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1 ABSTRACT

The present thesis considers stability of shallow shearsfiovopen channels. Shallow shear
flows are widespread in nature and engineering, so it is itapbto know factors that are affecting
flow stability.

A flow is shallow when it's transverse scale is much largentfiaid depth. Limited depth
strongly influences behavior of perturbation, so it diffiecsn the one in deep flows. Development
of three-dimensional perturbations is impossible due talswertical scale of the flow. Two-
dimensional instabilities are supressed by bottom frictivat becomes a major factor affecting
the flow.

Shear flows have transverse velocity gradient. Differenselocities between adjacent layers
leads to shear stresses that may cause lateral motion ofitti@fid become an onset of instabili-
ties. Wake flows, mixing layers, jets are examples of sheassftbat are abundant in nature.

Stability of shear shallow flows is affected by many factovertical non-uniformity of ve-
locity, fluctuation of depth, presence of particles, chaofiggow profile downstream are some of
them, that are considered in the thesis.

Fluctuation of depth is usually omited in stability anatysif shallow flows. A “rigid-lid”
assumption is often applied that implies the flow depth isstamt. However application of the
"rigid-lid” assumption may introduce some error in the désuThe error that may arise due to
omiting possible depth fluctuations is analyzed in thisieBroude number is used to charac-
terize flow deviation from the “rigid-lid” assumption. It i®und that for values of the Froude
number typical for natural shallow flows the error due to thgiti-lid” assumption is small and
can be neglected.

As shallow flow model is based on equations that are depttaged, vertical non-uniformity
of velocity components is not taken into account. The thesisiders how velocity non-uniformity
affects results of linear stability analysis and evalu#tteserror due to neglection of velocity non-

uniformity. The vertical velocity profile deviation from tiarm is expressed with momentum



correction coefficients. It is found that for values of mortusn correction coefficients, that are
typical for flows abundant in nature, the error that ariséé vertical non-uniformity of velocty
is neglected may reach significant values. So, it might beomapt to use momentum correction
coefficients for analysis of shallow shear flows.

Linear analysis allows to define conditions when the tramsitrom stable to unstable flow
takes place. Linear analysis however does not give a cluet filmher evolution of perturbation.

Weakly non-linear analysis is employed to track developnoérperturbation. A perturba-
tion amplitude function is used that is weakly dependentiimie and coordinate. As a result of
weakly-nonlinear stability analysis the Ginzburg-Landguation is derived that governs growth
of perturbation. Numerical methods allowing to calculapeféicients of the Ginzburg-Landay
equations have also been developed. The Ginzburg-Landetieq contains a coefficient, often
referred to as "the Landau constant”, that defines if pedtimb amplitude saturation and appear-
ance of the secondary flow is possible.

Stability of two-phase flow is also considered in the thesgigrieans of linear and weakly
non-linear method. Examples of two-phase flows are gascfgftow, gas-droplet flow, liquid-
particle flow. A particle loading parameter that envolvesaantration and mass of the particles
as well as drag on particles and particle response time @ imserder to include influence of
particles into the model. Linear stability analysis resalearly indicate that presence of particles
or droplets in a gas flow enhance flow stability. Weakly nowdir analysis results show that
perturbation amplitude is governed by the Ginzburg-Landayation. The coefficients of the
Ginzburg-Landau equation are calculated and calculagsults indicate that perturbation finite-
amplitude equilibrium is possible. The effect of partiad@adling parameter on finite perturbation
amplitude is evaluated. It is shown, that presence of pastieads to finite amplitude decrease.
In addition, it is shown that pure periodic solutions of thefburg-Landau equation are unstable
(and, therefore, not observable).

Stability analysis is usually performed under the assupngthat the transverse velocity profile
of the flow is not changing downstream. This is not the casegher, for real flows. Therefore
an approach to stability analysis of a shallow flow with skpwaltering velocity profile has been
developed in the thesis. As a result a leading order appitiom to the perturbation stream

function has been derived. The approximation containgetteans. Important conclusions can



be drawn by looking at the form of the leading order approxiom First, all the three terms

contain information related to the amplitude and phase efgrturbation. Second, the growth
rate and phase speed of the perturbation at any given deanststation depends on the choice
of the perturbed quantities (e. g. velocity component)aly, the growth rate and phase speed

depend even on the location where these quantities werelad.



2  ANOTACIJA

Promocijas dard ir apskata seklo bdes plsmu stabiliates anake atkhtas hidrodinamis&s
sisemas. Selds bdes plsmas ir pl&i izplatitas dal un irzenierpielietojumos,ajpec ir svargi
zinat, kadi faktori ietekne plusmas stabildti. Sekh plusma ir plsma ar s&rsvirziena rerogu
daudz lieBku par plsmas dzilumu. leroli®ts dzijJums stipri ietekm perturfacijas afisibas
veidu, Bipec tas akiras no perturécijas attstbas veida dzila uden. Trisdimensiju perturdciju
atfistiba nav iespjama maaudens dzilJuma€|. Divdimensiju perturciju atistiba ir apgutinata
plusmas gultnes berzes]dkas klist par nommigu faktoru, kas ietekeplusmu.

Bides plsmas ir plismas aBkersvirzienaatruma gradientu. Blakussjuatrumu starfba var
veicinat bides spriegumu veidanos, kas izsauc fila prvietdanosskersvirziera un var kiit par
nestabilites avotu. Rlsmas aiZkerSliem, stuklas ir tipiski hdes plismu pieneri data.

Seklo hdes plsmu stabiliati ietekne daudzi faktori Atruma vertikala profila nevienranba,
plusmas dzijJuma fluk@cijas, dalinu khthutne, plUsmasatrumaskersvirziena profila izmainas
lejup pa straumi ir da faktori, kas var ietekmt plusmas stabildti, un o faktoru ietekme ir
analizta promocijas dag

Plusmas dzijJuma flukfacijas parasti tiek ignetas, veicot stabilites anaki. Biezi pielieto
"cieta vaka” pieemumu . Tas name, ka plsmas dzijJums tiek pienemts par konstantu. "€iet
vaka” pieemums var rad kludas stabildétes anakes rezubitos. Promocijas da#tiek analieta
kluda, kas var padties pusmas dzijJuma flukiciju neieerasanas d]. Frude skaitli izmanto, lai
raksturotu plismas novirzi no "cigt vaka” pieemuma. Anakes rezubita konstagts, ka klida,
kas rodas pie Frude skaitl@sbam, kas ir sastopamas dalir neliela un to var ignet.

Sekhs plismas modelis babs$ uz viemdojumiem, kuros izmanto pémasatruma kompo-
nersu videjas \eribas. Vetikalaatruma profila nevienméya netiek nemtaera. Promocijas dab
veikta analze ar nerki noskaidrot, B atruma nevienmnba vertilala virziera var ieteknet sta-
bilitates anakes rezublitus. Tiek noerteta ar kluda, kas rodas ve&jo vertibu izmanao$anas d).

Veicot analzi, atruma profila nevienmdra tiek izteikta, izmantojot impulsa korekcijas koefi-



cientus. Tika konstats, ka pie impulsa korekcijas koeficientertbam, kas ir sastopamas dab
un inzenierpielietojumos, kida, kas padas, jaatruma nevienmeaba tiek ignoeta, var sasniegt
noamigu lmeni. Tatad ir svaigi pielietot impulsa korekcijas koeficientus, veicot sekides
plusmu stabiliates anaki.

Lineara analze Jauj noteikt nosafumus, pie ladiem plisma maina stabifti. No otras puses,
lineara analze nedod iesgu modeét tabko perturlcijas aftstibu.

Vaji nelinaara analze ir pielietota, lai sekotudzi perturtacijas au§anai. Ir izmantota per-
turbacijas ampliidas funkcija, kas iraji atkanga no laika un koordiatas. \Aji nelinearas anakes
veikSanas rezudtia tika iegits Ginzburga-Landau viedojums, kas apraksta pertadijas afstbu.
Tika izveidotas arskaitliskas metodes, kas atlauj &ginat Ginzburga - Landau vieaojuma ko-
eficientus. Ginzburga - Landau vietojums satur koeficientu, ko liesauc par "Landau kon-
stanti”, kas nosaka, vai ir ieeami perturlacijas ampliidas pieatinajums un sekuratas plsmas
stabilizzSana.

Promocijas darlir an analizta diviazu plsmas stabildéte. Divlazu plusmas pierari ir udens
vai gazes plismas, kas satur cietas dalinas,au gazes plismas, kas sat@kidruma pilienus. Lai
apraksitu dalinu ietekmi vieadojumaos, tika pielietots dalinu konceatijas parametrs, kas ietver
sev dalinu koncentciju, masu, dalinu reakcijas laiku. Liaes stabiliates anakes rezukiti
parada, ka dalinas palielina flda pusmas stabiléti. Vaji nelinearas anakes rezukits paada, ka
perturkacijas ampliidu apraksta Gizburga-Landau vaéglojums. Ginzburga-Landau vigtojuma
koeficienti ir apekinati, un rezulati paada, ka ir iespjams amplildas pieatinajums un sekuratas
plusmas stabiligana. Ir noerteta dajinu koncenacijas parametra ietekme uz gad amplitdas
veribu. Redzams, ka, dalinu konceatijas parametram pieaugot, gal amplilidas \eriba
samazinas. Ir apardts, ka plakana vilna atrissjums Ginzburga - Landau viadojumam nav
stabils, tas name, ka sekundrai pusmai ir sarggitaka struktira.

Stabilitates anake parasti tiek veikta, izmantojot piemumu, ka pismasatruma profils nav
atkangs no garenisks koordirmtas. Ralam pusmam, toner profils ir atkargs. Tagec tika izstadata
stabilitates anakes metode, ko var pielietotyggmam aratruma profilu, kas ir &@ji atkargs no
garenislas koordimtas. Ir iegita risimajuma vadsas lartas aproksimacija, kas satur ts locek|us.
Pec s formas, var seca, ka, pirmlart, visi tns lakas puses locek]i satur infoamiju, kas at-

tiecas uz amplitdu un Bzi, otrlart, perturlacijas au§anasatrums ir atkaigs no &, kads loceklis



ir perturkets, un, galvenakt, tas ir atkags ar no koordiratas.



3 INTRODUCTION

3.1 Shear flows

A shear flow is a flow with transverse velocity gradient. Thes&nce of the gradient leads to
appearance of viscous forces. The faster layer is slowea dgwnteraction with slower layer,

but the velocity of the slower layer is increased accordmghe third law of Newton. This is

the way momentum is transferred from one layer to anothescadlis forces acting in shear flows
may lead to transverse movement which in turn can lead to fhgthbilities. Shear flows are
widespread in nature and engineering. The two typical exesnpf shear flows are wake flows
and mixing layers. A wake flow is a flow downstream of a body ims®d in a stream or the flow
behind a body propagating through a fluid. Wakes are narrowgelted regions, usually filled
with large and small eddies. Examples of wake flows are edifiasbridge pier immersed in a
river stream, or of a ship propelled through the water. M&ogrofile of the wake flow is not

uniform thus leading to shear stresses. The wake flow vglpcdfile can be approximated by a
hyperbolic secant function (see Figure 3.1). Chen and Jitkayggested the following formula

for approximating wake flow velocity profile:

U(y) = t(1— R+ 2Rsecﬂ(3|_’)), (3.1)

wherey is transverse coordinatejs characteristic dimension of the wake (wake half-width),
1 . . . .
U= é(uc + U ), Uc is flow velocity at the line parallel to the flow and going thgbuthe center of
the bluff body,u. is ambient flow velocity and parametdescribes non-uniormity of the profile,
UC - UQQ
U+ Uso
Wakes are usually sustained for very large distances dogamtof a body. Ship wakes retain

related tou; andu., by means of the following formuleR =

their turbulent character for miles behind a vessel and eatiebected by special satellites hours
after their generation. Similarly, condensation in the &vakaircraft sometimes makes it look like

a narrow braided cloud, traversing the sky. Turbulence envibke of bluff bodies in some cases
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Figure 3.1: Hyperbolic secant velocity profile of a wake

flow.

may consist of all sizes of eddies, which interact with eatleoin their unruly motion. However,
eddies may organize themselves into coherent structuresavdrge groups of eddies form a well-
ordered sequence of vortices. In this case the sense dbrotdtthese vortices alternates but their
spacing may be quite regular. As a result, they can driveugtsire that they encounter, or they
can exert on the body that created them a force alternatisigimwith the same frequency as that
of the formation of the vortices. Such forces can impose ucgires unwanted vibrations which
often lead to serious damage. Flow-induced forces can lbstcaphic if they are in tune with the
frequency of vibration of the structure. Water circulatimehind a bluff body may strongly depend
on the size and structure of eddies. In some case areas vatiwader circulation can appear in
the wake that can result in deposition of sediments and iimgpd pollutants.

Mixing layer flow is a flow downstream of junction of two strearaf different velocities.
Merge of two different streams leads to shear stresses bettfeem that in turn may lead to
formation of vortices. Mixing layer flow is usually approxated by a hyperbolic tangent function

(see Figure 3.2). The velocity profile may be expressed bjottmaula:

u= 1+ Rtanhy).

10
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Figure 3.2: Hyperbolic tangent velocity profile of a mixing

layer flow

3.2 Shallow flows

Shallow flows are flows with the transverse scale of the flomdp@nuch larger than the vertical
scale (water depth). Experiments show that developmemistéibilities in shallow water signifi-
cantly differs from the development of wakes in deep watertex structures observed in shallow
water in many cases may resemble flow patterns in deep waiem Ishallow water case the
corresponding flow patterns can be observed at much largezssaf the Reynolds number. For
example, photograph Nr. 173 by Van Dyke [38] shows formatibeddies organized into a vortex
street behind an obstacle in shallow water although the Régmamber for this case is 10Note
that vortex street pattern in unbounded flows is limited gmsicantly smaller Reynolds numbers.
This fact demonstrates that different approach is requoeshallow flow modelling and stability
analysis.

Shallow flows are widespread in nature and engineering asidda wake flows and mixing
layer flows as well as jets. Therefore shallow flows may beesuibg to shear stress. Shear stresses
in shallow flows are caused by non-uniformity of the velogtgfile and frequently gives rise to
perturbations. As the abundance of shallow flows in natuggiii® high, there is a need in estab-
lishing of a comprehensive model for shallow water flows al asedevelopment of methods that
would enable us to perform stability analysis and to traagion of perturbation. Understand-

ing of mass, momentum and energy exchange in shallow flowlsesirportant. Shallow wake

11



flows, in particular flows behind islands in rivers and bays,an object of growing interest from
environmental point of view. Complex flows created by eddes ttap pollutants. Poor water
circulation in a wake may lead to deposition of sedimentsesehtwo factors can result in poor
water quality on the sheltered side of an island. Increasadentration of sediments and contam-
inants might affect marine culture causing, for examplé, fisease and mortality. It is believed
that the trapping of low-salinity Pearl river water in theekred areas led to intense stratification
and resulted in deaths of marine inhabitants in Hong Kon@®v114].

Keeping all above-said in mind it is clear that it is esséritiknow factors influencing flow
patterns and, as a result, water circulation in shallowrsth@as.

The main factor that affects perturbations and makes thetwein shallow flows in a differ-
ent way than in deep flows is bottom friction [20]. Due to stalhess of water, bottom friction
has much bigger effect on stability of the flow. In particuldre growth of transverse pertur-
bations is suppressed. Another factor influencing shallow 8tability is limited water depth.
Evolution of three-dimensional instabilities is prevehte shallow water leaving space only for
two-dimensional perturbations.

One of the main assumptions which is usually made in shallatemtheory in order to facil-
itate the analysis is the independence of the flow charatt=ion the vertical coordinate since
shallow water equations are depth-averaged equationse @he many cases, however, where this
assumption may not valid. Changes in flow geometry, flow regioreroughness of the bottom
boundary can lead to large deviations from the above-meeti@ssumption [40], [43]. Momen-
tum correction coefficients are applied by several authrdd$ [43] in order to take into account
the non-uniformity of the velocity distribution. In partitar, momentum correction coefficients

are used in [16] for linear stability analysis of shallow mix layers.

3.3 Mathematical model

A widely-used model for fluid flow is the Navier-Stokes eqaas:

12
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&+®+E—O, (3.2)
%+u3—)‘i+vg—;—l—wg—::gx—%g—s+gﬂzu, (3.3)
%i;)+u%—c:+v%—(;+w%i;:gz—%g—s+gﬂzw (3.5)

whereg = (0x, 0y, 9-) is the gravitational force per unit mass= (u,Vv, w) is the velocity vector,
pis pressurep is fluid densityu us the dynamic viscosity. Integrating the equations ovefltw

depth enables us to obtain the depth-averaged equatidagrdting the continuity equation (3.2)

we get:
Z du Z9v Z 3w
—dz+ —dz+ —dz=0 3.6
z, 0X z, 0y z, 0z (3.6)
or
Z du Zov
2 & dZ‘l— 2 a/dZ—F (JO(Z) — (A)(Zb) = 0, (37)

whereZ andZ, are thez-coordinates of the water surface and the channel bottompeges
tively, Z = Z(X,y,t), Zp = Zyp(X,y).

It is known that

0 [< Z9u 0Z 0Zy,
O_X/zb udz— /Zb Sdzruz)s —uzo) 2 (3.8)
0 [% Z9v 0Z 07,
— vdz:/ —dz+v(Z)— —v(Zp)—. 3.9
ay |, V7= [ g dzrv@)g vz o (3.9
. . . Z9u Z v
Using (3.8) and (3.9) we can rewrite the integrals —dzand | — dzas follows:
z, 0X z, 0y
Zdu 0 % 0Z 0Zy,
2 a_XdZ_ a—X/Zb udz— U(Z)&—FU(Zb)W, (310)
Z v 0 [< 0Z 07,
—dz=— —Vv(Z)— Zpy)—. A1
s 507 6y/szdZ v( )ay+u( b) oy (3.11)

13



If the function Z(x,y,t) specifies the z-coordinate of thedrwater surface and if it is assumed
that any particle on the surface does not leave it, then thiicakvelocity of a particle on the

water surfacew(z), is given by:

w(z)_%_a_z+a_za_)(+a_za_)/
T 9t 9t oxot | oyt
0Z 0Z 0Z

- E+u(2)&+v(2)a—y. (3.12)

Similarly, if the bottom of the channel is rigid, thé&g = Zy(x,y) —z= 0. Hence,
DR,

W(Zy) = e u(Zp)

02,
0Xx

0Zy

Substituting (3.10) - (3.13) into (3.7) we obtain:

z z
i/ udz—u(Z)a—ZJru(Zb)%Jri/ vdz
z

0X.Jz, oX ox 0y.Jz,
0Z 0Z, 0Z 0Z
0Z 0Zy 0Zy B
or
o % o [? 0Z
&/Zbudz+a//2bvdz+a_o. (3.15)

Introducing depth-averaging velocities

_ 1 /7
u= - udz
dJz,
and
_ 1 /4
V= - vd
dJz, z

that are the mean values over the depth of the channel, wher& — Z,, is the water depth

measured normal to the bottom of the channel, we obtain:

14



0z a(ud) o(vd)
E‘f‘w‘f—a—y—o. (316)

: . , Dw
We are assuming the vertical acceleration to negll%? & 0, uJ%w ~ 0). Hence, the equa-

tion (3.5) reduces to:

10p_O

~Sa2 =0 (3.17)

9z

By integrating the equation (3.17) in teadirection and considering the atmospheric pressure

to be zero, we obtain

z 1 /%0p
/Zgzdz_B/Z Edz

z

or

z
so that the distribution of pressure is hydrostatic:

1
0(z—2) = Bp

p=pg(z—2). (3.18)
It follows from (3.18) that
lop 0Z
Y gz&’ (3.19)
10p 0Z
oAy gza_y' (3.20)
Multiplying (3.2) by u, we obtain
ou oOv 0w

We add (3.3) and (3.21) and use (3.19) - (3.20):

GV  ou du o
ot oOx o0y 0z 0x oy 0z

15



_ 0Z M o
= gx‘*'gz& + BD u (3.22)
or
ou 0,6, 0 d B 0Z M >
Fraa aX(u )+ ay(uv) - aZ(uu)) =Gt Grg + pD u. (3.23)

Similarly, multiplying equation (3.2) by, adding to it (3.4) and using (3.19) - (3.20) we obtain

ov 0 0 0 B 0Z WU o
E+a—x(uv)+a/(v2)+a—z(vw)—gy+gzay+pD V. (3.24)
We integrate (3.23) with respect zdrom from Zy, to Z:
a [Z Z9u 0z 0Zy
a/zb Udz— /Zb EdZ—F U(Z)E _U(Zb)ﬁ (325)
It follows that
Z9u 0 (< z
/Zb Edz_ 3t Jo, udz—u(2) 3 (3.26)
0 z 2 . z a 2 2 aZ 2 aZb
O_X/zbu dz= /Zb ! dz+u (Z)&—u (Zb)&, (3.27)
a % 290 0z 0Zy
— uvdz:/—uvdz+quZ——uZ V(Zy)—, 3.28
5. [ 50z UMD T~ u(ZaVZe) (3.28)
0 (< 29 0Z 0Zy
G_Z/zb uwdz= /Zb a—z(uoo)dz+ u(Z)w(Z)E - u(Zb)w(Zb)E. (3.29)
Hence,
Zou 0,6, 0 0
/Zb(a—i—a—x(u )-I-a/(uv)-i-a—z(uw))dz
0 [? 0z 9o (%, 5,02
_E/szdZ_u(Z)EJF&/zbu dz—u (Z)&
0z, 0 [% 0Z
2(7,\ 250 & _ =
AL /Z (W) dz-uZv2) g
0Z
+u<zb)v<zb>a—yb +U(Z)0(Z) — U(Zo)(Zp). (3.30)

16



As u(Z) = u(Zp) andv(Z) = v(Z), we get:

a0 [? 9,1 (< 0, _
P szdZ_E<a ), uddz_a(ud),

0 (2,5, 0, 5
O_X/zbu dz_a—x(u d),

a—z/z(uv)dz= ai(lm),

Taking into account the relationship

0Z 0Z 0Z
ki + u(Z)& +v(Z)a—y =w(2),

0Z 0Z
U(Zo) 50 +V(Zo) 5 = (Zo),

the left-hand side of equation (3.30) can be simplified to

0 0

_ 0
a(Ud) + a_X

(0Pd) + 5 (avd).

