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Abstract 

In the PhD thesis original mathematical models and their solutions for domains of complex 

form are considered. Intensive steel quenching process for elements with fins is described by 

3D hyperbolic and parabolic heat conduction equation. For deriving an analytical solution for 

the problem, Green’s function method and its modification is used. For systems with double 

wall and double fins that are employed in modern computers, 2D stationary and transient heat 

transfer problems are given. Our approximate solution is constructed using conservative 

averaging method, finite difference scheme and its modifications for boundary conditions. A 

new mathematical model for a willow flute is presented which considers 1D linear wave 

equation with a source function and third type boundary conditions. 

Keywords: heat conduction equations, wave equation, Green’s function, conservative 

averaging, finite difference method, method of separation of variables, L-shape sample, double 

wall with double fins, willow flute 
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Introduction 

There are many practical applications and important uses for both single layer systems with 

fins, and for systems with double wall and double fins. They are used as heat transfer equipment, 

for intensive quenching etc. To describe these processes we formulate the problems in 3D and 

2D, and present precise and numerical methods for obtaining solutions. The case of non-linear 

boundary conditions is also considered. (See the first three chapters of the thesis.) 

The last chapter is dedicated to constructing a mathematical model for a willow flute. 

When constructing the model for this instrument one can stumble upon a few questions – is it 

enough to use a linear wave equation, how to describe the airstream that impinges the edged 

opening and mass flow in the passageway etc. These facts are considered in our model. 

Together with co-authors the author has 8 publications on the subject of the PhD thesis. 

The author has reported on 6 international and 3 local conferences. 

Importance of the Subject 

Intensive quenching processes that are considered in the first chapter of the thesis, have a 

significant impact in heat treating industry. Originated by Dr. N. Kobasko, intensive water-

quenching technologies are broadly developed. Since his discovery, there have been numerous 

experiments and studies conducted by Dr. Kobasko in cooperation with scientists from USA, 

Ukraine, Mexico. One of those international joint research projects is “Database for cooling 

capacities of various quenchants to be developed with the modern computational and 

experimental techniques”, WSEAS. 

Systems with double wall and double fins are used in modern computers’ cooling 

systems. But here to help to remove excess heat from computer components, cooling with air 

is replaced by liquid cooling. Based on boiling heat transfer in microchannel passages it 

provides an efficient way to remove high heat flux in small areas. This results in a non-linear 

problem, that we solve using different kind of mathematical methods. 

Normally when describing musical instruments, the mathematical model contains a wave 

equation that is solved by the method of separation of variables. In the thesis we use this method 

when modelling a willow flute. 

Aim of the Thesis 

The broader goal of this thesis is to develop mathematical models for domains of complex form. 

It includes the following objectives: 

 describe intensive steel quenching for 3D L-shape sample by both hyperbolic and parabolic 

heat conduction equation; 

 propose a new approach for deriving solutions for stationary and transient problems in 2D 

systems with double and double fin; 

 develop a mathematical model for a willow flute. 

Research Methodology 

Analytical and numerical methods: 

 conservative averaging method; 

 Green’s function method and its modification for regular, non-canonical domains; 

 separation of variables; 

 finite difference method and its modification. 
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Scientific Novelty and Main Results 

 New mathematical models are proposed for intensive quenching when choosing hyperbolic 

heat equation to describe the process in thin 3D L-shape samples. Exact solutions for 

hyperbolic and parabolic heat equations are constructed. 

 Models for 2D stationary and transient problems for systems with double wall and double 

fins are given. Both linear and nonlinear case (i.e., when assigning boiling conditions) has 

been considered. 

 We propose a mathematical model for a Norwegian flute, using a linear wave equation. We 

use a source function to describe the process where the airstream tends to form vortices 

when impinging the edged opening. But the mass flow in the passageway is approximated 

by 3rd type boundary condition. 

Publications, Reports on Conferences 

Publications 

1. T. Bobinska, M. Buike, A. Buikis, Heat Transfer with Full Boiling in System with Double 

Wall and Double Fins, Proceedings of the 11th WSEAS International Conference on Heat 

Transfer, Thermal Engineering and Environment, Vouliagmeni, Greece, WSEAS Press, 

2013, pp. 148-153. ISBN: 978-1-61804-183-8. Available from Internet: 
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(last checked 28/10/2013). 
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1 Hyperbolic and Parabolic Heat Conduction Equations for 

L-shape Samples 

One of the most important heat treatment processes in metallurgy is quenching, where it is used 

for metal hardening to improve mechanical properties of the material and produce a much 

tougher and durable item with stronger structure. In this process metal parts are heated to the 

required temperature and then cooled rapidly in air, oil, water, or another liquid. Many of these 

methods for hardening steel parts are widely known as intensive quenching (IQ). Although 

there have been various, often little-known, IQ processes designed since the 1920’s, the IQ 

technology was greatly influenced and developed by Dr. N. Kobasko (Ukraine). In contrast 

with conventional quenching, the IQ process is conducted in highly agitated water or brine with 

a cooling rate that is significantly faster than quenching in oil, air, etc., [2], [3], [38]. 

The mathematical models developed to conduct analysis on IQ mostly include transient 

heat conduction equations. But as IQ is a process where the temperature of the sample is 

changing very quickly, different kind of models should be considered. In [28] Prof. Buikis 

proposed to describe the process by a hyperbolic heat conduction equation. As it has been 

shown in several publications, these new mathematical models give good results and are 

reasonable in the real-world situation context, e.g., [4], [18], [27], [28], etc. 

According to the previous studies and research [5], [8], [9], [23], here we consider initial-

boundary value problems (IBVPs) for both parabolic and hyperbolic heat conduction equations 

describing IQ process for a thin L-shape sample. Using Green’s function method and 

conservative averaging we construct analytical solutions of inverse and direct problems in the 

form of an integral equation of the 2nd kind. After that, if necessary, it is possible to compare 

the rate of change of the temperatures in a small neighbourhood of the initial time 0t  after 

determining solutions for these problems. 

1.1 The physical problem 

As it is well known, heat conduction in a solid body can be described by the well-known Fourier 

equation  

 
c

f
Ta

t

T
~

22 



, 

c

k
a ~

2  , (1.1) 

where T  denotes the temperature of the body with thermal conductivity k , and f  is the density 

of heat sources, t  is time, c~  specific heat capacity,   density of the body. And 2a  is the 

thermal diffusivity of the material. The equation can be derived by combining the law of 

conservation of energy (the 1st law of thermodynamics)  

 f
t

T
c 




q~  (1.2) 

with Fourier’s law 

 ),(),( tT-kt xxq  . (1.3) 

In a number of physical situations equation (1.1) implies an arbitrarily high thermal propagation 

speed. One of such cases is IQ. When immersing the heated part into a quenchant, the initial 

speed of propagation of the heat tends to infinity but actually is finite (see [39]). So Fourier’s 

law at the initial time is no longer suited to describe heat propagation. In these cases (1.3) can 

be replaced by a more general law proposed by Cattaneo and Vernotte: 

 ),(),(),( tT-ktt
t

xxqx
q





 . (1.4) 
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Here 0  is a material property and is called the relaxation time. Introducing equation (1.4) 
into (1.2) leads us to a hyperbolic heat conduction equation 

 






















t

f
f

k
T

t

T

at

T

C


111 2

22

2

2
 

or 

 






















t

f
f

c
Ta

t

T

t

T



 ~

122

2

2

. (1.5) 

This so-called Telegrapher’s equation or a damped wave equation admits a finite speed of 

propagation for T. Here C is the characteristic speed with 22 aC  . (More information on 

hyperbolic heat equations can be found here: [51], [31], and [32].) 

k , c~ ,   are generally dependant on T  and on the material too, but throughout the paper 

we assume that these are constants. 

1.2 Non-dimensionalization 

Let’s image that we have an element with rectangular fins (see Fig. 1.1, from [17]) that is heated 

and then cooled rapidly in a suitable fluid, e.g., water or brine. Since the figure can be divided 

into several symmetrical L-shaped parts, we can use equations (1.1), (1.5) to describe IQ process 

for one part only and get the same results as if we had quenched the entire figure. 

 
Fig. 1.1 Element with fins 

In order to simplify the problem, we’ll use non-dimensionalization. The time and spatial 

variables are non-dimensionalized by setting 

 
RB

x
x


ˆ , 

RB

y
y


ˆ , 

RB

z
z


ˆ , 

*
ˆ

T

t
t  , (1.6) 

and 

 
RB 


 , 

RB

L
l


 , 

RB

B
b


 , 

RB 


 , 

where 2B is the width of the fin, 2R the space between the fins, Ω the height of the wall, Δ the 

length of the wall, L the length of the fin. 

If ),,,(0 tzyxV  denotes the temperature distribution in the wall and the temperature 

distribution in the fin is designed by ),,,( tzyxV , then we can define dimensionless 

temperatures )ˆ,ˆ,ˆ,ˆ(ˆ 0 tzyxV  and )ˆ,ˆ,ˆ,ˆ(ˆ tzyxV  in terms of the new variables (1.6): 

 
ab

a

VV

VtzyxV
tzyxV






),,,(
)ˆ,ˆ,ˆ,ˆ(ˆ

0

0
, 

ab

a

VV

VtzyxV
tzyxV






),,,(
)ˆ,ˆ,ˆ,ˆ(ˆ , (1.7) 

where aV , bV , are some characteristic environmental temperatures. Similarly, the new 

temperatures of the surrounding medium are 
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ab

a

VV

Vtzyx
tzyx






),,,(
)ˆ,ˆ,ˆ,ˆ(ˆ . (1.8) 

),,(0 tzy , ),,,( tzyx  are the values of the temperature of the fluid at the left side of the wall, 

and at the other sides of the sample. 

