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Annotation

In this work new special algorithms are developed for ordinary and partial differential
equation problems with periodic boundary conditions for numerical modeling. These
algorithms are based on exact spectrum usage for spatial approximation of partial
derivative and method of finite differences. Algorithms are shown for different types
of two dimensional problems of mathematical physics, linear and nonlinear, basing on
the method of lines and difference schemes with exact spectrum. Created algorithms are
realized and results are compared using the program MATLAB. With the implemented
algorithms several applied problems are solved, i.e. the 2D magnetohydrodynamic flow
around cylinders placed periodically, 2D flow inside the cylinder depending on the ex-
ternal magnetic field and the metal distribution in peat layers.

Keywords: periodic boundary conditions, circulant matrix, finite difference, finite
difference with exact spectrum.



Anotacija

Darba izstradati jauni speciali algoritmi parasto un parcialo diferencialvienadojumu
problemu ar periodiskajiem nosacijumiem skaitliskai modelesanai, kuri balstas uz preciza
spektra izmantoSanu telpisko parcialo atvasinajuma aproksimeésanai ar galigajam difer-
encem. Algoritmi tiek veidoti dazadam divdimensiju matematiskas fizikas problemam
(linearam un nelinearam), balstoties uz taisnu metodes algoritmiem un preciza spektra
diferencu shemam. Izveidotie algoritmi tiek realizeti un salidzinati ar datorprogram-
mas MATLAB palidzibu. Ar iegutajiem algoritmiem tiek risinatas vairakas lietiskas
problemas, t. sk. 2D magnetohidrodinamiska pliisma ap periodiski novietotiem cilin-
driem, 2D plusma cilindra areja magnetiska lauka ietekmeé un metala koncentracija
kudras slanos.

Atslegvardi: periodiski robeznosacijumi, cikliskas matricas, galigo diferen¢u shéma,
galigo diferenc¢u shéma ar precizo spektru.
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Introduction

This work summarizes the research results of periodic boundary conditions in math-
ematical problems. There are known several classical types of boundary conditions —
first, second, third type and periodic boundary conditions. Periodic boundary conditions
(PBC) are commonly found in natural patterns. Examples could be a wave movement
in the water, whirls in the air, water, and air flow behind obstacles. Also in cooling and
heating devices with repeatedly placed elements PBC can be used in modeling them.
Modeling of such processes and equipment in the numerical analysis requires periodic
boundary condition usage. In numerical experiments, the physical model is replaced by a
mathematical model, creating problems of mathematical physics for ordinary or partial
differential equations with appropriate boundary conditions and initial conditions.

If in differential equation the value of unknown u(z, ...) is periodical in the direction
x with period L, equation u(z,...) =u(x + L, ...) applies for all values of x. Thus the
problem can be limited to the domain [0, L] and in the boundaries of the segment con-
ditions can be defined in the form of PBC w(0,...) = u(L,...), uz(0,...) = uz(L,...),
where u,, is partial differential in the x direction.

Additionally the periodic boundary conditions appears while solving problems of
mathematical physics in cylindrical and polar coordinates. These conditions apply to
the interval [0, 27| of the angular argument ¢.

Problem is discretized in homogenous grid in direction of variable x, x; = jh, j =
0, N. The values u(zj,...) in the grid points are denoted with y;. In the grid with 3-
point stencil PBC are given with yg = yy and y1 = yny11, creating a problem in points
[331, SN ,IL’N}.

Unlike other boundary condition types, PBC allows to freely increase approximation
order by increasing the count of grid points. For example, when using 2m + 1 point
stencil we need to use additional conditions of periodicity yx = yn+x, & = —m, m. Thus
we obtain algorithms with higher order precision.

The second advantage of PBC is the fact that approximation the differences with
finite differences results in calculations with Nth order circulant matrix A which can be
defined with the first row only. For such matrices it is easy to do arithmetic operations
in shorter computation time. Also it is possible to get the inverse matrix analytically.

As another advantage one can mention the simple solution of the spectral problem.

Orthonormal eigenvectors are wy, = \/%(1,2’“,2%, e ,z(Nfl)k)T, where z = e2™/N,

1 = v/—1 and they do not depend on the elements of matrix. By solving the spectral
problem, we can express the matrix A in the form A = WDW™*, where W is matrix
which consists of the eigenvectors in it’s columns, W* is the conjugate transpose of
W and D — diagonal matrix with the eigenvalues of matrix A on the diagonal. The
eigenvalues can be expressed in the form pp = Z;Vzl ajz(j —Dk,



Additionally to the possibility to create finite difference schemes of higher precision
(FDS), it is also possible to create difference schemes with precise spectrum (FDSES).
It is obtained by replacing the discrete eigenvalues in matrix D with the eigenvalues
of the continuous differential problem. The first works about FDSES construction for
heat transfer problems with boundary conditions of the first type [10] and hyperbolic
equation [1] were published in years 1975 and 1972. Similar algorithms for the boundary
conditions of the first type were used in the works of A. Gedroics, H.Kalis, A.Buikis, 1.
Kangro, S.Rogovs, A. Cebers [2] [12] [3] [4] [17] [5] for solving heat transfer equations of
hyperbolic type and for modeling dynamics of elongated magnetic droplet in a rotating
magnetic field.

In the 2D problem algorithms the second argument ¢ is not discretized. Method
of lines is used to solve such problems [6]. Besides the 3D problems can be reduced
to 2D problems by using the method of averaging with quadratic splines which was
developed by professor A.Buikis. The results were presented in international conferences
and published in scientific journals with co-authors A. Buikis, H. Kalis, I. Kangro, S.
Rogovs, M. Marinaki. The new algorithms are programmed in MATLAB. Some applied
problems were modeled numerically with their help.

General description of the thesis

Questions of research

What is the history of FDS and FDSES?

How to use use advantages of circulant matrix in numerical analysis?

How to create FDS with higher precision order?

How to create and implement FDSES for solving problems of mathematical physics?

Object of research: Numerical methods for solving problems of mathematical physics
with PBC.

Aim of research: Improvement of existing numerical methods and creation of new
ones for solving problems of mathematical physics with PBC.

Objectives of research

e Solve spectral problem for circulant matrices, create algorithms for operations with
circulant matrices;

e Creation and approbation of FDS with higher precision order for the second order
ordinary differential equations with PBC;

e FDS creation and approbation for linear and nonlinear heat transfer equation with

PBC;

FDS creation and approbation for wave equation with PBC;

FDS creation and approbation for Poisson equation with PBC;

FDS usage for solving some applied problems;

Actualize the created algorithms through publications and reports in international

conferences.



Bases of research: Computer program MATLAB, ESF project ”Support for Doctoral
Studies at University of Latvia” and ESF project
No0.2009/0223/1DP/1.1.1.2.0/09/APIA /VIAA /008 during years 2010—2012.

Methods of research: scientific and technological literature, analysis of publications
and internet resources, consultations and discussions with scientists in Latvia and
abroad, approbation of conclusions in practice and scientific contacts, creation and re-
alization of numerical algorithms using MATLAB.

Scientific novelty and Main results:

e Identified and researched possible usage of numerical methods to effectively solve the
problems of mathematical physics with PBC;

e Created effective algorithms for operations with circulant matrices basing on their
properties. Algorithms implemented in MATLAB;

e Created multi-point stencil discrete models for derivatives in uniform grid. With these
models obtained FDS with higher precision order for solving problems with PBC;

e In the scope of research for the first time FDSES advantages for increasing precision
in modelling problems of mathematical physics with PBC numerically were described
and proven;

e Basing on the research results implementation of discrete analogs for the classic linear
problems of mathematical physics with PBC were obtained with the newly created
methods (FDS and FDSES);

e The research results were used practically for solving several applied problems: mod-
elling of metal particles in peat layers [32]; modelling of nonlinear heat transfer [11]
[17]; creation, analysis and calculation of MHD liquid flow [22] [20] [25].

The thesis is created in the Faculty of Physics and Mathematics in supervision of
professor Harijs Kalis with support by the ESF within the project ”Support for Doctoral
Studies at University of Latvia”. Research was done during the years 2009—2013 in the
subbranch of mathematics ”Numerical analysis”. The thesis also can be applicable to
the subbranch ”Mathematical modeling”, because in the work several applied problems
are modeled and solved, i.e. magnetohydrodynamic flows, modeling of temperature and
electric fields, modeling layers of peat. Before choosing the subject of the research,
existing theoretical literature was analysed and no known results for algorithm creation
for problems of mathematical physics with PBC has not been found. Together with
the supervisor qualitative and quantitative approach was used to ensure the validity of
research for reaching the objectives. For approbation and public evaluation of results a
learning aid for students of master degree ” The finite difference schemes with the exact
spectrum for solution some problems of mathematical physics” has been created.
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1. Usage of circulant matrices in differential
equation numerical analysis

1.1 Operations with circulant matrices

Circulant matrix with dimensions N x N is a matrix in the form

ap a2 ag--- AN-2 AN—-1 AN
ay ai a2 --- AN-3 AN—2 AN—1
A= . . .
a3 a4 G5 -+ AN al a2
a2 az a4 -+ aN—-1 aN  ai

It can be expressed using it’s first row:
A =la1; az; az;--- 5 an-1; an]
It can be expressed in another form
A= f(P),

where P is a permutation matrix in the form

010---0
001---0
P=|:ii
000---1
100---0

and function f is a polynomial

N
f(z)= Z apz*
k=1

These matrices has simple algorithms for their operations, like addition, multiplica-
tion, finding the inverse matrix. These can be made in less computational time compar-
ing to standard matrices. Finding the eigenvalues and eigenvectors is also simpler.

Sum and product of circulant matrices is circulant matrix. When circulant matrix
has an inverse matrix, it is also circulant.
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MATLAB code for operations with circulant matrices can be found in the appendix
Al

1.2 Spectral problem for circulant matrix

Eigenvalues of matrix A can be expressed in the form f(2*), k = 0, N — 1 where z is
primitive root of unity of the Nth order. We can choose the root z = e*™/N (1, = \/=1)
of the equation 2% — 1 = 0. Thus eigenvalues are in the form

N
Lk = ZajBQM(]fl)k/N
j=1
Orthonormal eigenvectors of the matrix can be chosen in the form

1 .
wh = N(l,zk,z%,'-‘ LZINTURT e 0N — 1

Also circulant matrices has property
A=WDW* =W*DW,

where W is matrix consisting of matrix A eigenvectors, matrix D — diagonal matrix
with eigenvalues on the diagonal. Matrix W* is conjugate transpose matrix of matrix
w.
Additionally
WW*=F

and for circulant matrices multiplication is commutative, i.e. A and B

AB = BA
1.3 Solving systems of algebraic equations with circulant matrices,
examples

The linear problems of mathematical physics can be approximated with the linear sys-
tem of algebraic equations in the following form

Au=f

where A, u, f are the corresponding quadratic matrix and column vectors of order
N.

1.3.1 Sample problem

We look into such problem of differential equations with periodic boundary conditions

14



—u’(z) = f(2), w(0) = u(L), u'(0) = /(L)

Problem is defined in the interval x € [0, L], f — fixed function. In the boundaries of
the domain is periodic conditions, i.e. the function u values and values of derivative in
the boundaries equal.

For any function f(z) which is Riemann integrable the problem has unique solution

if this conditions applies
L
/ f(z)dz =0
0
(z

and a point for unknown function u(z) must be fixed

u(zo) = uo, o € [0, L].

The proof of the first requirement can be shown by integrating the initial problem
by x

L L
/ f(z)dx = / —u(z)dx = —u/(L) + v/ (0) =0
0 0

The fixed point for function u(z) is required because without it problem solution
uniqueness couldn’t be obtained. If function v(xz) would match as the solution of the
problem, function v(z) + C would satisfy the problem as well.

The solution of this problem can be expressed analytically.

At first we find solution for the problem with xy = 0 and ug = 0. It is in the form

L L
u(a;):/o (t—x)f(t)dt—z/o tF()dt

Using simple transformation it’s possible to find solution for the general problem as
well.
uw(z) = u(z) — u(xo) + ug

1.3.2 Problem discretization
.

We use 3 point stencil to discretize the problem by approximating operator —u’

—u(xj—1) + 2u(z;) — u(ji1)
h2

—u(z5) ~
Initial problem can be rewritten in the form

Ay = f,

where N x N size matrix A approximates the operator —u":

15



Matrix A is circulant, i.e. it can be defined by its first row and each next row is copy
of the previous one with element transition by one position. It can be defined in the
circulant matrix form

1
A= 52 =105 50;0: 1]
From the spectral problem for matrix A we know that its eigenvalues are
4 o km
= —sin® —
Mk 2 N

and eigenvectors w” are

e (1 (2mkj

Using properties of circulant matrices, matrix A can be expressed in form A =
W DW?*. Using this form, problem Ay = f can be transformed in the form Dv = W*f,
where y = Ww. For indices j = 1, N — 1 we can solve the corresponding values v;:

1
v; = E(W*f)j

For index j = N we get equation, which is consistent with the problem condition
fOL f(z)dz = 0. That’s why it must be found from the fixed point condition u(zg) = ug.
Stencil must be chosen so that xg is a point in the stencil. Let’s suppose it is the point
xj. By inserting the known values in the equation y = Wv, we can find the unknown’s
v index N by formula (Wwv); = ug. Unknown y of the initial problem we find from
transformation y = Ww.

1.3.3 FExact spectrum

The eigenvalues of the spectral problem’s continuous model are
ok \ 2
A= | —
(%)
i 1 o 2mikx
w® =/ —ex
V=P L

By using function f in the form

and eigenvectors are

+oo

k=—00

16



we can express the precise solution in the form

+o0 i bk
u(z) = Z apw™ (), ar = N (1.1)
k=—o0

Also in this case for index & = 0 when eigenvalue and by tends to zero (because of
integral condition on f), we cannot find the value of solution. That’s why we need to

use the fixed point to find it. It can be done by putting the fixed point condition in the
equation 1.1.
+oo

ap=(uo— Y apw(w0))/w’ (o)

k=—00,#0

1.3.4 Real solutions

For periodical function f(x) follows the complex expansion

= 3 wkx:w wh(x wk(z 670:
f(x)—k;_oo:bk (z) g:l(bk (z) + b_gw ™ (2)) + 7
1 o0 b
5 ;((bk 0w @) () + (b — b)) —wh () + 2 =

= ok ok boc
D (brecos T + b sin =) + ¢ by = (f, ),

where

1 1 [E 2 (L omkt
bhe = =+ bi) = —= [ @) k@) + ot @)in) = £ [ 50 cos T

. . L L
i i 2 2kt
brs = ——=(br, — b_j) = —= Fx) —w” d—/t' dt
o= =l =b) = —= [ @) k@) —wt@)in) = £ [ 10
Therefore the solution of the problem can be also obtained in real form:
(o]
2nk 2rk
u(z) = kzzl(akc cos 7er + ags sin %) + agc’
where ag. = b)\%’ Qs = b)ﬁ: For vector f of N order with component f;, j = 1, N
using wF = w7k = wk, w]N = w? =1, j = 1, N we can similarly get the following
expressions:
N No—1
f = Z bkwk = Z (bkwk + bN_kwNik) + bN2wN2 + waN =
k=1 k=1
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Na—1

1
5 2 (et by—i) (" +w™ ™) (b —by—) (w* —w™ ™) +bny w2 +byw®, by = (f,wl),
k=1

or

*No . .
27k . 27k b
fi= kg_l(bkc cos J + by sin Tj) + %,
where

N
1

bo=bn = —= > fi,boc = bne = —=
VN VN

N

2 2

bNQC - 71)]\72 = %7 ZCOS(jﬂ'),

VN N &

N
1
by, W) wN? — =< Zcos(jﬂ') cos(km), No = 5 bn,s =0,
j=1
*Ng N2 1

Zﬁk— Z,B +/8N/2

for periodic functions by = by = 0.
This discrete Fourier expression can be represented in the following form [7]:

N2—1 ] . .
2k . 2mkj . by, cos(m b
fi= ;(bkccosjvj+bk581n N ) + —2¢ . (m7) +%

Similarly the solution of the discrete problem can be represented in the following

form: N
*IV9o . .
27kj . 27kj ag
v = Y (anecos o gy sin T 4 20
k=1
where ag. = l;fkc, Apg = 2o = 0.

This solution can also be obtained from the orthonormal trigonometric functions.

Using the relations [7]

) _ sin(0.5a(L + h))sin(0.5aL)
Z sin(az;) = sin(0.5ah) ’
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sm(O 5a(L + h)) cos(0.5aL)
-1
Z cos(az;) sin(0.5ah)

we obtain z _, sing cosg = 0, z _, sing sing = Zjvzl cosy, cosg = Naby, 5.

N N .
> =1 sing = E] 1 cosy = 0, where sing, cosy are N-order column-vectors with the ele-
ments sin 7;\1;;],(3 27”” ,k,s=1,Ny, L = Nh.

We have the relat10n

2 Nao—1

N b2
>l e Yo,
j=1

From
*No a
Ay - Z(akcA COSE +aksA Sink) + ﬁA COS(
2
k=1
and

A cosp = g, cosg, Asing = g sing

follows akcpir = bke, apspik = bis-
If in the discrete Fourier expression

*ZM . B
27kj . 27mkj bo
M _ c
i = g_l(bkccos 7+ bks sin )+ =M< N

then using the least squares method we can prove that the Fourier coefficients by, bgs,
k = 1, M maintain own form and we can estimate the error

N
Z Zf? Oc +Zb
7j=1

Compared the discrete Fourier coefficients By, Bjs with to Fourier series coefficients
bke, brs we have [7]

Boc = boc + Y bvmyes Bre = bre + > (0N (m—k))e + DN (m-tky)e):

m=1 m=1

Bis = bis + ) (=b(vm—t)s + O (m+))s)

m=1

For f(z) € C¥(0, L) the coefficients decrease as k~(~+1),
We can obtain the solution of FDSES by replacing the discrete eigenvalues py with
the first N eigenvalues A\, k =1, N.

1.3.5 FExample

Let’s examine example of problem with f in form
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flz)=2—-05, L=1, 20=0, up=0

Analytical solution for this problem is

1
— (93 2
u(x) 12( x° + 327 — x)
MATLAB code for finding the approximated solution with 3 point stencil can be
found in appendix A.2.
For N = 50 maximal error is 1.3 * 1073,

1.4 Algorithms with precision of higher order

Algorithms with precision of higher order are useful for problems of this type. Because
of periodic boundary conditions we can choose algorithm with arbitrary precision by
adding more stencil points without a need for additional conditions. Such approach can
be applied to derivative of arbitrary order. Here will be shown how to obtain approxi-
mation algorithms for the second, the first and the fourth derivative.

1.4.1 Second derivative

Here we will implement approximation with finite element method for the the second or-
der derivative —u”(z;) for our problem. We take uniform grid with step h and grid points
xj. We build scheme using stencil with 2p 4+ 1 points (Zj—p, Tj—p+1,-- -, Tj, -, Tjtp)-

We use the method of unknown coefficients to find the constants C} and E, for the
scheme

1 p
W) = 5 Y Crulzign) + By

k=—p

h2Pu(2P42) (¢)

(2p+ 2)' ’ .fl','j_p < g < xj+p

Then we normalize the expression by substitution

IE*CCJ'

h

w(z) = u(xj +th) = u(t)
u//(w) — %ﬂ”(‘r)

wt2) _ 1 -(2p12)

ul )

Thus we get simplified expression

7(2p+2) (€)

ma —p<§{<p

_ LS~ oo
a"(0) = e Z Cru(k) + E,
k=—p

It is known that for this type of schemes symmetry condition persists
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Cm=0C_p

By using power functions u(t) = t™, m = 0,2p + 2 we can find the unknown coeffi-
cients.

e When m = 0 we get relation

p
Co=-2) Cp
m=1

e For odd coefficients 1 < m < 2p + 1 we get identity 0 = 0.

e For even coefficients 2 < m < 2p we get algebraic equation system B¢ = e where e =
(1,0,---,0)T is column vector, ¢ = (C1,Cs,- - ,C,)T. B is pth order Vandermonde
matrix in the form

B = . .

i 4p;1 9p;1 L. (p _ 2)2])72 (p _ 1)2p72 p2};72
1 47 9P ... (p— 2)212 (p— 1)21) p?P

e In the m = 2p + 2 case we find the value of E, in the form

p
By, =—2(C1+27"2Co + - + (p)PT2Cp) = =2 ) Crom®*?

m=1

For the matrix of Vandermonde B with the elements of the first row k,, = m? the
elements of the inverse matrix B~! are known [8]:

D D R

1<q1<<qp_;<p
q1, 5 dp—j Fi

ki [ (kg — ki)

1<q<p,q#i

bij =

From the equation Be = e follows that ¢ = B~'e. That’s why we are interested in
only the first column of the matrix B~!', that is elements with j = 1:

Z kg X o X kg, 4

1<q1<--<gqp_1<p
q1, dp—171

bi1 = =
! ki [ (kg — ki)

1<q<p,q#i

Y. d@xxdg,

1<q1<--<qp_1<p
a1, s dp—171

2 I -

1<q<p,q#i
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(p!)?

it I - -

1<q<p,q#i

2(=1)""(p!)?
2p—i)(p+i)

Follows that
o A=)

m?%(p —m)!(p +m)!
There are coefficients for some values of p:

L.p=1:C1=1,Cp=—2,Fy =

2.p:2101:§,02 1§,Co——§ E4—8,

3.p=3:0125702— 70,03 (8%0,00:—%,194——72

4. p:4ZC1 :%702: é,CgZ 3,04: 560’00 27025,E8:1152.

In this case the finite difference matrix A approximated the second order derivative
—u"(z;) is circulant with the form

1
A= _ﬁ[CO;Ch"' 7CP707"' 7070277013_17“. ’02701]'

The eigenvalues of matrix A are

12
Be = =73 Z Cpexp(2mkm/N) =

m=—p

1 2rkm
=2 <Co+2ZC coSs ——— N )—

m=1

P
= % Z Cy sin®(rkm/N) =

m=1

8 p )m 1 ) -
= h— Z ip £ sin“(rkm/N), k=1,N

m=1

Our next goal is to simplify the uy formula. For this we will express sin?(7mkm/N)
using Spread polynomials. Spread polynomial S,, states that

sin?(mf) = S, (sin?(9))

Spread polynomial has explicit formula [9]

k=0

Using transformation uw = m — k we get
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Let’s denote the coefficients of the polynomial with c,

m (m+u—1)! u_
G =5, (215 —1)l(m —)u)! (-4~

and
s = sin(27k/N)

We will also use simple transformation
p m P P
m=1u=1 u=1m=u

Thus we can express previous formula for py in such form

=

I I |
T e T
(= il= 11+
(7= Mz ¢
Q 43

E %

3 5

Next we denote with (), expression
p
Qu = Z Cmam,u
m=u

This way we get formula u; = % SP_ Qus". What we want to show is that @,
doesn’t depend on stencil point count parameter p. That’s why the eigenvalues of the
next precision scheme for p + 1 can be obtained by adding summand Qp+]_5p+1 to the

previous values.
We want to simplify it and show independence from p by proving that

~2((uw— 1)1)24ut
Qu= (2u)!

From C,, = H k—1£m m;EQkQ follows that we need to prove the expression

" L 2 m u — .
I o ;((;_u)})V—D“1=<<u—1>!>2

m=u \ k=1#m
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or
n

- k2 1 (m+0v)!
Z H E2—_—m2]m (rm +v) !<_1)UZ(U!)2

m=v+1 \k=1#m m{m—v-1)

where v = u — 1.
This expression can be written in the following form:

n

n 2 v
> TI 7]€Qﬁm2 (H(k:z_mz)>:(v!)2

m=v+1 \ k=1#m k=1
or
n n v
k2 k* —m?
Z H 2 — m2 (H k2 =1
m=v+1 \ k=1#m k=1
or

n

D\ I e =2

m=u \ k=u#m

Proof. This can be proved using residue theorem for function

SRR
Fz)=-T[ -
(2) z k2 — 22

k=v
Contour integral is used on function on circle C' with radius R > n. Contour can be
defined by formula z = Re with 6 € [0, 27]. Integral value tends to 0 when R — oo. It

can be proved by such estimation

feF(z)dz

The circle contains 1 + 2(n — v + 1) singularities inside, i.e. z =0 and z = v, ...,
z = £n. From the residue theorem follows that sum of all residues multiplied by 2
must be value of the contour integral around all singularities. In this case the sum must
be 0. It’s easy to see that residue in the point z = 0 equals 1. Residue in the points
z=m € [v,n| can be seen if F'(z) is rewritten in the form

n

27 1 /{2 0 n k2
Re?do| < 2r T =2
/0 Re? kH K2 Rlexp(20) | =T |

=v k=v

n

2 m2
O I e P e

z m zZ—m
k=v,k#m +

That means that residue in this point m is
SR k?
9 H k2 — m2
k=v,k#m

Also it’s easy to see that residue in point z = —m € [—n,—v] is the same as in the
respective positive valued points.
If all residues are summed up it leads us to the prove of the desired formula
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1.4.2 First derivative

Similarly schemes with higher order for the first order derivative can be created. For
the first order derivative approximation matrix A is modelled in the form

1
A= E[O,Cl,C’g,...,Cp,O,O,...,0,—Cp,---—Cg,—Cl]
With similar approach as it was done with the second order derivative, such values
for constants C}, can be found:

(p)? (=™
m(p —m)!(p+m)!

Cm =

And, similarly, eigenvalue formula can be transformed to the form

2 — ookt
E Z OS e (Sln N)
havi
aving 22m_2 ‘ ((m B 1)')2
Qm =
(2m —1)

1.4.3 Fourth derivative

Approximation matrix for the fourth order derivative is built in form

1
AW = et e eV, o0,0,.., 0,00, o)

h4 2 bl p 2
Calculating C,, gives us

24(ph*(=1)"™ ~ 1 @ Zp (4)
Cy’' =-2 C

2(p — ! ! 27 0 k
m?(p —m)!(p+ m)! kT k —

cW =

Eigenvalues can be expressed in the form

42
4 —42 ) sin?™(7k /N)

m=1

where

24(m!)24m=1 T 1 s
P = A S L pi g

™ m2(2m)!
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1.5 Schemes with exact spectrum

Schemes with exact spectrum can be defined for all previously mentioned derivatives.
Eigenvalues for approximation matrices are limit cases of approximations with higher
order if the order tends to infinity.

To build schemes with exact spectrum, the eigenvalues uy of the method with higher
precision must be replaced with eigenvalues of exact spectrum accordingly [10].

First derivative
For the first derivative eigenvalues must be replaced with values dj in such manner

Ak, when k < N/2
d = ¢ 0, when k = N/2
—AN_k, when k& > N/2

27k
Nh *

where A\, =

Second derivative
For the second derivative —u” eigenvalues must be replaced with values dj in such
manner

g — Ak, when k < N/2
¥~ \ Av_k, when k> N/2
where A\, = (%)2

Fourth derivative
For the fourth derivative eigenvalues must be replaced with values di in such manner

& — Ak, when k < N/2
ke AN—k, when k > N/2
_ (2xk\4
where \j, = (Nh) .

To visualize the eigenvalues for schemes of higher order and schemes with exact
spectrum, see joined list plots generated with N = 100 grid points in figures 1.1-1.3.

Aproximation for Imag (1-order derivatives) x10° Aproximation for 2-order derivatives (-u’)

Eig-val O(h%)
== Eig-val O(h%)
Eig-val O(h®)
— Eig-val O(h®)

Eig-val O(h%)|

Eig-val exact

Eig-val O(h%)
300 == Eig-val O(h%)

Eig-val O(h®)
200 — Eig-val O(h®)
Eig-val O(h%)

100 ) N Eig-val exact

-100 ~

-200

-300

o
b N o w s e o N ® o

Fig. 1.1 Imaginary part of eigenvalues for Fig. 1.2 Eigenvalues for —u’’ schemes
first derivative schemes
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x10° Aproximation for 4-order derivatives

Eig-val O(h)

9 == Eig-val O(h")

s Eig-val O(h%)
Eig-val O(h®)

7 Eig-val O(h®)
Eig-val exact

6

5

4

3

2

1

0 100

Fig. 1.3 Eigenvalues for fourth derivative
schemes



2. Heat transfer equation with periodic BC

The solutions of the linear initial-boundary value problem for heat transfer equations
are obtained analytically and numerically. We define the finite difference scheme with
higher precision order and finite difference scheme with exact spectrum (FDSES), where
the finite difference matrix A is represented in the form A = WDW*. W, D is the
matrices of finite difference matrix eigenvectors and eigenvalues correspondingly, W* is
the conjugate transpose matrix of matrix W. Problem is discretized for x and method
of lines (MOL) is used.

2.1 Mathematical model

We consider a linear boundary heat transfer problem with periodic boundary conditions
and initial condition in the following form [37]:

T (z,t) 0 ( aT(‘”v”) + f(z,t),z € (0,L),t € (0,t),

ot oz \_ O
oT(0,t)  OT(L,1) (2.1)
(Ovt) ( 7t)> O o ,t e (O>tf)>

T(z,0) = To(x),z € (0, L),

where v > 0 is constant parameter, ¢y is final time, Tp, f are given functions.

We consider uniform grid in the space z; = jh, j = 0,N, Nh = L. Using the finite
differences of the second order approximation for partial derivatives of second order
respect to z we obtain the initial value problem for system of ordinary differential
equations (ODEs) in the following matrix form

U(t)+vAU(t) = F(t), U(0) = Uy, (2.2)
In 2.2 vector U is unknown variable and contains approximated values of tem-
perature function 7 in the grid — U(t) = (T(zo,t),T(x1,t),...,T(xznN,t)). Similarly

F(t) = (F(xo,t), F(x1,t),...,F(zy,t)). Matrix A is one of the second derivative ap-
proximation matrix calculated in the section 1.4.1.

2.2 Analytical solution

We can consider the analytical solution of the discretized problem using the spectral
representation of matrix A = WDW*. From transformation V.= W*U (U = WYV)
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follows such equation in matrix form

V(t)+vDV(t) =G(t), V(0)= WUy, (2.3)
where V(t), V(t), V(0), G(t) = W*F(t) are the column-vectors of Nth order with
elements accordingly vy (t), 0% (t), vk (0), gk (t). The solution of this system is the function
can be expressed in the form

vi(t) = v (0) exp(—kpt) + /0 exp(—kg(t — 7)) gr(T)dr, (2.4)

where ki = V.

The unknown U is found using reverse transformation formula U = WV.

To find continuous approximated solution 7T'(z,t) we can use Fourier method and
express the solution in the form

where w*(z) = \E exp% are the orthonormal eigenvectors, v (t) is the solution

(2.4), with vg(0) = (Tp, wg,).
For the FDSES the matrix A is represented in the form A = W DW™ and the diagonal
matrix D contains the first IV eigenvalues d = Ag, k=1, N from the differential operator

(—88—;2) in the following way:

1. di = Mg for k =1, N, where Ny = N/2.

2. dk = )\ka for ]{ZZNQ,N.

If d, = px, then we have the method of finite difference approximation with matrix A.
The FDSES method is more stable as the method of finite difference by approximation
with central difference (FDS), because the eigenvalues are larger Ay > pg. The results
obtained with Fourier series contain on x = 0, x = L oscillations (Gibbs phenomena).
For FDSES method these oscillations disappear.

If the functions f(z,t), To(z) are proportional to the eigenvector
wp(x) = \/1/Lexp(2mipz/L), f(x,t) = g(t)wy(z), To(z) = aowy(z), then we can ob-
tained the solution in the form T'(z,t) = y(t)wp(z), where for function y(t) follows the
ODEs 5(t) = —vApy(t) + g(t) with y(0) = ao, A, = (32)?.

We have the exact solution in this case with

y(t) = exp(—vApt)ao + /0 exp(—kAy(t — £))g(€)de

The solution we can also obtain in real form:

29



2k 21k t
i + ags(t) sin WLQ:)—F aocz( ),

T(x,t) = Z(akc(t) cos

k=1
> ok . 2mkx boe(t) 5
— D
flx,t) kg_l(bkc(t) cos T + bys(t) sin 7 )+ 5 (2.5)

2 [ 2k 2 [E . 2mké
bet) =7 [ fetyeos e bate) = 7 [ e e
where ay.(t), ags(t) are the corresponding solutions of (2.4) by
2 [E ok 2 [ . 2mke
wcl0) =7 [ Tol)cos Tt 00nl0) = 7 [T sin T de,

gk(t) = bkc(t) or bks(t), R — I/)\k.