Similarly, the right-hand side of (3.24) becomes:

By integrating, the right-hand sides of (3.23) and (3.24)texesformed to the form:

We hav

o, _. 0. . 0 _
5 (Va) + 5 (avd) + 5 (V2d).

0Z Zu
%214 /—Dzud
(gx+gzax) + . z

0Z Zu
+Op— d+/ T2vdz
(9y gzay) 2 p

0Z 9(Zo+d) od
ox  ox’

Cox

sinceZ, = const

17
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(3.32)

(3.33)

(3.34)

(3.35)

(3.36)



Similarly,
0Z ad

oy oy
Now, let us consider the shear stress terms. In turbulenttevdynamic viscosity is replaced
by an eddy viscosity coefficient. Moreover, a distinctionomade between the stresses acting in

thex—y plane and the stresses acting in thez andy — z planes. For example, the shear-stress

term of the momentum equation in tkelirection may be written as

9%u  94%u d%u

sxy(ﬁ + a—yz) + Szx@. (337)

It is assumed that the effective stresses are dominatedeblyattom shear stresses. This means
2

: . . : . d
that the first term in (3.37) is neglible as compared to theiséterm. Integrating the termxa—zl;

with respect t&Z we obtain

Z 9% ou ou
/Zb szadzz sz(a ) |z=z — (0 ) ’z—zb Tsx— Thxs

in which Tgx andtpy are the shear stresses at the water surface and at the chattopi acting

in thex-direction. Similarly, the shear stress for the second eguaeduces to

The shear stresses acting at the water surface due to wiadtyetsy andtsy are neglected and
the shear stresses at the channel bottgpandTy,y, are evaluated by using empirical formulas.

For example, the Chezy formula gives [37]:

whereV = /U2 + V2 andc is Chezy coefficient. Hence

PY — PY
Tpx = 2 uV Ty = C—vV

Hence, the momentum equations become

o, 0,5, 0, od . ol 5=
5; (ud) + 5 (u d)+ay(uvd)—(gx+gzax)d 2 VUV (3.38)
9 e+ 2 () + 2 2d) - (gy+ 0,290 VP

5 (V) + o (vdl) + ay(\7zo|)_(gy+gzay)o| 2 VPV (3.39)

Denotingd by h we get:
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0 ahh gu

0 5 0 =
a(ﬁh) + a—X(U h) + @(U—Vh) (9x+§]za ) W2+ V2, (3.40)
0 d
= (Vh) -+ = (0Vh) + <v2h> <gy+gz P+ V2. (3.41)
Using algebraic transformations we obtain:
ou _oh _a
+Lﬂﬂa—u+\ﬂ1®+u@(\ﬂﬂ) (Gx+ gz )~ g \/7+v (3.42)
av jh _a
+Jha—\;+\7@(\ﬂ1)+\ﬂ1 3y = @+ 0z - g R+ R. (3.43)

Taking into account tha%; + a%(l]h) + %(Vh) = 0 and dividing (3.42), (3.43) blg we get:

ou -ou  -ou N
at+”ax+ 6y+ (gx+gzax) v U2 4 V2, (3.44)
ov OV _ov oh, oV 5=
6t+uax+ 3y (gy+gzay) he Vv (3.45)

Integration of the Navier-Stokes equations along the e@rtoordinate means that the non-

uniformity of vertical velocity distribution is no more tak into account. The velocity components

u andv are considered to be independent on vertical coordinataievery point of the flow are

constant across the flow depth.

In order to compensate for the possible error that may amse hon-uniform vertical velocity

distribution of a real flow, momentum correction coefficeept, 32> andz are used (see [43]).

The meaning of the coefficients can be explained as follows.

The approach of considering velocity to be uniformly daiited accross the vertical coordi-

nate is satisfied if the following relation holds:

> mu= (3 mu

whereu is the velocity of the fluidmis the mass of the fluid passing through a small cross-section

elementl is averaged (mean) velocity.
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Let us consider a small cross-sectional area elethdnrt AyAz. The discharge (volume pass-
ing through the area elemefA in a second) i€ = UAA = uAyAz. The mass flow rate through
the elemenfAis M = puAA = pulyAz

The momentunt passing through the cross-sectional area eleth&ran be calculated from
the formula

| = pu?AyAz.

By integration of the momentum equation framto z with respect t@ we obtain:
Z2 Z2
| = pUPAy dz= pAy/ u’dz
V) V43
If we consider velocityU to be uniform over the cross-section, then the momentumingass
through the elemertA is
I = (pU)UAyh.
In order to compensate for the error introduced by the assampf uniform velocity distribu-
tion across the vertical coordinate a momentum correcta®ificient is used, defined by the
expression
Bi =1
or
4]
B(pU)UAh=pAy [ U?dz

I

The momentum correction coefficient can be explicitly espesl as follows:

1 =,
B_W/Zludz

Similar to [43] the momentum correction coefficients usethia thesis are defined by formu-

las:
1 [z
Bi=rz | (Pdz (3.46)
1
1 2
Bzzh—uv/z (vdz (3.47)
1
1 Z
Ba= 22\72dz (3.48)
1



whereuandvare the velocity components in tkendy directions respectively.
It is assumed that the coefficierfis, B> and[33 are independent on the spatial coordinates

andy.

3.4 Stability analysis

Water circulation in a shear flow may depend on stability effilow. Unstable flows may have
better water circulation and better mixing due to formatbfarge eddies [34].

Stability analysis considers response of the flow to a smsiubance. If the disturbance
amplitude decays and the flow returns to its original stdtentthe flow is defined as stable.
However, if the perturbation grows with time and flow chantges different state then the flow is
unstable [33].

By means of stability analysis one can track evolution ofullstnces superimposed on the
base flow. Ususally it is assumed that the disturbance ounpation is small; that allows to
obtain a linear equation governing the disturbance. Howere needs to keep in mind that in
case disturbance velocities reach a couple of percent diake flow, linear analysis is no more
valid as non-linear effects become significant. Althoughlthear equations have a limited range
where they can accurately predict evolution of disturbatioey are important tool that enables
detection of physical growth mechanisms and identificatibtlominant disturbance types [33].

The essence of the stability analysis is well described jn T®e undisturbed flow, also re-
ferred to as the base flow, can be described by a velocity feeledl as other fields (like pressure,
temperature etc.) that are needed to specify the flow at eanhqd space and time. If the pertur-
bation is imposed on the flow, the perturbation may be inddyistay at the same level or grow to
the scale when the flow considerably alters it's structutee three types of perturbations can be
referred to as stable, neutrally stable and unstable regpkyd8].

The stability analysis can be performed in the following w&yrst, a small perturbation is
imposed on the flow. The solution with perturbation is substd into initial non-linear equations.
Quadratic terms containing disturbances are neglectegesedquations are linearized. Thereby a
linear homogeneous system of partial differential equatiand boundary conditions is obtained.

According to [8] the solution of the system can be expressea superposition of components,
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each component varying with time lile& for some complex number= o +iw. The linear system
will determine values of and the spatial variation of corresponding componentsgenealues
and eigenfunctions. This is effectively the method of ndrmades, whereby small disturbances
are resolved into modes. Each mode can be analyzed sepaeste¢hey all satisfy the linear
system.

If o > 0 for a mode, then the perturbation is amplified and the modait to be unstable.
If 0 =0, the mode is neutrally stable, and the mode is stalie<fO. In this thesis the solution
of perturbation is sought as a superposition of functiongaisverse coordinate, each of them
propagating in lengthwise direction as a wave with certaimglex frequency and wavenumber.
The wave is represented in the form ékigx — ct)). By denotingikc as the complex frequency
we can rewrite the wave expression in the form(exjt + ikx).

The method of normal modes allows to obtain a system of ordidifferential equations.

Under rigid-lid assumption it is possible to introduce a fliwaction that allows to reduce
the system of equations to single ordinary differentialaoun. The equation, governing the
perturbation, is often referred to as Rayleigh equation.

As a system of equations or a single equation for the pertiorbhas been derived, eigenvalues

of the equation are to be examined as they control developof@erturbations.

3.5 Previous studies

Due to high abundance in nature and engineering as well asoerental significance, shallow
water flows are object of growing interest. Several authoedyaed stability of shallow flows
both experimentally and theoretically [2], [10], [13], [34
The effect of bottom friction on stability of shallow wakewis is investigated in [2], [4], [34], [35].

According to [35], two-dimentional structures in the flowncdae associated with three stability
classes. If a small perturbation imposed on the flow incieasth time at certain fixed point
of the flow and reaches a defined threshold, the flow is said t@blkelutely unstable. In case
a small perturbation grows at moving point of the flow (is aeected downstream) up to certain
threshold, the flow is convectively unstable. If a small pdyation decays with time and grows

neither at fixed nor at moving point, the flow is said to be hggramically stable. Different flow
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patterns correspond to the three stability classes. Chekek[R] classify them as vortex street,
unsteady bubble and steady bubble. The vortex street pétebserved in an absolutely unstable
flow and is characterized by large eddes that arise at theoartdyf the obstacle and propagate
downstream. The unsteady bubble wake, typical for conuggtunstable flows, has no expressed
eddies, although the flow pattern is twisting. Steady buklalke has smooth pattern free of ed-
dies. The type of a stability class of a flow is ascribed to aalf stability parameter, defined by
expression:

S=ct¢ l—,

h

wherec; is bottom friction coefficient] is characteristic diameter of the obstacle dnid
water depth. The distinction between absolute and comeeictstability can be made by analyzing
growth rate of perturbation at points where group velo@tgqgual to zero. If absolute growth rate
is positive at a point where the condition of zero group vi&yds satisfied, there exist some modes
that will travel upstream, so the flow is absolutely unstalifeabsolute growth rate is negative,
the flow is convectively unstable.

Grubisic&Smith [18] applied shallow-water equations foountain-induced flow modeling.
The authors investigated influence of bottom friction omsity of wake flow in atmosphere and
studied effect of bottom friction on creating and dissipgtvorticity. They found that stability of
mountain wakes is affected by bottom friction and correldtethe surface drag parametethat
represents ratio of bottom friction to advection. The pagterr is expressed as

cia

Herect is a surface drag coefficien, is half-width of obstacleh is upstream fluid depth
for the vertical scaleg’ is reduced gravity, defined &5 = gAp/p whereAp is the density dif-
ference between layers. The valuenoflepends on whether only Rayleigh friction is taken into
account = 0) or surface stress is calculated using the bulk aerodynfioiion formula. Gru-
bisic&Smith [18] found that bottom friction has a strong iagb on the mean-flow characteristics.
Both absolute and convective growth rates are reduced asbittion is increased. The bottom
friction parameter controls the stability of the flow: the larger thgparameter is, the more stable

the wake will be.
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Ghidaoui&Kolyshkin [14] tested validity of rigid-lid assuption for linear stability analysis
of shallow wake flows. Rigid-lid assumption is often used urgt@llow water model. The idea
is to replace the original flow by a flow between two paralletes. The bottom plate has the
friction coefficient equal to the one of original channek thoundary between the top plate and
the flow is inviscid. The rigid-lid assumption enables toueelthe system of equations governing
the flow to a single equation that remarcably elaboratesutaions. The authors found that
using the rigid-lid assumption for linear stability anasysvill not result in any serious error.
Ghidaoui&Kolyshkin also found the stability analysis risuo be quite sensitive to the shape of
velocity profile. The authors applied weakly non-linearlgsia in order to describe evolution
of perturbation in shallow wake flows. The Ginzburg-Landguation has been derived as a
governing equation for evolution of perturbation for sheliwake flows.

Crighton&Gaster [6] analyzed stability of slowly divergijes flow. The authors showed that
both theories for diverging flow and for parallel flow agrediwath experiment.

Ghidaoui&Kolyshkin [13] analyzed stability of transversieear flows. The authors evaluated
influence of different factors such as Froude number, velg@eofile, turbulence and chosen resis-
tance formula on stability analysis results. The Froudelmemdefines how much energy is stored
in gravity waves. The authors found that if Froude numbeldsecto zero, the results are close to
results obtained under the rigid-lid assumption. On otlaerdh if the value of Froude number is
higher than two, the stability analysis results are no mai&lyso non-linear analysis should be
applied. The authors studied stability of the flow for twooaty profiles: hyperbolic secant and
hyperbolic tangent profile. It is shown that size and shapb@ftability domain is affected by
the velocity profile as well as non-uniformity of base flow.€eTthoice of the resistance formula
has been found to have some effect on stability analysidtsessenerally speaking, the friction
of the floodplain is the major factor stabilizing the flow. Bulence dissipation is contributing to
the stability too, but its influence diminishes with growiRgynolds number.

The stability of two-phase flows (fluid-particle, gas-fluittdegas-particle flows) has been con-
sidered by many authors [7], [39], [41], [42].

Yang et al. [41] analyzed the effect of particles on spatab#ity of two-phase gas-particle
mixing layers. The results indicate that particles enhastability of the flow and attenuate the

most unstable modes. The maximal spatial amplificationdateeases linearly with the increase
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of particle loading parameter, which takes into accountntlagnitude of shear, particle/fluid den-
sity ratio, flow and particle characteristic response tiarg ratio of particle drag to Stokes drag.
However, the angular frequency of the most unstable modelasively unaffected by presence
of particles. The numerical simulation was performed uriderassumptions that mean velocity
profile of the two-phase flow corresponds to the one of thdeaipbase flow and the particles are
initially in dynamic equilibrium with the fluid flow.

Dimas et al [7] include a term describing a dynamic intemactbetween the fluid and the
particle phase. Dynamic particle phase has been found eéaustte the spatial growth rate of
instabilities. The attenuation depends on the mean pattelding parameter and particle respon-
sivness parameter. It has been found that for small valuteeahean particle loading parameter
representing the flow with no dynamic particle motion thengtorate of instabilities linearly de-
creases with increase of particle loading that is condist&h analysis results of authors (e. g.
Yang et al [41]) who neglected the dynamic interation of thetiples. For higher values of the
mean particle loading parameter the growth rate dependemgaarticle loading deviates from
linear preventing complete stabilization of the flow.

Most of the authors perform analysis of shallow water flowsdabon equations that are inte-
grated with respect to vertical coordinate. So, the nomeamity of flow characteristics accross
the vertical coordinate is not taken into account and it meslithat vertical velocity distribution
is uniform. In some cases, however, this assumption may @aabd. Changes in roughness
of the bottom boundary or flow regimes can lead to large deviatfrom the above-mentioned
assumption [40], [43]. Momentum correction coefficient8][443] are sometimes used in order
to take into account the non-uniformity of the velocity distition with respect to the vertical
coordinate. In particular, momentum correction coeffitsesre used in [16] for linear stability
analysis of shallow mixing layers and in [22] for weakly noelar analysis of shallow wakes.

Xia et al [40] explored influence of averaging coefficientsuiding pressure and momentum
correction coefficients on the solution of the Saint-Veremqiations. Pressure deviation from hy-
drostatic and flow velocity distribution deviation from torim have been considered. Simulations

were made for the two cases:

e No downstream backwater effect as there is no downstreamdaowy restriction.
e The flow depth at downstream boundary is unchanged.
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The authors found that in absence of downstream backwdéat gthe influence of pressure cor-
rection coefficient is neglible with no downstream backwaféect. The same statement is correct
for momentum correction coefficient. However, is backwatiéect is present (and it is always
present for a real flow), the value of pressure correctiorfficient has a remarkable effect on
solution. The momentum correction coefficient has beenddorhave some influence too, but
it is less expressed. In both cases the error increases aseatmm coefficient (either pressure
or momentum) goes higher. Error grows with increased batkvedfect too. The authors state
that although the common concept of correction coefficientribution being minor for steady-
flow solutions, for accurate unsteady-flow solutions it niilglh necessary to take the correction
coefficients into account.

Yen [43] states that the assumptions usually made for deriva@f open-channel equations
are to be re-examined. The author presents an attempt tim gjaiaeralized open-flow equations
suitable for examining the assumptions involved in commarded open-flow equations. As a
result equations for unsteady turbulent viscous nonhomogs flow with free surface have been
derived. The derivation technique was based on integrafigoint form equations of continuity,
momentum and energy over a cross-sectional area of the eha@sthe distribution of flow char-
acteristics over the cross section is usually not known tail$e the resulting equations involve
guantities averaged over cross-section. Correction cazfti like mass flux correction factor
and momentum correction factor are used to compensatedate¥iation arising from averaged
approach. Similar correction coefficients are used alsal}. [ The derived one-dimensional
equations can be employed for engineering applicationkestake into account density varia-
tion, lateral flow and other factors.

Another assumption that is widely applied for stability isas of shallow wake flows is that
the base flow is assumed to be parallel. The assumption hasibed in, for example, [2], [4], [14].
Experimental data, however, show that the width of shall@ake\3] and the width of the mixing
layer [31] are slowly changing with respect to the longihalicoordinate. The slow divergence
of the base flow in the downstream direction allows one to ttonosan asymptotic scheme which
takes non-parallelism of shallow water flows into accounictSformulations have been applied
in the past to the spatial stability analysis of slowly dgiag shear flows in deep water [6], [12].

Recently such a scheme has also been applied to shallow widies [
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El-Hady [9] applies a correction due to non-parallelismhaf tlow on the spatial growth rate.

. . . . 10 .
The spatial growth rate is sought in the forno = —a; — €d; + s(—ﬁ)r. The first term reflects

spatial growth rate of a parallel flow. The second term is thaerég;(zlillel correction. The third
term is correction due to the distortion of the eigenfunctidhe curves depicting variation of the
spatial growth rates with frequency are presented for iffeMach numbers of the flow. The
author considers three cases: purely parallel flow (onhfiteeterm in the expression of spatial
growth rate is used, the second and the third terms are ried)ethe flow with non-parallelity
correction (the first and the second terms are used), anddwewith both nonparallelity and
eigenfunction disturbance correction (all terms are @&opli The results indicate that for subsonic
Mach numbers the second term tends to overestimate thé¢ efffean-parallelism. If the distortion
of eigenfunction is also considered, the non-parallel egves close to the curve for parallel case.
However, as the Mach number grows, the non-parallel curveesiaway from the parallel curve
demonstrating strong effect of the non-parallelism. Thwioled dependence curves of spatial
growth rate on frequency are compared with experimental. ddte author shows that application
of non-parallelity correction enhances the agreementdatvthe theory and experiment at least
for high Mach numbers.

Some authors imposed known controlled disturbances on alflaixfavoured study of insta-
bilities. Disturbances were introduced either by mechardevices such as a vibrating ribbon
or by acoustic influence. Forcing a flow in a controlled way dfafly would provide basis for
construction of a representative model of instabilitied kmge-scale structures that occur in shear
layer flows.

Gaster et al. [12] performed theoretical and experimemtalysis of deep mixing layers. The
authors pursued the goal to find the limit where large-scaftex structure that develops in tur-
bulent mixing layer can still be described by an inviscid mlodn their experiments a mixing
layer was formed by two uniform flows of different velocitisgsparated by a splitter plate. At
the end of separating plate the flows are combined into one #dwhe merging point the flow
was disturbed by a periodic motion of a small flap to make faioneof large-scale vortices more
regular. Theoretical analysis in the paper is based onrimezhtheory that took into account slow
deviation of the mean flow from parallel. The leading termlaf aisymptotic expansion of the

solution is obtained by the WKB method. According to the pdpemixing layer velocity profile
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is close to hyperbolic tangent function. The thickness efrtiixing layer increases downstream
almost linearly. Experimental results in terms of magnétatid phase of velocity fluctuations are

in good agreement with theoretical predictions.
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4 STABILITY ANALYSIS OF FLOWS WITH FREE SURFACE

The present chapter considers stability of a flow with frebaumded surface. Effect of mo-
mentum corrections coefficients and the Froude number dnlistaanalysis results has been
evaluated in order to estimate influence of flow velocity ieaitnon-uniformity and flow devi-
ation from ’rigid-lid” assumption. It has been found thatgtextion of momentum correction
coefficients may lead to significant errors in results. Agggion of the “rigid-lid” assumption, in

it’s turn, has minor influence on results, therefore use efassumption is justified [30].

