector of sample sizes of clusters by strata

name.weight: the name of a weight variable

name.cluster: the name of a cluster variable in frame. 1 and frame.2

name.strata: the name of a stratification variable in frame.?2

The steps of the procedure:

The package bigmemory is loaded. It is necessary to manipulate arguments with the
big.matrix class (Kane & Emerson, 2012a).

The package bigtabulate is loaded. The function bigtable will be used from the pack-
age (Kane & Emerson, 2012b).

Converting class of the arguments if necessary.

Population size N is computed as vector with size equal to the number of strata in frame . 2
where N, is the number of clusters in stratum h of frame. 2.

Testing the coherence of the arguments.

ny, clusters are selected randomly from the stratum h of frame.?2 without replacement.
The function sample is used for a random selection in each stratum (R Core Team, 2013).
The data frame s. 1 is created by selecting sampling units belonging to sampled clusters.
Weight variable with the name name . weight is computed as ]X—: and attached to s. 1.

s.1 is returned as an output of the procedure.

n

SamplingClusterStr <- function(frame.l1,

frame. 2,

n,
name.weight=".dw",
name.cluster,
name.strata) {

### Libs
require (bigmemory)
require(bigtabulate)

### Argument type convertion
if (!is.big.matrix(frame.1)) frame.l <- data.frame(frame.1)
if (!is.big.matrix(frame.2)) frame.2 <- data.frame(frame.2)

<- as.vector(as.integer(n))

name.weight <- as.character (name.weight) [1]
name.cluster <- as.character(name.cluster) [1]
name.strata <- as.character(name.strata) [1]

### Testing
if (name.weight %in% colnames(frame.1))

print ("WARNING: Weight variable exists in frame.1l, it will be overwrited")
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if (!'name.cluster %in% colnames(frame.1))
stop("ERROR: Can not find cluster variable in frame.1")
if ('name.cluster %in% colnames(frame.2))
stop("ERROR: Can not find cluster variable in frame.2")
if ('name.strata %in% colnames(frame.2))
stop("ERROR: Can not find strata variable in frame.2")
if (any(frame.2[, name.stratal != sort(frame.2[, name.stratal)))
stop("ERROR: frame.2 is not sorted by strata")

N <- as.vector(bigtable(frame.2, name.strata))
a <- cumsum(N) - N

if (any(n < 0)) stop("ERROR: n has to be greater than 0")

# Reduction of n, if n>N
n <- ifelse(n>N, N, n)

if (sum(n) == 0) stop("Total sample size is 0")

N <- N[n>0]
a <- a[n>0]
n <- n[n>0]

### Sampling

s.2.index <- unlist(mapply(sample.mod, N, n, a, SIMPLIFY = F))
s.2 <- frame.2[s.2.index, name.cluster]

s.1 <- data.frame(frame.1[frame.1[, name.cluster] %in% s.2, 1)

### Weighting

w<-N/n

s.1[name.weight] <- w[match(s.1[, name.stratal,
sort(unique(s.1[, name.stratal)))]

return(s.1)

1.1.6 Two-Stage Sampling

The name of procedure is SamplingTwoStage. The aims of the procedure are:

* Drawing a two-stage sample from a given population frame according to the sampling
design defined in Chapter 1.

» Computing design weights for the sampled units according to the inclusion probabilities
(Sarndal et al., 1992, p. 30)

The arguments of the procedure:

» frame.PSU: the name of a population frame with rows as primary sampling units (PSU)
and columns as variables.

» frame.SSU: the name of a population frame with rows as secondary sampling units (SSU)
and columns as variables.

* frame.TSU: the name of a population frame with rows as tertiary sampling units (TSU)
and columns as variables.

* name.weight.s1: the name of a weight variable for PSU design weights.
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name.weight.s2: the name of a weight variable for conditional SSU and TSU design
weights.
name.weight: the name of a weight variable for ultimate SSU and TSU design weights.
name . week: the name of a week variable.
name . PSU: the name of a PSU variable in frame . PSU, frame.SSU and frame . TSU.
name . SSU: the name of a SSU variable in frame.SSU and frame . TSU.
name.strata: the name of a stratification variable in frame. 2.
param: matrix of design parameters with a row per stratum and nine columns defining
nine design parameters for each stratum. See Table 1.1 for example of param. There
should be the columns named as s, A, B, W, d, Q, w, M, m in the param, where:

— s is the label of strata.