From Fourier series T'(z,t) = Yoo ar(t)wk(z), f(x,t) = S22 be(t)wk(z),
bi(t) = (f, w¥)., follows ODEs ay(t) = —vArax(t) + by (t) with ag(0) = (Tp, wk)«, \p =
(k.

We have following solutions

ar(t) = exp(—vAgt)ak(0) + /0 exp(—vAg(t — &))br(&)dE.

From orthonormal eigenvectors follows, that by(t) = ¢(t), a,(0) = ao, bi(t) = ar(0) =

0,k # p and a,(t) = y(¢).
From the discrete Fourier series

N/2

T(zj,t)= Y an(tyw’(zy),

k=—N/2

fla,t) = be(t)w(xy),
k=—N/2
wk (z;) :wf = +/1/N exp(2mikj/N)
or in the vector form U(t) = 27:/2_1\7/2 ar(t)w* we have ODEs

dk(t) = —I//Lkak(t) + bk(t)

with ay,(0) = (Up, w*), by (t) = (F(t),w**).
We have following solutions

o) = explvint)ac(0) + [ exp(vin(t = Ohu(e)ds

From orthonormal eigenvectors follows, that b,(t) = g(t), a,(0) = ao, bk (t) = ax(0) =
0,k # p and a,(t) = y(¢), if the eigenvalue p, are replaced with A, and p < N/2.
We can obtain the solution of the discrete problem also in the following real form
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2k ki aoo(t
u;j(t) = Z(akc(t) cos + ags(t) sin J) i 02( )7
k=1
*N2 ]
27k boe(t
fit) = ;(bkc(t) cos + bies (1) sin N]) n 02( )7
2”’“3 2 « orkj
bre(t) ng cos ——, bys(t )_N;fj(t)SIDN7

where ay.(t), ags(t) are the corresponding solutions of (2.4) by

2 & 21k

2 27kj .
akc(0) = N ;TO(%) €os = aks(0) = N ;TO(%) S
gk(t) = bkc(t) or bks(t), R = de, dk = Uk for FDS, dk = >\k for FDSES.
From the FDS the solution of the matrix equation (2.2) is U(t) = exp(—vtA)U(0) +

Jy exp(—vA(t =€) F(§)dE.
Using the matrix A representation A = WDW™* and transformation V = W*U
follows that for every matrix function f(A) = W f(D)W* and V = exp(—vtD)V(0) +

Ji exp(—vD(t — €))G(€)dE.

Therefore we have the solution in the form (2.4). If p < N/2 then the components
ve(0) = W Up)x = Y00y wikTh(x;) = ao Yooy wikwy(x;) = B (w, wP), gi(t) =
(W*F)y, = 22 (w, wb), k =T, N,

We get v,(0) = 4, g, (t) = %Q,vk(O) = gu(t) = 0,k # p and from (2.4) follows
t
(1) = 7 exp(-viyt)a + /0 exp(—vitp(t — €)g()dE), vi(t) = 0,k £ p.

For FDSES from U = WYV, w"f = Vhw*(z;) and replaced the discrete eigenvalue
with A\, we obtain the exact solutions T'(z;,t) = y(t)wp,(z;),7 = 0, N.

If the functions f(z,t), Tp(x) are proportional to the functions fi(z) = sin(27p1a/L),
fa(x) = cos(2mpax/ L), then using the expressions

VL

filz) = = (wp, () = w—p, (2)), fa(2) = \éz(wpz () + w—p, (2)),

w_p(z;) = wN_p(75) = w;(xj)aﬂ—p = pp, Aep = Ap

we have the preliminary results and the exact solution for max(p;, p2) < N/2.

Example

If f(z,t) = g1(t) fr(x) + g2(t) fo(@), To(x) = a1 fi(x) + aofo(x) then we have by(t) =
+ 90— p b(t) = 20k = 4py bi(t) = 0,k # (£p1, £pa), ax(0) = £k =
+p1,ax(0) = 2,k = £p2,a;(0) = 0,k # (£p1, £p2).

Therefore,

T(z,t) = a—p, (H)w_p, (t) + ap, ()wp, () + a—p, (D)w_p, () + ap, (H)wp, (t) =
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£1() (e exp(—Ap) + / exp(—wApy (t — €))g1 (€)dE)+

fa() (0 exp(—vApyt) + /0 exp(—1Apy (t — £))g2(£)dE).

In the discrete case we have the exact solution by replaced the discrete eigenvalues
Hpys Hpy > WIth Apy s Ap, .

2.3 Equation of Conduction in Fourier’s Ring

The equation

OV (xt) _ 0*V(at)

ot 0z

can be educed to the equation (2.1) using transformation V(z,t) = exp(£a?t)T(x,1),
where a and v are constant, f(z,t) = g(z,t) exp(Fa®t). In this case the homogenous
BCs of first kind and periodic BCs remains.

In book [13] is considered following interesting problem of heat transfer equation for
short ring domain:

+ a®V(x,t) + g(z,1),

oV (x,t)  9*°V(x,t) Hp
A T A

(V(z,t) — Vo), x € (—m,m),

where p, ¢ are the density of the solid ring and heat capacity, k is heat conductivity, H
is the heat transfer coefficient in external domain, p,w are perimeter and cross section
of the ring , V,Vj are the temperature and constant external temperature. The book
[13] is one of the first works where PBC are inspected. This problem for the first time
consider Fourier for the mathematical and physical modelling.

We have the periodic BCs in the segment [—7, 7] and periodic initial function Tp(x),
To(—7) = To(m). Using the transformation V(z,t) = exp(—a*t)T(z,t),a® = wH—fi we
obtain by Vj = 0 the problem (2.1) with v = %,f = 0, L = 2m. The solution we can
also obtained in the form:

Tl 1) = Y5 (axelt) cos(ha) + ars () sin(ka)) + 25,

where ay.(t), ags(t) are the corresponding solutions:

ake(t) = akc(0) exp(—rgt), ags(t) = aks(0) exp(—rit),

are(0) = L [™ Ty (€) cos(ke)de,

aks(O) = %firﬂ T@(f) sin(kg)df, R = V)\lm)\k = k2.

If the ends of ring * = +7 is given constant temperature V; then we have from the
problem V" (x) — %V(aﬁ) =0,V (—m) = V(r) = V; the stationary solution

cosh(ax)

Viz) =V cosh(ar)’

Hp

kw *

Using the stationary solution in [13] is determined the coefficient v of heat conductivity.
Assume that the source at the ends of ring is to cancel and in the ring the stationary
temperature is obtained and that the ring begin to cool from the heat transfer in the
external medium with the constant temperature equal to zero.

where a =
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This process can be described with the following heat transfer equation 6V§f’t) =

V% — a?V (z,t), with the periodic BCs and initial conditions V (x,0) = V. cosh(az)

i Scosh(ar) "

Using the expressions [13] cosh(an) =
we obtain the solution in the following form:

cosh(az) _ 2atanh(aw)) [% + Z;il C;QSS_J;;) COS(jJZ)],

2Via _ g 1 > cos(jn)
tanh(ar) exp(—a t)[ﬁ + ; PR

Vi) = cos(ji) exp(~ )],

This series have quick convergence, because V (z,t) ~ % tanh(ar) exp(—a?t) and it
is possible estimate the coefficients k. H to measure the temperature in two cross section
x =0,z = 7 of the ring [13].

2.4 Sample nonlinear heat transfer equation

We shall consider the initial - boundary value problem for solving the following nonlinear
heat transfer equation:

oT _ 9%(g(T))

E*W‘*‘f(T)a

where g(T) = T°F!, f(T) = aT” is nonlinear functions with a > 0,8 > 1,0 >
0,7 (z,t) > 0,Tp(z) > 0.

In books [15], [16] by (a = 1) is proved with the first kind boundary conditions that

1) by 8 < o + 1 exists global bounded solution for all ,

2) by 8 > o + 1 exists global bounded solution for sufficient small ||Tp||, but for larger
|| To]|, exists finite value of time T, when u(z,t) — oo if ¢ — T,. The initial value
problem for ODEs (2.2) is in the form

U+ AG = F,U(0) = Uy,

where G, F' are the vectors-column of N order with elements gr = g(u(zk,t)), fr =
af(u(zg,t)), k=1,N.
The numerical experiment with L = 1 and Ty(xz) = z(1 — z) > 0, is produced by
MATLAB 7.4 solver "o0de23s” [17]. For a = 5, 0 = 8 =3, (6 < 0+ 1), t = 10,
N =6, 10, 20 are obtained following maximal error using FDS and FDSES methods:
1) N =6 -0,0125 (FDS), 0.0011 (FDSES);
2) N =10 - 0.0046 (FDS), 0.0003 (FDSES);
3) N =20 -0.0013 (FDS), 0.0001(FDSES).

In the fig. 2.1, 2.2, 2.3, 2.4 are represented 4 type solutions by Ty(x) = sin'®(7z),
N = 50,0 = 3 for periodic boundary conditions obtained [11] [12]:
1) B =5,a = 100, the solution is "blow up” locally by T, = 5.481136,
2) f=4,a = 100, the solution is "blow up” globally by 7, = 0.2020261,
3) 8 =5,a =1, the solutions tends to zero, if t — oo,
4) p =4,a = 0.01, the solutions tends to the stationary limit.

The MATLAB program nelper.m can be found in appendix A.3.
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beta= 5,sigma= 3,a=100.0,T1=5.481100,T2=5.481131

beta= 4,sigma= 3,a=100.0,T1=0.202000,T2=0.202600

6 9
S0l.U(x.0) S0l.U(x.0)
o0, *  SolU(xTL 8 000000000% * SolU(x.T1)
(haee]
s K . 0 solu(xT2) o~ 0o, L0 _soluxT2)
o o 7 o
o
o [} (e
6 o
4 o o °
o o 5 o o
o o
53 e s o o
O ¥ x, © o o
0y ) 3
2 Op* *0 ° °
O ) 2 AR e,
I "% * TN
@ @, 1 * N
! Mm %%“Nw 3 "
0
-1
o 02 04 06 08 1 0 02 04 06 08 1
x x

Fig. 2.1 U - oo for x = 0.5, 8 = 5,0 =
3,a =100,Tx = 5.481136

Fig. 2.2 U » oo forz € (0,1),8=4,0 =
3,a =100, Ty = 0.2020261

beta= 5,sigma= 3,a=1.0,T1=0.050000, T2=25.000000 beta= 4,sigma= 3,a=0.0,T1=0.050000, T2=25000.000000

12 12
S0l.U(x.0)
* sol
1 0 Solu(x.T2) 1
08 08
06 06
0.4 04
HE* ok
¥ Fy ¥ %y
02 * * 02 * *
* % X X
0
-02 -02
0 02 04 06 08 1 0 02 04 06 08 1
x x

Fig. 2.3 U - 0if t —» oo, for B =5,0 =
3,a=1

Fig. 2.4 U — stationary if ¢ — oo, for
B=4,0=3,a=0.01

We have following results by N =40, 5=5,0=3,a=100:
T, = 5.448350(F DS O(h?)), T, = 5.536841(F DS O(h*)), T.
T, = 5.539669(F' DS O(h*)), T, = 5.539397(FDSES)

Results of FDSES we can see in the fig. 2.5.

5.539480(F DS O(hY)),

beta= 5,sigma= 3,a=100.0,T1=0.050000,T2=5.539000

509000, Sol
16 o O *  SolU(x;
o o 0 SolU(xT2)
o S
14 5 5
o o
12 o o
o o
o) Q
1 o o
o o
> 08 o o
00° %00
06
0.4
*rx
WX *k
02
* *
* *
-02
0 02 04 06 08 1

Fig. 2.5 The blow-up solution usind FD-
SES by 8 =5,0 =3,a =100

2.5 Burger’s equation

For numerical experiments we consider following nonlinear initial — boundary problem
for Burger’s equations in the following form [36]:
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8T§§,t) _ V62€:(E:L‘2,t) () GTa(z, t)7
where
1. To(x) = dvmsin(27x) /(2 + cos(2wx)), or
2. To(x) = sin'®(7rzx),z € (0,1).
Using the transformation T = —21/8139/) we can obtain homogenous linear heat

transfer equation
oV (x,t) V82V(:z:,t)

ot 0z
For the first case of initial conduction we have the analytical solution:

V(x,t) = 2 + exp(—4r2vt) cos(2mz),

T(x,t) = 4vm exp(—4n’vt) sin(2nx) /V (x,t).
In this case the method of lines is in the form

U(t) + vAU(t) = —0.5A4,U(t)%, U(0) = Uy,

where A; = ﬁ[O, 1,---,0,—1] is the 3-diagonal circulant matrix of N order. It approx-
imates the first derivative with precision O(h?). Higher precision scheme can be chosen
according to 1.4.2.

The numerical experiment with v = 1,£ = 0.2, is produced by MATLAB solver
”odelbs”.

In the fig. 2.6 and fig. 2.7 we can see the results obtained by N = 40 for both type
initial conditions by three moments of time t = 0,¢; = 0.01, 2 > t1.

nu= 1,71=0.010000,T2=0.020000 nu= 1,71=0.010000,T2=0.050000,max=1.012881,er=0.155089

Sol.U(x,0)
Sol.U(x,T1)
Sol.U(xT2)
ExactU(x.T2)

| ! L '
I S S - S T - T}

Fig. 2.6 Numerical solution by N = Fig. 2.7 Numerical and analytical solu-
40,t1 = 0.01,t2 = 0.02 tion by N = 40,t1 = 0.01,t2 = 0.05,err =
0.155

2.6 Example of heat transfer equation

We consider the initial boundary value problem (2.1) by L = 1, v = 1, f = 0,
To(z) = sin(2mmz), where m is integer in (1, N). Then the exact solution is T'(x,t) =
exp(—4n%m?t) sin(2rmaz).
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The solution of (2.1) with the Fourier method can be obtained in the form T'(x,t) =
S o vk(t)wF(x), where vy (t) is the solution of (2.4) in the form

v (t) = exp(—rpt)vp(0), Ky = dj, = 42k,

1
vi(0) = /0 To(x)wyg(z)dz = 0,

vR(t) = 0 for k # £m, v (0) = %2, vim(t) = i%ﬁn)%),

T(x,t) = v_pm()w ™ (x) + v (Hw™ () = exp(—4r*m>t) sin(2rmz).

Therefore we have using the Fourier method the exact solution.
We can consider the analytical solutions for FDS of (2.2) using the spectral repre-
sentation of matrix A = WDW*.

From transformation V. = W*U (U = WYV) follows the separate system of ODEs
(2.3). The matrix solution of the system (2.3) is V(t) = exp(—Dt)Vo, D = diag(pu)
or in the form (2.4), where vi(t) = exp(—krrt)vr(0), Kx = pk, vr(0) = (W*Uy)x = 0,

ve(t) = 0 for k # m,k # N — m.From puy_g = p, w¥~* = w* follows v,,(0) = %,
on-m(0) = .

Therefore U(t) = exp(—pumt)Uy, where Uy = (sin(2mma),--- ,sin(2rmay)? is the
column-vector of the NV order, z; = jh,j = 1.N,Nh = 1.

The solution can be obtained in the matrix form U(t) = W exp(—Dt)W*U.
For the FDSES i, = d;;, = (277m)? and we have also the exact solution.

Using the discrete Fourier transformation

N

U) =3 ap(tywk(Aut = gy,
k=1

we get ay(t) = exp(—puxt)ar(0), where ap(0) = Up.w*™ = 0 for k # m,k # N —m,
m(0) = YN an_p(0) = — YN,

We have U (t) = am () w™+an_m(t)w* = ‘/2—]7 exp(—pmt) (W —wi") = exp(—pmt)Uo.
For numerical calculation we consider the initial boundary value problem (2.1) with
ty =0.05L=1,f=0,Ty =sin(2rmz), for m = 1;2;3;4, N = 10.

The MATLAB code can be found in appendix A.5.

Using the operator Siltm(10) we obtain following maximal errors (see tab. 2.1):

ﬂ

Table 2.1 The FDS maximal error depending on order of approximation and m by N = 10

Method|m=1 m=2 m=3 m=4
O(h?) ]0.0115 [0.0457 [0.0899 [0.0990
O(h*) [5.10~* [0.0084 [0.0290 [0.0410
O(h%) [3.107> [0.0019 [0.0126 |0.0234
O(h®) [2.1076% |5.10=* [0.0060 |0.0153
FDSES [1-10~15|6-10~16|1.10-1%|7.1016

In the fig. 2.8, 2.9 we can see the FDSES exact solutions by m =4 and N = 10, N =
40.
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In the figs. 2.10 and 2.11 the error graphics for m = 1 can be observed.

r. anal. tNr.=20.0,max=0.0007444

Fig. 2.10 Error with FDS by N

40,0(h?)

. anal. tNr.=20.0,max=0.0000000

2.9 FDSES solutions by N =

= Fig. 2.11 Error with FDSES by N = 40

2.7 Mathematical model for heat transfer equations with convection

We consider the linear heat transfer equation in the following form [38]:

OT (x,t) _

2
1/8 T(z,t) ta oT (z,t)

+ f(z,t)

(2.6)

ot 0z2 oz

with the periodic boundary conditions(2.1) (a=const).

We can use the Fourier method for solving the initial-boundary value problem in
the form T'(z,t) = >, an(t)wh(z), f(z,t) = > 1cy be(t)w”(z), where w*(z) are the
orthonormal eigenvectors, by (t) = (f,w**(z)).

Then for the unknown functions ag(t) get the complex initial value problem for ODEs
of first order:

ak(t)Jr ar(t)A = be(t),
k(0) = %fL ( exp =2imks s, (2.7)
b(t) = f t)exp 2”Tksds
where A\, = V(QEk) —ai 22’“

The solution of (2.7) is
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ax(t) = exp(—Agt)ar(0) + /Ot exp(Ag)(t — s))br(s)ds.

The solution with the Fourier method can be obtained in real form with f(x,t) in
L *
form (2.5) where by.(t) = %(bk(t) +b_i(t)) = ﬁ Ik f(x]it)(w F(z) + wk(z))dr =
Lfo (s,1) cos 22, by (1) = = (bi() —b_4(1)) = = [ Flar, 1) (w™ (@) —wh(a)do =

2 fo (s,t)sin 2Wksals.

Therefore the solution we can obtain also in real form:

T(a,t) = 30 (are(t) cos ZZE2 4 ay (t) sin 2zke) 4 coclt),

where ay.(t), ags(t) are unknown functions.

From f(l‘ t) E)Téz it (82(7;3(396,1‘/) +a 8T(x,t))

follows f(z,t) = > po(akc(t) cos 27;:’” + ags(t) sin 272’”) + %CT@)-F

Y req ((ape(t) Re(Ag) + ars(t) Im(Ag)) cos 272“ + (ags(t) Re(Ag) — ake(t) Im(Ag)) sin 272’“),
because (ay(t)A\, + a—g(H)A—k)/VL = agc(t)Re(Ag) + as(t)Im(\g),

i(ar(t)M — a k(A £) VL = as(t) Re(M) — age(t) Im(\), where age(t) = 220,

ags(t) = i(ak(t)_;—k(t)

are the coefficients in the expression from the solution T'(z,t).
Therefore we obtain the initial boundary value problem for the system of two ODEs:

ake(t) + arc(t)Re(Ak) + aks(t) Im(Ae) = bre(t),
ags(t) + ks(t)Re< ) — age(t) Im(Ar) = brs(t), (2.8)
age(0) = %fOL To(s szsds,aks(O) = %fOL To(s) sin 2”Tk5ds.

2.7.1 Solutions of system of two ODEs

In the matrix form we have
Ag(t) + AR A(t) = Bi(t), Ar(0) = Ao, (2.9)

where

. Re(/\k) [m()\k)
Ay = <—Im()\k) Re()\k)>

is the matrix of second order, Ax(t), Bx(t), Ao are the column-vectors with elements

(ahe(t), ars(t)), (bre(t), brs(t)), (are(0), ars(0)).

We can represent the matrix Ay in the form A, = PDP~!, where

(05 =i\ 4 [ 1 i (X0
P= <—0.5i 1 )’P - <0.5i0.5>’D_<0 )\k>’

where \f = Re(\x) — iIm(\), Re(\) = v4E Im(),) = —2nke,
Then the matrix solution of (2.9) Ax(t) = exp(—At) Ao + fg exp(—A(t — s)By(s)ds
with the transformations Ay (t) = P~1A.(t), Ar(t) = PAg(t) can be obtained in the

form

A (t) = exp(—Dt) Ay + /Ot exp(—D(t — s)By(s)ds,

where AkO = P_lAko, Bk(t> = P_lBk(t).

For this separable we can determine the elements ay.(t), ags(t) of the column-vector Ay,
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depending on the elements

@kc(O) = akC(O) + iak5<0)~, dks<0) = 0.5iakc(0) + 0.5ak3(0),

bkc(t) = bkc(t) + ibks(t)Lbk:s (tl = 0-5ibkc(t) + O-5bks(t)

of the column-vectors Ao, Bi(t) we obtain the solution of the ODEs system (2.7) in
the following form

((ake(t) = exp(—Re(M)t)(arc(0) cos(Im(Ae)t) — ars(0) sin(Im(Ag)t))
+ Jy exp(—Re(\)(t — 5)) (bre(s) cos(Im(Ae) (t — 5))
—bgs(s) sin(Im(A\g)(t — s))ds,
ks (8) = exp(— Re()t) (ake(0) sin(Tm (A )e) + ags (0) cos(Tm(A)1))
+ fot exp(—Re(Ak)(t — 5)) (bre(s) sin(Im(Ag)(t — s))
\ Fbks(s) cos(Im(Ap)(t — s))ds

(2.10)

For k = 0 we obtain ag.(t fo boc(s)ds + apc(0).
In the limit case t — oo 1f the source function f = f(z) not depending on t the we
obtain from (2.9) the stationary solution.

If a = 0 then we have the expressions (2.8-2.10) with Re(\;) = 1/( ) Im(\;) =0.

2.7.2 Discrete problem with Iljin FDS

For the discrete problem we have the system of N ODEs in the form of (2.2)
U(t) + AU(t) = F(t), U(0) = Uy

where the circulant matrix A = =27, —(v + @),0,0,...,0,—(y — «)] [14], with the
eigenvalues fi; = %(sin(kw/N)Q(fy — tacot %’T), v = acoth(a), a = % (the order of
k

approximation O(h?)) and with the elements of the orthonormal eigenvectors wi =

\/ & exp(2mikj/N), wk; =/ exp(—=2mikj/N), k,j = 1, N. If h — 0, then fip — Ay
For the column-vector F(t) elements f;(t) we obtain f;(t) = S 52 (bge(t) cos 2 4
bs(t) sin 27;\5]) + Lo‘é(t),

where

bre(t) = % zj  Fi(t) cos 22,

brs(t) = R Y00y f5(t) sin 25 2k k=1,
bo(t) = by (t) = \/%Zjﬂ fj( ),

boc(t) = bve(t) = Febo(t),

bN27C(t) = %

b, (t) = & Y21, cos(jm),

No = T b, s(t) = bs(t ) =0,

Z*Ng ZNQ 1 B + N/2

For the solution wu;(t) = ZNﬁ (ag(t) cos 27rkj + aps(t) sin Zm) + Opé(t)
and u;(0) = ZNﬁ (axc(0) cos Zm + ags(0) sin 27;\],”) + aOCQ(O)

. Nomkj 2rkj
with ax.(0) = & ijl u;(0) cos T, aps(0) = & ijl u;(0) sin =L
we need to determine the unknown functions ay.(t), axs(t) of the following expressions
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Ji() = it + (Au)j = T8 (ane(t) cos 252 + s (1) sin 257 + 25504

W23 (ane(t) Re(fik) + ars () Im(fig)) cos 25 2rts + (ars () Re(fir) — ae(t) Tm(jiy,)) sin 252).

Therefore, for the determine the functlons ake(t), ars(t) we obtain the systems of
ODEs (2.8,2.9) and the solution (2.10), where the eigenvalues \j are replaced with the
discrete eigenvalues fix, k = 1, N.

If a = 0 then Re(ji,) = 35 (sin(kw/N)?, Im(juz) = 0.

2.7.3 Discrete problem in multi-point stencil

Using the multi-point stencil with the order of approximation O(h*),n =1,2,3,.
we have A = vA — aAY, iy = vy, — ailud|, where py, p are the eigenvalues from
circulant matrices A, AO.

The complex expressions we can obtain from following matrices representation A =
WDW*, A® = WD W*, D = diag(u), D° = diag(p?). Then the system of ODEs is

V(t) 4+ (vD — aD°)V (t) = F(t),
where V() = W*U(t), U(t) = WV(t), F(t) = W*F(t) or i4(t) + (v, — apl)og(t) =

Fu(t) (vg(t), fu(t) are the elements of column-vectors V(t), F(t)). We have following
solution:

0p(t) = exp(—fixt)uy (0) + /0 exp(— it — 7)fe(r)dr, b = TN =1

where fix = vy — apl, vy (t) = vn(0) + fO Fn(m)dr, vp(0) = (W*U(0))s.
The real solutions can be easily obtained from followmg expressions:

k k k k 40,k <01, .k 20, xk -0 k
Aw® = pow”, Aw™ = ppwy, ASw® = i pg|w”, AN = —i|ug|w*
or
Acosy = Asing = iny,, A° = —| Q| sing, A% sing, = |pd
k = Mk COSE, Asing = py sing, A° cosy = —|py| sing, A° sing, = |p| cosk,
where cosj, sing are N-order column-vectors with the elements cos %, sin QMW , =
1,N.

We have following properties for the scalar products:
% COSE, COSpy, = O m.» % sing, sing, = 0k m, % cosy, sin,,, = 0.
Then
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* No .
’ . . . aoc(t
U(t) = ;(akc(t) cosp +ips () sing) + 02() cosn.
*No
U(t) = Z(ch(t) cosg, +ays(t) sing) +
k=1
*No

AU(t) = pr(are(t) cosg +as(t) sing), A cosg = 0,
k=1
* No

AU (t) = Z |19 | (—ape(t) sing, +ags(t) cosg), A® cosy = 0,
k=1

*No
F(t) = Z(bkc(t) cosy, +bys (1) sing,) + boc (1)

2
k=1

2 2
bkc(t) = NF(t) COSg, bks (t) = NF(t) sink,

*No
U(0) =) (ae(0) cosg +bys(0) sing) + b0c(0)

k=1

aoc(t)

cosy,

C0sp,

Cos,

where the unknown functions ay.(t), axs(t) are obtained from the following ODEs

ae(t) + vprare(t) — alpglars(t) = bre(t),
dks(t) + Vﬂkzaks(t) + a’ugmkc(t) bks(t)v (211)
akc(O) = %UQ COSg, aks(O) = %UO sink .

This problem is equal to (2.8), where Re(\,) = vy, Im(\;) = —a|ul|. Using the
eigenvalues \j in (2.11) we have FDSES.
For initial data proportional to fixed frequency ko < N/2:

Uy = ac cosy, +assing,, F'(t) = be(t) cosy, +bs(t) sing,
we have akc(()) = ac(skmk, aks(()) = as(skO’k, bkc(t) = bc(t)(skmk, bks(t) = bs(t)(;kmk, and

U(t) = akyc(t) cosg, +ag,s(t) sing,, where ag,.(t), ax,s(t) are the solutions of ODEs (2.11)
in the form (2.10), where Re(\) = vk, Im(A) = —alud|.

2.7.4 FEuler-Newton FDS for solving Cauchy problem

We consider the discrete homogenous heat transfer problem in multi-point stencil with
the periodic boundary conditions (2.2). Using Euler-Newton FDS [39] we have in every
time step (t, =nr,n=1,2,...)

(U™ — U™ )1 = —TAU",n > 0,U" = Uy, I' = (exp(— A7) — E)(—Ar)"!, (2.12)
where U" = U(ty), A, E are the N-order circular and unit matrices. From (2.12) fol-

lows U = exp(—A7)U™ or U™ = exp(—At,)Uy. For matrix A representation fol-
lows exp(—AT)W = exp(—D71)W or exp(—Ar)w* = exp(—up7)w*, k = 1, N. Then
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Vi = WU, (U™ = W), UM = WYL Vrtl — exp(— D)V, VO = WU,
For real solutions we have exp(—AT) cosy = exp(—pugT) cosg,

n+1
exp(—Ar) sing, = exp(—pugT) sing and Ut = SN2 (a7 cosy, +ap ! sing) + 22— cosy,

N,
U™ = Y722 (a}. cosy, +ap, sing) + 28 cosy,
e . ag. 3
exp(—AT)U™ =3, 27 exp(— ,um)(cgkc cosy, +aj, sing) + =3¢ coso,
ENY 0 -
UO > oo (ag, cos;g +aks sing) + 0 cOSQ,
akc = Uo cosk,aks Uo siny, .
Therefore, we get
n+l _ n+l _ —
ap’” = exp(— ,um)akc,aks = exp(— ,ukT)aks, n=0,1,2,...,

or ay. = exp(—pyty )akc, af, = exp(— gty )aky )
= SiN2 eap(—pptn)(ad, cosy, +ad, sing) + %= cosg .

2.8 Heat transfer problem with periodically placed heat source

We consider the heat transfer problem with the periodically placed heat sources at the
xz-planes in the y-axes direction. The temperature depends only on y-coordinate and
time . We have the energy equation

oT(y,t) 0T (y,t)

PC;D at = k ayg + Q(yvt)a

where Q(y,t) is the source term.
Let us introduce the following non-dimensional variables:

2
Y L , pCpV , T —Ty ,
Lo’ A ¢ kTo

Yy = Q

Here Lo, p, Cp, k,Q, v are the half period, density, specific heat at constant pressure,
thermal conductivity, intensity of the applied heat source, kinematic viscosity. T, T,
Ty = Ty — T are temperature of the fluid away from the plane surface, temperature
of the plane surface, reference temperature, Pr is Prandtl number. We shall consider a
heat source of the form Q = Qoo (y)H (t), where §, H are Dirac J-function and Heaviside
function.

The dimensionless problem for heat transfer equation is in the form (2.1) with v =
1/Pr, f(y,t) = Qod(y — Lo)H(t)/Pr,y € [0, Lo], L = 2L¢, Ty = 0. The method of lines
is in the form (2.2), where F' = %, U(0) = 0 and A is replaced with 3-A.

To consider that
T(y,t) = Y2y (are(t) cos ZEY + ay (t) sin 2752) 4 2ol

F9:0) = T2 () cos 252 2150 11y, (1) s 282 + sl
bkc =7 fo QO 5 LO)/PT Co8 272k€d£ - 261230 COS(T‘-]’C)? bks(t) =0,
Where ake(t), ags(t) are the corresponding solutions of (2.4) by
are(0) = aks(o) =0, gi(t) = bic(t), K = A or
ake(t) = [y 29 cos(mk) exp(— 3k (t — £))dé = 792 cos(mk) £ (1 — exp(—3t)), age(t) =

2Q
Lort-

Then the exact solution is in the following form:
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2Q0 [~ Pr Axt 2rky t
T(y,t) = —1- —— k — .
(y:1) LPT(; " ( exp< Pr)>cos(7r ) cos 7 —|—2
where \j, = (2£)2,
For L =4, N =100, Qo =1, Pr =0.71;7.0, t = 1 using Matlab we have following
figs. 2.12-2.15. MATLAB code can be found in appendix A.6.

