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Anotacija

Saja darba apliikoti nosacTjumi, lai regularu valodu varétu pazit ar galigu kvantu
automatu (GKA). Netrivialai regularu valodu apaksklasei paradits, ka $ie nosacijumi
ir nepiecieSami un pietickami. Patvaligai regularai valodai ir vienigi zinams, ka Sie
nosacijumi ir nepiecieSami, bet nav zinams vai katru valodu, kas apmierina tos, var
pazit ar GKA.

Tiek arf konstrugta regularu valodu (forma a, a, ...a, ) hierarhija tada, ka katru

hierarhijas valodu var pazit ar GKA ar varbiittbu mazaku ka ieprieksgjai valodai
hierarhija. Tas rada, ka, pret€ji varbiitiskiem automatiem, valodu klases, kas
atpazistamas ar GKA pie dazadam varbutibam atSkiras. Turklat dazam valodam
noteiktas maksimali sasniedzamas varbiitibas, lai valodu varétu pazit ar GKA.
Paradits, ka katru valodu, kuru nevar pazit ar RFA (galigs reversible automats) var
pazit ar GKA ar varbiitibu ne lielaku ka 0.7726....

Tiek arT pilniba definéta to valodu klase, kuru var pazit ar nesen definétajiem

varbiitiskiem “reverséjamiem” automatiem.



Arnolds Kikusts

Abstract

We consider some conditions for a regular language to be recognizable by
quantum finite automata (QFA). For a non-trivial subclass of regular languages, we
show that our conditions are necessary and sufficient. For arbitrary regular languages,
we only know that these conditions are necessary but do not know if all languages

satisfying them can be recognized by a QFA.
We also construct such a hierarchy of regular languages (in form a;a, ...a, ) that

the current language in the hierarchy can be accepted by QFA with a probability
smaller than the corresponding probability for the preceding language in the
hierarchy. This means that, in contrary to probabilistic case, classes of languages
recognizable by QFA with different probabilities differ. We also determine the
maximum probabilities achieved by QFAs for several languages. In particular, we
show that any language that is not recognized by an RFA (reversible finite automaton)
can be recognized by a QFA with probability at most 0.7726....
We also give a complete characterization of the languages recognized by

recently introduced model of reversible probabilistic automata.
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AHHOTAIUA

B pabore paccMOTpEeHBI YCIOBUS pAcCHO3HABAHUS PETYJISPHOTO  S3bIKA
KOHEYHBIM KBAaHTOBBIM aBTOMAaTOM. [IJii HETPHBHAIBHOTO MOJKJIACCA PErYJISPHBIX
S3BIKOB  MOKAa3aHO, 4YTO OTH YCIOBHS HEOOXOMUMBI M JOCTarouHbl. Jliis
MPOU3BOJBHOTO  PETYJSPHOTO  sI3bIKA M3BECTHO TOJNBKO, YTO O3TH  YCIOBHSA
HEOOXOJIMMBI, OJJHAKO HEH3BECTHO, MOYKHO JIM Ka)Ibli yOBICTBOPSIONINA UM SI3bIK

pacno3HaTh KOHEYHBIM KBAHTOBBIM aBTOMAaTOM.
* * *
CrpouTtcs Takke nepapxus peryssipHbiX A3bIKOB (B popme a, a,...a, ) TAKOBBIX,

YTO KaXKJIBIH S3bIK HEpPapXUM MOXET OBITh paclo3HaH KOHEYHBIM KBaHTOBBIM
aBTOMATOM C BEPOSITHOCTHIO MEHBIIYIO, Y€M ISl TIPEAUIYIIETO s3bIKa HepapXuu. ITO
MOKa3bIBAET, YTO B OTJIMYMM OT BEPOSTHOCTHBIX aBTOMATOB KJIACCHI SI3BIKOB
pacro3HaBacMbIX KOHEYHBIM KBAHTOBBIM aBTOMATOM C Pa3IMYHBIMH BEPOSTHOCTSIMH
paznmuyarorcsa. K TomMy ke i HEKOTOPBIX S3BIKOB OIPENEICHbl MaKCHMAJIBHO
JIOCT)KUMBIC BEPOSTHOCTH JUIS PAClO3HABAHUS S3bIKA KOHEYHBIM KBaHTOBBIM
apromMaToM. [Ioka3aHo, YTO Ka) bl A3bIK, KOTOPBIM HEJb3s PACIHO3HATH KOHEYHBIM
obOpamaeMbeIM (reversible) aBTOMaToM, MOKHO pacIio3HaTh KOHECYHBIM KBaHTOBBIM
ABTOMATOM C BEpOSTHOCTHIO He Oombie 0.7726....

Jlana Ttaxke TIONHAsl XapaKTEPUCTHKA S3bIKOB, PACIO3HABACMBIX HEJABHO

BBEJICHHOW MOJIETTbIO 00paIaeMoro BEpOSTHOCTHOTO aBTOMATA.
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3. Euroworkshop on Quantum Computer theory: in search of viable optimal design,
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Autora personiga veikuma kopsavilkums

GKA konstrukcija regularai valodai a,a,...a, dotam n (Teoréma 5.1);

GKA hierarhijas konstru€sana divu burtu alfabéta (Teorémas 5.4, 5.5 un 5.6);

dota jauna “aizliegta konstrukcija”, ko nedrikst saturét valodas minimalais
automats, lai valoda biitu pazistama ar GKA (Teoréma 6.3);

pirmoreiz dota netriviala regularu valodu apaksklase, kurai uzraditi pietiekamie un
nepiecieSamie nosacTjumi, lai valodu no §is apaksklases varétu pazit ar GKA
(Teorema 6.4);

visparinajums Teorémai 6.3 (Teoréma 6.6), kas lauj cerét, ka nav citu “aizliegto
konstrukciju”, kas nesatur kadu no $1 visparinajuma;

kopa ar Andri Ambaini formul&ta un pieradita Teoréma 8.1;

atrasta preciza varbiitiba konstrukcijai “k cikli paraléli” (Teoréma 8.2);

atrasta preciza varbiitiba konstrukcijai “0.7324... konstrukcija” (Teoréma 8.3).
kopa ar Maratu Golovkinu pieraditas svarigas varbitisku “reverséjamu” automatu
Ipasibas (Teorémas 9.2, 9.3 un 9.4);

kopa ar Martin Beaudry, Mark Mercer un Denis Therien atrasts precizs apraksts to
valodu klasei, kuras var pazit ar varbutisku “reverséjamu” automatu (Teoréma

9.5).
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1 Ievads

Kvantu skaitlo$ana ir jauns virziens, kurs$ ieklauj gan fiziku gan datorzinatnieku,
gan matematiku atklajumus, solot talejosas sekas. Pieméram, paradoties kvantu
kompjiiteriem publiskas atslégas (public-key) kriptografija radikali mainisies, jo jau
1997. gada Piters Sors (Peter Shor) paradija parsteidzosu polinomiala laika kvantu
algoritmu diskréto logaritmu aprékinasanai un naturalo skaitlu sadaliSanai
pirmreizinatajos [S 97].

Autors péta galigiem kvantu automatiem (GKA) piemitosas Tpasibas no formalo
valodu paziSanas iesp€ju viedokla.

Galigie automati ir teoretisks modelis klasiskai skaitloSanai ar galigu atminu.
Lidzigi ar1 galigie kvantu automati ir teortisks modelis kvantu kompjuteriem ar
ierobeZotiem resursiem. Kvantu skaitloSanas visparigakais modelis ir kvantu shémas
(quantum circuits), kas dod kvantu datoru iesp&u augs$€jo novertegjumu. Tacu
joprojam nav izdevies uzbiivét §adas sheémas (par spiti daudzu zinatnieku pulém). Tas
liek domat, ka pirmie kvantu datori nebus tik spécigi. Tatad tas ir ne tikai interesanti,
bet ar1 praktiski pétit vienkarSakus modelus nevis tikai visparigako kvantu
skaitloSanas modeli.

Ir ievesti dazadi galiga kvantu automata modeli. Sie modeli atikiras ar
mérjjumiem, kuri ir atlauti skaitloSanas laika. Visparigakais galiga kvantu automata
modelis ir galigi kvantu automati ar jauktiem stavokliem [AW 02, C 01, P 99]. Sis
modelis pielauj patvaligus mérijjumus un var pazit katru regularu valodu. Visvairak
ierobezotais galiga kvantu automata modelis ir vienreizéja mérijuma (measure-once)
modelis [CM 97]. Saja modeli visam parejam jabiit unitaram, izpemot vienu
mérijumu beigas, kas ir vajadzigs, lai nolasitu skaitlosanas rezultatu. Saja gadijuma
sada GKA pazistamo valodu klase sakrit ar permutaciju automatu pazistamo valodu
klasi.

1997. gada Kondacs un Vatrouss (Kondacs, Watrous) [KW 97] ieveda galiga
kvantu automata daudzmérijumu (measure-many) modeli. Sis modelis atlauj
mérfjumus skaitlo§anas laika. ST modela pé&tisana lauj saprast kadas pakapes mérfjumi
galigiem kvantu automatiem ir vajadzigi, lai pazitu noteiktas valodas. Autors ir

ieguvis svarigus rezultatus par §1 veida galigiem kvantu automatiem.
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Pirmais raksts [ABFK 99] (Pielikums A) tika izstradats 1999. gada. Lidz tam
bija zinams, ka eksisté valoda, kuru var pazit ar GKA ar varbiitibu 0.68..., tacu nevar
pazit ar varbiitibu 7/9+e (varbiitiskiem galigiem automatiem pareizas atbildes
varbiitiba var tikt palielinata patvaligi tikai ar ré€kinasanas atkartoSanu, tacu tas nav
speka galigiem kvantu automatiem). Mingtaja raksta Sis rezultats ir visparinats,
konstrugjot hierarhiju no regularam valodam, tadu, ka katru valodu $aja hierarhija var
pazit ar galigu kvantu automatu ar varbiittbu mazaku neka atbilsto$a varbiitiba
iepriek$gjai valodai hierarhija. ST varbiitibu virkne konvergé uz 1/2. Autora
ieguldijums ir varbiitibas apakigjais novértéjums katrai no hierarhijas valodam. Sis
raksts tika public@ts arT paplasinata versija [ABFK2 99] (Pielikums B).

Raksta [GM 99] ir formuléta probléma (Open problem 2.15) — vai $adu
hierarhiju var konstrugt valodam tikai divu burtu alfab&ta. ST probléma tika atrisnata
2000. gada kopa ar Zigmaru Rasscevski [KR 00] (Pielikums C). Interesanti, ka
varbiitibu apaksg€jais un arT augs€jais novertejums $tm hierarhijam sakrit.

1997. gada pirmoreiz tika paradits, ka eksist€ regularas valodas, kuras nevar
pazit ar GKA [KW 97]. Veélak Brodskis un Pipengers (Brodsky, Pippenger) [BP 99]
visparingja [KW 97] konstrukciju un paradija, ka katru regularu valodu, kas
neapmierina dajéja sakartojuma nosacijumu (the partial order condition), nevar pazit
ar GKA. Turklat vipi arT pienéma, ka visas regularas valodas, kas apmierina dalgja
sakartojuma nosacijumu, var pazit ar GKA.

Raksta [AKV 01] (Pielikums D) tika apgazts vinu pienémums, paradot, ka, lai
valoda biitu pazistama ar GKA, tds minimalais determinétais automats nedrikst
saturét dazus “aizliegtos fragmentus”. Viens no Siem fragmentiem ir ekvivalents ar to,
ka automats neapmierina dalgja sakartojuma nosacijumu. Par&jie fragmenti bija jauni.

Parsteidzosa lieta, kas attiecas uz “aizliegtajiem fragmentiem”, ir ta, ka tie
sastav no dazam dalam (atbilstosi dazadiem vardu sakumiem) un valodu, kas atbilst
katrai no tam, var pazit, tacu nevar pazit visu valodu kopa nezaudgjot unitaritati.

Regularu valodu apaksklasei (valodas, kas nesatur konstrukciju “divi cikli
rinda”) autors ir paradijis, ka Sie nosacTjumi ir nepiecieSami un pietickami, lai valodu
varétu pazit ar GKA. Tas bija pirmais S$ada veida rezultats galigiem kvantu
automatiem. Patvaligai regularai valodai ir vienigi zinams, ka §ie nosacijumi ir
nepiecieSami, bet nav zinams vai katru valodu, kas apmierina tos, var pazit ar GKA.

Raksta [AK 01] (Pielikums E, zurnala versija $§im rakstam: [AK 03], Pielikums

F) ir aplukotas precizas varbiitibas, ar kuram dazadas valodas var pazit ar GKA.

10
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Parsteidzosi, ka valodu klase, ko var pazit ar GKA, ir atkariga no varbiitibas, ar kadu
automatam ir jadod pareiza atbilde. Gandriz katra cita skaitloSanas modell pareizas
atbildes varbiitiba var tikt palielinata tikai ar r€kinaSanas atkartoSanu paral€li. Turklat
parasti §1 1paSiba tiek uzliikota ka actimredzama.

Saja raksta tiek paradita jauna metode, lai noteiktu maksimali sasniedzamas
varbiitibas, ar kuram GKA var pazit dotu valodu. Metode ir balstita uz GKA stavoklu
klasifikaciju (Iidzigi ka klasiskaja Markova k&zu gadijuma). ST stavoklu klasifikacija
tieck lietota, lai maksimalas varbiitibas problému parveidotu par kvadratisku
optimizacijas problemu. Tad tiek atrisinata $1 probléma (analitiski vienkarsakajos
gadijumos, ar datoru sarezgitakajos gadijumos).

Salidzinot ar ieprieks€jo darbu jaunajai metodei ir divas priekSrocibas. Pirmkart,
ta dod sistematisku celu ka izrekinat maksimali sasniedzamas varbitibas. Otrkart, ta
vienmér dod maksimalo varbiitibu precizi. leprieks€jas pieejas bija atkarigas no dotas
valodas un tam bija nepiecieSamas divas metodes: viena, lai iegttu varbutibas
apaks€jo novertéjumu, otra, lai iegiitu varbitibas augs€jo novertejumu. Turklat biezi
So divu metozu lietoSana deva atstarpi starp apak$€jo un augS$gjo novertejumu
(pieméram, 0.68... un 7/9+¢, ka jau tika minéts ieprieks).

Autors 2004. gada kopa ar Maratu Golovkinu ieguva nozimigus rezultatus
varbiitisku “revers€jamu” automatu (probabilistic reversible automata, VRA) joma
[FGK 04] (Pielikums G). Tika pieradits, ka valodu klase, kuru var pazit ar GKA
ir/nav slégta pret dazadam operacijam. Tika arT paradita cieSa sakariba starp diviem
jau agrak zinamiem nosactjumiem [GK 02], lai dotu valodu nevarétu pazit ar VRA.

Raksts [ABGKMT 04] (Pielikums H) arT ir izstradats pagajusaja gada. Taja tiek
analizeéti dazadi GKA modeli: modelis [BP 99] un jauns modelis (raksta $1 modela
automati tiek saukti par LatvieSu galigajiem kvantu automatiem (Latvian Quantum
Finite Automata)), kura definicija ir balstita uz kvantu skaitlosanu, kas izmanto NMR
(nukleo-magnétiska rezonanse) ka ari VRA modelis. Starp dazadam fizikalam
sisttmam NMR Iidz Sim ir bijusi visveiksmigaka realiz&jot kvantu kompjiteru ar 7
kvantu bitiem [VSBYSC 01]. NMR uzliek ierobezojumus kadi mérfjumi var tikt
izpilditi un jauna modela definicija tos apmierina. Tiek lietoti algebras teorijas
lidzekli, lai pétitu valodu klases, ko var pazit Sie GKA modeli.

Visiem trim modeliem tiek dots pilnigs apraksts tam valodam, ko Sie automati
sp&j pazit. Izradas, ka So automatu pazistamo valodu klases gandriz precizi sakrit, kas

ir Joti parsteidzosi, ja apskata So modelu atskiribas (piem&ram, NMR modelis atlauj

11
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jauktus stavoklus, turpreti Brodska un Pipengera modelis — neatlauj). Autora
ieguldijums §aja raksta ir pieradijuma atrasana (kopa ar Kanadas zinatniekiem Martin
Beaudry, Mark Mercer un Denis Therien) VRA pazistamo valodu aprakstam.