4.1 Introduction

Two main assumptions are usually made in order to facilitegeanalysis under the shallow water

model:
1. The "rigid-lid” assumption.
2. Vertical velocity uniformity assumption.

3. Parallel flow assumption (the flow profile is not altered dstream).

The essence of the first assumption is that the free surfabe déibw is not perturbed and acts
as "rigid-lid”. According to the second assumption, theoagy is considered to be independent
on vertical coordinate. This assumption complies with e that the governing equations for
shallow flow are the depth-averaged.

In some cases, however, the two assumptions may not be ajgteop-luctuations of bottom
friction coefficient and changes in flow geometry can resulappreciable deviation of the real
flow from above-mentioned assumptions.

Momentum correction coefficients were applied by severtdas [40], [43] in order to com-

pensate for the deviation arisen by the vertical non-umftyr of a real flow. However, "rigid-lid”
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assumption brings some error into the results as well. Thgnmale of the error is not yet known
well enough.

An attempt to evaluate the influence of both "rigid-lid” andiform velocity distribution as-
sumptions on the stability analysis of shallow wake flowsresspnted in this chapter. The evalu-

aton is done in the following way

e The influence of vertical velocity uniformity assumptiortésted by calculating stability of

the flow for different values of momentum correction coeffits and comparing the results.

e The rigid-lid” assumption is tested by performing stafyilanalysis and comparing the

results for various values of the Froude numBgy.

The latter point requires some elaboration. The Froude eurnisbdefined by the expression

U
v9Ho

The Froude number represents the ratio of inertia and gréonites. It is shown in [13] that when

Fry = , WwhereU is flow velocity, g is acceleration due to gravity amdh is water depth.
the Froude number tends to zero, the stability analysidtsesainside with the results obtained
under the “rigid-lid” assumption. So, by calculating thalstity of the flow at different values
of the Froude number and comparing the results to "rigitlfiebults, we can get an estimate of
the error, arising for the flow with specific Froude number ttusimplification of the analysis by
applying the "rigid-lid” assumption. The Froude numibaiy, however, is not included into the

equations in an explicit way, so the Froude-like numBedefined by the expressidfr = Yo

J/ab

is used. Thé=r number is linked to the Froude numlfery by means of formula:

b
Fry :Fr,/H—O. (4.1)

. . b
The stability analysis results are performed for a rangeatides of theFr number andH—
0
ratio, whereb is characteristic width (e. g. half-width of the wake). Th®&de number can be

. b .
calculated for any given set &f andH— values using (4.1).
0

4.2 Problem Formulation

The governing equations for shallow flow are obtained bygragng Euler equations with respect

to vertical coordinate (for an example refer to the intrdcucchapter where (3.38) - (3.39) are
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derived). In case momentum correction coefficients are,uedresuling equations have the
form [43]:

oh 0
at " ox
2
Nt (2B Du ¢ (011 )Y g

+(B2— )U@HBZ_ )ﬂ@

h ay
ou CruV U2 + V2
vy, — 9%t fT ~F(y) = o (4.3)

ov ou
o +BZU— (B2— )V—X

HBo- >”FV?+<283— vy
2
H(Pa- D3 +dg

CfV\/U2+V

—QSy+—5— o = 0, (4.4)

S = o (4.2)

(uh + 5

h

wherex andy are spatial coordinatetsis time,u andv are depth-averaged velocity components
in thex andy directions respectively) is water depthg is acceleration due to gravitl,(y) is the

: : _ 0z(xy) _0z(xY) o
forcing function, S = ok and Sy = —Ty are the bed slopegy is distance from
the bottomgs is the friction coefficient defined by the equation

1
= = As+BsIn(Re/cy), (4.5)

whereAs and Bs are coefficients defined in [37Reis the Reynolds number of the flow. In
fact (4.5) is often used in practice to calculate the frictamefficient for the flow with a given
Re Formula (4.5) is used when the wall is smooth. Similar fdamuor the case of rough
surfaces can be found in [37]. Shear stress at the boundanpdelled by the Chezy formula
Twx = %Cpr\/m andtyy = %cfpV\/m, wherep is density,twx andtyy are wall shear
stresses along theandy directions respectively.

The coefficients31, B2, and 3 in equations (4.2-4.4) are the momentum correction coef-
ficients defined by formulas (3.46) - (3.48) which are introelli in order to take into account

non-uniformity of velocity distribution in the vertical iction.
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Introducing characteristic length (e. g. halfwidth of theke for wake flowsp and the char-

acteristic velocityJ,, we choose the measure of time in the fdsjitu,. Denoting dimensionless

functions by subscriptd we define the terms as follows:= uqUa, V= VvgUa, t = d—b , X = Xgb,

a
2
h= hgb, y = yq4b, F—Ft_j

Transforming (4.2) - (4.4) to dimensionless variables ambping the subscriptd” we get

oh du oh  ov oh

= h& a—+h6y+ 3 = © (4.6)
ou u?oh
1&(3:(2[31— ) +(B1— )F?
v
+m(& Sox) + BZV— (B2— )U—y
uvoh CfU\/U2+V ~ B
+(Bz—1)F@+T—F(Y) = 0 (4.7)
ov v2 oh
+I32U— (Bs—l)ﬁa,
1 oh uvoh

+ﬁ(@—SDy)Jr(Bz—l)V&WL(Bz—l)F&

oV CrvW U2 42
+<2[33—1)va—‘y’+% = 0. (4.8)

We seek a perturbed solution for equations (4.6 - 4.8) inaha f

u = U(y)+ay)e Mk (4.9)
vV — v(y)ef)\'[+ikxj (410)
h = %Jrh(y) g MHkx, (4.11)

The structure of the expressions (4.9) - (4.10) suggestshbavelocity functions are sought
in a form of superposition of base fldw= U (y) and perturbations, propagating in the lengthwise
directionx as a wave packet. The wave packet consists of modes; eachismegeesented by the

function e AHkx

, Wherek is the wavenumber arkl= A, + iA; is the complex eigenvalue.
Formula (4.11) assumes that periodic perturbations aresegbon the surfacéip is undis-
turbed water depth.
Calculating the partial derivatives of the functiamss andh in (4.9-4.11) and substituting the

derivatives into (4.6-4.8), we obtain
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Ct (\7()/) ef)\t+iKX)
2(H0 + h(y)eM+ikx)

We perform linearization in the neighborhood of the base,flogglecting quadratic terms.

Linearization of square root terms is performed in the fofmway:

(U + (e —M—HkX) \/(U + Oe—)\t+ikx)2+ (Qe—)\t+ikx)2
(U + e M-HkX) \/(U 2 +2U ae—)\t—i—ikx + 026—2At+2ikx + \72e—2)\t+2ikx
(U +Oe )\t+|kX) \/(U 2 +2U Og)\tﬂkx

2'\ .
(U + e )\t—HkX)U (1+ Uue—)\t—HkX)%
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124
=|(14€)%=1+as+..| = (U+Ge k)14 = = g Atk
= (U +de )‘H"kx) (U +0e ?\’H—lkX) U2 4 2U (e MHKx | (e 2At+2ikx
—Uy? +2U (e —At+ikx
So, the term

3 —At-Hikx
iy VU0 By W2 (2

can be linearized as follows:

cr(U(y) —E(lzl()ye)_e);):l:)'(l;x) \/(U (y) + G(y)e-M+kn)2 1 (g(y)eMHkx)2

cr (U (y)* +2U (y)a(y)e ™)
2("p +hiy)ehrog

The term

Y, —At+ikx
z<aé(f§)<§>e-m3kx> V(U +aly)e 02 i (fy)e o2

is linearized in the following way:

Ct (\7<y)e )\t+ikX) \/ " - . " - .
l . (U <y) + u(y)e )\t+|kx)2 + (v(y)e )\t+|kx)2
2(Ho 1 R(v)e—At+ikx
_( bC:'(V((;/))e_)\t-Hkx)) 0 1 e G (U (y)0(y) e M+
B 2(% + Fl(y)e—MJrikX) (Fo F](y)e—)\H—ikX) '

So, we get

_ahe Mk Hog e atike (y)ikhe Ak | Ho 0V ik
b

b ay =0,
_ e —)\H-IkX (281—1)U(y)|k0 —)\'[-Hkx

U (y)? Catikx L s ke
+([31—1)F0 ﬁ(y)ef)\mkxlkhe +ﬁ(|khe — Sx)

ou ov ;

—>\t+|kx _ 2V A= AtHkx

+B29(y)e EN + (B2 1}U (y) ay°
cr(U(y)%+2U (y)a(y)e k) —E(y)=0
2(F _|_ h(y)e*)\lﬂ“lkX) ’

1

oh i
At-+ikx At—+ikx —At+ikx _
—A\Ve" + B2U (y)ikve™ + Fr2(aye Soy)
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N ciU (y)\“,(y)e—)\tJrikx
2(% + ﬁ(y)ef)\tﬂkx)

1 - . : ,
The termp—— — s linearized in the following way:
F0 _|_ h(y)e—}\t-HkX

1 1 1

fo h(y)eMikx % 1+ PO o At-+ikx

A~ HO
1 bh(y) atrike -1 (DY)
= (14 W 1Y g
1 h -
=|1+e)*=1+0ae+..|=(1- bA(Y) (y)e‘““”"x)
B
b bA(Y) tsike
- Ho(l Ho e ).
2 R )
The termy- AU<y) YT ikhe Mt kX hecomes
B +h(y)e
2 ~ . ~ .
- U (y) ikhe—)\t-i-lkx —U (y)Z 1 ikhe—)\t-l—lkx

fo 1 f(y)e-Attikx i Ho t h(y)eM+ikx
U )23 1 bh(Y) _at+ik

. . b . - .
_—\J/ ilkhaAt+ikx _ 2 M B s Mtikx
Ho( Ho e )ikhe U(y) Holkhe :

2 7 () e MAkx
2
and the term=" S (y)H + }J(Y)U(Y)? )
Z(FO + h(y)e—)\H—lkX)

changes to

cs (U (y)2 +2U (y)l'j(y)e—)\t+ikX)
1 2(% + ﬁ(y)ef)\tﬂkx)
= 5er(U(y)*+20 (y)(y)e ")

% _|_Aﬁ(y)ef)\t+ikx
o tsika D bAY) .
= cr(U(y)*+2U(y)(y)e M+"<X)2_HO(1_ H(g’)e i
_ 2 b > b bA(Y) ik
_CfU(y) Z—HO—CfU(y> Z—HOH—Oe

For2U(y)aly)e 2
. _ 2Ho
~cfU (y)2b B ciU (Y>2bbh(y)e*7\t+'kx . crU (y)(y)beAt+ikx

2HO 2HOH0 H0

We get
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_M?]eAt+ikx+%ikaeAt+ikx+U(y>ik|2]eAt+ikx

Ho 0V __ ¢ ikx
— e =0
b dy ’

_)\l’je—)\t+ikx+ (281 . 1)U (y)ikoe—)\t-i-ikx + (Bl . l)U (y)ZHEOikF]e—)\H—ikX

1 .z i o atsikeOU N
_I__<|khe—)\t+lkx_sox)_I_Bzv(y>e )\H-Ikxa_y_'_(Bz_l)U (y>_ve At+ikx

Fr2 dy
LGV ciU(y)*bbhy)e ™ ciU(y)d(y)be MHKe (y) =0
2Ho 2HoHo Ho ’
| w1 ,0h
 Ava—MtFikx egaAMHkx | & VT AtHikx
A& M B (y)ikde M+ 5 (e Soy)
5 —At+ikx
| StbUy)v(y)e _0
2Ho

. U(y)®b
Assuming thak (y) = % — %
0

tion Sy is zero, dividing bye *** and introducting the stability parametedenoted as

taking into account that the slope in transverse direc-

b
S= CfH_Oa

we obtain the system of ordinary differential equations

~ Ho. . o Hoa\7_
- - b.~ 1. -
—)\u+(2[31—1)U(y)|ku+(Bl—l)U(y)zH—Olkth—Frzlkh

a9 sU(y)*bh(y)

B g+ (Bo- UG, — 0 XY 4 suy)ay) o

36



or, grouping the terms,

Ho. . ...~ Hpdv ~
Flku+lkUh+Fd_3/_}\h_o’ (4.12)

ikU%0 ik sU%b

(2B = ik +sUJ0+[(Br — D)= =+ 55— 5 ]

dv ouU
—1u= — ANi= 4.1
+(B2—-1)U ay Bav oy M 0, (4.13)
1 dh S o
md—y—f—(lkﬁzu +§U)V—)\V— 0, (4.14)
with the boundary conditions
¥(de0) =0, (4.15)

whereu'= G(y), V= (y), h=h(y) andu = U (y).
Numerical solution of (4.12) - (4.15) is explained in detaithe Chapter 5.

4.3 Results and discussion

This chapter presents an attempt to evaluate the influenteuaf-lid” assumption and momen-
tum correction coefficients on stability analysis resulike rigid-lid assumption is evaluated by
Uo

solving problems (4.12) - (4.15) numerically for differealues of Froude-like numbé&ir = ﬁ)

as well asHB0 parameter. Th(—f_|b—O parameter is the ratio of characteristic length of the flomg(e
halfwidth of the wake for wake flows) and water depth.

As it has been said in the introduction section, the soluigosought as a supersposition of
modes, each mode propagating in thdirection (that is the direction of the flow) as a wave

having a form ofeM+1kx

whereA is the complex frequency of the mode daid the wavenumber.

It is seen thah is an eigenvalue of the problem (4.12-4.15) and determitadslity of the flow.

If the real parts of eigenvalu@sfor all modes are positive then perturbations decay witle tamd
flow is said to be stable. If the real part ofAas negative for at least one mode then the mode

will amplify and the flow is unstable. By solving the problemi(2-4.15) for different values of
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b
Table 4.1: Values of parametdfs, o B1, Bo.
0

Fr | 0.0001 0.1 | 0.2
— 5 50

B1 | 1.00 | 1.05|1.10
B1 | 1.00 | 1.05|1.10

wavenumbek and stability parameteswe can get a set of points dk, s) plane for which one
mode has the real part of the eigenvaluequal to zero while other modes havavith positive
real parts. The points define a stability curve: the bounfatween stable and unstable flow. All
points above the curve form the stability domain, where tbw fk stable. The points below the
curve correspond to unstable flow. The value of the stalpbisametes at the top of the curve is
called "critical value” and is denotes.

By solving problem (4.12-4.15) for different valueskef, H% and constructing stability curves
we are able to evaluate influence of these two parametersearritital valuess; of the stability
parametes. The assumption of uniform velocity distribution across trertical coordinate for
a flow with free surface is evaluated by solving problemsZ4115) for different values of the
momentum correction coefficienis andf3..

The values o&; have been calculated for the values of the paramEherls_%, 1, and; pre-
sented in Table 4.1. The values of the parameters have bleeteskto match the range observed
in nature and experiments [34], [40].

Figure 4.1 presents stability curves obtained for diffexaues of momentum correction co-
efficients for the free surface flow witlar close to zero and characteristic length to depth ratio

b . . b
o= 5. Figure 4.2 shows stability curves fer = 0.2, andH— =b5.
0 0

: - . b
Figure 4.3 presents stability analysis results for the edsnFr = 0.2 andH— =50.
0
Effect of variation of momentum correction coefficients ba tritical values. of the stability

parametesin terms of percentage difference is shown in Figure 4.4.
Figure 4.5 depicts the dependence of the critical stalplitsameters; on the parametersr
b
and—.
Ho
The results are compared to the case wherFth@and, thereford-ry) is close to zero. Ac-
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p1=1.10, p2=1.10 p1=1.10, B2=1.00

B1=1.00, B2=1.00
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B1=1.00, B2=1.10
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0.15 4
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0.5 0.6 0.7 0.8 0.9 1 1.1 1:2 13 1.4

Figure 4.1: Stability curves for various values of momen-
) . . b
tum correction coefficients obtainedft = O.OOOl,H— =

0
5.

cording to [13] stability characteristics for flows with &surface tend to the stability character-
istics obtained under rigid-lid assumption when the Fromgd@ber approaches zero. The Froude
numberFry (based on the undisturbed water depth) is relateBrtdoy means of the formula
Fro =Fr \/E
Ho

The two values of the parametﬁ% are chosen since the conditiﬂ% >1 is consistent with
the shallow water approximation.

It can be seen from Figures 4.1 - 4.3 that the critical vauef the stability parameter is
decreasing for highdfr numbers and highelr_% values. So, highdfr has a stabilizing effect on
the flow.

Figure 4.5 shows that although the stability boundary isisee to variations ofr, the error

in determining thes; parameter is below 6% Fr is less than 0.2 for the caﬁbL:S, and if theFr
0

is less than 0.1 for the caﬁb;:SO.

Socolofsky&Jirka [34] performed shallow water experingewith flows around bluff bodies.
The experimental results were compared with theoretiedlilgty analysis performed under the
rigid-lid assumption. Two experiments are described if}.[3heFr andH£0 values (if half-width

of an obstacle is taken &% for the first experiment are abou2and 18 respectively. The second
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B1=1.10, B2=1.00
B1=1.10, p2=1.10

B1=1.00, 2=1.00

0.17 A
0.16 | B1=1.00, p2=1.10
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0.13
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0.5 0.6 0.7 0.8 0.9 1 1.1 1:2 13 1.4

Figure 4.2: Stability curves for various vaules of momen-

tum correction coefficients obtainedft = 0.2, HB =5,
0

experiment ha&r close to 01 andHB0 close to 15. According to Figure 4.5, the use of rigid-lid
assumption is justified for both experiments, as resultingyavill be relatively small (in the range
of 2-3%).

The Froude numbéfry for real island wakes is in the range of 0.1-0.2 [14]. Giveat tthe
flow is shallow (which mean#0 is much higher than unity and is equal to, let’'s say, 50),Rhe
parameter will be no larger thandB. Figure 4.5 clearly shows, that the error will be in the 2%
range.

So, the "rigid-lid” assumption is precise enough for cadtidn of thes, parameter for the
range of Froude numbers typical for shallow flows. Howewvarldrge Froude numbers applica-
tion of "rigid-lid” may lead to underestimation of the stétyi of the flow.

Figure 4.4 presents results of the comparison oftlparameter calculated from (4.12) - (4.15)
for different values of momentum correction coefficieftsand,. The results are compared to
the values o&; calculated fof3;=1.00 and3,=1.00 that corresponds to the case when the velocity
non-uniformity across the vertical coordinate is not take#a account.

As it can be seen from Figure 4.4 for some combination of theegofp1 and, the relative
error can reach 10%. The increasdgdpieads to growth o$;, so the flow becomes more unstable.

The 32 coefficient has, in turn, stabilizing effect on the flow, kistinfluence diminishes with the
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B1=1.10, B2=1.00

B1=1.10, 82=1.10
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0.16
81=1.00, 2=1.00
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0.5 0.6 0.7 0.8 0.9 1 1.1 1:2 13 1.4

Figure 4.3: Stability curves for various vaules of momen-

tum correction coefficients obtainedft = 0.2, HB =50.

0

growth of B1. Unfortunately, the values of coefficienis and 3, for real island wakes are not
known. However, as the error in determining tggarameter may grow with increased values of

B1 or B2 it might be important to know the values Bf and[3, for analyzed shallow flows.
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B2=1.05

B2=1.00
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Figure 4.4: The percentage different®etween the values
of the s for depth-averaged equatiorfy = 1, 2> = 1) and

equations with correction factorBy > 1, 32 > 1).

A(%)

7 T T T
0 0.05 0.1 0.15 0.2 0.25
Fr

Figure 4.5: The percentage differentbetween the values
of the s with and without the rigid-lid assumption for the

b b
caseH—o—S andH—O—SO.
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5 RIGID-LID ASSUMPTION. LINEAR STABILITY ANALYSIS

The present chapter considers stability of a shallow flowe Stiability analysis is performed
under the "rigid-lid” assumption that allows to reduce thedal to a single equation. Influence of
vertical non-uniformity of flow velocity in terms of momemtucorrection coefficients on stability
analysis results is considered. It is shown that an erro086-12% may arise if the coefficients

are neglected [21] [22].

5.1 Introduction

The rigid-lid” assumption is widely used under the shallfiaw model in order to facilitate
analysis. The idea of "rigid-lid” assumption is to model gtg-driven free surface flow as a
pressure-driven flow between two parallel plates. The tapegk assumed to have zero friction
coefficient while the bottom plate has friction coefficiegual to the one of the original channel.
In other words, one considers a flow with constant depth.

