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Abstract

In the PhD thesis original mathematical models and their solutions for domains of complex
form are considered. Intensive steel quenching process for elements with fins is described by
3D hyperbolic and parabolic heat conduction equation. For deriving an analytical solution for
the problem, Green’s function method and its modification is used. For systems with double
wall and double fins that are employed in modern computers, 2D stationary and transient heat
transfer problems are given. Our approximate solution is constructed using conservative
averaging method, finite difference scheme and its modifications for boundary conditions. A
new mathematical model for a willow flute is presented which considers 1D linear wave
equation with a source function and third type boundary conditions.

Keywords: heat conduction equations, wave equation, Green’s function, conservative
averaging, finite difference method, method of separation of variables, L-shape sample, double
wall with double fins, willow flute
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Introduction

There are many practical applications and important uses for both single layer systems with
fins, and for systems with double wall and double fins. They are used as heat transfer equipment,
for intensive quenching etc. To describe these processes we formulate the problems in 3D and
2D, and present precise and numerical methods for obtaining solutions. The case of non-linear
boundary conditions is also considered. (See the first three chapters of the thesis.)

The last chapter is dedicated to constructing a mathematical model for a willow flute.
When constructing the model for this instrument one can stumble upon a few questions — is it
enough to use a linear wave equation, how to describe the airstream that impinges the edged
opening and mass flow in the passageway etc. These facts are considered in our model.

Together with co-authors the author has 8 publications on the subject of the PhD thesis.
The author has reported on 6 international and 3 local conferences.

Importance of the Subject

Intensive quenching processes that are considered in the first chapter of the thesis, have a
significant impact in heat treating industry. Originated by Dr. N. Kobasko, intensive water-
quenching technologies are broadly developed. Since his discovery, there have been numerous
experiments and studies conducted by Dr. Kobasko in cooperation with scientists from USA,
Ukraine, Mexico. One of those international joint research projects is “Database for cooling
capacities of various quenchants to be developed with the modern computational and
experimental techniques”, WSEAS.

Systems with double wall and double fins are used in modern computers’ cooling
systems. But here to help to remove excess heat from computer components, cooling with air
is replaced by liquid cooling. Based on boiling heat transfer in microchannel passages it
provides an efficient way to remove high heat flux in small areas. This results in a non-linear
problem, that we solve using different kind of mathematical methods.

Normally when describing musical instruments, the mathematical model contains a wave
equation that is solved by the method of separation of variables. In the thesis we use this method
when modelling a willow flute.

Aim of the Thesis
The broader goal of this thesis is to develop mathematical models for domains of complex form.
It includes the following objectives:

o describe intensive steel quenching for 3D L-shape sample by both hyperbolic and parabolic
heat conduction equation;

e propose a new approach for deriving solutions for stationary and transient problems in 2D
systems with double and double fin;

e develop a mathematical model for a willow flute.

Research Methodology

Analytical and numerical methods:

e conservative averaging method;

e Green’s function method and its modification for regular, non-canonical domains;
e separation of variables;

o finite difference method and its modification.



Scientific Novelty and Main Results

New mathematical models are proposed for intensive quenching when choosing hyperbolic
heat equation to describe the process in thin 3D L-shape samples. Exact solutions for
hyperbolic and parabolic heat equations are constructed.

Models for 2D stationary and transient problems for systems with double wall and double
fins are given. Both linear and nonlinear case (i.e., when assigning boiling conditions) has
been considered.

We propose a mathematical model for a Norwegian flute, using a linear wave equation. We
use a source function to describe the process where the airstream tends to form vortices
when impinging the edged opening. But the mass flow in the passageway is approximated
by 3" type boundary condition.
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1 Hyperbolic and Parabolic Heat Conduction Equations for
L-shape Samples

One of the most important heat treatment processes in metallurgy is quenching, where it is used
for metal hardening to improve mechanical properties of the material and produce a much
tougher and durable item with stronger structure. In this process metal parts are heated to the
required temperature and then cooled rapidly in air, oil, water, or another liquid. Many of these
methods for hardening steel parts are widely known as intensive quenching (1Q). Although
there have been various, often little-known, 1Q processes designed since the 1920’s, the 1Q
technology was greatly influenced and developed by Dr. N. Kobasko (Ukraine). In contrast
with conventional quenching, the 1Q process is conducted in highly agitated water or brine with
a cooling rate that is significantly faster than quenching in oil, air, etc., [2], [3], [38].

The mathematical models developed to conduct analysis on 1Q mostly include transient
heat conduction equations. But as 1Q is a process where the temperature of the sample is
changing very quickly, different kind of models should be considered. In [28] Prof. Buikis
proposed to describe the process by a hyperbolic heat conduction equation. As it has been
shown in several publications, these new mathematical models give good results and are
reasonable in the real-world situation context, e.g., [4], [18], [27], [28], etc.

According to the previous studies and research [5], [8], [9], [23], here we consider initial-
boundary value problems (IBVPs) for both parabolic and hyperbolic heat conduction equations
describing 1Q process for a thin L-shape sample. Using Green’s function method and
conservative averaging we construct analytical solutions of inverse and direct problems in the
form of an integral equation of the 2" kind. After that, if necessary, it is possible to compare
the rate of change of the temperatures in a small neighbourhood of the initial time t =0 after
determining solutions for these problems.

1.1 The physical problem

As it is well known, heat conduction in a solid body can be described by the well-known Fourier
equation

A _aver +~L, a’ :~L,

ot cp cp
where T denotes the temperature of the body with thermal conductivity k ,and f is the density
of heat sources, t is time, C specific heat capacity, p density of the body. And a?® is the
thermal diffusivity of the material. The equation can be derived by combining the law of
conservation of energy (the 1st law of thermodynamics)

~ Or
co—=-V-q+f 1.2
P q (1.2)

(1.1)

with Fourier’s law
q(x,t) =-kVT(x,1). (1.3)

In a number of physical situations equation (1.1) implies an arbitrarily high thermal propagation
speed. One of such cases is 1Q. When immersing the heated part into a quenchant, the initial
speed of propagation of the heat tends to infinity but actually is finite (see [39]). So Fourier’s
law at the initial time is no longer suited to describe heat propagation. In these cases (1.3) can
be replaced by a more general law proposed by Cattaneo and Vernotte:

T%(X,t)‘f-q(x,t) =-kVT(x,t) - (1.4)



Here z >0 is a material property and is called the relaxation time. Introducing equation (1.4)
into (1.2) leads us to a hyperbolic heat conduction equation

2
LoT 1T _yep +E(f +rij
k ot

c?a’ a’at
or
2
rngﬂ:azva +~i(f +rqj. (1.5)
ot ot cp ot

This so-called Telegrapher’s equation or a damped wave equation admits a finite speed of
propagation for T. Here C is the characteristic speed with C* = az/r. (More information on

hyperbolic heat equations can be found here: [51], [31], and [32].)
k, Cc, o aregenerally dependant on T and on the material too, but throughout the paper

we assume that these are constants.

1.2 Non-dimensionalization

Let’s image that we have an element with rectangular fins (see Fig. 1.1, from [17]) that is heated
and then cooled rapidly in a suitable fluid, e.g., water or brine. Since the figure can be divided
into several symmetrical L-shaped parts, we can use equations (1.1), (1.5) to describe 1Q process
for one part only and get the same results as if we had quenched the entire figure.

Fig. 1.1 Element with fins

In order to simplify the problem, we’ll use non-dimensionalization. The time and spatial
variables are non-dimensionalized by setting

X y z t

)’Z: 1A= 12: 1f: = ! .
B+R y B+R B+R T (1.6)
and
A L B Q
= 1|= lb: y (D = ’
B+R B+R B+R B+R

where 2B is the width of the fin, 2R the space between the fins, Q the height of the wall, A the
length of the wall, L the length of the fin.

If V°(x,y,2z,t) denotes the temperature distribution in the wall and the temperature
distribution in the fin is designed by V(X,y,z,t), then we can define dimensionless
temperatures V° (%, y,2,f) and V (%, ¥, 2,f) in terms of the new variables (1.6):

5 o VOV, D)=V, e s VXY, ZE)-V

V(R Y,2,0) = A 2 V(X VY,2,t)= & 1.7

(%,9.2,1) V. V. (%,9,2,1) V.-V, (1.7)

where V,, V,, are some characteristic environmental temperatures. Similarly, the new
temperatures of the surrounding medium are



(1.8)

®°(y, z,1), O(x,Y,zt) are the values of the temperature of the fluid at the left side of the wall,
and at the other sides of the sample.
And the new parameters are

30 _ h,(B+R)

2*
i _h@B+R) 5 hB+R) . 7 . a7

1 ﬁAO ﬂ = 1 TA = * 1 T

K, K, k T (B+R)?

The quantities a®, k, ¢ have the same meaning as in the preceding section, but 8 =h/k, h the
heat transfer coefficient.

1.3 Using Hyperbolic Heat Conduction Equation to Describe 1Q
Process

In this section we are going to consider equation (1.5) for describing 1Q process, and solve
IBVP using Green’s function method (see, e.g., [8], [9], [12], [16], [19], [22]). To modify the
method to obtain a closed-form Green’s function for so called regular non-canonical domain,
we are going to represent the original domain as a finite union of canonical sub-domains with
appropriate boundary conditions along the planes (or lines in 2D) connecting two neighbour
domains.

1.3.1 General Statement of 3D Problem for L-shape Sample
We may therefore suppose that the given L-shaped sample is made up from two rectangular
parallelepipeds (rectangles in 2D) G, and G, the base (sometimes called the wall) and the
foot:
G, ={(x.v,2)| x€[0,6] y€[01] z €[0, 0]},
G={xy.2)|xe[s,6+1]ye[0,b]ze0,m],
joined along the surface x =0 . By means of that we’ll be able to define IQ process for each

part separately. Thus, in terms of the dimensionless variables (1.6), (1.7) and dropping the hats,
the hyperbolic equations of heat conduction have the following form

rryoéazt—vzo+%:a2[6;/2° +(22y\/2° +a;Z\2°J+SO(x, y,z,1) (1.9)
and
Trnga_V:az(az\Z/ +62\2/ +62\2/J+S(x,y,z,t), (1.10)
ot ot OX oy oz
where

1 of
So==—| f(X,y,2,t)+7,,—(X,y,2,t) |,
: Ep((y )+ oo o (6 )j

S :é(f(x, y,z,t)+7, q(x, y,z,t)).
cp ot

If there are no sources of heat, then S, S, =0.

To state the IBVP for determining the temperature of the sample, we need to formulate
both boundary and initial conditions. Along the planes y =0, y =1 symmetry conditions must
be applied:

10



oV oV

— =0,=— -o, (1.11)
ay y=0 y=1

oV

—1 =0. 1.12
v, (1.12)

But at the other sides of the sample a heat exchange takes place with the surrounding medium,
whose temperature is given by (1.8). Thus

a\/O 0
— /. — =0,

Pl AL ®)j o0 (1.13)

oV

—°+,B°(VO—®)) =0, ye(bl), (1.14)

OX s

ov, o

——2_p°V,-© =0,

5 AW )j (1.15)

oV

— AW —®)} -0 (1.16)
For the foot we have mixed boundary conditions as well:

oV

—+ 4V -0 =0, _

6)( ﬂ( ) x=5+I (1 17)

ov

—+pV-0)] =0, (1.18)

oy

oV

——-pV-06 =0, _

p A( ) B (1.19)

oV

E+ﬂ(V—®)J =0. (1.20)

For the future we will set the dimensionless environmental temperature ©(x,y, z,t) to be zero
for all x,y,z, with the exception at x =0 where ©(0,y,z,t) =1.

It is also possible to consider non-linear boundary conditions, see [4]. In that case
solutions of hyperbolic and parabolic equations differ essentially.

As the base is in ideal thermal contact with the foot, continuity of temperature and heat
flux are imposed at the interface x =0 between the adjacent parts of the sample:

0|x:5—0 :V|x:5+0’ (1-21)
oV oV

= =p'— (1.22)
aX x=5-0 8X X=0+0

Let us also establish the initial conditions:

Vol =Vo (6. ,2), V| =V°(x.Y,2), (1.23)
YA 0 oV 0

— =Wo(xy.2), —| =W (x,2). (1.24)
ot t=0 ’ ot t=0

In 1Q conditions (1.24) are unrealistic: the initial time-rate of the temperature change can’t
be measured experimentally. It should be calculated to compare it with critical cooling rate to
predict heat transfer modes, as the initial cooling rate can be in different ranges (see [39]).
Therefore, we can assume that the temperature distribution and the speed of temperature change
are given at the end of the process:

11



V0|I=T :VOT (X1 y1 Z)v V|t:-|- :VT(X! y, Z), (125)

oV, T oV T
T A =W, (X1 y,Z), Ty =W (X,y,Z)_ (1.26)
ot t=T " at t=T
Putting together the partial differential equations, the boundary, and the initial conditions,
we have a direct problem, or an inverse problem when using final conditions. Since finding
solution of 3D problem is quite similar as in 2D case, we will consider only the latter.