Promocijas darba nakosas nodalas ir veltitas autora public€to darbu plasakam
izklastam. Teorémam, kuram ir izlaisti pilni pieradijumi, ir dotas norades uz pilnu
pieradijumu pielikuma.

Otraja nodala tiek dots neliels ieskats kvantu skaitloSanas pamatos. Tresa un
ceturta nodala precizi defin€ galigu kvantu automatu.

Piekta nodala apskata galvenos rakstu [ABFK 99, ABFK2 99, KR 00]
rezultatus, sesta nodala ir visa veltita rakstam [AKV 01]. Divas nodalas (septita un
astota) ir veltitas rakstu [AK 01] un [AK 03] rezultatiem.

Devitaja nodala 1suma ir apliikoti raksti [FGK 04] un [ABGKMT 04] (no $t
raksta ir apliikota tikai teoréma, kuras pieradiSana ir piedalijies autors).

Autors izsaka pateicibu Rusinam Freivaldam par izcilu zinatnisko vadibu

gandriz desmit gadu garuma.

12
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2 Kvantu skaitloSanas pamati

Vispirms apliikosim viena bita sist€mas. Klasiskais bits var btt viena no diviem
klasiskajiem stavokliem frue vai false. Varbiitiskais bits var biit frue ar varbiitibu «

un false ar varbutibu £, kur a+ f=1. Kvantu bits (qubif) ir kaut kas loti 11dzigs
pedejam, tacu ar sekojosSu atSkiribu. Kvantu bitam o« un f var but patvaligi
kompleksi skaili ar Tpasibu ||| +]|| #|°=1. Ja m& mé&ram kvantu bitu, tad més

dabiijam true ar varbiitibu || «||> un false ar varbiitibu || 4> lidzigi ka varbiitiskaja
gadijuma. Tomer, ja més mainam kvantu sistému bez tas mériSanas (m&s zemak
izskaidrosim, ko tas nozimé), tad transformaciju kopa, kas var tikt izpildita ir lielaka
ka varbiitiskaja gadfjuma. ST arf ir ta vieta, kur slépjas kvantu skaitlosanas speks.

Visparigi més aplikojam kvantu sisttmas ar m bazes stavokliem. Mges
apzim&jam bazes stavoklus |q,).|¢,),...,|g,). Ar O apzim&am So bazes stavoklu
kopu. Piepemsim, ka y ir formala lineara kombinacija no tiem ar kompleksiem
koeficientiem

v=alg)+a,lg,)+...+a,lq,)

Lieluma y norma /, -metrika ir

lvl=vla F +la, P+ tla, .
Kvantu sistémas stavoklis var bt jebkurS y, kuram ||y ||=1. y tiek saukts par

stavoklu [g,),1q,),-.-,1q,,) superpoziciju. «a,,...,a, tiek saukti par stavoklu

m

1 q,),1q,),---,1q,,) amplitidam. Mes lietojam [,(Q) lai apzimétu vektoru telpu, kas
sastav no visam stavoklu | ¢,),|¢,)....,| g,,) linearajam kombinacijam.

Patvaligu kompleksu amplitidu pielauSana ir loti bitiska fizikiem. Tomer tas
nav tik svarigi kvantu skaitloSanai. Viss, kas var tikt izrékinats ar kompleksam
amplitiidam, var tikpat labi tikt izrékinats ar realam amplitidam. Kvantu Tjiringa
masinam tas ir paradits rakstad [BV 93] un Sis pats pieradijums der pie GKA. Tomér
loti svarigi ir, ka tiek pielautas negativas amplitidas. ST iemesla dé] més pienemsim,
ka visas amplittidas ir (iesp&jams, negativas) realas.

Ir divu tipu transformacijas, ko var pielietot kvantu sistemai. Pirmais tips ir

unitaras trasnformacijas. Unitara transformacija ir lineara transformacija U telpa

13
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1,(Q), kas saglaba /, -normu. (Tas nozimé, ka katrs y, kur ||y ||=1 tiek att€lots par
y', kur |ly/l=1.)

Otrs transformaciju tips ir mérijums. VienkarSakais mérfjums ir
v=alq)+a,lq,)+...+a, |q,) merisana baze |q,), q,),....|q,) . Tasdod |gq,) ar
varbiitibu «, un nosacijums ||y ||=1 garantg, ka dazado rezultatu varbiitibu summa
ir 1. PE€c mérijjuma sistémas stavoklis mainas uz |¢,) un talaka meérijjumu atkartoSana
dod So pasu | g;) .

Tiek lietoti ar1 daléjie mérijumi. Pienemsim, ka Q,,...,Q, ir pa pariem
savstarpgji neSkeloSas (O apakSkopas, tadas, ka Q uUQ,U..UQ, =0. E,
(jell,....k}) apzime {|q,): i €O, } linedro slegumu. Daljais merijums dod y € E;

ar varbutibu Za[z . P&c ta sistémas stavoklis kltst y projekcijauz E, .
ieQ;

14
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3 Galigi kvantu automati

Saskana ar [KW 97] GKA ir kortezs M =(0,%,V,q,,0,...0,,;), kar Q ir galiga
stavok]u kopa, X ir ieejas alfabéts, V' ir parejas funkcija, ¢, € O ir sakuma stavoklis,

0,.. <O ir akceptejoso stavoklu kopa un Q. < O ir noraidoSo stavoklu kopa. Kopu

rej
O, un Q. stavokli tiek saukti par halting stavokliem, bet kopas
Opon =0 (0, VO,,) stavokli tiek saukti par non halting stavokliem. ¢ un § ir

simboli, kas nepieder X . M&s lietojam ¢ un $ ka kreiso un labo endmarker. Automata
M darba alfabétsir T =X U {¢.$}.

Automata M stavokli. Automata M stavoklis var biit jebkura stavoklu no Q
superpozicija (t.i. jebkura lineara kombinacija no tiem ar kompleksiem
koeficientiem).

Parejas funkcija. Parejas funkcija V' ir att€lojums no I'x/,(Q) uz /,(Q) tads,
ka katram a eI’ funkcija V,:[,(Q) —[,(Q) definéta ka V, (x)=V(a,x) ir unitara
transformacija.

SkaitloSana. GKA darbu sak superpozicija |g,). Tad tiek pielietotas
transformacijas, kas atbilst kreisajam endmarker, ievada varda burtiem un labajam
endmarker. Transformacija, kas atbilst a € I", sastav no diviem soliem.

1. Vispirms tiek pielietota transformacija V, . Jauna superpozicija y' ir V,(y),
kur y ir superpozicija pirms $1 sola.

E E

acc rej ° non

2. Tad ' tiek mérits attieciba pret telpam FE kur

Eacc :Span{|q>:quacc}’ Erej :Span{|q> :qEQrej}7 Em)n :Span{|q> :qunon}‘

Ja més dabtjam y'e E, ., tad ievads ir akceptets. Ja mes dabujam y'e E, , tad

acc

ievads ir noraidits. Ja mes dabijam y'eE tad tiek pielietota nakosa

non
transformacija.

Sie divi soli tiek saukti par burta ¢ lasiSanu.
Apziméjumi. M@&s lietojam ¥, , lai apzZim&tu transformaciju, kas sastav no V, ar
sekojosu projekcijuuz E, . M&s lietojam ¥, , lai apzZim&tu Va Vc;n,] ...Va'2 Va'1 ,kur a, ir

non

i-tais burts varda w. Mes ari lietojam y , kas apzimeé GKA stavokla non-halting dalu

15
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- L - * —_ —_ —_ .
pec kreisa endmarker ¢ un varda yeX lasiSanas. No apzim&jumiem seko, ka

v, =V (140))-

Valodu paziSana. Mgs teiksim, ka automats pazist valodu L ar varbitibu p
1, . .
(p> E), ja tas akcepté katru vardu x € L ar varbiitibu > p un noraida katru vardu

x ¢ L ar varbitibu > p.

16
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4 Galiga kvantu automata piemers

Lai izskaidrotu definiciju mes konstruésim galigu kvantu automatu, kas pazist valodu

a’b” ar varbiitibu p=0.68.., kur p’ +p=1.
Automatam ir 4 stavokli: ¢,4,,9,.. W0 G, O =19ucts Oy =141y} -

Stavoklis péc ¢ lasiSanas ir /1—p|q,) +\/;| q,) - Parejas funkcija ir

V,(14,0) = (1= p)|4,) +[p(1=p) |4)) +/P 14,y
V.(lg)) =+ p(-p) gy +prla)—1-rlq,)
Villgo) =14,,7 > V(a0 =4,

Vs 90) = 9,0 > Vs(1010) = e -

Gadijums 1. levads ir x=a" .

Viegli redzet, ka parejas funkcija stavokli H ') +\/; |g,) att€lo par to
pasu kamér no ievada tiek sanemts burts a. Tas nozimé, ka lasot a  stavoklis
nemainas un péc $ lasiSanas tas kliist par H | qrej)+\/; |q,..). Tatad automats

akcepte ar varbiitibu p .

Gadijums 2. levads ir x=a'b".

Atkal stavoklis +/1-p|q,) +\/; |g,) nemainas kamér ievads satur burtu a.
Pirma b lasiSana maina stavokli uz /1-p |q,ej)+\/; | ¢,) . Non-halting dala no §1
stavokla ir \/; lg,). Ta nemainas lasot nakamos » un § lasiSana to attélo par

\/; |9...) - Atkal akcepteSanas varbitiba ir p .

Gadijums 3. Tevadsir x¢ a'b".
Saja gadijuma x sakuma fragments ir a'b*a* . Péc pirma b lasiSanas stavoklis

ir \1-plq,,) +\/; |g,). Saja momenta automats noraida ar varbiitibu 1— p. Non-

halting dala \/; lg,) péc pirma a lasiSanas tiek  att€lota par

17



Arnolds Kikusts

pyl-p |q0)+(l—p)\/;| q,)—vr(l-p)lq,,)- Saja bridi automats noraida ar

varbiitibu p(1- p). Non-halting dala p.1-p|q,) +(1- p)\/; |q,) nemainas lasot

nakamos a. Ta ka gan b gan § lasiSana g, att€lo par ¢, , tad automats noraida ar
varbiitibu p’(1- p). Tatad visu noraido$o varbiitibu summa ir vismaz

(A-p)+p(-p)+p*(l-p)=l-p+p-p°+p’-p'=1-p’ =p.

18
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5 Augsejais un apaksejais novertéjums valodam L, un L,

Saja nodala més konstruésim 2 dazadas hierarhijas no regularam valodam, tadas, ka
katru valodu $aja hierarhija var pazit ar galigu kvantu automatu ar varbiitibu mazaku

neka atbilstosa varbiitiba ieprieks$€jai valodai hierarhija.

Megs apliikosim valodu L, definétu n burtu alfabéta {a;, a,, ..., a,/}:
L, =aa,...a,
(var ieverot, ka gadijums, kad n=2, tika apliikots ieprieks€ja nodala.) un valodu L,

definétu 2 burtu alfab&ta {a,b}:

o .07 |1, =b,1,, = a}ja nir nepara skaitlis
"L L1, = a.l,, = b} janir para skaitlis

Vispirms pieradisim §adu teorému:

Teoréma 5.1. Valodu L, (n>1) var pazit ar galigu kvantu automatu ar varbiitibu p,

n+l

kur p ir vienadojuma p; + p =1 sakne intervala [1/2,1].

Pieradijums: Més lietojam lemmu:
Lemma 5.1. Katriem patvafigiem redaliem x, >0, x,>0, ..., x, >0 eksisté unitara

nxn matrica M, (x,,x,,...,x,) ar elementiem m, tada, ka

X, X, X

—_—, My = ——————, ..., M, = L
2 2
AX X

my, =

N " N

O
Ar m;apzimgjam elementus matricai M, (x,,x,,...,x,) no Lemmas 5.1. Mes
konstrugjam  kx(k—1) matricu 7, (x;,x,,...,x;,) ar elementiem ¢, =m, .

XX, o
> —. 1, apzimé

R, (x),%,,...,x,) apzIm€ kxk matricu ar elementiem 7, =
X, ... +x;

k x k vienibas matricu.
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n—1

Fiksétam n intervala [1/2,1] atrodam tadu p,, ka p"' + p, =1. Defingjam

k-1 k

pk(ISk<n):pF—p:j.Viegliredzét, ka pj+p,+...+p,=1un

2(k-1)

p,(p,+..+p,) PP, -
. (p k+ +p,)’ === =l =r (1)
1 T TPy

n—1
b,

n+l

Tagad més definésim GKA, kas pazist valodu L,. Automatam ir 2n stavokli:
4,,9,,---,4, ir non-halting stavokli, ¢,.,,9,.,,---,9,,, ir noraidoSie stavokli un g,, ir

akceptgjosais stavoklis. Parejas funkciju defin€sim ar unitaru bloku matricu palidzibu:

V:(Mm/pl,\/pz,--.,\/p,,) 0]
¢ >
0

n

R(piAPsselP)) T DiAPse P O
V, =| T ([pilPas D)) 0 0],
0

0 1

0 0 1 0 0
0 R.(pslP) O T (Jpyoinfp)) O
V,=|1 0 0 0 01,
0 T (JParelpy) O 0 0
0 0 0 0 1
I,

S O

0 0
Ry (fPsnP)) Ti (Dol P2)
0

0

0 0
0 T . (JDPir-onlp,) O 0
0 0 0 0

- o O O O

S O = O
S
- o O O
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Gadijums 1. levads ir x=¢a/a;...a,$.

Sakuma superpozicija ir |gq,). Péc ¢ lasiSanas superpozicija kliist par
\/p_l lq,) +\/p_2| q,) +...+\/Z |g,) unpéc a, lasiSanas superpozicija nemainas.

Ja ievads satur q,, tad pirma g, lasiSana superpozicijas non-halting dalu attelo
par \/p_k| q.) +...+\/p_n |g,) un vsu pargjo a, lasiSana $o superpoziciju nemaina.

Laba endmarker($) lasiSana |¢q,) att€lo par |q,,). Tap&c superpozicija pec ta
lasiSanas satur \/p_n |q,,) - Tas nozZimg, ka automats akcepte ar varbiitibu p, tapéc, ka

|q,,) ir akceptejoSais stavoklis.

Gadijums 2. levads it x=¢a/a,...aa,a,,... (k>m).

Péc pedegja a, lasiSanas  superpozicijas  non-halting dala ir

NP g+ 4P, g, - Tad a, lasiSana maina to uz
4/ +...+ A/ +...+

Pu (Ps p”)|qm>+...+ PPy p”)|qn>. Tas nozimé, ka automats
(p,+.--+p,) (p,+.--+p,)

pn(pk+"'+pn)2

akcept€ ar varbiitibu < >
(p,+---+p,)

(tapec, ka jebkura a, lasiSana superpoziciju

forma q (\/p_l, lg)+...+p,19,)) maina  par superpoziciju forma
¢, ({p;1g;)+...+4/p, 14,)), kur [¢, [2]c, |) un noraida ar varbiitibu vismaz

PPt D) PPt p)
(pm+"‘+pn)2 (pk—l+"‘+pn)2

kas seko no (1).

n?o

O

1
Secinajums 5.1. Valodu L, var pazit ar GKA ar varbitibu vismaz “+< radai
n

konstantei c.
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Teoréma 5.2. Valodu L, ar GKA nevar pazit ar lieldku varbitibu ka p, kur p ir
vienddojuma

2[)_1:2(1—19)Jr4 2(1-p)
n—1 n—1

sakne intervala [1/2, 1].

Pieradijums: Skatit Pielikuma A Teorémas 5 pieradijumu.

1
Secinajums 5.2. Valodu L, nevar pazit ar GKA ar varbitibu lieldku ka E+ 3 =
n_
n2
Pienemsim, ka n =2 un n,=—2L+1(k>1), kur ¢ ir konstante no
c

secinajuma 5.1. Defingjam p, = 5+i . Tad no Secinajumiem 5.1 un 5.2 izriet
ny

Teoréma 5.3. Katram k >1 valodu L, var pazit ar GKA ar varbitibu p,, bet nevar

pazit ar varbiitibu p, . a

Tatad ir konstru€ta valodu virkne L, , L, , ... tada, ka katrai valodai L,
varbutiba ar kadu to var pazit ar GKA ir mazaka ka valodai L, . Vienigais “minuss”

Sai hiearhijai ir, ka katra nakoSa hierarhijas valoda ir definéta lielaka alfabéta neka
ieprieksgja.