Application of "rigid-lid” assumption enables to elimirapressure and introduce a stream
function into the governing equations. The system of equatis therefore replaced by a single
partial differential equation containing only one unknofunction: the stream function.

Besides the "rigid-lid” assumption there are other assusngtused under the shallow flow
model:

They are:
1. The velocity is independent from vertical coordinate.
2. The flow profile does not depend on the lengthwise coordifgrallel flow assumption).

The assumption of velocity independence on vertical coateiis tested in this chapter.
The assumption complies with the fact that the shallow-flowagions are obtained by inte-
grating Euler equations with respect to vertical coordinab the vertical velocity distribution

profile is replaced by some average value.
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Figure 5.1 demonstrates vertical velocity distributioafpes for turbulent and averaged flows.
In other words, the vertical velocity distribution is cotesied to be uniform in a shallow flow
model.

In some cases, however, vertical velocity profile may deviedm uniform. In order to com-
pensate for possible deviations, momentum correctiorficaefts are introduced.

The present chapter’s objective is to evaluate influencéefvalues of momentum correc-
tion coefficients on stability analysis results, obtaineder the "rigid-lid” assumption. Stability
analysis results is performed for different values of motencorrection coefficients and are

compared to ones obtained for unity values.

A A
——————== Turbulent Averaged
. flow flow
T a L =m
==
———=
B e
e IE——
= —— X
St

Figure 5.1: Vertical velocity distribution profiles for tou-

lent and averaged flow

5.2 Governing Equations for "rigid-lid” assumption

The governing equations for shallow flow are derived fromeE@quations by integrating them
with respect to vertical coordinate [43]. The resulting &ipns, frequently referred to as Saint—

Venant equations, are:

oHo 9 o
s &<UHO) + @(VHo) =0, (5.1)
ou ou u? dHo
5 T (@B Dum + (B )H_o+ [~
ov uv oHg
+ (Bz—l)uaﬁr(ﬁz— )H_a—y
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ou CruV U2 + V2

+ BzV—y—gSoX+ e TW=0 (5.2)
o Bl (B v

b (P D)y 0+ (2Pa— DV

+ [(Bs—1) 2+g]aa—';°—g8)y+w+\/?=0, (5.3)

whereHg is water depthy andv are flow velocities irx (lengthwise) ang (transverse) direc-
tions respectivelyy is acceleration due to gravit$y andSy are slopes ix andy directions,ct

is the friction coefficient defined by the equation [14]:

1 1.25
—— = —4log(
. /Ct 4Re\/ﬁ

whereReis the Reynolds number.

);

Shear stress at the boundary is modeled by the Chezy formula
1
Tux = 5 pUV U2 + V2

and
Twy = %Cf pPVV U2+ V2,
wherep is density,Tyx andtyy are wall shear stresses along #w@ndy directions respectively.

The coefficient$1, B2, andB3 in equations (5.4) - (5.6) are the momentum correction coef-
ficients defined by (3.46) - (3.47) which are used in order ke iato account non-uniformity of
velocity distribution in the vertical direction. The efteaf 31, B2 and33 variation on the stability
of the flow is evaluated in this chapter.

By assuming water deptHp to be constant in (5.1) - (5.3), introducing measures oftleng

b
time and velocity given bja andUa respectively, transforming the equations to dimensianles

form, and replacing grawty-drlve flow by pressure-driveowd] namelyg—s = C S Fy)b

Fre Uz’
ap Soy
a_y I:zweget
au ov
ax ay =0, (5.4)
ou ov
a5 + (2B — ) +([32— )U—y+[32 oy
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= —a—s—ﬁuv u?+v2, (5.5)

0 2h
ov u ov
E -+ (Bz — l)Va—X + B2Ua—x —+ (2[33 — 1)Va—
_ 9P St /oo
__Fy_%v us+ve, (5.6)

wherex andy are the spatial coordinatdds the time,u andv are the depth-averaged velocity
Ho

components in th& andy directions respectively) = b

is dimensionless water deptty, is the

friction coefficient defined by the equation [14]:

1 1.25
—— = —4log(
VCf 4Re, /Tt

whereReis the Reynolds number.

)7

By denoting the partial derivatives by subscripts we caniteviine equations (5.4) - (5.6) in

the form:

Ux+Uy: O, (57)

Ut + (2B1 — 1)uuk + (B2 — L)uwy + Bavuy
= —Px— %uv u?+v2, (5.8)

Ve + (B2 — )V + Bouv + (2B3 — 1)vwy
=—py— %V\/ U2 +v2, (5.9)

In order to eliminate pressure we differentiate the equaf®8) with respect ty and the

equation (5.9) with respect to We obtain the following system of equations:

Uyt + (2B1 — L)uyUx + (2B — D)uthy + (B2 — 1)uywy
+(B2 — 1)uvyy + Bawyuy + Baviyy

Ct Ct 1
—pxy—%uy\/uhrv?—%u TZJFVZ(uuerVVy), (5.11)

Vix + (B2 — 1) VxUx + (B2 — 1)V + BaUxVx + B2aUViy
+(2B3 — 1) vxvy + (2B3 — 1) vy

_ Ct >, 2 C°f 1
— —pxy—%vxx/u +V2— SV rszvz(uuervvx). (5.12)
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By subtracting (5.12) from (5.11) we obtain

UX+Uy:O,

Uyt — Vit + (2B1 — 1)y + (2B1 — 1) uty + (B2 — 1)uyvy
+(B2 — 1)uwy + Bavyly + B2Vl — (B2 — 1) Vit
(Bz — 1)VUx — BzUxVx BoUvyx — (2[33 - )vay (2B3— 1)vwyx

uy\/ U2+ v2 — —vX u2 +v2

+or 2h \/—( Uy + V)

iy 1 (Uu+ Vi) = 0.
2h u2 2 )
Introducing the stream functiaf(x,y,t) defined by the relations
an oy
ay X’
we rewrite the equations (5.4) - (5.6) in the form:
UX + Uy — O,

Wyyt + Wxxt 4 (281 — 1) WyyWyx + (2B1 — 1) PyWyyx — (B2 — 1) Pyylixy
—(B2—1) WyWPxyy — BZququyy - BZququyy—F (B2—1) WxWyx
+(B2 — 1) WsWysx+ BoWysPux + BoWyWxx — (283 — 1) WydPxy

C C
(283~ 1)Uy + o Wy WE + U3+ oy /WG + 42

Ct 1
+ o Wy ——=(WyWyy + WxWxy)
2 w3+
1
ol (Wbt Welb) =

\/qu“‘LIJx

or

(AWt + (2B1 — B2) (WyWxy)y — Ba(Wxyy)y + (|32 — 1) (WxWyxy)x
+B2(Wody)x — (2Bs — 1) (Wxxx)y "‘ AqJ g+ lij

Cs
+—(UJ Pyy + 2P lle +L|Jxl-|Jxx)
Zh\/m yryy YY¥Xy

a7

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)



whereA is the Laplacian in two dimensions and the subscripts indidarivatives with respect

to the variablex andy.
We suppose that the base flow
U =(U(y),0), (5.19)

is perturbed and the perturbed solution to the equatio]3slassumed to be of the form
Y=Yo+ePr+..., (5.20)

wheree is a small parameter anghy = U. Substituting (5.19) and (5.20) into (5.18) we obtain

(AWo)t +&(AP1)t + (2B — B2) (Woy + EW1y) (Woxy + EPxy) )y

—Ba2((Wox + eWix) (Woyy + EWayy) )y
+(Bz — 1) ((Wox + eWax) (Woxy + EWaxy) )x
+B2((Woxx + EWxx) (Woy + EWy) )x
(( )
( )

—(2B3— 1) ((Wox + eP1x) (Woxx + EWP1xx y
% AqJO—I—SALlJl)\/ Wox + eP1x)? + (Poy + W1y 2

2
oGt Sn) T (Woy ey 2P0y T W) (o ey
+2(Wox + ePax) (Poy + EW1y) (Woxy + EPaxy)

+(Wox + EW1x) * (Worx + EPixx)) = O. (5.21)

Keeping in mind thatpe: andoy are both equal to zero ds = Wo(y), and neglecting terms
of €2 we are able to linearize equation (5.21) in the neighbouttaidase flow (5.19).

The terms containing square roots are linearized as follows

VW3, + 28y sy = (B, + 280y )2 = ww(1+2s$g )}
=|(1+¢)*=1+ae+.. |—L|J()y(1+8$oy) Woy + W1y (5.22)
and
1

= (Y5, +2 3o LYy
\/ W3, + 2eWoyay (Vo + 2 oby) wa( 8wa>

48



:|(1+s)“:1+as+...|:Lpi(l—smly) Woy — ey, (5.23)

oy Woy Wy

Hence,

(Do -+ A1) /W3, + 2eWioybry = (Woyy + Ersc-+ Ebayy) (Woy
+eP1y) = YoyyWoy + E(WoyWixx + WoyWiyy + WoyyW1y) (5.24)

and

1
VW3, + 25wy
+2(w0x + SlI—’lX) (l]Joy + t":ll-’ly) (qJOxy + Sll—'lxy)
+(Wox + 5qux)2(qJOxx + eWixx))
1

= ] ((Woy + eW1y)*(Woyy + EPayy))
VW3, + 2eboytyy

= (B0 48, + 2ty oy + )
oy

(llJOy eP1y) (WG, Woyy + £(2Woyy oy W1y + Wh,Wayy))

((Woy + €Pay)*(Woyy + EW1yy)

‘“0y

LIJ (ququOyy+ 5(2'~|J0yyw0ylply + llJquley lJJquJOyquly))
oy

(llJOyLUOyy + (W5, W1y + Woyy WG, Wiy))
= WoyWoyy + €(PoyPayy + PoyylPay)- (5.25)

¥,

We obtain linearized equation (5.21) in the form:

(A1)t + (2B1 — B2) (WoyWixy)y — B2(WaxWoyy)y + B2(WixxWoy)x)
+% (WoyyWoy + &(WoyWxx+ WoyW1yy + WoyyWay) )
+%(woyl“°yy+ &(WoyWayy + Woyyay)) = O. (5.26)

Denotingyoy asU, we rewrite (5.26) as follows

€(Pxxt + Payyt + (21 — B2) (UyPixy + U Pixyy)
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_BZ(UnyIJlX + UyLIJlxy) + |32U quxxx)

Cc
+2_;1(qu + E(U Wixx+U Wiy + Uquly>)
Cc
5 (UUy+e(Uthayy+ Uyyy) = 0. (5.27)

Collecting the terms proportional sowe get

Waoe + Wayyt + (2B1 — B2) (UyWaxy + U Paxyy) — B2(UyWixy
c
—|—UnyU1x) + B2U Wixxx+ 2—;] (UWxx+ 2UyY1y +2U '~|J1yy) =0. (5.28)
According to the method of normal modes we seek the perturbegbonentp; of the stream

function in the form
Wiy, t) = @u(y)e % +cc, (5.29)

wherek is a wavenumber antl= ¢; +ic;j is a complex eigenvalue; "c.c.” means "complex conju-
gate”.

Substituting (5.29) into (5.28) we obtain the linearizeabdity equation (the modified Rayleigh
eqguation) in the form:

c
@[(2B1—B2)U — 5 U]+ Uy(2By — 22
Ct 2. w2ag . Cf _
+ikh)qil+(k c— BaUyy — kB2U 2ihkU)(p1 =0, (5.30)
with the boundary conditions

@1(£o0) = 0. (5.31)

The solution of (5.30) - (5.31) is a superposition of modeschEmode propagates as a wave
that can be described by functieh™ . The wave speed of a modg,is complex ¢ = ¢, + ).
Imaginary parts; determine the temporal stability of the flow. The flow is saidoe linearly
stable if all wave speeds have negative imaginary partsmaliies of a perturbation decay with
time in this case. If the imaginary part of the wave speed tdadt one mode is positive then the
flow is said to be linearly unstable as the perturbation hasdenthat grows with time. Solving
the equation for different values of the wavenumkeamnd bottom friction coefficient; we are
able to find a set of values for which one mode has the imagipartyof the wave speedequal

to zero while wave speeds of all other modes have negativgimagy parts. For convenience and
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in order to enable comparison with the results obtained éovdlwith free surface and two-phase
flows, the stability parameter valgés calculated for each value of the friction coefficiepnt The
stability parametes is related to the friction coefficiem by means of formula = T_%b whereb
is characteristic scale of the flow (e. g. halfwidth of the wédr wake flows, see [12]) andg is
water depth (keep in mind that dimensionless water dejldefined by the expressidn= %).

If we plot the points corresponding to values meeting thevabuentioned condition (one
mode hag; equal to zero) on thék, s) plane, we obtain a so-called neutral stability curve. The
neutral stability curve is effectively a boundary betweka stablity region where perturbations
decay with time and the instability region where perturdragihave one or more amplifying modes

(see Figure 5.2).

A S Stability region

Instability
region

¥ =

Figure 5.2: Neutral stability curve.

The values; of the stability parametes at the top of the stability curve is called the critical
value and is effectively a threshold separating stabilitg &stability domains. If the bottom
friction coefficient is above its critical value, then aletmodes of a perturbation decay with time.
For bottom friction coefficient values below critical somedhes are unstable and the perturbation
grows with time.

Calculations show that for sufficiently large values of thabgity parametes all eigenvalues
have negative imaginary parts; < 0), so the flow is stable. By decreasiador a givenk it is
possible to reach the point where at least grisecomes positive and the flow loses stability. The
bisection method enables us to find the value of the stalphtyametes for which at least one

Ci is close to zero, while all othex, are negative. This point lies on the "border” between the
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stability and instability regions of the flow. By repeatingthrocess for different values of the
wavenumbek we are able to build a neutral stability curve that is definged aet of all points in
the (k, s)-plane for which onen, has the imaginary part equal to zero, while imaginary pdrédl o
othercy, are negative. The neutral stability curve represents thedary separating the stability
domain (above the curve) from the instability domain (betbe curve). The critical values; of
the parametesis defined as the coordinate of the highest point of the camng, = mlzax(s(k)).

Thes; parameter is very important in linear stability analysieeTlow is stable for alk if the
value ofsis higher thars;, and flow is unstable for sontelf s < ;.

The form of the stability curve and the critical value of thalslity parameter depends on

values of momentum correction coefficients.

0.22 : :
=1.10 $,=1.00

0.2

0.18r

0.161

n0.14r

0.12r

0.1

0.2 0.4 0.6 0.8 1 12 14 1.6

Figure 5.3: Neutral stability curves verskdor different

values of momentum correction coefficie@sandf3,).

5.3 Results

The influence of momentum correction coefficients on thécalitalue of stability parametaifor
the "rigid-lid” case is analyzed in this section. The maineative is to determine how deviation

of vertical velocity profile of a flow from uniform one affectse boundary between stable and
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unstable flow. The influence is evaluated by solving probl€m30)-(5.31) for different values
of momentum correction coefficienfy andf,. The threshold between the stable and unstable
flow is represented by the critical valggof the parametes. Thes; value of stability parameter
is affected by variation of parameteds and3,. The linear stability results are presented for the
classical (see Figure 3.1) hyperbolic secant wake profilend&tical method used for computation
is described in Chapter 5.

s has been calculated for the followify, and, that are in the neighbourhood of experi-
mentally determined values of momentum correction coeffitsi [40]:

B, = 1.00,1.05,1.10,

B2 = 1.00,1.05,1.10.

These values have been chosen, as it is believed that vélnesnoentum correction coeffi-
cients are not high for turbulent shallow flows due to goodingpof water. The flow profile does
not differ much from uniform one with exception of domain neee bottom of the flow where the

it is affected by bottom friction.

12
B,=1.10

10t 1

A%
o))

B,=1.05

B,=1.00

1.05 11
B,

=&

Figure 5.4: The percentage differentbetween the values
of thes. for depth-averaged equatiorfy = 1,32 = 1) and

eqguations with correction factory > 1,32 > 1).
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The value ofR of the wake profile in (3.1) is fixed & = —0.5. The parameteX representing
the number of terms in Chebyshev polynomial (refer to exjppeqs.4)) series is directly related
to the accuracy of computations. Several valuell dfave been tried and effect of increase\of
value on accuracy of computation has been analysed. It waslfthat the valu®l = 50 provides
sufficient degree of accuracy and, therefore, all numereslilts generated in the chapter are
obtained for the casd = 50.

1

0.9

0.8

0.7+

0.6

0.5+

0.4r

0.3

0.2

0.1f

Figure 5.5: The real part of an eigenfunction obtained at
[31 =1, [32 =1andR= -0.9.

The stability curves obtained for various values of momemntwrrection coefficientf; and
B2 are presented in Figure 5.3. Each curve represents the doubetween the stability domain
(above the curve) and the instability domain (below the eurvihe ordinate of the top of the
curve corresponds to the critical value of the paramstett can be seen that the coefficient
B1, reflecting influence of lengthwise velocity component mriformity, reduces stability of the
flow. The instability domain grows as value Bf increases. The coeficiefp reflecting both
lengthwise and transverse velocity components has, iants stabilizing effect on the flow. The
instability domain diminishes g% grows.

Figure 5.4 presents results of the comparison ofilparameter calculated for different values

of momentum correction coefficienfly and 2. The results are compared to the valuesof
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0.25
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0.15

0.1

0.05

Figure 5.6: The imaginary part of an eigenfunction obtained
atB1=1,B>=1andR=-0.9.

that are calculated fd8;=1.00 andB3,=1.00. The cas@;=1.00 andB3,=1.00 corresponds to the
approach when the velocity non-uniformity across the galtoordinate is not taken into account.

As it can be seen, for some combinations of the valugs ahd[3, the relative error can reach
10%. The general trend is that error grows with values offthend[3, coefficients. However, for
a certain combination of the momentum correction coefficiatues B; = 1.05, 32 = 1.10) the
error is minimized.

The real and imaginary parts of the eigenfunctpgx) = @ (x) + i@ (x) are shown in Figure 5.5
and Figure 5.6 foR= —0.9 andp1 = 32 = 1.00.

Unfortunately, the values of coefficierfdss and 3, for real island wakes are not known. It is
assumed that for turbulent flow the values of the momenturrection coefficients should not
be high, generally, they are expected be in the rangeQff-11.10 as turbulence of the flow fa-
vors momentum transfer between adjacent flow layers thuschegl the velocity non-uniformity
in vertical direction. However, as the error in determinthg s; parameter may grow with in-
creased values ¢ (the stability boundary can be underestimated with in@ed$1) it might

be important to know the values Bf and(3, for the analyzed shallow flows.
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6 WEAKLY NON-LINEAR ANALYSIS

The present chapter considers growth and development oftarlpa&tion in shallow flows.
Weakly non-linear analysis is employed to track evolutibperturbation. The analysis implies
that the amplitude of a perturbation weakly depends on tintec@ordinate. The results indicate
that perturbation amplitude is governed by the Ginzburgelzar equation with complex coeffi-
cients [23] [24].

6.1 Introduction

Linear stability analysis is an effective tool for determman onset of instability, that is the value
of s at which a flow becomes unstable. However, linear stabiliglysis cannot predict how a
perturbation will be evolving in time and space.

In other words linear stability analysis can tell that at gae point perturbation is amplified
but gives no clue about further development of instabilitydeed, the perturbation function is
sought in a form:

ik(x—ct)

LlJl(Xayvt> = (pl(y)e +C.C (61)

The eigenfunctionp; (y) can be replaced b9 (y) whereC is arbitrary constant. The constant
C cannot be specified by means of linear stability analysis.
The idea of weakly non-linear approach is to perform analysia domain that is slightly

belows: (see Figure 5.2). Effectively, the selected domain is ddflmethe expression

s=s(1—¢?). (6.2)

The point of considering a domain in the neighborhood ofthalue is that the non-linearities
grow slowly here and don't affect results so dramaticallyefiefore the approach is called weakly

non-linear.
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The weakly non-linear approach implies that the functjafx,y,t) is sought in the form:

W1(xy,t) = AE, D)@ (y)e* % 1 cc, (6.3)

whereA is slowly varying amplitude of perturbation. The functi®ndepends on stretched

lengthwise coordinat& and "slow” timet. Parameter§ andt are defined by formulas (see [36]):

T=¢%, (6.4)
§ =e(Xx—cgt). (6.5)
The stretched coordinateis moving with group velocity of the perturbation modgs

The parametee is effectively a measure of how far the analysed domain sigréao the

instability field (see (6.2)).

6.2 Derivation of modified Rayleigh equation

Let us consider equation (5.18). We seek perturbed solatfidhe equation (5.18) in a form of

power series:

W= Yo+ e + %Yo + €Wz + ..., (6.6)

wherelyy is the base flold =U (0,y).
Substituting (6.6) into the equation (5.18) and collectiegns proportional t@ we obtain a

linearized equation for functiog:

Ly1 =0, (6.7)

whereL is a linear operator defined by the expression:

Lo = @uxt + @yt + (2B1 — B2) (UyPuy + U Buyy) — B2 (UyPuy + Uyyx)

C
+B2U Qoo+ E];(U Goc+ 20y @y + 2U Q). (6.8)

57



The functiony); satisfies the boundary conditions:
P1(£e0) =0. (6.9)

According to the method of normal modes we seek funaigim a form:

W1(x,y,t) = @y (y)e Mk, (6.10)

Substituting (6.10) into (6.7) we obtain a modified Rayleighaion for functionp;

. d’gr .. dUp dgy
(ik(2B1 —B2)Uo + S%)W + (2k(B1—B2) + S)d—yd—y
. d2U0 ] S 2 d2(P1 2
As in case of linear analysisjs the stability parameter here, defined by the expression
o Cfb

=
whereb is characteristic length arfdis water depth.