Temp,Tb= 1.000,Pr=0.7100,Max= 0.669 x107° Error,Tb= 1.000,Pr=0.7100,Max=0.6694,5=0.6655
T T T T T T 4 T T T T T T T

0.7

m
= = Exact
xact || 350

25}

- L2
15
: M
0.5+ : | :
-4 -3 -2 -1 0 1 2 3
y y
Fig. 2.12 Temperature T'(y, 1) depending Fig. 2.13 Error depending on y at t =
on y by Pr=0.71 1,Pr=0.71
Temp,Tb= 1.000,Pr=7.0000,Max= 0.213 x107° Error,Tb= 1.000,Pr=7.0000,Max=0.2126,5=0.2092
0.25 T T T T T T 35 T T T T T T
= = Exact
al
0.2 b
25f
0.151 s
- 5
ol 15F
1t
0.05
0.5
0 0
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 2 3
y
Fig. 2.14 Temperature T'(y, 1) depending Fig. 2.15 Error depending on y at t =
ony by Pr=717 1,Pr=17

2.9 MHD problem with convectively driven flow past an infinite
periodically placed planes

The laminar 1D unsteady flow of an viscous incompressible conducting fluid past a
periodically placed xz-planes is considered. Initially, it is assumed that the xz-planes
and the fluid are at same temperature T. At ¢ > 0 in the zz-planes is raised with
the periodically placed heat sources Q(y,t) = Qod(y — (2n+ 1)Lo)H(t), n € Z, where
0, H are Dirac é-function and Heaviside function, Lg is the half period. An uniform
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magnetic field is applied in the z-axes direction perpendicular to the velocity vector.
The fluid is assumed to be slightly conducting, so that the magnetic Reynolds number
is much less than unity and hence the induced magnetic field is negligible in comparison
to the applied magnetic field. The motion is due to free convection only. Under these
assumptions the governing boundary layer equations for momentum, and energy for free
convective flow with Boussinesq approximation are as follows [40]:

. 8u((91;,t) _ 0 u(y D 4 gB(T(y. ) — Too)—
M,y € [~Lo, Lo],t > 0,
pCpaTtg?’ ) _ ka T( yt) +Qy,t), (2.13)
T(y,0) = Too,u(y,()) = 0,u(—Lo,t) = u(Lo,t) =0,

T(—2L0, t) — T(O, t) T( 8QyLo,t) 8T8(?(J),t) )

The equations (2.13) are reduced to the following nondimensional form:

ulpl) — PG 4 GrT(y,t) — Mu(y,t),y € (~L, L), >0,

PrOLu — P10 L 1)

T(y,0) = uly, )—OU(Lt)—U(Lt)Z(L

T(—2L,t) = T(0,t), G20 — o100,

(2.14)

Here the following non dimensional quantities are introduced:

/ vpC'
y—L,t— OtufU,Pr:—pkp,
UBOL0 r_ T— Too
M = py , T

6L( o0)
Q= kTOQOQG == Z/U :

Here Lo, L, By, p, o, 3, Cp, k, Qo, v, g, u, Ty are the dimensional and non dimensional
values of the half period, transverse magnetic field strength, fluid density, electrical con-
ductivity of fluid, volumetric coefficient of thermal expansion, specific heat at constant
pressure, thermal conductivity, intensity of the applied heat source, kinematics viscosity,
acceleration due to gravity, z-component of velocity, temperature of the plane surface,
Pr, Gr, M are Prandtl, thermal Grashof, Magnetic (Hartman?) numbers.

We can determine at y = —L the following dimensionless parameters:

T= —%f’t) — skin friction, Nu = —%f’t) — Nusselt number. We shall consider the
heat source of the form Q = Qoo (y)H (t), where §, H are Dirac J-function and Heaviside
function.

Using the finite differences of second order approximation for partial derivatives re-
spect to y we obtain from (2.14) the initial value problem for system of ODEs in the
following matrix form

{ U(t)+ AU(t) + MU(t) = GrV (),U(0) = 0, (2.15)

V(t)+ £BV(t) = 55 F, V(0) =0,

where A is the 3-diagonal matrix of 2N — 1 order in the standard form with elements
%(—1,2,—1) on diagonals, A(1,2N —1) = A2N —1,1) =0, y; = —L + jh, yan = L,
h=%, j=0,2N.
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B is the circulant 3-diagonal matrix of 2N order in the form #[—1, 2, —1] with the

elements B(1,2N) = B(2N,1) = -1, F = (1,0,0,...) is the unit column-vector of the

2N order, U(t), V(t), U(t), V(t) are the column-vectors of 2N — 1 and 2N orders with

elements u;(t) = u(y;,t)), vj(t) = T'(y; — L, t), 4;(t) = %, 0(t) = %;L’t).
For air Pr = 0.71 and N = 100, Gr = 100, M = 0;1000, L = 2:4, t =

0.5;1.6;4.8;6.4; 8.0 using Matlab we have following Figs. 2.16—2.19. In Figs. 2.20—
2.23 are represented the results obtained by modelling the water for Pr = 7.
The maximal values of the temperature by ¢ = 8, L = 2 is: max(T) = 2.15 by

Pr = 0.71 and max(7') = 0.60 by Pr = 7. For L = 4 we have: max(7T") = 2.067 by
Pr = 0.71 and max(7T) = 0.59 by Pr = 7. For the Nusselt number we have constant
value Nu = 0.32 undepending on the time.

MATLAB code can be found in appendix A.7.

Velocity,MaxU= 0.30,M=1000.0,Gr=100.0 Temperature,MaxT= 2.07,Th= 8.000,Pr=0.7
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Fig. 2.17 The solutions T'(y,t) depend-
ing on y € [-2L,0] at different time
momentsL = 4,Pr = 0.71, (max(T)

Fig. 2.16 The solutions u(y, t) depending
on y € [—L, L] at different time moments
at L =2, M = 1000, Pr = 0.71, (max(u) =

0.31,7 € [-7.35,—0.45)) 2.067)
Velocity,MaxU= 0.20,M=1000.0,Gr=100.0 Velocity,MaxU=370.62,M=0.0,Gr=100.0
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Fig. 2.19 The solutions u(y, t) depending
ony € [—L, L] at different time moments
L = 4M = 0,Pr 0.71, (max(u)
370.6,7 € [—311.6, —3.1))

Fig. 2.18 The solutions u(y, t) depending
ony € [—L, L] at different time moments
L = 4,M = 1000, Pr = 0.71, (max(u)
0.20,7 € [—3.23, —0.3))
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Temperature,MaxT= 0.60,Tb= 8.000,Pr=7.0
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Fig. 2.20 The solutions T'(y,t) depend-
ing on y € [-2L,0] at L = 2,Pr
7, (max(T") = 0.595)

Fig. 2.21 The solutions u(y, t) depending
ony € [-L,L] at L = 2,M = 0,Pr
7, (max(u) = 30.6, T € [—48.4, —0.49])
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Fig. 2.22 The solutions u(y,t) depend-
ing on y at different time moments L =
4, M = 1000, Pr = 7, (max(u) = 0.05,7 €
[-0.9, —0.06])

Fig. 2.23 The solutions u(y,t) depend-
ing on y at different time moments L =
4,M = 0,Pr = 7,(max(u) = 20.49,7 €
[—41.9,—0.4])

2.10 System of parabolic type equations

We consider the initial-boundary problem of linear M-order system in the following
form:

aT"éSjm’t) = Zé\il a%;(km,saﬂgig(fi)) + fm($7t),$ € (OaL)vt € (O)tf))
Tm(oﬂt) = Tm(L>t)? aTrgiOJ) = 8T%§L7t)at € (Ovtf)> (216)

Tin(,0) = Tm,O(x)7x €(0,L),m=1,M,

where K is the positive definite matrix with the elements km.s ;Tm.0, fm(x,t) are given
functions.

This system we can rewritten in the matrix form

Qulet) — 9 (KD 4 f(a,1), 3 € (0,L), 1 € (0,tp),
u(0,8) = u(L, t), 2408 = 2uLl) 4 (0, ), (2.17)
u(x,0) = up(z),z € (0, L),
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where u, f are column-vectors with elementsT,,, fn, m =1, M.
Using the Fourier series we can obtain the solution in the following form similar to (2.5):

u(z,t) = 352 (are(t) cos 27%” + ags(t) sin 272”) _|_:06%’
P TR Tk o(t
) = T 0 ) i

bre(t) = 2 [IF f(&,1) cos ZEEde b (t) = 2 [T f(€, ) sin 22K e,
where the column-vectors ay.(t), aks( ) of the M order are the corresponding solutions
of the following differential equations

akc(t) + /\k}?akc(t) = bkc(t)a akC(O) = % fOL uof) COS %df, (2 18)
aks(t) + MK ags () = bys(t), ars(0) = 2 foL up€) sin %d& '

where by (t), bxs(t) are the column-vectors of M order.

The solution of this system is the vector functions
elt) = exp(-MEDar(0) + fy cap(~NEK(t = Dbuclr)dr, 10
aks(t) = eXp(_)‘th)aks(O) + fo exp(_)‘kK(t - T))bk:s (T)dT'

For the discrete problem (O(h?") order of approximation) we have the system of
ODEs in the following form:

0;(t) = KAv ()+f-(t),te [0,¢/],
{vj(o) uo(;), ]jh,Nh:I{,j:LM (2.20)

where the column-vectors of the M order v;(t) = u(x;,t), f;(t) = f(xj,1),
the expression of the finite difference operator in multi-point stencil with 2n-+1-
points AUj = %(Cn(vj,n + Uj+n) —+ ...+ Cl(vj,l + Uj+1) + C()’Uj),Co = — Zgzl Cp,

C, = 2(nh)2(—1)P~!

Rin—p) i P = 1,n. We have following matrix representation for circulant

matrix (A = f/l) = —%[C{),Cl,.. Cn,O ,0, Cn,. . .,Cl], with the eigenvalues
2 m—1

fi = 75 Yoy Pnsin®™(7k/N), Py, %

Using the discrete Fourier method we can obtain the solution in the following form:

03(t) = i (ael(t) cos 20+ ay (1) sin 2580 ) 4 200,

fi(t) = *N2 1 (bre(t) cos % + bys(t) sin 27121;’7) + bOCT(t)’

be(t) = % Zj:l f(t) cos 27er]'7 bis(t) = N Zj:l fi(t)sin 27;\1;37
where ag.(t), aks(t) are the corresponding solutions of (2.18, 2.19, )\ is replaced with

) with ag.(0) = & Zj 1 uo(xj) cos 27;\?] ,ags(0) = % Z;VZI ug(z;) sin 27;\?3.
For FDSES, by replacing the discrete eigenvalue pg with A we obtain the exact solutions
for initial data with the frequency < N/2.

2.11 System of parabolic type equations with convection

We consider the initial - boundary problem of linear M-order system in the following

form: u
%:Z (%(kmgax)‘i‘prgs a;")+fm7
T (0,8) = T (L, 1), 2500 nggf L (2:21)
T (33 0) T 0( ) € (OvL)’ Ma
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where K is the positive definite M-order matrix with different positive eigenvalues wr >
0 and the elements &, 5, P is the real M-order matrix with different real eigenvalues pp
and the elements p,, s,m,s = 1,M..

This system can be rewritten in the matrix form

Ou(z,t) Q (
ot T Ox
u(L,

w(0,) = u(L,t
u(x,0) = ug(x), x

£2) + P20 (1),
) ud 0 _ Mﬂ e (0.1p), (2:22)
€ (0.1),

where u, f are column-vectors with elementsT,,, fm, m =1, M.
Using the Fourier series the solution can be obtained in the following form:
u(a,£) = T332 (ane(t) cos 2= + as (1) sin 252) + 251,
o(t

(1) = T (buel) cos 255 bks< Jsin 2552) + 50,
bre(t) = 2 [F f(£,1) cos 2”’“5 de, bys(t) = 2 [ (€, ) sin 22K e,
where the column—vectors age(t), aks( ) of the M order are the corresponding solutions
of the following differential equations similar to (2.8)

{akc(t) + )\krl:(akc(t) - MF)ak:s(t) = bkc(t)a (2 23)
aks(t) + A Kags(t) + 2”leakc(t) = bys(t),

where bre(t), bks( ) are the column-vectors of M order, a.(0) = %fOL up€) cos %df,,
axs(0) = % f ) sin %d{ . The solution of this system we can obtain in the following
form

ar(t) = exp(—Rt)ag(0) + /0 exp(—R(t — 7))by(7)dT, (2.24)

)\kk 27rk P

where ayg, by, are the column-vectors and R = <
2k p )\kK

) the matrix of the 2M

order.
For the discrete problem (O(h?") order of approximation) we have the system of
ODE:s in the following form:

{ b;(t) = K Avj(t) + PA;(t) + f5(t )’
v;(0) = uo(%) xj=jh,Nh=1L,j=

O,tf],

)

(2.25)

where the column-vectors of the M order v;(t) = u(x;,t), f;(t) = f(xj,1),
the expressions of the finite difference operators in multi-point stencil with 2n+1-points
(N 2 2n+1) Av; = 35(Co(vjn+vjen) ++ - +C1(vj—1+0j41) +Cov;), Co = = 325, Cp,

Pt

_ 2(n)*(=
Cr = P P = L7 | 1
n! 1)P
A%v; = ;L(Cn(vj+n — Vjn) + 0 F vy — vj-1)), ¢ = p((n) 15)71(724,_ pp = Ln.

We have the following matrix representatlon for circulant matrlces = —-A =

-5z L1Cy, Cy,...,C,0,...,0,Chp,...,C], with the eigenvalues 1, = h2 szl Qpsin® (1k/N),Q, =

12 1

% and A = A9 = %[O,cl, ceesCny0,...,0,—cp, . .., —c1], with the eigenvalues
2mpk

pp =5 3 cpsin TR

Using the discrete Fourier method the solution can be obtained in the following form:

(0) = 125 (ke (2) cos 2888 + (1) sin 2882 1 222
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fi(t) = *NQ(bkc( t) cos =7 2R 4 by () sin 27;\?]) + b0c2(t)7

buelt) = % 3520 £,(0) s B2, by (1) = 3 0, £(0)sin 255,
where ay.(t), ars(t) are the correspondlng solutions of (2.23,2. 24 and Ay, =7 2k are replaced
with g, Im(u), a(0) = % Z] 1 uo(xj) cos 27]r\’f],czlz€3(0) =% Zj 1 uo(a;])sm 27;\;”
We can also obtain this real form from the following expressions
Acosy = pycosy, Acosy = —|ud|sing, Asing = pysing, A%sing = |ud| cosy, where
sing, cosy are N-order column-vectors with the elements sin % cos 27;\?] and using the
orthonormal conditions
Z;yzl sing cosg = Z;Vﬂ siny, sing = Z;V:1 COS}J, COSg = %519,&
Then for fixed frequency k in the initial data the solution can be written in the form
u(t) = ds(t) sing +d.(t) cosg, vector-functions where ds(t), d.(t) are unknown the time-
depending vector-functions. Then w(t) = dy(t) sing +dc(t) cosy,
Au(t) = pg(ds(t) sing +dc(t) cosg), A%u(t) = |ud|(ds(t) cosy, —d.(t) sing).

For FDSES, replaced the discrete eigenvalue juy, Im(u?) with Ak, < 2k e obtain the
exact solutions for initial data with the frequency < N/2.

2.12 Stability of approximations for time-dependent problems

The time-dependent difference equation (2.25) using the MN-order column-vector v(t)
with the elements v}"(t),j = 1, N,m = 1, M in the form

~K QA+ PR A u(t) + f(t) (2.26)

serves as an approximation to the differential problem (2.22), in the sense that any
smooth solution u(t) satisfies the approximation (2.25) modulo a small local truncation
error ¥(h,t) = O(hQ”) :

U0 — (K@ Aut) + (PR BJult) + 1(1) + (1), (2.27)
where MN—order matrices

ki1A - kimA 1011140 oo prmA°

K@A: ,P®A0: o ’
A

kEyaA - kam M, 1A0 - pu,m A°

are Kronecker tensor product, u(t),u(0), f(¢) are MN column-vectors with the elements
u(t), ui™(0), fi*sm=1,M,j=1,N.

Matrices can be defined with the representation A = WDW*, A° = WDW*, and
solved numerically with the Matlab operator ”kron”,

In order to link the local order of accuracy with he desired global convergence rate of the
approximation, one has to verify stability. We say that approximation (2.25) is stable,

if for all sufficiently small h the following estimate holds

|exp(BY)|| < Ci,,0 < t < tg,Ch,, (2.28)
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where B=-K Q@ A + P®A0,C'tf > 0— is constant.

If eigenvalues of matrices K, P are A\;(K) > 0,A\s(P),s = 1,M then the transfor-
mation of M order matrices Wg, Wp, and the representatlon K = WKDKWK , P =
WpDpWp5!, exist where Dg = diag(\s(K)), Dp = diag(\s(P)) are the diagonal ma-
trices. From properties of Kroneker tensor product follows (W* = W‘l) :
B=-KQA+PRA = —(WxgDxWg' Q@ WDW*) + (WpDpWp* @ WDW*) =
Wk @W)(~Dr @ D)(Wr' ® W)+ (e QW)(=Dr & DOY(Wp' @ W*)=

(Wi @ W)(~Dx @ D)Wy @ W)~ + (Wp @ W)(—Dp @ DO)(Wp @ W)~

The eigenvalues A\(B) of matrix B are —upAs(K) + pdA\s(P),k = 1,N,s = 1, M with
the Re(A(B)) < 0 and the system of ODEs is stable.

For the approximation, if vm( ) = Tm(zj,t),m =1, M and for every time moment t
h2nq, (2n+2)( )

— . n 2n+4-2
= Auj + Eop, o) , Eop = 22k:1 Crk"
h2nq,(2n+1) I3
U; = A, + €2RT)!(])7 eon = =2 oy kP an 5 < &5 < Tpyy,

then u(t) = Bu(t) + f(t) + ¥(h,t),where v, f,¥ are MN-order column- vectors and

w(h,t) = O(h*")or [[W(h,t)]| < h"( 2'5?:2),||K||M2n+2<>+ a2l || P|| Map s (£)-
aTxt)

M = max | =5, is the maximal estimate for corresponding derivatives.
Given stablhty we can now estimate the global error e(t) = v(¢) — u(t) and find, that
the error e(t) is governed by the error equation

Oe(t)
ot

= Be(t) + ¥(h,t).

The solution of this equation is given by e(t) = exp(Bt)e( +f0 exp(B(t—¢&))¥(h,&)dE.
From Re(A(B)) < 0 follows that || exp(Bt)|| < Cy, and

lle@)II < Ci, ([[e0)]] + . 1@ (h, 7)) = O(h*").

Thus, if both ||@|| and||e(0)|| are of order O(h?") , then stability will retain the 2nd
order of convergence rate later on ||e(t)|| = O(h*™).

Example: M =2, L =1,T, = 0.1,T¢(z) = By 1sin(2gnx) + By cos(2qrx), T2 (x) =
By 1 sin(2qmx) + By 2 cos(2qn),
gl(x, t) = A11(t) sin(2gmx)+ A1 2(t) cos(2qx), f2(z,t) = A2 (t) sin(2qmx)+A22(t) cos(2qgmx), q =

0

él,l = O,BLQ = 1,3271 = —1,3272 = 07A1,1 = 5,A1,2 = 10,A271 = —10,14272 = —5. We
can consider two 2nd order matrices

~ B11312> % <A11A12>
B — ) ) 714 — ) )
<Bz,1 By o Agq Azo

~ 2 =3 2-5
k= (270)r=(120)
are with eigenvalues Az = (1;5), A\p = (1; —3)
. Considered the solution in the form T'(z,t) = dy 2(t) sin(2¢mx) + dy 2(t) cos(2¢mx),

To(z,t) = da1(t) sin(2gma) + da 2 (t) cos(2¢m), for fixed frequency g = % we can deter-
mine the functions d171, d271, d271, d272 from 4 ODEs:

Matrices
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d(t) = Asd(t) + F,d(0) = do, (2.29)

where the 4-order matrix

—47T2q2f( —2mwqP
A2:< 2mqP —422f<>
mq ™q
and 4th order column-vectors d = (d].,].) d271, d172, d272)T, d(O) = (3171, BZ,l, BLQ, BQQ)T, F =
(A11,A21, A1 g, Aso)T.
This system can be solved with Matlab solver "odel5s” and the solutions are compared
with the approximate solutions.
Discrete solution is obtained from (2.26), where u(0), f(¢) are 2N-order column-vectors,
where determine the column of Nx2 matrices ASCBT and ASCAT. Here A, is Nx2 matrix
with the two column of the elements sin(27x;), cos(2rz;),j =1, N,q = 1.

See Matlab program PDSper2 in appendix A.8.

For maximal errors for u!(t), u?(t) depending on the order of approximation we have:
1)N = 20,0.0017;0.0008(O(h?)),0.0028;0.0011(O(h*)),0.0016; 0.0006(O(h%)),
2.11077;2.610~7(O(h?)),9.91078;9.610 8 (FDSES),

2)N = 10,0.0071;0.0032(O(h?)),0.0113;0.0043(O(h*)), 8.31076;8.51076(O(hY)),
5.6107%:6.1107(O(h®)), 5.31078;2.010~3(FDSES),

3)N =80,1.1107%;5.0107°(O(h?)), 1.81074;6.910°(O(h*)), 0.0022; 9.010~*(O(h)),
2.71077;1.710~7(O(h®)), 1.01077; 2.310~8(F DSES).

In the Figs. the behavior of coefficients d(t) in the time, the form of the solutions by
t =ty = 0.1 are represented.

VI(Tb), v2(Tb),vM1=5.3569e-001,vm1=-5.3569e-001,vM2=4.2882€-001,vm2=-4.2882~0C VI(Tb), v2(Th) err1=2.0973e-007,err2=2.6337e-007
o

Fig. 2.24 Solutions by 73 = 0.1, N = 40 Fig. 2.25 Solutions by ¢t = 0.1
depending on =

ul surf. ymax1=2.2284e-001 u2 surf.ymax2=9.7927e-002
1

&
0
(555
) 02
Y,

Fig. 2.26 Solution i (z,t) Fig. 2.27 Solution ua(z,t)
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The Matlab program in appendix A.9 calculates the real form for data with fixed
frequency ¢ of oscillations L = 1;10, kg = 1;8;10; 15 (the element Ay ; = —1000 in the
matrix A is changed).

For maximal errors for u!(t),u?(t), N = 20 (the stationary solutions) depending on
the order of approximation we have:

1)L =1,kg =1,ty = 0.2, 0.0017;0.0007(O(

3.9107%;1.3107(O(h")), 1.81078;6.410~2(O(h®)), 0; 0(FDSES),

2)L = 1,ko = 8,t; = 0.05, 0.0023;0.0011(O(h?)),0.00074; 0.00040(O(h?)),
4.1107%;2.31074(O(h")), 2.610~4; 1.610—4(0(h8)), 0;0(FDSES),

3)L =10,ko = 8,ty = 0.3, 0.1277;0. 0861( (h?)),0.033;0.039(O(h*)),
0.0077;0.0235(0(h%)),0.0059; 0.0180(O(h?)),1.110716,2.810~ 17 (FDSES).

4)L =10, ko = 10,t; = 0.3, 0.1308;0.0240(O(h )),0.04970.025(O(h4)),

0.0212;0. 025(0(h6)) 0.0065; 0. 025(O(h8)) 0;0(FDSES).

5)L =1,k = 15,t7 = 0.5, 0.3247;0.2874(O(h?)),0.2179; 0.2208(O(h?)),
0.1841;0.2017(O(h5)), 0.1704;0.1945(0(h?)), 2.710717; 6.9108(F DSES).

Interesting results are obtained for hyperbolic system (f( = 0), see Figs. 2.28, 2.29 for
N = 20,L = 1,kg = 10,y = 1.5;2. We have periodic solution in the time with the

L
period T, = 5 = I

h?)),8.3107%,7.91075(O(h%)),

In this case the matrix Ag has 4 imaginary eigenvalues j:z%ko j:322”k° (the char-
acteristic polynomial is z* 4+ 1022 + 9, \ = Q”Lko). The analytical solution of ODEs
(2.29) is in the form d(t) = exp(Aat)d(0) + A5 ' (exp(Ast) — E)F, where F is 4th order
unit matrix. For the periodical solution d(T') = d(0) follows that the matrix function
exp(A2T),) = E does not depend on F. Using the eigenvalues of matrix A we can obtain
exp(A2T) = agE + a1 Ay + az A% + a3 A3, where the unknown coefficients ay, k = 0,1,2,3
are determined from the following equations:

cos(24T,) = ag — 4a2d?,sin(24T},) = 2a1G — 8a3q>, cos(6¢1,) = ag — 36a242, sin(6G1},) =
6a1g — 108a3q”,

where ¢ = mq = ”]L“O From ag = 1,41 = ag = az = 0 follows that cos(2¢7,) =
1,sin(2¢7,) =0 or T, = ” = %. For N =20,L =1,kg = 1,1, =ty = 1 depending on
the order of approx1mat10n we have the following maximal errors:
0.630;0.402(0O(h?)),0.0134;0.0083(O(h?)),2.810~4; 1.710~4(O(h")),
5.9107%;3.41075(O(h®)), 1.61077; 1.510~7(O(h?")), 1.110716; 441016 (F DSES).

For the complex expressions (Matlab program PDSper2) these errors are greater:
2.9107% 1.810~4(O(hY)), 2.1107°; 1.810~°(O(h?)),

1.5107°;1.5107°(O(h?%)), 1.4107°;1.310~°(F DSES).

For approximation of the first order derivative with the order O(h*°) we use the follow-
ing Matlab code:

lk1:2/h*sin(2*pi*h*NT) (0.5 +1/3x(sin(pixh«NT)). " 2+4/15%(sin (
pixh«NT) ). 4 +8/35*(51n(p1*h*NT)) "6+ (prod (1:5)) "2x474 /(5%
prod(1:10)) (51n(p1*h>|<NT)) +(prod(1:6)) "2%4"5/(6xprod
(1:12) ) *(sin (pixh«NT))." (1 ) (prod(1:7))"2%4°6/(7*prod(1:14)
)*(sin (pixh«NT))." (12)+ (prod(1:8)) " 2%4°7/(8+prod(1:16) ) x(
sin (pixh«NT) ).  (14)+(prod(1:9)) "2%4°8/(9xprod(1:18) ) *(sin(pi
xh«NT) ). " (16)+(prod(1:10)) "2%4°9/(10xprod (1:20) ) x(sin (pixhx
NT)).  (18))
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Discrete coeff.d11,d21,d12,d22,dep.on t,N= 20 VA(Th), v2(Th).ymax1= 0000,ymax2= 0000

Fig. 2.28 Solutions of vector d(t) by t; = Fig. 2.29 Solutions by t; = 1.5,K =
2,K =0,ko = L =10 depending on t 0, ko = L = 10 depending on x

2.13 System of nonlinear parabolic type equations

We consider the nonlinear system of M-heat transfer equation with periodical BCs in
the following form:

55t = L (G (s P255) o pins ) - frgon(T)s (5.30)
T (x,0) = To(x),z € (0,L),m=1,M
. OT(x,t) - 0%(T(x.t)) | 0ga(T(w,1))
T(x,t) = 0°q1(T (¢ go(T'(x,t

where g1(T'), g2(T), g3(T") are the M-order column-vectors with the elements g1 1, (T3), 92,m (T, 93,m (T
]‘7 M’
We have following discrete form

at) = (K Q) A)gi(u(t)) + (P Q) A%)ga(u(t)) + fos(u(t)). (2.32)

As an example for M = 2 we consider nonlinear power functions g1; = 7%, 912 =
T2, gy1 =T, gog =T,

g31 =T, g32 =T7.

See MATLAB program in appendix A.10.

D Ifag =ag=p1=p02=3,7 =7 =2 (see figs. with ty = 10, we have stationary
symmetric, periodic oscillations in the space), then for the maximal and minimal values
of solutions u!, u? (the minimal value is equal to maximal with opposite sign) depending
on ¢ and the values of the solutions depending on x by ¢ = t¢, we have:

N = 40:

0.17752;0.10843(0(h?)), 0.17755; 0.10847(O(h*)), 0.17686; 0.10791(O(h°)),
0.17715;0.10822(O(h?)),0.17715; 0.10822( FDSES),

if N=80, then for FDSES and O(h®) : 0.17723; 0.10827, but for O(h?) 0.17732; 0.10832.

2) In the next figs. for v1 = 72 = 0,15 = 0.1 (solutions tend fast to stationary).
If P =0 (without convection), we obtain fig. 2.24.

3) In the next Figs. 2.34-2.37 for v = 75 = 2,7, = 10, L = 2;3;4 (for L=3 solutions
tends slowly to stationary only by t; = 20.)

53



w N =

VI(Tb), v2(Tb),err1=1.5333e-001,err2=1.3014e-001

0 0.2 0.4 0.6 0.8 1

Fig. 2.30 Solutions by t; = 10, N = 40
depending on =

VI(Tb), v2(Tb),vM1=6.0010e-001,vm1=-6.0010e-001,vM2=4.5670e-001,vm2=-4.5670-0C
o

0 0.2 04 06 08 1

Fig. 2.32 Solutions by ty = 0.1, N = 40
depending on =

VA(Tb), v2(Th),vM1=1.7753e-001 ym1=-17753e-001 yM2=1.0831e-001,vm2=-1.0831e-0C
02

0 05 1 15 2

Fig. 2.34 Solutions by t;y =
80, L = 2 depending on x

Max-min values depending on t,N= 80

WL
08 —m
— w2
06 —m2
04
02
£ o
02
04
06
08
1
o 2 4 6 8 10

Fig. 2.31 Maximal and minimal values
depending on ¢

Max-min values depending on t,N= 40

Fig. 2.33 Maximal and minimal values
depending on ¢

VA(Th), v2(Th).vM1=1.7835¢-001 vm1=-17835e-001 yM2=1.0875e-001,ym2=-1.0875e-0C
02

Fig. 2.35 Solutions by t;y =
80, L = 4 depending on x

4) For different values of a1 = 3,00 = 5,61 = o = 3,71 =2 = 2,ty = 10,L = 2

results are represented in fig. 2.38.

If a1 = 5, a9 = 3, then we have fig. 2.39. In this case the Matlab operators in appendix

A8 need to be changed with code:

[T1,Y1]=o0del5s(@SIST1,[0,Tb],yy0,options ,Al,A2 K,P,F2 ,N);

function F=SIST1(t,yy,Al,A2,K,P,F1,N)
F=kron(K,Al)

x[yy (1:N)."5; yy(N+1:2«N)."3]+kron(P,A2) x[yy (1:N)

35 yy(N+1:2«N) . 73]+ F1.x[yy (1:N) . 2; yy(N4+1:2%N) . " 2];

In Figs. 2.40, 2.41 the results by aq = 5, as = 3 for matrix 0.1K with the eigenvalues
0.1,0.5 are represented. We can see the oscillations in time ( NV = 40,t; = 5). We obtain
the following maximal values depending on O(h?"),n = 1,2, 3,4 and for FDSES:
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VA(Tb), v2(Th) VM1=5,3293e-001,ym1=-5.3293e-001,vM2=3.3666e-001,vm2=-3.3666e-0C Max-min values depending on t,N= 80

0.8 —m::
-06
0% 05 1 15 2 25 3 o 5 10 15 20
Fig. 2.36 Solutions by ty = 20,N = Fig. 2.37 Maximal and minimal values
80, L = 3 depending on x depending on ¢

1.5461;0.9288(0(h?)), 1.4914;0.8911(0(h*)), 1.5061; 0.8969(O(h°)), 1.4919; 0.8894(O(h?)), 1.5081;0.89

VI(Tb), v2(Tb),vM1=1.3365e-001,vm1=-1.3365e-001,vM2=1.1217€-001,vm2=-1.1217e-0C VI(Tb), v2(Tb),vM1=3.6982e-001,vm1=-3.6982e-001,vM2=1.5438e-001,vm2=-15438e-0C
015 04

0 05 1 15 2
Fig. 2.38 Solutions by ty = 10,N = Fig. 2.39 Solutions by ty = 10,N =
80, L = 2, = 3;5 depending on x 80,L = 2, = 5;3 depending on x
VA(Th), v2(Tb),vM1=1.4919e+000,vm1=-1.4919e+000, vM2=8.8937e~001,ym2=-8.8937e-0C ) Max-min values depending on t,N= 40
1. T T T T
15 -
.\ ———v2 K4 ‘N R4 1
ost Y Vo
| s 1 ,' 0s MvL
- \ £ n
[ L ' mv2
[ 1 -05
-05 A . 1
-1 - -
s :
* 0 05 1 15 2 25 3 720 1 2 3 4 5
X t
Fig. 2.40 Solutions by ¢ty = 5 N = Fig. 2.41 Maximal and minimal values
40, L = 3, = 5; 3 depending on = depending on t by L = 3

5) Interesting results are obtained if K = 0,61 = B2 = 1 and when the functions
93.1(T), g32(T") are trigonometric functions sin(7") or cos(T').