Raksta [GM 99] ir formuléta probléma (Open problem 2.15) — vai §adu
hierarhiju var konstruét valodam tikai divu burtu alfab&ta (noverSot to, ka alfabéts
pieaug atkariba no valodas kartas numura hierarhija). Nakosas tris teorémas (5.4, 5.5

un 5.6) atrisina So problému.

Teoréma 5.4. Valodu L, (n>1) var pazit ar galigu kvantu automatu ar varbiitibu p,
n+l

kur p ir vienddojuma pE + p =1 sakne intervala [1/2,1].

Pieradijums: Skatit Pielikuma C Teorémas 3.1 pieradijumu.

. 1
Secinajums 5.3. Valodu L, var pazit ar GKA ar varbitibu vismaz ~+< kadai
n

konstantei c.
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Teoréma 5.5. Valodu L, ar GKA nevar pazit ar lielaku varbitibu ka p , kur p ir
vienddojuma

2[)_1:2(1—19)Jr4 2(1-p)
n—1 n—1

sakne intervala [1/2, 1].

Pieradijums: Skatit Pielikuma C Teorémas 3.2 pieradijumu.

: 1
Secinajums 5.4. Valodu L, nevar pazit ar GKA ar varbitibu lieldku ka 5+ S ;
’/l —_—
n2
Piepemsim, ka 7, =2 un n, =—%L+1(k >1), kur ¢ ir konstante no
c

Secindjuma 5.3. Defingjam p, = E+i . Tad no Secinajumiem 5.3 un 5.4 izriet
ny

Teoréma 5.6. Katram k >1 valodu L'”k var pazit ar GKA ar varbiitibu p,, bet nevar

pazit ar varbiitibu p, ;. O
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6 NepiecieSamie un pietickamie nosacijumi

Vispirms mes 1si atzim€sim galvenos iepriek§gjos rezultatus par regularam valodam,
ko var pazit ar GKA. Valodas apskatisim lietojot to atbilstoSos minimalos
determin€tos automatus. Valodas minimalais determingtais automats ir galigs
determin€ts automats, kas pazist to, ar vismazako stavoklu skaitu. Ir labi zinams, ka

minimalais automats ir unikals un to var efektivi konstruét.

Teoréma 6.1. [AF 98] Dota valoda L. Pienemsim, ka eksisté tads vards x, ka L
minimalais determinétais automdts M satur stavoklus q,, q, tadus, ka izpildas
sekojosi nosacijumi.:

1. q,#q,,

2. lasot x no stavokla q, automats M pariet uz stavokli q,,

3. lasot x no stavokla q, automdts M pariet uz stavokli q,,

4. g, nav nedz “visu akceptéjoss” nedz ari “visu noraidoss” stavoklis.
- . 7 -
Tad valodu L nevar pazit ar GKA ar varbiitibu vismaz §+ & katram fiksétam & >0

(1. ziméjums).

1. Ziméjums. Teorémas 6.1 nosacijumi

Teoréma 6.2. [BP 99] Dota valoda L un tdas minimalais automats M. Pienemsim, ka
automdtam M izpildas visi 4 Teorémas 6.1 nosacijumi un vel sekojoss nosacijums:

5. eksiste tads vards y, ka, lasot to no stavokla q, automats M pariet uz
stavokli q, .

Tad valodu L nevar pazit ar GKA (2. ziméjums).

e "'\—\.n_,___:_I:___,_r_a-F @
2. ziméjums. Teorémas 6.2 nosacijumi
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Lidz [V 00] visam zinamajam regularajam valodam, kuras nevar pazit ar GKA,
bija Tpasibas 1-5. Saja nodala més aplikosim $adas valodas, kuras neapmierina $os
piecus nosacijumus un nav pazistamas ar GKA.

Ir arT daudzi rezultati [AF 98, K 98] par stavoklu skaitu, kas vajadzigs GKA, lai
pazitu dotu valodu. Dazos gadijumos tas var but eksponenciali mazaks par
ekvivalenta determinéta vai pat varbiitiska automata stavoklu skaitu [AF 98]. Tomér
citos gadijumos tas ir pat eksponenciali sliktaks ka ekvivalentam determin&tam
automatam [ANTV 98, N 99].

Pagaidam vél nav zinams, kada ir to valodu klase, ko var pazit ar GKA.

Tagad més dosim jaunu nosacijumu valodai, lai to nevarétu pazit ar GKA.
Lidzigi iepriekS€jam nosacijumam (Teoréma 6.2) tas tiek formuléts ka nosacijums par

valodas minimalo automatu.

Teoreéma 6.3. Dota valoda L. Pienemsim, ka eksisté tadi vardi x, y, z, un z,, ka L
minimalais determinétais automats M satur stavoklus q,, q, un q, tadus, ka
izpildas sekojosi 11 nosacijumi:

92 # 945,

lasot x no stavokla q, automdts M pariet uz stavokli q.,,

lasot x no stavokla q, automats M pariet uz stavokli q,,

lasot y no stavokla q, automats M pariet uz stavokli gq,,

lasot y no stavokla q, automats M pariet uz stavokli q,,

SN A o~

katram vardam t € (x|y)" eksisté vards t, € (x|y)" tads, ka, lasot tt, no

stavokla q, automadts M pariet uz stavokli q,,

7. katram vardam t € (x| y)" eksisté vards t, € (x|y)" tads, ka, lasot tt, no
stavokla q, automats M pariet uz stavokli q,,

8. lasot z, no stavokla q, automdts M pariet uz akceptéjosu stavokli,

9. lasot z, no stavokla q, automats M pariet uz noraidosu stavokli,

10. lasot z, no stavokla q, automats M pariet uz noraidoSu stavokli,

11. lasot z, no stavokla q, automats M pariet uz akceptéjosu stavokli.

- . 1 -
Tad valodu L nevar pazit ar GKA ar varbiitibu vismaz —+ € katram fiksétam & > 0.

Teoremas 6.3 pieradijums

Mes lietojam lemmu no [BV 97].
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Lemma 6.1. Ja v un ¢ ir divi kvantu sistémas stavokli, kuriem ||w —¢||< &, tad

variational distance (variational distance starp diviem varbiitibu sadalijumiem P, un
R, tiek definéta ka Zi|E—Ri |) starp merijumu uz y un ¢ rezultata iegitiem

varbiitibu sadalijumiem ir mazaka ka 2¢ .

3. zimejums. Teorémas 6.3 nosacijumi

MEs art lietojam lemmu no [AF 98].

Lemma 6.2. Dots x € X". Tad eksisté apakstelpas E,, E, tadas, ka E,, =E ®E,

non

un
(i) jayekE, tadV.(y)eE un ||V, ()=l wll,

(ii) jawekE,, tad || Vx'k W) ||— 0 pie k > 0.

Nakosa lemma ir misu visparinadjums Lemmai 6.2.
Lemma 6.3. Doti x,yeX’. Tad eksist¢ apakstelpas E,, E, tadas, ka
E., =E ®FE, un

() ja yeE, wd V.y)E un V,(p)E un V@)=l un

1V, ) =l v

(i)  ja weE,, tad katram & >0 un katram vardam te(x|y) eksisté

vards t, € (x| y)* tads, ka || V,[l < e.
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Pieradijums. Més lietosim E|, lai apzimétu telpu E, no Lemmas 6.2 vardam z.

Definésim E, ka ﬂElz . E, sastav no visiem vektoriem, kas pieder £, un ir

non
ze(xly)

perpendikulari E,. Talak més parbaudisim, ka (i) un (i) ir speka.

(1) Viegli redzet, ka visiem ¢ e (x|y)  vektora ||V, ()| norma nevar
samazinaties, jo y € E; .

Pienemsim pretgjo, ka ir w € E, un ¢, € (x| y)" tadi, ka Vt; (w) ¢ E,. Tatad
Seit arT eksisté ¢, (x|y)" tads, ka V,(w) nepieder E*. (Tas scko no E,
definicijas.) No Lemmas 6.2 seko, ka vektora V[: (w) norma var tikt samazinata.
Pretruna.

(i1) Skaidrs, ka, ja y pieder E,, tad katram fe(x|y) superpozicija
V' (w) ari pieder E,, tadel, ka ¥, un V, ir unitaras transformacijas un att€lo E, par
E, (un tapéc katrs vektors, kas ir perpendikulars telpai E, tiek att€lots par vektoru
perpendikularu telpai E,).

Vektora norma ||V, (w) || nepalielinas, ja més pagarinam vardu ¢ uz labo pusi
un ta ir ierobeZota no apaksSas ar 0. Tatad katram fiksétam & >0 més varam atrast

tadu vardu ¢ € (x| y)", ka katram o € (x| y)’

17, = 11V, ) < e

_ _ D e . . . £ _
Mgs atrodam vardu virkni ¢,, ¢,, ¢,, ... atbilstosi realu skaitlu virknei ¢, > .. ta,

NGO

ka izpildas iepriekSminéta 1pasiba. th' (w), V['2 (w), Vt; (w), ... ir ierobezota virkne
galiga skaita dimensiju telpa. Tapéc %ai virknei eksisté robeZpunkts y . Maés
paradisim, ka  =0.

Izsakam v ka y, +y,, kur y, € E, un w, € E,. Tad w, =0, jo vektora y
telpas E, komponente ir O (tapéc, ka y € E,) un vektoru Vt; (w), V[; (w), V[_; w), ...
telpas E, komponente arT ir 0, jo V,l attélo E, par E,. Tatad v € E,.

Pienemsim, ka ' # 0. Tas nozimg, ka kaut kadam z € (x| y)", ¥ ir nenulles

telpas E; komponente. Pietickosi daudzu z lasiSana samazina So komponenti,

tadejadi samazinot art vektora  normu.
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Ta ir pretruna ar faktu, ka katram @, ||V,)|=IV,, W) (o
NV, ) || =V, (w)]| ir mazaks ka jebkurs fikséts & > 0, kas ir speka, jo ir virknes
V), V., ), V, 1), ... robezpunks).

Tatad w =0, ko ari vajadzgja.

O

Pienemsim, ka L ir tada valoda, ka tds minimalais determingtais automats
satur “aizliegto konstrukciju” un M ir atbilstoSais GKA. Paradisim, ka M nevar
pazit So valodu.

Atradisim vardu @ tadu, ka péc ta lasiSanas minimalais automats ir stavokli
q,. Sadalisim vektoru y, divas komponentes attieciba pret telpam E, un E,:
v, =y, +y2, vl eE, y} eE,. Més atrodam vardu a € (x| )", ka péc varda xa
lasisanas minimalais automats ir stavokli g, un vektora y_  norma ir mazaka ka

fikséta o > 0. (Tads vards eksiste, jo ir speka Lemma 6.3 un 6. un 7. nosacijums.)

Megs ar1 atrodam vardu b ar tadam paSam Ipasibam tikai attieciba pret vardu y .

Katram fikseétam &>0 eksist€ naturali skaitli i un ; tadi, ka

1 1 1 - = . =
I Y iray Vo <& un | 7 -yl |<e tapéc, ka ¥V, un V, ir unitaras

N )
transformacijas telpa E,.

VienkarSibas d€] varam pienemt, ka 6 = ¢ =0 (Sis pienémums ir korekts del
Lemmas 6.1).

Pienemsim, ka p ir varbiitiba, ar kadu M akcepté lasot vardu ¢w, p, — lasot
vardu (xa)', p, —lasot vardu (yb)’, p, —lasot vardu z,$ un p, —lasot vardu z,$.

Apliakosim ¢etrus vardus ¢w(xa)'z,$, ¢w(xa)'z,$, ¢w(yb)’z$ un
¢w(yb)’ z,$. Lasot pirmo vardu, M akcepté ar varbiitibu p + p, + p,. Lasot otro
vardu, M akcepté ar varbiitibu p+ p, + p,. Lasot treSo vardu, M akcepte ar
varbutibu p + p, + p,. Lasot ceturto vardu, M akcepte ar varbutibu p+ p, + p,.

Akceptesanas varbiitibu summa diviem vardiem, kas pieder L (pirmais un
ceturtais) ir vienada ar akcepté€Sanas varbutibu summu diviem vardiem, kas nepieder

L (otrais un tresais). Tatad M kadu no Siem vardiem nepazist pareizi.
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Valodam, kuru minimalais automats nesatur 4. zimg&jama paradito konstukciju,
Teorémas 6.3 nosacijums kopa ar Teor€mas 6.2 nosacljumu ir nepiecieSams un

pietiekams.

Teoréema 6.4. Piepemsim, ka U ir valodu klase, kuru minimalais determinétais
automats nesatur “divus ciklus rinda” (4. zimeéjums). Valodu, kas pieder U var pazit
ar GKA tad un tikai tad, ja tds minimalais automats nesatur “aizliegto konstrukciju”

no Teoremas 6.2 un “aizliegto konstrukciju” no Teorémas 6.3.

Teoremas 6.4 pieradijums
Skaidrs, ka, ja minimalais determin&tais automats satur kaut vienu no Teorému 6.2 un

6.3 “aizliegtajam konstrukcijam”, tad valodu nevar pazit ar GKA.

4. Ziméjums. Teorémas 6.2 nosacijumi

Tam gadfjumam, kad minimalais automats M neastur nevienu no
“aizliegtajam konstrukcijam”, més konstruésim GKA, kas pazist atbilstoSo valodu L.

Tapéc més lietojam teorému no [AF 98].

Definicija 6.1. Galigs reversible automats ir galigs determinéts automats, kura

katram stavoklim g un burtam a ir ne vairak ka viens stavoklis q tads, ka lasot

burtu a stavokli ¢ automats pariet uz stavokli q .

Katrs reversible automats ir specialgadijums kvantu automatam. (Ja katram
stavoklim ¢ un katram burtam «, ir tie§i viens stavoklis ¢, ka a lasTsana ved uz
stavokli ¢, tad burts a nosaka kaut kadu automata stavoklu permutaciju un atbilstosa

kvantu automata transformacija ir tiri unitara.)
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Teoréma 6.5. Dota valoda L un tdas minimalais automats M. Ja M nesatur
Teorémas 6.1 “aizliegto konstrukciju”, tad valodu L var pazit ar reversible

automatu.

Automata M parejas funkciju apzimésim ar V' un sakuma stavokli ar ¢,,.

Automatu M var sadalit n+1 dalas B,, B,, ..., B,, A ar sekojosam

ipaSibam: no katra stavokla g € B, lasot jebkuru vardu automats var atgriezties
atpakal stavokli ¢ péc kaut kada varda lasiSanas; 4 sastdv no visiem pargjiem
stavokliem, t.i. stavokliem, kas nepieder B, U B, U...U B, . Divi dazadi stavokli g,
un g, pieder vienam un tam paSam B, tad un tikai tad, ja g, ir sasniedzams no g, un
g, ir sasniedzams no ¢,. Viegli redzet, ka nav tada B, , kas saturetu Teorémas 6.1
konstrukciju. (Citadi Seit butu ar1 konstrukcija no Teorémas 6.2.)

Tatad katram burtam a un katram stavoklim ¢ no B, ir tiesi viens ¢ tads, ka
lasot a stavokli ¢ automats pariet uz ¢, t.i. katrs burts nosaka kadu B, stavoklu
permutaciju. (Sadi automati B, tiek saukti par permutaciju automatiem.) Tas nozimé,
ka katram ge A un B, eksistt vards x un g, € B, tadi, ka V(g,x)=¢g, un
V(g,,x) =q,. Tatad 4 nesatur konstrukciju no Teorémas 6.1. (Citadi Seit biitu “divi

cikli rinda” fragments.)