Solving the modified Rayleigh equation we obtain a criticabgity parameter value. that
marks the boundary between stability and instability dorsalf stability parametesis below it's

critical value, then the flow is unstable and vice versa.

6.3 Derivation of Ginzburg-Landau equation

In order to perform a weakly non-linear analysis we assuraestability parameter is a little bit
below it's critical value (see (6.2)).

We introduce "slow” timet = €%, "stretched” coordinaté = g(x — Ccgt) moving with a group
velocity cg, and seek functiorp; in the form (6.3).

According to the chain rule, partial derivatives (denotgdbscripts) for functios(x, y,t, &, 1)

are denoted in the following way:

l-|JX - qu—f—Sl.pE,
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W — - ecglg + 70,
Wxy — Wxy+EWgy,
Wxx —  Wxx+ 260y + 82L|JEE7
Wik — Wi+ 3eWye + 3£2llezz + SSlIJE.zz,
Wxy —  Wxxy+ 28Wys + SszEw
Wxyy —  Wxyy+ EPyyz. (6.12)

Substituting (6.6) into (5.18), we get:

(A(Wo+ W1 +°W2+%W3) )t + (2B1 — B2) (Wo+ eW1 + €7
+€303)y (Wo + EW1 + €Wz + £3W3)xy)y

—Ba((Wo -+ eP1 + 2Pz + £3W3)x(Wo

+eW1+ W2+ €%Wa)yy)y + (B2 — 1) ((Wo+ e + €22 + 3 Wa)x(Wo
e + £2W2 + 30 xy)x + B2((Wo + W1 + E2W2 + £33 xx(Wo
+ePa + €202 + €303y )x — (2B3— 1)((Wo

e + 202 + £30s)x(Wo + W1 + 22 + E3Wg)xx )y

+%A(L|Jo +eP + €2 + €3s3)

\/(llJo + e + €2P2 + 3W3)Z + (Wo + €W + €22 + €3U13)3
Ct

2h, /(o + e + €2z + E24)Z + (o + e + €2z + £33
(Wo+ W1 + €W + €P3)5 (Wo + W1 + €2W2 + W) yy
+2(Wo + e + 2Pz + £3W3)x (Wo + EW1
20+ €303)y (Wo + e + E202 + E33)xy

+(Wo + EW1 + €7W2 + £3W3) (Wo + EW1 + E°P2 + €%P3)xx) = 0 (6.13)

_|_

or

A(Wor + Wt + 2P +3Wa) + (2B — B2) ((Woy + Wy + E2Way
+€3Way) (Woxy + Wiy + EWaxy + €2Waxy) )y

—Ba((Wox + EWax + E2Wax + €3W3y) (Woyy

+EP1yy+ Wy + EWayy) )y
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+(B2— 1) ((Wox + EWax+ E°Wax + £>Wax) (Woy

ey + EWaxy + €3 Waxy) )x

+B2((Worx + EWxx + E2Waxx + €2 Waxx) (Woy

ey + £2Way + £%W3y) )x — (2B3 — 1) ((Wox

e+ E2Wox + E3Wax) (Woxx + EWaxx+ E2Wax+ E3Wan) )y
FoLAWo+ e+ 205 + £30)

\/(UJOX + eP1x + €2k + €3Wax) % + (Woy + W1y + £2Y2y + €313y )2
Ct

_|_
2h\/(¢0x + eW1y + E2Wpy + 8Squax)z + (Woy + W1y + EzlI-'Zy + 8:311J3y)2
((Woy + EWay + %Wy + €3Wzy ) * (Woyy + EWayy + E2Woyy + EWayy)

+2(Wox + EWax + €2 Wy + E3Wax) (Woy + €Wy
+€2y + €3Way) (Woxy + EWxy + E2 Wy + E3Waey)
+(Wox + EPax + 2Py + 3W) % (Woxx

+eP1xx+ E2Wonx + E3Wakx) ) = O.

Taking into account thapo = Wo(y) and neglecting terms higher thahwe get:

(Wit + E2Waxxt + E3Waxxt)

+(EWryyt + E2Wayyt + E3Wayyt) + (2B1 — B2) (EWoyWixy + E2WryWixy
+€302 Wy + E2WoyWany + E3WayWaxy + WoyeWayy )y
—Ba(eWoyyax + E*Woyyliax + € WoyyWax

+2 Y1y + E Wy + E3Payylioy)y

+(B2 — 1) (E2Yniny + EW2 Wy + EWnzi)x

B2 (eWxxWoy + E2WaxxWoy + X WaxxWoy

+E2 Yoty + EWaol1y + EX W0y )x

—(2B3 — 1) (E2WixWixx + E3WorWisx + E2WixWoxx)y

oL W0+ e + &30 + €)W, U, U, )

Cst 5
+ +E€
2h/u(Wo, Y1, P2, P3) (WoyWoyy + eWayWoyboyy

+e2ayWoyWoyy + 26> WayWoyWoyy
+eQoyW1yWoyy + E2WT, Woyy + €Wy W1y Woyy + E*WoyWayWoyy
+E3P1yWayWoyy + EWG W1y + E2W1yWoyWiyy
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+302 Yoy Wayy + €Yoy Wy Wayy + €305 Wy + E3WoyWayWiyy

+€2Uh, Wayy + € Wy WoyWayy + € WoyWayWayy + E3W5 Wayy

+2(2PrWoyWiny + € WadoyWixy + E Wy Wiy + €W oy Waxy)
+e35 W) = O, (6.15)

where

U(Wo, W1, W2, W3) = E°Wh, + 263 Wabax+ W5, + 26Uy Wy
+€2 Y2y oy + €33y Woy -+ E203, + 30z 1y
+82YoyWay + E3W1yWay + 3oy Way. (6.16)

Taking into account (6.12) and collecting terms propowido ! we obtain (5.26).

Collecting terms proportional te? yelds:

Woxxt — CgW1ne + 2Waxet + Wayyt — CgWayye
+(2B1 — B2) (UyWaxy + UyW1gy + WayyWaxy + U Woxyy
+FUWyye + WayWixyy) — Ba(WixyWiyy + UyPaxy + Uylsy
+Prayyy+ UyyWox +UyyPis ) + (B2 — 1) (WP 1xy
FP1xWixxy) + B2(WiyWaxxx+ U Waxxx+ 3U Wy
) — (283 — 1) (Wb + Wixioy) + o (Wrosy
U Waxx + 2U Yaye 4 Uiy + Wayy WPy +U Wiz — UUy )

2L (Ul + Wiy + Uty + 203 — UU,) =0, (6.17)

Assuming thaf3; = 2 = 3 = 1 we get

Waxxt — CgWPaxxe + 2Waxet + Wayyt — CgWayye

+(UyWaxy + UyWggy + WayyWaxy + U Woxyy

FUW1yye + WiyWaxyy) — (WaxyWayy + UyWoxy + Uyl
+WaxWPayyy -+ UyyPox + Uy )

+ (W1yWaxxx+ U Waxx+ 3U Wy
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+qJ1xyL|J1xx) - (l-plqu—'lxy-f— L|J1x'~|J1xxy) + %(Lplxxwly
+U Woxx + 2U Yayg + Uylizy + WayyWay + U WPzyy — UUy)
+% (UyWizy + Wiyayy + Utlizyy + 2011y — UUy) = 0. (6.18)

Collecting terms of ordeg® we obtain:

Waxxt — CgWaxe + Wi + 2Woxet — 2CgWaxes + Wagse + Wayyt
—CgWayye + Wayyr + (281 — B2) (UyWaxy + UyWogy + WiyyWoxy
+W1yyW1gy + WayyWixy + U Waxyy + U Woyye + WiyWaxyy
FW1yWayye + WayWaxyy) — Ba(WiyWayy + WayWiyy + UyWaxy
+WP1eyWiyy + UyPogy + WaxWPoyyy+ PoxPayyy+ UyyWiax
FW1gWayyy + Uyylog ) + (B2 — 1) (WadPxy + Wixslagy
FWaxxWPxy + 2P 1y Wixy + WixWaxxy + 2W1xWixye + WaxWixxy
FW1g Wasxy + Wos Wixxy) + Bz (WayWsxx + WayWaxsx + U Waxxx
+3P1y W1y +3U Woxe + 3U Wisez + WnodPaxy + Woodizy
WP 1xy + 2W1xe Wixy) — (283 — 1) (Wiol2xy + Wi 1zy

+W2xxWaxy + 2W 1y Wixy + WaxWaxxy + 2WaxWixye + WaxWixxy
Cs xY1 2
FW1g Wixy + Wor Wixxy) + %(wlxxl-UZy—i- v 2XLqJJ X
+WoxxP1y + U Waxx + 21y Wiy + 2U Woys +U g
Uy Uynliax  UyWalisg
— U
0z T U U Uy

WyyWx?
+WayyWoy + )gU - + Yoy Py + U WPzyy — U Paxx

UpbyWi®  UpBnliax  Uylsdsg
_Uquly_Uquyy+ 2u2 - U - U

, —UyWsy

Wiy
+P1yyPoy — )gU AN WiyWayy + 2UyP3y
+U Wayy + 2P 1xWoxy + 2llJ1xllley

2
llJlellJlxx ~ Uz — WayJ = 0. (6.19)

+2UoxWixy + 2W1s Wiy +

We can re-write equations (6.17) and (6.19) as nonhomogesreguations with linear operator
L defined by (6.8) on the left side.

The equation for the functiog; is
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L2 = Co(Wixe + Wiyye) — 2Wixet
—(2B1 — B2) (UyW1gy + WayyWixy
FU W1y + WiyWixyy) — B2(WaxyWayy + UyWsgy
+WaxPryyy + Upyylig) — (B2 — 1) (WaWaxy
FWxWixxy) — B2(WiyWPaox— 3U Wik
FWixyWixx) + (2B3 — 1) (WixxWaxy + WaxWixxy) — % (Wody
+2U 1 + WayyPay —UUy
+PyWP1yy + 2P 1P 1xy — UUy). (6.20)

The functiony)3 satisfies the equation

Lz = Co(Woxe + Woyye + 2W1xes) — Wi — Wiy

— 2t — Wager — (281 — B2) (UyWoey + WiyyWaxy

FWayyW1gy + WoyyWaxy + UPoye + WayWoxyy+ WiyWiyye
+WoyWixyy) + B2(WaxyWayy + WaxyWayy + WigyWiyy

FUyWogy + WaxWayyy+ WaxWayyy + Wag Wiyyy+ Uy )

— (B2 — 1) (WaxWaxy + WixxW1gy + WardPixy + 2W1xe Wixy
FWaxWaxxy + 2W1xWixye + WaxWisxy + Wig Wixxy + Wog Wixxy)
—B2(WayWixx+ WayWaxxx + 3WyWixee +3U Wogse +3U Wanee
+Wno2xy + WixPgy + WaodPixy + 2W1xe Wixy)

+(2B3 — 1) (WaxxWaxy + WidP1ey + WaxxPixy + 2W1xe Wixy

+qJ1xL|J2xxy+ 2l-|J1XL|J1xyE + qJquJlxxy+ quEquxxy+ lJ—'Zﬁl-plxxy)
llJlquJlxz

Ct
+ 2h (ququJZy + U + WoaxxW1y + ZquxE qu;/
F2U o +UWagg 4 Wayylay + Lplgtljlx
‘ZUJZnyIle —UW1xx — Uyay —U Py
+W1yyPoy — lbl;ng I PayWayy + 2P1xWPaxy + 2W1xP ey
2
+ 201y + 201 Wiy + wlxul“m — Uy Wty — PryJ. (6.21)

Note that equations (6.20) and (6.21) are resonantly fosoeck the corresponding homo-
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geneous equation (6.7) has a nontrivial solution. Thuscoorlance with the Fredholm alter-
native [45] equations (6.20) and (6.21) have solutions d anly if their right-hand sides are
orthogonal to all eigenfunctions of the corresponding hgem2ous adjoint problem.

We seek solution of equation (6.7) in the form

— A, T)@n(y) KOO - Ar ekt (6.22)

The right-hand side of equation (6.20) suggests the solln&s the form:

W2 = AA QO (y) + Ag g (y) e )+ A2 (y)Pki-o e . (6.23)

Substituting (6.22) and (6.23) into (6.20) and collectieghs proportional t&\A"* we obtain

Cs 0 0 . * i«
UG+ Uyy)) = ikBa(Gay @iy, — Gy Pryy
« " Ct « x
Oy — P Pryyy) — o (Ko + Kooy
+2Q1yyPry + 201y, Pry)- (6.24)

Collecting terms proportional tAEe'k (x=<t) gives

ik3cqs? — ikccpg)er (2B1— Bz)ik(Uy(Pzil +U (pzty)
—ikBa(Uy @ + Uy +IeU Q) + - o (UG + 20,
T2Udh,,) = —~2K00n — Kcgn + Colryy — (281 — B2) (Uyeay

ikcfU
+U@uyy) + Ba(Uy@y +Uyyr) + 3Bk U gy - fh 3

(6.25)

Finally, for terms proportional t&2e?k*—<) we acquire

8ik%cq,) — 2ikoqh, + (2B1 — B2) (2kUy@ +2ikU o)
—Ba(2ikUy @)+ 2ikUyy @, + 8ik3U @)

C .
+Ff (—2kU @2 + Uy(p(z? +U (pg,)y) = —4ik(B1 — B2) Pry@Pryy
+ikBa(@1yPryy + P1Pryyy) — 2ik3(B2 — ) @rpry
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+2ik*Boprry — 2ik>(2B3 — 1) Qrepry — 2h<2<p1y<p1yy 3CPLPry)- (6.26)

Taking into account (6.8), equation (6.25) can be rewrittethe form

kL = —2kZoqr — kg + Cgryy — (281 — B2) (Uyry

ikcsU
+UQayy) + Ba(Uy@ry + Uyy@n) +3BokeU @ — — P

(6.27)

Equation (6.27) according to Fredholm alternative [45] &a®lution if and only if its right-
hand side is orthogonal to all eigenfunctions of the cowasg homogeneous adjoint problem,

since corresponding homogeneous equation

ikLg; =0

has a nontrivial solution.

We define adjoint operator and adjoint eigenfunction in tilewing way:

+00

" @Londy= [ el (eh)dy (6.28)

Performing integration of (6.7) by parts and taking into@aott (6.9), so that the terms con-

tainingy; are eliminated, we obtain the adjoint problem in the form:

L% = (d)( ZBl—Bz) _C“LW)
+(¢€)(2Uy(2[31 — B+ E) (2B1—B2)U +c
~r V) @R(-Uy( 281;52+W

— — 2 _——
+kc Bzuyy KBV — 7 -U) =0. (6.29)

So, solvability condition for equation (6.27) is

+00

/_oo (p"il(—kZCg(Pl + CyPryy — 2k%cp — (2B1— B2) (Uy@ny
ikciU @

h

+U @1yy) + B2 (Uyry + Uyy@1) + 3B2K2U @1 — )dy=0. (6.30)
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This equation can be used for calculation of group velogjty
The equation (6.21) allows us to determine the way how thdiaudp A is growing with time.

According to Fredholm alternative, the solvability comafitfor it is:

_J:o @& (Cg(Waxee + Wayye + 2W1xez) — Wixa
—Wayyr — 2Woxer — Waggr — (2B1 — B2) (UyWogy

+WayyWoxy + WiyyW1sy + WayyWixy + U Woye

+WayWoxyy+ WiyWayye + WayWixyy) + B2(WixyWayy

HWoxyWiyy + WigyWayy + UyWliogy + WixWayyy

FWoxWyyy + Wig Wayyy+ Uyylos ) — (B2 — 1) (WaodPaxy

HWnaWP1sy + WaxxWixy + 2W 1y Wixy + WaxWoxxy

+2W1xW1xye + WaxWixxy + Wig Wixxy + Wor Wixxy)

—Ba(WayWaxx+ WayWasxx + 3WayWine + 33U Woyse

+3U Wiyes + WixlPoxy + WixlPigy + WaxPaxy + 2W1xe Wixy)

+(2B3 — 1) (WisoWaxy + W1y + Waxslaxy + 2Waxe Wixy
+WaxWoxxy + ZquleIJlxyE + WaxWaxxy + W1g Wixxy + Wos Wixxy)

+% (Wpodpoy + Woodbax + W1y + 2P 1y W1y + 2U Woye +UWggg

2U
'JJ 1yy'~lJ 1x2

+WayyWoy + + WoyyW1y — UWPixx — UyPry — U WPy

2
Fyylay — 55— + Uy + 2W1xWPaxy + 2Py

2
+2WoxWixy + 2P 1 Wixy + Lplxuquxx —Uyyy — PyU )dy = 0. (6.31)

Performing the integration with respectyta (6.31) we obtain the Ginzburg-Landau equation
in the form
Ar = OA+ BAgs + A A, (6.32)

The complex coefficients, d andp have the form
H=—. (6.33)

where
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01 =

B = [ 030uy—Kon)dy 634)
C
2

/_0; 03 (2uo1yy + 2uoyd1y — k2Uod1) dy, (6.35)
o0 = /0:0 ¢1 [q)(zif)y(cg — Up) + 05" (—KZcg — 2kZc + 3k2uo

. . . . u
+ Uoyy — iKcUoS:) + §1(2ikcCg + ikeC — 3ikcup — OTSC) dy, (6.36)

m = / ) 03{6k30 5703, — 2k, b0, + kDT
+2ik3p105) — 2ike1yydy) + ke Oy
— ikeD Dyt 2KeP10 0y + 2K iyybS

— 2220108 + 32105 - g—ﬁm

+ 4¢1yy¢(23) + 207,09 gj) + 4¢1y¢(23)y
+ 205 b3,)} dy. (6.37)

6.4 Discussion

The equation (6.32) governs evolution of perturbation aongé. It has a variety of solutions,
depending on values of coefficients. In particular if thd peat of the coefficienft is negative,
then a saturation of amplitude can occur and a finite-ang#irquilibrium is possible.

Coefficientsd, o andp can be calculated as follows:

First, functiony is calculated from (6.7). The calculation is performed gsannumerical
method based on Chebyshev polynomials. The funapois sought in the form of Chebyshev
polynomial series (please, refer to Chapter 5 for detaild)e @eneralized eigenvalue problem
(7.15) is solved and the set of eigenvalles obtained for various values of stability parameter
s. The point is to find the value afwhere at least onk has the negative real pait. The search
starts at a higls value, where all\; are positive. Then the value sfis decreased step by step.
As soon as the point is reached where apndecomes negative, the search is stopped and the
eigenvector is calculated. The eigenvector is normalipatist maximal value and later used for

defining the coefficients of the Chebyshev polynomial seriegder to approximate.
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The adjoint functionp? is calculated in similar way from (6.29).

As functionsy; andy$ are found, the group velocity can be calculated using (6.30).

Knowing the group velocitgg and functionspy, $§ we can obtain functionsp(lo), L|J(11), ngz)
from equations (6.24), (6.25) and (6.26) respectively.

Having all the above-mentioned functions found, we canutate the integrals (6.34) - (6.37)
and obtain the coefficients, d and. The integrals are calculated by a numerical integration

method, using procedure QUANDCS described in [11].
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7 NUMERICAL METHOD

The present chapter describes numerical methods that edetagperform stability analysis
for flows with and without the "rigid-lid” assumption. In Hotases a numerical method is based
on Chebyshev polynomials, although the way of solution diff@’he numerical procedure used

for calculation of Ginzburg-Landau coeficients is also désd.

7.1 Introduction

Solutions for differential equations used in this thesesastained by means of numerical methods.
The choice of suitable numerical method is very importanaficurate results.

The present chapter describes the numerical method usexbliong a modified Rayleigh
eqguation that governs development of perturbation for afimaelled with "rigid-lid” assumption
as well as the method applied for solution of a system of giffgal equations derived for a flow
with free surface. Both methods are based on Chebyshev polgtsoof the first kind. The
Chebyshev polynomials of the first kind (usually denotedasre polynomials of degreeand
the sequence of Chebyshev polynomials of either kind congog®lynomial sequence.