For g31(T) = g3,2(T) = sin(T), N = 80, L = ty = 1 we have the following maximal and
minimal values of solution depending on the order of approximation:

2.71,—1.96; 2.14, —1.28(O(h?)), 2.40, —1.93; 1.76, —1.33(O(h*)), 2.39, —1.92; 1.73, —1.34(O(hS)),
2.38, —1.88;1.73, —1.32(O(h%)), 2.38, —1.86; 1.72, —1.32(F DSES) and (O(h?")) (see Figs.
2.42,2.43). If N = 20 then for FDSES we have:

2.37,—1.83;1.73, —1.31.
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For g31(T) = g32(T) = cos(T') we have symmetric oscillations in the space (see Figs.
2.44,2.45). In the Figs. 2.46,2.47 and 2.48,2.49 the solutions obtained by g¢31(T") =

Max-min values depending on t,N=80

VA(Th), v2(Tb),vM1=2.3803e+000,vm1=-1.8632€+000,yM2=1.7252€+000,ym2=-1.3252e+0C
2

Fig. 2.42 Solutions by ¢ty = 1,N = Fig. 2.43 Maximal and minimal values
80,L = 1,g3,1 = g3,2 = sin(T') depending depending on ¢
on

Max-min values depending on t,N=80

V1(Th), v2(Tb),vM1=3.1833e+000,vm1=-3.1833e+000,vM2=2.1184e+000,ym2=-2.1184e+0(
4 4
Mvl
14
3 we
mv2
2
1
> £o
-1
-2
-3
-4 -4
0 0.2 04 06 08 1 0 02 04 06 08 1
X t
Fig. 2.44 Solutions by ¢ty = 1,N = Fig. 2.45 Maximal and minimal values
80,L = 1,931 = g3,2 = cos(T) depend- depending on t
ing on x

sin(7T), g3.2(T') = cos(T) and g¢31(T") = cos(T'), g3,2(T) = sin(T") are represented.

VA(Tb), v2(Th),vM1=4.6400€+000,vm1=-1.3780e+000, yM2=2.4214e +000,ym2=-1.8548e+0C Max-min values depending on t,N=80

5
3
) we
-2
Fig. 2.46 Solutions by ¢ty = 1,N = Fig. 2.47 Maximal and minimal values
80,L = 1,g3,1 = sin(T), g3,2 = cos(T') de- depending on t

pending on x
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VI(Tb), v2(Tb),vM1=2.1514€+000,vm1=-2.9896e-+000,vM2=1.5871+000,ym2=-15125e+0C Max-min values depending on t,N= 80

.
3
2
1
0 Mvl
mvl
> £4 Mv2
mv2
2 A
-3
-4
-5
[ 0.2 0.4 0.6 0.8 1
Fig. 2.48 Solutions by ty = 1,N = Fig. 2.49 Maximal and minimal values

80,L = 1,g3,1 = cos(T), g3,2 = sin(T') de- depending on t
pending on x
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3. Poisson equation with periodic BC

The solutions of the linear boundary value problem for Poisson equations are obtained
analytically and numerically. Using the method of lines (lines are parallel to the y axis)
for periodic BC we define the FDSES, where the finite difference matrix A is represented
in the form A = WDW™* (W, D are the matrices of finite difference eigenvectors and
eigenvalues correspondingly, W* is the conjugate transpose matrix) and the elements of
diagonal matrix D are replaced with the first eigenvalues from the differential operator.

3.1 Mathematical model

We consider the boundary value problem for Poisson equation with the periodic BCs in
the = direction:

02T (z, 02T (x,
st + ST = f(,y),@ € (0,1),y € (0,H)

T(0,y) = T(L,y), 20w — 9T(w) o e (0, H) (3.1)

T(x,0) =Ti(z),T(z,H) = Tr(z),z € (0, L)

where Tj(z), T, (x) are given BC function in the y direction. Similarly we can consider
the problem with the periodic BCs in the both x and y directions:

P 1 P — f(a,y),2 € (0.L).y € (0,H)

2 oz
T(0,y) = T(L,y), W00 = I o« (0, H) (3.2)
T(x,0) = T(x, H), 2520 = LMD 4 ¢ (0, L)

This problem has unique solutions by fOH fOL flx,y)dzxdy = 0, T(x0,y0) = Ty, where
zg € [0, L], yo € [0, H], Ty are fixed constants.
We consider uniform grid in the space z; = jh, j = 0,N, Nh = L, where N is even
number.

Using the finite differences for partial derivatives of the second order with respect
to x (see section 1.4.1) we obtain the boundary value problem for system of ordinary
differential equations (ODEs) in the following matrix form

Uly) — AU(y) = F(y),U(0) = Ui, U(H) = Uy, (3.3)

Uly) — AU(y) = F(y),U(0) = U(H),U(0) = U(H), (3-4)
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where A is the circulant matrix of N order, U(y), U(y), F(y), Uy, U, are the column-

vectors of N order with the elements u;(y) ~ T(z;,y)), i;(t) ~ ” T(zj y), fily) =

f(@j,9), ui(0) = Ty(xj), ui(H) = Tr(25),j = 0, N,
The corresponding discrete spectral problem Aw™ = p,w", n = 1, N with circulant
matrix has the following solution:

w" = \/1/7N(w?’ wga s 7w7]<7)T’ (3 5)
W, = }% sin2(7rnh/L)a |

where w! = ¢n(z;) = exp(2minz;/L), j = 1,N,i = /-1 are the components of
orthonormal eigenvector w™. The eigenvalues of matrix A for different order of approx-
imation O(h¥), k > 2 are:

1 k_4 h2A [ 2737 11270 70,—%’%]7
h2py = —A(sin?(mnh/L) + % Sm4(7rnh/ ),
2. k=6, h2A=[- 43,3,—%,?%,0,... 0, 95: — 25 3,

h2py = —A(sin?(7nh/L) + 5 sin*(7nh/L) %sinﬁ(wnh/L)),
2 205 8 _ 1 °8 1 18
3. k=8, hA=]- 72050 B 315’_%’0 "'707 568 3157 5’5]'

h?p, = —4(sin? (Trnh/L) 3sin(mnh/L) + & sin®(mnh/L)+

= sin®(mnh/L)),

Therefore the matrix A can be represented in form A = W DW™*, where the column
of the matrix W and the diagonal matrix D contains N orthonormal eigenvectors w™
and eigenvalues pi,, n = 1, N correspondingly (W*W = E, W~! = W*).

The solution of the spectral problem for differential equations

—() = M),z € (0, L), w(0) = w(L),w(0) = (L),
is in the following form:

wp(z) = L_1¢n(x) =L! exp(2minx /L), A, = (27Tn/L)2,n >0

3.2 Analytical solution

We can consider the analytical solutions of the system of ODEs (3.3, 3.4) using the
spectral representation of matrix A = WDW™*. From transformation V = W*U(U =
WV) follows the separate system of ODEs

V(y) — DV (y) = G(y), V(0) = W*U,, V(H) = W*U,, (3.6)

Vi(y) - DV( ) =G(y),V(0) = V(H),V(0) = V(H), (3.7)

where V(y), V(y), V(0), V(H), V(0), V(H), G(y) = W*F(y) are the column-vectors
of N order with elements vy (y), Ur(y), 0k(0), ox(H), vi(0), vi(H), gx(y), k =1, N.

The solution of the system (3.6) is the sum of two solutions function (with homoge-
nous equation and with homogenous BC)

vi(y) = (sinh(rp H)) ™ [0y, (0) sinh (s (H — y)) + v (H) sinh ()] —

S Gre, )ar(©)de, (3.8)
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where kp = /g, Gi(€, y) is the Green function in following way:

kg sinh (kg H)
sinh(kg (H—£)) Sinh("’%y)7 y<¢< H.

sinh(r (H—y)) sinh(rkg) o « €<

) = Y,

(&) {
kg sinh (kg H)

For pyn = 0 from (3.8) follows

y H
ov(0) = ov(0) + o () = o (0) = [ Gr(Eman(e)as

H

where
v < ¢ <y,
&) Uty <e<H.

The general solution of (3.7) is following

vg(y) = Ck sinh(kyy) + By cosh(kry) + ,ilk /Oy gk (&) sinh(kg(y — &))dE,

where Cy, By, are constant. Using the BCs (3.7) we have

0.5 H .
Cr = sinh(0.5k5 H) /0 gr(€) sinh(rg, (€ — 0.5H))d¢,

0.5 H
Bi= — e | an(© coshinte - 0.5m))de.

In this case the analytical solution (3.8) is

H
vu(y) = —0.5(ry, sinh (05w, H)) ! /0 Grl€, y)gn (€)dE,

where G (&,y) is the Green function in the following way:

(6 )_ {COSh('%k(H/2_y+§))v 0<¢<y,
’ cosh(kp(H/2 — €+ ),y < €<

We can also use the Fourier method for solving (3.1) in the form T'(x,y)
> rez Uk(t)wF(z), where w¥(z) are the orthonormal eigenvectors, vg(y) is the solution

(3.8) with v(0) = (T3, wy), vi(H) = (T, wy).
The solution can be also obtained in the real form:

ok c
mkx +ag(y)

2rkx + age(y) sin )
ks\Y L 2 3

T(x,y) = Z(akc(y) cos

00 9 .
Z bic(y) cos wk:n + bys(y) sin TZW) + bo 2(3/),
k=1

2T e, by / F(€.y)sin 7 e

brely / 7€) cos
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where ak.(y), ags(y) are the corresponding solutions of (3.8, 3.9) by

r L
/0 Tz(ﬁ)cos%fgdg,aks(o):z/o Tz(ﬁ)sin%kgdg,

2

L

2 (L ok 2 L ,27r/<5
axe(H) = 7 [ T(6) cos 20, g (H) = = /0 T, (€) sin 2% de,

Similarly we can obtain the solution of the discrete problem also in the real form:

*No . .
orkj 2mkj . aoe(y)
Uj(y)Zg(akc(y)cos  +aks(y)sin—=) + ===,
e ok onki.  boe(y)
. Oc
Fi(y) = (bre(y) cos + bs (y) sin —=) + ==,
k=1
2 2
bre(y Zf] COs ——— Wk] s (y ij ) sin Wk],

where ag.(y), ars(y) are the corresponding solutions of (3.8, 3.9) by

N 2wkj

k‘ 2 .
ake(0 ZTZ Zj)Ccos —= J ,aks(0) = N ZTl(xj)sm R
1

P ok 2  2nkj
akc(H) = N ZTr(%’)COS T,aks(H) = NzTr(l‘j)Sm N
1 1

9 (y) = bre(y) or bis(y)

For FDSES puy, are replaced with Ag.
For the FDSES the matrix A is represented in the form A = W DW™ and the diagonal

matrix D contain the first N eigenvalues di = A\, k=1, N from the differential operator
2

(—%) in following way:

1. dy = Mg for k =1, N, where Ny = N/2.

2. dk = )\ka for k = NQ,N.

If di. = pg, then we have the method of FDS.
The FDSES method is more stable as the method of finite difference by approximation

with central difference (FDS), because the eigenvalues are larger A\p > .

3.3 Analytical solution in the matrix form

For homogenous equations (F' = 0) (3.3) we can obtain the solution in the form

Uy (y) = sinh™" (A1 H)[sinh(A1y)U, + sinh(A; (H — y))Uy],

61



where A = VA.
For homogenous BC (U; = U, = 0) the solution is Us(y) = — fOH G(&,y)F(€)dE, where

G(g ) _ {smh(Al(H — y)) smh(Alf)(Al smh(A1 ))
’ sinh(A; (H — €)) sinh(Ayy) (A sinh(A H)) ™!

I/\ |/\

§
§

I/\ I/\

is Green matrix-function.

The solution of the problem (3.3) is U(y) = Ui(y) + Ua(y). Multiply this solution
left with W—! = W*, and using the expressions A = WDW?*, f(A) = Wf(D)W
w*U, = v(0), W*U, = V(H), W*F = G(y) (f is every function) we obtain the
column-vector V(y) with components (3.8).

If we consider that det(A) = det(A1) = 0 we can not directly obtained the solution
in the matrix form.

If the periodic BCs are given also in the y direction, from (3.4) we have the following
vector-solution

H
U(y) = —0.5A7 ' sinh 1 (0.54, H) /0 G(&y)F(E)dE,

where

_ fcosh(A1(H/2—-y+&)),0< &
G y) = {cosh(A1(H/2+y —&)),y<¢§

For pun = 0 from (3.8) follows

H
on () = vn (0) + L (o (H) — ux(0)) — / G (£, y)gn (€)de,

H

where

(H—y)f O< <
Gn (& y) = { e 2 £y,

For pun = 0 from (3.9) follows vy (y) = 0.

3.4 Some examples and numerical results
3.4.1 Boundary value problem with periodic BC in one direction

For numerical calculation we consider the boundary value problem (3.1) with H =
L=1,f=0,T, =0, T,(x) = sinh(27) cos(2rz), T(x,y) = sinh(27y) cos(2wz). Using
the Fourier method we obtain v;(0) = 0, vx(H) = 0 for k # £1, vy (H) = %,
vy1(y) = M, T(z,y) = cos(2mx) sinh(27y).

MATLAB program code can be found in appendix A.11.

Using the operator PuasPer(40,10) we obtain the following maximal errors:

0.0956 (FDS O(h?)), see fig. 3.1

0.00031 (FDS O(h%)),
1.2-107% (FDS O(h)),
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5-107% (FDS O(h®)),
6 - 1072 (FDSES), see fig. 3.2.

By N = M = 10 we obtain

3-107* (FDS-O(h®)),
10712 (FDSES).

err. anal,,yNr.=10.0,max=0.0955957 err. anal. yNr.=10.0,max=0.0000000 x102

Fig. 3.1 Error with FDSby N =40, M = Fig. 3.2 Error with FDSES by N =
10, 0(h?) 40, M = 10

3.4.2 Matrix solution of boundary value problem with periodic BC
in two directions

Using the periodic BCs in both directions with right sides function
f(z,y) = =812 cos(2mz) cos(2my) by L = H = 1 we have the exact solution T'(z,y) =
cos(2mx) cos(27my). From the approximated solution follows that

Uly) = 8% cos(2my)(A? + 4n%E) g,
where F is the unit matrix of the N order,
g = (cos(2mzy), cos(2mzy), - - -, cos(2may))T

is the column-vector of the N order.
From (3.9) follows that

gx(&) = —8%2%\/27\7;5) Z;V:1 exp(—2mjxy) cos(2mx;) = —87?2@ cos(27€) for k = 1 and

k = N — 1. For other numbers of k we have g;(§) = 0. We use the integrals [ cosh(a& +
b) cos(c§)dg =

a7z sinh(ag+d) cos(c€)+ 255 cosh(ad+b) sin(c), where a = *ry, b = H/2+y, c = 2.
Then v1(y) = vy_1 = 472V N cos(2my)/ (k% + 472), where k = k1 = Ky_1.

Therefore the components of the approximated solution U is

uj(y) = ﬁvl(y)(exp(%rxj) +exp(2mzj(N —1))) = @8%;? cos(2my) cos(2mz;).
MATLAB code with operator puas4 can be found in appendix A.12.

Using the operator puas4(10) we obtain following maximal errors:
0.016502 (FDS O(h?)),
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0.000837 (FDS O(h%)),
52-1075 (FDS O(h")),
4-107% (FDS O(h?)),
5-1071 (FDSES).

3.4.3 Analytical solution of boundary value problem with periodic
BC in two directions

The file PuasPer2.m in appendix A.13 is used for the analytical solution (3.9) with the
quadrature trapezoid formula to calculate the mtegrals

f Fl y]’ dt ~ m(Fl(y],O) "‘Fl(yavyj)) +h Fl(yjaym) Jj=1 M
Sy, Falys, t)dt = B-(Fo) gy, H) + Fa(yj, ) T mei+1 P2y, ym), i = T, M 1
S Pa(y;,t)dt = 0,
where Fj(y,t) = cosh(ki(0.5 « H — y + t))gr(t), Fa(y,t) = cosh(kg(0.5 x H + y —
t)ar(t),yj = j*hi,hy = H/M.
Using the operator PuaPer2(10,200) we obtain following maximal errors:
0.0333 (FDS O(h?)),
0.0020 (FDS O(h*)),
0.00043 (FDS O(h%)),
0.00034 (FDS O(h?)),
0.00033 (FDSES).
For N = 10, FDS — O(h?) and different M follows:
0.0351 (M = 80),
0.0335 (M = 160),
0.0333 (M = 200).

3.4.4 Kronecker-tensor solution of problem with periodic BC wn two
directions

In the m.file PuasTen2 (see appendix A.14) is used the Kronecker-tensor method for the
solution (3.2). We consider also uniform grid in the y direction y,, = mhy, m = 0, M,
Mhy = H, where M is even number.

Using the finite differences of second order approximation for partial derivatives of
second order respect to x, y we obtain the system of linear algebraical equations of the
N x M order in the following matrix form

Au = —g, (3.10)

where A = Fy ® A1 + Ay ® Ej is the block wise matrix of the N.M order determined
with the Kronecker tensor product in following form C' = B! ® B?, where B!, B? are
the square matrices correspondingly of N, M orders and the matrix C of N x M order
is following
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b1, B? bi,B* b} 3B* ...
O by, B? by oB? by3B* ...
by B? by oB? by 3B* ... by o B? by v B? by vy B?
A, Ay are circulant matrices A1 = %[2 —-10...00 —1],
Ay = 75[2 =10 ..00 —1];E;, Ey are the unit matrices with the N, M order
correspoildingly, u, g are the column-vectors of N.M order with following elements
Ujm ~ T($j7ym)7gj,m = f(xj7ym)7j =1LN,m=1M,
Using the matrices spectral representation Ay = W3 D, W}, k = 1,2 and the properties
of Kronecker product AC ® BD = (A® B)(C ® D),
(A B)7' = A~'® B! we get

A= (Wa@W1)(E2® D1 + Dy ® Ep) (W3 @ WY)
and u = —A"lg, (W, =W}, (W;)~! = W) where
A7l = (Wo @ W1)(By ® Dy + Dy @ Ey)~ 1 (W5 @ W)

For the solution of the problem Au = g analytically we use the transformation W*u = v
or v = Wwv, where W = Wy @ W1, W* = W5 @ W{. Then Dv = —W*g or d;,vjm =
—(W*g)jym,j = m, m = 17in where D = Fyr ® D1 + Dy ® Fy.
For j = N,M = M we have dy r = 0, the value vy ) is indeterminable and we can
take vy, = 0. The solution is in the form u = Ww.

Using the operator PuaTen2(10,10) we obtain by different order of FDS and of
FDSES following maximal errors:

1. O(h?) : 0.06711 (FDS O(h?)), 0.0347 (FDS O(h%)), 0.0331 (FDS O(h®)), 0.03301
(FDS O(h?)), 0.03300 (FDSES),

2. O(h$) : 0.0347 (FDS O(h?)), 0.00335 (FDS O(h*)), 0.00178 (FDS O(h®)), 0.00168
(FDS O(h®)), 0.00167 (FDSES),

3. O(h%) : 0.0331 (FDS O(h?)), 0.00178 (FDS O(h*)), 0.00021 (FDS O(h®)), 0.00011
(FDS O(h®)), 0.00010 (FDSES),

4. O(h%) : 0.03301 (FDS O(h?)), 0.00168 (FDS O(h*)), 0.00011 (FDS O(hS)), 0.00001
(FDS O(h?)), 7.107% (FDSES),

5. FDSES: 0.03300 (FDS O(h?)), 0.00167 (FDS O(h*)), 0.00010 (FDS O(h%)), 7.10~6
(FDS O(h®)), 10715 (FDSES).

For FDS — O(h?) + O(h?) and FDSES in both direction the errors are represented
in the fig. 3.3, 3.4.

3.5 Poisson equation with BCs of the first kind

For BCs of first kind we consider special boundary value problem (3.1) with the ho-
mogenous BC in the x direction

T(Ovy) = T(Lay) =0,y € [O’H]
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err. anal.,yNr.=10.0,max=0.0671168 err. anal. yNr.=10.0,max=0.0000000 x107"°

0.06

0.05

0.04

0.03

0.02

0.01

Fig. 3.3 Error with FDS of O(h%?+h?) by Fig. 3.4 Error with FDSES in (x,y) di-
N =M =10. rection by N = M = 10.

We have the discrete problem (3.3) with the standard 3-diagonal matrix A of the M =
N —1 order. We use the matrix representation A = WDW, W* = W where the diagonal

matrix D contain the discrete eigenvalues p = hi sin? % and the column of the matrix
W is equal to the orthonormal eigenvectors w” with the elements w;? = wk(z:j) =

%sin %, k,j7=1,M. Then we have the separate system of ODEs (3.6) with the

solution (3.8). For the FDSES the matrix A is represented in the form A = W DW and
the diagonal matrix D contain the first M eigenvalues d, = A\, = (%’“)2, k=1, M from

the differential operator (—88722). Then in the solution (3.8) needs replaced p with Ag.
For special data

Ti(z) = arwp, (x), Tr(z) = agwp, (x), f(z,t) = g(t)wp,(x) we have the exact solution for

Fourier method and for FDSES by M > max(p1, p2, p3) in the form

T(x,y) = arwp, () vy, (Y) + a2wp, (2)Vpy (Y) + WpsVps,
where
vp, (y) = sinh(,%le))’1 sinh(kp, (H — y)), vp, (y) = sinh(,lii,QH))’1 sinh(kp,y),
Ups (y) = — fOH Gps(&,9)9(§)dE, Gp(&,y) is the Green function in following way:

sinh(kp(H—y)) sinh(kpé)

Kp sinh(kp H
Gp(f,y) = { sinh(fipIZH—E())pSin%l("‘py
tip sinh(kp H)

, 0< 8 <y,
%yéﬁsH.

For ¥DS (z = xj,j = 1, M) K, = \/fu,but for FDSES ki, = /A, k = (p1, p2,p3).
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4. Wave equation with periodic BC

4.1 Mathematical model

We consider the initial boundary value problem with periodic BCs

0T o*T
00 @D pn) e e (0,00 € 0,1),
T(0,t) = T(L, t), ang, b _ aTéi’t),t € (0,ty), (4.1)
| 7(2.0) = To(a), Wéﬁ’o) = To(z),z € (0, L).

Using uniform grid z; = jh, j = 0,N, Nh = L, (N is even number) we obtain the
system of ODEs )
U(t) +a?AU(t) = F(t),
(t) +a?AU(t) = F(1 o
U(0) = Uy, U(0) = Uy

where A is the approximation matrix of N order for second derivative (see 1.4.1) for
which eigenvalues puy, eigenvectors wy are known. The eigenvalues A; and eigenvectors
for spectral problem also are known (see 1.5).

The solution of (4.1) with the Fourier method can be obtained in the following form:
f(z,t) = Zzozfoo gk(t)wk(x)7 gk(t) = (w*k,f), T((L‘,t) = Ziozfoo Uk(t)wk($)7 where
v(t) is the solution of

D) Gyt + 01 (0) cosnat) + — / sin(ir(t — 7)gr(7)dr,  (4.3)
Kk Kk Jo

vg(t) =

with K, = m (di is ug or Ay depending on the method selected), by k # 0. For
k = 0 we obtain

w(®) = 500+ 0(0) + (= )go(r)dr

The solution can be also obtained in the real form (2.5). ag.(t), ags(t) are the corre-
sponding solutions of (4.3) by

L L
ake(0) = i/o To(§) cos 27;k€d§,dkc(0) = 2/0 To(€) cos 27Z<:§d£7
L L
0) = 7 [ ) sin T n0) = 7 [ To(e)sin T,

gk (t) = bic(t) or bys(t).
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4.2 Analytical solution

We can consider the analytical solutions of (4.2) using the spectral representation of
matrix A = WDW*. From transformation V' = W*U (U = WV) follows the separate
system of ODEs
{ V(t) +a’DV (t) = G(t),
. _ (4.4)
V(0) =WU,, V(0) = WUy

where the column-vectors are of N order.

The solution of the system (4.4) is in the form (4.3), where
k=1,N —1, d = p. For k = N the solution is
N (t) = vN(())t—i-vN +f0 (t —7)gx(7)dr. The solution of (4.2) is in the form U = WV.

If dj, = Mg, then we can obtain the solution of FDSES in following way:

1. di = Mg for k =1, N, where Ny = N/2.
2. dk :)\ka for k:NQ,N—l,dN = 0.

Similarly to (2.5) we can obtain the solution of the discrete problem in the following
real form

e ok Conkj.  age
u;(t) = ;(akc(t) cos N + ags(t) sin ) -

e ok Comkj . boe(t)
fi(t) = Z(bkc(t) cos — + bgs(t) sin ) 5

k=1

2 orkj
bre(t) = I Z [3(t) cos N bes(t
j=1

MZZ
= +
=
&
=
[N}
e
<

<>%

|
MR

where ay.(t), ags(t) are the corresponding solutions of (4.3) by

2 & okj . 2 . 2k
axc(0) = ZTo(xj)cos T,akc(O) =N ZTo(iL'j) C08 — 7

2 & . 2mky N . 2mkj
axs(0) = NZTO(xj)smT aks(0 NZT o(xj)sin —= N
1 1

4.3 Example of wave equation for one wave number

For numerical calculation we consider the initial boundary value problem (4.1) with
f=0, Ty =sin(2rz), Tp =0, T'(z,t) = sin(2wz) cos(2nt).
Using the Fourier method we obtain v;(0) = 0, vg(t) = 0 for k # £1, v41(0) = &,

v (t) = iw, T(z,t) = cos(2nt) sin(2mx).
MATLAB code can be found in appendix A.15.
Using the operator Wave2(10) we obtain following maximal errors (ty = 1):

0.0755 (FDS O(h?)),
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0.0038 (FDS O(h*)),
0.00024 (FDS O(h%)),
0.00002 (FDS O(h?)),
1012 (FDSES).

By N = 40 the results are:
0.0049 (FDS O(h?)),
0.000016 (FDS O(h%)),
10~7 (FDS O(h%)),
2.1071% (FDS O(h®)),
10714 (FDSES), (see fig. 4.1, 4.2)

err. anal. {Nr.=20.0,max=0,0049453 %107 err. anal. iNr.=20.0,max=0,0000000 x10™

Fig. 4.1 Error with FDS by N = Fig. 4.2 Error with FDSES by N = 40
40,0(h?)

4.4 Example of wave equation for different wave number

We consider the initial boundary value problem (4.1) by L=1,a =1, f =0, To(z) =
sin(2rmaz), Ty = 0, where m is integer in (1, N) with m < N/2. Then the exact solution
is T'(z,t) = cos(2mmt) sin(2rmx).

The solution of (4.1) with the Fourier method can be obtained in the following

form:
T(z,t) = > 22 vk(t)wF(x), where vy (t) is the solution of (4.3) in the form vg(t) =
cos(kit)vg(0), Kk = Vdp = 27k, v1(0) = fol To(x)w** (z)dx = 0, vi(t) = 0 for k # +m,
0im(0) = 93, v (t) = icos(g?mt), T(x,t) = cos(2wmt) sin(2rma). Therefore we have
used the Fourier method for the exact solution.

We can consider the analytical solutions for FDS of (4.2) using the spectral rep-
resentation of matrix A = W DW?*. From transformation V = W*U (U = WV) follows
the separate system of ODEs (4.4).

The solution of the system (4.4) is V (t) = cos(v/Dt)Vy, D = diag(us,) or in the form
(4.3), where vy (t) = cos(kit)vr(0), ki = /g, ve(0) = (W*Up)r = 0, vi(t) = 0 for k #
m, k # N —m. From py_m = g, w” % = w** follows v,,(0) = \/ij’ UN-—m(0) = =5

Therefore U(t) = cos(y/fimt)Uo, where Uy = (sin(2rma1),...,sin(2rmay)’ is the
column-vector of the N order, x; = jh, j =1.N, Nh = 1.

The solution can be obtained in the matrix form U(t) = W cos(v/Dt)W*Uy. For the
FDSES /pim = V/d,, = 2mm and we have also the exact solution.
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Using the discrete Fourier transformation

U(t) = Zi\;l ap(t)wP(Awk = ppw”), we get ay(t) = cos(y/mxt)ax(0),
where ay,(0) = Upw** = 0 for k # m,k # N —m,
am(0) = g,aN_m(O) = —g.

We have U(t) = anm(t)w™ + an—m(t)w]* = g cos(y/fmt) (W™ — wi*) = cos(\/fimt)Uy.
For numerical calculation we consider the initial boundary value problem (4.1) with
ty =L =1,f = 0,Ty = sin2rmz), Ty = 0, T(x,t) = sin(2rmz) cos(2mmt), for
m=1;2;3;4, N = 10.

MATLAB code can be found in appendix A.16.

Using the operator Wave2m(10) we obtain the following maximal errors (¢s
(see tab. 4.1):

:1)

Method|m=1

m=2 m=3
O(h?) |0.0050

1.210°7
O(h®) |[3.1078
O(h®) [2.10710
FDSES |2.10~ 15

Table 4.1 The FDS maximal error depending on order of approximation and m by N = 10

m=4

0.2958
0.0110
6.10~4
3.10°°

1.10715

1.797
O(h%) 0.4301
0.0911
0.0219
3.10~15

1.550
0.9724
1.10-15

In the fig. 4.3, 4.4 we can see the FDSES exact solutions by m =4 and N = 10, N =
20.

Sol.an.on x by Tb.,Max=0.0000000

Sol.an.on x by Th.,Max=0.0000000
1
i \ 1 i n
A 0.8 I I
A \ \ [ |
[ \ \ | /
% SR AR I O
B oaf | x b
[ i) | | [ [
/ \ 02 | | | | [ 1
| \ | | | \ | \
. [ D S [ e o B
| / 02 \ \ C‘ { \“ |
\ | | | ) \
VR B A S
0.6 | / |
08 \J \J \J \ [
O ' 0
. s
08 0.9 1 [ 0.2 0.4 06
x
Fig. 4.3 FDSES solutions by N =
10, m = 47 tf =1

0.8
X

Fig. 4.4 FDSES solutions by N
20,m = 4,tf =1

4.5 Example of nonlinear wave equation

We shall consider the initial - boundary value problem for solving the following nonlinear
wave equation:
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2 T 2
2 Ta(tz’t) =2 (agg» + J(T),z € (0,L),1 € (0,17),

T(0,t) = T(L, 1), aT(,gZ’ b _ 3Téi«t)

T(z,0) = Ty(x), —=—= = Ty(x),x € (0, L).

.t e (0,ty), (4.5)

where ¢(T"), f(T') is nonlinear given functions. Using the FDS we obtain from (4.5) the
initial value problem for system of nonlinear ODEs of the second order in the following
matrix form

(4.6)

U(t) = —AG(U) + F(U),
U(0) = Uy, U(0) = T,

where G, F are the vectors-column of N order with elements g = g(u(zg,t)), fr =
f(u(zg,t)), k=1,N.
To use the Matlab solvers we need to write the system of ODEs in the normal form

y1(t) = yal(t),
U2(t) = —AG(y1) + F(y1), (4.7)
y1(0) = U, y2(0) = Uy,

U(t) = yi(t) or
y(t) = A1G(y) + BF(y),

where y is the the column-vectors of 2N order with elements (y1,y2), A1, B are the
matrices of 2N order in the following form:

0 F 00
v=(Go) 2= (o)
The numerical experiment with L =1, ¢ty = 0.1 and F = aT?, g(T) =T, 0 =2,
Ty = sin(27z), Ty = 0, 8 = a = 0 is produced by MATLAB 7.4 solver "odel5s”.
MATLAB code can be found in appendix A.17.