Vel vairak: Seit nav tada B,, kas satur 5. Zim&juma paraditas konstrukcijas
stavoklus ¢, un ¢q, reizé. (Pienemsim pret&jo. Tad Seit eksisté tads vards a, ka
V(q,,a) ir akceptgjoSs stavoklis (vai noraidoSs stavoklis) un V' (g,,a) ir noraidoSs
stavoklis (vai akcept&joss stavoklis) un nav tada varda /, ka V(g,,/) ir noraidoSs
stavoklis (vai akcept&joss stavoklis) un V' (g;,/) ir akcept&joss stavoklis (vai noraidoSs
stavoklis), jo M nesatur Teorémas 6.3 konstrukciju. Més apzim&jam V(q,,a) ar q,,.
un V(q;,a) ar q,,. Skaidrs, ka Seit ar1 eksist€ vards b, ka V(q,,,b) = q,,. . Turklat
stavokli V' (g,,ab) un V(q,,ab) ir akcept&josi stavokli (V' (q,,ab) ir akcept€joss, jo
V(q,,ab)=V(q,,;,ab)=q,,. un V(q;,ab) ir akcept€joss tapec, ka, ja tas butu
noraidoSs, tad stavokli ¢g,, g, un g, veidotu Teorémas 6.3 konstrukciju ar @ un ab ka

z, un z,.). Lidzigi ar1 stavokli V(g,,abb) un V(q,,abb) ir akceptgjosi stavokli,
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stavokli V(q,,abbb) un V(q,,abbb) ir akceptejosi stavokli un ta talak. Tomer Seit
noteikti eksisté k, ka V(q,,ab" )=V(g;,a)=gq,, (tapec, ka B, ir permutaciju

automats un tatad tas noteikti atgriezas sakuma stavokli pec kada daudzuma burtu b

lasiSanas) . Tas arTt mums dod pretrunu.)

/ 1

\

!
o)

5. Ziméjums.

Miisu konstrukcijas galvena ideja ir, ka katra B, meés izv€lamies vienu
stavokli, kas reprezenté sakuma stavokli ¢,. Formali tas nozimé, ka katra B, ir tads
stavoklis ¢, ka, ja V(q,,x) pieder B,, tad V(q,,x) =V (q,x) (citadi B, saturétu 5.
Zim&juma paraditos stavoklus ¢, un g, reize.). Sos stavoklus apzim&jam ar ¢ -

Skaidrs, ka visiem stavokliem ¢, g, vai nu nav tada varda x, ka V(g,,x) ir
noraidoSs stavoklis un V(g,,x) ir akcept€joSs stavoklis (sauksim to par rej-acc
attiecibu) vai arT nav tada varda x, ka V(q;,x) ir akcept€joss stavoklis un V(g,,x) ir

noraidoS$s stavoklis (sauksim to par acc-rej attiecibu). Citadi M saturétu Teorémas 6.3
konstrukciju.

Ar a; apzZimgjam to B, skaitu, kur starp stavokliem ¢, un g, ir acc-rej

attieciba.
B, B,, .., B,; apzim& atbilstoSos reversible automatus (ar sakuma
stavokliem ¢,, ¢,, ..., q,) automatiem B, B,, ..., B, (5adi automati eksistg, jo ir

speka Teoréma 6.5 un automati B, B,, ..., B, nesatur Teorémas 6.1 konstrukciju).

A apzimg atbilstoSo reversible automatu automatam A ar vienu izp€mumu: kad

automaats M nonak stavokli, kas pieder B, U B, U...U B , tas akcepté ar varbiitbu

n—a; i

. _ +1
un noraida ar varbutibu .
n+l1 n+l1
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Definésim GKA, kas pazist valodu L. Faktiski tas sastav no n+1 neatkarigiem
kvantu automatiem (A4, Bll, B;, e B'n), kas katrs strada ar zinamu varbutibu
(amplitadu). Var redzet, ka tada gadijuma visi automati kopa nezaud€ unitaritati (t.i.
visi kopa joprojam veido kvantu automatu). Automats 4 strada ar varbiitibu

. [ 1 .
ntl (ar amplitudu L) un katrs B, strada ar varbiitibu
2n+1 2n+1

[ 1
amplitudu ,[— ).
P 2n+1 )

Gadijums 1. V(q,,x) € A. GKA pazist x ar varbiitibu p.

ar
2n+1 (

Gadijums 2. V(q,,x)€ B, un xe L. Automats A akcepté $o vardu ar

_ai

. Turklat $o vardu akcepté vismaz @, automati no B,, B,, ..., B,.

n

n
varbutibu
n+1

Tas nozime, ka kopgja akcept€Sanas varbiitiba ir vismaz

n—a, n+1+ai+l_n+1_
n+l 2n+1 2n+1 2n+1 P

Gadijums 3. V(q,,x)€ B, un x¢ L. Lidzigi ka iepriek§€ja gadijuma mes

varam dabiit, ka kop&ja noraidiSanas varbitiba ir vismaz p.

Teoréma 6.4 var tikt visparinata uz jebkuru skaitu Itmenu (cikli sekojosi viens
otram) un jebkuru skaitu sazarojumu katra Iimeni.

1. Itmenis $aja konstrukcija sastav no stavokla ¢, un daZiem vardiem a,,, a,,,

2. lIimenis sastav no stavokliem ¢,,, ¢,,, ... , kur automats nonak, ja tas lasa
kadu vardu no 1. l[imena, esot stavokli no 1. Iimena. Tiek pieprasits, ka, ja automats ir
kada stavokli no 2. [imena un lasa jebkuru virkni no vardiem, kas sastav no 1. [imena
vardiem, tad tas var atgriezties $aja stavokli, lasot kadu virkni, kas sastav no 1. [imena
vardiem. 2. Itmenim arT ir dazi vardi a,,, a,,, ., ...

3. limenis sastav no stavokliem ¢,,, g;,, ... , kur automats nonak, ja tas lasa

kadu vardu no 2. Iimena, esot stavokli no 2. Iimena. Tiek pieprasits, ka, ja automats ir

kada stavokli no 3. [imena un lasa jebkuru virkni no vardiem, kas sastav no 2. [imena
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vardiem, tad tas var atgriezties $aja stavokli, lasot kadu virkni, kas sastav no 2. [imena

vardiem. 3. Itmenim arT ir dazi vardi a;,, a,,, a,;, ...

n-tais Iimenis sastav no stavokliem ¢,,, ¢q,,, ... , kur automats nonak, ja tas

lasa kadu vardu no n—1. [imena, esot stavoklt no »—1. Iimena. Turklat Sim I[Tmenim ir

zinams, kuri stavokli ir akcept&josi un kuri ir noraidosi.

Apzime@sim visus dazados §1s konstrukcijas vardus ar a,, a,, a,, ..., a,,.
Vardam a; un j-fajam limenim konstruésim stavoklu kopas B, un D,.
Stavoklis g no j+1. limena pieder B, ja vards a, pieder j-fajam limenim un M pariet

uz g pec kada no a; lasiSanas no kada stavokla no j-fa limena. Stavoklis pieder D, , ja

stavoklis pieder n-fajam limenim un tas ir sasniedzams no B, .

Teoréma 6.6. Valodu nevar pazit ar GKA, ja katra D, akceptejoSo stavokju skaits ir

viendds ar noraidoso stavoklu skaitu.
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7 GKA vs. RFA

RFA (galigs reversible automats, definiciju skatit iepriek$gjaja nodala) ir
specialgadijums GKA, kur rezultats tiek izdots ar varbiitibu 1. Tatad jebkuru valodu,
kura nesatur Teorémas 6.1 konstrukciju, var pazit ar GKA, kas vienmér dod pareizu
atbildi. Ambainis un Freivalds [AF 98] ar1 paradija apgriezto apgalvojumu
ieprieks€jam: katru valodu L, kuras minimalais automats satur Teorémas 6.1
konstrukciju nevar pazit ar varbitibu lielaku ka 7/9.

Mes aplikojam jautajumu: kada ir maksimali sasniedzama pareizas atbildes

varbiitiba galigam kvantu automatam valodai, kuru nevar pazit ar RFA? Un atbilde ir:

Teoréma 7.1. Pienemsim, ka dota valoda L un M ir tas minimalais automats.

1. Ja M satur Teorémas 6.1 konstrukciju, tad L nevar pazit ar GKA ar

varbiitibu lielaku ka p=(52+4+/7 )/81=0.7726....
2. Eksisté valoda L, kuras minimalais automats M satur Teorémas 6.1

konstrukciju ~ un  kuru  var pazit ar GKA ar  varbitibu

p=(52+4/7)/81=0.7726....

Pieradijums: Mgs apliikojam sekojoSu optimizacijas problemu:

Optimizacijas problema 1. Atrast maksimumu p tadu, ka eksisté galigas
dimensijas vektoru telpa E,,,;, apakstelpas E,, E, tadas, ka E, L E,, vektori v;, v, tadi,
ka v, L v, un|v; + v,|=1 un varbiitibas p,, p, tadas, ka p, +p2=||vz||2 un

L Pavi + w2 p,
2. |P)IP+p 2 p,
3. pp < 1-p.

Tagad mé&s paradisim saistibu starp GKA, kas pazist L un $o optimizaciajws
problému. Pienemsim, ka Q ir GKA, kas pazist L. Ar pu, apzim€sim vismazako
pareizas atbildes varbiitibu automatam @ no visiem vardiem. Mgs lietojam Q, lai
konstrutu optimizacijas problémas gadijumu ar p=> pn.

Proti, més skatamies, kas notiek, ja Q lasa bezgaligu (vai loti garu galigu) virkni
no burtiem x. Pec Lemas 6.2 seko, ka m&s varam sadalit sakuma stavokli  divas

dalas € E| un y,€kE,. Defingjam vi=y | un v;= ,. Pienemsim, ka p; un p, ir
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varbiitibas nokliit akcept&josa (varbutibai p;) vai noraidosa stavokli (varbitibai p,)
kamér automats Q lasa bezgaligu virkni no burtiem x sakot no stavokla v,. No
Lemmas 6.2 otras dalas seko, ka p; + po=|jva|™.

Ta ka g, un ¢, ir minimala automata M dazadi stavokli, tad eksisté tads vards y,
kas tiek akcept€ts no viena no tiem, bet ne no otra. Nezaudgjot visparigumu mes
varam piepemt, ka vards y tiek akceptéts, ja M sak darbu stavokli g;, bet netiek
akceptets, ja M sak darbu stavokli ¢,. Ta ka ¢, nav “visu akceptgjoss” stavoklis, tad
noteikti eksiste vards z, kas tiek noraidits, ja automats M darbu sak stavokli g.

Mgs izvelamies £, un E, ta, ka vektora v projekcijas P, (P,) uz E, (E,) kvadrats
ir vienads ar akceptéSanas (noraidiSanas) varbiitibu automatam @, ja Q darbu sak
stavoklT un lasa vardu y un labo ‘endmarker’ §.

Visbeidzot, ar p m&s apzim&jam varbiitibu kopas, kas sastav no pareizo atbilzu
varbiitibam automatam @ vardiem y un x ¥, X'z visiem ie Z , infimu.

Tada gadijuma optimizacijas problémas 1. nosacijums [|P,(vi + w)|* = p ir
speka, jo vards y ir jaakcepté un akceptésanas varbutiba Sim vardam ir tieSi sakuma
stavokla v; + v, projekcijas uz E, kvadrats.

2. nosacijums seko no ta, ja automats Q lasa vardu x' y kadam lielam i. P&c

Lemmas 6.2 seko, ka kadam &, kuram i >k : [ ()< . vi, V' (v1), V7 o (v), ...

ir bezgaliga virkne galigas dimensijas telpa. Tatad tai eksist€ robezpunkts un eksisté
tadi i, j,i>k, ka

| V. (v1)- Y (vl <e.
Skaidrs, ka

V' (v1)- iy )= V-1 (v1).

Taka [V, (w)l=lly |l ja w e Er, tad [V 5 (- V7 O))E[vi- 77 (vl un
vi- 7 sl < .

Tatad x’ lasi§ana dod sekojosu efektu:
1. v tiek att€lots par stavokli, kas nav talak par ¢ (/, metrika) no vy,
2. v, tiek attelots par akcept&josSu/noraidosu stavokli un ne vairak par & daluno ta

paliek ‘non-halting’ stavok]os.
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Sie divi nosacijumi kopa nozimé, ka automata Q stavoklis péc x' lasiSanas nav lielaka
attaluma ka 2 ¢ no v;. Un akceptéSanas un noraidiSanas varbutibas kamér tiek lasits
vards x' no p; un p; at$kiras ne vairak par ¢.

Arp iy apzimésim automata Q noraidi$anas varbutibu vardam x'y. Ta ka vards y
no stavokla ¢, ved uz noraidoSu stavokli, tad vards x'y ir janoraida un Py, > p.
Varbiitiba p i, sastavno divam dalam: noraidiSanas varbiitiba kamér automats lasa

vardu x’ un noraidiSanas varbutiba kamér automats lasa vardu y. Pirma dala atSkiras
no p, ne vairak par ¢, otra dala atskirds no ||P.(v,)||* par ne vairdk ka 4 ¢ (tapec, ka
automata Q stavoklis péc y lasiSanas no v; atSkiras ne vairak par 2 & un péc Lemmas
6.1 akcept€Sanas varbiitiba atskiras ne vairak ka divreiz). Tapec

P, SeIPO)I+p<p, e
Ta ka P, > p, tad tas nozimg, ka p—5& <||P.(v))|+ po. Atbilstosi izvéloties i més

varam panakt, ka tas ir speka katram &>0. Tatad p<||P,(v)|[*+ p», kas arT ir 2.
nosacijums.

3. nosacTjumu var iegiit apliikojot vardu x'z. So vardu automatam Q ir jaakcepte
ar varbiitibu p. Tatad katram i automats Q kamér lasa x' drikst noraidit tikai ar
varbtitibu 1-p un tatad p, <1-p.

Tatad neviens GKA nevar sasniegt lielaku pareizas atbildes varbiitibu par
Optimizacijas problémas 1. atrisinajumu. Atliek tikai atrisinat So problému.

Optimizacijas problémas 1. atrisinasana.

Atrisinajuma ideja ir paradit, ka Sai problémai pietiek apliikot tikai 2-dimensiju
gadijumus.

Ta ka vy Lv,, vektori vy, vy, vi+v, veido taisnlenka trijstiiri. Tas nozime, ka
[Vill=cos B ||[vitval=cos B, ||val[=sin g ||vit+va|[=sin £, kur S ir lenkis starp v; un vi+v;.
Ar w; un w, apzZim@sim vektoru v; un v, normalizgtos vektorus: wi= vi/|| vi||, wa= vo/||
v||. Tad vi=cos S w; un v,=sin S w,.

Aplikojam 2-dimensionalu apakstelpu, ko veido vektori P,(w;) un P.(w;). Ta ka
akcept€Sanas un noraidiSanas apakstelpas £, un E, ir perpendikularas, tad P,(w;) un
P,(wy) ar1 ir perpendikulari. Tatad vektori w,= P,(w1)/|| P.(w1)| un w,= P,(wy)/||

P,(wy)|| veido ortonormé&tu bazi. Parrakstisim vektorus wy, v, vi+v, Saja bazeé. Vektors
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wy ir (cosa, sina ), kur « ir lenkis starp w; un w,. Vektors vi=cos # w; ir vienads ar

(cos f cosa, cos f sina).