The Chebyshev polynomials of the first kind are defined by tharrence relation [32]:

For example:



The Chebyshev polynomials of the first kind can be defined byripenometric identity:

Tnh(X) = cognarccox),

hence:

Ta(cog0)) = cognd).
A Chebyshev polynomial of the first kind with degradiasn different simple roots, called
Chebyshev roots, in the intervat1, 1]. The roots are sometimes called Chebyshev nodes because

they are used as nodes in polynomial interpolation. Usiadgrigonometric definition and the fact
that

cos(g(2k+ 1)) =0,

one can easily prove that the rootsigfare

The extremas of the Chebyshev polynomials are

TK
N+1
Chebyshev polynomials are important in approximation théecause the roots of the Cheby-

Xx = cog ),k=1,...,n.
shev polynomials of the first kind, which are also called Clséley nodes, are used as nodes in
polynomial interpolation. The resulting interpolationlypmomial provides an approximation that
is close to the polynomial of best approximation to a cordgimifunction under the maximum
norm [32].

If a collocation method is used, the roots or extremas of Céledy polynomials are often

selected as collocation points.

7.2 Numerical method (rigid-lid assumption)

The "rigid-lid” approach allows to reduce the Saint-Venagquations (4.2) - (4.4) to a single
equation (5.30), called the modified Rayleigh equation. Thdifred Rayleigh equation
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&[(2BL— Bo)U —c o U]+ Uy 21— 282

|kh )@+ (K2 — BaUyy — k?BoU — ﬁkU)cpl: 0 (7.1)

with boundary conditions
Pr(£) =0 (7.2)

Is solved by a collocation method based on Chebyshev polyalemi
The functiong, is defined at infinite domain. In order to map infinite regiotoimterval

[—1;1] a variablex s introduced, defined by expression:

X= %{ arctanty), (7.3)

and we seek the solution of equation (7.1) in the form Chebypbl/nomial series

N—1
G = Y a(l—x)T(x), (7.4)
k=0
whereN is number of terms in the series, afdx) is ak-order Chebyshev polynomial.
The term(1— x?) enables the boundary conditiopg +1) = 0 to be automaticaly satisfied.

According to the chain rule, derivatives of the functigyix) wherex is defined by (7.3) are

dg _dgdx_ 2 dg 2 dgy
dy dxdy m(l+y?) dx ncosz( 2) dx’ (7.5)
d’g; 4 ™d?g, 4 < dy
a2 oo "2 %7 ax 76)
d(pl N-1 )
ax = 2 AW+ (L TE0), (7.7)
d2(p1 N—1 ) -
a2 kzoak(—ZTk(X) —XT () + (L= x) T (%)). (7.8)

mj
N+1

Taking extremas of Chebyshev polynomigjs= cos( ) as collocation points, we get
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)= o LUl
Tk(Xj) = cos(karccos(cosN 1)) COsy T (7.9)

. krtj
k . ] ksing
Tk’(xj)zism(karccos<cos J )) = NJ”, (7.10)
1-x N+1 singy
kcosU-  k2cosiT-
W) =—3m =2 (7.11)
sif gy sy

So

Krj
o(%j) = a(1—x%) COSy (7.12)
deux;) _ gcos23 2xcosﬂ +(1— )ksm'\Ifijl (7.13)
dy x93 N+1 sin o )’ '
N+1
Pou(x;) 4 T ( kmj  ksing
— = — —cod—a | —2cos —4x +
2
dy2 Tr 2 N+1 s|nN+J1
2
dx )(kcoijl k cosN+Jl))
Sin’ 2y Sir? Nn+11
4 T TX kT[J kS|n N+l
_ﬁ5|n3c:o§§ak(—2xcosN+l (1—x2) s )’ (7.14)

Using the collocation method and taking into account (7.2.24) we obtain a system of linear

equations with respect to coefficiersis

(A—cB)a=0, (7.15)
where
- [a07 a17 a27 ey aN—l]T

is a vector containing coefficien#g, andA andB are two comlex-valued matrices.

The elemenA|j, k] of the matrixA is given by the expression

. kmj
4 ™ kTt ksing—
Ajx= —cod — | —2cos S/ b
’ ® 2 N-+1 5|nNT_[|{1
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T 2 KTt
-|-(1—x2) (kcosN+1 k cosN+1>>
sin® NT—l s NTﬂl
4 T
~Zsin™ cod ™ ( _2xcos
A < N+

1
+(1—x )ks N“) ((2[31—[32 U +—U>

S'nN+1

+Uy <231—2[32+ kh) cosz( ) < 2xcosN 1

ksin XU
+(1-x3) E'TJ“) + (—Bzuyy— k?B.U

sing 1

krtj
—%ku>(1—x, )cosN—le (7.16)

The elemenB]j, k] of the matrixB is given by the expression

kmj

B[j,K = (1—x;%)cos Ko c(ni co¢ X (—2 cosk%

N+1 N4+1
kmj Tj 2 krij
_4stm N, (1-x )(kcosN+1 k cosNH))
TT 3 T TT
smNJi1 sin® i Sin? Nkﬁll
4 . TX KTTj ksin2u
—Zsin—coS — ( 2xcos—_ | (1- %) N“)). (7.17)
Tt 2 2 N+1 sin N4{1

7.3 Numerical method (flows with free surface)

For flows with free surface, a system of ordinary differdndiguations, derived from the Saint-

Venant equations, is analyzed:

odV
Flku+lkUh+Fd_3/_)\h 0, (7.18)

ikU%b ik sU%b,.

[(2B1—1)ikU +sUJa+ [(B1 — 1)F + 2 Z—HO]
+(B2— 1)U d—;’,+ Bavly — MG = O, (7.19)
1 dh s .
ﬁd—y—f—(lkﬁzu —f—éU)V—)\V—O, (7.20)

with the boundary conditions

73



V(o) = 0. (7.21)

Using a substitution

2
X=— arctarty)

in order to map infinite domain into the regidnl; 1], we represent the functiongx), u(x)

andh(x) in the form of fundamental interpolation polynomials:

_ Tn(X)
u(x) = k;ak—(x_ XTI (7.22)
2 (1-x) Ta(x)
V= 2 D) T (7.23)
¢ Tn(x) (7.24)

00 = 2 O x0Tk

whereay, by andcy are unknown constants, bi(x) is ann-order Chebyshev polynomial that
. , . 2k—1
has the fornT,(x) = cognarcco$x)). The points, defined by the expression = cos%T :

are the zeroes of the Chebyshev polynomial of orgéhat is,(T,(x) = 0). It is obvious that the
T . . :
term n() is equal to zero, ik = Xj, wherex; is a zero of am-order Chebyshev poly-

(X— %) Ty (%))
nomial, andj # k. If x= X, then using the Taylor series expansiormgfx) about the poink = x

we obtain:

Ta(X)
(X=X TH (%))
Ta(%0) + (X=X T () + ESLT0 () + .
(X— %) T (%)

o (x=x) T (%)
SR R T B (7.25)

The derivaties are:

(2k—1)Tt

on )

Tk(xj) = cogkarccosgx;)) = cogkarccogcos
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(2k — 1)kt

ZCOS(T)> (7.26)
Ti(Xj) = (cogkarccogx;)))’ = k 2sin(karccossxj))
\V1I-%
B Ksip( 2Dk
= K sin(karcco$cos(2k2 l)n) = S_m((2k _22)n ) , (7.27)
\/1—(cos(2k2_nl)”)2 : sin(*=5--)
T (xj) = ( = sin(karccogx;)))’
1-X
k
= —————sin(karccogx;))
(1%
k2 kcosgd;  k2cosyol:
————cogkarccogxj)) = —5 i — —— =, (7.28)
( /1_X12)2 sif gy sinf gy
Hence,
0, if x=xj,j#Kk,
T i # (7.29)

X=%JTa()) |1 i x— Xj, ] =k.

Using the collocation method and choosing zeroes of Cheliysbignomials as the colloca-

tion points we obtain

(A—AB)d =0, (7.30)

whereA andB are two complex-valued matrices. Vectbhas the form
d= (a17a27 ..+, an, bl; b27 ceey bn,CLCZ, ~--7Cn)T~
Solving the generalized eigenvalue problem (7.30), foegs/andk we obtain a set of eigen-

valuesA.

7.4 Resonantly forced boundary value problems

In cases where the boundary value problem for ordinaryréifféal equation is resonantly forced
the corresponding nonhomogeneous problem has a solutardibnly if some solvability con-
ditions are satisfied. In order to calculate the coefficiarftthe Ginzburg-Landau equation we

have to solve several boundary value problems for ordindfgrdntial equations. One of these
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problems (6.25) is resonantly forced. Using method of Chieby®olynomials to discretize the

problem we obtain the system of linear algebraic equatidiiseoform
Ax=Db, (7.31)

whereA is the coefficient matrix and is the right-hand side. Note that for critical values of the
parameters of the linear stability problem the correspagptiomogeneous equatidx = 0 has a
nontrivial solution.

Numerical solution of (7.31) is sought by means of the siaguélue decomposition method
(SVD). The idea of the method is briefly explained below (sef for details).

A matrix Q € R™" is said to be unitary if

Q"'Q=QQ" =E, (7.32)
whereE is then x n identity matrix andQ" is the conjugate transpose & (also called the
Hermitian adjoint ofQ).

If Ais a complex-valued matrix then there exist unitary magi¢ec R"™" andV € R"™" such
that
ubav =g, (7.33)
whereX = diag(01,02,...,0p) is the diagonal matrix whose diagonal entries are the samgul
value of the matribA. Equation (7.33) is called the singular value decompasibioA.

Using orthogonality condition (7.32) we transform (7.38}he form
UfAV=s = AVv=Uz = A=U3xV", (7.34)

Assume that = n— 1 =rank(A). In this cases; > 02 > ... > Op_1 > 0p = 0. Thus, we delete
the last column ob) and the last row o¥/" from the analysis. Using as a newJ, WH for the

newVH andT for the newZ, equation (7.31) becomes

ZTWx=h. (7.35)
The matrixT in (7.35) is ivertible so that the solutiotncan be written in the form
n—1 Hb
x=§ 4% (7.36)
Gj

whereu; andv;, i =1,2,...,n— 1 are the columns of the matricdsandV, respectively. The SVD
is computed by means of the IMSL routine LSVCR, which providesmmatrixZ as well as the

matricedJ andV.
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8 STABILITY ANALYSIS OF THO-PHASE FLOWS

The present chapter considers stability of a shallow twasptflow. A two-phase flow is a
flow of fluid that contains particles. Influence of particladting on stability of the flow has been
considered by means of linear and weakly non-linear anslysbas been found that presence of

particles enhances flow stability and decreases pertorbatagnitude [25] [27] [28].

8.1 Introduction

A two phase flow is a flow of fluid that contains particles. It B/mus that presence of particles
should affect perturbation behaviour and influence flowiktab

The analysis of a two-phase flow is performed under the fofigy@ssumptions [42]:
1. The flow is of constant density and zero viscosity.

2. The particles have spherical shape. The size of the |[g@rts&csmall compared to large-scale

structures.
3. The initial distribution of the particles is uniform.

4. The particles have no dynamic interaction with the flow.a$marturbations imposed on

the flow have no effect on the particles during the initial neormn

The other assumptions of a shallow flow model are also applied

8.2 Linear stability analysis

The governing equations for the two-phase flow have additimrmA(uP — u) [41] describing

interaction between the flow and the particles. The equatwoe:

e



Tt ) Sy = 0 (8
2

(2B — DU (B - D + 1"“" <Bz—>§—;+

uv oHg CruV U2 + V2

+(B2— )H By Bz +72H0
—F(y)—AWP—-u) = 0, (8.2)

g¥+Bzu— +(B2—-1 )V%

+(Bz—1>ﬂl—\;%+<283— >vg—;+

2 2 2

s+ st N Ay =0 @9)

whereA is the particle loading parametar? is velocity of particles. The particle loading
parameter is defined by the expression:

_Poftr (8.4)
Pr Ta
wherepy is the bulk density of the particlepy is the density of the fluidf is the ratio of actual
drag on the particles to Stokes drag,is the flow characteristic timeap is the particle aerody-
namic response time.
The dragFy on the particle that is moving through the fluid with velocitys defined by the
formula:

~

Fd = —bV,

whereb is a constant for a particular case of small spherical objewiving through a viscous

fluid the constant is defined by the expression derived by g&eGabriel Stokes [37]:
b=e6mr,

wherer is radius of the particle] is the fluid viscosity.
As it has been shown previously, the "rigid-lid” assumptismapplicable for small Froude
numbers (that is typical for two-phase shallow flows in n@tuo, the equations (8.1) - (8.3) are

transformed as follows:

e Water deptiHg is assumed to be constant.
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. . , b .
e Measures of length, time and velocity are glventi;))ﬁ andU, respectively. The charac-
a

teristic lengthb usually represents the wake half-width for wake flows.

e The equations are transformed to dimensionless form.

op S Op Sy

e The gravity-driven flow is replaced by pressure-driven flnamely& ~TE2ay FrE

After all above-mentioned transformations we get

ou ov

&+®—Q (8.5)

Ju Ju ov ou = ap

5 H(@B1—Du + (B2 - 1)2@ + BzV@ =F) -~ 5%
—Z—;U\/u2+v2+A(up— u), (8.6)

ov ou ov ov ap

E + (Bz — 1)V& + BzU% + (ZB3 - l)Va/ - —a—y
_2_;1\/\/ U2 +Vv2+ AV —v), (8.7)

wherex andy are the spatial coordinatess the time,u andv are the depth-averaged velocity

components in th& andy directions respectivelyp is pressureh = FO is dimensionless water

depth,F(y) = bE(Zy) is the forcing function.

a
The bottom friction coefficient; is defined by the equation [14]:

1 1.25
—— = —4log(
Vet 4Re, /Tt

whereReis the Reynolds number.

).

Denoting partial derivatives by subscripts we can rewhtedquations (8.5)-(8.7) in the form:

Ux+Uy: O7 (88)

U+ (2B1 — L)utk + (B2 — D)uvy + Baviy = F(y) — px
—%U\/ U2 +v2+A(uP —u), (8.9)

Ve + (B2 — 1)V + Bouvy + (2B — 1)vw = —py
—%V\/u2+v2+A(vp—v). (8.10)
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We seeky, vandpin the form:

u = Uy)+Uu(xyt)=U+U, (8.11)
v = V(Xyt) =V, (8.12)
P = po+¥p, (8.13)
uP = UP(y)=UP, (8.14)
W= 0 (8.15)

HereU (y) is the base flow solution. The functidh(y) in the present chapter is chosen in the

form
2R 1
Uly) =1+ , 8.16
Uc—Ua . : : : : : :
whereR= —~—2 is the velocity ratioa = sinh1(1), U is the velocity on the centerline

ct+Ua

andU, is the ambient velocity. The profile (8.16) is suggested bynkéwvitz [29] after careful
analysis of experimental data for single-phase wake flowlssaadopted in present chapter.
Substituting (8.11)-(8.15) into (8.8)-(8.10) we get:

(U+U)x+(V)y =0, (8.17)
(U+U)i+(2B1— 1)U+ U) (U +U)x+ (B2—1)(U +U)(V)y
+B2(V)(U +U)y =F(y)

—(Po+ Px— o (U +U) /(U +U)2+ (V)2 + AUP-U — 1), (8.18)
(V)t+ (B2 = D(V) (U +U)x+B2(U + ) (V)x
+(2Bs— 1(V)(V)y = —(po+ Py
— L) U+ U2+ (VR AY), (8.19)
or, neglecting the quadratic terms:
UV, =0, (8.20)

+(2B1— UL+ (B2 — D)UY, + Bav'Uy = F(y)
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Cf

—Pox — Pk — 2h(U +U)y/(U24+20u) +AUP-U —U), (8.21)
\/t+[32U\/X:—poy—pg,—%(\/)\/(Uz—l—ZUu’H-A(—\/). (8.22)

The term containing the square root is linearized as foliows

/

>
(U+U)y/(U2420W) = (U +U)UL/ (14 U”) — [(14+%)¢ = 1+
/

— (U +U)U(L+ %) — (U+U)(U+U) = (U +u)2=U%+20. (8.23)

By substituting (8.23) into (8.20)-(8.22) we get

u+w =0, (8.24)
U + (2B1 — DU U+ (B2 — 1)UV, +Bav'Uy = F ()
—pOX—p;—%(U2+2Uu’)+A(Up—U—u’), (8.25)
f C
Vi + B2UV, = —poy — P, - Z—LU\/+A(—\/). (8.26)

Taking into account that ® = U we get the following system of equations:

U +w =0, (8.27)
U + (281 — DU+ (B2 — UV, + BavUy = F(y)
—poX—p’X—%uz—%qu'—Au, (8.28)
\/t+[32U\/X:—poy—p§,—%U\/—A\/. (8.29)
Keeping in mind that dimensionless water depta %, introducing the stability parameter

defined by the expression
s— Cfb
= o

and assuming that the forcing functibity) is equal to%u2 (this means tha (y) — %Uz =0)

we get

U+, =0, (8.30)
Ut + (21 — UL+ (B2 — 1)UV, + B2V Uy
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+pox+ Pl +SUU+AU =0, (8.31)
Vi + B2UV, + poy + p’y+§U\/+A\/:o. (8.32)

To eliminate pressure the equation (8.31) is differendiatéh respect toy and the equation

(8.31) is differentiated with respect xo We obtain:

Uty + (2B — DUyu + (2B — 1)U Ly

+(B2 — 1)UyVy + (B2 — 1)U Vyy + B2V Uy + B2V Uy
-+ Poxy + Py + SUL +SUY, +AY, = 0, (8.33)
Ve BN+ Poy+ Bly+ SUV AV, = 0. (8.34)

By substracting the equation (8.33) from (8.34) we get

Uty + (281 — 1)Uyuy + (2B1 — DU Uy + (B2 — 1)Uyy,
+(B2— l)U\/yy—l— Bz\/yUy + Bz\/Uyy—f— SL&/U/ +SU li,
-I-ALJ'Y—\/{X—BZU\/;X—SUV;—A\/X:O. (8.35)

Introducing the stream functiap defined by the relations

u' = gy, (8.36)
and assuming of the form
_ —At+ikx
U=0qye ; (8.38)

we get

Ay + (2B1 — DUy — (B2 — 1)U ikayy — BaikgyUy
—BaikqUyy + SU,@, + SUgyy + Ay + K*A@
—BoUik3p— :;‘u KRo— AR =0, (8.39)
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with boundary conditions

@(£) = 0. (8.40)

8.3 Weakly non-linear analysis

The effect of nonlinearity on behavoir of the most unstabtelencan be investigated by applying
some of the methods of weakly nonlinear theory (see for el@f8p] or [14]) in order to derive
the amplitude evolution equation for the case whsdgeslightly smaller than the critical valisg.

In order to facilitate the derivation, a stream functipis introduced by the expressions (8.36) -
(8.37) and the equations (8.8) - (8.10) are rewritten in tief(in a way similar to derivation of

equation (5.18)):

Ct

(AY)t + Wy (AP)x — Wx(AP)y + T Wz + g
Ct 2 2
A = (g Wy + 2Ux Wy Wy + W5 Wxx) + ALY = 0. (8.41)
Zh\/m yryy yrxy
Consider a perturbed solution to (8.41) in the form:
Y = Yo(y) +eWi(x,y.t) +€2W2(x Y,t) + WX, V1) .. (8.42)

Substituting (8.42) into (8.41) and neglecting the termerdere? we obtain:

Ly =0, (8.43)

where

LW = Wikt -+ Wayyt + Woy (Wi + Wayyx) — WoyyyWix
+% ((Waxx + 2Wayy) Woy + 2W1yWoyy) + A(Wixx + Wayy)- (8.44)

Linear analysis implies that the functign in (8.43) has the form
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W1(x,y;t) = @u(y) expik(x—ct)], (8.45)

whereq; (y) is the amplitude of the normal perturbation (8.45).
Weakly non-linear analysis method considers flow stabdityhe point wheres is slightly
below the critical values,, namelys = s.(1— €?), wheree is a small parameter. Slow tinteand

the stretched lengthwise varialflare introduced in the form:

T=¢%,§ = g(X—cgt), (8.46)

wherecy is the group velocity.

Weakly nonlinear theory is therefore applied in vicinitytbé critical point (see Figure 8.1).

stehle

Figure 8.1: Schematic diagram of the critical values of the
bed friction number versus The dashed rectangle shows

the region where weakly nonlinear theory is applicable.