In table 4.2 are shown maximal values of solution max |y;(t¢)| depending on N and
order of approximation.

Table 4.2 The maximal values max |y1(ty)| depending on order of approximation and N

Method|[N=10 [N=20 [N=40
O(h?) 10.6622]|0.5515(0.5735
O(h*) 10.6078|0.5883(0.5928
O(h%) ]0.5579]|0.5947(0.5957
O(h8) [0.5322|0.5961|0.5964
FDSES |0.5058/|0.5950(0.5928

In the figs. 4.5, 4.6 we can see the FDSES solutions by N = 40.

The numerical experiment with L = 1, t; = 0.8 and F' = a(sin(T))?, g(T) = T+,
o =0,Ty = sin'®(rz), Tp = 0, 8 = a = 1 is produced also by MATLAB 7.4 solver
"odelbs” with operator F' = A x y.” sigmal + a * B x sin(y). beta.
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Virsma,imag=0.000000,Laika sl.sk.=318.000000, Max=0.592779

Fig. 4.5 FDSES solutions-surface by N =
40

Pgdcja t mom., maxim=0.000000,time = 0.100000 Max=0.5927788
6

o o oo
o o o ©
) 000 o

02f0° %o

0 o

0.8 1

Fig. 4.6 FDSES solutions by N = 20,¢t =
ty =0.1

In table 4.3 are shown maximal values of solution max |y (t¢)| depending on N and

order of approximation.

Table 4.3 The maximal values max |y1(ty)| depending on order of approximation and N

Method

N=10

N=20

N=40

N=80

O(h?)
O(h%)
O(h%)
O(h®)
FDSES

0.4789
0.4097
0.4936
0.4593
0.5306

0.3076
0.3890
0.4124
0.3859
0.5243

0.4325
0.4806
0.5073
0.5163
0.5243

0.5038
0.5227
0.5242
0.5243
0.5243

In the figs. 4.7, 4.8 we can

Surface imag=0.000000, Laika sl.sk.=640.000000, Max=0.524354

Fig. 4.7 FDSES solutions-surface by N =
80

see the FDSES solutions by N = 80.

FDS in time,N= 80, time = 0.800000

Fig. 4.8 FDSES max solutions depending
ont by N =80

In the figs. 4.9, 4.10 we can see the FDSES and FDS O(h?) solutions by N = 80,

ty = 0.8.

We can see, that FDS methods give the solutions with oscillations. FDSES method
is without oscillations and the solution is positive even if N = 10.

4.6 Mathematical model for wave equation with convection

We consider the linear wave equation in the following form:
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End time., maxim=0.000000,time = 0.800000 Max=0.5243545 End time., maxim=0.000000,time = 0.800000 Max=0.5037912

06 05 o o
00 oo
05 oo :o 04 ] I
04 o 50 03 © °
° o o
03 02
° o o © ° °
o o
0.2 01 o o
o o o o o] o
sy, o Vs 0 SR,
01 0y o0 0 ®
e ® o
o 0.2 04 06 0.8 1 010 0.2 0.4 06 0.8 1
Fig. 4.9 FDSES solutions by N = Fig. 4.10 FDS —O(h?) solutions by N =
80,t5 = 0.8 80,t5 = 0.8

T (x,t)  O*T(x,t OT (z,t
aif ) _ ag ) ta gi ) 4 fat) (4.8)

with the periodic boundary conditions (4.1) (a=const).

We can use the Fourier method for solving the initial-boundary value problem in
the form T'(z,t) = > ey ar(t)wh(z), f(2,t) = 3 ey be(t)w®(z), where w*(z) are the
orthonormal eigenvectors, by (t) = (f,w**(z)).

Then for the unknown functions ay(t) get the complex initial value problem for ODEs
of the second order:

ik (t) + ar(t) Ak = bi(t),

wl0) =7 [ T exp 272

w0 =7 [ Tt e 2 .
bp(t) = % OL f(s,t)exp _%Lﬂksds.

The solution of (4.9) is

ag(t) = cos(mt)ak(o) + M%(O) N /Ot sin(v/Ag(t — ) )

VK

The solution with the Fourier method can also obtain in real form. Functions f(z,t)
and T'(z,t) can be expressed in form (2.5).

2 2
From f(z,t) = 9 ng,t) — (8 gig’t) + aaTa(;U’t))

follows f(x, 1) = 35 (iie(t) cos 22 4 iy (¢) sin 22k 4 doc(l) |

> ((ake(t) Re(Ar) +ags (8 Tm(Ag)) cos 2L 4 (ags (1) Re(Ak) — age(t) Im(Ay)) sin 25EL),
because (ar(t)A\r + a—k(t)A_k)/sqrtN = agc(t)Re(Ap) + ars(t)Im(Ag), i(ar(t) A\ —
a0 k(A R)/VT = ags()Re(Mr) — age(t)Im(A), where ay(t) = “O g (1) =
i(ak(t)_]\‘[l—k(t)

are the coefficients in the expression from the solution T'(z, ).

Therefore we obtain the initial boundary value problem for the system of two ODEs:
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(ike(t) + are(t)Re(Me) + ars(t) Im(Ag) = bye(t),
&ks(t) + aks(t)Re()\k) — akc(t)Im()\k) = bks(t),
2 L 27ks 2 L 2mks
——— S i 4.10
ake(0) = - /0 To(s) cos = —ds, as(0) = © /O To(s) sin =——ds, (4.10)
. 2 L _ 2rks . 2 [L_ 2rks
axc(0) = L/o To(s) cos 7 ds,ars(0) = L/o 0(s) sin ds
In the matrix form we have
Ap(t) + A Ag(t) = By(t), A(0) = Ago, Ax(0) = Ao (4.11)

Re(Ag) Im(\g)
) —Im()\k) Re()\k)
Apg are the column-vectors with elements (axc(t), axs(t)), (bre(t), brs(t)), (are(0), ars(0)),
(akc(o)a dks(o))‘

We can represented the matrix Ay in the form A, = PDP~! where P = (—%5&' _12> ,

where A, = ( ) is the matrix of the second order, Ag(t), Bi(t), Ako,

1 Ar 0 . .
Pl = <0.5i 0;), D = < Ok )\k), where A\; = Re(\,) — ilm(\g), Re(A\;) = %,

Im(\) = — 2554,
Then the matrix solution of (4.11)

t
Ag(t) = cos(v/ Axt) Ago + A} % sin(y/Axt) Ago + AP / sin(y/Ag(t — s)By(s)ds
0

with the transformations Ay (t) = P~'Ay(t), Ax(t) = PA(t) can obtain in the form

A(t) = cos(VDt)Ayg + D705 sin(\/ﬁt);lko + D708 /Ot sin(vV'D(t — s)Bg(s)ds

where lekO = PilAko, Akg = PilAko, Bk(t) = PilBk(t).

For this separable we can determine the elements ag.(t), axs(t) of the column-vector Ay,
depending on the elements ay.(0) = axc(0) + iars(0), ars(0) = 0.5iak.(0) 4+ 0.5ax5(0),
e (0) = are(0) + iags(0), ars(0) = 0.5ire(0) + 0.5a4(0),

bkc(t) = bkc(t) + ibks(t), bks@) = 0.5ibkc(t) + 0.5bk8(t)

of the column-vectors Axg, Ao, By, (t) we obtain the solution of the ODEs system (2.7)
in the following form
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[ are(t) =Re(cos(v/Ait))akc(0) + ars(0)Im(cos(v/At))

; Re(smwﬁ?)) Jikel0) + aks<o>fm<sm(\gt” )

[ e A=y ) 4y L= g "
aps(t) = — Im(cos(v/Axt))anc(0) + axs(0) Re(cos(v/Axt) '

— 125 (0) + a0y e D

- t(fm(““(“f%:‘ Do) + o) e L=

For k = 0 we obtain ag. (¢ fo boc(s)ds + ape(0) + tap(0).

For numerical calculatlon we con81der the initial boundary value problem with
f(z,t) = —2macos(27x) cos(2mt), Ty = sin(nx), Ty = 0, T(z,t) = sin(rwx)cos(nt).
From (4.9) follows:
T(z,t) = a1(t) exp(2miz) 4+ a—y1(t) exp(—2miz), a1(0) = 5, a—1(0) = —5, bi(t) =
b_1(t) = —macos(27t),
a1(0) = a_1(0) = 0, \; = 472 — 2mai, A_1 = 4n% + 27ai, a1(t) = cos(v/Ait)/(23) +
(cos(27rt) - cos(ft))/(Qz)
a—_1(t) = —cos(y/A-1t)/(2i) — (cos(2mt) — cos \/ _1t))
Therefore T(x,t) = (cos(\ﬁt) exp(2miz) — cos(y/\ t exp 2m’9:))/(2i)+

((cos(2mt)—cos(v/A1t) exp(2miz)) exp(2miz)—(cos(2mt) —cos(y/A_1t)) exp(—2miz))/(2i) =
cos(2nt)sin(2rz). From (4.12) we have:

T(z,t) = ajccos(2mx) + a1ssin(2mz), a1.(0) = 0,a15(0) = 1, a1.(0) = a15(0) = 0,
b15(0) = 0, b1.(0) = —27wa cos(27t), a1c(t) = Im(cos(v/A1t))+Re((cos(27t)—cos(v/A1t)) /i,
a15(t) = Re(cos(v/A1t)), T(z,t) = Re(cos(v/A1t)) sin(27x).

We have for a = L = 1 the following MATLAB operators:

t=0:0.01:1;1=4%72—2x7*i;v =real(cos(y/(1) *t)); vl = cos(2 * 7 * t);
plot(t,v,*' t,vl/0o).

In the fig. 4.11 are represented the exact and approximate solutions.

For the discrete problem we have the system of N ODEs in the form of (4.2),
where a? = 1 and the circulant matrix
A= 52y, —(v+),0,0,...0,—(y — @],
with the eigenvalues py, = %(sin(lm/Nf(’y — davcot AT,
and with the elements of the orthonormal eigenvectors
wé“ = \/%exp(%rikj/N), w,’fj = \/%exp(—Qm'k:j/N), k,j =1, N. Here v = a coth(a),
a =ah/2.
For the column-vector F'(t) elements f;(t) we obtain f;(t) = Zzg(bkc( t) cos <y LA
brs(t) sin 27;\5]) + bOCT(t),
where
bre(t) = & 3200y f£i(t) cos 2L by (t) = 2 300, f(t) sin 25k = TNy,
bo(t) = by (t) = ﬁijl fj( )s boc(t) = bne(t) = ﬁbO( )7bN2,c( )= %
bN2 (t) = % E;vzl COS(jTr)> Ny = %J)st(t) = bNS(t) =0,
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Fig. 4.11 Wave solutions
cos(2nt) sin(2wx) depending on t by
a=1,L=1,N =100,z = 7/4,t; =1

Z*NQ Bk _ NQ lﬁ + 6N/2

For the solutlon uj(t) = ;:;N21(akc(t) cos 27fkj + aps(t) sin 2717\;9]) n 062(1‘,)’
u;(0) = i3 (ake(0) cos 2 + s (0) sin 27;\?9) i aoT(m
u;(0) = ZNi(akc(O) cos 2”'” + s (0) sin 27E1 ) + fo(0)

with ag.(0) —]év ij1 u](O) c;fos 7;\1;3 axs(0) _]<7V Z;V 1 u;(0) iln 27;\],”

. . 2 . . 27

akc(0) = % Zj:l i;(0) cos =R, ays(0) = % Zj:l i;(0) sin =52

we need to determine the unknown functions ay.(t), ars(t) of the following expressions
(1) = iy + (Au); = S35 (e () cos 2R + iy (1) sin 25¢) + 250+

W23 (ane(t) Re(pr) + ars () Tm(uy,)) cos 2”1‘” + (ags () Re(pug) — ape(t) Im(pg)) sin 232).

Therefore, for the determine the functlons akc(t), ags(t) we obtain the systems of
ODEs (4.10, 4.11) and the solution (4.12), where the eigenvalues \j are replaced with
the discrete eigenvalues pg, k =1, N.

4.7 System of hyperbolic type equations with periodic BCs

We consider the initial boundary problem of linear M-order system in the following
form:

M

0T, 9 9T AT,
atz _SZ::(&U(kms a )+ ms a )+fm7
OT,(0,t)  OTom(L,t) (4.13)
Ton(0,8) = (L, 1), =2 ) = Sl
T (,0) = Tyo(2), W = Ton(w),z € (0,L),m =1, M,

where K is the positive definite M-order matrix with different positive eigenvalues px >
0 and the elements &, 5, P is the real M-order matrix with different real eigenvalues pp
and the elements p,, s, m,s =1, M.
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This system can be rewritten in the matrix form

Pu(z,t) 0, - 0u(w,t) ou(z,t)

oz o Ny TP T,
w(0,1) = u(L, 1), (“)ué(;, b_ a“(aL’t),t € (0,t), (4.14)
u(z,0) = uo(x), 3u§; O _ o),z € (0, 1),

where u, f are column-vectors with elements 1T}, fp,, m =1, M.
Using the Fourier series the solution we can obtain problem in the following form:
w(z,t) = 370 (ake(t) cos ZZEL + qy (t) sin 2242 +b7a002(t),
o[t

(1) = T (biel) cos 255 +—bks< Jsin 2552) + 50,
bre(t) = 2 [ f(&,1) cos ZEEde b () = 2 [T (€, ) sin 22K e,
where the column-vectors akc(t) aks( ) of the M order are the corresponding solutions
of the following differential equations

.. ~ 21k
e(t) + M Kage(t) — Tpaks( ) = bre(t),
o (4.15)
dks(t) + )\kKak-S( ) + TPakc( ) = bks(t),
where by.(t), brs(t) are the column-vectors of M order, ay.(0) = %fOL up€) cos #df,,
1(0) = 1 ua€)sin ZEEE, i1(0) = 2 [ 10€) cos 2., a0, (0) = 3 ) sin T,

For the discrete problem (O(hQ") order of approximation) we have the system of
ODE:s in the following form:

{ (1) = K Avj(t) + PA; () + f(t),t € [0, ], (4.16)

J(O) UO($]) U](O) = ﬂO(xJ)vmj :]thh =L,j=1,N,

where the column-vectors of the M order v;(t) = u(x;,t), fj(t) = f(xj,1),
the expressions of the finite difference operators in multi-point stencil with 2n+1-points
(N > 2n +1)

/11)J = 72 (Cn(vj_n + Uj+n) + -+ Cl(vj_l + Uj.|_1) + C()?}j),CQ = — Z;:l Cp, Cp =
2(nh)?(=1)P~! _
Pa—plnip P = 1,n - )
n!)“(—1)P
AOUJ llz(cn(UJJrn Vj— n) F o+ Cl(ijrl Vj— 1)), ¢ ((n) é)'(,zﬂ))np =1,n.

We have following matrix representation for 01rculant matrices
A=-AN=-— hQ[C’O,Cl,...,Cn,O,...,O,C’n,...,C’l],

with the eigenvalues pp = % > =1 @p sin?(nk/N), Q, = % and A° = A% =

l[0 cl,. .. cn,O,... 0,—¢n,...,—c1], with the eigenvalues uk = %f 1 Cpsin 27;\7;]? =
21 27k 2p—2 7wk _ (ph2ar—!?
7, sin =1~ p 1 gpsin N> Where ¢, = 2(2p)]

Using the discrete Fourier method the solution we can obtain the problem in the fol-
lowing form:

03(8) = 3o (ahe(t) c05 2L 4 (1) sin 2241 4 25l0,
fi@t) = *NQ(bkc( ) cos 252 + by (1) sin 252 + boclt),
bre(t) = ijl f(t) cos %,bks(t) = % Zj\le () s1n%,



where ag.(t), ags(t) are the corresponding solutions of (4. 15) and Ay, =T 2tk are replaced

with g, Im(u)), arc(0) = % Z 1 uo(z;) cos 2%”, ars(0) = & Z . uo(x]) sin 27;\53
age(0) = % Zjvzl Up(xj) cos 7;\;”, ars(0) = & ZFl Up(xj) sin 27;\?].

This real form we can obtain also from the following expressions
Acosy, = i, cosy,, A° cosy, = \,uk| siny, Asing = py, sing, A% siny, = |uk| cosy, where siny,
cosg are N-order column-vectors with the elements sin 27;\?3 cos 27”’“3 and using the or-
thonormal conditions
Zj-vzl sing cosg = Z;Vﬂ siny, sing = Z;VZI cosy, cosg = 0.
Then for fixed frequency k in the initial data the solution can be written in the form
u(t) = ds(t) sing +d.(t) cosy, where d4(t), d.(t) are unknown the time-depending vector-
functions. Then i(t) = d(t) sing, +d.(t) cosy,
Au(t) = pg(ds(t) sing +de(t) cosg), A%u(t) = |ul|(ds(t) cosy —d.(t) sing).
For FDSES, replaced the discrete eigenvalue pg, I m(,ug) with Ag, % we obtain the
exact solutions for initial data with the frequency < N/2.

The time-dependent difference equation (4.16) using the M N-order column-vector
v(t) with the elements v"(t), j = 1, 1,N,m =1, M in the form

~KQ A+ P A% u(t) + f(1) (4.17)

serves as an approximation to the differential problem, in the sense that any smooth
solution u(t) satisfies the approximation (4.16) modulo a small local truncation error
w(h,t) = O(h*) :

62
at2 = (K Q) Au(t) + (P ) B)u( t) +w(h,t), (4.18)
where M N-order matrices
. ki1A - kimA p1aA° - p g A°
K®A: ,P®AO: ,
EaviA - kv A par 1A% parar A°

are Kronecker tensor products, u(t), u(0), @(0), f(t) are M N column-vectors with the
elements u"(t), u}*(0), a}*(0), fi*, m=1,M, j =1,N.

Matrices also can be defined with the representation A = WDW*, A = WD'W*, and
solved numerically with the Matlab using the operator ”kron”,

If eigenvalues of matrices K, P are A;(K) > 0, \;(P), s = I, M then exist the trans-
formation of M-order matrices Wk, Wp, and the representation K = WD KW[?, P =
WpDpW5t, where D = diag(A\s(K)), Dp = diag(As(P)) are the diagonal matrices.
From properties of Kronecker tensor product follows (W* = W~1):
B=-KQA+PRA’ = —(WkDxW ' Q WDW*) + (WpDpWp' @ WDW*) =
Wk @ W)(=Dx @ D) (W' @ W*) + (Wp @ W)(~Dp @ DO)(Wp' @ W*)=

(Wi @ W)(~Dic @ D) (Wi @ W)~ + (Wp @ W)(~Dp @ DO)(Wp @ W)~

The eigenvalues A(B) of matrix B are —upAs(K) + pdAs(P),k = 1,N,s = 1, M with
the Re(A(B)) < 0 and the system of ODEs is stable.

For the approximation, if v}”(t) = Tn(xj,t),m =1, M and for every time moment t
S (3))

" _ n 2n+2
i = Au] + Eop, T2 , Fop = =2 Zk:l Crk
, h2nq,(2n+1) & n 2 1
u; = AOUj + €2nT)!(J),€2n = -2 Zk:l cik nt y Tp—j < fj < Tn+j,
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then i(t) = Bo(t) + f(t) + ¥(h,t), where v, f, ¥ are M N-order column-vectors

and W(h,t) = O(h"),or [|@(h, 1)]| < h*(e2s || K| Manta(t) + geziiy] | Pl Man+1 (1)),
05T (z,t)

M = max | =5, 7| is the maximal estimate for corresponding derivatives.
Given stability we can now estimate the global error e(t) = v(t) — u(t) and to find, that
the error e(t) is governed by the error equation

92e(t)
ot

= Be(t) + W¥(h,t).

The solution of this equation is given by e(t) = cos(\/Et)e(O)—}—sin(\/Et)(\/E)_lé(O)—i—
(VB)~! [y sin(vVB(t — ) ¥ (h, €)dt.
From Re(\(B)) < 0 and that ||&|| and ||e(0)||, ||¢(0)|| are of order O(h?") follows the
2n-order of convergence rate later on ||e(t)|| = O(h?").
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5. Numerical modeling of applied problems

In this chapter we will investigate modeling of several problems which arise in magne-
tohydrodynamics, process of heat transfer, also modeling in multilayer domain. These
models were created in the works [22], [25], [20], [32], and [35].

5.1 Mathematical modeling of the 2D MHD flow around infinite
cylinders with square-section placed periodically

The external 2D magnetic field has two components of the induction is in the following
dimensionless form:

B, = cos(a), By = sin(a), where « is the angle between the z-axes and direction
of the induction vector. We analyze the flow depending on three way of homogeneous

magnetic field: the field parallel to z-axis (a = 0), transverse field (v = §) and sloping

fields (o« = T or v = 7).

The magnetic field creates the Fy(z,y), Fy(z,y) components of the Lorentz force F.
From the vector of Lorenz force F = o(E + V x B) x B for the 2D magnetic field we
obtain
F,=-0B,(V;B,-V,B,+E,), F,=0B,(V,B,-V,B,+E.),
where E, = const is the axial component of the electric field E, o is the electric con-
ductivity, V;, V,, are the components of velocity vector V.

The z-component of the vector’s curlF has on influence to a liquid motion, which can
be described by the dimensionless stationary Navier—Stokes equation in Cartesian co-
ordinates (z,y) [20]:

—(Vy =92 4 Re~' AV, + SF,,

(Ve = =22 + Re"'AV, + SF,, (5.1)
o) o) g,
where A is Laplace operator, p = p 4+ 0.5V% — SE_A., p is the pressure, A, is the
magnetic stream function, B, = %, B, = —65?;
or A, = ycos(a) — xsin(a), ( = %l; - 88‘;” is the vorticity function,
Re = Yolo g — 7B3Lo are the Reynolds and Stuart numbers,

v pUo
p, v are the density and kinematic viscosity.

The cylinders are electrically non-conducting and ffooo f_oooo j.dxdy = 0, where

J» = 0(E, + Vy sin(a) + V,, cos()) is the axial component for the density of the electric
current [21].

The equations (5.1) were put in the dimensionless form by scaling all the lengths to Ly
(the side of the square), Uy (velocity), By (magnetic field), Py = UZp (pressure). The
hydrodynamic stream function 1 can be determined by the formulas
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Ve = ?;5, Vy = —%. Eliminating pressure from the (5.1) one obtains

= J($,¢) + Re VA + S£,¢ = —Ad, (5.2)

where f = 81n(2a)8xgy + cos?(a )6 Y+ sin?(« );—;ﬁ

is the z- component of the vector’s curlF,

J(,¢) = g%% — %% is the Jacobian of the functions 1 and (.

Using the boundary conditions (BCs) of symmetry and periodical ones we can consider
only the domain that contains quarter of two cylinders. We can consider two situations,
when cylinders are placed in the parallel series in-line arrangements and in the parallel
series series-staggered arrangements. In this work we look into the case when cylinders
are placed in the parallel series — in-line arrangements. We consider the domain {2 =
21U 2 (see figs. 5.1, 5.2),

where 21 = {(z,y) : 1 <2z < 1,0<y< L1}, ={(z,y) : 0< 2z <[,[; <y<
L}, 0<li<lpo<l,0< Ly <L.

Here C1 ={(z,y) : 0 <z < 1,0 <y < L1} and Cy = {(z,y) : la <z <[,0 <y < L1}
are the quarter of cylinders,

L' ={(z,0):0 <2 <I},L? = {(2,0) : Iy < x < Iy} are the plane of symmetry with
BCs V, =0, =0,9p =4 € L',¢p =0 € L,

W= {(2,L1):0<a <L}, W?2={(2,L1):lo <ax <1}, W3 ={(l1,y) : 0<y < L1}
and W* = {(I,y) : 0 < y < L1} are the walls of the cylinders with the non slip BCs
Vo=V, =9 =0,

I, ={(0,y) : L1 <y < L} is the inlet and O; = {({,y) : L1 <y < L} is the outlet with
the periodical BCs for 9, ¢, Uz, Uy,

From the conditions of electrically non-conductivity of the cylinders

//szwdy—// +—dmdy_0

follows E.Ll = — ¢, v cos(n,B)ds = —(Isin(a) + cos(a fL —(0,y))dy) =
—lsin(«), or E, = —sin(«) /L.
On the walls we use the following BCs [19] ¢¥ = 6 + ¢ k=1,2,-,
where k is the number of iterations with ¢¢ = 0, B > 0 is the parameter, n is the
direction of the external normal vector on the wall.
For numerical calculations we consider an uniform quadratic grid ((N + 1) x M).
For cylinders placed in the parallel series
) Q{l = {(xl,yj) T; = (Z — 1)h, Y; = (] - 1)h,}i = Nl,NQ, j = 1,M1, (Nl — 1)]7, =
li,(My —1)h = Ll,
2) 02 = {(xi,y = 6Dy = G DY = BN, = WM (¥~ =
Iy, (M —1)h =
where i = Nl1 Né2 1= Nl—l = ML—l = Mfl—l-
Subscripts (z j) refer to x,y indices with the mesh spacing h.
The equations (5.2) in the uniform grid (z;,y;) are replaced with difference equations
of the second order approximation in 5- point stencil and the numerical calculations are
carried out by using Seidel iterations with under relaxation for vorticity.
Numerical results are obtained for dimensionless values L = 1, Ly = 0.5,1; = 0.5,1s =
1.5,l3 =2.5,l4 =3.5,l=2or
[ = 4(for enlarged domain) Re = 40,5 = 0,2.5, 5, 25.0, 250.0,
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3 Q 3
]
Fig. 5.1 Domain for parallel placed cylin- Fig. 5.2 Domain for parallel placed cylin-
ders(2 cylinders, L1 = 0.5,L = 1,l; = ders(4 cylinders, BCs: 1-symmetry,2- peri-
0.5,l2 = 1.5,1 = 2) odical, 3-walls)
Ha? = 0,100,200, 1000, 10000, o = 0, % EZF, g € [5,15],w € [0.1,0.8].
For physical model we con51der the liquid steel with following parameters:
p=T710329] 1 = 1070, 0 = 7.107 .
The characteristic length scale Lo = 4.1073[m], the magnitude of the uniform ﬂow ve-
locity Uy = 1072 [™] and pressure Py = 0.7[-%].The applied magnetic field By = \/ €
[0, 2.5][T].
For inductionless approximation we have that the magnitude of the magnetic Reynolds

number Re,, = pooUyLg ~ 3.107° is small (up = 47710_7[;22%] is the magnetic perme-

ability in vacuum).

For obtaining the dimension values we need multiplied the dimensionless values with
following scalar factors:

1) the maximal and minimal value of velocity with Uy = 1072,

2) the vorticity with ¢ = %2 = 2.5,

3) the stream function and the fluid volume with ¥y = UyLg = 4.1075,

4) the pressure with Py = pUp = 0.7.

The calculation and their graphical visualization were made by means of the MAT-

LAB software for 4 different grids:

1)h =0.05, Ny = 11, Ny = 31, N =41, M; = 11, M = 21,

2)h =0.025,, Ny =21, Ny = 61, N =81, M; = 21, M = 41,

3)h =0.0125, Ny = 41, Ny = 121, N = 161, M; = 41, M = 81,

4)h = 0.00625, N1 = 81, Ny = 241, N = 321, My = 81, M = 161.

For the iteration process with maximal errors < 1076 for ¥ and < 1074 for ¢ the
numbers of iterations K € [1000,20000] are depending on the parameters.

If S = 0,w = 0.5 then depending on the numbers of iterations K we have corre-
sponding minimal value of ¥ = —0.048(K = 1000), —0.051(K = 2000), —0.052(K =
5000), —0.052( K = 10000).

If Re = 40,5 = 250,By = 2.5,a = 7,w = 0.4 then depending on the grid numbers
N, M we have corresponding dimensionless values:
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1) min (¥) = —0.0034(N = 161, M = 81),—0.0033(N = 321, M = 161),
2) max (V) = 5.65(N = 161, M = 81),5.60(N = 321, M = 161),
3) max (¢) = 35.65(N = 161, M = 81),35.70(N = 321, M = 161).

In the corresponding figs. 5.3 and 5.4 we can see the levels of the dimensionless stream
function ¥ = const for § = 0 and S = 2.5. We see that in the second case vortices are
disappearing. In the publication [22] also numerical results for pressure and velocity can
be seen. We use for the calculation the grid Nr. 3 with N = 161, M = 81.

Vel.Mvx = 2.9216,mvx=-0.2475,Mvy=0.27,mvy=-0.20 Vel.Mvx = 2.4531,mvx=-0.0060,Mvy=1.43,mvy=-0.51

: 0.88307 ] : " 088874
0.76614 77747

' 0.64921 1 0.9F

053227 '
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0.7¢ 0.18148 | 0.7¢

> 0.5 > 0.5

Fig. 5.3 Levels of stream function for Fig. 5.4 Levels of stream function for o =

Re=40,5=0 1,5=25

By S = 25 the vortices disappears. Similarly we can look into situations when mag-
netic field direction is oo = 7.

From numerical results follows that the vortex formation and MHD flow are depend-
ing on the form of external magnetic fields and on the values of Reynolds and Stuart
numbers. In the strong transverse magnetic field the vortexes are deleted and on the
walls of the cylinders Hartmann boundary layers developed.

5.2 Mathematical modeling of 2D magnetohydrodynamics and
temperature fields, risen by electromagnetic forces between two
infinite coaxial cylinders

In the papers [25] a new type of heat generator is modeled. Previously in papers (]26],
[27], [28], [29]) cylinder form electrical heat generators with six or nine circular conduc-
tors were modelled — electrodes placed on the surfaces of the cylinder. Here conductors
have forms of six bars placed parallel to the cylinder axis in the central part of the
cylinder. In the (fig. 5.5) we can see the real electrical heat generator.

The alternating current is fed to N infinite discrete conductors in forms of bars, which
are placed parallelly to the cylinder axis in the domain r < rg < R. In the fig. 5.6 we
can see the mathematical model with 6 conductors (N = 6.)

Let the cylindrical domain between two infinite cylinders 2 = {(r,¢,2) : ro < r <
R,0 < ¢ < 2m,—00 < z < 0o} contain viscous electrically conducting incompressible
liquid, where rg, R are the radii of the coaxial cylinders.

In the weakly conductive liquid-electrolyte the current creates the radial B,.(t,, ¢)
and the azimuthal Bg(t,7,¢) components of the magnetic field as well the axial com-
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ponent of the induced electric field E. (¢, 7, ¢) depending on the time ¢. For calculating
the electromagnetic fields outside the electrodes, the averaging method over the time
interval 27 /w is used (w is the angular frequency of the alternating current).

Magnetic fields creates the radial F,.(r, ¢) and azimuthal Fy(r, ¢) components of the
Lorentz’ force F'.
The axial component of the vector curlF gives rise to a liquid motion. The stationary 2D
flow of incompressible viscous liquid between the cylinders is described by the system of
the Navier—Stokes equations in the polar coordinates (r, ¢), 1o < r < R in the following
form [24]:

M(V,) = r7'WVE = —57 2 + v(AV, — vV, — 20252 4 57IF,
M(Vy) +r7 'V, Vg = —( ) 198 + u(AVy — 72V + zr—W) +p7'Fy  (5.3)
2rVe) | 0We) _

a9

Here V;., V, are the radial and azimuthal components of velocity vector V, depending

on the coordinates r,¢; A is Laplace operator, Ag = 7,71%(7,%) + 7’723&, M(g) =

V. 8? + r*1V¢g—g are the convective parts of the equations,
p, v are the density and kinematic viscosity, p is the pressure, g = V;; V4.