— A is the number of the vertices of polygon.

— B is the number of polygons.

— W is the period of the rotation scheme defined by number of weeks.

— d is the sampling displacement ¢}, according to Section 1.3.2.

— Q is the rotation speed ¢, according to Section 1.3.3.

— w 1s the length of sample to be drawn defined by number of weeks.

— Mis the number of SSUs in the population frame frame. SSU.

— m is the number of SSUs to be sampled in each sampled PSU.

The steps of the procedure:

The package bigmemory is loaded. It is necessary to manipulate arguments with the
big.matrix class (Kane & Emerson, 2012a).

The package bigtabulate is loaded. The function bigtable will be used from the pack-
age (Kane & Emerson, 2012b).

Converting class of the arguments if necessary.

Testing the coherence of the arguments.

Random values &, are computed according to Section 1.3.2.

Sampling points a; 5 i ; are computed by (1.3).

A PSU sample is selected according the a; j, k..

PSU design weights with the name name.weight.s1 are computed according Liberts
(2010b, p. 171).

A TSU sample is selected by means of stratified cluster sampling using the procedure
SamplingClusterStr in sampled PSUs. PSUs are used as strata and SSUs are used as
clusters here. TSU sample with conditional design weights with name name . weight .s2
and computed according Liberts (2010b, p. 172) are achieved.

Ultimate SSU and TSU design weights with a name name . weight are computed accord-
ing Liberts (2010b, p. 172).

Week variable with a name name . week is attached to the TSU sample.

TSU sample is returned as an output of the procedure.
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Example of param

s A B W d Q w M m
1 8 1 13 0.002877 0 13 256556 10
2 8 2 13 0.004115 0 13 157709 7
3 8 2 13 0.003690 0 13 129823 8
4 8 2 13 0.003582 0 13 198515 9

Table 1.1

SamplingTwoStage <- function(frame.PSU,
frame.SSU,
frame.TSU,
name.weight.sl
name.weight.s2
name.weight = ".dw",
name.week = "week",
name.PSU,
name.SSU,
name.strata,
param) {

### Libs
require (bigmemory)
require(bigtabulate)

### Argument type convertion

if (!is.big.matrix(frame.PSU)) frame.PSU <- data.frame(frame.PSU)
if (!is.big.matrix(frame.SSU)) frame.SSU <- data.frame(frame.SSU)
if (!is.big.matrix(frame.TSU)) frame.TSU <- data.frame(frame.TSU)

name.weight.sl <- as.character(name.weight.s1[1])
name.weight.s2 <- as.character(name.weight.s2[1])
name.weight <- as.character (name.weight[1])

name.PSU <- as.character(name.PSU[1])
name.SSU <- as.character (name.SSU[1])

name.strata <- as.character(name.strata[1])

param <- data.frame(param)

### Testing

if (name.weight %in% colnames(frame.PSU)) {
print ("WARNING: Weight variable exists in frame.PSU")
print ("WARNING: It will be overwrited")

}

if (name.weight %in% colnames(frame.SSU)) {
print ("WARNING: Weight variable exists in frame.SSU")
print ("WARNING: It will be overwrited")

}

if (name.weight %in% colnames(frame.TSU)) {
print ("WARNING: Weight variable exists in frame.TSU")
print ("WARNING: It will be overwrited")

}

if ('name.PSU %in% colnames(frame.PSU))
stop("ERROR: Can not find PSU variable in frame.PSU")
if ('name.PSU %in% colnames(frame.SSU))

95




51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

13

114

stop("ERROR: Can not find PSU variable in frame.SSU")
if ('name.PSU %in% colnames(frame.TSU))
stop("ERROR: Can not find PSU variable in frame.TSU")

if (!'name.SSU %in% colnames(frame.SSU))

stop("ERROR: Can not find SSU variable in frame.SSU")
if (!'name.SSU %in% colnames (frame.TSU))

stop("ERROR: Can not find SSU variable in frame.TSU")

if (!name.strata %in), colnames(frame.PSU))
stop("ERROR: Can not find strata variable in frame.PSU")

if (any(frame.PSU[, name.strata] != sort(frame.PSU[, name.strata])))
stop("ERROR: frame.PSU is not sorted by strata")

if (any(frame.PSU[, name.PSU] != sort(frame.PSU[, name.PSU])))
stop("ERROR: frame.PSU is not sorted by PSU")

if (any(frame.SSU[, name.strata] != sort(frame.SSU[, name.strata])))
stop("ERROR: frame.SSU is not sorted by strata")

if (any(frame.SSU[, name.PSU] != sort(frame.SSU[, name.PSU])))
stop("ERROR: frame.SSU is not sorted by PSU")