1.3.2 Formulation of Direct Problem in 2D

Let’s suppose the domains G,, G are thin in the z—direction (for 2D model), so @ <<1,
w<<b, w<<d. Assuming that the temperature is almost constant in this direction, it allows
us to use the simplest form of the conservative averaging method — approximation by a constant.
Hence, to reduce the 3D problems (1.9), (1.10) considered before to 2D ones, we will introduce
average values of all the functions used before over the interval [0, ]. For example,

Vo (X, Y,t) :lJ.VO(x, y,z,t)dz, (1.27)
@ 0
1 @

V(X y,t) == [V (xy,2,t)dz. (1.28)
2 0

We then use these approximations and apply the boundary conditions (1.15), (1.16), and (1.19),
(1.20) to obtain two 2D hyperbolic heat-conduction equations

2 2 2 0
r Ll Do e TV OV | 0228 g (xy,0), (1.29)
Toot ot OX oy 10}
oV v (3 o) ,28
7T —+—=a°| —+—|—-a"——=v+s(x,vy,t).
Tt (&2 v > (X, y,1) (1.30)

Additionally, we will use the same boundary and initial conditions as formulated in the
statement of the original problem in the previous subsection.

Using the continuity conditions (1.21), (1.22), the boundary condition for the right-hand
side border of the base can be written in the form

ov
(a_o+ﬂovoj :IBOHO(y7t)!
X x=0-0
0 y e (b1]
Ho(y, 1) =4( 1 ov ) : (1.31)
——+V
pox ) velob]
At the left-hand side border of the foot we get 3™ type boundary condition as well:
ov
A ﬂvj = :BH (yl t) )
(ax x=0+0
1 ov
H(y,t)=[—o—°—v0 .yelob] (1.32)
’B 6x X=6-0
But the initial conditions are
ov
woo=w500n) Sl —uiouy),
t=0

12



ov
Vo, =v'(xy) = =wl(xy).
5,4 9
1.3.2.1 Solution for the Base

The problem for (1.29) can be solved by transforming the problem with the non-homogeneous
boundary condition (1.31) into another one with zero boundary conditions. To do that, we
assume a solution of the form (see [46])

VO (X’ y1t) = VD,l(X’ y1t) + VO,Z (X’ y1t) !

where
Bx—1-pB% 1+ By x 0
X%y, t) =~ 0 0 0 50 0 0 0 0 50 Ho (Y.t
Yor V) = s e g popgs” oY
= A, (X) + B, (X)H, (y,t) (1.33)

satisfies the non-homogeneous boundary condition. Substituting (1.33) into the original
problem, we get the transformed problem in v, ,(x,y,t):

o%v ov o%v o%v 243°
Tro atg’?_ + ai’Z :az( aXZ’Z + ayZVZJ_az g V0,2+¢0(X1 y,t), (1.34)
o%v oV o%v 23°
B0 =8 (00—t et Py,

with these boundary conditions:

ov ov
[ a())(,z _ﬁgvo,zJ =0 ( aiz +ﬂovo,zj ‘ =0, (1.35)
x=0 x=06-0
ov ov
0,2 — 0 0,2 — 01 (136)
YN |, N |,
and the initial conditions:
Vool o = 206 ) = V5 (%, ¥) =V (X, ¥), (1.37)
8VOZ 0 0,1
’ :WO(Xv y) =W (x,y,2)- ’ (1.38)
a =0 at t=0

The solution of the new problem (1.34) — (1.38) can be written as
VO,2 (X! y’t) = \72,1(X1 y!t) + \72,2 (X1 yvt) + \72,3 (X, y’t) =

1 0 ‘
=( +5Jz% xy.t)+Z, (% y,t)+jZ¢oll (X, y,t—2)dz. (1.39)
0

Tro
Here v, , (x,y,t) is the solution of (1.34) at @, = ¢, =0; v,, (x,y,t) is the solution of (1.34) at
Wo=6¢,=0; V,,(x,y,t) is the solution of (1.34) at ¢, =, =0. The function ¢, is defined
1
by "y :T_¢O (X, Y,1).

r,0
First, let’s develop the function z,, (x,y,t). Based on the given boundary conditions we

expand the solution as

7,,069.0 = 3 ST, 0X, (9Y, (1),

i=1 j=0

13



where the eigenfunctions have the following expressions

. (A A _
Xi(x):sln(gx+l9ij, tan(Si)zgg, Y; (y) =cos(jzy)
with normal squares

i 1 .
sin 4 (:OS(ﬂ,i +28 )} , N, = IYJZ (v)dv = {E 1=12,...
A 1 i

M, =j><f(§>d4=§[1—

Y iy :
But the eigenvalues are (g'j , (jz)?, where 4, are positive zero-points of

cotx L BBt
F(x) = cot x (,B(?+ﬂ°)5(x < J

The functions T, (t) can be found in the form

T; () =exp (_ > t J(a‘ij @(77ijt)+ bij SL”(77Ut))
r,0
with
sinh(?ijt) Vi = \/1_42},07”‘
Sﬂ(ﬁjt): t Vi =0

1
27, ,
sin(7ijt) _ 1 2 1
Yij —Z\/ Teolij —
1
y. =—— [1—4r ..
ZTr'O r,07/|j
1
27,

COSh(77ijt) an
%(ﬁjt): 1 7i =0
cos(yijt) 7, = W

and

Vi = a{[%)z +(jx) + Zf)o}

Here a; and b, are undetermined constants. Applying the initial condition v,,(x,y,0) =0

leads to a; =0. But %Vz,z(X’ y,0) =w,(X,y) yields

23D ZX N0 =pon. 7, =7 7
Solving for b; gives
1 1 ) 1
by =i, v =—"[d (& 0)X ()Y, )do.
7 MiN;5 "%

Finally, we have
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Vo (Y. ) =2, (% ,0) = [dS [ Gy (X, &, y,0, o (¢ v)dw (1.40)

with the Green function given by

GO(X!é,’ y’U!t) = exp(

> 1 .
J 7 MN, i i(6)Y; (Y)Y, _(7i,-t).

From the given definition (1.39) and (1.40) we see that

oy = jdq[

Vys(Xy,1) = jdz
0 0

r0

+EJG (x,<,y,0,t)p,(&,v)do, (1.41)

(&,v,0)dv. (1.42)

Therefore the solution of (1.34) - (1.38) is
Vo (X y,t) =

) 1 1
zldgl[%
+Td§jGo(X,é, y,0,t)wS (&, v)dv
+jdzfdgj 1

xa wdaf

;Jeo(x,:, Y00\ (¢0) - A () o

Go(x.¢, Y, 0, t =) Ay(g)dv

rO

+ J.dé/J.aGo (X1é/’ y’U'O)AO(é/)dU

Oty o'—.-—« O'-—.'-’ O'—-.Qn Ot

o
o
——» ©

( 1 +§JGO(X,§, y,0,1)By({)H, (v,0)dov

0 r,0

d;je (x,¢, Y, ut){B (;)—H (v, 0)}du

2

0 — Hy (v, z)+2H (v, l):|dU

2 28° HO(U,z)}dU
®

dgjaeo(x,g, y,0,0)B, ({)H, (v,)dv. (1.43)

dzjd j
dz]:d j

Gy (x. ¢, y,0,t-1)B, (C){

r0

Go (%, y,v,t—l)Bo(é)[—a

r,O

+

1.3.2.2 Solution for the Foot
The solution to the second problem (1.30) is quite similar:
V(X y,t) =

S+l

= jd§j£—+—jG(x &yt (&m)dn

15



5+l

+jdgje(x§ Y. W (£ m)dn

S+l

+jdfj dgj G(x, &, y,mt—7)s(&,n,7)d7

- | déf[—+aj6(x &Y. DAEH (7.0)d7n

5+l

- j déje(x &Y., t)A(é)—(ﬂ 0)dn

—Idrfdéf G(Xéynt—f)A(é){ S et )}

S+l

+ j dgj G(x,& Y,m0)AH (7,t)d7, (1.44)

where
X—0)—-1-—
Ay = BE=9)-1- 7
28+ ﬁ |
Thus the Green function is

G(x.&, ynt)—em(——)iiyiMlN X ()X o ()Y, (Y)Y, ()sin(7,ut).

g

Functions sin(7,,t), 7 . have the same meaning as in the previous subsection, only
2 2
Vin = 3_2 ﬂ_m + V_nj +2—ﬂ
| b )
Ko =sin{ 42 (c=0) 9. ), tan(0,) =5 v, ()= oos{ 22y |
M =l{1—smﬂm cos(u,, +2l9m)}; N =9[1+S'n2‘/n].

"2 J78
Here u,, are positive zero-points of

f(x)=cotx—i(x—ﬁj,
201 X

but v, are positive zero-points of

and

g(x):cotx—i.

1.3.2.3 Conjugation of Both Solutions

Upon coupling equation (1.44) with the formula (1.31), we have a representation for the
combination of the solution for the base and its derivative at the border between both parts -

H,(y,t). In order to determine a similar representation for H(y,t), we substitute the
expression (1.43) into (1.32). As the function H,(y,t) is dependent of H(y,t), we plug the

16



latter into the former, and obtain non-homogeneous Volterra-Fredholm integral equation of the
2" kind at the interface between both parts of the L-shape sample:

H,(y,t) =®0(y,t)—j.dzi L(H,, y,0,t,0)K,(y,0,t,0))dv.

After finding solution to this integral equation, we can calculate the temperature distribution in
the sample and find the rate of the temperature change.

1.3.3 Formulation of Inverse Problem in 2D

As it was mentioned before, the initial rate of temperature change is not known but sometimes
must be determined. So we now address the inverse problem of determining that rate given the
final data: the temperature distribution and the rate of change of the temperature at t =T . This
corresponds to solving the given equations backwards. We can transform this problem into a
direct problem by introducing a new time variable

t=T-t, (1.45)
so that

0°(xy,t)=u’(xy,T-1), (1.46)

aex,y,t)=u’(x,y,T-t). (1.47)

In terms of (1.45) — (1.47), the wave equations (1.29), (1.30) transform to

25 vi 27 25 0

Tr08~v20 —19=a2 0 \/20+6 V2° -a’ 25 V, +5,(x, v, 1), (1.48)

" ot ot OX oy )

O N _L[oW o)) ,2B- -~ ~

—-——==a"| —+—|-a"—=V+5(x,y,t).
i [axz Y . (x,y,t) (1.49)

The boundary conditions do not change, but the initial conditions become

Voloo =Vo (X, Y), V|-, =V (x,Y), (1.50)
6\70| aVo| T

= = =-W, (X,Y), (1.51)
ot |f=o ot |t=T ’
oV ov T
= = =W (). 1.52
Ot e otf ( )

These direct problems can be solved as before.

1.4 Using Parabolic Heat Conduction Equation to Describe IQ Process

1.4.1 General Statement of 2D Problem

In this section we’ll outline how to find the rate of change of the temperature when using a
parabolic heat conduction equation to describe the temperature in the sample (see [17], [28] for
more). Parabolic equations of heat conduction in 3D are given by

Ny _ 42 0%V, N %V, . 0%V,
ot ox*  oy* ozt

J+So(x, y,Z,1), (1.53)

S, :éf(x, Yy, Z,t)
Cp

and
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N _ .o 62V+52V+82V LS(X,y,2.1), (1.54)
ot ox*  oy® ozt '
S:,,if(x,y,z,t).

Cp

By using average value of the functions over the interval [0,®] and applying appropriate
boundary conditions, (1.15), (1.16); (1.19), (1.20), equations (1.53) and (1.54) are transformed

into
N — a2 82v0+62vo -a’® 2ﬁov +5,(X, y,1) (1.55)
8‘[ axz ayz a) 0 0 El il 1 .
N ,[o*v o%v , 2[8
—=a’| —+— |-a’ == v+s(xy,t 1.56
(24,20 e .

with two spatial variables. All the additional conditions are the same as in the preceding section.

1.4.1.1 Exact Solution of 2D Problem

Now we apply the technique used in Section 1.3 (see subsection 1.3.2) to derive the solutions
to IBVPs (1.55) and (1.56). Thus the solution for the base has a form

Vo (X, y,1) =

S LS CACTATN DBy N )
+jdlid§j‘Go(X’§' y,0,t=1)s,(J,v,1)dov

—-a’ Z—’f:)j;dz:l{dgl‘Go(x,é’, y,0,t—1) A, ()do

+]d[Gy(x. £,y 00) A (§)dv

-[d¢ j Go (%.£, ¥,0,1)B, (O)H, (v.0)dv

0

—Idzjdng (x.¢,y,0,t—1)B, ((){ H,(v,1)—a’ 822 o (v, 2 28° HO(U,Z):|dU
ov 1)

+Id§IGO(x,§, y,0,0)B, (&)H, (v,t)dv, (1.57)
where

- B'x-1-p8% B _ 1+ BIx 0
A Yy Y Sy

We use the eigenfunctions and eigenvalues from Section 1.3 to expand the Green function:

).

But the function satisfying the stated problem for (1.56) assumes the following form:
v(x,y,t) =
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S+l

= défG(Xé Y.,V (£, m)d7

S5+l

+jdff déIG(x £y t=0)s(&m,7)dn

- j déIG(X &Y. DAE)H (7.0)dn

—fdrfdéfG(Xéynt T)A(cf){ 2‘;72 ZZﬁH(c:r)}

+ j dgj G(x.¢, Y. 10 AGH (7.)dn (1.58)
with
_p(x=0)-1-A
AL = 28+ B2 p-

Here the Green function is defined by

GG &, Y, m,t) = ZZM N 2 (X (E)Y, (NY, (17) X0 (= 7).

m=1 n=1

Using the same method as in the preceding section we obtain Volterra-Fredholm integral
equation and then get the solution in the sample and the initial time-rate of the temperature
change.