And the new parameters are 

 
0

00

0

)(ˆ
k

RBh 
 , 

0

0 )(ˆ
k

RBh 
 , 

k

RBh )(ˆ 
 , 

*
ˆ

T


  , 

2

*2
2

)(
ˆ

RB

Ta
a


 . 

The quantities 2a , k ,   have the same meaning as in the preceding section, but kh , h  the 

heat transfer coefficient. 

1.3 Using Hyperbolic Heat Conduction Equation to Describe IQ 

Process 

In this section we are going to consider equation (1.5) for describing IQ process, and solve 

IBVP using Green’s function method (see, e.g., [8], [9], [12], [16], [19], [22]). To modify the 

method to obtain a closed-form Green’s function for so called regular non-canonical domain, 

we are going to represent the original domain as a finite union of canonical sub-domains with 

appropriate boundary conditions along the planes (or lines in 2D) connecting two neighbour 

domains. 

1.3.1 General Statement of 3D Problem for L-shape Sample 

We may therefore suppose that the given L-shaped sample is made up from two rectangular 

parallelepipeds (rectangles in 2D) 0G  and G , the base (sometimes called the wall) and the 

foot: 

        ,0,1,0,,0|),,(0  zyxzyxG , 

        ,0,,0,,|),,(  zbylxzyxG , 

joined along the surface x . By means of that we’ll be able to define IQ process for each 

part separately. Thus, in terms of the dimensionless variables (1.6), (1.7) and dropping the hats, 

the hyperbolic equations of heat conduction have the following form 

 ),,,(02

0

2

2

0

2

2

0

2

20

2

0

2

0, tzyxS
z

V

y

V

x

V
a

t

V

t

V
r 





































  (1.9) 

and 
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2
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V
a
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V
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




















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


 , (1.10) 

where  

 











 ),,,(),,,(~

1
0,0 tzyx

t

f
tzyxf

c
S r


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










 ),,,(),,,(~

1
tzyx

t

f
tzyxf

c
S r


. 

If there are no sources of heat, then S , 00 S . 

To state the IBVP for determining the temperature of the sample, we need to formulate 

both boundary and initial conditions. Along the planes 0y , 1y  symmetry conditions must 

be applied:  
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 0
0

0 




y
y

V
, 0

1

0 




y
y

V
, (1.11) 

 0
0






y
y

V . (1.12) 

But at the other sides of the sample a heat exchange takes place with the surrounding medium, 

whose temperature is given by (1.8). Thus 

   0

0

0

0

0

0 













x

V
x

V
 , (1.13) 

   00

00 
















x

V
x

V
,  1,by , (1.14) 

   0

0

0

00 













z

V
z

V
 , (1.15) 

   00

00 
















z

V
z

V
. (1.16) 

For the foot we have mixed boundary conditions as well: 

   0













 lx

V
x

V



 , (1.17) 

   0













by

V
y

V
 , (1.18) 

   0
0















z

V
z

V
 , (1.19) 

   0
















z

V
z

V
. (1.20) 

For the future we will set the dimensionless environmental temperature ),,,( tzyx  to be zero 

for all zyx ,, , with the exception at 0x  where 1),,,0(  tzy . 

It is also possible to consider non-linear boundary conditions, see [4]. In that case 

solutions of hyperbolic and parabolic equations differ essentially. 

As the base is in ideal thermal contact with the foot, continuity of temperature and heat 

flux are imposed at the interface x  between the adjacent parts of the sample: 

 
000 


 xx

VV , (1.21) 

 
0

0

0

0














xx

x

V

x

V
. (1.22) 

Let us also establish the initial conditions: 

 ),,(0

000 zyxVV
t




, ),,(0

0
zyxVV

t



, (1.23) 

 ),,(0

0

0

0 zyxW
t

V

t








, ),,(0

0

zyxW
t

V

t








. (1.24) 

In IQ conditions (1.24) are unrealistic: the initial time-rate of the temperature change can’t 

be measured experimentally. It should be calculated to compare it with critical cooling rate to 

predict heat transfer modes, as the initial cooling rate can be in different ranges (see [39]). 

Therefore, we can assume that the temperature distribution and the speed of temperature change 

are given at the end of the process: 
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 ),,(00 zyxVV T

Tt



, ),,( zyxVV T

Tt



, (1.25) 

 ),,(0

0 zyxW
t

V T

Tt








, ),,( zyxW
t

V T

Tt








. (1.26) 

Putting together the partial differential equations, the boundary, and the initial conditions, 

we have a direct problem, or an inverse problem when using final conditions. Since finding 

solution of 3D problem is quite similar as in 2D case, we will consider only the latter. 

1.3.2 Formulation of Direct Problem in 2D 

Let’s suppose the domains 0G , G  are thin in the z–direction (for 2D model), so 1 , 

b ,   . Assuming that the temperature is almost constant in this direction, it allows 

us to use the simplest form of the conservative averaging method – approximation by a constant. 

Hence, to reduce the 3D problems (1.9), (1.10) considered before to 2D ones, we will introduce 

average values of all the functions used before over the interval  ,0 . For example, 

 




0

00 ),,,(
1

),,( dztzyxVtyxv , (1.27) 

 




0

),,,(
1

),,( dztzyxVtyxv . (1.28) 

We then use these approximations and apply the boundary conditions (1.15), (1.16), and (1.19), 
(1.20) to obtain two 2D hyperbolic heat-conduction equations 

 ),,(
2

00

0
2

2

0

2

2

0

2

20

2

0

2

0, tyxsva
y

v

x

v
a

t

v

t

v
r 




































 , (1.29) 

 ),,(
22

2

2

2

2
2

2

2

tyxsva
y

v

x

v
a

t

v

t

v
r 































 . (1.30) 

Additionally, we will use the same boundary and initial conditions as formulated in the 

statement of the original problem in the previous subsection. 

Using the continuity conditions (1.21), (1.22), the boundary condition for the right-hand 

side border of the base can be written in the form 

 ),(0

0

0

0

00 tyHv
x

v

x




















,  

 























 0

0 1

0

),(




x

v
x

vtyH , 

 

 by

by

,0

1,





. (1.31) 

At the left-hand side border of the foot we get 3rd type boundary condition as well:  

 ),(
0

tyHv
x

v

x




















,  

 

0

0

0

0

1
),(





















x

v
x

v
tyH ,. ],0[ by  (1.32) 

But the initial conditions are  

 ),(0

000 yxvv
t




      ),(0

0

0

0 yxw
t

v

t








, 
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 ),(0

0
yxvv

t



      ),(0

0

yxw
t

v

t








. 

1.3.2.1 Solution for the Base 

The problem for (1.29) can be solved by transforming the problem with the non-homogeneous 

boundary condition (1.31) into another one with zero boundary conditions. To do that, we 

assume a solution of the form (see [46]) 

 ),,(),,(),,( 2,01,00 tyxvtyxvtyxv  , 

where 

 ),(
11

),,( 0

0

0

0

00

0

0

0

00

00

0

00

0

0

00

1,0 tyH
xx

tyxv 

















   

 ),()()( 000 tyHxBxA   (1.33) 

satisfies the non-homogeneous boundary condition. Substituting (1.33) into the original 

problem, we get the transformed problem in ),,(2,0 tyxv : 

 ),,(
2

02,0

0
2

2

2,0

2

2

2,0

2

22,0

2

2,0

2

0, tyxva
y

v

x

v
a

t

v

t

v
r 




 

































, (1.34) 

 1,0

0
2

2

1,0

2

21,0

2

1,0

2

0,00

2
),,(),,( va

y

v
a

t

v

t

v
tyxstyx r




 














 , 

with these boundary conditions: 

 0

0

2,0

0

0

2,0















x

v
x

v
        0

0

2,0

02,0



















x

v
x

v
, (1.35) 

 0

0

2,0






y
y

v
       0

1

2,0






y
y

v
, (1.36) 

and the initial conditions: 

 ),(),(),( 0

1,0

0

0002,0 yxvyxvyxv
t




 , (1.37) 

 

0

1,00

00

0

2,0
),,(),(











tt
t

v
zyxwyx

t

v
 . (1.38) 

The solution of the new problem (1.34) – (1.38) can be written as 

  ),,(),,(),,(),,( 3,22,21,22,0 tyxvtyxvtyxvtyxv   

  



















t

r

dtyxtyxtyx
t

00,

),,(),,(),,(
1

,000


 
. (1.39) 

Here ),,(2,2 tyxv  is the solution of (1.34) at 000  ; ),,(1,2 tyxv  is the solution of (1.34) at 

000  ; ),,(3,2 tyxv  is the solution of (1.34) at 000  . The function 
 ,0
 is defined 

by ),,(
1

0

0,

,0 


  yx
r

 . 

First, let’s develop the function ),,(
0

tyx . Based on the given boundary conditions we 

expand the solution as 

 









1 0

2,2 )()()(),,(
i j

jiij yYxXtTtyxv , 
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where the eigenfunctions have the following expressions 

 







 i

i

i xxX 



sin)( ,   

0

0

tan



 i

i  ;      yjyY j cos)(   

with normal squares 

  







  ii

i

i

ii dXM 







2cos
sin

1
2

)(
0

2
;     











 

01

,2,1
2

1

)(

1

0

2

j

j
dYN jj


 . 

But the eigenvalues are 

2












i ,  2
j , where i  are positive zero-points of 

 
  


















x
xxxF

200

0

00

0

1
cot)(




. 