Tagad aplikojam vektoru v;+v,. Més fiks€jam «, £ un v; un mekl&jam v,, kas

maksimize p fiks€tiem o, £ un v,. Vieniga vieta, kur optimizacijas problema paradas

v, ir 1. nosacijuma kreisaja pusé: ||P.(vi + v,)|[*. Tatad vajag atrast v,, kas maksimize

IPo(v1 + v2)|*. Mums ir divi gadfjumi:

1.

azpf.
Lenkis starp vi+v, un w, ir vismaz a— f (tapéc, ka lenkis starp v; un w, ir ¢ un
lenkis starp vi+v, un v; ir ). Tatad vektora v|+v; projekcija uz w, nev lielaka par
cos(a—B). Ta ki w, pieder E,, tad |[Pu(vi + vo)|*<cos’(a— /). Maksimumu
|Po(vi + w)|[’=cos*(a— ) var sasniegt, ja vektors v; + v, atrodas plakng, kuru
veido vektori w, un w,: v + vy=(cos(a— ), sin(a— f3)).
Talak mes parrakstam 3. nosacijumu ka 1-p,>p. Tad 1.-3. nosacijumi nozimé, ka
pmin(|Pu(vi + v2)|%, IP)IF+ pas 1-p2). M)
Lai atrisinatu optimizacijas problému mums vajag maksimizét p. No
augSminétajam izteiksmém seko, ka (1) ir vienads ar
p=min(cos*(a—f3), sin’ @ cos® B+ p,, 1-p»). 2)
Vispirms més maksimizésim min(sin’c cos® f+ py, 1-ps). Pirmais lielums
palielinas, ja palielina p», otrais samazinas. Tatad maksimums tiek sasniegts, kad
abi ir vienadi, kas notiek, ja p,=(1-sin” @ cos® £ )/2. Tad abi sin”a cos® f+p, un 1—
p ir vienadi ar (1+sin® & cos® £)/2. Tatad mums ir jamaksimize

1+sin? acos? S
2

p=min(cos*(a—f3), ). (3)

Vispirms més fiks€jam o—f un méginam optimimizet otru lielumu. Ta ka
sina cos f=(sin(a+ f)+sin(a— fF))/2, tad tas tiek maksimizets, kad a+ f=x/2

un sin(a+ #)=1. Tad f=7/2—ca un (3) klust par

. 1+sin* a
p=m1n(s1n22 a, — ). 4
Pirmais lielums palielinas, ja palielina ¢, otrais samazinas. Tatad maksimums tiek
sasniegts, ja

. 4
. 1+sin” o
sinf2g=—">"—=

)
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Izteiksmes (5) kreisa puse ir vienada ar 4sin’ @ cos’ a=4sin’a (1-sin’a). Ja més
apzimgjam sin“a ar v, tad (5) klast vienads ar 4y(1—y)=(1+y2)/2. Atrisinot $o
vienadojumu més dabtijam y=(4+\/7 )/9 un 4y(1—y)=(52+4\/7 )/81=0.7726....
a<p.

Mgs apliikojam min(||P.(v))|[*+ p2, 1-p2)=min(sin® & cos® B+ p,, 1-p,). Ta ka divu
lielumu minimums nav lielaks par So lielumu vidgjo, tad §is minimums nav lielaks
ka

1+sin’ acos® S
2

(6)

1+sin? Bcos? S
2
maksimizéts, kad sin’ £ =1/2. Tad mes dabijam, ka (1+1/4)/2=5/8, kas ir mazak

. Tas tiek

Ta ka a<pf, tad sina<sin £ un (6) ir ne lielaks par

ka p=0.7726..., ko me€s ieguvam pirmaja gadijuma.

Tatad teorémas pirma dala ir pieradita.

GKA Kkonstruésana.

ST dala tiks pieradita izmantojot optimizacijas problémas atrisinjumu un lietojot

to més konstruésim GKA, kas pzist valodu a” definétu divu burtu alfabéta {a,b}. g, ir

minimala automata sakuma stavoklis, g, ir stavoklis, kur automats nonak lasot a, x=a,

y ir tukSais vards un z=b.

Pienemsim, ka o ir vienadojuma (5) atrisinajums. Tad sin2a=(4+\/7 )/9,

cos2a=l—sin2a=(5—\/7)/9, cos2a=cosza—sin2a=(l—2\/7)/9, 00522a=(1—

27 Y/81=(29-4+7 )/81 un sin®2 @ =1-cos2a=(52+4~/7 )/81. sin2¢ ir pareizas

atbildes varbitiba priek§ GKA, kas ir aprakstits zemak.

Automatam M ir 5 StéVOkh: q0, 41, Yacc, qrej un qrejl- Qacc:{Qacc}s Qrej:{ qreja

Grej1 § - Sakuma stavoklis (péc kreisa “endmarker” nolasiSanas) ir sina |go) +cosa|g: ) .

Parejas funkcija ir:

l+sin’a cosa
Va(lgo) Y=lgo) » Vallgr) =) ———— ace) +—=l4rej) »
2 N

Vellgo) )=1grei) » Villgr ) =1gre ) »

Vs(190) )=SIn & |qace) €08 & |41 ) » Vs(1q1) )=-COS & |quce) +sin |qre;) -

38



Arnolds Kikusts

Lai pazitu valodu L, automatam M jaakcepte visi vardi, kas ir forma a', ja />0 un

janoraida tukSais vards un katrs vards, kas satur vismaz vienu burtu b.

1. Tuksais vards.
Vieniga transformacija, kas tiek pielietota sakuma stavoklim, ir V. Tatad beigu
superpozicija ir
Vs(sina|go) +cosa g ) )=( sin’ @ —cos’ & NGace) T2sina cos a |q,;) -
|g,;) amplitiida beigu superpozicija ir 2sine cos ¢ =sin2 ¢ un vards tiek noraidits
ar varbiitibu sin*2 & =0.7726....
2. d,i>0.

Vispirms V, komponenti cos |q;1) att€lo par

cos /1+sin2a| >+coszoz| y
2 Gacc \/5 drej) -

Saja momenta akcept&$anas varbitiba ir cos’a (1+sin2 a)/2. Otra superpozicijas
komponente, sina |qq) , paliek nemainiga kamér Vs to attélo par
Sin” ¢t |qaee) +sinar cos |Grej) -
Akceptesanas varbiitiba $aja momenta ir sin*e . Tatad kopgja akceptesanas
varbitiba ir
cos® & (1+sin® & )/2+sin* @ =(1-sin? & )(1+ sin® & )/2+sin* o =(1+sin* & ) 2.
P&c vienadibas (6), tas ir vienads ar sin2a.
3. Vards, kas satur vismaz vienu burtu b.
Ja b ir pirmais varda burts, tad visa superpozicija tiek att€lota uz noraidoSiem

stavokliem un vards tiek noraidits ar varbtibu 1. Ja pirmais burts ir a, tad

. [1+sin? 2
cosalqr) tiek attelots par cosa % |qacc>+%|qrej). Akceptesanas

varbiitiba $aja momentd ir cos’a (I+sin’a )/2=(1-sin*a )(1+ sin’a)/2=(1-
sin*@)/2. Péc vienadibas (6) tas ir vienads ar 1-sin’2¢. Atlikusi komponente
sina|qo) nemainas p&€c nakamajiem burtiem a, bet tiek att€lota uz noraidosu
stavokli péc pirma b. Tatad kop&ja akcept€Sanas varbiitiba ir 1-sin”2 & un pareiza

atbilde (noraidisana) tiek dota ar varbiitibu sin2a .
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8 “Nereverséjamas” konstrukcijas

Megs tagad apliikosim minimala automata fragmentus, kas nozimée, ka valodu nevar
pazit ar varbatibu lielaku ka p, daziem p. Sadus fragmentus m&s sauksim par
“nereversejamam konstrukcijam”. Vienkar$aka sada konstrukcija ir Teorémas 1
konstrukcija. Saja nodala més paradisim vél 3 “nereversgjamas konstrukcijas”, kuras
nozimg, ka valodu nevar pazit ar varbiitibu vairak ka 0.7324..., 0.6894... un k/(2k-1).
So 4 “nereverséjamo konstrukciju” salidzinasana palidz saprast, kas liek vienai vai
otrai valodai but griitakai priek§ GKA (t.i. pazistamai ar sliktaku pareizas atbildes

varbiitibu).
8.1 “Divi cikli rinda”

ST konstrukcija nak no valodas a'b". ST valoda bija pirmais piemérs valodai, kura var
pazit ar GKA ar kaut kadu varbutibu (0.6822...), bet nevar pazit ar citu (7/9+&»).
Mes atrodam “nereverséjamu” konstrukciju S$ai valodai un konstrugjam GKA ar

vislielako iesp&jamo akceptéSanas varbutibu.

Teoréma 8.1. Pienemsim, ka dota valoda L un M ir tas minimalais automats.
1. Ja M satur stavoklus qi, q» un q3 tadus, ka kaut kadiem vardiem x un y,
(a) lasot x no stavokla q, automdts M pariet uz stavokli q,,
(b) lasot y no stavokla q, automats M pariet uz stavokli q,,
(c) lasot y no stavokla q, automats M pariet uz stavokli q»,
(d) lasot x no stavokla q, automdts M pariet uz stavokli q;,
(e) lasot x no stavokla q; automats M pariet uz stavokli ¢
tad valodu L nevar pazit ar GKA ar varbiitibu lielaku ka 0.6894....
2. Valodu a'b" (kuras minimalais automats satur augsminéto konstrukciju) var pazit

ar GKA ar varbiitibu 0.6894....

) ) )
(o))

6. zim&jums. Teorémas 8.1 nosacijumi
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Pieradijums. Ar redukciju uz sekojoSu optimizacijas problemu.

Optimizacijas probléema 2. Atrast maksimumu p tadu, ka eksisté galigas
dimensijas vektoru telpa E, apakstelpas E,, E, tadas, ka E, L E,, vektori v, v, un v3

un varbutibas p,1, pi1, Pa2, Pro ta ka:

[u—

v vz +vsf=L

.vi Lo,

vitvatvs Loy,
vty Lovs,

vsl? = partpn,

vall? = partpia,
NPa(vi + vy +3)|F = p,
NPavi + VD)l +par = p,

NPIP +part paz < 1-p.

O© 0 3 O »n B~ W N

Pienemsim, ka Q ir GKA, kas pazist L. Ar g4 apzZim€sim minimala automata M
stavokli, kura tas nonak, ja tas lasa vardu y esot stavokli ¢;. Gadijuma, ja g,=qa, tad
meés dabiijam Teorémas 6.2 aizliegto konstrukciju. Ja g, # g4, tad Sie divi stavokli ir
minimala automata M dazadi stavokli. Tatad eksisté vards z, kur§ tiek akceptets no
viena no tiem, bet ne no otra. Nezaudgjot visparigumu mé&s varam piegemt, ka z tiek
akceptets, ja M darbu sak stavokli ¢,, bet tiek noraidits, ja darbu sak stavokli ga.

Mes izvelamies E, ta, ka vektora v projekcijas P, uz E, kvadrats ir vienads
automata Q ar akcept€Sanas varbiitibu, ja O esot stavokli v lasa vardu yz un labo

“endmarker” $.

MEs lietojam Lemmu 6.2. Ar E un E apzimg&jam atbilstosi £ un E, vardam x
un ar £ un E} apzim&jam atbilstosi E; un E, vardam y.

Nezaudgjot visparigumu mes varam pienemt, ka ¢; ir sakuma stavoklis
automatam M. Piepemsim, ka i ir automata Q sakuma superpozicija (péc kreisa

“endmarker” ¢ nolsasiSanas). Mes arT varam piepemt, ka varda x lasiSana no §1

stavokla nesamazina §Ts superpozicijas normu. Mes sadalam i tris dalas: v; , v, un v3
ta, ka vitv,e E{ un v;e E}, vie E{ un ve E5. Taka v; + v, +v; ir sakuma

superpozicija, tad |[v; + v, + vs3|]=1 (1. nosacijums).
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Taka v + vo + v3e Ey, tad vi + v, + v3 L v, (3. nosacijums), jo v,€ EJ.
Lidzigi var iegit, ka v; + v, L v3 (4. nosacijums) un v; L v, (2. nosacijums).

Viegli redzét, ka |[Py(v; + v2 +v3)|} > p (7. nosacijums), jo lasot yz no stavokla
q1 automats M pariet uz akceptgjosu stavokli.

Ar pa1 (p1) apzZim€jam akcepteSanas (noraidisanas) varbiitibu kameér automats Q

no stavokla v; + v, +v; lasa bezgaligu vardu y virkni. Tad v’ = patpa (5.
nosacijums), jo vi+tv,€ E{ unvse E3 .

At po (pr2) apzim&jam akceptéSanas (noraidisanas) varbiitibu kamer automats QO

no stavokla v; + v, lasa bezgaligu vardu x virkni. Tad ||[v2|* = paatpsa (6. nosacijums),
jovie E{ unve E.
Atrodam i tadu, ka p&c varda y' nolasi§anas vektora y y —(v1+v2) norma nav

lielaka ka fikséts &>0. Tagad lidzigi Teorémai 7.1 m&s varam iegiit 8. nosacijumu:
1P(v1 + VD) +par 2 p.

Sadalisim vektoru v divas dalas w; un w, ta, ka w1 €E{ un y,reE].
Atrodam skaitli j tadu, ka péc varda x’ nolasiSanas vektora Jiy/ "W 1 mOrma nav
lielaka ka fikséts £>0. Ta ki y 1—v; L w2, tad ||l//1—v1||2+||1//2—vz||2=||1//y,-—
(tv)lP<e’. Tatad [y vili<e. Tad ||y i<y o —walHly mvil<2e, kas

seko no iepriek$gjam nevienadibam. Tagad lidzigi Teorémai 7.1 més varam iegt 9.

nosacijumu: ||Pa(v1||2 tpat po < 1-p.

Mes esma konstrugjusi otru optimizacijas problému. Mgs atrisinam $o problému

ar datoru. Lietojot atrisinajumu var viegli konstruét atbilstoSo galigo kvantu automatu.

|
8.2 “k cikli paraleli”
Teoréma 8.2. Pienemsim, ka k> 2.
1. Pienemsim, ka dota valoda L. Ja eksisté vardi x,, x,, ..., x; tadi, ka valodas L

minimalais automats M satur stavoklus qo, qi, ..., qr tadus, ka:
(@) lasot x; no stavokia qy automats M pariet uz stavokli g,
(b) lasot x; no stavokla q; (i>1) automats M pariet uz stavokli q;,

(c) katram i stavoklis q; nav “visu noraidoss” stavoklis,
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tad valodu L nevar pazit ar GKA ar varbitibu lielaku ka k/(2k—1).
2. Eksisté valoda, kuras minimalais automats satur augsminéto konstrukciju, un So

valodu var pazit ar GKA ar varbiitibu k/(2k—1).

7. Zim€jums. Teorémas 8.2 nosacTjumi

Pieradijums: Skatit Pielikuma E Teorémas 5 pieradijumu.

8.3 0.7324... konstrukcija

.-'?

Zl - Zl -
x i
Z, - Z,

8. Zimé&jums. Teorémas 8.3 nosacijumi

Teoréma 8.3. Pienemsim, ka dota valoda L.

1. Ja eksiste tadi vardi x, zy un z, tadi, ka valodas L minimalais automats M satur
stavokius g, un q,, ka:
(a) lasot x no stavokla q, automdts M pariet uz stavokli q»,

(b) lasot x no stavokla q, automdts M pariet uz stavokli q»,
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(c) lasot z| no stavokla q, automdts M pariet uz akceptéjosu stavokli,
(d) lasot z, no stavokla q, automdts M pariet uz noraidosu stavokli,
(e) lasot z| no stavokia q, automdts M pariet uz noraidoSu stavokli,

(f) lasot z, no stavokia q, automdts M pariet uz akceptéjosu stavokli,

1 315

tad valodu L nevar pazit ar GKA ar varbiitibu lielaku ka 5 + 5(1)5

=0.7324....

2. Eksisté valoda L, kuras minimalais automats satur augsminéto konstrukciju, un o

3415
50

=0.7324...

valodu var pazit ar GKA ar varbiitibu 5 +

Pieradijums: Skatit Pielikuma E Teorémas 6 pieradijumu.
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9 Varbitiski “reverséjami” automati

Golovkins un Kravcevs [GK 02] defingja varbitiskus “reversgjamus’automatus
(probabilistic reversible automata, VRA). Atskiriba no klasiskajiem varbitiskajiem

automatiem ir, ka VRA ir M =(0,%,V,q,,0,..), kur transformaciju kopa V sastav

tikai no dubult stohastiskam matricam. Matrica tiek saukta par dubult stohastisku, ja
elementu summa katra rinda un katra kolonna ir vienada ar 1. Vardi tiek akcepteti un
noraiditi tapat ka klasiskaja varbttisko automatu gadijuma.