The differential operatorgT and% are then replaced by

0 9] 0o 0

a%a—a%ﬁ—f—g Fr (8.47)
0 d 0
" &JFE&' (8.48)



The functiony); in (8.44) is represented in the form

Wi (x,y,t) = A&, 1)@ (y) expik(x—ct)] +c.c., (8.49)

whereA is a slowly varying amplitudep (y) is the eigenfunction of the linear stability prob-
lem (8.39) - (8.40), the values &fandc correspond to the critical state, and. means complex
conjugate. In order to find an amplitude evolution equatitmnA_fwe need to consider higher

terms of the perturbation expansion (8.42). Substitutthdd) into (8.41) and collecting terms of

ordere?, we obtain:

Lz = Cg(Winee + Wiyye) — 21yt — Woy(3Wixe + Wiyye)

— W1y (Wi + Wayyx) + Wix(Wisxy + Wayyy) + Wig Woyyy

—S[(Wa+ Wayy) Wiy + 2Waxe Woy + WayyPay — 2PoyPoyy
2Py — 2AUe. (8.50)

Substituting (8.42) into (8.41) and collecting terms ofaef we get:

LWz = Cg(Wane + 2W1xes + Woyye) — Wikt — Wayyt — 2Woer — Wiest
—3Woy(Woxse + Wixez) — Wiy (Waxxx+ Wik ) — Woy(Wixxx+ Wiyyx)
— W1y (Wayyx— Wigyy) — WoyWosyy + WaxWixxy + Wig Wixxy
+WixWaxxy + 2WixW1xye + WaxWayyy+ WaxWayyy

+W1s Wayyy + Wos L|—'Oy2yy

—S[Way(Waxx+ Wayy) + 2W2yy Py + g qu:j:iJlx
+PoxxW1y + 2W1xe Wiy + 2WoyWoye + Wige Woy — WixxWoy
— 2oy W1y — 2QoyWayy — WayyWoy — WayWayy + 2P1xPaxy

+2W1xWayy + 2WaxWixy + 2W1 Wixy] — A(2Waxe + Wage ) (8.51)

The form of right-hand side of (8.50) and formula (8.49) segjghat the functiod), should
be sought in the form

Yo = KA_*(p(ZO) (y)+ Achgl) (y)expik(x—ct)] + A_\Z(pgz) (y)exp2ik(x—ct)] +c.c., (8.52)
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whereA* denotes complex conjugate Afand the function$(20) (y), cp(zl) (y) andcp(zz) (y) are to
be determined.
Substituting (8.49) forp; and (8.52) fony, into (8.50) and collecting the terms that are pro-

portional toAA* gives

0 0 0 . o «
+(m(piyyy_ (Piwlyyy) - S(kz(pl(piy + kz(ﬁi%y
+ 201y, + 205, 1y ). (8.53)

with the boundary conditions

@ (£00) = 0. (8.54)

Similarly, collecting the terms that are proportionalgexp[ik(x — ct)] we obtain

(KU — ike) @y + (ik3e — kU — ikUyy) 65" + S2U ),

+20ygh,) — UG |+ Al — U] = (cg—U) ey
+[—2k?c 4 3K2U + Uyy — k?cq — ikU S— 2ikA| ;. (8.55)

The boundary conditions are

@Y (do0) = 0. (8.56)

Comparing (8.39) - (8.40) and (8.55) - (8.56) we see that thdisa to (8.55), (8.56), namely,
the function(p(zl), is resonantly forced since the homogeneous equation widakesponds to
(8.55) is satisfied at = s, k = ks andc = c.. Thus (8.55) - (8.56) has a solution if and only
if the right-hand side of (8.55) is ortogonal to all eigendtians of the corresponding adjoint
problem. The adjoint operatdr?, and the adjoint eigenfunctio, are defined as follows:

“atenay- [ el edoy-o 857)
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The adjoint eigenfunctiogf' satisfies the equation

(kU +2SU+A) (¢])" + (2ikUy + 2SU,) (¢])’
—(ik3U +UK*S+ AR @ + ike[ (@) — k2] = 0, (8.58)

with the boundary conditions

(o) = 0. (8.59)

Applying the solvability condition for equation (8.55) wetain the group velocitycy, in the

form

¢ =1 (8.60)

where

+o0
l— / Uty — @1(3K2U +Uyy — 2k2c — 2ikU'S— 2AiK)|dy; (8.61)
and
+00

o= oy —Kq)dy (8.62)

Finally, collecting the terms that are proportionalﬁ_t%we obtain the following equation for

the function(p(zz):

2(ikU — ikc) @, + (8ik3c — 83U — 2ikUyy) @, +S2U g,
+200) — AU+ Algy) — ACE | = k(@ @y — 1y ryy)
—S(2@1y@ryy — 2K2@1Pry), (8.63)

with the boundary conditions

@(Lo0) = 0. (8.64)
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The amplitude evolution equation féris obtained from the solvability condition for equation
(8.51) and has the form

oA — PR,
gc = OA+ B +HAPA (8.65)

where

01
o=—, 8.66
Y1 ( )

01
5= —, 8.67
Y1 ( )

M1
== 8.68
M Vi (8.68)

The coefficientss = oy +i0j,0 = & +10;, L = |y + il are complex. Equation (8.65) is the
Ginzburg-Landau equation.

The coefficienty, 01, 61 andp; are given by

~+00
= | @eyy—Ke)dy, (8.69)

~+o00
o1=s/ @U@yt 2Uy@y —KkU@)dy, (8.70)
+o00
5= [ @l -U)
(—k?cg — 2k?c+ 3K?U + Uy — 2ikU S— 2ikA)
+@1(2ikeg + ike) — 3ikU —US— A)]dy, (8.71)
T arai 3@ ot of2)
W = /oo ${6ik g, @1y — 2kl @y
. % . 0 (0 . 0
+3ik3gi0) +ikCou(@y) + @) — iKryy(@y)
+(0 . 2) « ek (2
+‘P2;(/ )+ 'k‘P(Zy)‘plyy_ 'k‘pl(p(Zy)yy
KL Gy + B + 20K — 25— k2u (@)
. 1.5k*
+60) + 32 - A
0 +(0 « 2 0
+2(plyy((p(2y) - (pzs(/ )+ 2(plyy(p(zy) + 2(ply((p(Zy)y
+Pa) + 205 @5, dy. (8.72)

The right-hand side of equation (8.65) contains three tewnesponding to linear amplifica-

+@

tion, diffusion and nonlinear saturation, respectivelge Toefficients of (8.65) have the following
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physical meaning:
e The real part ob, namely,o,, gives the rate of amplification of an unstable perturbation
e The imaginary part of, that is,o;, reflects the angular frequency of the oscillation.

e The dependence of the instability growth rate and osmihafrequency on the wavelength

is represented by the coefficiedsandd;, respectively.
e The coefficienpu determines whether saturation of instabilities is possibl

If i < O then the nonlinearities tend to saturate the instabifitych a situation is referred to as
"supercritical instability” in the hydrodynamic stabylititerature. On the other hand, jif > 0,
then higher order terms on the right-hand side of (8.65) @ important and (8.65) is much
less informative. Such a case is known as "subcritical mbtg’. One example of subcritical
instability is given in [36] for the case of a plane Poiseuillow. The constanf in equation

(8.65) is usually referred to as the Landau constant in tleddynamic stability literature.

0.2r
0.1a8r
0.16r
0.14r
012r

0.1F
0.03r

0.06r

0.04

Figure 8.2: Neutral stability curves for different valué¢sfo
atR=—0.5.

8.4 Results

Figure 8.2 plots neutral stability curves for the paramsteersusk for R= —0.5 and different

values of the particle loading parame#ferThe values oA have been chosen in the range of prac-
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tical interest [41]. Each stability curve separates sitgtaind instability domains. The instability
domain is below the curve. As can be seen from the figure, |etadaility curves correspond to
higher values oA. This means that high& enhances stability of the flow.

The value of the stability parametsiat the top of the curve;, namely the critical value of
s, can be taken as a reference point characterizing theistaijithe flow. For values o above
& the flow is stable for all wavenumbeks The dependencg on A at R= —0.5 is shown in
Figure 8.3. Stabilizing effect of the particle loading pagder is clearly seen in the figure since
the critical values of are decreasing almost linearly as the param&iacreases.

Figure 8.4 plots the growth rates for the most unstable modmstable regime for different
values ofA. As the particle loading parameter increases, the grovi#is idecrease.

ParameteA is defined by (8.4). The value éfdepends on various parameters such as particle
bulk density, drag on the particles, and aerodynamic respdime of the particles. The bulk
density is the mass of many particles divided by the voluney thccupy. So one can conclude
that the presence of particles enhances flow stability. Tdpeeh is bulk density of the particles,
drag and the lower is the aerodynamic response time the nhaoke ghe flow is. This result is

consistent with data of Yang et al. [41].

04

0.33 Critica walues of 5

0.3
023
0z
015

D.'l\ .,
008 R=-03R=-05

D 1 1 1 1
0 n.oz2 0.04 A 0.06 0.0a 041

Figure 8.3: Critical values of versusA for different values

of R

In order to evaluate the coefficients of the Ginzburg-Lanelquation numerically, one needs
to find the critical values ok, s andc from the linear stability problem (8.39) - (8.40). Then the
corresponding eigenfunctiagi of the adjoint problem (8.58) - (8.59) is calculated. Nektee
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Figure 8.4: Growth rates for the most unstable mode for

different values ofA.

Table 8.1: The coefficients of the Ginzburg-Landau equétonifferent values ofA.
A

o 0 M

0.0

0.0899+0.0004

0.1150-0.1834

-4.5212-11.6033

0.02

0.0716+0.0001

0.1116-0.2131

-4.8302-11.7427

0.04

0.0529-0.0000i

0.1062-0.2438

-5.3386-11.6620

0.06

0.0300-0.0002i

0.0986-0.2819

-6.6213-11.8045

boundary value problems (8.53) - (8.56), (8.63) are solvedithe functionsp(zo), (p(zl) and (pgz)
are calculated. Finally the group velocity is computed from the solvability condition (8.60).
In all cases pseudospectral method based on Chebyshev po§laos used. The coefficients
of the complex Ginzburg-Landau equation (8.65) are thetuated numerically by means of
(8.66)-(8.72). The results are shown in Table 8.1Ref —0.5.

As can be seen from Table 8.1, the real parfigknown as the Landau constant in the lit-
erature) is negative, therefore, finite amplitude equiifor is possible and the instability is su-
percritical. Thus, the Ginzburg-Landau equation may bel deethe analysis of shallow wake
two-phase flows in convectively unstable regime. Note thatases where the real part jofs
positive, the higher powers & (which are neglected in (8.65)) become also important, bhaed t

Ginzburg-Landau model cannot be used for the analysis.dn sases a finite equilibrium state is
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Table 8.2: The amplitude_o and the frequencyo for different values oA atR= —0.5.
A w A_so
0.0 | 0.230| 0.141
0.02] 0.174| 0.122
0.04| 0.116| 0.100

not possible. This means that the disturbances are linaadiable and grow unbounded; that is,
the instability is subcritical. An example of such case i&giin [36] for plane Poiseuille flow.

Consider unmodulated (independeng@equilibrium amplitude solution of (8.65) of the form

J— O’ A N
A=, /Er explit(o; — Eor)], (8.73)
where the amplitudA_o and the frequencyo are given by
Aoz,/ﬁr,w:oi—ﬁor. (8.74)

It is seen from (8.74) that both the amplitude and the frequefthe most unstable mode are
modified by nonlinear effects. The valuesfaf andw for different values ofA are calculated for
the casdR = —0.5 and are shown in Table 8.2.

As can be seen from Table 8.2, the stabilizing effect of theigla loading parameteAf is
obvious also in weakly nonlinear regime: the finite amplusligetting smaller a& increases.

Using the substitutions

=8, /< (8.75)

A = A/II 0 exp(—icoo; 1),

we transform (8.65) to the form

Az = A+ (1+ iCl)Agg — (14ico)|A?A, (8.76)

where

92



Table 8.3: The coefficients of the Ginzburg-Landau equgon6) for different values oA.
A Co (o] Co
0.0 | 0.004 | -1.595| 2.566
0.02| 0.001|-1.906| 2.431
0.04| 0.000 | -2.296| 2.184
0.06| -0.007| -2.859| 1.783

Oj Oi M
R . 77
Co o C1 5 C2 m (8.77)

It can easily be shown (see, for example, [1]) that (8.76)a@lsine wave solution of the form
A = Cexpli(KE — QT)]. (8.78)

Stability of solutions (8.78) is studied in [5] where it isostn that a sufficient condition for

instability is

1+cic <0, (8.79)

Instability described by (8.79) is referred to as the BenjaReir instability. Using the numer-
ical values of the coefficients of (8.65) given in Table 8.1lewe calculated the coefficients,
C1, andcy. The results are presented in Table 8.3.

As can be seen from Table 8.3, for all valuesfahe instability condition (8.79) is satisfied.

This means that pure periodic waves (8.78) are unstable (lamckfore, are not observable).

8.5 Conclusion

Linear and weakly nonlinear stability of two-phase shalleake flow is analyzed in the present
chapter. Linear stability analysis is performed under tiing simplifying assumptions: (1)

the mean velocity profile of the two-phase flow is assumed iddmtical to that of a single-phase
flow, (2) the particle concentration is assumed to be unifdB8nsmall perturbations imposed on
the flow have no effect on the particles during initial mome@alculations show that particle

loading parameter stabilizes the flow. In addition, botteittibn also enhances the stability of
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the flow. Methods of weakly nonlinear theory are used to @difre amplitude evolution equation
for the most unstable mode. It is shown that the developnfeheanost unstable mode in weakly
nonlinear regime is governed by the complex Ginzburg-Laretpuation. The coefficients of the
Ginzburg-Landau equation are calculated numerically fifer@nt values of the parameters of the
problem. It is shown that the particle loading parameterahatbilizing effect on the flow also

in the weakly nonlinear regime: the saturation amplitudgeiging smaller as the particle loading
parameter increases. In addition, it is shown that puregerisolutions of the Ginzburg-Landau

equation are unstable (and, therefore, not observable).
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9 STABILITY ANALYSIS OF NON-PARALLEL FLOW

Stability of a non-parallel flow is considered in the presemapter. A weakly non-linear
method is used for the stability analysis that implies theelflow weakly depends on downstream
coordinate. An equation of perturbation amplitude and aiteporder approximation for the

perturbation stream function have been achieved [26].

9.1 Introduction

Stability analysis of shallow wake or mixing layer flow is adly implies the assumption that the
velocity profile of the flow does not change downstream (pelrfidw assumption). From mathe-

matical point of view this means that the base flow is indepahdn the lengthwise coordinate.
In real flows, however, the flow velocity profile slowly altedswnstream. The non-uniformity

of the flow velocity distribution across transverse cooatinususally declines with the fluid trav-
elling downstream. Effectively that means that the base Wi@akly depends on the lengthwise
coordinate.

As the base flow is a function of the lengthwise coordinate,dfability analysis should be
modified. Weakly-nonlinear analysis can be performed ireptd take into account slow variation
of the base flow.

The current chapter makes an attempt to analyse stabilitheoflow if base flow weakly

depends on the lengthwise coordinate.

9.2 Derivation of Governing Equations

The governing equations for the nonparallel flow are derifrech the "rigid-lid” flow equa-
tion (5.18) taking into account that the base flow functién weakly depends ox (see Fig-

ure 9.1).
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Figure 9.1: Parallel and non-parallel flow velocity profiles

We seek solution of the equation (5.18) in the form:
WX y;t) = Yoy, X) + B(Xx ¥, 1), (9.1)

where
X =¢&Xx

is a slowly varying coordinate, is the small dimensionless parameter that characterieasdah-
parallelism of the base floMoy(y, X) is the base flomp(x,y,t) is a perturbation.
Substituting (9.1) into (5.18) we get:

(A%Wo)t + (AP)t + (2B1 — B2) ((Woy + Wy) (Woxy + Wy) )y
—B2((Pox + Wx) (Woyy + Wyy) )y

+(B2— 1) ((Wox + W) (Woxy + Uxy)

+B2((Woxx + Wxx) (Poy + Wy) )x

—(2B3— 1) ((Wox + Wx) (Woxx + Wxx) )y
A%+Aw)\/(%x+tux)2+ (Woy +Wy)?

((Woy -+ Wy)?(Woyy + Wyy)

)
)
)x
)
)
)

"2

ZW (Wox + Un)2 + (Woy + Py)?
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+2(Wox + Px) (Poy + Wy) (Poxy + Uxy)
+(Wox + W) 2 (Woxx+ Wxx)) = 0,

or

(AY)t + (2B1 — B2) (Poy + Wy) (eWoxy + Wxy) )y
—B2((eWox + Px) (Woyy + Wyy) )y

+(B2— 1)((eWox + Wx) (Woxy+ Uxy))
+B2(Wix(WPoy + Py) )x — (2B3 — 1) ((eWox + W) Wxx)y
o (Wopy+8)y/ (Wox + W02+ (Woy + y)?
- (Woy + Wy)2(Wopy + Uyy)

+
2h/(eWox + )2 + (Woy + Wy)
+2(eWox + Px) (Woy + Wy) (EWoxy + Wxy) + (€Wox + qu)2<L|Jxx)) =0.

X

(9.2)

(9.3)

Keeping in mind thaty, is equal to zero a¥p = Wo(y, X), and neglecting terms af? and

€2 we get:

(D)t + (281 — B2) ((Poyy + Wyy) (EWoxy + Wxy)

+(Woy + Wy) (eWoxyy + Wyy))

—B2((e%oxy + Wxy) (Woyy + Wyy) + (E%ox + W) (Poyyy+ Wyyy))
+(B2 — 1) (Wxx(eWoxy + Wxy) + (eWox + Wx) (Wxxy))
+BZ(quxx(LP0y + L|Jy) + qux(EqJOXy+ '~|ny))

—(2B3 — 1)((eWoxy + Wxy)Wxx + (Wox + Wx) Wxxy)

s (Woyy +AW) \/25qJOX b + W5, -+ Woy 20y

CT 2h
+ - (W5, +2Wo,ly) (Woyy + Wyy)
2h \/ 2eWox Py + qJOy + 2Woy Py

+2(8‘-|Jox + l]Jx) (‘-IJoy + l]Jy) (Sl-l-’oxy-i— LIny) + 2eWox L|Jxl]JXX) =0.

Simplifying, we get

(D)t + (2B1 — B2) ((eWoxyPoyy + WPoxylbyy + WxyWPoyy)
+(eWoxyyWoy + eWoxyyWy + Poyxyy) )
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—Ba2((e%¥oxyWoyy + PoyyWxy + ¥oxylyy)

+(eWox Woyyy + WoyyyWx + %Pox Wyyy))

+(B2 — 1) (WxxeWoxy + e%¥ox Wxxy) + B2(WxxxWoy + Wxx€%oxy)
—(2B3 — 1) (eWoxyWxx + %¥ox Wxxy)

. Zh(woyy+AqJ \/ 2eWox Py + W3 + woyquy

2h, /26 Wox W+ W3, + 2Woyty

+2(eWox WoyWxy 1 eWoxyWoyWx + EWoxyWoylix)) =

The term\/ZslPox Wy + LIJ(Z)y + Woy 24y is linearized as follows:

2Wox '~|—’x +y 2Woy
2 Yw2

2y AL
— oy, 1482 ST 1 — 1 et
Vo, Yoy
W W Wox P
OXqu Oy O0X W¥x
+ U ) = Woy+¢€
2 Yw? Oy
_ l'I‘)oy WoxPx  YyWoy - quy+ eWox Wx + YyWoy
=—~+t¢ + = :
Yoy  Woy Yoy Yoy
1 . . .
The term is transformed in the following way:

V2 Wot+ W3+ Yo, 2uy

\/Ll%y + 2eWox Px + Woy 2Py = \/W(Z)y(l—i— € )

= Lpoy(l—f—ﬁ +L|Jy

1 1
\/stoxmx+ W2, + Wo, 24 \/qJ(z)y 1 +82Woxlbx +wy2%y)

1 1
Y
W\/1+82Wox¢x+wy2qj"20y
Yoy oy
1 Wox P W 1 Wox Y
Oy Oy ‘;y Oy Oy
‘Poy eWox Yx — YyWoy

3
oy

=|(1+¢e)* =1+o0e+...|

So, the linearized form of the ter(i¥oyy + AY) \/ZSWox Wy + lP%y + Woy2yy is:

(Woyy+AU), /26Wox s+ W3, + Wo, 20
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= (Woyy -+ Wxx+ Yyy) Vot s%ﬁ; iy

_ %y (Woyy W3, + W3, + Wy W3, + Woy,Wox

+L|Jxx]€-q"ox Wx + WyyeWox Wx -+ WoyyllyWoy + WPy Woy + WyybyWoy)
= Ty, (Woyy W, + WhaWg, + Wy W, + WoyyeWox W+ WoyylyWoy )

WoyyeWox P
= WoyyWoy + WxxWoy + WyyWoy + % + Woyyy.