The functions )(tTij
 can be found in the form 

     tbta
t

tT ijijijij

r

ij 


sincos
2

exp)(
0,















  

with 

  
 

 






















14
2

1

0

41
2

1

sin

sinh

sin

0,

0,

0,

0,

ijr

r

ij

ij

ijr

r

ij

ij

ij

ij

t

t

t

t

















 , 

  
 

 






















14
2

1

0

41
2

1

cos

1

cosh

cos

0,

0,

0,

0,

ijr

r

ij

ij

ijr

r

ij

ij

ij

ij

t

t

t

















  

and 

  


































0
2

2

2 2
ja i

ij . 

Here 
ija  and 

ijb  are undetermined constants. Applying the initial condition 0)0,,(2,2 yxv  

leads to 0ija . But ),()0,,( 02,2 yxyxv
t





 yields 

 ),()()( 0

1 0

yxyYxXb
i j

jiijij  








,    









01

0

ij

ijij

ij 


 . 

Solving for ijb  gives 

 
01
ij

ij

ijb 


 ,     




0

1

0

0

0 )()(),(
1

dYXd
NM

ji

ji

ij . 

Finally, we have 
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  



 
0

1

0

002,2 ),(),,,,(),,(),,(
0

dtyxGdtyxtyxv  (1.40) 

with the Green function given by 

  






















1 00,

0 sin)()()()(
11

2
exp),,,,(

i j

ijjjii

jiijr

tYyYXxX
NM

t
tyxG 


 . 

From the given definition (1.39) and (1.40) we see that 

   
























0

1

0

00

0,

1,2 ),(),,,,(
1

),,( dtyxG
t

dtyxv
r

, (1.41) 

    

t

r

dtyxGddtyxv
0 0

1

0

00

0,

3,2 ),,(),,,,(
1

),,(






 . (1.42) 

Therefore the solution of (1.34) - (1.38) is 

 ),,(0 tyxv   

    

























0

1

0

0

0

00

0,

)(),(),,,,(
1

dAvtyxG
t

d
r

  

  




0

1

0

0

00 ),(),,,,( dwtyxGd   

    

t

r

dstyxGdd
0 0

1

0

00

0,

),,(),,,,(
1






   

    

t

r

dAtyxGdda
0 0

1

0

00

0,

0
2 )(),,,,(

12









  

   







0

1

0

00 )()0,,,,( dAyxG
t

d   

   
























0

1

0

000

0,

)0,()(),,,,(
1

dHBtyxG
t

d
r

  

   
















0

1

0

000 )0,()(),,,,( dH
t

BtyxGd   

    


















t

r

r

dHHBtyxGdd
0 0

1

0

002

2

0,00

0,

),(),()(),,,,(
1












   

    














t

r

dHaHaBtyxGdd
0 0

1

0

0

0
2

02

2
2

00

0,

),(
2

),()(),,,,(
1













  

   







0

1

0

000 ),()()0,,,,( dtHByxG
t

d . (1.43) 

1.3.2.2 Solution for the Foot 

The solution to the second problem (1.30) is quite similar: 

 ),,( tyxv   

  












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Thus the Green function is 
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Here m  are positive zero-points of 
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but n  are positive zero-points of 

 
b

x
xxg


 cot)( . 

1.3.2.3 Conjugation of Both Solutions 

Upon coupling equation (1.44) with the formula (1.31), we have a representation for the 

combination of the solution for the base and its derivative at the border between both parts - 

),(0 tyH . In order to determine a similar representation for ),( tyH , we substitute the 

expression (1.43) into (1.32). As the function ),(0 tyH  is dependent of ),( tyH , we plug the 
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latter into the former, and obtain non-homogeneous Volterra-Fredholm integral equation of the 

2nd kind at the interface between both parts of the L-shape sample: 

  

t b

dtyKtyHLdtytyH
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After finding solution to this integral equation, we can calculate the temperature distribution in 

the sample and find the rate of the temperature change. 

1.3.3 Formulation of Inverse Problem in 2D 

As it was mentioned before, the initial rate of temperature change is not known but sometimes 

must be determined. So we now address the inverse problem of determining that rate given the 

final data: the temperature distribution and the rate of change of the temperature at Tt  . This 

corresponds to solving the given equations backwards. We can transform this problem into a 

direct problem by introducing a new time variable 
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In terms of (1.45) – (1.47), the wave equations (1.29), (1.30) transform to 

 )
~

,,(~~2~~

~

~

~

~

00

0
2

2

0

2

2

0

2

20

2

0

2

0, tyxsva
y

v

x

v
a

t

v

t

v
r 




































 , (1.48) 

 )
~

,,(~~2~~

~

~

~

~
2

2

2

2

2
2

2

2

tyxsva
y

v

x

v
a

t

v

t

v
r 































 . (1.49) 

The boundary conditions do not change, but the initial conditions become 
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These direct problems can be solved as before. 

1.4 Using Parabolic Heat Conduction Equation to Describe IQ Process 

1.4.1 General Statement of 2D Problem 

In this section we’ll outline how to find the rate of change of the temperature when using a 

parabolic heat conduction equation to describe the temperature in the sample (see [17], [28] for 

more). Parabolic equations of heat conduction in 3D are given by 
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By using average value of the functions over the interval ],0[   and applying appropriate 

boundary conditions, (1.15), (1.16); (1.19), (1.20), equations (1.53) and (1.54) are transformed 

into 
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with two spatial variables. All the additional conditions are the same as in the preceding section. 

1.4.1.1 Exact Solution of 2D Problem 

Now we apply the technique used in Section 1.3 (see subsection 1.3.2) to derive the solutions 

to IBVPs (1.55) and (1.56). Thus the solution for the base has a form 
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We use the eigenfunctions and eigenvalues from Section 1.3 to expand the Green function: 
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But the function satisfying the stated problem for (1.56) assumes the following form: 
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Here the Green function is defined by 
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Using the same method as in the preceding section we obtain Volterra-Fredholm integral 

equation and then get the solution in the sample and the initial time-rate of the temperature 

change. 

1.5 Comparing the Rate of the Temperature 

When 
0

pv , 0

hv , the solutions of parabolic and hyperbolic heat conduction equations in the wall 

are found, we can differentiate these expressions with respect to t  and compare the rates of 

change of the temperatures in a small neighbourhood of the initial time 0t  by setting  
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The same expressions can be derived for the functions hv , 
pv . 
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2 Stationary Heat Transfer in System with Double Wall and 

Double Fins 

There have been numerous studies on systems with extended surfaces where the entire structure 

is made of the same material. In many research areas, e.g., on modern computers, more complex 

elements have to be employed. Usually these are structures of micrometre scales and smaller. 

Various techniques are presented for manipulating these microscale elements to control the 

surface roughness. In one of those (see [29], [35], [36]) a plain surface is roughened by adding 

densely distributed vertical silicon nanowires, and then covered by some kind of coating, e.g., 

fluorine carbon C4F8 (see Fig. 2.1). Such micro/nano structures are often developed to control 

and enhance the performance of boiling heat transfer. 

 
Fig. 2.1 Schematic of the fabrication processes for increasing hydrophilicity and converting 

hydrophilic/superhydrophilic surfaces into hydrophobic/superhydrophobic surfaces, [35] 

In this chapter and one that follows we consider heat conduction in these kind of 

assemblies (we’ll call those systems with a double wall and double fins). Let’s assume that the 

assembly is 2D with straight fins of rectangular profile, Fig. 2.2. 

 
Fig. 2.2 2D system with fins 

In the first part of this chapter we focus on the simplest case when the process is stationary, 

linear and homogeneous and the assembly has constant properties (these results are published 

in [6], [7] and [10]). The linear case analysis is followed by an analysis of stationary heat 

conduction in the given system, when there is boiling occurring at some sides of the fin ([6], 

[7]). Just like in the publications [6], [7], [10], [13] - [15], [20], [21], [24], [25] conservative 

averaging method for L-type domains is exploited to reduce the dimensions for the given 

problem. For the linear case an approximate analytical solution is constructed. In non-linear 

case we construct approximate solution using finite difference method and its modification for 

boundary conditions. 

Our mathematical models are new and quite a bit different than those where relatively 

simple fin assemblies are considered, e.g., [1], [13], [14], [25], [34], [41], [44], [52], [53], [54]. 



21 

2.1 Geometry and Mathematical Statement of the Original Problem 

Because of the geometrical and thermal symmetry of the model, we can divide it into several 

symmetrical parts. It is sufficient to describe and analyse the problem for only one of those L-

shaped parts (see Fig. 2.3). 

 
Fig. 2.3 L-type domain 

Such a domain can be represented as a finite union of canonical non-overlapping subdomains 

with appropriate conjugation conditions along the lines connecting two neighbour domains. We 

may therefore suppose that this L-shaped sample is made up from five rectangles (see Fig. 2.4) 

 
Fig. 2.4 Definition of geometrical parameters for the sample 

Let us denote the temperatures of the domains 
iC  by the symbols ),( yxVi

. The basic 

properties, such as thermal conductivity, heat transfer coefficient, are constant and denoted by 

ik , 
ih , respectively. For simplicity reasons we are going to assume that 

0kk   and 

.132 kkk   

As the process is stationary, the temperature fields are described by Laplace’s equations: 
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Besides the equations, the following boundary conditions are imposed. We have a heat flux at 

x : 
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As the geometry of interest has mirror symmetry along the lines 0y  and 0ly  , symmetry 

boundary conditions are applied: 
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The particular choice of boundary conditions to be used at the other sides of the system depends 

on the situation that is being modelled. 