# Function nemesis
nemesis <- function(s, A, b, W, d, Q, w, M, hi, add) {

sample.step <- Q / W+ (1 +d) / A/ W

sample.PSU <- data.frame(strata = s,
b =0>,
i = rep(1:A, w),
week = rep(l:w, each=A))

sample.PSU$a <- (hi +
b-1)x @ +d * A+1)/ (A*xDb)+
(sample.PSU$i - 1) * (1 +d) / A +
(sample.PSU$week - 1) * sample.step) %% 1

/ 2/ pi

/ 2/ pi

1

sample.PSU$x <- sin(2 * pi * sample.PSU$a)
sample.PSU$y <- cos(2 * pi * sample.PSU$a)

sample.PSU$A <- sample.PSU$a * M + add

return(sample.PSU)

# Random number
param$hi <- runif (nrow(param))

# Add
param$add <- cumsum(param$M) - param$M

# Function for param.2
fun.tmpl <- function(b) data.frame(param[param$B >= b, ], b=b)

param.2 <- do.call(rbind, lapply(1l:max(param$B), fun.tmpl))
param.2 <- param.2[order(param.2$s, param.2$b), ]
rownames (param.2) <- NULL

# Sampling

s.1 <- mapply(nemesis,
s = param.23s,
A = param.2$A,
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i = param.2$hi,
dd = param.2$add,
= param.2$b,
SIMPLIFY = F)

W = param.2$W,
d = param.2%d,
Q = param.2$Q,
w = param.2$w,
M = param.2$M,
h
a
b

# Sample file as data.frame
s.2 <- do.call(rbind, s.1)

# frame.PSU
frame.PSU[, "cum.size"] <- cumsum(frame.PSU[, "size"])

frame.PSU[, "a"] <- frame.PSU[, "cum.size"] - frame.PSU[, "size"]

frame.PSU[, "b"] <- frame.PSU[, "cum.size"]

### Selecting of PSUs

# List of sampling points
5.3 <- s.2%A

### Function to select PSUs by sampling points
f.sel <- function(a, b, x) {

a <- unlist(a)

b <- unlist(b)

x <- as.numeric(x[1])

n <- length(a)

return((1:n)[x > a & x < b])
}

# Indexes of sampled PSUs

s.4 <- unlist(sapply(s.3, f.sel, a = frame.PSU$a, b = frame.PSU$b))

if (length(s.4) != nrow(s.2))
stop("Kluda s.4 vai s.2 -- nav vienads garums")

# PSU sample
s.5 <- data.frame(frame.PSU[s.4, ], s.2)

if (length(unique(s.5[, name.PSU])) < nrow(s.5))
stop("Dublicate in PSU sample")

# PSU sample (IDs only)
s.6 <- s.5[, name.PSU]

param$total .m <- param$A * param$B * param$w

frame.PSU$sampled <- as.numeric(frame.PSU[, name.PSU] %in% s.6)

frame.PSU <- merge(frame.PSU, param[c("s", "m", "M", "total.m")],

by.x = name.strata, by.y = "s")
frame.PSU$m <- frame.PSU$m * frame.PSU$sampled

frame.PSU[, name.weight.sl] <- frame.PSU$M /
(frame.PSU$size * frame.PSU$total.m) * frame.PSU$sampled

### Second-stage sampling

sample.TSU <- SamplingClusterStr(frame.TSU,
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frame.SSU,
frame.PSU$m,
name.weight.s2,
name.SSU,
name . PSU)

sample.TSU <- merge(sample.TSU, frame.PSU[, c(name.PSU, name.weight.s1)])
sample.TSU[, name.weight] <- sample.TSU[, name.weight.sl] =*
sample.TSU[, name.weight.s2]
### Add week
s.week <- s.5[, c(name.PSU, "week")]
sample.TSU <- merge(sample.TSU, s.week)

names (sample.TSU) [ncol (sample.TSU)] <- name.week

return(sample.TSU)

1.2 Calculation of Interviewing Expenses

1.2.1 TSP Solver for a Single Interviewer

The name of procedure is Trip. The aims of the procedure are:

* Solve a TSP for an interviewer.

* Calculate the distance of a trip for an interviewer.