1.5 Comparing the Rate of the Temperature

When v‘;, vp , the solutions of parabolic and hyperbolic heat conduction equations in the wall

are found, we can differentiate these expressions with respect to t and compare the rates of
change of the temperatures in a small neighbourhood of the initial time t =0 by setting

vy OV,

ot ot L
where

vy _ o]

at |

t=¢ F=T —&

The same expressions can be derived for the functions v, , v .
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2 Stationary Heat Transfer in System with Double Wall and
Double Fins

There have been numerous studies on systems with extended surfaces where the entire structure
is made of the same material. In many research areas, e.g., on modern computers, more complex
elements have to be employed. Usually these are structures of micrometre scales and smaller.
Various techniques are presented for manipulating these microscale elements to control the
surface roughness. In one of those (see [29], [35], [36]) a plain surface is roughened by adding
densely distributed vertical silicon nanowires, and then covered by some kind of coating, e.g.,
fluorine carbon C4Fg (see Fig. 2.1). Such micro/nano structures are often developed to control
and enhance the performance of boiling heat transfer.

Top-down Si etching " ~

™

Wettability
conversion

=

Increasing
wettability

\ siicon ||| siNws \/ CaFs

Fig. 2.1 Schematic of the fabrication processes for increasing hydrophilicity and converting
hydrophilic/superhydrophilic surfaces into hydrophobic/superhydrophobic surfaces, [35]

In this chapter and one that follows we consider heat conduction in these kind of
assemblies (we’ll call those systems with a double wall and double fins). Let’s assume that the
assembly is 2D with straight fins of rectangular profile, Fig. 2.2.

Fig. 2.2 2D system with fins

In the first part of this chapter we focus on the simplest case when the process is stationary,
linear and homogeneous and the assembly has constant properties (these results are published
in [6], [7] and [10]). The linear case analysis is followed by an analysis of stationary heat
conduction in the given system, when there is boiling occurring at some sides of the fin ([6],
[71). Just like in the publications [6], [7], [10], [13] - [15], [20], [21], [24], [25] conservative
averaging method for L-type domains is exploited to reduce the dimensions for the given
problem. For the linear case an approximate analytical solution is constructed. In non-linear
case we construct approximate solution using finite difference method and its modification for
boundary conditions.

Our mathematical models are new and quite a bit different than those where relatively
simple fin assemblies are considered, e.g., [1], [13], [14], [25], [34], [41], [44], [52], [53], [54].
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2.1 Geometry and Mathematical Statement of the Original Problem

Because of the geometrical and thermal symmetry of the model, we can divide it into several
symmetrical parts. It is sufficient to describe and analyse the problem for only one of those L-

shaped parts (see Fig. 2.3).

Fig. 2.3 L-type domain

Such a domain can be represented as a finite union of canonical non-overlapping subdomains
with appropriate conjugation conditions along the lines connecting two neighbour domains. We
may therefore suppose that this L-shaped sample is made up from five rectangles (see Fig. 2.4)

X

&
I+& |
/
c G C
4 -
gO v y
0 b b+6‘l lo
Gy
-0

Fig. 2.4 Definition of geometrical parameters for the sample

Let us denote the temperatures of the domains C; by the symbols v, (x, y) . The basic
properties, such as thermal conductivity, heat transfer coefficient, are constant and denoted by

k;, h,, respectively. For simplicity reasons we are going to assume that k =k, and
k, =k, =k;.
As the process is stationary, the temperature fields are described by Laplace’s equations:
Voo
82+62=0,X,YGC, (2.1)
ox° oy
oV, oV
20+ 20:0’ X,y €Cy, (2.2)
OX oy
oV, oV
aX21 + 8y21 =O’ X, yecl’ (23)
oV, o3V
22+ 22=O’X’y602’ (2.4)
OX oy
oV, 0%,
PV + ¥ =0, x,yeC,. (2.5)

Besides the equations, the following boundary conditions are imposed. We have a heat flux at
X=-0"
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o,

x = _Qo (y) .

X=—06

(2.6)

As the geometry of interest has mirror symmetry along the lines y=0 and y =1,, symmetry

boundary conditions are applied:
%
oy
oV
El
%
oy
oV,
oy
ov,
oy

:01

y=0

=0,

y=0

201

y=0

=0,

y=ly

(2.7)

(2.11)

The particular choice of boundary conditions to be used at the other sides of the system depends

on the situation that is being modelled.

Along the lines connecting two neighbour domains the continuity of temperature and heat flux

are ensured by conjugation conditions:

V0|x:—0 :V|x:+0’

oV, oV

X |y o ) & x:+01
V0|x:—0 :V2|x:+0 !

No| kY

X |yq ko OX x=+0,
V2 X=£0—0 Vi X=£4+0"'
v, A

X X=69—0 X X=£0+0
V|x:|—0 :V3|x=|+o’

v kv

OX |10 - ko Ox x:l+0,
V1|x:|—0 :V3|x:l+0’

G A

2 P o x:l+0’
V|y=b70 :V2|y=b+o’

CY A
Flyoo Ko O |y
V|y:b—0 :V1|y:b+0’

22

(2.12)
(2.13)
(2.14)
(2.15)
(2.16)
(2.17)
(2.18)
(2.19)
(2.20)
(2.21)
(2.22)

(2.23)

(2.24)



Nk ooV

ay y=b-0 k ay

As the upper layer is quite thinner than the substrate, we may assume that the temperature
variations across the layer thickness are as small as to be negligible. In this way the temperature

can be taken constant here. Hence from the continuity conditions (2.14), (2.24), (2.18) we get
these approximate analytic expressions for calculating the temperatures in the upper layer:

(2.25)

y=b+0

VL (%, y) =V, (y) =V,(0,Y), (2.26)
Vi(%, y) =v,(X) =V (x,b), (2.27)
V(X y) =Vvs(y) =V(l,y). (2.28)

Therefore only those steady-state conduction problems that are defined for the basic layer, need
to be solved. So, we have Laplace’s equations (2.1), (2.2). They require boundary conditions on
all sides of the new domain {(x, y)|x<(0,1),y (0,1,)} in which the solution is to be obtained.

We’ll see to it in the next section.

2.2 Approximate Solution to Heat Transfer with Heat Exchange

Assuming that at the other sides there is heat exchange between the sample and its surroundings,
third type boundary conditions have to be specified here:

N,

V =0, 2.29
aX ﬂl jx_I+g ( )
oV
_3+'811V3J =0, (2.30)
ay y=b+g;
oV, 1
— + 1V1j :01 (231)
ay y=b+&
oV, 1
ox +ﬁ1v2] v (2.32)

where g = ﬁ

To derive expressions for the boundary conditions in the new domainat x=1, y=b and x=0

let’s use the boundary conditions (2.29), (2.31), (2.32), appropriate conjugation conditions
(2.18)and (2.19),(2.24)and (2.25), (2.14) and (2.15), and formulae (2.26) — (2.28). For example,

at x =1 we would have
0= %4_ 'V, i(k &+th
OX s k 15)

or equivalently,

x=I

oV
[_+ﬂgv =0, ye(0,b), (2.33)
OX o
butat x=1, y=b:
oV
[—+/33v =0, xe(0,1), (2.34)
oy v
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oV
[8_)(0 + ﬂé\/oj

In addition, there are the conjugation conditions (2.12), (2.13) that state that the fin and the wall
are in ideal thermal contact at the interface x=0. And, of course, the boundary conditions (2.6)
—(2.8), (2.10).

Using conservative averaging method we are going to transform the given mathematical
model into a more usable form and construct an approximate solution for this problem. The
main idea of the method is to replace the unknown function by a certain combination of
functions depending on in which direction the behaviour of the solution is predictable.

=0, ye(b,l,). (2.35)

x=0

2.2.1 Solution for the Fin

So, let’s use an exponential approximation in the y -direction for the 2D temperature field
V (X, y) inthe fin. Then the general form of the function is given by

V(% y) = f,(0+(” —1)f,(0 +1—e)f,(x) (2.36)

with p=b~" and three unknown functions f,(x), i =0.,2. To calculate these functions we’ll
use all the conditions that are defined for V (X, y).
When imposing symmetry condition (2.8) on (2.36) we find that

f,(x) =—f,(X).
So, (2.36) now becomes:

V (%, Yy) = fo(x)+2(cosh(py)—1)f, () . (2.37)
Let’s introduce a new function v(x) defined as integral average value of V(x,y) over the
interval [0, b]:

b
v(X) :pIV(x, y)dy. (2.38)

Now, integrating the expression (2.37) with respect to Y , we can find the function f (x):
v(x) - fo(x)

100 = Jfsinh@) 1) (2.39)
Let’s substitute (2.39) in (2.37):
cosh -1 sinh(1) —cosh
Vixy)= %v(x) e ) . (2.40)
Applying the boundary condition (2.34) on (2.40) leads to
v(x)(psinh(®) + A% (cosh(1) —1))+ f, (X)(— psinh(@) + B2 (sinh(1) —cosh(1))) = 0.
Hence our calculation yields the formula
fo (X) = wv(X) (2.41)
with
sinh(1) + Sib(cosh(1) 1)
=— - : (2.42)
sinh(1) + Bib(cosh(l) —sinh(1))
Consequently,
V(X,y) =v(x)D(y), (2.43)

where
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sinh(1) + B;b(cosh(1) — cosh
sinh(1) + Ab(cosh(l) —sinh(1))
Thus the function V (X, y) is reduced to the form (2.43) containing only one unknown v(x).

We are going to determine this function by requiring that it satisfies a certain differential
equation. When integrating the partial differential equation (2.1) from 0 to b, we get

dv v
dx? 1,

The difference of the derivatives may be found via the boundary conditions (2.34) and (2.8),
and the expression (2.43). Thereupon the differential equation becomes

d?v

=0. (2.45)

W—fv(x) =0, (2.46)
where

A = pBd(b). (2.47)
We apply the operator (2.38) on (2.33) to get a boundary condition for (2.46):

v'()+ Biv(l) =0. (2.48)
The solution to the problem (2.46), (2.48) is hence found to be

V(X) = cl(eﬁX + /,le‘”), (2.49)
where

1= jiﬁg e?# (2.50)
and c, is an unknown constant. Therefore

V (X, y):cl(e”‘X +,L£‘*X)(I>(y). (2.51)

2.2.2 Solution for the Base

We act almost equally for the wall, using the same method of conservative averaging to describe
the 2D temperature field V, (X, ¥) here. Let’s introduce exponential temperature distribution

in the x —direction by
Vo (%, ) = 0o (1) + (e ~2)g, () +L—* )g, (¥) (2.52)

with d =5*. Once again we use the properties of the function to solve for the unknown
functions g, (y), i=012.
Before we proceed, let’s obtain average value function by the integral:

v, (y)=d jvo(x, y)dx. (2.53)

After integrating (2.52) over the segment [—&,0], it gives

Vo(¥) = 0o () +(e—2)a,(y) +e 79, (y). (2.54)
As the function v, (x, y) satisfies the boundary condition (2.6), we apply it to (2.52) to find
9,(y):

9,(y) =ed, (y) —e*g,(y). (2.55)
Then by combining (2.54) and (2.55) together, we have
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g, (y) =%(go(y)—v0(y)+éQo(y)). (2.56)

Putting the last two expressions, (2.55) and (2.56), in formula (2.52) it becomes

V, (X, y) = go(y)(1+%(edX —1)—e2 %(1—edx)j
1 —dx 2 1 dx
+v0(y)(—§(e —1)+e E(l—e )]

rQu(9) jole 1)+ &-e o o) 257

Equation (2.57) still contains two unknown functions g,(y) and v,(y). Before these are
determined, it is convenient to divide the base into two parts, the right part of which occupies
the domain x [-5,0], ¥ €[b,1,], but the left one is for x <[~ 5,0], y < [0,b].

The integration has to be performed on (2.2) over the interval [-&,0] to get 1D equation from
which we would find v, (y):

. d?v,
s dy?

x=0

Vo

— =0. 2.58
x (2.58)

2.2.2.1 Solution for the Right Part of the Base
The function g,(y) for the right part of the base is obtained by imposing the boundary

condition (2.35) on (2.57):

1,1, 11, 1 1,)
go<y)(—§d+ﬂo+5de ]+vo<y)(5d—5de j+Qo(y>(—5—e+§e j—o,

which yields
9o (¥) =Vo(Y)a +Qq (¥)by (2.59)
with
o = d —de’ _ 1+2e—¢°
° d-2B -de?’’ " d-28'-de?*’
Substituting (2.59) into the representation (2.57) yields

Vo (%, Y) =vo<y)(ao +§(ao 1) -1)+e? %(1—ao>(1—e‘”)j

+Q, (y)(bo +%(b0 +o)e " —1)+ (& _e? %(5 +b, ))(1— e )] (2.60)

This shows that the function now depends only on one unknown — the function v, (y). We’ll

find it by solving (2.58). Owing to the boundary condition (2.6) and (2.60), the equation for the
right part of the wall results in an ordinary differential equation
2

dyvf k2, () = 1Qu (¥ (2.61)

where
K% = dﬂéao,
y=d(B0, -1).
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For simplicity reasons we henceforth assume the function Q,(y) to be constant, that is,

Qo (y) = Qo .
Integrating (2.10), we obtain a boundary condition:
vy(l,)=0. (2.62)

The solution of (2.61), (2.62) is

Vv, () :cz(e"y +y0e"‘y)—% (2.63)
with
Ho —e®b

and c, as an unknown constant.