Along the lines connecting two neighbour domains the continuity of temperature and heat flux 

are ensured by conjugation conditions: 
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As the upper layer is quite thinner than the substrate, we may assume that the temperature 

variations across the layer thickness are as small as to be negligible. In this way the temperature 

can be taken constant here. Hence from the continuity conditions (2.14), (2.24), (2.18) we get 

these approximate analytic expressions for calculating the temperatures in the upper layer: 

 ),0()(),( 022 yVyvyxV  , (2.26) 

 ),()(),( 11 bxVxvyxV  , (2.27) 

 ),()(),( 33 ylVyvyxV  . (2.28) 

Therefore only those steady-state conduction problems that are defined for the basic layer, need 

to be solved. So, we have Laplace’s equations (2.1), (2.2). They require boundary conditions on 

all sides of the new domain     0,0,,0|),( lylxyx   in which the solution is to be obtained. 

We’ll see to it in the next section. 

2.2 Approximate Solution to Heat Transfer with Heat Exchange 

Assuming that at the other sides there is heat exchange between the sample and its surroundings, 

third type boundary conditions have to be specified here: 

 03

1
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3 













 
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V
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V
, (2.29) 
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, (2.30) 
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




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, (2.31) 
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


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







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
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V
x

V
, (2.32) 

where 
1

11

1
k

h
 . 

To derive expressions for the boundary conditions in the new domain at lx  , by   and 0x  

let’s use the boundary conditions (2.29), (2.31), (2.32), appropriate conjugation conditions 

(2.18) and (2.19), (2.24) and (2.25), (2.14) and (2.15), and formulae (2.26) – (2.28). For example, 

at lx   we would have 
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or equivalently, 

 01

0 













lx

V
x

V
 ,  by ,0 , (2.33) 

but at lx  , by  : 

 01

0 













by

V
y

V
 ,  lx ,0 , (2.34) 
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0

0 













x

V
x

V
 ,  0, lby . (2.35) 

In addition, there are the conjugation conditions (2.12), (2.13) that state that the fin and the wall 

are in ideal thermal contact at the interface 0x . And, of course, the boundary conditions (2.6) 
– (2.8), (2.10). 

Using conservative averaging method we are going to transform the given mathematical 

model into a more usable form and construct an approximate solution for this problem. The 

main idea of the method is to replace the unknown function by a certain combination of 

functions depending on in which direction the behaviour of the solution is predictable. 

2.2.1 Solution for the Fin 

So, let’s use an exponential approximation in the y -direction for the 2D temperature field 

),( yxV  in the fin. Then the general form of the function is given by 

     )(1)(1)(),( 210 xfexfexfyxV yy    (2.36) 

with 
1 b  and three unknown functions )(xfi , 2,1,0i . To calculate these functions we’ll 

use all the conditions that are defined for ),( yxV . 

When imposing symmetry condition (2.8) on (2.36) we find that 

 )()( 12 xfxf  . 

So, (2.36) now becomes: 

    )(1cosh2)(),( 10 xfyxfyxV   . (2.37) 

Let’s introduce a new function )(xv  defined as integral average value of ),( yxV  over the 

interval ],0[ b : 

 

b

dyyxVxv
0

),()(  . (2.38) 

Now, integrating the expression (2.37) with respect to y , we can find the function )(1 xf : 

 
 1)1sinh(2

)()(
)( 0

1





xfxv
xf . (2.39) 

Let’s substitute (2.39) in (2.37): 

 
   

)(
1)1sinh(

cosh)1sinh(
)(

1)1sinh(

1cosh
),( 0 xf

y
xv

y
yxV












. (2.40) 

Applying the boundary condition (2.34) on (2.40) leads to 

       .0)1cosh()1sinh()1sinh()(1)1cosh()1sinh()( 1

00

1

0   xfxv  

Hence our calculation yields the formula 

 )()(0 xvxf   (2.41) 

with 

 
 

 )1sinh()1cosh()1sinh(

1)1cosh()1sinh(
1

0

1

0






b

b




 . (2.42) 

Consequently, 

 )()(),( yxvyxV  , (2.43) 

where 
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  

 )1sinh()1cosh()1sinh(
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


. (2.44) 

Thus the function ),( yxV  is reduced to the form (2.43) containing only one unknown )(xv . 

We are going to determine this function by requiring that it satisfies a certain differential 

equation. When integrating the partial differential equation (2.1) from 0  to b , we get 

 0
0

2

2











by

y
y

V

dx

vd
 . (2.45) 

The difference of the derivatives may be found via the boundary conditions (2.34) and (2.8), 
and the expression (2.43). Thereupon the differential equation becomes 

 0)(2

2

2

 xv
dx

vd
 , (2.46) 

where 

 )(1

0

2 b  . (2.47) 

We apply the operator (2.38) on (2.33) to get a boundary condition for (2.46): 

 0)()( 1

0  lvlv  . (2.48) 

The solution to the problem (2.46), (2.48) is hence found to be 

  xx eecxv    1)( , (2.49) 

where 

 
le 




 2

1

0

1

0




  (2.50) 

and 
1c  is an unknown constant. Therefore 

   )(),( 1 yeecyxV xx    . (2.51) 

2.2.2 Solution for the Base 

We act almost equally for the wall, using the same method of conservative averaging to describe 

the 2D temperature field ),(0 yxV  here. Let’s introduce exponential temperature distribution 

in the x –direction by 

     )(1)(1)(),( 2100 ygeygeygyxV dxdx  
 (2.52) 

with 1 d . Once again we use the properties of the function to solve for the unknown 

functions )(yg i
, 2,1,0i . 

Before we proceed, let’s obtain average value function by the integral: 

 




0

00 ),()(


dxyxVdyv . (2.53) 

After integrating (2.52) over the segment  0, , it gives 

   )()(2)()( 2

1

100 ygeygeygyv  . (2.54) 

As the function ),(0 yxV  satisfies the boundary condition (2.6), we apply it to (2.52) to find 

)(2 yg : 

 )()()( 1

2

02 ygeyQeyg   . (2.55) 

Then by combining (2.54) and (2.55) together, we have 
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  )()()(
2

1
)( 0001 yQyvygyg  . (2.56) 

Putting the last two expressions, (2.55) and (2.56), in formula (2.52) it becomes 
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0  . (2.57) 

Equation (2.57) still contains two unknown functions )(0 yg  and )(0 yv . Before these are 

determined, it is convenient to divide the base into two parts, the right part of which occupies 

the domain  0,x ,  0,lby , but the left one is for  0,x ,  by ,0 . 

The integration has to be performed on (2.2) over the interval  0,  to get 1D equation from 

which we would find )(0 yv : 
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. (2.58) 

2.2.2.1 Solution for the Right Part of the Base 

The function )(0 yg  for the right part of the base is obtained by imposing the boundary 

condition (2.35) on (2.57): 
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which yields  

 00000 )()()( byQayvyg   (2.59) 

with 
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Substituting (2.59) into the representation (2.57) yields 

      
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000  . (2.60) 

This shows that the function now depends only on one unknown – the function )(0 yv . We’ll 

find it by solving (2.58). Owing to the boundary condition (2.6) and (2.60), the equation for the 

right part of the wall results in an ordinary differential equation 

 )()( 00

2

2

0

2

yQyv
dy

vd
  , (2.61) 

where 
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2 ad  , 

  10
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0  bd  . 
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For simplicity reasons we henceforth assume the function )(0 yQ  to be constant, that is, 

00 )( QyQ  . 

Integrating (2.10), we obtain a boundary condition: 

 0)( 00  lv . (2.62) 

The solution of (2.61), (2.62) is 

  
2

0

020 )(



  Q

eecyv yy  
 (2.63) 

with 

 02

0

l
e

   

and 2c  as an unknown constant. 

2.2.2.2 Solution for the Left Part of the Base 

We are still left with two unknown functions, )(0 yg  and )(0 yv , to be determined for the 

temperature in the left part of the base. To get those we are going to use the conjugation 

conditions (2.12), (2.13). From the first of these conditions and the expression (2.51) for 

),( yxV  we get that 

   )(1)( 10 ycyg   . (2.64) 

But )(0 yv  is found by solving 1D equation (2.58) at first modifying it, so that it is valid for the 

left part of the base. As the functions ),(0 yxV , ),( yxV  satisfy (2.13) at 0x , from (2.13) 

and (2.51) it follows that 
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   )(11 ydc   . (2.65) 

So, now we can remove the term 

0

0







x

x
x

V
d



 in (2.58) by using (2.65) and the boundary condition 

(2.6). And the equation (2.58) becomes 

   012

0

2

)(1 dQydc
dy

vd
  , (2.66) 

which can be rewritten as 

  yBcdQBc
dy

vd
cosh210112

0

2

 , (2.67) 

where 

   01 1  dB , 

   1

1

02 1   bdB , 

    11

01 )1sinh()1cosh()1sinh(


 b , 

   1

1

00 )1cosh()1sinh(  b . 

In addition we get 1D boundary condition when integrating (2.7): 

 0)0(0 v . (2.68) 

The solution of the problem (2.67), (2.68) is then 
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     3

2

011

2

210
2

1
cosh)( cydQBcbyBcyv   , (2.69) 

with 3c  as integration constant. 

2.2.3 Conjugation of Solutions 

We have just found solution to the given problem. But we are still left with finding the unknown 

constants in the formulas (2.49), (2.63) and (2.69). To determine those, we need several 

requirements to be fulfilled. First, the temperatures ),( yxV , ),(0 yxV  must coincide at the 

contact point byx  ,0  between the fin and the right part of the wall. So, 

     002
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00021 )(1 bQ
Q

aeeacbc bb  
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. (2.70) 

Second, the mean temperature values in the wall have continuity at by  : 
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 (2.71) 

Third, we claim that the mean fluxes also coincide at by  : 

      .1sinh 012102 bdQbBbBceec bb     (2.72) 

All the constants can be found from the system (2.70), (2.71), and (2.72). Hence the approximate 

analytical solution to the 2D problem is uniquely determined by (2.51); (2.60) and (2.63); and 

(2.57) together with (2.64) and (2.69). 