Golovkins un Kravcevs defingja divus regularu valodu tipus aprakstot to

minimalos determinétos automatus:

Definicija 9.1. [GK 02] Regulara valoda ir no Tipa 1, ja minimalajam automatam, kas
pazist So valodu, izpildas sekojosais: eksisté divi stavokli ¢; un ¢, un eksisté divi

vardi x un y, ka:

H 91 # q2 .
2) qix=q> @y_:@ T
3) q2x=q>

4) q:3-4q; Tipa 1 konstrukcija

Definicija 9.2. [GK 02] Regulara valoda ir no Tipa 1, ja minimalajam automatam, kas
pazist So valodu, izpildas sekojosais: eksist€ tris stavokli g, g; un ¢, un eksiste divi
vardi x un y, ka:

D) q1# q:

2) gx-q;

3) av-q: T

4) q1x-qi

5) q41y-4qi

6) g2x-q>
7 q2v=q> Tipa 2 konstrukcija

T,y T

Vini ar pieradija negativus rezultatus valodu pazisanai ar VRA:
Teoréma 9.1. [GK 02] Ja regulara valoda ir no Tipa 1 vai no Tipa 2, tad to nav

iesp&jams pazit ar VRA.
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Atklata palika probléma, kada ir to valodu klase, kuru var pazit ar VRA. Raksta [FGK

04] tika plasak analiz&ta 1 klase un iegiiti sekojosi rezultati:

Teoréma 9.2. Valodu klase, kuru var pazit ar VRA, nav slégta pret homomorfismiem.

Pieradijums: Skatit Pielikuma G Teorémas 5 pieradijumu.

Teorema 9.3. Valodu klase, kuru var pazit ar VRA, ir slégta pret inversajiem
homomorfismiem.

Pieradijums: Skatit Pielikuma G Teorémas 6 pieradijumu.

Teoréma, kas parada skaidru sakaribu starp Tipa 1 un Tipa 2 valodam:
Teoréma 9.4. Regulara valoda L ir no Tipa 1 tad un tikai tad, ja L ir no Tipa 2.

Pieradijums: Skatit Pielikuma G Teorémas 7 pieradijumu.

Pats svarigakais rezultats par VRA tika publicéts raksta [ABGKMT 04], kur tika

precizi aprakstita to valodu klase, kuras var pazit ar VRA:
Teoréma 9.5. Regularu valodu var pazit ar VRA tad un tikai tad, ja td nav no Tipa 1

vai Tipa 2.

Pieradijums: Skatit Pielikuma H Teorémas 15 pieradijumu.
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10 Nobeigums

Galigs kvantu automats (GKA) var pazit visas regularas valodas, ja tiek pielauti
patvaligi merijjumi. Ja galigi kvantu automati tiek ierobezoti ar prasibu biit unitariem,
tad skaitlofanas iesp&jas dramatiski samazinas. Sada gadijuma var pazit tikai tas
valodas, kuras var pazit permutaciju automati. Promocijas darba mes aplikojam
modeli, kura ir atlauti armT mérfjumi, tacu tie ir ierobezoti forma: “akcepté-noraida-
turpina” (tapat ka [KW 97, AF 98, BP 99]).

Sada tipa kvantu automats var pazit dazas valodas, kuras nevar pazit atbilstogais
klasiskais modelis (galigs reversible automats). Visos $ados gadijumos tas valodas
nevar pazit ar varbiitibu 1 vai 1—¢, bet var pazit ar kadu fiks€tu varbiitibu p>1/2. Ta ir
neparasta ST modela TpaSiba, jo gandriz visos citos skaitloSanas modelos pareizas
atbildes varbitiba p>1/2 var tikt viegli palielinata Iidz 1-¢ patvaligam & >0.

Promocijas darba tika aplikotas maksimali sasniedzamas varbiitibas dazam
valodam. Sis varbitibas ir saistitas ar minimalo automatu “aizliegtajam
konstrukcijam”. Minimala automata “aizliegta konstrukcija” nozimé, ka valoda nevar
tikt pazita ar varbiitibu lielaku ka noteikts p. Dazadam “aizliegtajam konstrukcijam” ir
dazads speks (dazada “nereverséjamibas” pakape). Promocijas darba tika apliikotas
ar1 tadas “aizliegtas konstrukcijas”, kuru eksistence nozimé, ka valoda nevar tikt
pazita ar GKA.

Pamata konstrukcija ir “viens cikls” [BP 99]. Tas savieno$ana paSai ar sevi
virkne vai paraleli dod “aizliegtas konstrukcijas”, kuras var pazit ar mazaku
varbiitibu. Sasniedzama varbiitiba ir arT atkariga no ta vai akcepteto vardu kopas no
dazadiem konstrukcijas stavokliem ir apakskopas viena otrai vai ir nesalidzinamas.
Konstrukcijam ar nesalidzinam kopam parasti ir mazakas varbitibas.

AkcepteSanas varbiitibas galigiem kvantu automatiem ir tikai viens veids ka
dazadam “nerevers€jamam” konstrukcijam raksturot “nereverséjamibas” pakapi. Citu
veidu ka raksturot “nereversg€jamibu’ p&tisana var&tu biit tikpat interesanta.

Otrs interesants jautajums ir “aizliegtas konstrukcijas”, kuru eksistence nozimé,
ka valodu nevar pazit ar GKA. To pétiSana palidzes noskaidrot, kada ir to valodu

klase, kuru var pazit ar GKA, kas paslaik nav zinams.
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Probabilities to accept languages by quantum
finite automata

Andris Ambainis,! Richard Bonner,? Riisin$ Freivalds,® and Arnolds Kikusts?

! Computer Science Division, University of California, Berkeley, CA 94720-2320!
2 Department of Mathematics and Physics, Milardalens University
% Institute of Mathematics and Computer Science, University of Latvia, Raina bulv.
29, Riga, Latviat

Abstract. We construct a hierarchy of regular languages such that the

current language in the hierarchy can be accepted by 1-way quantum

finite automata with a probability smaller than the corresponding prob-

ability for the preceding language in the hierarchy. These probabilities
1

converge to 3.

1 Introduction

Quantum computation i1s a most challenging project involving research both by
physicists and computer scientists. The principles of quantum computation differ
from the principles of classical computation very much. The classical computa-
tion is based on classical mechanics while quantum computation attempts to
exploit phenomena specific to quantum physics.

One of features of quantum mechanics is that a quantum process can be in
a combination (called superposition) of several states and these several states
can interact one with another. A computer scientist would call this a massive
parallelism. This possibility of massive parallelism is very important for Com-
puter Science. In 1982, Nobel prize winner physicist Richard Feynman (1918-
1988) asked what effects the principles of quantum mechanics can have on
computation[Fe 82]. An exact simulation of quantum processes demands expo-
nential running time. Therefore, there may be other computations which are
performed nowadays by classical computers but might be simulated by quantum
processes in much less time.

R.Feynman’s influence was (and is) so high that rather soon this possibil-
ity was explored both theoretically and practically. David Deutsch[De 89] intro-
duced quantum Turing machines, quantum physical counterparts of probabilistic
Turing machines. He conjectured that they may be more efficient that classical
Turing machines. He also showed the existence of a universal quantum Turing
machine. This construction was subsequently improved by Bernstein and Vazi-

rani [BV 97] and Yao [Ya 93].

! Supported by Berkeley Fellowship for Graduate Studies.
! Research supported by Grant No.96.0282 from the Latvian Council of Science



Quantum Turing machines might have remained relatively unknown but two
events caused a drastical change. First, Peter Shor [Sh 97] invented surprising
polynomial-time quantum algorithms for computation of discrete logarithms and
for factorization of integers. Second, joint research of physicists and computer
people have led to a dramatic breakthrough: all the unusual quantum circuits
having no classical counterparts (such as quantum bit teleportation) have been
physically implemented. Hence universal quantum computers are to come soon.
Moreover, since the modern public-key cryptography is based on intractability of
discrete logarithms and factorization of integers, building a quantum computer
implies building a code-breaking machine.

In this paper, we consider quantum finite automata (QFAs), a different model
of quantum computation. This is a simpler model than quantum Turing machines
and and it may be simpler to implement.

Quantum finite automata have been studied in [AF 98 BP 99 KW 97, MC 97].
Surprisingly, QFAs do not generalize deterministic finite automata. Their capa-
bilities are incomparable. QFAs can be exponentially more space-efficient[AF 98].
However, there are regular languages that cannot be recognized by quantum fi-
nite automata[KW 97].

This weakness is caused by reversibility. Any quantum computation is per-
formed by means of unitary operators. One of the simplest properties of these
operators shows that such a computation is reversible. The result always deter-
mines the input uniquely. It may seem to be a very strong limitation. Luckily, for
unrestricted quantum algorithms (for instance, for quantum Turing machines)
this 1s not so. It is possible to embed any irreversible computation in an appropri-
ate environment which makes it reversible[Be 89]. For instance, the computing
agent could keep the inputs of previous calculations in successive order. Quantum
finite automata are more sensitive to the reversibility requirement.

If the probability with which a QFA is required to be correct decreases, the
set of languages that can be recognized increases. In particular[AF 98], there are
languages that can be recognized with probability 0.68 but not with probability
7/9. In this paper, we extend this result by constructing a hierarchy of languages
in which each next language can be recognized with a smaller probability than
the previous one.

2 Preliminaries

2.1 Basics of quantum computation

To explain the difference between classical and quantum mechanical world, we
first consider one-bit systems. A classical bit 1s in one of two classical states true
and false. A probabilistic counterpart of the classical bit can be true with a
probability o and false with probability G, where o« + 3 = 1. A quantum bit
(qubit) is very much like to it with the following distinction. For a qubit o and
3 can be arbitrary complex numbers with the property [|a||? + [|8]|? = 1. If we
observe a qubit, we get true with probability ||a||? and false with probability



[|8]|%, just like in probabilistic case. However, if we modify a quantum system
without observing it (we will explain what this means), the set of transformations
that one can perform is larger than in the probabilistic case. This is where the
power of quantum computation comes from.

More generally, we consider quantum systems with m basis states. We denote
the basis states |q1), |g2), - ., |¢gm). Let ¢ be a linear combination of them with
complex coefficients

V=g |q) +azlg) A o gm) -

The 5 norm of ¢ is

191l = Vian]? + las]? + ...+ |an .

The state of a quantum system can be any ¢ with ||| = 1. ¢ is called a

superposition of |q1), ..., lgm). a1, .. ., @ are called amplitudes of |q1), . . ., |gm)-
We use [5(Q) to denote the vector space consisting of all linear combinations of
|92}, -5 lgm)-

Allowing arbitrary complex amplitudes is essential for physics. However, 1t is
not important for quantum computation. Anything that can be computed with
complex amplitudes can be done with only real amplitudes as well. This was
shown for quantum Turing machines in [BV 93]' and the same proof works for
QFAs. However, it is important that negative amplitudes are allowed. For this
reason, we assume that all amplitudes are (possibly negative) reals.

There are two types of transformations that can be performed on a quantum
system. The first type are unitary transformations. A unitary transformation is
a linear transformation U on [3(Q) that preserves { norm. (This means that any
¢ with ||| = 1 is mapped to ¢ with ||¢'|| = 1.)

Second, there are measurements. The simplest measurement is observing ¢ =
ar|q1) + a2 lga) + ... 4 am |gm) in the basis |¢1), ..., |gm). It gives |¢;) with
probability a?. (||| = 1 guarantees that probabilities of different outcomes
sum to 1.) After the measurement, the state of the system changes to |¢;) and
repeating the measurement gives the same state |¢;).

In this paper, we also use partial measurements. Let Q)+, ..., QQx be pairwise
disjoint subsets of () such that Q; UQ2U...UQr = Q. Let E;, for j € {1,...,k},
denote the subspace of [2(Q) spanned by |q;), j € Q;. Then, a partial measure-
ment w.r.t. Fy,..., E; gives the answer ¢y € FE; with probability Zz’er al.
After that, the state of the system collapses to the projection of ¥ to E;. This

projection is v; = Zile @i |gi).

2.2 Quantum finite automata

Quantum finite automata were introduced twice. First this was done by C. Moore
and J.P.Crutchfield [MC 97]. Later in a different and non-equivalent way these
automata were introduced by A. Kondacs and J. Watrous [KW 97].

! For unknown reason, this proof does not appear in [BV 97].



The first definition just mimics the definition of 1-way probabilistic finite
automata only substituting stochastic matrices by unitary ones. We use a more
elaborated definition [KW 97].

A QFA is a tuple M = (Q; 25V qo; Qace; Qre;) where @ is a finite set of
states, X' is an input alphabet, V' 1s a transition function, ¢y € @ is a starting
state, and Quee C @ and Q,c; C @ are sets of accepting and rejecting states.
The states in Qqee and Q,c; are called halting states and the states in Qnon =
Q — (Qace UQre;) are called non halting states. k and § are symbols that do not
belong to X. We use x and $ as the left and the right endmarker, respectively.
The working alphabet of M is I' = X U {x;$}.

The transition function V' is a mapping from I' X [2(Q) to [2(Q) such that,
for every a € I', the function V; : [2(Q) — [2(Q) defined by V,(2) = V(a, ) is a
unitary transformation.

The computation of a QFA starts in the superposition |gp). Then transfor-
mations corresponding to the left endmarker &, the letters of the input word
r and the right endmarker $ are applied. The transformation corresponding to
a € I' consists of two steps.

1. First, V, is applied. The new superposition ¢’ is V,(¢) where ¢ is the
superposition before this step.

2. Then, ¢’ is observed with respect to Fqcc, Frej, Enon Where Fyee = span{|q)
tq € Qacc}, Erej = Span{|Q> 1q € Qre]’}, Enon = Span{|Q> S Qnon} (See
section 2.1).

If we get o' € Fqee, the input is accepted. If we get ¢/ € E,.;, the input is
rejected. If we get ¥ € E,,,, the next transformation is applied.

We regard these two transformations as reading a letter a. We use V! to
denote the transformation consisting of V, followed by projection to E,,4,. This
is the transformation mapping ¢ to the non-halting part of V,(¢). We use 1,
to denote the non-halting part of QFA’s state after reading the left endmarker
x and the word y € X*.

We compare QFAs with different probabilities of correct answer. This prob-
lem was first considered by A. Ambainis and R. Freivalds[AF 98]. The following
theorems were proved there:

Theorem 1. Let L be a language and M be its minimal automaton. Assume
that there is a word x such that M contains states g1, g satisfying:

1. q1 ;é q2,

2. If M starts in the state gy and reads x, it passes to qs,

3. If M starts in the state g5 and reads x, it passes to qz, and
4. qo 18 neither "all-accepting” state, nor "all-rejecting” state.

Then L cannot be recognized by a 1-way quantum finite automaton with proba-

bility 7/9 + € for any fived € > 0.

Theorem 2. Let L be a lanquage and M be its minimal automaton. If there
18 no q1, q2, ¢ satisfying conditions of Theorem 1 then L can be recognized by a
1-way reversible finite automaton (i.e. L can be recognized by a 1-way quantum
finite automaton with probability 1).



Theorem 3. The language a*b* can be recognized by a 1-way QFA with the
probability of correct answer p = 0.68... where p s the root of p> + p = 1.

Corollary 1. There is a langquage that can be recognized by a 1-QFA with prob-
ability 0.68... but not with probability 7/9 + €.

For probabilistic automata, the probability of correct answer can be increased
arbitrarily and this property of probabilistic computation is considered as ev-
ident. Theorems above show thatits counterpart is not true in the quantum
world! The reason for that is that the model of QFAs mixes reversible (quantum
computation) components with nonreversible (measurements after every step).

In this paper, we consider the best probabilities of acceptance by 1-way quan-
tum finite automata the languages a*b* . .. z*. Since the reason why the language
a*b* cannot be accepted by 1-way quantum finite automata is the property de-
scribed in the Theorems 1 and 2, this new result provides an insight on what
the hierarchy of languages with respect to the probabilities of their acceptance
by 1-way quantum finite automata may be. We also show a generalization of
Theorem 3 in a style similar to Theorem 2.

3 Main results

Lemma 1. For arbitrary real x1 > 0, x9 > 0, ..., ®, > 0, there exists a unitary
n x n matric My (x1, @, ..., £,) with elements m;; such that
1 xro Tn
mll = - —— m21 = - —_— ...’mnl = Y
Vai4 .+l Vel 4+l Vaei+ .+ a2
||

Let L, be the language ajaj...a}.

Theorem 4. The language L, (n > 1) can be recognized by a 1-way QFA with

the probability of correct answer p where p s the root of pz_ﬂ +p =1 1n the
interval [1/2,1].