2.2.2.2 Solution for the Left Part of the Base

We are still left with two unknown functions, g,(y) and v,(y), to be determined for the

temperature in the left part of the base. To get those we are going to use the conjugation
conditions (2.12), (2.13). From the first of these conditions and the expression (2.51) for
V (x,y) we get that

9o (Y) =C,(L+ u)D(y). (2.64)
But v, (y) is found by solving 1D equation (2.58) at first modifying it, so that it is valid for the
left part of the base. As the functions V,(x,y), V(X,y) satisfy (2.13) at x=0, from (2.13)
and (2.51) it follows that

V| 4V
X x=-0 X x=+0
= de, AL- p)D(y) . (2.65)
x=0
So, now we can remove the term da—O in (2.58) by using (2.65) and the boundary condition
X X=—0
(2.6). And the equation (2.58) becomes
d?v
VZO = —dc, A1 - u)(y) - dQ,, (2.66)
which can be rewritten as
d?v,
2 =—¢,B, —dQ, +¢,B, cosh(py), (2.67)
where
B, = dA(l- u)d,,

B, = ﬂébdﬂ,(l—,u)Cbl,

@, =(sinh(1) + Ab(cosh(l) —sinh(1))) ",

@, = (sinh(1) + Btb cosh(1) Jp, .
In addition we get 1D boundary condition when integrating (2.7):

Vo (0)=0. (2.68)
The solution of the problem (2.67), (2.68) is then
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1
v, (Y) = ¢, B, cosh(py b? +E(_C181 ~dQ, )y® +¢;, (2.69)
with ¢, as integration constant.

2.2.3 Conjugation of Solutions

We have just found solution to the given problem. But we are still left with finding the unknown
constants in the formulas (2.49), (2.63) and (2.69). To determine those, we need several
requirements to be fulfilled. First, the temperatures V (x,y), V,(x,y) must coincide at the

contact point x =0,y =b between the fin and the right part of the wall. So,

C1(1+ /U)(D(b) =C,a, (eKb + /uoe_leo )_ a %

Second, the mean temperature values in the wall have continuity at y=b:

+Qobo- (2.70)

1 1
C,(e" + ppe ™) 7520 =c1(B2 cosh(l)p® -5 Blbz)—Eonb2 +Cs. (2.71)

Third, we claim that the mean fluxes also coincide at y =b:
c,x(e" — e )=c,(B, sinh(L)b — B,b) — dQ,b. (2.72)

All the constants can be found from the system (2.70), (2.71), and (2.72). Hence the approximate
analytical solution to the 2D problem is uniquely determined by (2.51); (2.60) and (2.63); and
(2.57) together with (2.64) and (2.69).

2.2.4 Numerical Results

To get some kind of notion if this model could describe the actual situation in computer cooling
systems for L-shaped micro elements, we used the following geometrical parameters:

& =5um,
| =1;m,
b=5-10"% um,
l, =1-107" zm.

But for the termophysical properties we chose:
h, =4.48-10"Wum 2K ™,
ko, =1.412-10"*Wm K (for silicon),
Q, =10Kum™.

x\y 0| 001| 0.02| 0.03| 0.04| 0.05
1] 981| 980 | 9.80| 9.80| 9.79| 9.78
09| 999 | 998 | 998 | 9.98| 9.97| 9.96
0.8 ] 10.34 | 10.34 | 10.34 | 10.34 | 10.33 | 10.32
0.7 ] 10.88 | 10.88 | 10.88 | 10.88 | 10.87 | 10.86
0.6 11.60 | 11.60 | 11.60 | 11.60 | 11.59 | 11.58
0.5]12.50 | 12.50 | 12.50 | 12.50 | 12.49 | 12.48
0.4 13.58 | 13.58 | 13.58 | 13.58 | 13.57 | 13.56
0.3]14.85| 14.85 | 14.84 | 14.84 | 14.83 | 14.83
0.2 ] 16.29 | 16.29 | 16.29 | 16.29 | 16.28 | 16.27
0.1|1792|17.92 | 1792 | 17.92 | 17.91 | 17.90
0]19.74 | 19.74 | 19.73 | 19.73 | 19.72 | 19.72

Table 2.1 Temperature distribution in the fin, in °C
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x\y 0| 0.01| 0.02| 0.03| 0.04| 0.05
0119.74 | 19.74 | 19.73 | 19.73 | 19.72 | 19.72
-0.5] 20.38 | 20.38 | 20.38 | 20.37 | 20.37 | 20.36
-1121.39|21.39 | 21.39 | 21.39 | 21.39 | 21.38
-1.5]22.79 | 22.79 | 22.79 | 22.79 | 22.78 | 22.78
-2 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58
-2.5] 26.78 | 26.78 | 26.78 | 26.79 | 26.79 | 26.79
-3 29.43 | 29.43 | 29.43 | 29.43 | 29.43 | 29.43
-3.5]32.53 | 32.53 | 32.53 | 32.53 | 32.54 | 32.54
-4136.13 | 36.13 | 36.13 | 36.13 | 36.14 | 36.14
-4.5]40.26 | 40.26 | 40.26 | 40.26 | 40.26 | 40.27
-5144.96 | 44.96 | 44.96 | 44.96 | 44.96 | 44.97

Table 2.2 Temperature distribution in the left part of the base, in °C

x\y 0.05| 0.06 | 0.07| 0.08| 0.09 0.1
0]119.72 | 19.72 | 19.72 | 19.72 | 19.72 | 19.72
-0.5] 20.36 | 20.36 | 20.37 | 20.37 | 20.37 | 20.37
-1]21.38 | 21.38 | 21.38 | 21.38 | 21.39 | 21.39
-1.5]22.78 | 22.78 | 22.78 | 22.79 | 22.79 | 22.79
-2 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58
-2.5] 26.79 | 26.79 | 26.79 | 26.79 | 26.79 | 26.79
-3 29.43 | 29.43 | 29.43 | 29.44 | 29.44 | 29.44
-3.5]32.54 | 32.54 | 32.54 | 32.54 | 32.54 | 32.54
-4136.14 | 36.14 | 36.14 | 36.14 | 36.14 | 36.14
-4.5]40.27 | 40.27 | 40.27 | 40.27 | 40.27 | 40.27
-5 44.97 | 44.97 | 44.97 | 44.97 | 44.97 | 44.97

Table 2.3 Temperature distribution in the right part of the base, in °C

We can conclude that the model describes the real-life situation quite precisely.

2.3 Approximate Solution to Heat Transfer with Boiling

In some applications the boiling is localized at certain sides of the given structure. In this
section, this problem is illustrated by the case of non-linear boundary conditions.

Like in the linear case, the temperature fields satisfy Laplace’s equations (2.1) — (2.5)
under the same boundary conditions as imposed in Section 2.1, with the exception of non-linear
conditions defined at the boundaries where there is boiling occurring. So, we have (2.6) that
defines a heat flux at x=—¢&, symmetry conditions (2.7) — (2.11)at y=0 and y =1,, and, of

course, conjugation conditions (2.12) —(2.25).
For the problem with partial boiling we take the boundary conditions (2.29) and (2.32).
Also, we add the following boundary conditions defined at y=b+ ¢, :

oV
[—1 + BV, =0, (2.73)

8y y=b+&;

aV3 Iy/m

— +51Vs =0. (2.74)
( ay y=b+¢&;

But for full boiling we would have (2.73), (2.74) and
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aVS I\ym
T, gy -0, 2.75
[ X 181 ’ j><_I+g ( )
oV .
[Eerﬂsz jx_go =0. (2.76)

As it was mentioned in the publication [15], for the case of boiling the value of the index m
1
should belong to the interval [3;3%}. It is usually taken to be equal to 3 or 35.

The model is non-linear because of the boiling condition. Therefore, unlike it was done in the
previous section, we are going to take a slightly different approach to solve this problem.

In view of the previous assumption, that the temperature is uniform across the substrate
thickness (see formulae (2.26) - (2.28)), we simplify the original problem. So, now in this new
model the boundary conditions (2.73) - (2.76) transform to

N gyn| -o. (2.77)
oy
N (2.78)
—+ BV =0,
OX Fo -
A - (2.79)
+ =0.
ax ﬂO 0 -

2.3.1 Partial Boiling

Let’s start with the case of partial boiling. First, conservative averaging method will be used
for the given 2D problem to be transformed into 1D form. Second, an iterative method for
approximately solving the non-linear equation for the fin will be presented.

2.3.1.1 Solution for the Fin

For the temperature in the fin we use the simplest approximation assuming that it is constant
with respect to the argument y . We take

V(X y) =V(X), (2.80)
were v(x) is the average value of V(x,y), namely, (2.38).
The function v(x) is found from the 1D equation (2.45) for the fin. Using the boundary
conditions (2.77) and (2.8), this equation becomes

dv

— - 2v"(x) =0, 2.81

e (X) (2.81)
where

2= pp.
The boundary condition for (2.81) follows from integration of the condition (2.33) and is given
by (2.48).

Before continuing on our analysis of the model, let us rewrite the ordinary differential
equation (2.81) as follows:
2
M—}fvvm‘l =0. (2.82)
dx?
As the equation is non-linear, we are going to solve it using a finite difference scheme and
iterations. So, let’s set up a regular grid
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x, =ih,, i=0,...,N, h =—
N

and replace the continuous problem by its discrete approximation:

Vi, —2vf +vE m-1 .
o = L2 (v =0, =1, N1, (2.83)
Here v{ is a difference approximation to the value of v(x) at the mesh point X, , but the
superscript k denotes the k -th iteration.
In this case, we can rearrange the above equation (2.83) as (see [48]):
AvY, —CKNV +Bvf, =—F (2.84)
with coefficients
F=0, A=B=—1, Cr = A+ B+ ()"
=0, A=B=_%, C" = i . (2.85)

X

To obtain a second order approximation for the boundary condition (2.48) at first the function
v(x) is developed as a Taylor series to give
dv _ v(l) —v(x) N | —x
dx I —x
Making use of the differential equation (2.82), the second order derivative in (2.86) is replaced

by A*vw™*. Then, with appropriate use of this and (2.83), the approximation of the condition
(2.48) leads to the expression

V(1) +0((1 - x)?). (2.86)

x=I

VKI _VKI he 2 keaymt k
T A (VA" E 4+ AV (2.87)
or
S AR (2.88)
with the coefficient »* to be
-1
Zt = {1+ hx(ﬂé + h?wz (v;-l)"”ﬂ . (2.89)

Taking into account (2.88), for any given value of k (2.84) constitutes a set of N linear
equations:

Vig =iV + B 1=0,,N -1 (2.90)

with

A . BB +F .
k-1 k-1 i+1
o= m g B g =Nk (2.91)
CI BalkJrl1 Cik - ik+l1

and

=T B =0, (2.92)

From (2.85) and (2.92) it can be seen that ,Bi“ =0 forall i=1,...,N .

2.3.1.2 Solution for the Base

As all the additional conditions for the base are the same as in the linear case, the solution for
the wall is obtained in the same manner as in subsection 2.2.2. Thus, the solution of the 1D
problem for the right part of the base is (2.63):
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Vo(y) =c, (eKy + ,uoeky)_%-

When deriving 1D equation for the left part of the wall, it is important to remember that for

x =0 the functions V,(x,y), V(x,y) must fulfil the conjugation conditions (2.12), (2.13).
So, from (2.12) we get that

9o (y) =V(0), y € (0,b).
That means the function g, (y), when considering the left part of the wall, is constant and its
value is equal to

9o () =Vg - (2.93)
Whereas from (2.13) we get
V
da_o :dﬂ
X |, dX|,_.o
Vi —vs h, R
:d|:lh—xo—?/12(vg l) V(I)( .
Inserting (2.90) into this expression, after taking i =0, we can write
v, aft -1 h \m
Yol gl L (Vi Ve 2.94
. {hx 2(0)}0 (2.94)

From this expression we see that we should use iteration process to solve the equation for the
left part of the wall here as well. Before we find this equation, let’s rewrite the last expression
as
oV
d—2 =Gy, (2.95)

x=—0

Here

k-1 —1 h m-1
Gk —¢g o, _ g2kt .
° ( h 2 ( 0 )

X
Now, if we use conditions (2.95) and (2.6), the integrated equation (2.58) becomes
d?v,

o7 o (2.96)
where H /™ is defined by
H =—Gi g —dQ,. (2.97)

So, the solution of the problem (2.96), (2.68) is:
1,
VoY) =2 Hoy e (2.98)
In this case we get an expression that is dependent of the previous iteration.