The term

1

\/ 26Wox Py + W3, + 2o,y
+2(eWox WoyWxy + eWoxyWoyWx + e%¥oxyWoyPx))

(W5, Poyy + 2Wo, Woyylby + W, yy)

is linearized as follows:

1
\/ 2eWox Py + W3, + 2o,y
+2(eWox WoyWxy + €WoxyWoyWx + e%¥oxyWoyPx))
1

=4 (W5, — eWoxWx — WyWoy) (W5, Woyy + 2Wo, Woyylby + W5, Wyy)

(W5, Poyy + 2Wo,Woyylby + W, yy)

+(2eWox WoyWxy + 2eWoxyWoyWx + 26WoxyWoyPx))

1

= LIJ_3 (l-Ingl-IJoyy + ngyl'POyyl.'Jy + l'IJéyl.IJyy + ZELIJOX LIngl.IJXy

Oy

+2€LPOXyLP8yL|JX + ZELIJOXyLngLIJX - ELPOX l.IJXLlJ%yLIJOyy — l.IJyl'IngLIJOyy)
= WoyWoyy + 2Woyylly + Poyyy + 2eWox Wxy

eWox WW
+8l'|J0Xyl.|Jx + ZELIJOX)/L'JX - # - quqJOyy

Substituting the linearized terms (9.8) and (9.10) int&)Y9e obtain

(AWt + (2B1 — B2) ((WoxyWoyy 1+ eWoxylyy + WxyWoyy)
+(e%oxyyoy + ¥oxyylly + WoyWxyy))
—Ba((eWoxyWoyy + Poyylxy + e¥oxyyy)

+(e%ox Woyyy + Poyyyx + e%Pox Wyyy) )

+(B2 — 1) (PxxeWoxy + €Wox Wxxy)
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(9.9)

(9.10)



+B2(WxxxWPoy + Wxx€Woxy) — (2B3 — 1) (€WoxyWxx + E%Pox Wxxy) +
C WoyyeWox P
—i-% (WoyyWoy + WxxWoy + YyyWoy + % + Woyy Wy

Sq-’ox W
+26Woxy W + 26Wox Ay — +0?0W — Yy Woyy) = O. (9.11)

Simplifying the expression (9.11) and grouping the terms get:

(D)t + (2B1 — B2) (WxyWoyy + PoyWxyy)
_BZ(LPOnypxy—f- lPOyny|Jx) + BZLIJXXXLPOy

Ct

)
+&((2B1—B2) (lTJOXyLPOyy-i— Wox yWyy + PoxyyWoy + Poxyyiby)
—Ba(WoxyWoyy + Poxylyy + Wox Poyyy + Pox yyy)

+(B2 — 1) (WxxWoxy + Wox Wxxy) + B2(WxxWoxy)

—(2B3 — 1) (WoxyWxx+ Yox Wxxy)

Ct
= (2Wox Wxy + 2WoxyWix + 2Woxyllx) ) = 0. (9.12)

on

DenotingWoy asU and—Wox asV we can rewrite (9.12) as follows:

(AWt + (2B1 — B2) (Wxyly + U Uyy)

—B2(Uylxy + Uyythix) + Balool)

+% (2UyU + WU + 20U + 22Uy )

+£((2B1 — B2) (UxUy + UxWyy +UxyJ +Uxy\py)
—B2(UxUy + UxWyy —V Uy —Viyyy)

+(B2 — 1) (WndIx — Viixxy) + B2(WodJx)

—(2B3— 1) (UxWxx — VWxxy) + %(ZUX'JJX — 2V gy + 2UxUy)) = 0. (9.13)

Linearizing (9.5) in the neighborhood of the base flow, dingphe subscript "f” and retaining
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only the terms of ordeg we obtain

Waxt + Wyt + (281 — B2) (UyWxy + U Wxyy) — B2(UyWxy + UyyWix) + B2U Wxxx
+ % {U (Wxx+ 2Pyy) + 2Uywy]

T e{ (281~ B2) (Uxyy + Uxytly) — Ba(Uxtlyy— Viiyy)
+ (BZ - 1) (UX Wxx —Vquxy) + BZUX Wxx
—(2B3— 1) (UxWnx— Viyy)

+% {ZUXUJX—ZVUJXy—I—Vl]JXUy/U} } o, (9.14)

whereU = Yoy andV = —Jox.
The method of normal modes is a classical method of stalitiglysis of parallel steady flows

(see, for example, [8]). In such cases the stream functicepiesented in the form

L|J(X,y,t) :(I)(y) exp[i(kx—oot)], (915)

wherek is the wavenumber of a perturbation awds the frequency of oscillation. An arbitrary
perturbation consists of a superposition of perturbed aorapts of the form (9.15) over the range
of all wavenumbers. However, in order to find a necessaryitiondor instability, it is enough
to consider only one component of the form (9.15) (see, fanmgle, [19]). If the base flow is
slightly non-parallel, then the perturbation stream fiorctp(x,y,t) is decomposed into a slowly

varying amplitude functio(y, X, w) and a fast varying phase functi@fX, w) /€ [19]:
W(x,y,w,t) :¢(y,X,oo)exp[i (@—o&)] (9.16)
We also assume théiy, X, w) can be represented by a power seriesimthe form
oy, X, ) = d1(y, X, w) +€dp2(y, X, w) +... (9.17)
Substituting (9.16) and (9.17) into (9.14) and collectihg terms that do not contagnwe obtain

Lo =0, (9.18)
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where

w icfU

Lipa] = ¢1[<251—32>U Tk W}
o) [2([31 —B2)Uy — W}

ictkU

The primes in (9.19) represent the derivatives with respegtand k = k(X,w) = 8x. Thus,
equation (9.18) is the modified Rayleigh equation which isiietd in [22] under parallel flow
approximation. Equation (9.18) together with zero boupdanditions forms an eigenvalue prob-
lem (where the eigenvalues dte- k(X,w)). The values ok = k(X,w) = B8x can be obtained as
a result of the numerical solution of the eigenvalue probldmaddition, a normalized eigen-
function of the linear stability problen®(y, X, w), can be calculated. Note that the coordinéte
appears in (9.18) as a parameter.

In order to obtain the equation for the amplitude of a pedtidn we assume that
¢1(y7xuw) :A(X,(.\))cb(y,)(,()\)), (920)

whereA(X, w) is an unknown complex amplitude addy, X, w) is a normalized eigenfunction of
the linear stability problem.
Substituting (9.16), (9.17) and (9.20) into (9.14) and exdiihg the terms containing we

obtain

Lib2] =g, (9.21)
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where

i dA / !
g = E&{kaqwr(2[31—[32)(Uyq’ +Ud)
iciUkd
h

— Ba[Uy® + Uy, ® + 3U DK?] +

- i—kA{ 20kPy + wg—idb + (281 — B2) [Uy®@y + U By +Ux® 4 Uy @]
— Bo[Uy @y +Uyy®x + 3UKPDx

+3U q:k% FUD —VO" +Uxk2d]

+ (B2 — 1) (VD — KUx®) — (2B3 — 1)[KVD — k2Ux D]

ct [ . dk
+ 2ikUx ® — 2ikV &' +i¥Uyk¢] } (9.22)

An amplitude evolution equation fok(X,w) is obtained from Fredholm’s alternative, namely,
equation (9.21) has a solution if and only if the functipis orthogonal to all eigenfunctiorss of

the corresponding adjoint problem. Using the solvabildpdition
/ gbdy=0, 9.23)
we obtain the equation for the functié®iX, w) in the form

M(x,w):—f2+N(x,w)A:o, (9.24)

where

M(X,w) = 1k /_Z{zwkm(zsl—fsz)(uyd+U¢”)

icifUk
h

— B2[Uy® +Uyy® 43U dK?] + qa}&ady, (9.25)
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[ dk / "
N(X,0) = E/ {2wkd>x+w&¢+(2l31—l32)[uyq’x+u¢x

+Ux® 4 Uxy® | — B Uy @y + Uy, x + 3UKPDy
dk I "
+3U Pk o +Ux® —VO + Uy k2]
+ (B2 — 1) VIRD — KPUx®] — (2B3— 1) [KAV D — k2DUy]

cs [ . dk
% |:2|kUcDX + |U &CD

+ 2ikUx ® — 2ikV -|-i¥Uyk<D] }&ady. (9.26)

Thus, using the WKB method, the leading order approximatfahestream functio(x, y, w,t)

has the form

WXy, w,t) ~ AX, 0)P(y, X, w)exp [i (% /OX k(X,w)dX — oot)} . (9.27)

9.3 Discussion

Formula (9.27) provides the connection between local [Eiffdw approximations and takes into
account slow streamwise variation of the base flow. FollgWB], a few important conclusions
can be drawn from (9.27). First, all the three terms on that#igaind side of (9.27) contain
information related to the amplitude and phase of the pleation. Second, the growth rate and
phase speed of the perturbation at any given downstreamrstipends on the choice of the
perturbed quantities. Finally, the growth rate and phasedplepend even on the location where
these quantities are calculated. In particular, it is showjg] that for any given flow variabl&

one can define a local wavenumlieby the formula

)
ki(xYIQ) = —i=-InQ(xy), (9.28)

wherek, = ki, +ikjj and the values df;; andk;; are interpreted as the local phase speed and local
spatial growth rate. Thus, in order to make a meaningful amspn of the weakly nonlinear
model (9.27) with experimental data one needs to choosetiaydar flow quantityQ (say, pres-
sure or streamwise velocity), then measure it at a partidant and evaluate the right-hand side
of (9.28) at the same point. In other words, in order to vaédae weakly nonlinear model one
needs to have either detailed experimental data or, atteeha numerical solution of nonlinear

two-dimensional shallow water equations.
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10 CONCLUSION

The research work presented in this thesis can be dividediv# parts:

1. Linear stability analysis of flows with free surface.
2. Linear stability analysis of a flow under the "rigid-lidssumption.

3. Weakly non-linear analysis of a flow under the "rigid-lidssumption and derivation of

Ginzburg-Landau equation.
4. Linear and weakly non-linear stability analysis of twizage flows.

5. Stability analysis of a non-parallel flow.

Conclusions for each of these parts are presented in each fifllbwing sections.

10.1 Stability analysis of free surface flows

A flow with unbounded surface was analyzed in the chaptentS8@nant equations with momen-
tum correction coefficients were used as a starting pointdésivation of a system of equations

that governs behavoir of perturbation. The system was e@s follows:

e Small perturbations of pressure and velocity componemisin transverse and downstream

directions were imposed on the flow.

e The equations were linearized in the neighbourhood of tee Blaw by neglecting quadratic

terms of perturbation expansion.

e The method of normal modes was employed. The perturbatinatibtn was sought as
product of a function that depends on transverse coordordyeand a wave with a complex

frequency propagating in downstream direction.
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The obtained system of ordinary differential equation®tbgr with boundary conditions formed
an eigenvalue problem. It was solved by a numerical metheddan Chebyshev polynomials.
The solution was sought in the form of fundamental interpatepolynomials. As a result of the
solution, a set of eigenvalues was obtained. Each eigemvapresented the complex frequency
of a mode. The eigenvalues determine stability of a flow. Agdiency is complex, perturbation
growth or decay is possible.

It was found that bottom friction had a dramatic effect ongtability of the flow. In compli-
ance with Chend&Jirka [2], the stability parameter, thatuigld the bottom friction coefficients,
was considered as a defining factor for flow stability.

The conditions were found when the transition from stablartstable flow took place. The
search for the conditions was performed by obtaining smhstof the perturbation equations while

varying the two parameters:

e The stability parameter taking into account vertical ath$verse scale of the flow as well

as bottom friction coeffcient.
e The wavenumber of a perturbation mode.

The transition to unstable flow takes place at certain valigeability parameter that is referred
to as the critical value. As long as the critical value is knowe are able to predict whether
a specific flow is stable or unstable. The stability paramftethe specific flow needs to be
calculated and compared to the critical value. If the calmd stability parameter value falls in
the range below the critical one, then the flow is unstablethdfcalculated value exceeds the
critical one, the flow is stable.

Analysis of shallow flow usually implies numerous assumpiintroduced to simplify the
problem. The assumptions may affect accuracy of deterroimaf the critical value.

The effect on accuracy of calculations was evaluated forassumptions:
e The assumption of uniform velocity distribution in verticirection.
e The assumption of constant depth ("rigid-lid” assumption)

The assumption of uniform velocity distribution was tesbgcemploying momentum correc-

tion coefficients. The momentum correction coefficientsenesed to take into account the vertical
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non-uniformity of a real flow. For an uniform flow the momentwarrection coefficients were
equal to unity, while they deviated from unity for non-unifoflow and the deviation is larger for
flows with higher non-uniformity.

The "rigid-lid” assumption was tested by employing the Ftesnumber. The Froude number
was effectively ratio of gravity and inertia forces. Theeaghen the Froude number was close to
zero corresponded to "rigid-lid” assumption; the higheswa Froude number the larger was the
deviation of the flow from the assumption.

The critical value of the stability parameter was found fifiedent values of the Froude num-
ber and the momentum correction coefficients. The effectagtion of the two parameters on
the results was evaluated. The range of variaton of the peexswas selected to match the range
in nature and experiments [40], [34].

It was found that deflection of the Froude number from zerandichave a dramatic influence
on the stability analysis results as long as the Froude nustaged within limits typical for
shallow flows in nature (@ — 0.2). It was shown that for this case the application of theitiHg
lid” assumption introduced a relatively small error intabysis that did not exceed 2%.

The momentum correction coefficients, in turn, had highBué@mce on stability analysis re-
sults. For flows abundant in nature, the values of momentumecion coefficients were high
enough to introduce error about 10%. Depending on whethaswerse or downstream velocity
component was considered, neglection of a momentum camemefficient might lead to either
underestimation or overestimation of the stability of thosvfl

The neutral stability curves were constructed for varioalsi@s of momentum correction co-

efficients and for various values of the Froude number.

10.2 Linear stability analysis of a flow under "rigid-lid” assumption

The stability of a flow was analyzed by a linear method empigythe “rigid-lid” assumption.
The essense of the "rigid-lid” assumption was that watetldepconsidered to be constant, thus
enabling reduction of the system of equations to a singlatou

Momentum correction coefficients were used to compensateeftical non-uniformity of a

flow and influence of momentum correction coefficients oniktalanalysis results was analyzed.
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The governing equations for shallow water flow (Saint-Vepagquations were modified tak-
ing into account that the flow depth was constant. Then thatemns governing transverse and
downstream velocity components were added up and the flogtiumwas introduced. Thus a

single equation was obtained. The equation was transfoaséallows:

e The solution was sought in a form of series expansion in pepwka small parameter.
e The equation was linearized by neglecting quadratic exparerms.

e The method of normal modes was applied in order to transfogretiuation into ordinary

differential equation that forms an eigenvalue problem.

In compliance with method of normal modes, the solution waght as a product of a func-
tion of transverse coordinate and a wave packet with eacherhagling a wavenumber and a
wavespeed. The wavespeed was complex and defined stabditpode: negative imaginary part
led to amplification of a mode while positive imaginary pad ko supression of a mode.

The eigenvalue problem was solved by pseudospectral etibocmethod based on Cheby-
shev polynomials and a set of eigenvalues was obtained. dlbe of a bottom friction coefficient
was adjusted in order to find the threshold where a transftimm stable to unstable flow took
place. Later, the procedure was repeated for various waveeuvalues and a stability curve was
constructed.

A set of stability curves was obtained for various values ofrmantum correction coefficients.
The obtained curves were compared together and it was ftva thie area below the curve (insta-
bility region) tended to increase as vertical non-unifaynaf downstream velocity grows. Trans-
verse velocity component had opposite effect on flow stgbiéis it's non-uniformity increased,
the instability domain diminished.

It was found that for velocity non-uniformity expected intmal shallow wake flows the error
due to neglection of momentum correction coefficients coaltth 10%. Evaluation of vertical
non-uniformity of the flow velocity might be essential fortalming accurate stability analysis

results.
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10.3 Weakly non-linear analysis

Weakly non-linear analysis was performed in order to see thewperturbation is evolving. The
idea of weakly non-linear analysis was to consider pertishamplitude that was weakly de-
pendent on time and coordinate. The "slow” time and "streltlv®ordinate moving with group
velocity were introduced using a small scaling parameter

Following the same procedure as for linear stability anajybe Saint-Venant equations were
used as a starting point. The governing equation for theugEation amplitude was derived by

following the procedure:

e The "rigid-lid” assumption was used.

e The equations governing downstream and transverse welogihponents were differen-
tiated with respect to transverse and downstream cooedirraspectively. The equations

were added up and pressure was eliminated.

e The stream function was introduced. The velocity equatian tkansformed to an ordinary

differential equation with the stream function as unknowndtion.

e The solution was sought in a form of power series expansipowers of a small parameter

E.

e The terms proportional to the fourth powersofvere neglected.

The obtained equation contained terms proportional to tee Second and third power ef
The terms proportional te* formed the previously obtained linear egigenvalue problétaw-
ever, the solution of this first-order equation was soughtfiorm including an additional term that
was the perturbation amplitude weakly depending on timedamdhstream coordinate. By collect-
ing higher terms, two non-linear non-homogenious equatieere obtained. It was shown that the
two equations were resonantly forced, as correspondingpgemous equations had non-trivial
solutions. According to Fredholm’s alternative, the nmmiogenious equations have solutions if
certain solvability conditions are satisfied.

The solvability conditions have yielded an equation thategoed growth of perturbation am-

plitude. It was shown that perturbation amplitude was gosdiby the Ginzburg-Landau equation.
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The Ginzburg-Landau equation included a perturbation grderm, a dispersive term, and
a nonlinear term. The complex coefficients for the terms ddfiperturbation amplitude growth,
amplitude dispersion and non-linear effects respectivélye non-linear term coefficient (often
referred to as the Landau constant) determined whether plitade saturation is possible. If the
real part of the coefficient was negative, then amplitudeédro saturate instability and finite-
amplitude equillibrium was possible.

The coefficients of Ginzburg-Landau equation could be d¢ated by means of numerical
methods. The numerical method suitable for calculatiorhefdoefficients was developed and

described in the chapter.

10.4 Stability analysis of two-phase flows

Stability of a two-phase flow was analysed in the chapter bgmaef linear and weakly non-

linear method. The governing equations were derived froenSaint-Venant equations with an
additional term describing particle-fluid interaction. €l'mteraction was characterized by the
particle loading parameter. The particle loading paramekek into account ratios of the bulk

density of the particles to density of the fluid, actual draglte particles to Stokes drag and flow
aerodynamic response time to particle aerodynamic resgons.

Linear stability analysis was performed in order evaludfiece of particles on the stability of
the flow. The "rigid-lid” assumption was used. The equatiwese linearized by imposing a small
perturbation on the solution and neglecting quadratic serirthe method of normal modes was
also employed and a modified Rayleigh equation was obtained.

The equation was solved by a numerical spectral collocatiethod based on Chebyshev
polynomials. Critical value of the stability parameter watcalated and stability curves were ob-
tained for various values of the particle loading paramétevas found that presence of particles
enhanced flow stability. The critical value of stability pareter was found to decrease linearly
with growth of the particle loading parameter.

Weakly non-linear analysis was performed in order to sedrtfieence of particle loading
on perturbation growth. The Ginzburg-Landau equation vea&eld as a governing equation for

perturbation growth. A numerical method was employed ireotd calculate the coefficients for

110



the Ginzburg-Landau equation. The numerical method ireletermination of eigenfunctions
and group velocity by solving several boundary value pnoislewumerically and calculation of
coefficients by numerical integration.

The coefficients of the Ginzburg-Landau equation were ¢atled for various values of the
particle loading parameter. Special attention was paidhéononlinear term coefficient, the so-
called "Landau constant”, as it defined whether finite-atagk equilibrium and flow stabilization
was possible.

Calculations showed that for values of particle loading pei@r that were of practical inter-
est [41] for flows abundant in nature and engineering the harmmbnstant allowed possibility for
the finite-amplitude equillibrium and stabilization of aceadary flow. It was also found that the
particle loading parameter affected finite-amplitude gallhe amplitude decreased as the particle
loading parameter grew.

It has also been found that finite-equillibrium state miggntdna plane-wave solution, however,

analysis showed that the solution would not be stable.

10.5 Analysis of non-parallel flow

The chapter considered stability of a non-parallel flow, mtree base-flow profile changed down-
stream.

The solution for the Saint-Venant equations was sought orma Df a superposition of a base
flow that was weakly dependent on downstream coordinate aedtarbation. The solution was
substituted into the equation and the equation was line@iiy neglecting quadratic perturbation
terms.

The method of normal modes is usually applied in order tosfiam the linearized equation
to ordinary differential equation. The method of normal medsually implies that the solution is
sought as a product of a perturbation function and a wave.

In case of non-parallel flow the solution was decomposedargiowly varying functiorp and
a fast varying phase function. The functigiwas sought in a form of power series expansion in
the small parameter. By collecting the terms proportional & a modified Rayleigh equation

was obtained for functiop that formed a stability problem together with boundary dbons.
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The solution of the modified Rayleigh equation was sought iorenfof a product of a com-
plex amplitude and a normalized eigenfunction of the lirsability problem. The equation for
the complex amplitude was derived, that allowed to find tlaglileg order approximation of the
perturbation stream function.

The expression of leading order approximation containesketterms: the complex amplitude,
the normalized eigenfunction of the linear stability pebland the exponential term.

The form of the leading order approximation allowed to madeesal important conclusions.
First, all the three terms contained information relateth®amplitude and phase of the pertur-
bation. Second, the growth rate and phase speed of the Ipetitur at any given downstream
station depended on the choice of the perturbed quantéieg.(velocity components). Finally,
the growth rate and phase speed depended even on the low&oe these quantities were cal-
culated.

In other words, in order to validate the weakly nonlinear elathe would need to have ei-
ther detailed experimental data or, alternatively, nuoasolution of nonlinear two-dimensional

shallow water equations.
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