Determined the vorticity functions or the axial component of the vector curlV with
formulas @ = r~1(d(rV,,)/0r — OV,./0¢) we obtain

—Vew = —p 1% - yr*wg + 5 'F,,
Viw = —p_lr_l 9P 4 l/ar + 5 1Fy, (5.4)

8(T‘/;) + (V¢) _O

where p = p + 0.5V2,
For alternating current the averaged values of Lorenz force F,., Fy are obtained, ap-
plying the Biot—Savart and Ohm’s laws in the following form [23]:

F.(r,¢) = 0.5KoS%,
{FW, ¢) = 0.5K,57, (5.5)

where

i,5=1 i,j=1
- In(pi)(rjcos(¢ — ¢;) — 1) B, = In(p;)r;sin(¢ — ¢;)
Q5 = — p2 y Pig = ,02- >
J J

Ky = (“ 570) ow, i = 4710~ 7”2“2% is the magnetic permeability in vacuum, o is the
electric conductivity,
Jjo is the amplitude of alternating current density

ji = jocos(wt) + (i — 1)0,i =1, N, (5.6)

6 = const is the phase (usually § = 120" and the frequency of the alternating current is
50Hz), (r;, ¢;) is the polar coordinate of the center for wires
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Li={r—ri<a<ry¢i—0a; << ¢ +a;,—o0 < z < oo} with radius a,

pi = \/(rl2 + 172 — 2rr; cos(¢p — ¢;)), o = arcsin(a/r;).
Similarly for averaged values of source term in heat transport equation [23]

§2(r,¢) = 0.5KoowS7, (5.7)

where S} = Zf»?fj:l cos((j — 4)0)7i,j, vi,; = In(p;). In(p;).
Having calculated the axial component of the curl for force vector f = rot,F, [23]
the average value is
f(r,¢) = 0.5KS%, (5.8)
N . . .
where va =2, sin((j —i)0)d; 5,
8ij = p&(rBij) — g5(ig)] = 915 — 95
. _ risin(¢—¢;) (rj cos(p—¢;)—r)
Jiog =72 P '
On the walls (the surfaces of the cylinders » = R and r = ry) we have the non-slipping
conditions V = 0.
By eliminating the pressure p from the first two equations of the system of PDEs

(5.4) one obtains

M(@) = vAd + pLf, (5.9)

where f is the axial component of the vector curl(F.

The hydrodynamic stream function ¢ can be determined with formulas

_ 109 _ 0
‘/;—'l“ %7V¢)*_7¢)

Then from the equation of continuity and from vorticity function it follows, that & =
— A,
From (5.9) follows the system of two PDEs for solving the vorticity function @ and

stream function 1 [33]:
{ Ap =~ (5.10)

rU(@,0) = vAD + 5,

where J(@,1) = (0w/0r)(0vy/0¢p) — (0w/D¢)(0v/0r) is the Jacobian of the functions
¥ and @.

The use of the stream function and the vorticity as the dependent variables is the fun-
damental reason for the difficulty in implementing the boundary conditions for vorticity
[33].

By eliminating the functions @ from (5.10), we obtain the PDEs of the fourth order

r (A, ) = vARY — 5L, (5.11)

where J(Aw, ) is the Jacobian of the functions ¢ and A.

In the azimuthal direction we have the periodic conditions: 1 (r,0) = ¢ (r, 27), %;’0) =
oY(r,2m)
ob

The steady energy equation reduces to the heat transport equation for incompressible
flow with source terms and with constant properties. The stationary distribution of
temperature field T'(r, ¢) in a conducting ring is described by the following boundary-
value problem for the heat transport equation:
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{ per~YJ(T ) = kAT + o152,

5.12
OTII) — 0, T (rg, §) = Th, (5.12)

where ¢, k are a corresponding constants of specific thermal capacity (¢ = 4000,@%) and

coefficient of heat conductivity (k = 0.6%),
42 is the source term, T, is the given constant fixed temperature.

The equations (5.11, 5.12) were put in the dimensionless form scaling all the lengths
to L = R (the radius of the tube), the velocities V;., Vg to Uy, stream function v to
1o = UpR, the induction B,, By of magnetic field to By, the pressure p to Py = Ugﬁ
and temperature T to Ty, where Uy = v/R. Further the denotes of all variables are
unchanged.

In the publication [25] it is shown how to obtain the source function using the mag-
netic and electric fields provided.

The procedure of iterations

A2 = agr=J (AU, ™) +bo f, )
{AT(m+l) — Pr r—lJ(T(m)’w(m—i-l)) _ KT]E, (5' 3)
together with the boundary conditions is realized using finite difference approximation
with central differences.

In the linear case (J = 0) we have only one iteration. If the nonlinear terms (convective
terms J) is dominant ag >> 1, then the method of under-relaxation is used with the
parameter w, < 1.

The stream function equation (5.13) in the uniform grid (4, ¢;) is replaced by the

vector difference equations of the second order approximation on 5- point stencil:

AWi—o+ BW;,—1 + CiW; + DiW; 1 + B0 + FZH =0, (5.14)

where ¥; are column-vectors of the M-order with components v; ; ~ YD) (o, ®j),j =
1,M,i=3,N—1,
A;, B;, C;, D;, E; are the circulant symmetric matrices of M-order.

The heat transport equation (5.13) is replaced by vector difference equations of second
order approximation in 3- point stencil:

ALT;_y — C1T; + B1;Tiy1 + FI =0, (5.15)

where T; are column-vectors with components T; ; ~ T (1, b)), =1, M,
Al;, B1;,C1; are the circulant symmetric matrices of the M-order.

The boundary conditions for external magnetic fields are replaced by difference equa-
tions from the second order of approximation. For the vector function ¥; using the
3-point (r1,72,73), (rN+1, 7N, "N—1) stencils by 7 = n,r = 1 we obtain the second order
approximations.

The vector difference schemes (5.14, 5.15) are solved by the Gauss elimination method
using the calculations of circulant matrices.

Calculations and their graphic visualizations were made by means of the computer
programs MATLAB with n = 0.2, N = M = 80.

The exactness of numerical results are testing with different numbers of grid points N,
M. From numerical experiment follows that for N=M=40 and N=M=80 the results are

86



coincident with 4 decimal places.

The number M;; of iterations and the under-relaxation parameter w, are depending
on the parameters Re, S, Ha, K", KT. These values are determined by the following
inequalities:

max [1p™m L — ™| <1041, = max |T™ L — 7™

<107%
max [pm+1] max [T+

Q;Z)er =

For the alternating field induced by six electrodes are used 6 = %’T and 0 = 7.
The liquid has following parameters:
kinematic viscosity v =~ 10*6’”72, density of liquid p = IOOO% and the electric con-
ductivity o ~ 100£2~'m~!. The parameter Ky = 7107172, radius R of the cylinder is
0.10m, the density of the current amplitude jo ~ 10*1 %, the radius a of the electrodes
is 0.005m, where I = 100A.
We have the following parameters: K ~ 31, Pr = 6.7, Ky ~ 50. For given values of
the parameters are e, < 1074, T, < 107* by M;; = 200, w, = 0.5.

We consider different connections of the conductors [Li, Lo, L3, L4, Ls, Lg]. This con-
nections were denoted with [1,2,3,4,5, 6].

By 6 = 7/3 and with following coordinates of conductors centers (fig. 5.6)
Li(ri,01) = (14,0, La(ra,d2) = (r4,60°), Ls(rs, ¢3) = (r4,120°), La(ra,¢1) =
(74, 180°), Ls(rs, ¢5) = (14,2400, Lg(re, d6) = (rs,300°), . = 0.015m.

In (fig. 5.7, fig. 5.8) are the distributions of stream function and temperature for
connections [1,2,3,4,5,6] of conductors by maximal temperature max(7") = 10.56. In
the (fig. 5.9, fig. 5.10) are the results for connections [2,3,5,6,1,4] by max(T") = 6.57
and by two vortices.

We have 2 vortices by connections [2,3,5,6,1,4], [1,3,5,2,4,6], [1,4,5,6,2,3], 3
vortices by connections [1,6,2,5,3,4], [1,4,2,5,3,6] and 4 vortices by connections
[2,4,6,1,3,5], [2,6,5,3,1,4].

Similar results can be obtained for 6 = 27/3.

From numerical results we conclude that the vortex formation is strongly depending
from the connection of electrodes, the temperature field is strongly depending on vortex
field.

Fig. 5.5 The real heat generator Fig. 5.6 The 2D mathematical model of
the heat generator
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Streamline, Max=0.0000, Min=-0.3695, Iter=20.00, Diferr=0.0000 Isoterms, Max=10.5643, Min=1.0000, Iter=57.00,Diferr=0.0000
0 4 10

Fig. 5.7 Stream function for [1,2,3,4,5,6], Fig. 5.8 Temperature for [1,2,3,4,5,6],0 =
6=nr/3 7/3, Tynaz = 10.56
Streamline, Max=0.0421, Min=-0.1882,Iter=19.00, Diferr=0.0000 Isoterms, Max=6.5660, Min=1.0000,Iter=45.00,Diferr=0.0000

90

Fig. 5.9 Stream function for [2,3,5,6,1,4], Fig. 5.10 Temperature for
9 =n/3 2,3,5,6,1,4],0 = /3, Tmas = 6.57

5.3 Mathematical modeling of 2D magnetohydrodynamics flow in the
ring by external magnetic field

Let the cylindrical domain {(r,¢,2) : 7o <7 < R,0 < ¢ < 27, —00 < z < 00} contain
viscous electrically conducting incompressible liquid, where rg, R are the radii of the
coaxial cylinders. The surfaces of these cylinders can rotate with corresponding angular
velocities — (2, £21. Different types of external 2D magnetic fields can be considered —
uniform, radial, axial, bipolar and sum of axial and uniform fields.

In this work uniform external 2D magnetic field is considered. Field is added with
the radial B,(r,¢) = Bo(l — r~2a,)sin(¢) and the azimuthal By(r,¢) = Bo(l +

(u=1)r3
ptl
%, {1, o — are the corresponding magnetic permeability in the liquid (R > r > rg)
and in the internal cylinder (r < rg) (if & = 1 then this field is homogeneous and par-
allel to Oy axis [30], if u = 0, up = oo then the internal cylinder is ferromagnetic, if
p = 0o, 1 = oo then the liquid is ferromagnetic).
Here By is the scale of the induction for magnetic field. These magnetic fields with
the vector of induction B are solutions of the following homogenous Maxwell’s equations

divB = curlB = 0.

r~2a,) cos(¢) components of the induction for magnetic field, where a, =
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This components of the external magnetic fields creates the radial F,.(r, ¢) and az-
imuthal Fy(r, ¢) components of the Lorentz’ force F.
The axial component of the vector’s curlF give rise to a liquid motion. The stationary
2D flow of incompressible viscous liquid in a cylinder is described by the system of the
Navier—Stokes equations in the polar coordinates (7, ¢),ro < r < R.

The model is similar to the model in the previous section equation 5.3, where

F,. = —O’B¢(‘/TB¢ - V¢Br + Ez), F¢ = O'BT(VTB¢ — V¢BT + Ez>,

E. = const is the azimuthal component of the electric field E, ¢ is the electric con-
ductivity. The walls (the surfaces of the cylinders »r = R and r = r() rotate with the
velocities Vi = 19§29 and Vy, = Rf2 corresponding (V, = 0). Equation is transformed
in to nondimensional form and approximated using finite differences and uses the same
numerical methods used in section 5.2.

Calculation and their graphic visualization were made by means of the computer
programs MATLAB for Re € [100,1000]; S € [0.01,10],n = 0.2,wy € [-5,5],w1 €
[-1,1], N =80, M = 30,w, € [0.05,0.5], M;; € [80,400].

By the uniform magnetic field with different values of u in the rotated flows the
different form of vortexes developed. In the figs. 5.11, 5.12; 5.13; 5.14 are the distribu-
tions of stream function by Re = 100, S = 10,wg = —5;0;5,w; = —1;0; 1, u = 1;0.

An original method was used to calculate the circular matrices. With the finite dif-
ference method the distributions of magnetohydrodynamics flows are calculated.

In the publication [20] can see that from numerical results follows that the distributions
of MHD flow is depending on the velocity of walls rotation and of the form of the ex-
ternal magnetic fields:

1) for the radial magnetic field we have the radial symmetry of the flow and on the walls
of the cylinder the Hartman boundary layers developed,

2) for the uniform magnetic field we can see different form of vortex formation in the
fluid depending on the level for ferromagnetic,

3) in the bipolar magnetic field the flow to get off from inner cylinder which stay sta-
tionary.

Max=0.0711, Min=-0.0000, Iter= 94, Diferr=0.0000,c0=-0.0000,S=10,0M0= 0,0M1= 1 Max=0.0710, Min=-0.0294, Iter= 94, Diferr=0.0000,c0=-0.0000,5S=10,0M0= 5,0M1= 1
90

Fig. 5.11 Stream function for p =1,5 = Fig. 5.12 Stream function for p = 0,5 =
10,wp =0, w1 =1 10,wg =0, w1 =1
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Max=0.0000, Min=-0.0708,lter= 97,Diferr=0.0000,c0=-0.0000,S=10,0M0= 5,0M1=-1 Max=0.0000, Min=-0.0710,lter= 94,Diferr=0.0000,c0=-0.0000,S=10,0M0= 5,0M1=-1
90
120 —
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-0.03 -0.03
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-0.05 -0.05

-0.06 -0.06

Fig. 5.13 Stream function for p =1,5 = Fig. 5.14 Stream function for u = 0,5 =
10,wo = H,w1 = —1 10,wp = —H,w; =1

5.4 The mathematical modeling of Ca and Fe distribution in peat
layers

We consider averaging and finite difference methods for solving the 3-D boundary-value
problem in multilayer domain. We consider the metals Fe and Ca concentration in the
layered peat blocks. Using experimental data the mathematical model for calculation of
concentration of metals in different points in peat layers is developed. A specific feature
of these problems is that it is necessary to solve the 3-D boundary-value problems
for elliptic type partial differential equations (PDEs) of second order with piece-wise
diffusion coefficients in the layered domain. We develop here a finite-difference method
for solving of a problem of one, two and three peat blocks with periodical boundary
condition in x direction. This procedure allows to reduce the 3-D problem to a system
of 2-D problems by using circulant matrix.

The process of diffusion the metal in the peat block is consider in 3-D parallelepiped

Q={(z,y,2):0<2x<,0<y<L,0<z2< 7}

The domain {2 consist of multilayer medium. We will consider the stationary 3-D prob-
lem of the linear diffusion theory for multilayer piece-wise homogenous materials of N
layers in the form

2 ={(z,y,2) 1z €(0,0),y € (0,L),z € (zi—1,2i) },i =1, N,

where H; = z; — z;_1 is the height of layer §2;,z9 = 0,2y = Z. We will find the distri-
bution of concentrations ¢; = ¢;(x,y, z) in every layer §2; at the point (z,y,z) € £2; by
solving the following partial differential equation (PDE):

D 0%c;/0x% 4 Dyy0%c; |0y* + D;,0%¢; /02 + fi(w,y,2) = 0, (5.16)

where Dy, Djy, D;,, are constant diffusion coefficients, ¢; = ¢;(x,y, 2) — the concentra-
tions functions in every layer, f;(x,y, z) - the fixed source function.

The values ¢; and the flux functions D;,0c;/0z must be continues on the contact lines
between the layers z = z;,i =1, N — 1:
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Ci|z- - Ci—i—l‘z-’
T T 517
Dzzacz/é?z\zz = D(i+1)28ci+1/8z\zi, ( )

where i =1, N — 1.
We assume that the layered material is bounded above and below with the plane
surfaces z = 0, z = Z with fixed boundary conditions in following form:

c1(z,y,0) = Co(x,y), cn(z,y,Z) = Cq(z,y) (5.18)

where Cy, C, are given concentration-functions.
We have two forms of fixed boundary conditions in the z,y directions:
1) the periodical conditions by # = 0,2 = [ in the form
¢i(0,y,2) =ci(l,y, 2),0¢i(0,y, z)/0x = dc;i(l,y, 2)/ Oz,
2) the symmetrical conditions by y =0,y = L
0ci(x,0,2)/0y = Oci(x, L, z) /0y = 0.
For solving the problem (5.16)-(5.18) we will consider conservative averaging (AV) and
finite difference (FD) methods. These procedures allow to reduce the 3-D problem to
some 2D boundary value problem for the system of partial differential equations with
circulant matrix in the z-directions.

The equation of (5.16) are averaged along the heights H; of the layers {2; and quadratic
integral splines along z coordinate in following form one used [31]

ci(w,y,2) = Ci(w,y) + mi(x,y)(z = 7) + es(2,y)Gi((z — 7)*/HF = 1/12),  (5.19)

where G; = H,L/Dlz,,?z = (Zifl + Zi)/Q, z € [Zifl, Zi],

m;, e;, C; are the unknown coefficients of the spline-function,

Ci(z,y) = H;l fz’i’;l ci(z,y, z)dz are the average values of ¢;, i = 1, N.

After averaging the system (5.16) along every layer §2;, we obtain N system of 2-D PDE

Dm82(]1/8x2 + Diy(‘)zCi/E?yZ + 2H;16i + Fi(x, y) =0, (5.20)

The calculation of unknown functions m;, e; using the conditions and other calcula-
tions can be found in the work [32].
In the case N = 3 (three layers) we have equations for m;, ¢;

e; = €;1C1 + €202 + €;3C3 + €, 0, (5.21)

m; =m;1C1 +m; 20 +m;3C3 +myo,i = 1;2;3, '
Unknown functions m; j, ¢; ; can be found also using the conditions provided.
For solving 2-D problems we consider an uniform grid (N, x (Ny + 1)) :

wr = {(x4,y5), i = thg, yj = (j — 1)hy,i =1,Ny, j =1, N, + 1, Nyhy =1, Nyh, = L.}

Subscripts (i, j) refer to x,y indices, the mesh spacing in the x;, y; directions are h, and

hy.

We can have the PDEs (5.20) rewritten in following vector form:

D,9*C/dx* + D,0*C/9y* — AC + F =0, (5.22)

where D,, D, are the 3 order diagonal matrices with elements D1, Da;, D3, and
Dly; D2y7 D3y7

91



C' is the 3 order vectors-column with elements Cy, Cy, C3, F is also the vectors-column
with elements Fi, Fb, Fj,
and A is the block matrix in following form:

ei11/Hy e12/Hy e13/Hy
A= -2 ez1/Hsez2/Hs ep3/H>
es1/Hs ez 2/Hs ez 3/Hs

The equation (5.22) with periodical conditions for vector function C' in the uniform grid
(xi,y;) is replaced by vector difference equations of second order approximation:

AAW,_y —CC W;+ BB Wjy1 + F; =0, (5.23)

where W;, Fj,j = m are the M x N, (M = N,) order vectors -column with elements
Chrij =~ Cr(xi,y5), Fraj = Fi(xiy;),i =1, M,k =1;2;3,
AA,CC, BB = AA are the 3 block- matrices of M order circulant symmetric matrix.

As described in the chapter 1, the circulant matrix can to give with the first rows and
the calculation (matrix inversion and multiplication) can be carried out with MATLAB
using simple formula for obtaining the first M elements of matrix.

The vectors-column W; from (5.23) is calculated by Thomas algorithm ([34]) in the
matrix form using MATLAB. Diffusion coefficients are found by solving 1D problem in
the z-direction using data from experiments.

For numerical results we consider the metals Fe and Ca concentration in the 3 layer
peat blocks 2 with L =1 =1m,Z2=3. L=1=1m,Z = H + Hy + H3 = 3m, H| =
1m, Hy = 1.5m, H3 = 0.5m.

On the top of earth (z = Z) the concentration c%gg of metals is measured in following
nine points in the (z,y) plane:

1) for Fe:

¢(0.1,0.2) = 1.69,¢(0.5,0.2) = 1.83,¢(0.9,0.2) = 1.72,¢(0.1,0.5) = 1.70,¢(0.5,0.5) =
1.88,¢(0.9,0.5) = 1.71,¢(0.1,0.8) = 1.71,¢(0.5,0.8) = 1.82,¢(0.9,0.8) = 1.73,

2)for Ca:

¢(0.1,0.2) = 3.69,¢(0.5,0.2) = 4.43,¢(0.9,0.2) = 3.72,¢(0.1,0.5) = 4.00,¢(0.5,0.5) =
4.63,¢(0.9,0.5) = 4.11,¢(0.1,0.8) = 3.71,¢(0.5,0.8) = 4.50, ¢(0.9,0.8) = 3.73.

The data are smoothing in matrix C, by 2D interpolation with MATLAB operator,
using the spline function. In figs. 5.15-5.16 we can see the distribution of concentration
¢ for Fe and for Ca in the (x,y) plane by z = Z.

For the peat block corresponding experimental (cerp) and numerical (¢pum) results
by = = 0.5m,y = 0.5m depending on z are obtained in the table 5.1.

5.5 On the mathematical modeling of the diffusion equation with
piecewise constant coefficients in multilayer domain

We consider the 2D stationary boundary value problem for diffusion equation with piece-
wise constant coefficients in multilayer domain. In one direction (in x-axes direction)
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Levels of Ca, MaxCa=1.8800, MinCa=1.6124 Levels of Ca, MaxCa=4.6312, MinCa=2.4055
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Fig. 5.15 Levels of ¢ by z = Z for Fe Fig. 5.16 Levels of ¢ by z = Z for Ca

Table 5.1 The experimental and numerical results by x = 0.5m,y = 0.5m depending on z

z cnum — Fe|cezp — Fe|lcnum — Ca|cezp — Ca
0.000{0.681 0.660 1.267 1.300
0.250(0.719 1.395
0.500(0.756 1.522
0.750|0.793 1.649
1.000/0.829 0.830 1.780 1.900
1.250]0.926 1. 844
1.500|1.025 1.914
1.750(1.127 1.150 1.985 1.980
2.000{1.231 2.057
2.250(1.337 2.132
2.500|1.4458 1.500 2.207 2.380
2.750(1.649 3.351
3.000(1.880 1.880 4.630 4.630

we have the homogenous periodical boundary conditions (PBC). In the publication [35]
also boundary conditions of the first type are used.
The process of diffusion is consider in 2-D domain

R={(r,y):0<z<[,0<y <L}

The domain {2 consists of multilayer medium. We will consider the stationary 2-D
problem of the linear diffusion theory for multilayer piecewise homogenous materials of
M layers in the form

“Q] = {(l’,y) HEUNS (O’l)ay € (yjflay])}aj = 1>M7

where h; = y; — y;—1 is the height of layer (2,50 = 0,yys = L. We will find the dis-
tribution of concentrations u; = u;(z,y) in every layer (2; at the point (x,y) € £2; by
solving the following partial differential equation (PDE):

k;0%u;/0x® + k;j0%u; /0y* + fi(x,y) =0, (5.24)

where k; are constant diffusion coefficients, u; = u;(z,y) — the concentrations functions
in every layer, f;(x,y) — the fixed source function.

The values u; and the flux functions kjOu;/0y must be continuous on the contact lines
between the layers y = y;,j =1, M — 1
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u](l‘,y]) :Uj—i-l(xayj)? (525)
k’jau]' (z, yj)/ay = kj+1auj+1(x7 yj>/8y-

We assume that the layered material is bounded above and below with the plane
surfaces y = 0,y = L with fixed boundary conditions of the third kind in the following
form:

Y1k10ui (2, 0)/0y — cn(ui(,0) — Th(z)) =0,
YeknrOun (z, L) /0y + az(un(z, L) — To(x)) = 0,
where 72 4+ a2 # 0,43 + a3 # 0, Ty, Ty are given functions. For 7 = 72 = 0 we have the

BC of first kind. We have periodical conditions in the x,y directions by z = 0,z = in
the form

(5.26)

(0, ) = u;(l,y), Oui(0,y)/ 0z = Ouy(l, y) /O, (5.27)
For the 1D model equation kju’f(y)+ f;(y) = 0 the solution is undepending on z, u}/(y) =
d*u;(y)
d? :

Aynalytical solution for this problem is found using Fourier method. Averaging method
is used in the same manner as in the section 5.4. We reduce 2D problem to 1D problem.

Finite difference approximation can be also used for modelling the problem and us-
ing circulant matrices and their properties. As example we look into 2 layer model.
AV method is compared with the method of FDS and FDSES. In the figs. 5.17-5.20
the numerical differences of solutions using different types of numerical models can be
observed.

LevFDSES-nep , Maxv=0.2446, Minv=-0.2381

P.ll]il?S ‘ ‘

Prec-nep u, Maxu=0.2446, Minu=-0.2381
oF ||
|

|
\ \
|
12, Q,234

Il
- |
Sas | 0.8 )\ s1sk (|
> \0.0563 1 \
¥ q6.‘116 \ \\

05 0-11b334 = osr /0
i A
NV = =~ . SR\ oL spmee
[ 0.2 0.4 0.6 0.8 1 0 0.2 0.4
Fig. 5.17 Exact solution Fig. 5.18 FDSES solution

The 2D diffusion problem in M layered domain described by a boundary value prob-
lem of the system of PDEs with piecewise constant diffusion coefficients are approximate
on the 1D boundary value problem of a system of M ODEs . This algorithm can be
used for solving the problem of metal concentration in the layered peat blocks. The
total cost of an averaged method for engineering calculations is determined from the
number of grid points in every of two layers. The FDSES method is exact method.
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Conclusions

In the process of this research the author improved his research skills and significantly
expanded his knowledge base on usage of solving analytical and numerical methods in
linear and nonlinear problems of mathematical physics with periodic boundary condi-
tions (PBC).

The most important conclusions:

Usage of correct FDS with higher precision order and FDSES is researcher’s in-
strument to create improved and new numerical methods in modelling problems of
mathematical physics and numerically analyze them;

Created algorithms for operations with circulant matrices and implemented in MAT-
LAB;

Solved spectral problem for circulant matrices which arises when the first, the second
and the fourth derivatives are approximated with finite differences in uniform grid
with multi-point stencil;

Solved differential equation boundary problems of the second order with implemented
FDS with higher precision order and FDSES methods;

By modelling classic linear problems of mathematical physics, they were solved effec-
tively using FDSES method. Created algorithms were implemented in MATLAB.

It is shown that using the FDS and FDSES methods it is possible to model numerically
mathematical physics problem linear systems as well;

It is shown that created methods and algorithms can be applied to nonlinear problems
of mathematical physics of concrete type;

By solving different problems numerically and analytically FDSES advantage over
FDS with higher order was shown;

Created methods and algorithms were used for modelling applied problems: mathe-
matical modelling of power appliances of new type based on principles of the vortex
effect; mathematical modelling of metal concentration in peat layers; modelling of
nonlinear heat transfer; creation, analysis and numerical calculations of MHD liquid
flow.
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A. Appendix, MATLAB code

A.1 Working with circulant matrices

Code of MATLAB for working with circulant matrices:

classdef CirculantMatrix

% Circulant matriz operations

properties

vector = [];
size = 0;
end
methods
% constructor
function obj = CirculantMatrix (vector)
if exist(’vector’, ’'var’)
obj.vector = vector;
obj.size = length(vector);
end
end
function size = checkSize (A, B)
if B.size "= A.size
error 'Matrix dimensions do not match’;
end
size = A.size;
end

% multiplication of two circulant matriz objects
function res = mult(A, B)

M = A.checkSize (B);

a = A.vector;

b = B.vector;

¢ = zeros (1, M);

b(M+1:2«M) = b(1:M);

for s = 1:M

c(s) = a(1:M) * b(Mps:—1:s+1) 7;
end
res = CirculantMatrix(c);
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83

end

end

end

% multiplication with vector
function res = multWithVector (A, b)
M = A.size;
c = zeros (1, M);
c(l) = A.vector * b;

for s = 1:M

c(s) = AM-s+2M)xb (1:s—1)4+A(1:M-s+1)xb (s :M)
end
res = c¢’;

end

% sum of two circulant matriz objects
function res = plus(A, B)

A.checkSize (B);

res = CirculantMatrix (A.vector + B.vector);
end

function res = inverse (A)
n = A.size;

x = (0:n—1)" % (0:n—1);
x=x % (=2 % pi * 1i / n);
« = exp(x)

u = x;

X = obj.vector x x;

x = 1./x;

b= (u(l, :) .x x) * u’ / n;
res = CirculantMatrix(b);
end

function A = display (A)
m = A.matrix () ;
disp (m) ;

end

function m = matrix (A)
v = A.vector;

m = [];
for i = 1:A.size
m= [m; v];
v = [v(end), v(l:end—1)];
end
end
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For blockwise circulant matrices

_ Al A2 o A1 0 - Cl )
Ap = A A, ) Ay = < 0 A, and vector C' = O, we have following MATLAB
programs:

1) X=apg(Ap) for matrix A, inversion:

function [X1,X2,X3,X4]= apg(Al,A2,A3 A4)
%Inverse matriz (X1,X2;X3,X4)=(A1,A2;A3,A}) " (—1)
al=CMR(A2, Cikl (A4)) ; X1=Cikl (A1-CMR(al,A3)) ;
X3=CMR(CMR( Cikl (A4) ,A3) ,X1);
a2=CMR(A3, Cikl (A1) ) ; X4=Cikl (A4-CMR(a2 ,A2));
X2=CMR(CMR( Cikl (A1) ,A2) ,X4) ;

7

2) X=br(A,C,) for two matrices multiplication:

function [X1,X2,X3,X4]=br(Al1,A2,C1,C2,C3,C4)

2|% blocmatriz (A1,0; 0,A2)multipl.with matriz (C1,C2;C8,C4)

X1=CMR(A1,C1) ; X3=CMR(A2, C3) ; X4=CMR(A2, C4) ; X2=CMR(A1, C2) ;

3) X=rb(C), Ap) for two matrices multiplication:

function [X1,X2,X3,X4]=rb(C1,C2,C3,C4,A1,A2)

2|% matriz (C1,C2;C3,C4)multipl. with blocmatr. (A1,0;0,A2)

X1=CMR(C1,A1) ; X3=CMR(C3, A1) ; X4=CMR(C4, A2) ; X2=CMR(C2, A2) ;

4) X=brv(A, C) for matrix multiplication with vector C:

function [X1,X2]=brv(Al,A2,C1,C2)

21 % blocmatriz (A1,0;0,A2)multipl. with vector (C1,C2)

X1=CMRV(A1,C1) ; X2=CMRV(A2,C2) ;

5) c=rv(A,, C) for matrix multiplication with vector C:

function [X1,X2]=rv(Al,A2,A3,A4,C1,C2)

2| % matrixz (A1,A2;A3,A})multipl. with vector(C1,C2)

X1=CMRV(A1,C1)+ CMRV(A2,C2) ; X2=CMRV(A3,C1)+ CMRV(A4,C2) ;

6) Xp=mm2v(A,, C,) for 2 matrices multiplication:

function [X11,X12,X21,X22]=mm2(A11,A12,A21,A22,C11,C12,C21,C22
)

% matriz (A11,A12;A21,A22)multipl. with matriz (C11,C12, C21,
022)

3| X11=CMR(A11, C11)4CMR(A12,C21) ; X12=CMR(A11, C12)+CMR(A12, C22) ;
4 X21=CMR(A21, C11)4CMR(A22, C21) ; X22=CMR(A21 , C12)+CMR(A22, C22) ;

For blockwise circulant matrices

Ay Ag Az A1 0 0 Ch
Ay = | A4 A5 Ag |, Ay = 0 A O and vector C' = | Cy | we have following

A7 Ag Ag 0 0 A3 C3
MATLAB programs:
1) X=apg33(A,) for matrix A, inversion:
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function [X11,X12,X13,X21,X22,X23,X31,X32,X33]=apg33(A1l,A12,
A13,A21,A22,A23,A31,A32,A33)

%Inverse matriz X=A"—1

all=Cikl (A11) ;

a71=CMR(A31,al1) ; al3=CMR(a71,A13) ;

al8=CMR(a71,A12)-A32; ad1=CMR(A21,all);

al6=CMR(a4l,A13)—A23;al2=CMR(adl, A12);

alb= A22—al2;al9= Cikl(A33—-al3);a20=CMR(al9,al8);

a44=Cikl (al5-CMR(al6,a20));a69=CMR(al6,al9);

X21=CMR(a44 ,CMR(a69 ,a71)+adl);X22=a44;X23=CMR(a44 ,a69);

X31=CMR(a20 , X21)-CMR(al9 , a71) ; X32=CMR(a20, X22);
X33=CMR(a20 ,X23) +al9;

X1l1= all-CMR(all ,CMR(A12,X21) +CMR(A13,X31));
X12=CMR(all ,CMR(A12,X22)4CMR(A13,X32) ) ;

X13=CMR(all ,CMR(A12,X23) 4CMR(A13,X33));