2.3.1.3 Conjugation of Solutions

In order to ensure the continuity of the solution of the given problem in all the domain, it is
necessary for the temperatures V (x, y), V, (x, y) to coincide at the contact point x=0, y=Db

between the fin and the right part of the wall. So, from the assumption (2.80) and expressions
(2.57), (2.59) and (2.63) we get:

Vg :Vo (0’ b)
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=a,V, (b) +b,Q,
— ao(c2 (e"b +y0e"‘b) 7Q°]+ b,Q, - (2.99)

Although the approximate solution to the problem has been found, there are still two constants
left to be calculated, ¢, and c,. It is required that

Vo(b—0) =V, (b+0), (2.100)
d d
d—yvo(b—O)zd—yvo(b+O). (2.101)

In accordance with (2.98), (2.97) and (2.99) , and (2.63), this system becomes
1 _ _ _
EbZL_GOk l(ao(cz(e“b AN "b) onj+b on on}Lc1 =cz(e"b + 1o ‘b)—%,

—Gglb(ao(cz(e“b + 1,8 ) i j+b on bdQ, :czrc(e“b —yoe”‘”).
K
When solving this we find the constants and get that these are iteration-dependent, cl"’l : 0‘2"1:

Clk—l _ C;—ll:(exb _,_/uoe"‘b )%bng_lao +(eKb +‘u0e—m ):l

Qr 1opi 1 _
—K—;—Ebzeg Q, a(,%—bo +§b2dQ0,

cst = (— b,Q,Gi *b ~bdQ, +G¢ *ba, %}[Gg‘lbao €% + e ™)+ e — e )]

The iteration algorithm can be organised in this way: at first we must choose some
“initial” value for V,(Y), thatis vg, and find o and constants c_, c>. After that we perform

the first iteration in the fin by calculating v; from (2.99). Knowing this we can use (2.90) to

calculate v; . Afterwards we can proceed with the iteration process.

To get solution of the 1D problem for the base we use formulae (2.98) and (2.63). In the
end we get the 2D temperature in the system, which can be calculated directly from (2.80) for

the fin and from (2.57) for the base. Here the function g,(y) for the left part of the base is
found from the formulae (2.93) and (2.99), but for the right part of the wall we use (2.59).

2.3.2 Full Boiling

When finding solution to heat transfer with full boiling, the principle remains the same as in the
previous subsection 2.3.1.

2.3.2.1 Numerical Solution for the Fin

Here the problem is formulated in the same way as in subsection 2.3.1.1, with the exception of
boundary condition at x =1. Rewriting the boundary condition (2.78) as follows

(—+,BOVm 1Vj

and integrating the last term (see [40], Ch. 4.7):

=0

x=I|

b b
[V Gy G y)| | dy = [V yV (L yydy = (v())™ bv(l)
0 0

leads to a non-linear 1D boundary condition

33



V(1) + Br(v)"v(l) =0, BL=pBb. (2.102)
In the end we get the same difference scheme as in (2.90) - (2.92). But here the coefficient ;(l"*l
(2.89) changes to

-1
h — m—
7t =(1+ hx[?x A+ ,Bolj(v‘;,‘l) lJ :

2.3.2.2 Numerical Solution for the Base

As 1D equation for the base is likely to be non-linear, we’ll consider a discrete realization of
the iterative process for the base as well and use iterative difference scheme. So, let’s define
the following grid points:

{ ih,, j=0,...M, b l, —b
Yi =

b+(j-Moh,, j=My+L..,M’ hyvle_o’ y2 =

The Right Part of the Base
Upon applying the boundary condition (2.79) to (2.57) we get

1 1. . 1 m-1 1 1.,
0 -39+ 5067+ Alan )™ ot 3¢ - 5

2
1 1
We can rewrite this expression as
9o (Y) =V (¥)ag (y) +Qqbs (), (2.104)
where
§ d —de®
2, (y) = TSR =R
d—2p4g, ()" —de
§ —1-2e+e?
by (y) =

_ m-1 )
d-2p4g, ()" - de?
So the 1D equation (2.61) for the right part of the base becomes
d?v,

&y — x5 YV (V) = 76 (Y)Qp (2.105)

ki (y) =~ aél(y)(%d —%deZJ,

5 (y) :—d(bg‘l(y)(—%d +%de2j+(—%—e+e2 %)ﬂj.
And the boundary condition for the equation is (2.62).
We discretize the equation (2.105) as
Vg,j+l _ZV(I)(,j +Vg,j—l
hjz

Using these notations

_K‘g’—lvkj =7/(|)<,_j1Q0! J = |\/|0 _|_1,“_’M -1

ivo,
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1 2

k-1
A2 h2 _BZlC;jl_ +KOJ’FZJ yO]QO
y 2
the difference scheme is equivalent to
AVg i —CyVg +ByVs o =—F5, =My +1..,M -1, (2.106)
When approximating the boundary condition (2.62) we use the same approach as in subsection
2.3.1to get
Vou = @5 Voma + Ty (2.107)
with
1 (1 h E
@5, = 2K |
hyo\h, 2
-1
h 1 h
k-1 y.2 y.2 k-1 k-1
Wrp = + Kom | 7omWo-
2 [hy’Z 2 J
Combining (2.106) and (2.107) gives
k k- k k- .
Vo.js1 :§2,11+1V0,j +772,j1+l’ J=Mg,...M -1, (2.108)
where
k-1 k-1 k-1
Som =Wy, 772M =W;;,
k-1 _ A, k-1 B2772 jat F

L j=M-1..,M, +1.

2j T Ak-L k1 0 e T
C2,j _82§2,j+1 Cz,j _Bzgz,m

The Left Part of the Base

At first we find 1D equation using continuity condition (2.13) and the definition (2.80):

gV
8X Xx=+0

_qd
dx x=+0

So, (2.58) becomes

d?v,  dv
d— dQ, =0. ,
dy’ + i +dQ, (2.110)

For finding numerical approximation to the solution of the problem (2.110), (2.68) for the left
side of the base, equation (2.110) is replaced by

Ve —2Ve Ve vi—v¢ h m-1
0,j+1 0,j 0,11+d[ 1 Vo —?22( —1) kJ+dQ0_O

s
OX

x=—0

(2.109)

x=+0

h;l hx
or
vE Ve +BVE L+ DIV =—F, j=1...,M, -1, 2.111
0,j-1 C 0,j B 0,j+1 lel(l; Fl . 1’ I\/IO 1 ( )
Vg,o :V01 wlkslvk + 4y, (2.112)
where the coefficients are expressed by
1 2 ) aft -1 h, L\
A A S S L
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h 1- 0( hx _1\m-1 h
w13 =dh,, 5 ( h ?AZ(V(I)( 1) ]’ :ul:dhy,l%QO'

X

It is easy to show that the expression (2.111) together with (2.112) gives this scheme for the left
part of the base:

Vo, =EiaVo o —WiaVe + 21, 1=Mg—1...,0. (2.113)
The expression uses the abbreviations

& =1, V/lk_l :wlk,gl’ X1 = M
B _M Ax;+F

A = , . = .:1,...,M —1.
C Alf !r//j+1 Cl _ Alé,:J ;(H—l J 0

fhl Cl B Alf, ’

Conjugation of Solutions
By examining the schemes (2.90), (2.108), (2.113) closely, we can see that they depend on the
values of VS,MO, vg. These two should be calculated for the average temperatures to fit the
continuity conditions (2.100), (2.101). (2.100) yields the following equality

Vo = Vo, 8o, +Qobo, - (2.114)

But (2.101) is estimated using the approximation

k-1 N
;1 l:_d(alh 1_%/12(\/5—1) lng —onj|=

k k
VO,M 1 _VO,M h 2

= = L (KOMOVOMO +70M Qo) (2.115)
h, 2

k k
Vo,M0 - VO,MO—l h
h

y.l

In order to evaluate the terms V(‘;Mo,l, V(‘;MO+l we use the equations (2.113), (2.108) when
J=M,-1and j=M,, respectively. Substituting those and (2.114) in (2.115) we get

—d

k l k-1 _
1 _ §Mo V/Mo 0,M, h)’-l a.k—l [alk ! _1_h_x22(vk—l)mlJ
k

0.M, 0
hy,l hy’1 hy’1 2 h, 2 !
_ oM, —
gg,l\/lloﬁ-l -1 hy,2 k-1
| T, 2 Fom
y,2
77;,_1\}0& hy,z k-1 ‘//ll\(A_OlQob(l)(,RAlo 4
T Th, 2 ToMeoT h
y.2 y,1

h -1 h _
+d ;’l Q, [[ T 2" /12( ) 1]bg‘;,|lo +1:|.
from which we find v;MO, giving the possibility to calculate Vg from (2.114). Eventually, the

numerical solution of the given problem can be obtained using the explicit schemes (2.90),
(2.108), (2.113).
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3 Transient Heat Transfer in System with Double Wall and
Double Fins

This chapter follows on directly from Chapter 2. It deals with the mathematical aspects of
transient heat conduction for double wall with double fins in 2D geometry. The non-stationary
heat conduction problem is examined, when assigning third type linear boundary conditions
and partial boiling conditions on the fin’s surface. Conservative averaging and finite difference
methods are applied to the given problem to construct numerical solution.

3.1 Mathematical Statement of the Problem

Using the same notations and assumptions as in Chapter 2, we are going to describe these non-
stationary temperature fields by the following partial differential equations:

o oV 1oV

2 T T 52 A
x> oy Az ot
0%V, s OV, 18V,

, X, yeC, (3.1)

x o aa XY o
o, | O, 1V xyeC,. (3.5)

aXZ ayZ a12 at
- k - k . ~ .
where a7 =—2-, 8’ =—=%-. C,, C, denote specific heat, but p,, p, stand for the density.
Co Py C.o,
Here we use the same boundary conditions (2.6) — (2.11), (2.29) — (2.32) and ideal thermal

contact conditions (2.12) — (2.25), as stated in Chapter 2. Beside these, initial conditions should
be provided as well:

V(xy,0)=V°(xy), (3.6)
Vo (%, ,0)=Vg (%, y), (3.7)
V, (%, y,0) =V, (%, ), (3.8)
V,(x,¥,0) =V, (x,y), (3.9)
V4 (%, y,0) =V (x,Y). (3.10)

3.2 Approximate Solution of the Problem

Just like we did in the previous chapter, we make the simplest approximation for the upper layer
taking the temperature to be constant in the appropriate directions. This leads to the problem
for the basic layer only which is represented by equations (3.1), (3.2), the initial conditions (3.6),
(3.7), the boundary conditions

v,

o =-Qy(v,1), (3.11)

X=—0
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v,
-1 =% (3.12)
1,

oV
- =0 (3.13)
1,

v,

=0, (3.14)

ay y=lo

oV N

—+ BV =0, _
ox TP szl (3.15)
oV

_”33\/} =0. (3.16)
oy -

oV, n

—+ GV, =0,

re Bo oszo (3.17)

and the conjugation conditions

Vol oo =Vl o (3.18)
No| v

X o Xl (3.19)

Using conservative averaging method for rectangular fins, [6], [7], [10], [13], [14], [25], [26],
we are going to reduce the given 2D equations to 1D equations. To make a numerical
approximation to the solution of the problem the finite difference method can be used.

3.2.1 Reduction of the 2D Problem for the Fin
First, we approximate the temperature in the fin by

V(X y,t) = fo (6 )+ —1)f, (x ) +([L—e ), (x,t), p=b" (3.20)
and define the integral average value over the interval [0,b]:

b
v(x,t) = pJ.V(X, y,t)dy . (3.21)
0

The unknown functions f, (x,t), i =0,1,2 are found in the same way as in Chapter 2 by applying
appropriate conditions, namely, (3.13), (3.16), (3.21). This yields

f,(x,t) = —f,(x,t), (3.22)
v(x,t) — fo(x,t)

B = sinn —1) 5.23)
fo (X, 1) =wv(Xx,1), (3.24)
with
sinh(1) + Bib(cosh(l) —1)
~ sinh(1) + Ab(cosh(t) — sinh(D))
Substitution of (3.22) — (3.24) into (3.20) gives
V(X,y, 1) =Vv(x,)D(y) (3.25)

with
sinh(1) + Sib(cosh(l) — cosh(py))
O(y) =—, : . :
sinh(1) + Ab(cosh(l) —sinh(1))
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while the function v(x,t) is yet unknown. In order to find it, at first we use the definition (3.21)
and integrate the equation (3.1):

v, 1

+ 0 —_— .
ox® oyl,, a ot

According to the boundary conditions (3.16), (3.13) and the expression (3.25), this can be
written as

0%v

y—ﬂzv(x,t) =

1o (3.26)
~ at ) .

a;
with
A2 = pBy®@(b).

The boundary and the initial condition for (3.26) can also be obtained by simply applying the
operator (3.21) to (3.15) and (3.6):
=0, (3.27)

N | m
[& + ﬁovj y

v(x,0) =u’(x). (3.28)

3.2.2 Reduction of the 2D Problem for the Base
For temperature approximation in the wall we use the following representation:

Vo (X y,1) = 9o (v, )+ €™ ~2)g, (v, 1) + L —e™ g, (y, 1), d =5 (3.29)
and the average value of V(X y,t),

Vo(y,1) =d [Vo (x, y,t)dx. (3.30)
-5

From the definition (3.30) and the boundary condition (3.11) it is possible to calculate these
functions:

g, (y.t) =ed, (v,t)—e?g, (y.1), (3.31)
1
gl(y,t)=E(go(y,t)—Vo(y,t)+5Qo(y,t))- (3.32)

Then the formula (3.29) reduces to

V, (X, y,t) = go(y,t)(1+%(edx —1)—e2 %(1—edx)]
1 —dx 2 1 dx
+v0(y,t)[—5(e —1)+e E(l—e )J

+Q0(y,t)(% S —1)+(5e—e2 %5)(1—@’*)]. (3.33)

Before continuing, we divide the wall into two parts along the line y=b. And integrate the
main equation (3.2) with respect to x:
g o[ 2 1 vy

aX X=—6 8y2 é:02 at

x=0

(3.34)
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3.2.2.1 The Right Part of the Base

Here we examine the part of the base that occupies the domain x e (- 5,0), y e(b,l,). In order
to compute g,(Yy,t) let us apply the boundary condition (3.17) to (3.33) to compute:

9o (Y, 1) = Vo (Y, 1)a, +Qq (Y, )by, (3.35)
where
~d-—de? _ 1+2e-¢?
“ T d-28 -de?’ " d-28'-de’’

The expression (3.35) is plugged into the representation (3.33), so that we obtain

V, (%, ¥,1) =V, (y,t)(at0 +%(a0 ~1)e —1)+e? %(1—310 Xl—edx)]

+ Qo(y’t)(bo "‘%(bo +6)e ™ -1)+ 9(5—6%(5+ b )j(l— edx)j- (3.36)

Then with appropriate use of the boundary conditions (3.17), (3.11) and the formula (3.36), the
equation (3.34) for the right part of the wall takes the form

o%v 1 ov
ay—;’—ffzvo(y,t) =a—25"+;&90(y,t), (3.37)

0
with
x? = dBla,, y =d(Bib, —1).
When integrating (3.14) over [— 5,0], the boundary condition for (3.37) becomes

aVO
— =0. (3.38)
ay y=lo
But the 1D initial condition
Vo (y,0) =ug () (3.39)

is obtained by integration of (3.7).