2.2.4 Numerical Results 

To get some kind of notion if this model could describe the actual situation in computer cooling 

systems for L-shaped micro elements, we used the following geometrical parameters: 

 m 5 , 

 ml 1 , 

 mb 2105  , 

 ml 1

0 101  . 

But for the termophysical properties we chose: 

 127

1 1048.4  KmWh  , 

 114

0 10412.1  KmWk   (for silicon), 

 1

0 10  mKQ  . 

x\y 0 0.01 0.02 0.03 0.04 0.05 

1 9.81 9.80 9.80 9.80 9.79 9.78 
0.9 9.99 9.98 9.98 9.98 9.97 9.96 

0.8 10.34 10.34 10.34 10.34 10.33 10.32 

0.7 10.88 10.88 10.88 10.88 10.87 10.86 

0.6 11.60 11.60 11.60 11.60 11.59 11.58 

0.5 12.50 12.50 12.50 12.50 12.49 12.48 

0.4 13.58 13.58 13.58 13.58 13.57 13.56 

0.3 14.85 14.85 14.84 14.84 14.83 14.83 

0.2 16.29 16.29 16.29 16.29 16.28 16.27 

0.1 17.92 17.92 17.92 17.92 17.91 17.90 

0 19.74 19.74 19.73 19.73 19.72 19.72 

Table 2.1 Temperature distribution in the fin, in °C 
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x\y 0 0.01 0.02 0.03 0.04 0.05 

0 19.74 19.74 19.73 19.73 19.72 19.72 
-0.5 20.38 20.38 20.38 20.37 20.37 20.36 

-1 21.39 21.39 21.39 21.39 21.39 21.38 

-1.5 22.79 22.79 22.79 22.79 22.78 22.78 

-2 24.58 24.58 24.58 24.58 24.58 24.58 

-2.5 26.78 26.78 26.78 26.79 26.79 26.79 

-3 29.43 29.43 29.43 29.43 29.43 29.43 

-3.5 32.53 32.53 32.53 32.53 32.54 32.54 

-4 36.13 36.13 36.13 36.13 36.14 36.14 

-4.5 40.26 40.26 40.26 40.26 40.26 40.27 

-5 44.96 44.96 44.96 44.96 44.96 44.97 

Table 2.2 Temperature distribution in the left part of the base, in °C 

 

x\y 0.05 0.06 0.07 0.08 0.09 0.1 

0 19.72 19.72 19.72 19.72 19.72 19.72 
-0.5 20.36 20.36 20.37 20.37 20.37 20.37 

-1 21.38 21.38 21.38 21.38 21.39 21.39 

-1.5 22.78 22.78 22.78 22.79 22.79 22.79 

-2 24.58 24.58 24.58 24.58 24.58 24.58 

-2.5 26.79 26.79 26.79 26.79 26.79 26.79 

-3 29.43 29.43 29.43 29.44 29.44 29.44 

-3.5 32.54 32.54 32.54 32.54 32.54 32.54 

-4 36.14 36.14 36.14 36.14 36.14 36.14 

-4.5 40.27 40.27 40.27 40.27 40.27 40.27 

-5 44.97 44.97 44.97 44.97 44.97 44.97 

Table 2.3 Temperature distribution in the right part of the base, in °C 

We can conclude that the model describes the real-life situation quite precisely. 

2.3 Approximate Solution to Heat Transfer with Boiling 

In some applications the boiling is localized at certain sides of the given structure. In this 

section, this problem is illustrated by the case of non-linear boundary conditions. 

Like in the linear case, the temperature fields satisfy Laplace’s equations (2.1) – (2.5) 
under the same boundary conditions as imposed in Section 2.1, with the exception of non-linear 

conditions defined at the boundaries where there is boiling occurring. So, we have (2.6) that 

defines a heat flux at x , symmetry conditions (2.7) – (2.11) at 0y  and 0ly  , and, of 

course, conjugation conditions (2.12) – (2.25). 
For the problem with partial boiling we take the boundary conditions (2.29) and (2.32). 

Also, we add the following boundary conditions defined at 1 by : 
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But for full boiling we would have (2.73), (2.74) and 



30 

 03

1

1

3 













 


lx

mV
x

V
, (2.75) 

 0

0

2

1

1
2 


















x

mV
y

V
. (2.76) 

As it was mentioned in the publication [15], for the case of boiling the value of the index m  

should belong to the interval 








3

1
3;3 . It is usually taken to be equal to 3  or 

3

1
3 . 

The model is non-linear because of the boiling condition. Therefore, unlike it was done in the 

previous section, we are going to take a slightly different approach to solve this problem. 

In view of the previous assumption, that the temperature is uniform across the substrate 

thickness (see formulae (2.26) - (2.28)), we simplify the original problem. So, now in this new 

model the boundary conditions (2.73) - (2.76) transform to 
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2.3.1 Partial Boiling 

Let’s start with the case of partial boiling. First, conservative averaging method will be used 

for the given 2D problem to be transformed into 1D form. Second, an iterative method for 

approximately solving the non-linear equation for the fin will be presented. 

2.3.1.1 Solution for the Fin 

For the temperature in the fin we use the simplest approximation assuming that it is constant 

with respect to the argument y . We take 

 )(),( xvyxV  , (2.80) 

were )(xv  is the average value of ),( yxV , namely, (2.38). 

The function )(xv  is found from the 1D equation (2.45) for the fin. Using the boundary 

conditions (2.77) and (2.8), this equation becomes 

 0)(2

2

2

 xv
dx

vd m , (2.81) 

where 

 
1

0

2   . 

The boundary condition for (2.81) follows from integration of the condition (2.33) and is given 

by (2.48). 
Before continuing on our analysis of the model, let us rewrite the ordinary differential 

equation (2.81) as follows: 
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2

2

 mvv
dx

vd
 . (2.82) 

As the equation is non-linear, we are going to solve it using a finite difference scheme and 

iterations. So, let’s set up a regular grid 
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and replace the continuous problem by its discrete approximation:  
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Here 
k

iv  is a difference approximation to the value of )(xv  at the mesh point ix , but the 

superscript k  denotes the k -th iteration. 

In this case, we can rearrange the above equation (2.83) as (see [48]): 
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with coefficients 
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To obtain a second order approximation for the boundary condition (2.48) at first the function 

)(xv  is developed as a Taylor series to give 
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Making use of the differential equation (2.82), the second order derivative in (2.86) is replaced 

by 12 mvv . Then, with appropriate use of this and (2.83), the approximation of the condition 

(2.48) leads to the expression 
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or 
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with the coefficient 1
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Taking into account (2.88), for any given value of k  (2.84) constitutes a set of N  linear 

equations: 
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and 
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From (2.85) and (2.92) it can be seen that 01 k

i  for all Ni ,,1 . 

2.3.1.2 Solution for the Base 

As all the additional conditions for the base are the same as in the linear case, the solution for 

the wall is obtained in the same manner as in subsection 2.2.2. Thus, the solution of the 1D 

problem for the right part of the base is (2.63): 
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When deriving 1D equation for the left part of the wall, it is important to remember that for 

0x  the functions ),(0 yxV , ),( yxV  must fulfil the conjugation conditions (2.12), (2.13). 

So, from (2.12) we get that 

 )0()(0 vyg  ,  by ,0 . 

That means the function )(0 yg , when considering the left part of the wall, is constant and its 

value is equal to 

 kvyg 00 )(  . (2.93) 

Whereas from (2.13) we get 
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Inserting (2.90) into this expression, after taking 0i , we can write 
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From this expression we see that we should use iteration process to solve the equation for the 

left part of the wall here as well. Before we find this equation, let’s rewrite the last expression 

as 
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Here 
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Now, if we use conditions (2.95) and (2.6), the integrated equation (2.58) becomes 
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where 1
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kH  is defined by 
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So, the solution of the problem (2.96), (2.68) is: 
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. (2.98) 

In this case we get an expression that is dependent of the previous iteration. 

2.3.1.3 Conjugation of Solutions 

In order to ensure the continuity of the solution of the given problem in all the domain, it is 

necessary for the temperatures ),( yxV , ),(0 yxV  to coincide at the contact point 0x , by   

between the fin and the right part of the wall. So, from the assumption (2.80) and expressions 

(2.57), (2.59) and (2.63) we get: 

  bVv k ,000    
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Although the approximate solution to the problem has been found, there are still two constants 

left to be calculated, 
1c  and 

2c . It is required that 
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In accordance with (2.98), (2.97) and (2.99) , and (2.63), this system becomes 
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When solving this we find the constants and get that these are iteration-dependent, 
1
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kc , 
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The iteration algorithm can be organised in this way: at first we must choose some 

“initial” value for )(0 yv , that is 
0

0v , and find 
0

i  and constants 
0

1c , 
0

2c . After that we perform 

the first iteration in the fin by calculating 
1

0v  from (2.99). Knowing this we can use (2.90) to 

calculate 
1

iv . Afterwards we can proceed with the iteration process. 

To get solution of the 1D problem for the base we use formulae (2.98) and (2.63). In the 

end we get the 2D temperature in the system, which can be calculated directly from (2.80) for 

the fin and from (2.57) for the base. Here the function )(0 yg  for the left part of the base is 

found from the formulae (2.93) and (2.99), but for the right part of the wall we use (2.59). 

2.3.2 Full Boiling 

When finding solution to heat transfer with full boiling, the principle remains the same as in the 

previous subsection 2.3.1. 