2) X=bdm(A4, Cp) for two matrices multiplication:

function [X11,X12,X13,X21,X22,X23,X31,X32,X33]=bdm(A1,A2,A3,
C11,C12,C13,C21,C22,C23,C31,C32,C33)

% bloc—matriz A  multiply with matriz C

X11=CMR(A1,C11) ; X12=CMR(A1,C12) ; X13=CMR(A1,C13) ;

X21=CMR(A2,C21) ; X22=CMR(A2,C22) ; X23=CMR(A2,C23) ;

X31=CMR(A3,C31) ; X32=CMR( A3, (C32) ; X33=CMR(A3,C33) ;

3) X=bmd(C), Ap) for two matrices multiplication:

function [X11,X12,X13,X21,X22,X23,X31,X32,X33]=bmd(C11,C12,C13
,C21,C22,C23,C31,C32,C33,A1,A2,A3)

% matriz C multipl. with bloc—matriz A

X11=CMR(C11,A1) ; X21=CMR(C21,A1) ; X31=CMR(C31,A1) ;

X12=CMR(C12,A2) ; X22=CMR( €22, A2) ; X32=CMR(C32,A2) ;

X13=CMR(C13,A3) ; X23=CMR(C23,A3) ; X33=CMR(C33,A3) ;

4) X=bdv(A4, C) for matrix multiplication with vector C:

function [X1,X2,X3]=bdv(Al,A2,A3,C1,C2,C3)

20% bloc—matric A multipl.with wvector C

X1=CMRV(A1,C1) ; X2=CMRV(A2, C2) ; X3=CMRV(A3, C3) ;

5) c=bmv(A,, C) for matrix multiplication with vector C"

function [X1,X2,X3]=bmv(All,A12,A13, A21,A22, A23, A31,A32,A33,Cl
,C2,C3)

% matriz A multipl. with wvector C

X1=CMRV(A11,C1)+ CMRV(A12,C2)4CMRV(A13,C3) ;

X2=CMRV(A21,C1)+ CMRV(A22,C2)4+CMRV(A23,C3) ;

X3=CMRV(A31,C1)+ CMRV(A32,C2)+CMRV(A33,C3) ;

6) X=mm(A,, Cp) for 2 matrices multiplication:
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function

[X11,X12,X13,X21,X22,X23,X31,X32,X33]= mm(All,A12,A13

JA21,A22,A23,A31,A32,A33,C11,C12,C13,C21,C22,C23,C31,C32,C33

)

% matric A multipl. with

X11=CMR(A11,C11)+CMR(A12,
X12=CMR(A11,C12)+CMR(A12,
X13=CMR(A11,C13)+CMR(A12,
X21=CMR(A21, C11)+CMR(A22,
X22=CMR(A21, C12)+CMR( A22,
X23=CMR(A21, C13)+CMR(A22,
X31=CMR(A31,C11)+CMR(A32,
X32=CMR(A31,C12)+CMR( A32,
X33=CMR(A31,C13)+CMR(A32,

matriz C

C21)4CMR(A13,C31) ;
C22)4CMR(A13,C32) ;
C23)4CMR(A13,C33) ;
C21)4CMR(A23,C31) ;
C22)4CMR(A23,C32) ;
C23)4CMR(A23,C33) ;
C21)4CMR(A33,C31) ;
C22)4CMR(A33,C32) ;
C23)4CMR(A33,C33) ;

A.2 Spectral problem, 3 point stencil example

Here is MATLAB code for finding the approximated solution with 3 point stencil:

% Puasona problémas aproksimacija ar cikliskajiem

sakumnosactjumiem

function maxError = puasons ()

% Nosacijumi

fFunkcija = @Q(x) x—0.5;
precAtr = @Q(x) 1/12%(—2%x"3+3%x"2—x);

L=1;

N = 50;

h = 1/N;

j-x0 = N;

u0 = 0;

sablons = 1/N:1/N:L;

f = arrayfun (fFunkcija, sablons);
sablons = [0, sablons];

precY = arrayfun(precAtr,

w = exp(2*xpixli/N);
W = zeros (N, N);
for j=1:N

for k=1:N

W(i, k) =

end
end
m = zeros (1, N);
for k=1:N

sablons) ;

1/sqrt(N) = w (j * k);
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28 m(k) = 4/h"2 % sin(k * pi / N)"2;

29 end

30

31 v = zeros(N, 1);

32 Wt =W x f’;

33 for k=1:N-1

34 v(ik, 1) = Wf(k) / m(k);

35 end

36

37 v(iN, 1) = (u0 — W(j_x0, :) % v) / W(j_x0, N);
38

39 y = real(W % v);

40 y = [y(N, 1)5 yl;

41

42 plot(sablons, precY, sablons, y, ’'—rs’);
43

44 maxError = max(abs(precY — y’));

45

46| end

A.3 Nonlinear heat transfer equation

The following MATLAB program is in m.file nelper.m

1| Z0DE system dU/dt=AU"sigml1+ a U’ beta ,with solv.,period.BC
2| %t=Tb, A INDW ,FDS and FDSES, sigmal=sigma+1

3| function nelper (N)

4 sigma=3;sigmal=sigma+1;beta=5;a=100;

5/ NI=N+1; Tb1=0.05;Tb2=6.4811;L=1;x=linspace (0,L,N1) ’;
6| h=L/N;N2=N—1;NT=[1:N];

71 1k0=(2%pi/LxNT)."2; % exact eig—wval.

8|  %FDS O(h"2)

9| 1k2=4/h"2x(sin(pixh«NT))." 2;

1|  %FDS O(h"4)

11 1k4=4/h"2x«((sin (pi*h«NT))."2+1/3*(sin (pixh«NT))."4);
12| %FDS O(h"6)

13]  1k6=4/h"2x((sin (pi*h«NT) ). 2+1/3*(sin (pixh«NT)). 4+
14 8/45«(sin (pixh«NT))."6) ;

15| %FDS O(h"8)

16 1k8=4/h"2x((sin(pixh«NT))."24+1/3*(sin(pixh*NT)). 4+
17 8/45%(sin (pixhs«NT) ). 64+4/35%(sin (pixhxNT))."8);
18| %FDS

19  d=lk2;

200 %NH=N/2; d(1:NH)=1k0 (1:NH);

21| %d(NH:N2)=1k0 (NH: —1:1) ; d (N) =0; % FDSES
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figure , plot (NT,1k2,’—’ NT,1k4 ,’—.7 NT,1k6, ’x’ NT,1k8, 0o’ ,NT,
d,’d”)

legend ('Eig—val O(h"2)’,’Eig—val O(h"4)’, Eig—val O(h"6)’, ’
Eig—val O(h"8)’, Eig—val exact’)

W=exp (2« pikhxi*[1:N] "« [1:N]) ;x=x(2:N1);

A2=zeros (N,N);

%A2=A2+diag (ones(N2,1) ,1)+diag(ones(N2,1),—1)—2xdiag (ones(N
1))

%A2(1,N)=1; A2(N,1)=1;A2=A2/(h"2):

IiD=hx (1./W)xA2«W-% control

A=real(—hsWxdiag(d)*conj(W)); %FDS and FDSES

y0=sin (pi*x)." 100;

options=odeset ( 'RelTol’, 1.0e—7);

[T1,Y1l]=0delbs (@SIST,[0 Tbl],y0,options ,A,sigmal  beta,a);

im=max(imag(Y1l(end,:)));

figure , plot (x,y0, ’k—")

hold on

plot (x,real(Yl(end,:) "), 'kx’)

[T2,Y2]=0delb5s (@QSIST,[Thl Th2],Y1l(end,:) ,options ,A,sigmal,
beta,a) ;

plot(x,real(Y2(end,:) ’), ’ko’)

grid on

title (sprintf(’beta=%2.0f,sigma=%2.0f ,a=%3.1f, T1=%8.6f , T2
=%8.6f’ ,beta, sigma,a,Tl(end),T2(end)))

xlabel (’\itx '), ylabel(’\itu’)

legend (’Sol.U(x,0) ", Sol . U(x,T1)’, "Sol.U(x,T2)")

figure

T=[T1;T2];Y=[max(real (Y1(:,:)’)) ";max(real(Y2(:,:)’)) ’];

plot (T,Y)

grid on

title (sprintf(’DV lab.aproks.DS,N=%3.0f, time = %8.6f > N, T2(
end)))

xlabel(’\itt ), ylabel(’\itu’)

function F=SIST (t,y,A,sigmal  beta, a)
F=Axy.  sigmal4axy.” beta;

A.4 Linear heat transfer equation

We have following MATLAB SiltPer.m:

%system ODE U_t+k AU=f with periodical BC
%t=Tb,u(x,t)=sin (2 pi z)exp(—4 pi 2 t),k=1,f=0,N-even
function SiltPer (N)

NI=N+1:MK=20; Th=0.2;L=1;

x=linspace (0,L,N1) ’; t=linspace (0,Tb,MK) ;
h=L/N;N2=N—1;k=1;x=x(2:N1) ;
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%A2=A2—diag (ones(N2,1) ,1)—diag(ones(N2,1),—1)+2xdiag(ones(N,1))

%A2(1,N)=—1; A2(N,1)=—1; A2=A2/h"2; %matriz A, control

9|NT=(1:N) ’/L;

lk=4/h"2x(sin (pixh«NT))."2; %O(h"2)

lk=4/h" 2% ((sin (pi*h*NT)). 241 /3% (sin (pi*h+NT)). 4) ;%0(h "4

lk=4/h"2x((sin (pi*hsNT)). " 2+1/3%(sin (pi*xh«NT)). " 4+8/45x(sin (pix
h«NT))."6);%0(h "6)

lk=4/h"2x((sin (pi*hsNT)). " 2+1/3x(sin (pi*xh«NT)). 448 /45x(sin (pix
h+NT) ). 6+4/35%(sin (pi*xh«NT) ). 8);%0(h "8)

Ck=sqrt (h/L);

1k0=(2%(1:N) '«xpi/L)."

d=1k; %FDS

NH:N/2 d(1:NH)=1kO0 (1:NH) ;
d(NH:N2)=1k0 (NH: —1:1) ;d(N) = O%FDSES
W=Ckxexp (2 pi*i*(1:N)’sx’/L)"’

Wi=Ckxexp(—2+pi*i*(1:N) *xx’ /L)
A2=Wkdiag (d)*W1; %FDS or FDSES
yl=sin (2xpixx); % init—cond
P=Wlxy1l;Pl=zeros (MK,N) ;
for k=1:N
b=d(k); %FDS or FDSES
P1(:,k)=P(k)*exp(—bx*t’) ;
end
P2=WxP1") ’;
prec=sin (2« pi*x)*exp(—4xpi 2%t );% exact
Mal=max (max(abs (P2—prec ’) ) ) ;%mazx error an.
Xl=ones (MK, 1) *x’; Yl=t "« ones (1,N);
figure , plot (t’ ,max(abs(P2(: ,1:N)’—prec)), kx’)% maz error on t
title (sprintf(’err. Max—sol.an.on t, Max=%9.7f ’ Mal))
xlabel (’\itt '), ylabel(’\itu’)
figure ,plot (x,P2(end,1:N)’, ko)
grid on
title (sprintf(’Sol.an.on x by Tb. Max=%9.7f ’ ,Mal))
xlabel (’\itx’), ylabel(’\itu’)
figure, surfc(X1,Y1,abs(P2—prec’))% error anl.
colorbar
xlabel(’'x’), ylabel(’t’), zlabel(’u’)
title (sprintf(’err. anal., tNr.=%4.1f max=%9.7f’ MK Mal))

A.5 Heat transfer equation with periodic BC

We have following MATLAB Silt.m:

1 %t=Tb,u(x,t)=sin(2 pi m z)exp(—(2 pi m) 2 t),m<N-even
2| function Siltm (N)
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N1=N+1MK=10;m=4; Th=0.05;L=1;x=linspace (0,L,N1) ’; t=linspace
(0,Tb,MK) ;
h=L/N;N2=N—1;x=x (2:N1) ;
%A2=A2—diag (ones(N2,1) ,1)—diag(ones(N2,1),—1)+2xdiag (ones(N
1)),
%A2(1,N)=—1; A2(N,1)=—1; A2=A2/h"2; %matriz A, control
NT=(1:N)’/L;
lk=4/h"2x*(sin (pixh«NT) ). 2; %0(h "2}
Blk=4/h 2% ((sin (pixh«NT)). 2+1/3%(sin (pixh«NT))."});%O0(h"4)
%lk=4/h "2« ((sin (pixhxNT)). 2+41/3x(sin (pixhxNT) ). 4+%8/45%(sin
(pixh*NT))."6);%0(h"6)
Dlk=4/h " 2% ((sin (pixhxNT) ). 2+1/3x(sin (pixh«NT)). 4+%8/45%(sin
(pixh«NT) ). 6+4/35%(sin (pixh«NT))."8);%0(h"8)
Ck=sqrt (h/L);
1k0=(2*(1:N) «xpi/L)." 2;
d=1k : %FDS
YNH=N/2; d(1:NH)=1k0 (1:NH)
%d (NH:N2)=1k0 (NH: — 1:1) ; d (N) =0; %FDSES
W=Ckxexp (2« pixi*(1:N) ’xx’/L);
WI=Ckxexp(—2*xpixi*(1:N) xx’/L);
A2=2Wxdiag (d)*W1; %FDS or FDSES
yl=sin (2xpism*x); % init—cond
P=zeros (N,1) ;P=Wlxyl;Pl=zeros (MK,N) ;
for k=1:N
b=d(k); %FDS or FDSES
P1(:,k)=exp(—bxt’)*P(k);
end
P2=W«P1.") . ;% this is transponation operator
P21=Wxdiag (exp(—dxt (end)) ) *Wlxyl; %okei !
prec=sin (2xpixmsx)*xexp(—(2xpi*xm) "2xt);% ezxact
Mal=max (max(abs (P2—prec’))) ;%max error an.
Xl=ones (MK, 1) *x’; Yl=t "« ones (1 ,N) ;
figure ,plot (t’ ,max(abs(P2(:,1:N).”—prec)), ’k«’)% maz error on
t
title (sprintf(’err. Max—sol.an.on t, Max=%9.7f ’ Mal))
xlabel (’\itt '), ylabel(’\itu’)

figure ,plot (x,P21, ko’ ,x,prec(1:N,end) ,’«’ ,x,P2(end,1:N),’'—")
%figure , plot(z,P2(end,1:N)’, ko)
grid on

title (sprintf(’Sol.an.on x by Tb. Max=%9.7f ’,Mal))
xlabel(’\itx’), ylabel(’\itu’)

figure, surfc(X1,Y1,abs(P2—prec’))% error anl.

colorbar

xlabel(’x’), ylabel(’t’), zlabel(’'u’)

title (sprintf(’err. anal. , tNr.=%4.1f ,max=%9.7f’ MK, Mal) )
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A.6 Heat transfer problem with periodically placed heat source

We have following Matlab program:

%ODE Dekarta PrT_t=T"’'+Q-0 delta(z)H(t),u_t= GrT+u’'—Mu, u(0,t)
=0=,

Y%z \in[-L,L], L=period, FEzact

function DalveidaP (NN)

L=4;L1=L+2;Q0=1; N=NN/2;NI=N+1;Pr=7;Th=1;NN1=NN+1;NN2=NN—1;

x=linspace (0,L1,NN1) ’;x=x (2:NN1) ; h=L1/NN;

NT=(1:NN) ’/NN;TA=zeros (NNI1,1) ;

lk=4/h" 2« (sin (pixNT))." 2; %2.order FDS eigenvalues

lk=4/h"2x((sin (pi*NT)). " 2+1/3%(sin(pi*NT))."4);%4. order

lk=4/h" 2% ((sin(pi*NT))."2+1/3x(sin (pi*NT)). 448 /45%(sin (pi*NT))
.76):%6. order FDS

lk=4/h" 2% ((sin (pi*NT))."24+1/3*(sin (pi*NT)). " 4+8/45%(sin (pi*NT))
. 6+4/35x(sin (pixNT) ). 8);%8. order FDS

Ck=sqrt (1/NN) ;NNN=(1:NN) ’;

IkO=(2%(1:NN) '« pi/(L1))."2; %exact eigenvalues

d=1k ; %FDS

d(1:N)=1kO0 (1:N);

d(N:NN2)=1k0 (N: —1:1) ;d (NN) =0;%FDSES

Bl=zeros (NN,NN) ;Q=zeros (NN, 1) ; Q(N)=Q0/(Prxh);

W=Cksexp (2« pi*i*(1:NN) ' '«xx’/L1)’; % Figen vectors

WI=Ckxexp(—2xpixi*(1:NN) «x’/L1) ";% Eigen vectors—conjugate

Bl=Wxdiag (d)*«W1/Pr;

%B1=B1—2xdiag (ones (NN, 1) )+diag (ones (NN—1,1),—1)+diag (ones (NN
—1,1),1);

%B1(1,NN)=1; B1(NN,1)=1; B1=B1/(Prxh"2);%3—diag. matriz

options=odeset ('RelTol’, 1.0e—7);y0=zeros(NN,1) ;

[T1,Y]=o0delbs (@QSIST,[0,Tb],y0,options ,B1,Q);% Matlab

X=Y(end,:) ’;T=zeros (NNI1,1) ;T(2:NNI1,1)=X;

T(1,1)=T(NN1,1);

yl=[-L;x-L];Max=T(N1,1) , max(T) ,KF=(2«Q0) /(L1xPr) ;

S=KFx (sum(Prx(1—exp(—1k0*Tb/Pr))./1k0)+0.5%Tb)

for j=1:NN

TA(j+1)=KF*(sum(Prx(—1). " NNN.x*cos (2« pi*«NNN«x (j)/L1).x(1—exp(—
1k0+Tb/Pr))./1k0)+0.5%Th) ;

end

TA(1)=TA(NN1);

figure, plot(yl,T,’-k’,yl1,TA,’—.’, ’LineWidth’,3)
grid on,set(gca, 'XTick’,—L:1:L)

title (sprintf( ' Temp,Th=%6.3f ,Pr=%6.4f ,Max=%6.3f" ,Th, Pr ,Max) )
xlabel(’y’), ylabel('T")

legend ( "Approx’, ’Exact ”)

figure, plot(yl,abs(T-TA),’—k’,’ LineWidth’ ,3)

grid on,set(gca, ' XTick’,—L:1:L)
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39| title (sprintf( ’Error ,Tb=%6.3f , Pr=%6.4f ,Max=%6.4f ,S=%6.4f " ,Tb, Pr
,Max,S))
40| xlabel (’y’), ylabel(’\delta T7)

A.7 MHD problem with convectively driven flow past an infinite
periodically placed planes

We have following Matlab program DalveidaP.m:

%ODE Dekarta PrT_t=T""+Q_0 delta(z)H(t),u_t= GrT+u’’ —Mu,

Jou(—L,t)=u(L,t)=0,

%z \in[-L,L], 2L=period, Ezact T \in [-2L,0]

function DalveidaP (NN)

L=2;L1=L%2;Q0=1; N=NN/2;N1=N+1;Gr=100;M=1000;Pr=0.71;

Th=1;NNI=NN-+1;NN2=NN—1;

x=linspace (0,L1,NN1) ’;x=x (2:NN1) ; h=L1/NN;

NT=(1:NN) ’/NN;TA=zeros (NN1,1) ;

lk=4/h"2x(sin (pixNT)) . 2; %2.order FDS eigenvalues

lk=4/h"2x((sin(pisNT))."2+1/3*(sin (pi«NT))."4);%4. order FDS

lk=4/h" 2% ((sin(pi*NT))."24+1/3x(sin (pi*NT)). 448 /45%(sin (pi*NT))
.76);%6. order

12| lk=4/h " 2% ((sin (pi*NT)). " 2+1/3%(sin (pi*NT)). 44+8/45x«(sin (pi*NT))

. 6+4/35x(sin (pixNT) ). 8);%8. order FDS

13| Ck=sqrt (1 /NN) ;NNN=(1:NN) ’;

14| 1k0=(2%(1:NN) ’«pi/(L1))."2; %exact eigenvalues

15| d=1k ; %FDS

16|d (1:N)=1k0 (1:N);

17| d (N:NN2)=1k0 (N: —1:1) ; d (NN) =0;%FDSES

18| Bl=zeros (NN,NN) ;Q=zeros (NN, 1) ; Q(N)=Q0/(Prxh);

19)\W=Ckx*exp (2« pi*xi*(1:NN) '«x’/L1) ’; % FEigen wvectors

20| WI=Ckxexp(—2xpixix(1:NN) ’«xx’/L1) ";% Figen vectors—conjugate

21| Bl=Wxdiag (d)*«W1/Pr;

22| B2=zeros (NN2,NN2) ;

23| B2=B2—2x«diag (ones (NN2,1) )+diag (ones (NN2—1,1),—1)+diag (ones (NN2

_171) 71);

24/ B2=B2/(h"2) ;%3—diag. matriz

25| M11=81;M1=M11—1;t1=linspace (0 ,Tb,Ml1l) ; u0=zeros (NN2,1) ;

26| T0=zeros (NN,1) ; options=odeset ( 'RelTol’, 1.0e—-7);

27| tau=zeros (Ml1,1) ;Nu=zeros (Ml1,1) ;

28| for ii=1:Ml

29| [T1,Y1]=0del5s (@SIST ,[t1(ii),t1(ii+1)],T0,options,B1,Q);

30/ To=Y1(end,:) ;

31|Nu(ii )=real (3% Y1l(end,N)—4xY1(end,N1) +Y1(end ,N1+1))/(2xh);

32| XT(ii ,:)=real ([Y1(end ,NN) ,Y1l(end,:)]);

33| for k=1:NN

34 cp(k)=spline(T1(:) ,Y1(:,k));
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[T2,Y2]=0del5s (@QSIST1,[t1(ii),t1(ii+1)],u0,options ,B2,M,Gr,cp,
NN2,N) ;

u0=Y2(end,:) ;XU(ii ,:)=real ([0,Y2(end,:) ,0]);

tau(ii)=real(—4xY2(end,1) +Y2(end,2))/(2xh);

end

MaxT=max(XT(end ,:) ) ,MaxU=max(XU(end,: ) )

yl=[-L;x-L];KF=(2+«Q0) /(L1*Pr) ;

S=KF* (sum(Pr*(1—exp(—1k0*Th/Pr))./1k0)+0.5%Thb)

for j=1:NN

TA(j+1)=KFx*(sum(Prx(—1). NNN.x cos (2x pi*NNN«x(j)/L1).%(1—exp(—
1k0*Tb/Pr))./1k0)+0.5%Tb) ;

end

TA(1)=TA(NN1);

figure

plot ([-L;x—L] ,XU(5,:)’, 'k—", ’LineWidth’ ,1.2)
hold on

plot ([-L;x-L] ,XU(16,:) ", ’k—.", "LineWidth’ ,1.6)
hold on

plot ([-L;x-L],XU(48,:)’, k—’, ’LineWidth’ ,2.0)
hold on

plot ([-L;x-L],XU(64,:)’, 'k—’,’LineWidth’ ,2.4)
hold on

plot ([-L;x-L],XU(80,:)’, 'k—’, ’LineWidth’ ,2.8)
Yaxis ([0 1 —0.5 0.5])

xlabel(’y’), ylabel(’u’)
legend (' t=0.5", t=1.6", t=4.8", t=6.4", t=8")
title (sprintf(’Velocity ,MaxU=%6.2f M=%3.1f ,Gr=%3.1f > ,MaxU,M, Gr)

)
figure
plot ([-L;x-L] ,XT(5,:)’, 'k—’,’LineWidth’ ,1.2)
hold on
plot ([-L;x-L] ,XT(16,:)’, 'k—.’, ’LineWidth’ ,1.6)
hold on
plot ([-L;x-L],XT(48,:)’, 'k—’, ’LineWidth’ ,2.0)
hold on
plot ([-L;x-L] ,XT(64,:)’, 'k—’,’LineWidth’ ,2.4)
hold on
plot ([-L;x-L],XT(80,:)’, 'k—’,’LineWidth’ ,2.8)

Jaxis ([0 1 —0.5 0.5])

xlabel ("y’), ylabel('T")

legend ('t=0.5", t=1.6", t=4.8", t=6.4", t=8")

%legend ("t=2","t=4","t=6","t=8","t=10")

title (sprintf(’Temperature ,MaxT=%6.2f , Tb=%6.3f , Pr=%3.1{* ,MaxT,
Tb,Pr))

figure, plot(yl,XT(Ml,:),’=k’,y1,TA,’—.", ’LineWidth’,3)

grid on,set(gca, 'XTick’,—L:1:L)
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title (sprintf(’T by Tb,Tb=%6.3{ ,Pr=%6.4f ,Max=%6.3f " ,Th, Pr ,MaxT)
)

xlabel(’y’), ylabel(’T’)

legend ( *Approx’, 'Exact )

figure, plot(yl,abs([Yl(end,NN),Y1l(end,:)]| —TA),’—k’,’LineWidth
) ’3)

grid on,set(gca, XTick’,—L:1:L)

title (sprintf(’Error ,Tb=%6.3f ,Pr=%6.4f ,MaxT=%6.4f ,S=%6.4f " ,Th,
Pr ,MaxT,S))

xlabel(’y’), ylabel(’\delta T’)

figure, plot(tl(2:Ml11) ,tau’,’=k’, LineWidth’ ,3)

hold on, plot(tl(2:M11),Nu’,’—.k’, LineWidth’ ,3)

xlabel(’t’), ylabel(’\tau,Nu’)

legend ( ’Skin friction’,’Nusselt’)

title (sprintf(’u, T M=%3.1f ,Gr=%3.1f , Pr=%3.1f > M, Gr, Pr))

Mt=max(tau) ,MNu=max(Nu) ,mt=min (tau) ,mNu=min(Nu)

function F=SIST (t,y,A.,Q)

F=Axy+ Q;

function F=SIST1(t,y,A,M,Gr,cp,NN2 N)

E=eye (NN2) ;

F=(A-M+E) *y;

for k=1:N

F(k)=F(k)+ Grxppval(cp(k4N) ,t);

end

for k=N+1:NN2

F(k)=F(k)+ Grxppval (cp(k-N) ,t);

end

A.8 System of parabolic type equations

We have following Matlab program PDSper2.m:

Y%ODE Sist U_-t= KU ’+P U+F with periodical BC U(0)=U(L)=0,
%U’(0)=U"(L) examp. sin (2 pi z), cos(2pix/L),2 equa.
function PDSper2(N)% N-even

NI=N+1;NN=2«N;NH=N/2;N2=N—-1; L=1;x=linspace (0,L,N1) ’;

x=x (2:N1) ;h=L/N;k0=1;

Tb=0.1; K=[2, —3; —1, 4];P= [2,-5; 1,—4];

d=zeros(N,1) ;dl=zeros(N,1) ;

GP=[0,0;0,0];

A=[—4xpi " 2«K, —2xpixP; 2xpixP, —4xpi " 2xK];
y00=[0,1;—-1,0],y0=[y00(1,1);y00(2,1);y00(1,2);y00(2,2)]
£00=[5,10;—10,—5];F=[£00 (1,1);£00(2,1);£00(1,2);£00(2,2)]
NT=(1:N) ’/L;

options=odeset ( "RelTol’, 1.0e—7);

[T,Y]=o0del5s (@SIST,[0,Tb],y0,options ,A,F);% Matlab solveri
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KO=length (T) ;

figure ,plot (T,Y(:,1),T,Y(:,2) ,T,Y(:,3),T,Y(:,4), ’LineWidth’ ,2)

grid on

title (sprintf(’Coeff.d11,d21,d12,d22,dep.on t,N=%3.0d" ,N))

legend ('d117,°d21°,°d12", d22")

xlabel (’\itt ), ylabel(’\it dij’)

ul=Y(:,1)*sin(2*pixx)’ +Y(:,3)*cos(2xpixx) ’;

yml=max(abs(ul(end,:)))%ezact

u2=Y (:,2)*sin (2 pixx)’ +Y(:,4)*cos(2*xpixx) ’;

ym2=max(abs(u2(end,:)))%ezact

figure ,plot(x’,ul(end,:) ,x’,u2(end,:),’k—.", LineWidth’ ,2)

xlabel(’1’), ylabel(’u’)

title (sprintf(’ul(Tb), u2(Tb),ymax1=%5.4d,ymax2=%5.4d’ ,yml,ym2)
)

legend ('ul’,’u2’)

X1l=ones (K0,1)*x’; Y11=T*ones (1 ,N);

figure ,surfc (X11,Y11,ul) % telpiska bilde

colormap (hsv)

colorbar

xlabel(’x’), ylabel(’t’), zlabel(’ul’)

title (sprintf(’ul surf.,ymax1=%5.4d’ ,yml))

X1l=ones (K0,1)*x’; Y11=T*ones (1,N);

figure ,surfc (X11,Y11,u2) % telpiska bilde

colormap (hsv)

colorbar

xlabel(’x’), ylabel(’t’), zlabel(’ul’)

title (sprintf(’u2 surf.,ymax2=%5.4d’ ,ym2))

%lk=4/h 2% (sin (pixh*NT)). 2 ; %2.deriv. O(h"2)

%lk1=1/hxsin (2x pixhxNT); %1.deriv. O(h"2)

%lk=4/h 2% (sin (pixhxNT)). 2+41/3x(sin (pixh«NT))." 4 ;

%lk1=1/h*(4/3% sin (2% pixh«xNT)—1/6xsin (4x pixhx*NT)); %4.order

%lk=4/h "2« ((sin(pixhxNT)). 2+41/3x(sin (pixh«NT) ). 4 +8/45x(sin(
pixhxNT) ). 6+4/35%(sin (pixh«NT))."8);

%lk1=1/h*(24/15%sin (2% pixh«NT)—2/5xsin (4* pixhxNT)+8/105% sin (6
pixhxNT)—1/140% sin (8« pixh«NT)); %8.order

%lk=4/h "2« ((sin(pixhxNT)). 2+41/3x(sin (pixh«NT) ). 4+8/45x(sin (pi
«h*NT) ). 6) ;

%lk1=1/h*(3/2% sin (2% pixhxNT)—3/10xsin (4* pixh«NT)+1/30% sin (4* pix
hxNT) ) ; %6.order

Ck=sqrt (h/L);

1kO=(2%(1:N) ’xpi/L)."2 ;

1k01=2%(1:N) "«pi/L; %ezxact eigenvalues

%d=1k ; d1=ix1k1; %FDS

d(1:NH)=(1k0 (1:NH) ) ;

d(NH:N2)=(1k0 (NH: —1:1) ) ; %FDSES

d1(1:NH)=1i%(1k01 (1:NH)) ;

dl(NH:N2)=ix(1k01 (NH: —1:1));

W=Ckxexp (2« pixi*(1:N) ’«xx’/L)’; % Eigen vectors
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WI=Ckxexp(—2xpixi*(1:N)’«xx’/L) ;% Eigen vectors—conjugate

Al=Wxdiag (d)«*W1; A2=Wkdiag (d1) «W1;

y0l=[sin (2% pi*x),cos(2*pix*xx)]*xy00’;

Fl=[sin (2% pixx) ,cos(2xpixx)]*{00 ’;

F2=[F1(:,1); F1(:,2)];

yyO=[y01(:,1); y01(:,2)];

[T1,Y1l]=o0delbs (@SIST1,[0,Tb],yy0,options ;Al,A2 K,P ,F2);

iml=max(abs(imag(Yl(end,:))))

vl=Y1l(end,1:N);v2=Y1(end,N1:NN) ;

%v1=Y1(end,1,:);v2=Y1(end,2,:);

stal=max(abs(ul (end,:)—vl)), sta2=max(abs(u2(end,:)—v2))

figure ,plot(x’,vl,x’,v2,’k—.","LineWidth’ ,2)

xlabel (1), ylabel('v’)

title (sprintf(’vl1(Tb), v2(Tb),err1=%5.4d, err2=%5.4d" ,stal ,sta2)
)

legend ('vl’,’v27)

function F=SIST (t,y,A,F1)

F=Axy +F1;

function F=SIST1(t,yy,Al,A2,K,P,F1)

F=kron (K,Al)xyy+kron (P ,A2)xyy+F1;