3.2.2.2 The Left Part of the Base

To find the functions g,(y,t) and v,(y,t) for the temperature in the left part of the base we
use the conjugation conditions (3.18), (3.19). From (3.18) and (3.25) we derive

do (Y, 1) =Vv(0,t)d(y) . (3.40)
From (3.19) and (3.25) we derive
Ny v
ox x=-0 B X x=+0
ov
=d—| @(y),
x| . (¥) (3.41)

Using (3.41), the boundary condition (3.11), and proceeding in the same way we did in the

derivation of (2.66) the equation (3.34) becomes
0%, oV 1 ov
+d—| @(y)+d ) =——2, 3.42
ayz aX - (y) QO (y ) 502 6{ ( )

with the additional conditions to be satisfied:
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ov
0 — 0
EY » (3.43)

and (3.39).
In what follows, the function Q,(y,t) is taken to be constant.

3.2.3 Construction of the Difference Scheme

We are going to solve these 1D problems in a numerical way. For approximating the solution
we’ll use finite-difference method discretizing the differential equations with three-point
scheme with non-negative weights. The second order approximations of boundary conditions
are obtained by using differential equations and their approximations (see [6], [7], [25], [26],
and [48]).

Let’s begin by introducing the grid points by

L I
x,=|hx,|=0,...,N,hX:W, (3.44)
jh j=0.M b l,-b
yJ = P v s 0 ] y']_:_l y,2 = 0 ) (345)
b+(j=Myh,, j=M;+1L.M M, M-M,
to discretize the domain in space. In addition, we consider 7 >0 to discretize the domain in
time [0,T], defining a grid
T

t =nr,n=04...,—. (3.46)
T

But v{ and v, denote the values of numerical solutions at points (X;,t,) and (y,,t,),
respectively.

3.2.3.1 Difference Scheme for the Fin
Hence for (3.26) we have the following discrete equation:

vi”ilz—vin s vt — 2v“2+l +v L (1-0) v, 2v2 +v
a, T h; h;
—oA’v™ —(1—0')2,2Vi" : (3.47)

where i =1,...,N —1 and the weight 0 <o <1. We can rewrite the scheme (3.47) as

AVt —CvMt 4+ BY = —F", (3.48)
where

A=2 —B, C—2—G+ﬂzo+ L

h? h? aozr
ST A 7 SRRV VS (3.49)
' h? ' alr '

To get the second order approximation to the first derivative in the boundary condition (3.27),
let’s use the differential equation (3.26) and its approximation (3.47) (see [6], [7], [25], [26],
and [48]):
Vn+l_vn+1 Vn _vn h Vn+1 V
T SR M e O ~_12_
h, h, 2| a, T
+afovyt +(1-o)Bevy =0.
We can rewrite this as

n

+ol’ vt + (L-0) AV, }
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n+l n+1

VT =@V @) (3.50)

with coefficients

-1
ocloc h
:___,12_ ,
@1 h[h+2[ T3 j+°ﬁ°J

X X

-1
. [o h ) h, Vi vy —vﬂ,_l ﬂ,zh
AL P S SV
ik (hx+2[ Tat Jmﬂ"] [2 alr ( G)[ h, )

Using new notations

SN =Ty, Ny =35, (3.51)
(3.50) becomes

VRt =gV (3.52)
Let’s solve (3.48) for v

n
n+l A n+l B n+1 F

V, =—V. - +—V,  +— 3.53
i C i-1 C i+1 C ( )
and take i =N -1:
A B !
Vn+1 — _Vn+1 Vn+1 N—l .
N-1 C N-— 2 C C

Substituting (3.52) in this and rearranging terms yields

VR = SnaVie 7o (3.54)
with
cu = A o= By +Fya
N Cc-Bg, N C-Bg,

In the next step we take the expression (3.53) for i=N-2 and replace v;", by (3.54). So, in
the end we get an expression for v;™ .
Doing the same procedure for the indices 1 = N —3,...,1, it follows that

vt =g v+, i=0,...,N-1, (3.55)
with coefficients (3.51) and
Bn', +F"
gi=L1nin=Lii=N_lvnvl'
C-Bgia C-Bgi,

Having used the recurrence relations to find the coefficients, the values of v'*' are easily
obtained from (3.55). The only problem here is that we don’t know v{* yet. We’ll find it in
due course.

3.2.3.2 Difference Scheme for the Right Part of the Base
The differential equation for the right part of the base (3.37) is approximated by the scheme

n+1 n n+1 n+l n+l n n n
Vo,j _Vo,j VO,j+l _ZVOJ +V01 -1 VO,j+1 _2V0,j +V0,j—l
— = O_Z +(1_O_2)
2 h2 h2
a7 y.2 y.2

O_szvngl -(1- O'z)KZVg,j — Qo

where i =M, +1,...,M -1 and 0<o, <1, which we rewrite as
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n+1 n+1 n+l n
AV ia —CoVvp; + BV =—F,,

using following notations:

o 20
AZZhTZZBZ’CZZ 22+K20'2+T,
v,2 v,2 a, 7
Vg, —2V) . +Vg AR
no_ 0,j+1 0,] 0,j-1 2 n 0,j
szi _(1_02) 2 —-K (1_52)\/0,1' += = 1Qy- (3.56)
hy,2 a, 7

When approximating the boundary condition (3.38), we have

n+1 n+1 n n

Vv -V Y -V
oM 0,M-1 oM o,M-1
o, +(1_‘72)
hyvz .2
h Vn+l _Vn
v.2 | Yom oM 2. n+l 2,,n _
+ > ~ +0,k Vo +(1=0,)x Vg +7Q, |=0
a’r
or
n+l n+l n
Vom =@1Voma T @5,
with

Vowm —Vo h h,, (Vg
[(1—02) e (1—az)z<2v3M—L2£ —;QOB-

h,, 2 ’ 2 | alr

On carrying through the similar analysis as for the fin, the difference scheme for the right part
of the base can be expressed as

Vg,+jl+1 zgz,jﬂvg,? +1550,  1=Mg M -1, (3.57)
with
_ n _ n
Com =Wy, Mo =5,
o= A, no_ Bz”?,m + Fzrjj
2iT =~ o M = —
: C, - Bzgz,m C,- Bz§2,j+1

for j=M-1...,M, +1.

3.2.3.3 Difference Scheme for the Left Part of the Base
The scheme for (3.42) is extended in this way to give

n+l _ \,n n+1 n+1 n+1

Vo,j Vo,j - VO,j+1_2VO,j +V0,j—1

=2 ! 2
a, T hy,l

n

Voo —2V) +V]
)0, j+1 0,]j 0,j-1
+(1-a) h2 +dQy
y,1
Vn+l _Vn+1 Vn _Vn
+dl o 2+—"—+(1-0)2—2 |0,
h, h,
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h Vn+l _Vn
_?X [%Jraﬂzvg” +(1-0) V] j(l)j. (3.58)
0

It depends on the values of v{** and v,'"*. The latter can be computed from (3.55):

vt =gt (3.59)
Substituting (3.59) into (3.58), the difference scheme results in
Alv(r)],-;l—l - Clvgjl + Blvgjil +D, jV(rJHl = _Fl,nj ' (3.60)
where
o 20 1
Al = —- = Bl ' Cl =— — )
h;,l h;l aOZT
o he( 1
D, | ——d[—(l—g1)+ ) [a—zmﬂnmj ,
X 0 T
n V(r)], V(r)] +1 ZVS +V8 1
FlJ_%"'(l_ 1) : h2J :
a,r v1

n

+d 2771”+(1—0)u—& —~V§ +(1-0)Avg | |@; +dQ,.
h h 2\ apr

X X

The boundary condition (3.43) has the following finite difference representation:

o Vor Voo f(1- Gl)Vg,l Voo
hyvl y.l
h Vn+1 _Vn+1 Vn _Vn h Vn+l _Vn
+d 22| o (o) | A + (L 0) Ay || @,
2 h, h, 2 a, T
n+1 n
hyl \/0,0%2 VOO y,1 on _
2 a, T
This can be rewritten as
Vg,gl = wl,lvgf - wl,svg 4+ 7
using
-1
_ 01| 0 hyl
“u T A, 23]
y1 \ My a7
-1
h h h 1
@,y = ﬂ.,.%zl d-2rt 2(1—g1)+—x(7+o%2j D,,
h, 2a;z 2 { h, 2\a,r
-1
n 1 hyvl
My ==+ = X
[hy,l 2a021]
(1_0_ )Vg,l _Vg,o +hy,1 dQ +Mvg,o
1 0 =
h,, 2 2 alr
X
h o vl —v! h A
+d 22 Lt r(l-o) A X - 1-0) AW | [
5 [hx m +( ) h 5 5022' ( VAV, 0

After some substitutions and algebraic manipulations the difference scheme (3.60) for equation
(3.42) becomes
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n+l n+1 n+1

Vo =SiaVojm —ViaVo X J=Mg-1...,0, (3.61)
with coefficients

51 =1, YV, =3, Zj_n = ,Ulna
and
B Ay —Dy; n _A1;(?+F1,nj

1
—,[//.+ :—’I
Cl_Algj "

§'+ = ji+1 —
o C,-A& T C-Ag
for j=1...,.M, -1.

3.2.3.4 Conjugation of Solutions

We see that the schemes (3.55), (3.57) and (3.61) can only be used once the values of v{™

n+l

and vy, are found. They could be obtained from these requirements:

V(0,b—0,t) =V, (0,b+0,t), (3.62)
a\/0 aVO

- ' 3.63
ay y=b-0 ay y=b+0 ( )

that state that the temperatures V, (X, y,t) , V (X, y, t) and the average heat fluxes must coincide
at the contact point x =0, y =b between the fin and the right part of the wall. So, from (3.25)
and (3.36) it follows that

V(0,b,t) =v(0,t)d(b),
Vy (0,b,t) = a,vy (b,t) +b,Q, -
If ©,, represents the approximation to ®(y) at the point y,, , then (3.62) becomes
V(rJHl(DMO Zaovg,ﬁo +ono-
In other words,
n+l _ aO Vn+l + bOQO

Vo = : 3.64
0 (I)MD 0,M, CDMO ( )
But for the condition (3.63) we have
V(r)Hl\j —VSE 1 VSM _ng 1 h Vo, —Vo
Mg M- M, M= yl| Yo,M,g 0,M,
O'l—h +(1-0,) . + 5 — —-dQ,
v v a,r
Vn+1_ n
h Vn+1_vn+l Vn _Vn h 0 0 +Glzvn+1
y.l 1 0 1 0 =2 0
—d 5 +(1—a)h——?x alr @, =
" " +(1-0)A%V]
n+l n+l n n
o VO,M0+1_VO,M0 +(1 . )VO,M0+1 _VO,MO
=0, ————— —0,)————%
hyvz hy,2
h Vn+1 _yhn

y,2 o,M 0,M 2.,n+1 2.,n

7 0521' =+ 0,k Vo, T (L—0,)x Vo + Q| (3.65)
0

According to formulas (3.55), (3.57) and (3.61) when i=0, j=M, and j=M,-1,
respectively, this is true:

Vit =gve

VS,T\jiO#—l = gZ,M0+1Vg,+I\iO +77;,M0+1’
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n+1 n+1

n+1 n
Vo, 1 =Sm,Vom, ~¥m,Vo + X, -

Let us insert these into (3.65) and thereafter compute

Hlvg,ﬁo +‘]1V8+1 :_Gln’ (3.66)
where
O 1 2
H,=—{1-¢&, J+—=—+—2( +2= +o,k° |,
1 hy,l( §MO) 2502 hy,z( g2,M0+l) 5 502 2
h 1
‘lei‘//m d—2 g(]-_gl)‘k_x _2+0/12 @y,
hy'l 0 2 {h, 5
Vo —Vou -
0 = (1) o Mty
hy,l hy’1
Vn
- —dQ,
ol @
2 1, vi—vi h( v )
_d[JEm +(1-0) 1hx 0 —?[— a022_+(1—0')/12V0]J¢',\,|0
o n an ot _Vn: 0 hv Vn’ 0 n
_h_2772,|v|0+1_(1_0'2) - ; L ~0;v| +(1_0'2)K2V0,M0+7'Q0 :
y.2 y.2 2 a, T

It is easy to eliminate V)™ from (3.66) with (3.64);

n+ a n+! b Q n
Hlvo,rjo +J, ° Vo,l\j0 =-J; - -G, (3.67)
(DMO M,
. . f n+l
Solving this equation for vy, , we get
w1 __ J0Q0 + P, Gy (3.68)

0Mo H,®, +J,a,
Substitution of this into the expression (3.64) results in

A J10,Q, + CD'V'oGln + by Qo
@, HDy +Ja, Dy,

n+l __
Vg " =—

(3.69)

Then given the resulting values for v and vg;;o , equations (3.55), (3.57), (3.61) together with

approximations of the initial conditions (3.28), (3.39) that give the values for all nodes at the
first time level,

vl=u’,i=0,...,N,

Vo; =Ug;, j=0,...M,

constitute the approximate solution of the given system in 1D.