The arguments of the procedure:

 data: two-column matrix A where each row of the matrix represents the coordinates of
sampled dwellings. The number of rows is denoted by n.

* coord.int: vector v (length two) with the coordinates of the residences of interviewer.

The steps of the procedure:

» The package TSP is loaded (Hahsler & Hornik, 2011).

» Converting class of the arguments if necessary.

* Vector v is added to the matrix A as the first row of the matrix.

 The lower triangle of a distance matrix is computed by the R function dist (R Core Team,
2013) from the coordinates defined by v and A. Euclidean distance is used.

« Symmetric TSP is created by the R function TSP from the package TSP (Hahsler & Hornik,
2011) using the lower triangle of a distance matrix.

* TSP is solved by the R function solve_ TSP from the package TSP (Hahsler & Hornik,
2011) using the nearest insertion algorithm. The residence of interviewer is set as the first
node when solving the TSP.

* The output of the procedure is a list with two objects:

— The distance of the trip as the value of the attribute tour_length extracted from the
solution of the TSP.
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— The coordinates of the trip sorted according to the solution of the TSP.
See Section 4.1 for more details. See Figure 1.1, Figure 1.2 and Figure 1.3 for the examples of

the results.

Trip <- function(data, coord.int) {

# Libs
require (TSP)

# Argument type convertion

data <- as.data.frame(datal[1:2])

coord.int <- as.numeric(coord.int) [1:2]

data <- rbind(coord.int, data)

dist.matrix <- dist(data)

tsp <- TSP(dist.matrix)

t <- solve_TSP(tsp, control = list(start = 1L))
data <- as.data.frame(rbind(datalt, ], coord.int))

rownames (data) <- NULL

return(list(attr(t, "tour_length"), data))

There is another procedure Trip.fast. The procedure Trip.fast is equal to the procedure
Trip. The difference is the result of the Trip.fast — only the distance of the trip is returned.

Trip.fast <- function(data, coord.int) {

# Libs
require(TSP)

# Argument type convertion

data <- as.data.frame(datal[1:2])

coord.int <- as.numeric(coord.int) [1:2]

data <- rbind(coord.int, data)

dist.matrix <- dist(data)

tsp <- TSP(dist.matrix)

t <- solve_TSP(tsp, control = list(start = 1L))

return(attr(t, "tour_length"))

1.2.2 TSP Solver for a Multiple Interviewers and Weeks

The name of procedure is vTrip.fast.1. The aims of the procedure are:
* Solve a TSP for multiple interviewers and weeks.
* Calculate the total distance of trips for multiple interviewers and weeks.
The arguments of the procedure:
* data: four-column matrix where each row of the matrix represents the coordinates of

sampled dwellings. The columns are:
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Figure 1.1 Example 1 of the result of the procedure Trip

100

home

FALSE
TRUE

home

FALSE
TRUE



Sample size 50 distance 22889

1
1
- ']
3140001~ ’ {
~ N /N
S Us o [N
~ S o
/313000 - e P Y P et
> ~-‘1 ‘"*L ~N7 1.7 I
-c;l A -t " I , N
= - | Yoo o
S 312000 T e--d2 A
o e m—m— == ;
’ ’
7 . P
311000 ~ KA Toe?
310000 T
T T T T
506000 507000 508000 509000
coord_x_p
Sample size 50 distance 19120
-1
1 Py
i el
le e
316000 - N e M
o -7 a7 1
~ I REL R e
B o R
83150004 . I-~ AT
o " 0~d
It .
7 l’ VAR
4 1 \ 7 2)
o e ;1
314000 o ==
T T T T
509000 510000 511000 512000
coord_x_p

Figure 1.2 Example 2 of the result of the procedure Trip
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Figure 1.3 Example 3 of the result of the procedure Trip
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— The first column contain the labels of interviewers.
— The second column contain the week numbers.
— The third and fourth column contains the coordinates of the sampled dwellings.
* coord.int: three-column matrix where each row of the matrix represents the coordinates
of interviewer residence. The columns are:
— The first column contain the labels of interviewers.
— The second and third column contains the coordinates of the interviewer residence.
The steps of the procedure:
» Converting class of the arguments if necessary.
* The distance of the trip is computed for each combination of an interviewer and a week
available in the data. The distance is computed by the procedure Trip.fast.