Proof: Let m;; be the elements of the matrix My, (z1, %2, ..., z;) from Lemma 1.
We construct a k x (k — 1) matrix Ty (21, 22, ..., x5) with elements t;; = m; j41.
Let Rg(z1,x2,...,x;) be a k x k matrix with elements r;; = ——— and Ij be

wi4. 4o
the k x k identity matrix.
ntl
For fixed n, let p, € [1/2,1] satisfy p;~™" + p, = 1l and px (1 < k < n) =
AL _k_

pn~t —pa~t. 1t is easy to see that p1 +ps+ ...+ p, = 1 and

2(k—1)
Pa(pk 4 +pa)% . papn Z—fi_
o (Pr—1+ .+ pn)? 1= ngnk_—lz) =1—-py" =pn. (1)

Now we describe a 1-way QFA accepting the language L, .



The automaton has 2n states: qi, ¢2, ... ¢, are non halting states, ¢,41,
Gn+2, --- Gon—1 are rejecting states and ¢s, 1s an accepting state. The transition
function 1s defined by unitary block matrices

V= (Mn(m,%@,...,@) 1(1) |

Ra(\/P1, /P2, - \/Pn) T (\/P1, /P2, -, /Pn) O
Val = Tg(\/p_la\/p_%a\/ﬁ) 0 0
0

bl

0 1
0 0 1 0 0
0 Rn—l(« /P2y ey «/pn) 0 jjn_l(1 /P2y ey «/pn) 0
Vo, = | 1 0 0 0 01,
0 TY  (\/p2,...,\/Pn) O 0 0
0 0 0 0 1
0 0 T4 0 0
0 Rn+1—k(«/pk,~~~m/pn) 0 Tn+1—k(«/pk,~~~m/pn)0
Voo = | Ik—1 0 0 0 01,
0 T (\/Pks-s/Pn) O 0 0
0 0 0 0 1
0 07,10
0O 1 0 O
Va, = I,-10 0 0]}’
0 0 1

07,
n=(p b))

Case 1. The input is kaja}...a’$.

The starting superposition is |¢1). After reading the left endmarker the su-
perposition becomes \/p1 [q1) + /P2 |q2) + - .. + /Pn |¢n) and after reading aj
the superposition remains the same.

If the input contains aj then reading the first a; changes the non-halting
part of the superposition to \/pk |qr) + ...+ +/Pn |¢n) and after reading all the
rest of ai the non-halting part of the superposition remains the same.

Reading the right endmarker maps |g,,) to |2, ). Therefore, the superposition
after reading it contains /py, |¢2,). This means that the automaton accepts with
probability p, because g2, 1s an accepting state.

Case 2. The input is kaja}...afagam... (k > m).
After reading the last a; the non-halting part of the superposition is /pr |gx)
+...4 /Pn l¢n). Then reading a,, changes the non-halting part to



\/m(pk+~~+pn)
omtdpn) lam) + S

accepts with probability < %

VPr(prt. 4pn) |¢n) . This means that the automaton

and rejects with probability at least
PR 1V e 9 200 S 1 it ¥ 0

(4ot pa)® 7 (Br—1 )

that follows from (1). O

= DPn

Corollary 2. The language L,, can be recognized by a 1-way QFA with the prob-
ability of correct answer at least % + &, for a constant c.

Proof: By resolving the equation pz_ﬂ +p=1, wegetp= % + @(%) O

Theorem 5. The langquage L, cannot be recognized by a 1-way QFA with prob-
ability greater than p where p ts the root of

2(1 — —
( p)+4 2(1 - p)
n—1 n—1

(20— 1) = 2)

in the interval [1/2,1].

Proof: Assume we are given a l-way QFA M. We show that, for any ¢ > 0,
there is a word such that the probability of correct answer 1s less than p + €.

Lemma 2. [AF 98] Let € Xt . There are subspaces Ey, Es such that Ey, ., =
E1 (o) E2 and

(Z) [f’l/) € El, then Vx(’l/)) € El,
(i1) If ¥ € Es, then ||V!, (4)|| = 0 when k — oc.

We use n — 1 such decompositions: for # = as, * = as, ..., # = a,. The
subspaces Ey, Iy corresponding to = a,, are denoted Ey, 1 and I, ».

Let m € {2,...,n}, y € afas...a},_;. Remember that ¢, denotes the su-
perposition after reading y (with observations w.r.t. Epop @ Face ® Ere; after
every step). We express 9, as 1/)11/ + 1/)5, 1/)11/ € Em, 1/)5 € Epa.

Case 1. ||{g]] < \/ﬂnl_;lpl forsomem € {2,....,n}and y € af ...a},_;.

Let ¢ > 0. Then, ya,,_1 € L, but yaﬁ'nam_l ¢ L,. Consider the distributions
of probabilities on M’s answers “accept” and “reject” on ya,,—1 and yal, d,_1.
If M recognizes L,, with probability p+ ¢, it must accept ya,,_1 with probability
at least p+4 ¢ and reject it with probability at most 1 —p—e. Also, yal_ a,,_; must
be rejected with probability at least p+ ¢ and accepted with probability at most
1 — p — e. Therefore, both the probabilities of accepting and the probabilities of
rejecting must differ by at least

(pte)—(1l—p—€)=2p—1+ 2e.

This means that the variational distance between two probability distributions
(the sum of these two distances) must be at least 2(2p — 1) + 4e. We show that
it cannot be so large.



First, we select an appropriate i. Let k be so large that ||V, (1/)5)” < § for
d=¢/4. ;, Vi (1/);), Va’gn(d);), ...1s a bounded sequence in a finite-dimensional
space. Therefore, it has a limit point and there are i, j such that

IV, (80) = Vi ()] < .

We choose 1, j so that ¢ > k.

The difference between the two probability distributions comes from two
sources. The first source is the difference between 1, and 1y,i (the states of M
before reading a,,—1). The second source is the possibility of M accepting while
reading ai, (the only part that is different in the two words). We bound each of
them.

The difference ¢, — ty4: can be partitioned into three parts.

1/)@/ - 1/)ya§n = (1/)@/ - 1/);) + (1/); - Va/:n(’l/);)) + (Va/:n(’l/);) - 1/)ya§n)' (3)

The first part is ¢, — 1/); = 1/)5 and ||1/)5|| < \/ﬂnl_;lpl. The second and the
third parts are both small. For the second part, notice that V; is unitary on
Em.1 (because V,,  is unitary and V,, (¢) does not contain halting components
for ¢ € Epn1). Hence, V| preserves distances on £, ; and

g = Vi 5= 11V], (88) = Vi ()l < 8

For the third part of (3), remember that ¥, ,: = V. (¢y). Therefore,

1/)ya2n - Va/:nw);) = V(I/:n(1/)y) - Va/:n(,l/);) = Va/:n(ﬂ)y - 1/);) = V;:ﬂ(%%)
and ||1/)5a, < J because i > k. Putting all three parts together, we get
2(1—p
W = o ) < Uy = 0301+ 15— By 1+ W, — o 1< 202 8

Lemma 3. [BV 97] Let ¢ and ¢ be such that ||¢|| < 1, ||¢|] < 1 and ||v—¢|| < e.
Then the total variational distance resulting from measurements of ¢ and v is
at most 4e.

This means that the difference between any probability distributions gener-
ated by ¢y and ¢y,i is at most

2(1 - p)

n—1

4 + 84.

In particular, this is true for the probability distributions obtained by applying
v

am—1> V3 and the corresponding measurements to ¢, and ¥, 4: .



- n-1

The probability of M halting while reading al, is at most [|/2||> = 2(0-p)

Adding it increases the variational distance by at most 2(1—__1’)). Hence, the total

n
variational distance 1s at most

20-p)  , [20=p) o5 _20-p) /20 p)

n—1 n—1 n—1 n—1

+ 2e.

By definition of p, this is the same as (2p—1) 4 2¢. However, if M distinguishes y
and yal, correctly, the variational distance must be at least (2p— 1) +4¢. Hence,
M does not recognize one of these words correctly.

Case 2. ||1/)5|| > «/% for every me {2,...,n} and y € a}...ak,_;.
We define a sequence of words y1,92,...,ym € a}...a),. Let y3 = a1 and

Yp = yk_lazk for k € {2,...,n} where i is such that

2 €

IV (05 <

n—1

The existence of i is guaranteed by (ii) of Lemma 2. o »

We consider the probability that M halts on y, = ajai?ay® ...alr before
seeing the right endmarker. Let k € {2,...,n}. The probability of M halting
while reading the a;* part of y, is at least

2(1—p) €
g, 17 = IV (g DI > = -

Ye—1 Ye—1 -1 n— 1'

By summing over all k € {2,...,n}, the probability that M halts on y, is at

least (n_l)(Q(l—p)_ € ):2(1—p)—e.

n—1 n—1

This is the sum of the probability of accepting and the probability of rejecting.

Hence, one of these two probabilities must be at least (1 — p) — ¢/2. Then, the

probability of the opposite answer on any extension of y, is at most 1 — (1 —p—

€/2) = p+ ¢/2. However, y, has both extensions that are in L, and extensions

that are not. Hence, one of them is not recognized with probability p + e. a
By solving the equation (2), we get

Corollary 3. L, cannot be recognized with probability greater than % + \/:’Tl.

2
Iny

Let ny = 2 and n; = c;l + 1 for & > 1 (where ¢ is the constant from

Theorem 4). Also, define py = % + ;. Then, Corollaries 2 and 3 1mply

Theorem 6. For every k > 1, L,, can be recognized with by a 1-way QFA with
the probability of correct answer p, but cannot be recognized with the probability
of correct answer py_1.

Thus, we have constructed a sequence of languages L,,, L,,, ... such that,
for each L, , the probability with which L,, can be recognized by a 1-way QFA
is smaller than for L,,_,.

Our final theorem is a counterpart of Theorem 2. It generalizes Theorem 3.



Theorem 7. Let L be a language and M be its mintmal automaton. If there is
no qi,492, 93, x,y such that

the states q1, q9, q3 are pairwise different,
. If M starts in the state g1 and reads x, it passes to ¢s,

. If M starts in the state g5 and reads y, it passes to g3,

1
2
3. If M starts in the state g5 and reads x, it passes to qz, and
4
7

. If M starts in the state q3 and reads y, it passes to g3,
6. both qo and q3 are neither "all-accepting” state, nor "all-rejecting” state,

then L can be recognized by 1-way quantum finite automaton with probability

p=0.68....
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Abstract. Quantum computation is a most challenging project involv-
ing research both by physicists and computer scientists. The principles of
quantum computation differ from the principles of classical computation
very much. When quantum computers become available, the public-key
cryptography will change radically. It is no exaggeration to assert that
building a quantum computer means building a universal code-breaking
machine. Quantum finite automata are expected to appear much sooner.
They do not generalize deterministic finite automata. Their capabilities
are incomparable.

We construct a hierarchy of regular languages such that the current lan-
guage in the hierarchy can be accepted by l-way quantum finite au-
tomata with a probability smaller than the corresponding probability
for the preceding language in the hierarchy. These probabilities converge
1

to 3.

1 Introduction

The notion of quantum was introduced nearly 100 years ago, namely, in 1900
by Max Karl Ernst Ludwig Planck (1858-1947). He assumed that energy is
emanated and absorbed in fixed portions, in quanta. This assumption was so
unusual that M. Planck himself considered this assumption only as a useful tool
to obtain a certain result. Unfortunately, most of the physicists having made the
new physics of the 20th century felt the utmost discomfort of this drama of ideas.
The new physics produced nice formulas but it was most difficult to understand
what these formulas mean. They contradicted our common interpretation of the
world too much.

Quantum mechanics was developed in two different versions. Werner Karl
Heisenberg (1901-1976) developed particle quantum mechanics based on ma-
trices. Erwin Schrodinger (1887-1961) developed wave quantum mechanics. Two
absolutely different theories for the same object! It was not easy to find out which
one was the right one. All the known experiments were not able to distinguish
between the two theories.

t Supported by Berkeley Fellowship for Graduate Studies.
 Research supported by Grant No.96.0282 from the Latvian Council of Science



It was a tremendous surprise when it was established in 1926 that the two
theories are equivalent. Every statement provable in one of the theories is prov-
able in the other theory as well. How it is possible? Heisenberg’s mechanics deals
with particles, i.e. discrete objects, while Schrodinger’s theory deals with waves,
i.e. continuous objects. Discrete and continuous have always been considered as
opposites.

Luckily or unluckily, there are many unusual principles in quantum mechanics
very much different from the classical physics. Heisenberg’s uncertainty principle
(1927) postulates that no experiment can establish simultaneously the position
and the momentum of an electron. This principle was crucially important for
the proof of duality between the theories but it was far from trivial to discover
the proof.

Any way, it was Max Born (1882-1970) who produced the explanation.
Schrodinger’s psi-waves were the probability waves.

This explanation satisfied the physicists. This explains why the diffraction
and interference experiments can be produced with electrons. The position of
the discrete particles are described by the continuous waves of the probabilities
where the electron can be positioned. This implies all the effects of the wave
theory.

However a difficulty comes out. This is the two-slit experiment.

If you take a source of light, a screen and put a wall with a slit in it between
the source of light and the screen, then you get a complicated picture on the
screen consisting of dark and bright spots. This feature of light is called diffrac-
tion. Since diffraction may be observed for waves of a different nature as well
(for instance, for waves on a surface of water), this experiment is considered as
an invincible argument in support of the wave theory of the light.

Diffraction is closely connected with another effect of the wave theory, namely,
with interference. If you repeat the above-mentioned experiment with a wall with
two slits, you get a more complicated picture because the light waves coming
from the two slits interfere. Interference is an interesting physical phenomenon
producing unexpected results. Thomas Young (1773-1829) closed one of the slits
in the two slit experiment, and observed that there are some places where the
picture becomes not darker but rather brighter. This is illogical! You remove
some light but the picture becomes brighter. However physicists explained this
result rather easily. The light is waves, and when the waves are in opposites
phases, the waves destroy each other.

In 1923 Louis de Broglie (1892-1987) assumed that every particle (for in-
stance, an electron) is a wave as well. And indeed, later many experiments sup-
ported this unusual assumption. Particularly, the diffraction and interference
experiments with electrons were successfully performed.

However we know that probabilities are real numbers between 0 and 1. When
adding, these numbers cannot decrease! You cannot explain this way the inter-
ference in the two-slit experiment for electrons.

The physicists overcame this difficulty by introducing negative probabilities
as well. Very soon complex number also were needed to describe the probabilities.



For terminological reasons, the physicists call these new complex ”probabilities”
the amplitudes and the relation between the two notions is as follows. While
the quantum processes go on and no measurements are performed, you can
calculate the amplitudes by formulas reminding the corresponding formulas for
probabilities in the classical physics. When you perform a measurement, different
outcomes are possible , and the probability of each possible outcome is the square
of the modulo of the corresponding amplitude. Every measurement destroys the
object. This is the price for obtaining the information. You cannot make a copy
of a particle, i.e. you cannot make another particle to have exactly the same
amplitude. Quantum mechanics is very much different from the classical physics.

There is wide-spread belief that quantum physics is very difficult. It is only
partly true. The mathematics of quantum physics indeed is not very easy but
the real difficulty is of quite different nature. The most difficult part of quantum
physics is to feel it, to understand what does it all mean. This is a really difficult
subject even for the best physicists. No wonder that there were heated discussions
on the interpretation of quantum physics.

A photon is directed to a half-silvered mirror. Aclassically-minded physicist
would say that the photon either reflects or goes through the mirror. These are
two different possibilities and experiment is organized so that in one case the
transmitted component triggers a device that kills a cat placed in a ”black box”
but in the other case nothing dramatic happens. Hence the classical physicist
(or every person not having learned modern physics) would say that after the
experiment the cat is either alive or dead. Not so for a quantum physicist. A
quantum physicist would say that "unless we perform a measurement (i.e. unless
we open the black box) the cat is in superposition alive and dead’.

Of course, such a conclusion was too outrageous even for the physicists. They
could allow something extraordinary in the microworld but not for macroscopic
objects. A rich amount of literature exists on the Schrodinger’s cat. Try to search
Internet with key word ”Schrédinger’s cat”, and you will find many very recent
writings as well. Any way, the physicists agree that Schrédinger’s cat would
be in superposition only for a very short time, and then the quantum noise
would destroy the superposition. However for me, this is a good illustration of
the essence of quantum computation. Just like in the Schrodinger’s cat’s case,
quantum processes allow superposition of several processes (a computer scientist
would say, this allows a massive parallelism).