2.3.2.1 Numerical Solution for the Fin 

Here the problem is formulated in the same way as in subsection 2.3.1.1, with the exception of 

boundary condition at lx  . Rewriting the boundary condition (2.78) as follows 
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and integrating the last term (see [40], Ch. 4.7): 
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leads to a non-linear 1D boundary condition 
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In the end we get the same difference scheme as in (2.90) - (2.92). But here the coefficient 
1

1

k  

(2.89) changes to 
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2.3.2.2 Numerical Solution for the Base 

As 1D equation for the base is likely to be non-linear, we’ll consider a discrete realization of 

the iterative process for the base as well and use iterative difference scheme. So, let’s define 

the following grid points: 
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The Right Part of the Base 

Upon applying the boundary condition (2.79) to (2.57) we get 
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We can rewrite this expression as 
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So the 1D equation (2.61) for the right part of the base becomes 
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And the boundary condition for the equation is (2.62). 
We discretize the equation (2.105) as  
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Using these notations 
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the difference scheme is equivalent to 
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When approximating the boundary condition (2.62) we use the same approach as in subsection 

2.3.1 to get 
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Combining (2.106) and (2.107) gives 

 
1

1,2,0

1

1,21,0







  k

j

k

j

k

j

k

j vv  , 1,,0  MMj  , (2.108) 
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The Left Part of the Base 

At first we find 1D equation using continuity condition (2.13) and the definition (2.80): 
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So, (2.58) becomes 
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For finding numerical approximation to the solution of the problem (2.110), (2.68) for the left 

side of the base, equation (2.110) is replaced by 
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It is easy to show that the expression (2.111) together with (2.112) gives this scheme for the left 

part of the base: 
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The expression uses the abbreviations 
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Conjugation of Solutions 

By examining the schemes (2.90), (2.108), (2.113) closely, we can see that they depend on the 

values of 
k

Mv
0,0 , 

kv0 . These two should be calculated for the average temperatures to fit the 

continuity conditions (2.100), (2.101). (2.100) yields the following equality 
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But (2.101) is estimated using the approximation 
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In order to evaluate the terms 
k

Mv 1,0 0 
, 

k

Mv 1,0 0 
 we use the equations (2.113), (2.108) when 

10  Mj  and 0Mj  , respectively. Substituting those and (2.114) in (2.115) we get 

 

 










































































k

M

k

M

y

y

k

M

mkx

x

k

k

M

y

y

k

M

k

M

y

M

y

v
h

h

v
h

h
a

h
d

h

a

hh

0

0

0

0

000

,0

1

,0

2,

2,

1

1,2

11

0

2

1

11

,0

1,

1,

1

,0

1

1,1,

2

1

2

1

2

1







 

 

  .1
2

1

2

2

1

,0

11

0

2

1

1

0

1,

1,

1

1

,00

1

0

1

,0

2,

2,

1

1,2

0

00

0

0














































k

M

mkx

x

k
y

y

k

M

k

Mk

M

y

y

k

M

bv
h

h
Q

h
d

h

bQ
Q

h

h









 

from which we find 
k

Mv
0,0 , giving the possibility to calculate 

kv0  from (2.114). Eventually, the 

numerical solution of the given problem can be obtained using the explicit schemes (2.90), 
(2.108), (2.113). 
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3 Transient Heat Transfer in System with Double Wall and 

Double Fins 

This chapter follows on directly from Chapter 2. It deals with the mathematical aspects of 

transient heat conduction for double wall with double fins in 2D geometry. The non-stationary 

heat conduction problem is examined, when assigning third type linear boundary conditions 

and partial boiling conditions on the fin’s surface. Conservative averaging and finite difference 

methods are applied to the given problem to construct numerical solution. 

3.1 Mathematical Statement of the Problem 

Using the same notations and assumptions as in Chapter 2, we are going to describe these non-

stationary temperature fields by the following partial differential equations: 
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where 
00

02

0 ~
~

c

k
a  , 

11

12

1 ~
~

c

k
a  . 0c , 1c  denote specific heat, but 0

~ , 
1

~  stand for the density. 

Here we use the same boundary conditions (2.6) – (2.11), (2.29) – (2.32) and ideal thermal 

contact conditions (2.12) – (2.25), as stated in Chapter 2. Beside these, initial conditions should 

be provided as well: 
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33 yxVyxV  .  (3.10) 

3.2 Approximate Solution of the Problem 

Just like we did in the previous chapter, we make the simplest approximation for the upper layer 

taking the temperature to be constant in the appropriate directions. This leads to the problem 

for the basic layer only which is represented by equations (3.1), (3.2), the initial conditions (3.6), 
(3.7), the boundary conditions 
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and the conjugation conditions 
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Using conservative averaging method for rectangular fins, [6], [7], [10], [13], [14], [25], [26], 

we are going to reduce the given 2D equations to 1D equations. To make a numerical 

approximation to the solution of the problem the finite difference method can be used. 

3.2.1 Reduction of the 2D Problem for the Fin 

First, we approximate the temperature in the fin by 
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and define the integral average value over the interval  b,0 : 
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The unknown functions ),( txf i
, 2,1,0i  are found in the same way as in Chapter 2 by applying 

appropriate conditions, namely, (3.13), (3.16), (3.21). This yields 
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Substitution of (3.22) – (3.24) into (3.20) gives 
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while the function ),( txv  is yet unknown. In order to find it, at first we use the definition (3.21) 

and integrate the equation (3.1): 

 
t

v

ay

V

x

v
by

y

















2

00

2

2

~
1

 . 

According to the boundary conditions (3.16), (3.13) and the expression (3.25), this can be 

written as 
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with 
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The boundary and the initial condition for (3.26) can also be obtained by simply applying the 

operator (3.21) to (3.15) and (3.6): 
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3.2.2 Reduction of the 2D Problem for the Base 

For temperature approximation in the wall we use the following representation: 
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From the definition (3.30) and the boundary condition (3.11) it is possible to calculate these 

functions: 
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Then the formula (3.29) reduces to 
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Before continuing, we divide the wall into two parts along the line by  . And integrate the 

main equation (3.2) with respect to x : 
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3.2.2.1 The Right Part of the Base 

Here we examine the part of the base that occupies the domain  0,x ,  0, lby . In order 

to compute ),(0 tyg  let us apply the boundary condition (3.17) to (3.33) to compute: 
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The expression (3.35) is plugged into the representation (3.33), so that we obtain 
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Then with appropriate use of the boundary conditions (3.17), (3.11) and the formula (3.36), the 

equation (3.34) for the right part of the wall takes the form 
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When integrating (3.14) over  0, , the boundary condition for (3.37) becomes 
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But the 1D initial condition 
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is obtained by integration of (3.7). 

3.2.2.2 The Left Part of the Base 

To find the functions ),(0 tyg  and ),(0 tyv  for the temperature in the left part of the base we 

use the conjugation conditions (3.18), (3.19). From (3.18) and (3.25) we derive 
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From (3.19) and (3.25) we derive 
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Using (3.41), the boundary condition (3.11), and proceeding in the same way we did in the 

derivation of (2.66) the equation (3.34) becomes  
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with the additional conditions to be satisfied: 
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and (3.39). 

In what follows, the function ),(0 tyQ  is taken to be constant. 

3.2.3 Construction of the Difference Scheme 

We are going to solve these 1D problems in a numerical way. For approximating the solution 

we’ll use finite-difference method discretizing the differential equations with three-point 

scheme with non-negative weights. The second order approximations of boundary conditions 

are obtained by using differential equations and their approximations (see [6], [7], [25], [26], 

and [48]). 

Let’s begin by introducing the grid points by 
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to discretize the domain in space. In addition, we consider 0  to discretize the domain in 

time  T,0 , defining a grid 
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But 
n

iv  and n

jv ,0  denote the values of numerical solutions at points ),( ni tx  and ),( nj ty , 

respectively. 

3.2.3.1 Difference Scheme for the Fin 

Hence for (3.26) we have the following discrete equation: 
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where 1,,1  Ni   and the weight 10  . We can rewrite the scheme (3.47) as 
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To get the second order approximation to the first derivative in the boundary condition (3.27), 
let’s use the differential equation (3.26) and its approximation (3.47) (see [6], [7], [25], [26], 

and [48]): 
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We can rewrite this as 
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Using new notations 
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(3.50) becomes 
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Let’s solve (3.48) for 1n
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and take 1 Ni : 
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Substituting (3.52) in this and rearranging terms yields 
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In the next step we take the expression (3.53) for 2 Ni  and replace 1
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Nv  by (3.54). So, in 
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Doing the same procedure for the indices 1,,3  Ni , it follows that 
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Having used the recurrence relations to find the coefficients, the values of 1n

iv  are easily 

obtained from (3.55). The only problem here is that we don’t know 1

0

nv  yet. We’ll find it in 

due course. 

3.2.3.2 Difference Scheme for the Right Part of the Base 

The differential equation for the right part of the base (3.37) is approximated by the scheme 
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where 1,,10  MMi   and 10 2  , which we rewrite as 
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When approximating the boundary condition (3.38), we have 
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On carrying through the similar analysis as for the fin, the difference scheme for the right part 

of the base can be expressed as 
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3.2.3.3 Difference Scheme for the Left Part of the Base 

The scheme for (3.42) is extended in this way to give 
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It depends on the values of 1

0
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nv . The latter can be computed from (3.55): 
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Substituting (3.59) into (3.58), the difference scheme results in 
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The boundary condition (3.43) has the following finite difference representation: 
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This can be rewritten as 
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After some substitutions and algebraic manipulations the difference scheme (3.60) for equation 

(3.42) becomes 
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3.2.3.4 Conjugation of Solutions 

We see that the schemes (3.55), (3.57) and (3.61) can only be used once the values of 1
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nv  

and 1
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Mv  are found. They could be obtained from these requirements: 
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But for the condition (3.63) we have 
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According to formulas (3.55), (3.57) and (3.61) when 0i , 0Mj   and 10  Mj , 

respectively, this is true: 
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Let us insert these into (3.65) and thereafter compute 
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It is easy to eliminate 
1

0

nv  from (3.66) with (3.64): 
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Solving this equation for 
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Substitution of this into the expression (3.64) results in 
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Then given the resulting values for 1

0

nv  and 1

,0 0

n

Mv , equations (3.55), (3.57), (3.61) together with 

approximations of the initial conditions (3.28), (3.39) that give the values for all nodes at the 

first time level, 

 00

ii uv  , Ni ,,0  , 

 0

,0

0

,0 jj uv  , Mj ,,0  , 

constitute the approximate solution of the given system in 1D. 