* The sum of all distances is returned as the result of the procedure.

vIrip.fast.l <- function(data, coord.int) {

# Argument type convertion
data <- as.data.frame(data[1:4])
coord.int <- as.data.frame(coord.int) [1:3]

# Redefine Trip
Trip.alt <- function(int, week) {
r <- Trip.fast(dataldatal[,1] == int & datal,2] == week, 3:4],
coord.int[coord.int[,1] == int, 2:3])
return(r)

}

# Run

tab <- unique(datal[1:2])

res <- mapply(Trip.alt, tabl[,1], tab[,2])

return(sum(res))

1.2.3 Calculation of Interviewing Expenses

The name of procedure is Cost. The aim of the procedure is:
* Calculate the field work expenses.
The arguments of the procedure:

* trip: the total distance done by interviewers during the field work operation denoted by
d (in kilometres).

* cons: average fuel consumption during the field work operation denoted by K (in litres
per kilometre).

* price.f: average fuel price during the field work operation denoted by C/ (in lats per
litre).

* k.d: user specified distance adjustment coefficient (default value is 1).

* n.h: the total number of households interviewed denoted by m.

* n.p: the total number of individuals interviewed denoted by n.
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* price.h: the cost per household questionnaire denoted by Cj,.
* price.p: the cost per individual questionnaire denoted by C,,.
All arguments of the procedure can be defined as scalars or vectors with a length n. The result of
the procedure will be scalar, if all arguments are scalars. The result will be a vector with length
n, if at least one argument is a vector with length n. The steps of the procedure:
» Converting class of the arguments if necessary.
* The result of the procedure is computed as d- K ;- C'y - K4+m-Cj, +n - C, if all arguments
are scalars.
* The result of the procedure is computedasd © K; ©C; 0 K;+m o Cy +n o C, if at
least one argument is vector. All scalar arguments are converted to vectors (size n) with

all elements equal to the value of scalar argument.

Cost <- function(trip = 0,
cons = 0
price.
k.d =

n.h =

OO H
I~
o

nn
o

price.p

trip <- as.numeric(trip)

cons <- as.numeric(cons)
price.f <- as.numeric(price.f)
k.d <- as.numeric(k.d)

n.h <- as.numeric(n.h)

n.p <- as.numeric(n.p)

price.h <- as.numeric(price.h)
price.p <- as.numeric(price.p)

return(trip * cons * price.f * k.d + n.h * price.h + n.p * price.p)

1.3 Estimation of Population Parameters

1.3.1 Estimation of The Primary Population Parameters

Primary population parameters are parameters estimated directly from individual data. The
name of the procedure is Estimation. The aim of the procedure is:
* Estimate the primary population parameters from sample data.
The arguments of the procedure:
* x: Matrix of individual data where rows represent sampling units and columns represent
variables. The number of rows of x is denoted by n.
» w: Vector with length 1 or n of weights denoted by w. If length is 1, constant weight is
assumed.
* param: The matrix with three columns. Each row represent a parameter to be estimated.

The number of rows is denoted by m. The columns are:
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— The first column contains the type of estimator: total, mean or ratio.

— The second column contains the name of variable used in total or mean estimator or
the name of variable denoted by y used in numerator of ratio estimator.

— The third column contains a value NA if total or mean estimator is used or the name

of variable denoted by z used in denominator of ratio estimator.

The steps of the procedure:

* The package bigmemory is loaded. It is necessary to manipulate arguments with the
big.matrix class (Kane & Emerson, 2012a).

» Converting class of the arguments if necessary.

* Testing the coherence of the arguments.

» Sample size n is computed as the number of rows of the x.

* Population size N is estimated as

. if =1
Fodm : w| =1,
Yo jw; if |w| > 1.

» Vector E is created with length m + 2.

« B, =N

e Fho=n

* FEji, k > 21is computed for each row of param:

> ow  wy; if parameter is total,

E, = Zﬂ% if parameter is mean,

ZZLZI W;Y4

S if parameter is ratio.

* Vector E is returned as the result of the procedure.