3.3 Numerical Results

Here we used the same parameters as in Chapter 2. The geometrical parameters:

o =5um,
I =1um,
b=5-10"um,
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l, =1-107" zm.
And the termophysical properties:

h, =4.48-10"Wm2K ™,

k, =1.412-10*Wum—K ™ (for silicon),

¢, = 700Jkg K™ (for silicon),

Do =2.33-10°kgum™® (for silicon).
Additional conditions:

m=3,

Q, =10Kym™,

u®(x) =25°C, uJ(y)=35°C,

T =8s.

x\y 0| 001| 0.02| 0.03| 0.04| 0.05
1] 980| 980 | 9.80| 9.79| 9.79| 9.78
09| 998 | 998 | 998 | 9.97| 997 | 9.96
0.8]10.34 | 10.34 | 10.34 | 10.33 | 10.33 | 10.32
0.7 ]10.88 | 10.88 | 10.88 | 10.87 | 10.87 | 10.86
0.6]11.60 | 11.60 | 11.60 | 11.59 | 11.59 | 11.58
0.5 12.50 | 12.50 | 12.50 | 12.49 | 12.49 | 12.48
0.4 13.58 | 13.58 | 13.58 | 13.57 | 13.57 | 13.56
0.3]14.84 | 14.84 | 14.84 | 14.84 | 14.83 | 14.82
0.2 ]16.29 | 16.29 | 16.29 | 16.28 | 16.28 | 16.27
0.1]17.92 1792 | 17.92 | 1791 | 17.91 | 17.90
0119.73 | 19.73 | 19.73 | 19.73 | 19.72 | 19.71

Table 3.1 Temperature distribution in the fin when t=7.5s, in °C

x\y 0| 001| 0.02| 0.03| 0.04| 0.05
0]19.73 ] 19.73 | 19.73 | 19.73 | 19.72 | 19.71
-0.5] 20.37 | 20.37 | 20.37 | 20.37 | 20.37 | 20.36
-1]121.39|21.39 | 21.39 | 21.38 | 21.38 | 21.38
-1.5]22.78 | 22.78 | 22.78 | 22.78 | 22.78 | 22.78
-2 | 24.57 | 24.57 | 24.57 | 24.57 | 24.57 | 24.57
-2.5] 26.78 | 26.78 | 26.78 | 26.78 | 26.78 | 26.78
-3 ] 29.42 | 29.42 | 29.42 | 29.42 | 29.43 | 29.43
-3.5]32.53 | 32.53 | 32.53 | 32.53 | 32.53 | 32.54
-4136.12 | 36.12 | 36.13 | 36.13 | 36.13 | 36.14
-4.51 40.25 | 40.25 | 40.25 | 40.26 | 40.26 | 40.27
-5144.95 | 44.95 | 44.95 | 44.96 | 44.96 | 44.96

Table 3.2 Temperature distribution in the left part of the base when t=7.5s, in °C

x\y 0.05| 0.06| 0.07| 0.08| 0.09 0.1
0]19.71 | 19.71 | 19.71 | 19.71 | 19.71 | 19.71
-0.5] 20.36 | 20.36 | 20.36 | 20.36 | 20.36 | 20.36
-1121.38|21.38 | 21.38 | 21.38 | 21.38 | 21.38
-1.5]22.78 | 22.78 | 22.78 | 22.78 | 22.78 | 22.78
-2 | 24.57 | 24.58 | 24.58 | 24.58 | 24.58 | 24.58
-2.5]26.78 | 26.79 | 26.79 | 26.79 | 26.79 | 26.79
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x\y 0.05| 0.06| 0.07| 0.08| 0.09 0.1
-3 ] 29.43 | 29.43 | 29.43 | 29.43 | 29.43 | 29.43
-3.5]32.54 | 32.54 | 32.54 | 32.54 | 32.54 | 32.54
-4136.14 | 36.14 | 36.14 | 36.14 | 36.14 | 36.14
-4.5]40.27 | 40.27 | 40.27 | 40.27 | 40.27 | 40.27
-5 44.96 | 44.97 | 44.97 | 44.97 | 44.97 | 44.97

Table 3.3 Temperature distribution in the right part of the base whent=7.5s, in °C

From the tables (see, Table 2.1 — Table 2.3, Table 3.1 — Table 3.3) we can see that at the end of the
process there isn’t much difference between the transient case and the stationary one. Actually,
from the numerical results we got in both cases we can conclude that the transient temperature
tends to the stationary one.

3.4 Approximate Solution of the Problem with Partial Boiling

Just like in the stationary case, for partial boiling we have this boundary condition along the
line y=b+¢,:

oV,
V"
( ay ﬂ ] y=b+g;

But the rest of the formulation of the problem remains unchanged.

=0, (3.70)

3.4.1 Numerical Solution for the Fin

Once again using conservative averaging method and approximating the function V(x, y,t) by
its mean value over the interval [0, b], namely,

V(X y,t) = v(xt),
we get the following 1D problem:

v n 1 ov

y—/lzv (x,t):%a, (3.71)
ov

(&+ évj - =0, (3.72)
v(x,0) =u’(x). (3.73)

As the problem is non-linear, for finding approximate solution to this problem we are
going to use iterations. We use the same discrete grid as defined in subsection 3.2.3 by (3.44) -
(3.46).

So, the equation (3.71) is approximated by

n+lk n 'n+lk n+1k n+lk
v, _ v, :O_le 2V, 2 +V;" +(-0) v, 2v2 +v)
a, v h; h?
_012( n+lk_1)ml n+1,k (1 6)212( ) ’ |:1,,N_1 (374)

When the process at the k-th time level has become stable, we don’t use the iteration number

any more. Obviously, (3.74) can be rewritten as
Avir:lk Cn+1 k—lvn+1k + BVn+1k _ _Fin

i+1

with

25_‘_/12 ( n+Lk 1)

o n+l k—
A=— =B, CM —_
hX hX aOT
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n n

A =(1oo) i T2 Vi e Y +%
X 0

The boundary condition (3.72) is handled much as was done in the linear case. That is,

SV v (o
h, h, 2 aozz'
hx 2 (\,n+1k-1 \"1 nik 2(i,n \M 1,,n+1k 1,0 _
+?(o71 (vt Py g (- o)22 (V) )+o;6’0vN +([1-o)pvy =0. (3.75)

Taking this all into account, an approximate description of the problem for the fin is given by
the system of equations

ViTlLk = Girfll'ki]\/inﬁ'k +77iT1(711 i=0,...,N-1. (3.76)
with
B n,k-1 + F n
o A Pt = i1 i iZN-1..1
i - +1,k— +1,k— 4 | k= k=1 - ey
1 Cin 1k-1 Bgirlllk 1 Cin+1 1 _ B iT;l 1
and
gn+1,k—1 _ ZD_nJrl,k—l nn,k—l _ ZD_n,k—l
N - %™ v TN — Wy ’
where,

-1
h 1 m-1
o | O L oBl 4 + o2 [yt ’
' h | h °2\ak )

0

-1
n k= (o) hx 1 n+l k-1 \m-1
w’z'kl:{h—-l-Oﬂé-F?(é_—z‘i-Gﬁz(Vle 1) J] X

h Vrrx]l V;\]I_Vlr\]l—l h 2 m 1
>N _(1- N N X Aeyr + AvD ||
[250%( a)( h 2 b )+ vy

And, of course, the initial values

vl =ul, i=0,...,N.
Once the values v;** have been found (see subsection 3.4.2.3) the approximations v"** can be
calculated by recursively applying formula (3.76).

3.4.2 Numerical Solution for the Base

The problem for the base in partial boiling is the same as in subsections 3.1, 3.2, when all the
boundary conditions were linear. So, the formulae (3.29) — (3.43) do not change. We just make
a slight modification by taking ®(y) =1.

3.4.2.1. Difference Scheme for the Right Part of the Base

Let’s construct a discrete approximation of the differential equation for the right part of the
wall:

n+1,k n n+1k n+1,k n+1,k n n n
Vo,j _VO,j Vo,j+1 _2Vo,j +V0,j—1 Vo,j+1 _2V0,j +V0,j—1
=2 — 92 +(1_O-2)
h2 h2
a, 7 y.2 v.2
2, ,n+1k 2 :
—0,k Vo = (L=0,)k Vg —1Qp, 1 =M +1,...,M -1 (3.77)

and for the boundary condition (3.38):
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n+1,k n+1,k n n
Vo,M _VO,M—l Vo,M _VO,M—l
2 +(1_52)
h h
y,2 y,2
h Vn+1,k _Vn
y.2 oM oM K
+ 5 S -I—GZKZVS’T; +(1—O'2)K'2V8’M +7/Q, |=0. (3.78)
0

In summary, the difference approximation to the problem for the right part of the base takes the
form

Vgili :§2,j+1vcr;,)}1'k +772n,j+1’ J=Mg,....M -1, (3.79)
where
B,n, .. +F
n o _ _n A, no_ —2i2j4 2,
Som = @0y Moy =W 6= =<5
i C, _Bzgz,ju Cz - Bz§2,j+1
for j=M-1,...,M, +1. And
o 20 1
AZZTZZBZ' C, = 22 +K202+~2 '
hy,2 hy,2 a0
VoL =2V VD VAR
Fi :(1_0_2) e hQO’J w _Kz(l_o'z)vg,j + ~02,; — Qo>
V.2 a, 7

But for (3.39):

0 0 H
Vo,; =Ug,; ]=0,....M.

3.4.2.2. Difference Scheme for the Left Part of the Base
The equation for the left part of the wall reduces to the discrete equation

n+1,k n n+1,k n+1,k n+1,k n n n
Vo,j _Vo,j Vo,j+1 _2V0,j +V0,j—1 Vo,j+1 _2V0,j +V0,j—1
= =0, ¥ +(l—0'1) > +dQ,
Q7 yl yl
Vn+1,k _Vn+1,k Vn _Vn
+doLt—2 +(1-0) 120
h, h,
h vn+l,k _Vn —l
- 200 P (vt ey - 0) 22 (v ) (3.80)
T
0

fori=M,+1...,M —1.

Whereas the discrete boundary condition is

n+1,k n+1,k
Vo,l - Vo,o

O, h

n (1 o, ) Vo,1h_ Vo,o

y.l y.l
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n+1,k n
hyl Voo —Voo

h h Vn+1,k _Vn+l,k Vn _Vn
, y.l y.l 1 0 1 0
+ dQ +d o +(1-0)———

2 alr 2 2 ( h 4-o) h,

X
n+1,k

+d%1[_h2 [—VO 5%\/ + o (v e (- )22 (v )D:o. (3.81)
0

The above discretization of the problem for the left part of the base produces
n+1,k

VOJ §j+1v(r)]+jl+t l//Jn:llk 1Vn+1k +ZT+kl 11 J - _1’---!0 (382)
with
é; w_ll, l//{H—l k-1 —w':;lk 1, Zln k-1 —,Uf'k_l
and
. k= k-1 k-1
Eo = B, p R Ay =Dy rrs Axi" + R
ji+1 — ~ A £ ! j+1 - ) j+1 T y
o Cl_Aﬁfj : Cl_Aié:j Cl_A.Lé:j
for j=1..M,—1. Here we use the notation
201 1
Ai h2 Bl’ C hZ 5022_ !

h (1 mi| O
Dn+1,k—1:_d £+_ + ﬂ, n+1,k-1 _Z n+1,k-1 ’
1 [hx 2 | azr gy h !
nk= VO O +1 2V +V0 -1
R = s -y 20 T g,

yl

n+1,k-1

+d[0mh—x+(10) ! h_VO hzx (E;IO—S-I-(lG)/IZ(VS)mJ],

X

a,r

1
h h h 1 -
n+Lk—1 0, yl yl| O n+1k-1 2 (. netk-1 \m-1
T = + d 1- T+ —+ ot ,
E [hy,l 25&} 2 (h( ) 2( 52 e’ D

vi,—vi, h h,, v)
(1_ ) 01 0,0 yl dQ y.l ~o_o
Y hy, 2 "2 &?