3.3 Numerical Results 

Here we used the same parameters as in Chapter 2. The geometrical parameters: 

 m 5 , 

 ml 1 , 

 mb 2105  , 
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 ml 1

0 101  . 

And the termophysical properties: 

 127

1 1048.4  KmWh  ,  

 114

0 10412.1  KmWk   (for silicon), 

 11

0 700  KJkgc  (for silicon), 

 315

0 1033.2~  mkg  (for silicon). 

Additional conditions: 

 3m , 

 1

0 10  mKQ  ,  

 Cxu  25)(0 , Cyu  35)(0

0 , 

 sT 8 . 

x\y 0 0.01 0.02 0.03 0.04 0.05 

1 9.80 9.80 9.80 9.79 9.79 9.78 
0.9 9.98 9.98 9.98 9.97 9.97 9.96 

0.8 10.34 10.34 10.34 10.33 10.33 10.32 

0.7 10.88 10.88 10.88 10.87 10.87 10.86 

0.6 11.60 11.60 11.60 11.59 11.59 11.58 

0.5 12.50 12.50 12.50 12.49 12.49 12.48 

0.4 13.58 13.58 13.58 13.57 13.57 13.56 

0.3 14.84 14.84 14.84 14.84 14.83 14.82 

0.2 16.29 16.29 16.29 16.28 16.28 16.27 

0.1 17.92 17.92 17.92 17.91 17.91 17.90 

0 19.73 19.73 19.73 19.73 19.72 19.71 

Table 3.1 Temperature distribution in the fin when t=7.5 s, in °C  

 

x\y 0 0.01 0.02 0.03 0.04 0.05 

0 19.73 19.73 19.73 19.73 19.72 19.71 
-0.5 20.37 20.37 20.37 20.37 20.37 20.36 

-1 21.39 21.39 21.39 21.38 21.38 21.38 

-1.5 22.78 22.78 22.78 22.78 22.78 22.78 

-2 24.57 24.57 24.57 24.57 24.57 24.57 

-2.5 26.78 26.78 26.78 26.78 26.78 26.78 

-3 29.42 29.42 29.42 29.42 29.43 29.43 

-3.5 32.53 32.53 32.53 32.53 32.53 32.54 

-4 36.12 36.12 36.13 36.13 36.13 36.14 

-4.5 40.25 40.25 40.25 40.26 40.26 40.27 

-5 44.95 44.95 44.95 44.96 44.96 44.96 

Table 3.2 Temperature distribution in the left part of the base when t=7.5 s, in °C  

 

x\y 0.05 0.06 0.07 0.08 0.09 0.1 

0 19.71 19.71 19.71 19.71 19.71 19.71 
-0.5 20.36 20.36 20.36 20.36 20.36 20.36 

-1 21.38 21.38 21.38 21.38 21.38 21.38 

-1.5 22.78 22.78 22.78 22.78 22.78 22.78 

-2 24.57 24.58 24.58 24.58 24.58 24.58 

-2.5 26.78 26.79 26.79 26.79 26.79 26.79 
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x\y 0.05 0.06 0.07 0.08 0.09 0.1 

-3 29.43 29.43 29.43 29.43 29.43 29.43 

-3.5 32.54 32.54 32.54 32.54 32.54 32.54 

-4 36.14 36.14 36.14 36.14 36.14 36.14 

-4.5 40.27 40.27 40.27 40.27 40.27 40.27 

-5 44.96 44.97 44.97 44.97 44.97 44.97 

Table 3.3 Temperature distribution in the right part of the base when t=7.5 s, in °C  

From the tables (see, Table 2.1 – Table 2.3, Table 3.1 – Table 3.3) we can see that at the end of the 

process there isn’t much difference between the transient case and the stationary one. Actually, 

from the numerical results we got in both cases we can conclude that the transient temperature 

tends to the stationary one. 

3.4 Approximate Solution of the Problem with Partial Boiling 

Just like in the stationary case, for partial boiling we have this boundary condition along the 

line 1 by : 
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But the rest of the formulation of the problem remains unchanged. 

3.4.1 Numerical Solution for the Fin 

Once again using conservative averaging method and approximating the function ),,( tyxV  by 

its mean value over the interval ],0[ b , namely,  

 ),(),,( txvtyxV  , 

we get the following 1D problem: 

 
t

v

a
txv

x

v m









2

0

2

2

2

~
1

),( , (3.71) 

 01

0 













lx

v
x

v
 , (3.72) 

 )()0,( 0 xuxv  . (3.73) 

As the problem is non-linear, for finding approximate solution to this problem we are 

going to use iterations. We use the same discrete grid as defined in subsection 3.2.3 by (3.44) - 

(3.46). 

So, the equation (3.71) is approximated by 
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When the process at the k-th time level has become stable, we don’t use the iteration number 

any more. Obviously, (3.74) can be rewritten as 
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The boundary condition (3.72) is handled much as was done in the linear case. That is, 
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Taking this all into account, an approximate description of the problem for the fin is given by 

the system of equations 
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And, of course, the initial values 

 00

ii uv  , Ni ,,0  . 

Once the values 1

0

nv  have been found (see subsection 3.4.2.3) the approximations 1n

iv  can be 

calculated by recursively applying formula (3.76). 

3.4.2 Numerical Solution for the Base 

The problem for the base in partial boiling is the same as in subsections 3.1, 3.2, when all the 

boundary conditions were linear. So, the formulae (3.29) – (3.43) do not change. We just make 

a slight modification by taking 1)(  y . 

3.4.2.1. Difference Scheme for the Right Part of the Base 

Let’s construct a discrete approximation of the differential equation for the right part of the 

wall: 
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and for the boundary condition (3.38): 
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In summary, the difference approximation to the problem for the right part of the base takes the 

form 
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3.4.2.2. Difference Scheme for the Left Part of the Base 

The equation for the left part of the wall reduces to the discrete equation  
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Whereas the discrete boundary condition is 
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The above discretization of the problem for the left part of the base produces 
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Thus, the approximation algorithm we have just described in this section produces a discrete 

solution to the given 1D continuous problem. 
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4 Mathematical Model for a Willow Flute 

The willow flute (Norwegian: seljefløyte, Finnish: pitkähuilu or pajupilli, Swedish: sälgflöjt or 

sälgpipa) is a Scandinavian folk instrument of the recorder family existing in two forms: an 

end-blown flute, often called a whistling flute, and a side-blown flute. This thesis focuses on 

the side-blown flute (see Fig. 4.1) which is between 40 and 80 centimetres in length. It consists 

of a tube with a transverse fipple mouthpiece that is constructed by putting a wood plug with a 

groove in one end of the tube, and cutting a sound hole (edged opening) a short distance away 

from the plug (see Fig. 4.2). The air flow is directed through a passageway across the edge 

creating a sound. 

  

Fig. 4.1 Two forms of willow flute: side-blown flute (left), [55], whistling flute (right), [57] 

“Similar, however not the same instruments were made by peasants in Poland, usually 

using a different method described in sources as "kręcenie" (that nowadays means literally 

"rolling", at that time possibly also "drilling-gouging"), "ukręcanie", "ulinianie" (nowadays 

literally meaning: "making moulted"). Such instruments are mentioned in folk poems or songs. 

There is also a Karelian variant of the willow flute that is made in Finnish Karelia and the 

Russian Republic of Karelia. It is made the same way as the willow flute, however instead of 

using willow bark; it is made out of birch bark. 

Modern willow flutes are usually made of plastic (PVC tubing is often used), but the 

original willow flutes were made from sections of bark cut from green willow branches. Willow 

flutes could only be made this way during the spring, and became unplayable when the bark 

dried out.”1 

In this chapter we propose a mathematical model for a Norwegian flute, [11]. We find the 

possible frequencies of the sound produced by the flute, analyse how the pitches can be altered 

when changing parameters that are used in the problem, and determine the energy distribution 

in the sound.  

 
Fig. 4.2 Longitudinal section of the flute, [56] 

As the flute has no finger holes, different pitches are produced by overblowing and by 

using a finger to cover, half-cover or uncover the hole at the far end of the tube. The seljefløyte 

plays tones in the harmonic series called the natural scale. When the end of the tube is left 

                                                           
1 Citation from [57]. 
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open, the flute produces one fundamental and its overtones, playing it with the end closed 

produces another harmonic scale. 

4.1 Problem Formulation 

In general the process is quite complex, as there are many things that should be taken into 

account. Although a non-linear equation could be considered when dealing with mass-transfer, 

we are going to use a linear one. Secondly, there is a question about hydrodynamic behaviour 

of the jet of air. Both experimental and theoretical results suggest (see, e.g., [50]) that the 

airstream tends to form vortices when impinging the edged opening. In the case of one 

dimensional plane wave, we are going to use a source function to describe this process. Thirdly, 

the mass flow in the passageway (see Fig. 4.3) can be approximated by a 3rd type boundary 

condition. 

The willow flute can be considered as a first approximation as a cylindrical tube open, 

closed or partially open at one end. To derive the mathematical model we are going to make 

the following assumptions: 

a) the diameter of the flute is small enough in comparison to its length and the wavelength 

of sound; 

b) the diameter of the cylinder is large enough so that the effects of viscosity can be 

neglected; 

c) the walls of the pipe are rigid, smooth and thermally insulating, so the enclosure has no 

effect on wave propagation. 