Estimation <- function(x, w, param) {

# Libs
require (bigmemory)

# Argument type convertion

if (!'is.big.matrix(x)) x <- as.data.frame(x)
w <- as.vector(as.numeric(w))

param <- as.matrix(param)

# Testing
if (length(w) != 1 & length(w) !'= nrow(x)) stop("Error in w")
if (tall(param[,1] %in% c("sum", "mean", "ratio"))) stop("Error in param 1")

if (ncol(param) != 3) stop("Error in param 2")
# Estim

n <- nrow(x)

N <- ifelse(length(w) == 1, w * n, sum(w))

E <- as.data.frame(matrix(NA, 1, 2+nrow(param)))

E[1,1] <- N
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E[1,2] <- n
colnames(E) [1:2] <- c("N", "n")

for (i in l:nrow(param)) {
a <- sum(w * x[,param[i,2]])

if (param[i,1] == "sum") estim <- as.matrix(a)
if (param[i,1] == "mean") estim <- as.matrix(a / N)
if (param[i,1] %in% c("sum","mean"))

nam <- paste(param[i,1], ".", param[i,2], sep="")
if (param([i,1] == "ratio") {

b <- sum(w * x[,param[i,3]])
estim <- as.matrix(a / b)
nam <- paste("r", param[i,2], param[i,3], sep=".")

E[1,2+i] <- estim

colnames (E) [2+i] <- nam

return(E)

}

1.3.2 Estimation of The Secondary Population Parameters

The secondary population parameters are the parameters computed from the primary popu-
lation parameters. This procedure is specific procedure for employment parameters used in the
work. The name of the procedure is CompEmp. The aim of the procedure is:

* To compute the estimates of five specific secondary employment parameters using three

primary population parameters.
The primary population parameters used in computation of the secondary population parameters:

* Number of employed individuals.

* Number of unemployed individuals.

* Number of inactive individuals.

The secondary population parameters computed:

* Number of individuals in working age (15-74).

* Number of active individuals.

» Activity rate.

* Employment rate.

* Unemployment rate.

The arguments of the procedure:

* x: Matrix containing three columns with the estimates of the primary population paramet-

ers.

* var.names: Vector with length 3 with the names of the variables in x containing the

estimates of the primary population parameters. The order of variables names is important.
The order should match the order of variables mentioned before.
The steps of the procedure:
» Converting class of the arguments if necessary.
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* Testing the coherence of the arguments.
* Five estimates of the secondary population parameters are computed and attached to x.

* x is returned as the result of the procedure.

CompEmp <- function(x, var.names) {

x <- as.data.frame(x)
if (is.null(dim(x))) stop("x has to be two-dimensional")

var .names <- as.character(var.names) [1:3]

x$sum.pop <- rowSums(x[var.names])
x$sum.act <- rowSums(x[var.names[1:2]])

x$r.act <- x$sum.act / x$sum.pop
x$r.empl <- x[, var.names[1]] / x$sum.pop
x$r.unempl <- x[, var.names[2]] / x$sum.act

return(x)

1.4 Other Functions

1.4.1 Extraction of Data From The Dynamic Population Data

The name of the procedure is extr.data. The aim of the procedure is:
* To extract the data from the dynamic population data according to the sampled units and
weeks.
The arguments of the procedure:
* x: the data frame of dynamic population where rows are sampling units and columns are
weeks (see Section 2.2 for more details).
* rows: vector of sampled units defined by the row number.
* cols: vector of week numbers for sampled units.
* col.skip: number of columns to be skipped from the dynamic population.
* var.name: variable name to be used for the resulting variable.
The steps of the procedure:
» Converting class of the arguments if necessary.
* Testing the coherence of the arguments.
* Necessary data are extracted from the x and saved as a variable d2.
* d2 is merged with the first columns of x if col.skip > 0 and saved as data frame d.

* d is returned as the result of the procedure.

extr.data <- function(x, rows, cols, col.skip = 0, var.name = "var") {

rows <- as.integer(rows)

cols <- as.integer(cols)

col.skip <- as.integer(col.skip) [1]
var.name <- as.character(var.name) [1]
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N <- nrow(x)
M <- ncol(x) - col.skip

extr <- function(r, c) x[r, cl
d2 <- mapply(extr, rows, cols + col.skip)

return(d)

(is.null(dim(x))) stop("x is not a two-dimensional object")

(min(rows) < 1) stop("wrong id for rows")
(max(rows) > N) stop("wrong id for rows")
(min(cols) < 1) stop("wrong id for cols")
(max(cols) > M) stop("wrong id for cols")

(length(rows) != length(cols))
stop("rows and cols has to be the same length")

(col.skip > 0) {
d <- data.frame(data.frame(x[rows, 1l:col.skipl), d2)
else {
d <- data.frame(d2)

lnames(d) [col.skip + 1] <- var.name

1.4.2 Monte Carlo Simulations

Parallel computing is used to run Monte Carlo simulation. Parallel computing allows to

reduce execution time of the simulation because each iteration is independent and can be run in

parallel. The name of the procedure is Sim. The aim of the procedure is:

To run Monte Carlo simulation and save the results of each iteration.