3.4.2.3. Conjugation of Solutions

Since both Vo™ and vy ¥
(3.62), (3.63). These result in

nk-1 n+1,k-1
Vn+1,k - _ Gl + bOQO‘]l
0,M, n+1,k-1 !
Hl + a0‘]1

are not known all we need to do know is to apply the conditions
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n+Lk _ n+1,k
VO - a‘OVO,MO + bOQO’

where the following notations are used:

o h,, o} h,( 1
Hl:h—l(1—§M0)+ Zaozz-—l—h 2 (1_g2'M0+1)+T a—2+0_2K‘2 y

y.1 y.2 ol
n+lk-1 yl hx 1 2( n+1,k—1)m 1 o n+1k-1 '\r}lt;l’k_l
‘Jl :d7 ? 5—2'1' 7 VO +h—(l - ) +0; h ,
0 X yl
A vi. . h 0
G ——;7—1 i+ (l-oy) O’Moh et 2R 4 dQ,
yi y1 2 | a,7

O,

h

77;,M0+1 _(1_0_2

Viy' o h Vo
) oMt ~Vou, My (_ f;\ﬂo +(1—52)K2V8,M0 +Qo |

¥,2 ag T

Thus, the approximation algorithm we have just described in this section produces a discrete
solution to the given 1D continuous problem.
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4 Mathematical Model for a Willow Flute

The willow flute (Norwegian: seljeflayte, Finnish: pitkahuilu or pajupilli, Swedish: salgflojt or
sdlgpipa) is a Scandinavian folk instrument of the recorder family existing in two forms: an
end-blown flute, often called a whistling flute, and a side-blown flute. This thesis focuses on
the side-blown flute (see Fig. 4.1) which is between 40 and 80 centimetres in length. It consists
of a tube with a transverse fipple mouthpiece that is constructed by putting a wood plug with a
groove in one end of the tube, and cutting a sound hole (edged opening) a short distance away
from the plug (see Fig. 4.2). The air flow is directed through a passageway across the edge
creating a sound.

Fig. 4.1 Two forms of willow flute: side-blown flute (left), [55], whistling flute (right), [57]

“Similar, however not the same instruments were made by peasants in Poland, usually
using a different method described in sources as "krecenie” (that nowadays means literally
"rolling", at that time possibly also "drilling-gouging™), "ukrecanie", "ulinianie” (nowadays
literally meaning: "making moulted"). Such instruments are mentioned in folk poems or songs.
There is also a Karelian variant of the willow flute that is made in Finnish Karelia and the
Russian Republic of Karelia. It is made the same way as the willow flute, however instead of
using willow bark; it is made out of birch bark.

Modern willow flutes are usually made of plastic (PVC tubing is often used), but the
original willow flutes were made from sections of bark cut from green willow branches. Willow
flutes could only be made this way during the spring, and became unplayable when the bark
dried out.”?

In this chapter we propose a mathematical model for a Norwegian flute, [11]. We find the
possible frequencies of the sound produced by the flute, analyse how the pitches can be altered
when changing parameters that are used in the problem, and determine the energy distribution

in the sound.

Fig. 4.2 Longitudinal section of the flute, [56]

As the flute has no finger holes, different pitches are produced by overblowing and by
using a finger to cover, half-cover or uncover the hole at the far end of the tube. The seljeflgyte
plays tones in the harmonic series called the natural scale. When the end of the tube is left

! Citation from [57].
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open, the flute produces one fundamental and its overtones, playing it with the end closed
produces another harmonic scale.

4.1 Problem Formulation

In general the process is quite complex, as there are many things that should be taken into
account. Although a non-linear equation could be considered when dealing with mass-transfer,
we are going to use a linear one. Secondly, there is a question about hydrodynamic behaviour
of the jet of air. Both experimental and theoretical results suggest (see, e.g., [50]) that the
airstream tends to form vortices when impinging the edged opening. In the case of one
dimensional plane wave, we are going to use a source function to describe this process. Thirdly,
the mass flow in the passageway (see Fig. 4.3) can be approximated by a 3" type boundary
condition.

The willow flute can be considered as a first approximation as a cylindrical tube open,
closed or partially open at one end. To derive the mathematical model we are going to make
the following assumptions:

a) the diameter of the flute is small enough in comparison to its length and the wavelength
of sound;
b) the diameter of the cylinder is large enough so that the effects of viscosity can be
neglected;
c) the walls of the pipe are rigid, smooth and thermally insulating, so the enclosure has no
effect on wave propagation.
Assuming that the sound wave in the flute is a plane wave of sound, the vibration can be
represented by
2 2
8—2p=c28—§+F(x),02=E, (4.1)
ot OX P

where p(x,t) denotes the acoustic pressure, function F(x) is some external source, o density

of air (=1.2041 kg/m?®). Let’s suppose that there is no appreciable conduction of heat,
therefore the behaviour of sound waves is adiabatic. So, B is the adiabatic bulk modulus of air,
which is approximately given by B =p,. Here y (=1.4) refers to the ratio of the specific

heats of air at constant pressure and at constant volume, and p, (=101,325 Pa) is the ambient
pressure.

< R L
0o 1
Fig. 4.3 Definition of geometrical parameters for the flute

Let’s establish boundary and initial conditions. At x =0 we have the 3™ type boundary
condition

p,(0,t) — x5, p(0,t) =0. (4.2)

The boundary condition at the far end of the tube depends upon whether the end is open, closed
or partially open. For an open end of a tube, the total pressure at the end must be approximately
equal to atmospheric pressure. In other words, the acoustic pressure P is zero:

p(,t)=0. (4.3)
At a closed end there is an antinode of pressure, as most of the sound is reflected:
p.(1,t) =0. (4.4)
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In many research papers and works where wind instruments have been considered (see, e.g.,
[30], [33], [37], [47]), only these two types of boundary conditions are used. But one should
bear in mind that the player can also close the end of the tube only halfway. In that case the
Robin condition

p,(I,t) +x, p(l,t) =0 (4.5)
must be applied (see [49]). The value of x, depends on how much of the end is closed.
Conditions (4.3) — (4.5) can be rewritten in the following form

@-h)p,(,t)+hp(,t)=0, 0<h<1. (4.6)
But the initial conditions are

p(x,0) = #(x), (4.7)

P (x,0) =y(x). (4.8)

Nonhomogeneous equation (4.1) can be solved by using the method of separation of
variables, namely, we look for a solution expressed in the following non-closed form:

p(x.t) = >, X, ()T, (1),

where X, (x), n=1,2,3,... are the eigenfunctions of the associated homogeneous problem. Our
boundary conditions (4.5), (4.6) imply that the eigenfunctions of the problem are
X, (x) =sin(u,x+@,),
with
tan(p, )= =2, IX, | = l(1—Mcos(ynl +2¢, )j
K, 2 y7n

n

But the corresponding eigenvalues y,, are roots of these transcendental equations:

e tan(u,l)=—2" (end open);
K.

1

o cot(u,l)=4" (end closed);

Ky

e cot(ul)= (,un _ Kk j K, = % (end partially open).

K T+ K, n

To determine the functions T, (t) , we expand the source function and the initial conditions (4.7),
(4.8) in a Fourier series. So T, (t) will satisfy the initial value problem

T+’ T, (1) = F,,

T.(0) =4,

T.(0) =y,.
Hence the solution of problem (4.1), (4.2), (4.6) — (4.8) is

p(x,t) =

~[#(0) 25 60 £,0d¢ - [ FOB(x £,0d

- [W(&) 2 800 £ 0ds + [FEG(X 5.0 (4.9)

with the Green’s function
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G(xEL) = gcos(cunt)x ﬁ;))ﬁ (&)

4.2 Pitch and Frequency

One of the fundamental properties of sound is its pitch. Pitch is a subjective attribute of sound
related to the frequency of a sound wave. Increasing the frequency causes a rise in pitch. But
when decreasing the frequency, the pitch of the note diminishes.

The tone of the lowest frequency is known as the fundamental or first harmonic. All other
possible pitches whose frequencies are integer multiples of the fundamental frequency are
called the upper harmonics or overtones.

Using relation (4.9), we obtain the frequencies of the vibration mode of the willow pipe:

f = n_123..
27

If the parameter «, is sufficiently large, the possible frequencies for the flute are close to
harmonics:

e f z% n=12,3,... (end open),

n

e f z%, n=1,3,5,... (end closed).

n

As u, is dependent on |, we can change the pitch by changing the length of the tube. If

the pipe has finger holes, one can also change the effective length of the instrument by opening
different holes. By altering the pressure of the air blown into the instrument, we change the
value of n, that is, we jump between solutions p,, resulting in discrete differences in pitch.

The pitch can also be changed by modifying h in the boundary condition at x=1.

4.3 Energy of Tones

As the sound of the willow flute playing is relatively harmonic, the energy of the sound is
concentrated at certain frequencies of vibration. The more dominant the certain pitch, the
greater the concentration of energy at that frequency. A person playing this particular
instrument can get different pitches through manipulation of the supplied air, which is, changing
initial conditions.

Formula for calculating the energy distribution is

E(t) = %jppf(x,t)dx—jdzj Bp,. (x,2) p, (X, 1)dx. (4.10)

If the initial conditions are defined as in Section 4.4, you can modify the distribution of energy
between the fundamental and its overtones by changing ¢ .

4.4 Numerical Results

All the results in the next section were obtained for the following parameter values:
a) geometrical parameters (m)

| ~0.656, I, ~0.01, H =§,

b) additional parameters
_pl T 7, p,=101,324

c) initial condltlons
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#(x)=0,
0 O<x<l
X_

| I —1
L <x<l+¢, _ dl

p(x)=41-

&
0 I, +e<x<l

where d is a positive constant:
d) source function

K, 1=X
F(x)=—-——.
) 100 |
4.4.1 Open-end scale

For the given parameters the fundamental for the open flute is Middle C or C4. The second
harmonic is then an octave above the fundamental; the third harmonic is G5, and so on.

iillsstlbial

Fig. 4.4 Notes of open-end C scale

One can notice (see Table 4.1) that some of these frequencies differ from the frequencies of the
notes on a piano in twelve-tone equal temperament (12-TET) with the 49" key, the fifth A
(called A4), defined as 440 Hz. The frequency of the m" key in 12-TET can be found from the
equation

m-49

f =440.2 12
Many people should be capable of detecting the difference if it is as little as 2 Hz.

Note Piano Willow

flute
C4 261.63 261.63
C5 523.25 523.27
G5 783.99 784.90
C6 1046.50 1046.53
E6 1318.51 1308.16
G6 1567.98 1569.80
Bb6 1864.66 1831.43
Cc7 2093.00 2093.06

Table 4.1 Frequencies (Hz) of willow flute’s open-end C scale compared with frequencies of 12-TET scale

4.4.2 Closed-end scale

Closing the end drops the fundamental an octave below the pitch of the pipe that is open at the
end. The next possible note, G4, has approximately three times the frequency of the
fundamental C3; the next one, E5, five times, and so on. This means that only the odd harmonics

. ullbull s |

Fig. 4.5 Notes of closed-end C scale
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Table 4.2 shows that the willow flute’s pitches do not quite conform to those produced by the

piano.

. Willow
Note Piano flute
C3 130.81 130.82
G4 392.00 392.45
E5 659.26 654.08
Bb5 932.33 915.72
D6 1174.66 1177.35

F#6 1479.98  1438.98
G#6 1661.22  1700.61
B6 1975.53  1962.25

Table 4.2 Frequencies (Hz) of willow flute’s closed-end C scale compared with frequencies of 12-TET scale

4.4.3 Intermediate scale
We can get further effects, when covering the end hole only halfway. This implies that we

should change the parameter h in the boundary condition (4.6). In this case the flute produces
an intermediate set of pitches that fall in between those produced with the end closed and those

T

Fig. 4.6 Approximate location of the willow flute’s pitches on a piano. C scale

B Pitches produced with end closed
Pitches produced with end open
Pitches produced with end partially open

In Fig. 4.8 and Table 4.3 you can see how the parameter h affects location of pitches played by
the flute when leaving the end partially open.
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Fig. 4.7 Effect of the parameter h on the frequencies (Hz) of tones. C scale
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h=1/10
h=2/10
h=3/10
h=4/10
h=5/10
h=6/10
h=7/10
h=8/10
h=9/10
h=1

130.82
134.57
138.97
144.22
150.58
158.46
168.51
181.75
199.92
225.78
261.63

392.45
393.73
395.33
397.35
400.01
403.65
408.92
417.15
431.49
460.57
523.27

654.08
654.85
655.82
657.05
658.68
660.95
664.30
669.74
679.98
704.81
784.90

915.72
916.27
916.96
917.84
919.01
920.65
923.09
927.09
934.84
955.30
1046.53

1177.35
1177.78
1178.31
1179.00
1179.92
1181.20
1183.11
1186.26
1192.44
1209.50
1308.16

1438.98
1439.33
1439.77
1440.33
1441.09
1442.13
1443.70
1446.30
1451.43
1465.93
1569.80

1700.61
1700.91
1701.28
1701.76
1702.40
1703.28
1704.61
1706.82
1711.19
1723.75
1831.43

Table 4.3 Effect of the parameter h on the frequencies (Hz) of tones. C scale

Fig. 4.8 Approximate location of pitches when h = 0.5, 0.7, 0.9
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4.4.4 Energy of Tones

1962.25
1962.50
1962.83
1963.24
1963.79
1964.56
1965.72
1967.63
1971.44
1982.49
2093.06

Using formula (4.10) we can find the energies of different harmonics and discover which
harmonic is dominant when changing the width of the interval over which the blow is delivered.
The examples given below (Fig. 4.9, Fig. 4.10) show that it has a very considerable effect on the
energy of the overtones. You must blow as softly as possible to produce the fundamental, as it
is hard to get (& ~ |). Blow a little harder and you get the first overtone and so on. The harder
you blow the higher harmonics you get to be dominant. This means that the presence of high
overtones increases when decreasing «.
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Fig. 4.10 Energy distribution (J) across the frequencies when changing ¢. Closed end
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