Assuming that the sound wave in the flute is a plane wave of sound, the vibration can be 

represented by  

 )(
2

2
2

2

2
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x

p
c

t

p





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


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where ),( txp  denotes the acoustic pressure, function )(xF  is some external source,   density 

of air ( 2041.1  3mkg ). Let’s suppose that there is no appreciable conduction of heat, 

therefore the behaviour of sound waves is adiabatic. So, B  is the adiabatic bulk modulus of air, 

which is approximately given by apB  . Here   ( 4.1 ) refers to the ratio of the specific 

heats of air at constant pressure and at constant volume, and ap  ( 325,101  Pa) is the ambient 

pressure. 

 
Fig. 4.3 Definition of geometrical parameters for the flute 

Let’s establish boundary and initial conditions. At 0x  we have the 3rd type boundary 

condition  

 0),0(),0( 1  tptpx  . (4.2) 

The boundary condition at the far end of the tube depends upon whether the end is open, closed 

or partially open. For an open end of a tube, the total pressure at the end must be approximately 

equal to atmospheric pressure. In other words, the acoustic pressure p  is zero:  

 0),( tlp . (4.3) 

At a closed end there is an antinode of pressure, as most of the sound is reflected:  

 0),( tlpx . (4.4) 
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In many research papers and works where wind instruments have been considered (see, e.g., 

[30], [33], [37], [47]), only these two types of boundary conditions are used. But one should 

bear in mind that the player can also close the end of the tube only halfway. In that case the 

Robin condition 

 0),(),( 2  tlptlpx   (4.5) 

must be applied (see [49]). The value of 2  depends on how much of the end is closed. 

Conditions (4.3) – (4.5) can be rewritten in the following form  

 0),(),()1(  tlhptlph x , 10  h . (4.6) 

But the initial conditions are  

 )()0,( xxp  , (4.7) 

 )()0,( xxpt  . (4.8) 

Nonhomogeneous equation (4.1) can be solved by using the method of separation of 

variables, namely, we look for a solution expressed in the following non-closed form:  

 
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nn tTxXtxp )()(),( , 

where )(xX n , ,3,2,1n  are the eigenfunctions of the associated homogeneous problem. Our 

boundary conditions (4.5), (4.6) imply that the eigenfunctions of the problem are 
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But the corresponding eigenvalues n  are roots of these transcendental equations: 
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To determine the functions )(tTn , we expand the source function and the initial conditions (4.7), 

(4.8) in a Fourier series. So )(tTn  will satisfy the initial value problem 

 nnnn FtTctT  )()( 22 , 

 nnT )0( , 

 nnT  )0( . 

Hence the solution of problem (4.1), (4.2), (4.6) – (4.8) is 
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with the Green’s function 
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4.2 Pitch and Frequency 

One of the fundamental properties of sound is its pitch. Pitch is a subjective attribute of sound 

related to the frequency of a sound wave. Increasing the frequency causes a rise in pitch. But 

when decreasing the frequency, the pitch of the note diminishes. 

The tone of the lowest frequency is known as the fundamental or first harmonic. All other 

possible pitches whose frequencies are integer multiples of the fundamental frequency are 

called the upper harmonics or overtones. 

Using relation (4.9), we obtain the frequencies of the vibration mode of the willow pipe: 
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If the parameter 1  is sufficiently large, the possible frequencies for the flute are close to 

harmonics: 

 
l

cn
f n

2
 , ,3,2,1n  (end open), 

 
l

cn
f n

4
 , ,5,3,1n  (end closed). 

As n  is dependent on l , we can change the pitch by changing the length of the tube. If 

the pipe has finger holes, one can also change the effective length of the instrument by opening 

different holes. By altering the pressure of the air blown into the instrument, we change the 

value of n , that is, we jump between solutions np , resulting in discrete differences in pitch. 

The pitch can also be changed by modifying h  in the boundary condition at lx  . 

4.3 Energy of Tones 

As the sound of the willow flute playing is relatively harmonic, the energy of the sound is 

concentrated at certain frequencies of vibration. The more dominant the certain pitch, the 

greater the concentration of energy at that frequency. A person playing this particular 

instrument can get different pitches through manipulation of the supplied air, which is, changing 

initial conditions. 

Formula for calculating the energy distribution is 

   

t l

xx

l

t dxxpxBpddxtxptE
0 00

2 ),(),(),(
2

1
)(  

. (4.10) 

If the initial conditions are defined as in Section 4.4, you can modify the distribution of energy 

between the fundamental and its overtones by changing  . 

4.4 Numerical Results 

All the results in the next section were obtained for the following parameter values: 

a) geometrical parameters (m) 

 656.0l , 01.01 l , 
5

R
H  , 

b) additional parameters 

 





2

2

11
R

H
p , 324,1011 p  

c) initial conditions 
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where d  is a positive constant: 

d) source function 

 
l

xl
xF




100
)( 1 . 

4.4.1 Open-end scale 

For the given parameters the fundamental for the open flute is Middle C or C4. The second 

harmonic is then an octave above the fundamental; the third harmonic is G5, and so on. 

 
Fig. 4.4 Notes of open-end C scale 

One can notice (see Table 4.1) that some of these frequencies differ from the frequencies of the 

notes on a piano in twelve-tone equal temperament (12-TET) with the 49th key, the fifth A 

(called A4), defined as 440 Hz. The frequency of the mth key in 12-TET can be found from the 

equation 

 12

49

2440





m

mf . 

Many people should be capable of detecting the difference if it is as little as 2 Hz. 

Note Piano Willow 

flute 

C4 261.63 261.63 
C5 523.25 523.27 
G5 783.99 784.90 
C6 1046.50 1046.53 
E6 1318.51 1308.16 
G6  1567.98 1569.80 

B♭6 1864.66 1831.43 

C7 2093.00 2093.06 

Table 4.1 Frequencies (Hz) of willow flute’s open-end C scale compared with frequencies of 12-TET scale 

4.4.2 Closed-end scale 

Closing the end drops the fundamental an octave below the pitch of the pipe that is open at the 

end. The next possible note, G4, has approximately three times the frequency of the 

fundamental C3; the next one, E5, five times, and so on. This means that only the odd harmonics 

are present. 

 
Fig. 4.5 Notes of closed-end C scale 
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Table 4.2 shows that the willow flute’s pitches do not quite conform to those produced by the 

piano. 

Note Piano 
Willow 

flute 

C3 130.81 130.82 
G4 392.00 392.45 
E5 659.26 654.08 

B♭5 932.33 915.72 

D6 1174.66 1177.35 
F♯6 1479.98 1438.98 
G♯6 1661.22 1700.61 
B6 1975.53 1962.25 

Table 4.2 Frequencies (Hz) of willow flute’s closed-end C scale compared with frequencies of 12-TET scale 

4.4.3 Intermediate scale 

We can get further effects, when covering the end hole only halfway. This implies that we 

should change the parameter h in the boundary condition (4.6). In this case the flute produces 

an intermediate set of pitches that fall in between those produced with the end closed and those 

when the end is open. 

 
Fig. 4.6 Approximate location of the willow flute’s pitches on a piano. C scale 

 Pitches produced with end closed 

 Pitches produced with end open 

 Pitches produced with end partially open 

In Fig. 4.8 and Table 4.3 you can see how the parameter h affects location of pitches played by 

the flute when leaving the end partially open. 

 

 
Fig. 4.7 Effect of the parameter h on the frequencies (Hz) of tones. C scale 
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h=0 130.82 392.45 654.08 915.72 1177.35 1438.98 1700.61 1962.25 

h=1/10 134.57 393.73 654.85 916.27 1177.78 1439.33 1700.91 1962.50 

h=2/10 138.97 395.33 655.82 916.96 1178.31 1439.77 1701.28 1962.83 

h=3/10 144.22 397.35 657.05 917.84 1179.00 1440.33 1701.76 1963.24 

h=4/10 150.58 400.01 658.68 919.01 1179.92 1441.09 1702.40 1963.79 

h=5/10 158.46 403.65 660.95 920.65 1181.20 1442.13 1703.28 1964.56 

h=6/10 168.51 408.92 664.30 923.09 1183.11 1443.70 1704.61 1965.72 

h=7/10 181.75 417.15 669.74 927.09 1186.26 1446.30 1706.82 1967.63 

h=8/10 199.92 431.49 679.98 934.84 1192.44 1451.43 1711.19 1971.44 

h=9/10 225.78 460.57 704.81 955.30 1209.50 1465.93 1723.75 1982.49 

h=1 261.63 523.27 784.90 1046.53 1308.16 1569.80 1831.43 2093.06 

Table 4.3 Effect of the parameter h on the frequencies (Hz) of tones. C scale 

 

 

 
Fig. 4.8 Approximate location of pitches when h = 0.5, 0.7, 0.9 

4.4.4 Energy of Tones 

Using formula (4.10) we can find the energies of different harmonics and discover which 

harmonic is dominant when changing the width of the interval over which the blow is delivered. 

The examples given below (Fig. 4.9, Fig. 4.10) show that it has a very considerable effect on the 

energy of the overtones. You must blow as softly as possible to produce the fundamental, as it 

is hard to get ( l ). Blow a little harder and you get the first overtone and so on. The harder 

you blow the higher harmonics you get to be dominant. This means that the presence of high 

overtones increases when decreasing ε. 

  



60 

  
Fig. 4.9 Energy distribution (J) across the frequencies when changing ε. Open end 

  

  
Fig. 4.10 Energy distribution (J) across the frequencies when changing ε. Closed end  
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