A.9 Stability of approximations for time-dependent problems

We have following Matlab program PDSperiR.m:

%ODE systU_t=K U’ ’+P U+F with periodical BC U(0)=U(L)=0, U’(0)
=U’(L)

% example

function PDSperlR(N)% N-even

NI=N+1; L=10;x=linspace (0,L,N1) ’;x=x(2:N1) ;h=L/N;

NN=2x«N;NH=N/2;NH4=N/4;N2=N—-1; Th=1;K=[2, —-3; —1, 4];P= [2,-5;
1, —4];

A=[—4xpi " 2+%100«K/L"2, —2xpixPx10/L; 2xpi*Px10/L, —4xpi~2x100xK/
L"2];

7|d=zeros (N,1) ;dl=zeros (N, 1) ;d2=zeros (N, 1) ; k0=10;
8 y00=[0,1;—-1,0],y0=[y00(1,1);y00(2,1);y00(1,2);y00(2,2)]
9/ f00=[5,10;—-1000, —5];F=[f00 (1,1);f00(2,1); fOO( ,2);£00(2,2) ];
NT=(1:N) ’/L;
options=odeset ("RelTol’, 1.0e—7);

[T, Y]=o0del5s(@QSIST,[0,Tb],y0,options ,A,F);% Matlab solveri
KO=length (T) ;

figure ,plot (T,Y(:,1) ,T,Y(:,2),T,Y(:,3),T,Y(:,4), ’LineWidth’,2)
grid on

title (sprintf(’Coeff.d11,d21,d12,d22,dep.on t,N=%3.0d’ ,N))
legend (’d11’,°d21", d12",°d22")

xlabel (’\itt ’), ylabel(’\it dij’)
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ul=Y(:,1)x*sin(2xpixk0*x/L)’ +Y(:,3)*cos(2xpixk0xx/L) "’

yml=max(max(abs(ul)));%ezact

u2=Y (:,2)x*sin (2xpixk0*x/L)’ +Y(:,4)*cos(2xpixk0xx/L) "’

ym2=max(max(abs(u2)));%ezact

figure ,plot(x’,ul(end,:) ,x’,u2(end,:) , ’k—." ,’LineWidth’ ,2)

xlabel(’1’), ylabel(’u’)

title (sprintf(’ul(Th), u2(Tb),ymaxl=%5.4d,ymax2=%5.4d’ ,yml,ym2)
)

legend(’ul’,’'u2’)

lk=4/h"2x(sin (pixh«NT))."2 ; %2.deriv. O(h"2)

lk1=1/hxsin (2xpixh«NT); %1.deriv. O(h"2)

lk=4/h"2%((sin (pi*h*NT))."2+1/3*(sin (pixh«NT))." ) ;

1k1=2/hx*sin (2xpixh«NT) .x (0.5 —|—1/3*(s1n(p1*h*NT)) 2); %4.order

lk=4/h" 2% ((sin (pi*h*NT)). " 2+1/3*(sin (pixh«NT)). 4 + 8/45x%(sin(
pixh+«NT) ). 6+4/35*(sin (pixh«NT))."8);

lk1=2/h*sin (2xpi*h*NT) . (0.5 +1/3%(sin(pixh«NT))."2 + 4/15%(sin
(pi*xhsNT)). 4 +8/35*(sin(pixh«NT))."6);%8. order

lk=4/h"2x((sin (pi*hsNT)). " 2+1/3x(sin (pi*xh«NT)). " 4+8/45x(sin (pix
h«NT))."6) ;

1k1 2/h*sin(2*pi*h*NT).*(O.5 +1/3%(sin (pixh«NT)). "2 +4/15%(sin (
pixh«NT) 4);

Ck—sqrt(h/L

k0 = (25 (1:N) "xpi/L)."2 ;

1k01:2*(1.N "« pi/L; Ve:cact eigenvalues

d=1k : d1=1k1 :

d=1k0 ;d1=1k01 ;

Al=[-d(k0)*K, —d1(k0)«P; d1(k0)«P, —d(k0)x*K];

[T1,Y1]=0del5s(@SIST,[0,Tb],y0,0options ,Al,F);

KO=length (T1);

figure , plot (T1,Y1(:,1),T1,Y1(:,2),T1,Y1(:,3) ,T1,Y1(:,4), ’
LineWidth’ ,2)

grid on

title (sprintf(’Discrete coeff.d11,d21,d12,d22,dep.on t,N=%3.0d’
N))

legend ('d11’,°d21°,°d12",°d22")

xlabel ("\itt ), ylabel(’\it dij’)
v1=Y1(:,1)*sin(2xpixk0xx/L)’ +Y1(:,3)*xcos(2xpixk0*x/L)’
yml=max(max(abs(vl)));%appr

v2=Y1(:,2)*sin (2xpixk0xx/L)’ +Y1(:,4)xcos(2xpixk0*x/L) "’
ym2=max (max(abs(v2))); %appr

iml=max(abs(imag(Yl(end,:))))

mal=max(abs(ul (end,:)—vl(end,:))), ma2=max(abs(u2(end,:)—v2(end
)

figure ,plot(x’,vl(end,:) ,x’,v2(end,:),’k—.", LineWidth’ ,2)

xlabel (’17), ylabel(’v’)
title (sprintf(’v1(Tb), v2(Tb),ymax1=%5.4d,ymax2=%5.4d’ ;mal,ma2)

)

legend ('vl’,’v2")
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A.10 System of nonlinear parabolic type equations

We have following Matlab program 2286 .m:

[T1,Y1l]=o0delbs (@SIST1,[0,Tb],yy0,options ;Al,A2 K,P ,F2);

KO=length (T1)

iml=max(abs(imag(Yl(end,:))))

vl=Y1l(end,1:N);v2=Y1(end,N1:NN) ;vMl=max(real(vl));vml=min(real(
vl)):

vM2=max(real (v2));vm2=min(real (v2));

viIM=max(real (Y1(:,1:N)’));vilm=min(real (Y1(:,1:N)"));
v2M=max(real (Y1(: ,N1:NN) ")) ;v2m=min(real (Y1 (: ,N1:NN) ")) ;
figure ,plot (T1,vIM,T1,vlm,T1,v2M,T1,v2m, ’LineWidth’ 62)
grid on

title (sprintf( ’Max—min values depending on t,N=%3.0d’ ,N))
legend ('Mvl’, 'mvl’ 'Mv2’ 'mv2’)

xlabel (’\itt ’), ylabel(’\it Mm’)
%stal=maz(abs(ul(end,:)—vl)), sta2=maz(abs(ul(end,:)—v2))
figure ,plot (x’,vl,x’,v2, ’k—.’ , ’LineWidth’ ,2)

xlabel(’'x’), ylabel(’v’)

title (sprintf(’v1(Tb), v2(Th) ,vM1=%5.4d,vml=%5.4d ,vM2=%5.4d , .

vin2=%5.4d’ ,vM1,vml,vM2,vm2))

legend(’'vl’,’'v2"’)

function F=SIST (t,y,A,F1)

F=Axy +F1;

function F=SIST1(t,yy,Al,A2,K,P,F1)

F=kron (K,Al)*yy. 3+kron(P,A2)xyy. " 3+F1.xyy."2;

A.11 Boundary value problem with periodic BC in one direction

We have following MATLAB file PuasPer.m:

%system ODE U_yy—AU=f with periodical BC

%t=Tb,u(x,y)=cos (2 pi z)sinh(2 pi y),[f=0,N-even

function PuasPer(N,M)

NI=N+1; H=1;L=1;x=linspace (0,L,N1) ’;y=linspace (0 ,H,M) ;
h=L/N;N2=N—1;x=x (2:N1) ;

%A2=A2—diag (ones(N2,1) ,1)—diag(ones(N2,1),—1)+2xdiag(ones(N,1))

%A2(1,N)=—1; A2(N,1)=—1; A2=A2/h"2; %matriz A, control

8|NT=(1:N) ’/L;
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lk=4/h"2x(sin (pixh«NT))."2; %0(h"2)

lk=4/h" 2% ((sin (pi*h*NT)). 2+1/3%(sin (pixhNT)). 4) ;%0(h"4)

lk=4/h" 2% ((sin (pi*hsNT)). " 2+1/3%(sin (pi*xh«NT)). " 4+8/45x(sin (pix
h«NT))."6);%0(h"6)

lk=4/h"2x((sin (pi*h«NT)). " 2+1/3%(sin (pi*xh«NT)). 4+8/45x(sin (pix
h*NT) ). 6+4/35x+(sin (pixh*NT))."8);%0(h"8)

Ck=sqrt (h/L);

1kO=(2%(1:N) ’xpi/L)." 2;

d=1k ; %FDS

GINH=N/2; d (1:NH)=1k0 (1:NH) ;

%d (NH:N2)=1k0 (NH: — 1:1) ; d (N) =0; %FDSES

W=Cks*exp (2« pi*i*(1:N) 's«x’/L) ’;

WI=Ck*exp(—2xpixi*(1:N) xx’ /L) ’;

A2=Wxdiag (d)«*WL1; %FDS or FDSES

yr=sinh (2xpixL)xcos (2% pi*x);

yl=zeros(N,1); % bound—cond

P=Wlxyl ;Pl=zeros (M,N) ; PO=Wl«yr ;

for k=1:N2
b=sqrt (d(k)); %FDS or FDSES

P1(:,k)=P(k)x*cosh(bxy’)+(P0(k)—P(k)*cosh(bx«H))/sinh (bxH)xsinh (b

*y ')
end
P1(:,N)=P(N)+(P0(N)—P(N))*y’/H;
P2=(WsP1’) ’;

prec=cos (2xpixx)*sinh (2xpixy);% ezxact

Mal=max (max(abs (P2—prec ’) ) ) ;%mazx error an.

Xl=ones (M,1)*x’; Yl=y’ '« ones (1,N);

figure ,plot (y’ ,max(abs(P2(:,1:N)’—prec)), k«’)% maz error on y
title (sprintf(’err. Max—sol.an.on y, Max=%9.7f ’ /Mal))
xlabel(’\ity '), ylabel(’\itu’)

figure, surfc(X1,Y1,abs(P2—prec’))% error anl.

colorbar

xlabel(’x’), ylabel(’y’), zlabel(’'u’)

title (sprintf(’err. anal.,yNr.=%4.1f max=%9.7f" M, Mal))

A.12 Matrix solution of boundary value problem with periodic BC in
two directions

We have following MATLAB file puas4.m for matrix solution when N = M:

% u_yy= —u_zx+f, period. BC in x and y direc.
Jou(x,y)=cos(2pzx)cos(2py)— exact sol.
function puas4(N)
N2=N—1;N1=N+1;h=1/N;L=1;H=1;

x=linspace (0,L,N+1);NT=(1:N) ’/L;

y=linspace (0 ,H,N+1);
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x=x(2:N1);y=y (2:N1) ’;

8| 1k=4/h" 2% (sin (pi*h+NT))."2: %O(h 2)
9| 1k=4/h"2x((sin (pi*xh«NT)). " 2+1/3x(sin (pixh«NT))."4);%0(h"4)

(

lk=4/h" 2% ((sin (pi*xh«NT)). " 2+1/3%(sin (pi*h*NT)). " 44+8/45x(sin (pix
h«NT))."6) ;%0(h "6)

lk=4/h"2x((sin (pi*xh«NT)). " 2+1/3%(sin (pi*h*NT)). " 448/45x(sin (pix
h«NT) ). 6+4/35%(sin (pi*xh«NT))."8);%0(h "8)

Ck=sqrt (h/L);

1k0=(2*(1:N) 'xpi/L)."2; %exact eig—val.

d=1k : %FDS

YNH=N/2; d(1:NH)=1k0 (1:NH);% FDSES

%d (NH:N2)=1k0 (NH: — 1:1) ; d (N) =0; %FDSES

W=Ckxexp (2xpixix(1:N) xx/L) ’;

WI=Ckxexp(—2xpixi*(1:N) xx/L) ’;

Bl=Wxdiag(—d)*«W1; %FDS or FDSES

%B1=zeros (N,N) ;

%B1=B1—1/12« diag (ones (N2—1,1) ,2)+4/3xdiag (ones(N2,1) ,1)—1/12%
diag (ones(N2—1,1),—2)+4/3«diag (ones(N2,1),—1)—5/2xdiag (ones(
N1));

%B1(1,N)=4/%; B1(N,1)=4/3;B1(1,N2)=—1/12; B1(2,N)=—1/12;

%B1(N,2)=—1/12; B1(N2,1)=—1/12;% control O(h"4)

%B1=B1—2xdiag (ones (N,1) )+diag (ones(N2,1),—1)+diag(ones(N2,1) ,1)

%B1(1,N)=1;B1(N,1)=1; %control O(h"2)

%B1=B1/(h"2);

el=eye(N);

B2=sqrtm(—B1) ; B3=inv (B2"2+4x%pi " 2xel) ;

B=8xpi " 2%B3; prec=cos (2« pi*x’)*xcos(2xpixy’) ;

for iy=1:N

yl=y(iy ,1);

g0=cos (2xpi*x)*cos(2xpixyl);

u(:,iy)=Bxg0’;

end

Amax=max (max(abs(u’—prec’)));

X=ones (N,1)x x; Y=y*ones(1,N);

surfc (X,Y,abs(u’—prec’))

colormap (gray) ,

colorbar

xlabel(’x’), ylabel(’y’), zlabel(’'u’)

view (135,45)

title (sprintf(’Period .BC in both direc. FDS O(h"2) ,h=%4.2f,
Error=%8.6e’ ,h,Amax) )

A.13 Analytical solution of boundary value problem with periodic BC
in two directions
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9| lk=4/h" 2% (sin (pixh*NT)

%system ODE U_yy—AU=f with periodical BC in 2 direct ,.an. sol.
Jou(z,y)=cos(2 pi z)cos(2 pi y),f=8 \pi 2 u(xz,y),N-even
function PuasPer2(N,M)

N1=N+1; MI=M+1;H=1;L=1;x=linspace (0,L,N1) ’;y=linspace (0 ,H,Ml) ;
h=L/N;N2=N—1;M2=M-1;x=x (2:N1) ; y=y (2:M1) ’; h1=H/M;

B%A2=A2—diag (ones(N2,1) ,1)—diag(ones(N2,1),—1)+2xdiag(ones(N,1))

%A2(1,N)=—1; A2(N,1)=—1; A2=A2/h"2; %matriz A,O(h"2), control
NT=(1:N) /L
)."2; %O(h"2)
lk=4/h"2x((sin (pixh«NT))."2+1/3%(sin(pi*h*NT))."4);%0(h "4)
lk:4/hA2*((s1n(p1>kh*NT)) "2+41/3x(sin (pixh«NT) ). " 44...
8/45x(sin (pixh«NT) ). 6) ; %0(h "6)
lk=4/h" 2% ((sin (pixh«NT))."2+1/3%(sin (pixh*NT)). " 4+...
8/45x(sin (pixh«NT) ). " 6+4/35%(sin (pi*h*NT))."8);%0(h"8)
Ck=sqrt (h/L);
1kO=(2%(1:N) ’«pi/L)." 2
d=1k ; %FDS
NH=N/2; d(1:NH)=1k0 (1:
d(NH:N2)=1k0 (NH: —1:1) ; d(N
W=Ckxexp (2« pixi*(1:N) «x’ /L)’
WI=Ckxexp(—2xpixi*(1:N) *xx’ /L)
A2=Wxdiag (d) «W1; %FDS or FDSES
f=—8+pi " 2xcos (2xpixy)*cos(2xpixx’) ;g=Wlxf ’;
gk=zeros (M, 1) ;
Pl=zeros (M,N);
for k=1:N

gk (=g (k) ;

b=sqrt (d(k)); %FDS or FDSES

for j=1:M

if j=M v2(j)=0;end

s1=0; for jl=1:j—1
sl=s1+F1(j*hl,jl+hl b ,H)*gk(jl); end ;
v1(j)=0.5%h1%(F1(j*hl,0,b ,H)*xgk(M)+F1(j*hl,j*hl b ,H)xgk(j)).

NH) ;
) =0; VFDSES

+hlxsl;

s2=0;for jl=j+1:M-1
$2=s2+F2(j*hl,jl1xhl b ,H)xgk(jl); end

if j7=M
v2(j)=0.5%h1x(F2(j«hl ,H,b ,H)*gk (M)+F2(j«hl,j*hl b ,H)*xgk(j)).

+h1xs2 ;end

if k =N PI1(j,k)=-0.5 /(bxsinh (0.5xHxb))=*(v1(j)+v2(j));end
if k=N Pl( k) end
end; end

P2=WxP1’) ’;

P2=P2-P2(M,N) +1
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prec=cos (2xpixy)*cos(2xpixx’) ;im =—max(max(abs(imag(P2))))
Mal=max (max(abs (P2—prec)) ) ;%max error an.

Xl=ones (M, 1) *x’; Yl=y*ones (1,N);

figure , plot (y,max(abs(P2(: ,1:N)’—prec’) ), k«’)% maz error on y
title (sprintf(’err. Max—sol.an.on y, Max=%9.7f > /Mal))
xlabel(’\ity ’), ylabel(’\itu’)

figure, surfc(X1,Y1,abs(P2—prec))% error anl.

colorbar

xlabel(’'x’), ylabel(’y’), zlabel(’u’)

title (sprintf(’err. anal.,yNr.=%4.1f max=%9.7f" M, Mal))
function f=F1(y,t,b,H)

f=cosh (b*(0.5«xH —y +t));

function f=F2(y,t,b,H)

f=cosh (b*(0.5xH +y —t));

A.14 Kronecker-tensor solution of problem with periodic BC in two
directions

%system ODE U_yy—AU=f with periodical BC in 2 direct,

Y%u(z,y)=cos(2 pi x)cos(2 pi y),f=8 \pi 2 u(z,y),N,M-even

%Kroneker—Tensor algorithm

function PuasTen2(N,M)

NI=N+1; MI=M+1;H=1;L=1;x=linspace (0,L,N1) ’;y=linspace (0 ,H,M1) ;

h=L/N;N2=N—1;M2=M-1;x=x (2:N1) ; y=y (2:M1) ’; h1=H/M;NV=N+M; NM2=NM
—1;

B%A2=A2—diag (ones(N2,1) ,1)—diag(ones(N2,1),—1)+2xdiag(ones(N,1))

%A2(1,N)=—1; A2(N,1)=—1; A2=A2/h"2; %matriz A,O(h"2), control

NT=(1:N)’'/L;MI=(1:M) ' /H;

lk=4/h"2x(sin (pixh«NT))."2; %0(h"2)

lk=4/h"2x((sin (pixh«NT)). " 2+1/3x(sin (pixh«NT))."4);%0(h"4)

1k=4/h" 2% ((sin (pixh«NT))."2+1/3*(sin (pi*xh*NT)). 4+8/45x(sin (pix
h«NT))."6) ;%0(h "6)

lk=4/h" 2% ((sin (pi*h«NT)). " 2+1/3%(sin (pi*h*NT)). " 44+8/45x(sin (pix
h«NT) ). 6+4/35%(sin (pi*xh«NT) ). 8);%0(h "8)

1k1=4/h1"2%(sin (pi*h1+MT)). 2: %O0(h1 2)

lk1=4/h1"2x((sin(pi*xhl«MT))."241/3%(sin(pixhl1«MT))."4);%0(h1"4})

lk1=4/h1"2x((sin (pi*xhl«MT))."241/3%(sin(pixhl«MT)). " 4+8/45%(sin
(pixhl1sMT))."6) ;%0(h1"6)

lk1=4/h1"2x((sin (pi*xhl«MT))."241/3%(sin (pixhl1«MT)). " 4+8/45%(sin
(pi*hl1+MT) ). 6+4/35%(sin (pixhl«MT))."8);%0(h1 "8)

Ck=sqrt (h/L);

Ckl=sqrt (hl/H);

1kO=(2x(1:N) ’xpi/L)." 2;

1k01=(2%(1:M) «xpi/H)." 2;

~— N —
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d=1k ; %FDS-z

dl=1k1; %FDS-y

NH=N/2; d(1:NH)=1kO0 (1:NH) ;

d (NH:N2)=1k0 (NH: — 1:1) ; d (N) =0; %FDSES—z
MEEM/2; d1(1:MH)= 1k01 (1:MH) ;

d1 (MH:M2)=1k01 (MH: —1:1) ; d1 (M) =0;%FDSES-y
W=Ckxexp (2 pi*i*(1:N)’sx’/L)"’
Wi=Cksexp(—2xpi*i*(1:N) *x /L)
Wy=Cklxexp (2xpixi*(1:M) xy’/H) "’
Wyl=Cklxexp(—2xpi*ix*(1:M) ’xy’/H)"’
Wxy=kron (Wy,W) ; Wxyl=kron (Wyl,W1) ;
Al=Wxdiag (d)*WL1; %FDS or FDSES, control
A2=Wyxdiag (d1)*«Wyl; %FDS or FDSES
f=8+pi~“2xcos(2xpixy)*cos(2xpixx’);
f=reshape(f’ ,NM,1) ;g=Wxylxf;
dd=zeros (NM, 1) ; gg=zeros (NM, 1) ;P2=zeros (NM, 1
for j=1M j1=1+(j —1)*N;j2=j1+N2; dd(j1:j2)=
for ji=1:NM2 gg(ji)=g(ji)/dd(ji); end

gg (NM) =0;

P2=Wxyx*gg ; P2=reshape (P2 ,N M) ’
P2=P2-P2(M,N) +1;
prec=cos (2% pixy)*cos(2xpixx’) ;im —max(max(abs (imag(P2))))
Mal=max (max(abs (P2—prec))) ;%max error an.

Xl=ones (M,1) *x’; Yl=y*ones (1,N);

figure , plot (y ,max(abs(P2(: ,1:N)’—prec’) ), k%)% maz error on y
title (sprintf(’err. Max—sol.an.on y, Max=%9.7f ’ Mal))
xlabel (’\ity '), ylabel(’\itu’)

figure, surfc(X1,Y1,abs(P2—prec))% error anl.

colorbar

xlabel ('x’), ylabel(’y’), zlabel( 'u’)

title (sprintf(’err. anal.,yNr.=%4.1f max=%9.7f" M, Mal))

)5
d(:)+d1(j);end

A.15 Example of wave equation with periodic BC for one wave
number

We have the following MATLARB file Wave2.m:

%system ODE U_tt+a "2 AU=f with periodical BC
%t=Tb,u(x,t)=sin (2 pi x)cos(2 pi t),a=1,f=0N-even

function Wave2(N)

N1=N+1;MK=20; Th=1;L=1;x=linspace(0,L,N1) ’; t=linspace (0,Tb,MK) ;
h=L/N;N2=N—1;a=1;a2=a"2;x=x(2:N1) ;

%A2=A2-diag (ones (N2,1) ,1)—diag(ones(N2,1),—1)+2xdiag(ones(N,1))

%A2(1,N)=—1; A2(N,1)=—1; A2=A2/h"2; %matriz A, control
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NT=(1:N) ’/L;

9| Ik=4/h" 2% (sin (pi*hsNT)) . 2; %0(h"2)

lk=4/h"2x((sin (pixh«NT)). " 2+1/3x(sin (pixh«NT))."4);%0(h"4)

lk=4/h" 2% ((sin (pi*xh«NT)). " 2+1/3%(sin (pi*h*NT)). " 44+8/45x(sin (pix
h«NT))."6);%0(h "6)

lk=4/h"2x((sin (pi*xh«NT)). " 2+1/3%(sin (pi*h*NT)). " 448/45x(sin (pix
h«NT) ). 6+4/35%(sin (pi*xh«NT))."8);%0(h "8)

Ck=sqrt (h/L);

1kO=(2%(1:N) ’xpi/L)." 2;

d=1k : %FDS

NH=N/2; d(1:NH)=1k0 (1:NH) ;

d (NH:N2)=1k0 (NH: —1:1) ;d(N) =0; %FDSES

W=Ckxexp (2xpixix(1:N) 's«x’/L);

WI=Ckxexp(—2xpixi*(1:N) xx’/L);

A2=Wxdiag (d)«W1; %FDS or FDSES

y2=zeros (N, 1) ;

yl=sin (2xpixx); % init—cond

P=Wlxy1l;Pl=zeros (MK,N) ; PO=Wlxy2;

for k=1:N2
b=sqrt (a2xd(k)); Z%FDS or FDSES
P1(:,k)=P(k)*cos(bxt’)+P0(k)/bxsin(bxt’);

end

P1(: ,N)=P(N)+PO(N)x*t ’;

P2=WxP1.’).’;% operator of transponation

prec=sin (2xpixx)xcos(2xpixt);% exact

Mal=max (max(abs (P2—prec ’) ) ) ;%mazx error an.

Xl=ones (MK, 1) *x’; Yl=t "« ones (1,N) ;

figure ,plot (t’ ,max(abs(P2(:,1:N)."—prec)), k«’)% maz error on t

title (sprintf(’err. Max—sol.an.on t, Max=%9.7f ’ /Mal))

xlabel (’\itt ), ylabel(’\itu’)

figure ,plot (x,P2(end,1:N).’, ko)

grid on

title (sprintf(’Sol.an.on x by Tb. Max=%9.7f ’ ,Mal))

xlabel(’\itx’), ylabel(’\itu’)

figure, surfc(X1,Y1,abs(P2—prec’))% error anl.

colorbar

xlabel (’x’), ylabel(’t’), zlabel(’u’)

title (sprintf(’err. anal.,tNr.=%4.1f ,max=%9.7f " MK, Mal) )

A.16 Example of wave equation with periodic BC for different wave
number

We have following MATLAB file Wave2m.m:

1| %system ODE U_tt+ AU=0 with periodical BC
2| %t=Tb,u(z,t)=sin (2 pi m z)cos(2 pi m t),mN-even
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function Wave2m(N)

4| N1=N+1;MK=3;m=2; Th=1;L=1;x=linspace (0,L,N1) ’; t=linspace (0,Tb,

MK) ;
h=L/N;N2=N—1;a=1;a2=a"2;x=x(2:N1) ;
B%A2=A2—diag (ones(N2,1) ,1)—diag(ones(N2,1),—1)+2xdiag(ones(N,1))

%A2(1,N)=—1; A2(N,1)=—1; A2=A2/h"2; %matriz A, control
NT=(1:N) ’/L;

9| 1k=4/h"2x(sin (pi*xh«NT))."2; %0(h"2)

%lk=4/h "2« ((sin (pixhxNT)). 2+4+1/3x(sin (pixh«NT) ). 4);%0(h"})
Y%lk=4/h "2« ((sin (pixhxNT)). 2+41/3%(sin (pixh«NT) ). 4+8/45x(sin (pi

«h*NT) ). 6):%0(h"6)
%lk=4/h "2« ((sin (pixh«NT) ). 2+1/3*(sin (pixh«NT) ). J+8/45%(sin (pi

«h«NT) ). 6+4/35%(sin (pixh*NT) ). 8);%O0(h"8)
Ck=sqrt (h/L);
1kO=(2%(1:N) ’xpi/L)." 2;
d=1k ; %FDS
YINH=N/2; d(1:NH)=1k0 (1:NH);
%d (NH:N2)=1k0 (NH: — 1:1) ; d (N) =0; %FDSES
W=Ckxexp (2 pi*xi*(1:N)’xx’/L);
WI=Ckxexp(—2xpixi*(1:N) xx’/L);
A2 Wk diag (d) «W1; %FDS or FDSES
yl=sin (2xpi*m*x); % init—cond
P=zeros (N,1) ;P=Wlxyl;Pl=zeros (MK,N) ;
for k=1:N

b=sqrt (a2xd(k)); %FDS or FDSES

P1(:,k)=cos(bxt’)*P(k);

end
P2=WxP1.’).’;% this is transponation operator
P21=Wxdiag (cos(sqrt(d)«t(end)))*«Wlxyl;%okei !
prec=sin (2% pixmsx)*cos(2xpixmxt);% exact
Mal=max (max(abs (P2—prec ’) ) ) ;%mazx error an.
Xl1=ones (MK,1) *x’; Yl=t "« ones (1,N);
figure ,plot (t’ ,max(abs(P2(:,1:N).’—prec)), 'k*’)% maz error on t
title (sprintf(’err. Max—sol.an.on t, Max=%9.7f ’ Mal))
xlabel (’\itt '), ylabel(’\itu’)

figure , plot (x,P21, ko’ ,x,prec(1:N,end) , ’«’ ,x,P2(end,1:N), =)
%figure , plot (z,P2(end,1:N)’, ko)

grid on

title (sprintf(’Sol.an.on x by Tb. Max=%9.7f ’ ,Mal))

xlabel(’\itx’), ylabel(’\itu’)

figure, surfc(X1,Y1,abs(P2—prec’))% error anl.

colorbar

xlabel(’x’), ylabel(’t’), zlabel(’'u’)

title (sprintf(’err. anal.,tNr.=%4.1f ,max=%9.7f’ MK Mal) )
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A.17 Nonlinear wave equation with periodic BC

We have the following MATLAB file svarst3per.m:

%PDE U_tt=AG +F with periodic BC

%t=Tb, A DWW« with different aproksimation

function svarst3per (N)

sigma=2;sigmal=sigma-+1;beta=0;a=0;

NI=N+1; Th=0.1;L=1;x=linspace (0,L,N1)’

h=L/N;N2=N—1;NT=[1:N] /L;NN=2x«N;NH=N/ 2;

1k0=(2xpi/Lx(1:N)")."2; % precizas ipasv.

1k2=4/h"2x*(sin (pixh«NT))."2; %0"2

1k4=4/h"2x((sin(pi*h*NT)). 2+1/3*( n(pixh«NT)). 4);%0"4

1k6=4/h"2x((sin (pi*h«NT))."2+1/3*(sin (pixh«NT) ). 4+8/45x(sin (pi
*xh*«NT))."6) ; %0"°6

1k8=4/h"2x((sin (pi*h«NT))."2+1/3*(sin (pixh«NT) ). 4+8/45x(sin (pi
*h*NT) ). 64+ 4/35*(sin(pixh«NT))."8);%0"8

We=exp (2« pixh*i*[1:N] '%[1:N]/L);x=x(2:N1); lk=zeros(N,1) ;

Ya=1k2 (1)

%A2=zeros (N,N) ;

%A2=A2+diag (ones(N2,1) ,1)+diag(ones(N2,1),—1)—2xdiag(ones(N,1))

%A2(1,N)=1; A2(N,1)=1;A2=A2/h"2;

YD=hx (1./W)*B2+«W;

1k (1:NH)=1kO0 (1:NH) ;

1k (NH:N2)=1k0 (NH: —1:1) ; ZFDSES

A2=hsWxdiag (1k8)*conj (W) ;

A=zeros (NN,NN) ; yl=(sin (2% pixx));y2=zeros(N,1);
y0=[yl;y2];Zl=zeros (N,N);A=[Z1,eye(N,N);A2,7Z1];
B=[Z1,71; eye(N,N) ,Z1];

options=odeset ( "RelTol’, 1.0e—7);

[T, Y]=0del5s(@SIST,[0 Tb],y0,options ,A,sigmal ,beta,a,B);

im—max(abs (imag (Y (end ,: ) ))) ;
MA=max(abs(real (Y(end,1:N))));
figure ,plot(x,real(Y(end,1:N)’) ko)

grid on

title (sprintf( ’End time., maxim=%8.6f,time = %8.6f Max=%9.7f ’,
im,T(end) MA))

xlabel (’\itx’), ylabel(’\itu’)

figure

plot (T(:) ,max(real(Y(:,1:N)")))

grid on

title (sprintf(’FDS in time ,N=%3.0f, time = %8.6f ’ ,N,T(end)))

xlabel (’\itt ), ylabel(’\itu’)

K=length (T) ;Xl=ones (K,1)*x’; Yl=T*ones (1,N);

figure, surfc(X1,Yl,real(Y(:,1:N)))

colorbar

xlabel(’x’), ylabel(’t’), zlabel(’'u’)
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41| title (sprintf(’Surface ,imag=%8.6f , Laika sl.sk.=%3.06f, Max=%8.6
f7im,K,MA))

42| function F=SIST(t,y,A,sigmal  beta, a,B)

43| F=Axy .  sigmal+axBx(y)." beta;
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