The arguments of the procedure:

fun: function to be run in a simulation.

arg: the matrix of arguments to be passed to the function fun where rows are different
sets of arguments and columns are the arguments of the fun

I: number of iterations for each set of parameters (rows of arg).

name: name for the resulting object and file where the results are saved.

print: logical. Defined if the results of the simulation are printed.

log: logical. Defined if log file is created.

seed: can be used to define seed for the random generator. If seed is NA random seed is
used.

cores: the number of CPU cores to be used in the simulation.

The steps of the procedure:

The R packages necessary for parallel computing foreach (Revolution Analytics, 2012b)
and doMC (Revolution Analytics, 2012a) are loaded.
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Multicore parallel backend is registered by the function registerDoMC (Revolution Ana-
lytics, 2012a) with the number of CPU cores to be used defined by cores.

Converting class of the arguments if necessary.

Testing the coherence of the arguments.

A test run is done by running the function fun with the first set of arguments from arg.
Simulations are run in nested loop where the first loop goes from 1 to the number of rows
in arg and the second loop goes from 1 to I.

The function fun with corresponding arguments from arg are executed each iteration.
fun is executed with try wrapper (R Core Team, 2013). If the execution of fun was
error free, the results are saved in a data.frame. If the error occurred during the execution

of fun, the error message is saved. try is used because it allows to run full simulation

even some iterations result with an error.

» Execution time of simulation is computed.

* Results of simulation are saved in the data file in the working directory with the name

name and extension .Rdata.

* The result of the procedure is a list with two objects — data.frame with results of the sim-

ulation and execution time.

Sim <- function(fun, arg, I = 5,

name = "res",
print = F,
log = F,

seed = NA,

cores = multicore:::detectCores()) {

require(foreach)
require (doMC)

registerDoMC(cores = cores)
# Argument type convertion

fun <- as.character (fun) [1]
arg <- as.list(arg)

I <- as.integer(I) [1]

name <- as.character(name) [1]
print <- as.logical(print) [1]
log <- as.logical(log) [1]

# Testing
if (I<=0) stop("I has to be 1 or larger")
if (!is.na(seed) & length(seed) != I) stop("Wrong length of seed")

# Function to convert arg as one-row data.frame
transf <- function(x) data.frame(lapply(x, function(x) t(data.frame(x))))

# Test run
test <- do.call(fun, arg[[1]])
ml <- length(test)

arg2 <- transf(argl[[1]])
m2 <- ncol(arg2)

cat("Simulation name:", name, "\n")
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cat ("Number of iteratioms:", I, "\n")
cat ("Number of cores:", cores, "\n")

filename <- name
tl <- Sys.time()
R <- foreach(a = 1L:length(arg), .combine = rbind, .inorder = F) %:%
foreach(i = 1L:I, .combine = rbind, .inorder = F) Ydopar’ {
if (log) cat(as.character(Sys.time()), ", ",
i, "of ", I, ", ", round(i/I*100, 1), "%\n",
file = paste(filename, ".log", sep = ""),
sep = "", append = T)
if (!is.na(seed)) set.seed(seed[i])

tr <- try(do.call(fun, argllall), T)

res <- data.frame(tl, name, a, i, seed[i], transf(arg[[all))
rownames (res) <- NULL

if (class(tr) == "try-error")
res <- data.frame(res, tr[[1]], matrix(NA, 1, ml1l)) else
res <- data.frame(res, NA, tr)

colnames(res) <- paste("v", 1:(6 + m2 + 1 + ml1), sep = "")

res

}

t2 <- Sys.time()
time.run <- as.numeric(t2 - t1, units="secs")

colnames(R) <- make.names(c("timestamp", "name", "a", "i", "seed",
colnames(arg2), "err", colnames(test)), unique = T)
rownames (R) <- NULL

assign(name, R)
save(list = name, file = paste(filename, ".Rdata", sep=""))

cat("Total time:", time.run, "sec\n")
cat("Average time:", time.run / I, "sec\n")

if (print) {

cat("Rows in results:", nrow(R), "rows", "\n")
cat("First results:", "\n")
print (head(R))

return(list (R, time.run))
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