This possibility of massive parallelism is very important for Computer Sci-
ence. It was Nobel prize winner physicist Richard Feynman (1918-1988) who
asked in 1982 what effects can have the principles of quantum mechanics, on
computation. Since exact simulation of quantum processes demands exponential
running time, may be there are other computations as well which are performed
nowadays by classical computers but might be simulated by quantum processes
in much less time.

R.Feynman’s influence was (and is) so high that rather soon this possibility

was explored both theoretically and practically. David Deutsch [De 89] intro-
duced quantum Turing machines. He made the machine to be physically real-



isable model of quantum computers. Quantum Turing machine is a quantum
physical counterpart of a probabilistic Turing machine that makes a full use
of the quantum superposition principle. D. Deutsch conjectured that it might
be more efficient that a classical Turing machine. He also showed the existence
of a universal quantum Turing machine. Unfortunately, his universal quantum
Turing machine could use exponentially more time in simulation of a particu-
lar quantum Turing machine. This drawback was overcome by Bernstein and
Vazirani [BV 97] and Yao [Ya 93].

Every computation done on qubits is performed by means of unitary op-
erators. One of the simplest properties of these operators shows that such a
computation is reversible. The result always determines the input uniquely. It
may seem to be a very strong limitation for such computations. Luckily, for un-
limited quantum algorithms (for instance, for Quantum Turing machines) this
is not so. It is possible to embed any irreversible computation in an appropriate
environment which makes it reversible[Be 89]. For instance, the computing agent
could keep the inputs of previous calculations in successive order. For quantum
finite automata the limitation of the automata to be reversible is more sensitive.

Quantum automata might remain a lesser known unusual modification of the
standard definitions but two events caused a drastical change. First, Peter Shor
[Sh 97] invented surprising polynomial-time quantum algorithms for computa-
tion of discrete logarithms and for factorization of integers. Second, joint research
of physicists and computer people have led to a dramatic breakthrough: all the
unusual quantum circuits having no classical counterparts (such as quantum bit
teleportation) have been physically implemented. Hence universal quantum com-
puters are to come soon. Moreover, since the modern public-key cryptography
is based on intractability of discrete logarithms and factorization of integers,
building a quantum computer implies building a code-breaking machine.

In this paper, we consider quantum finite automata[AF 98, BP 99, KW 97,
MC 97], a different model of quantum computation. This is a simpler model than
quantum Turing machines and it may be simpler to implement.

Surprisingly, quantum finite automata do not generalize deterministic finite
automata. Their capabilities are incomparable. Quantum finite automata can be
exponentially more space-efficient[AF 98]. However, there are regular languages
that cannot be recognized by quantum finite automata[KW 97].

This weakness is caused by reversibility. Any quantum computation is per-
formed by means of unitary operators. One of the simplest properties of these
operators shows that such a computation is reversible. The result always deter-
mines the input uniquely. It may seem to be a very strong limitation. Luckily, for
unrestricted quantum algorithms (for instance, for quantum Turing machines)
this is not so. It is possible to embed any irreversible computation in an appropri-
ate environment which makes it reversible[Be 89]. For instance, the computing
agent, could keep the inputs of previous calculations in successive order. Quan-
tum finite automata are more sensitive to the requirement for the automaton to
be reversible.

If the probability with which a QFA is required to be correct decreases, the



set of languages that can be recognized increases. In particular[AF 98], there are
languages that can be recognized with probability 0.68 but not with probability
7/9. In this paper, we extend this result by showing a hierarchy of languages in
which each next language can be recognized with a smaller probability than the
previous one.

2 Preliminaries

2.1 Basics of quantum computation

To explain the difference between classical and quantum mechanical world, we
first consider one-bit systems. A classical bit is in one of two classical states true
and false. A probabilistic counterpart of the classical bit can be true with a
probability o and false with probability 5, where a + f = 1. A quantum bit
(qubit) is very much like to it with the following distinction. For a qubit  and
3 can be arbitrary complex numbers with the property ||| + ||3]|*> = 1. If we
observe a qubit, we get true with probability ||a||?> and false with probability
I8]|%, just like in probabilistic case. However, if we modify a quantum system
without observing it (we will explain what this means), the set of transformations
that one can perform is larger than in the probabilistic case. This is where the
power of quantum computation comes from.

More generally, we consider quantum systems with m basis states. We denote
the basis states |q1), |g2), - - -, |¢m)- Let ¥ be a linear combination of them with
complex coefficients

Y =ai|q) +ozlg) + .+ o |gm) -
The I norm of v is

191l = Ve +laz + ...+ Jam]*.

The state of a quantum system can be any ¢ with |[¢)|| = 1. ¥ is called a

superposition of |q1), ..., |gm). a1, ..., an, are called amplitudes of |q1), .. ., |gm)-
We use [5(Q) to denote the vector space consisting of all linear combinations of
|Q1>v ) |Qm>'

Allowing arbitrary complex amplitudes is essential for physics. However, it is
not important for quantum computation. Anything that can be computed with
complex amplitudes can be done with only real amplitudes as well. This was
shown for quantum Turing machines in [BV 93] and the same proof works for
QFAs. However, it is important that negative amplitudes are allowed. For this
reason, we assume that all amplitudes are (possibly negative) reals.

There are two types of transformations that can be performed on a quantum
system. The first type are unitary transformations. A unitary transformation is
a linear transformation U on l2(Q)) that preserves ls norm. (This means that any
¢ with ||¢|| = 1 is mapped to o' with ||¢'|]| = 1.)

6 For unknown reason, this proof does not appear in [BV 97].



Second, there are measurements. The simplest measurement is observing ¢ =
a1 |q1) + azlg2) + ... 4 am |gm) in the basis 1), ..., |gm). It gives |g;) with
probability a?. (||| = 1 guarantees that probabilities of different outcomes
sum to 1.) After the measurement, the state of the system changes to |¢;) and
repeating the measurement gives the same state |g;).

In this paper, we also use partial measurements. Let Q1,..., Q) be pairwise
disjoint subsets of @ such that Q1 UQ2U...UQy = Q. Let E;, for j € {1,...,k},
denote the subspace of l2(Q)) spanned by |g;), j € Q;. Then, a partial measure-
ment w.r.t. Ey,...,E} gives the answer ¢ € E; with probability Eier a?.
After that, the state of the system collapses to the projection of ¢ to E;. This
projection is ¥; = 37,0 @i |di)-

2.2 Quantum finite automata

Quantum finite automata were introduced twice. First this was done by C. Moore
and J.P.Crutchfield [MC 97]. Later in a different and non-equivalent way these
automata were introduced by A. Kondacs and J. Watrous [KW 97].

The first definition just mimics the definition of 1-way probabilistic finite
automata only substituting stochastic matrices by unitary ones. We use a more
elaborated definition [KW 97].

A QFA is a tuple M = (Q; X;V;q0; Qace; @rej) where @ is a finite set of
states, X' is an input alphabet, V' is a transition function, go € @ is a starting
state, and Quce C @ and @Qr.; C @ are sets of accepting and rejecting states.
The states in Qqcc and Q. are called halting states and the states in Qopn =
Q — (Qacc UQrej) are called non halting states. k and $ are symbols that do not
belong to X. We use x and $ as the left and the right endmarker, respectively.
The working alphabet of M is I' = ¥ U {k; $}.

The transition function V is a mapping from I" X [5(Q) to l2(Q) such that,
for every a € I', the function V, : [5(Q) — 12(Q) defined by V,(z) = V(a,x) is a
unitary transformation.

The computation of a QFA starts in the superposition |gg). Then transfor-
mations corresponding to the left endmarker k, the letters of the input word
x and the right endmarker $ are applied. The transformation corresponding to
a € I' consists of two steps.

1. First, V, is applied. The new superposition ¢’ is V,(¢)) where 1 is the
superposition before this step.

2. Then, ¢’ is observed with respect to Eqcc, Erej, Enon Where Eqc. = span{|q)
1q € Qacc}v Erej = Spaﬂ{|lZ> /S Qrej}7 Enon = Span{|‘]> tq e Qnon} (See
section 2.1).

If we get @' € Eqcc, the input is accepted. If we get ¢’ € E,;, the input is
rejected. If we get ¥’ € Eypp, the next transformation is applied.

We regard these two transformations as reading a letter a. We use V! to
denote the transformation consisting of V, followed by projection to E,,p. This
is the transformation mapping ¢ to the non-halting part of V(). We use v,
to denote the non-halting part of QFA’s state after reading the left endmarker
k and the word y € X*.



We compare QFAs with different probabilities of correct answer. This prob-
lem was first considered by A. Ambainis and R. Freivalds[AF 98]. The following
theorems were proved there:

Theorem 2.1 Let L be a language and M be its minimal automaton. Assume
that there is a word x such that M contains states q, q2 satisfying:

1 ¢ # g,

2. If M starts in the state q1 and reads x, it passes to g,

3. If M starts in the state g2 and reads x, it passes to qo, and
4. q2 is neither ”all-accepting” state, nor ”all-rejecting” state.

Then L cannot be recognized by a 1-way quantum finite automaton with proba-
bility 7/9 + € for any fized € > 0.

Theorem 2.2 Let L be a language and M be its minimal automaton. If there
s no q1,qe, x satisfying conditions of Theorem 2.1 then L can be recognized by a
1-way reversible finite automaton (i.e. L can be recognized by a 1-way quantum
finite automaton with probability 1).

*

Theorem 2.3 The language a*b* can be recognized by a 1-way QFA with the
probability of correct answer p = 0.68... where p is the root of p° +p = 1.

Corollary 2.1 There is a language that can be recognized by a 1-QFA with
probability 0.68... but not with probability 7/9 + €.

For probabilistic automata, the probability of correct answer can be increased
arbitrarily and this property of probabilistic computation is considered as ev-
ident. Theorems above show thatits counterpart is not true in the quantum
world! The reason for that is that the model of QFAs mixes reversible (quantum
computation) components with nonreversible (measurements after every step).

In this paper, we consider the best probabilities of acceptance by 1-way quan-
tum finite automata the languages a*b* ... z*. Since the reason why the language
a*b* cannot be accepted by 1-way quantum finite automata is the property de-
scribed in the Theorems 2.1 and 2.2, this new result provides an insight on what
the hierarchy of languages with respect to the probabilities of their acceptance
by 1-way quantum finite automata may be. We also show a generalization of
Theorem 2.3 in a style similar to Theorem 2.2.

3 Main results

Lemma 3.1 For arbitrary real x1 > 0, z2 > 0, ..., &, > 0, there exists a unitary
n x n matric My(x1, 2, ..., x,) with elements m;; such that

T €2 T
my = —F—

m21 == Yy ...,mnl Eliaass———
2+ ..+ a2 Vi + .+l Vi + .+l



Let L,, be the language ajas...a;,.

Theorem 3.1 The language Ly, (n > 1) can be recognized by a 1-way QFA with

the probability of correct answer p where p is the root of pz_ﬂ +p=11n the
interval [1/2,1].

Proof: Let m;; be the elements of the matrix My, (1, 22, ..., ) from Lemma 3.1.

We construct a k x (k — 1) matrix Ty (21, z2, ..., ) with elements ¢;; = m; jy1.

Let Ry(x1,22,...,x;) be a k X k matrix with elements r;; = ﬁ and I, be
LI k

the k x k identity matrix.

n+

1
For fixed n, let p, € [1/2,1] satisfy p; =" +p, =1 and p;, (1 < k < n) =
k—1 k
n—1

pn~t —pn~'. It is easy to see that p; +ps + ...+ p, =1 and

2(k—1)
Pk + -+ pn)? PP nt
1— n n —1_ nz(vz_m :l—p

(pk—l + .. +pn)2 n—1
Pn

-

i

= Pn- (1)

33

Now we describe a 1-way QFA accepting the language L.

The automaton has 2n states: ¢i, g2, ... ¢, are non halting states, ¢n+1,
Qn+2, --- Qan—1 are rejecting states and ¢, is an accepting state. The transition
function is defined by unitary block matrices

Vi = (AP ) 0

Ry (\/B1s \/D2s s /D) Tri(\/BTs /P25 -5 \/P) O
Voo = | TZ(/Prs /P2, -r /D) 0 0

’

0 0 1
0 0 1 0 0
0 Rn—l(\/p_27 ~-~7\/pn) 0 Tn—l(\/p_2a eeey \/pn) 0
Vo, = | 1 0 0 0 0l,

0 TnT_l(\/p_g, s /Pn) O 0 0
0 0 0 0 1

0 0 I 1 0 0

0 Riut1-k(\/Prs-sv/Pn) O Tnp1-k(\/Phs s /Pn) O

Vak = Ik—]. 0 0 0 0 5
0 T o(VDk>-s/Pn) O 0 0
0 0 0 0 1



01,
=)

Case 1. The input is kajaj...a’$.

The starting superposition is |g;). After reading the left endmarker the su-
perposition becomes /p1 |q1) + /P2 |¢2) + ... + /Pn |¢n) and after reading aj
the superposition remains the same.

If the input contains a; then reading the first a; changes the non-halting
part of the superposition to \/px |qx) + - .. + /Pn |¢n) and after reading all the
rest of ay the non-halting part of the superposition remains the same.

Reading the right endmarker maps |g,) to |g2,). Therefore, the superposition
after reading it contains \/py |¢2n). This means that the automaton accepts with
probability p, because ¢o, is an accepting state.

Case 2. The input is kaja3...a}akam... (k> m).
After reading the last aj, the non-halting part of the superposition is \/py, |qx)
+ ...+ /Pn |@n). Then reading a,, changes the non-halting part to

7% lgm) + ...+ % |¢n) - This means that the automaton
n(Pht..4Pn)’

accepts with probability < 2 and rejects with probability at least

(pm+~~~+pn)2

1— pn(pk + .. +pn)2 >1— pn(pk + ... +pn)2 _
(Pm + . +pn)? — (Pr—1 + .. + Dn)?

n

that follows from (1). O

Corollary 3.1 The language L, can be recognized by a 1-way QFA with the
probability of correct answer at least % + +, for a constant c.

Proof: By resolving the equation pi=1 + p = 1, we get p = $+0(1). a

Theorem 3.2 The language L,, cannot be recognized by a 1-way QFA with prob-
ability greater than p where p is the root of

2(1-p) 4 2(1-p)
n—1 n—1

(2p-1) = @)

in the interval [1/2,1].

Proof: Assume we are given a 1-way QFA M. We show that, for any ¢ > 0,
there is a word such that the probability of correct answer is less than p + €.

Lemma 3.2 [AF 98] Let x € ¥ . There are subspaces Ey, Ey such that E,,, =
E1 ©® Eg and

(Z) If’l/) S El, then V$(’l/1) S El,
(ii) If ¥ € By, then ||V] (¥)|| — 0 when k — oco.



We use n — 1 such decompositions: for z = as, * = as, ..., © = a,. The
subspaces Ej, E corresponding to = a,, are denoted E,, ; and E,, 2.

Let m € {2,...,n}, y € aja;...a},_;. Remember that ¢, denotes the su-
perposition after reading y (with observations w.r.t. Enon @ Egce © Ere; after
every step). We express 1, as %1, + wz, TP; € Ep1, wz € Enpo.

We consider two cases.

Case 1. |[¢2]| < \/% for some m € {2,...,n} and y € a}...ak,_;.

Let i > 0. Then, ya,,_1 € L, but yafnam_l ¢ L,. Consider the distributions
of probabilities on M’s answers “accept” and “reject” on ya,,_1 and yal, @, _1.
If M recognizes L, with probability p+ €, it must accept ya,,—1 with probability
at least p+¢ and reject it with probability at most 1 —p—e. Also, yal,a,,—1 must
be rejected with probability at least p+ e and accepted with probability at most
1 — p — €. Therefore, both the probabilities of accepting and the probabilities of
rejecting must differ by at least

(p+e)—(1—p—€)=2p—1+ 2e.

This means that the variational distance between two probability distributions
(the sum of these two distances) must be at least 2(2p — 1) + 4e. We show that
it cannot be so large.

First, we select an appropriate i. Let k be so large that HValkm (¥2)|l < 0 for
d=¢/4 1y, Vy (%), Vya (¥), ... is a bounded sequence in a finite-dimensional
space. Therefore, it has a limit point and there are 7, j such that

||Valgn(¢;) - Vali"ﬂ W;)H < 4.
We choose i, j so that i > k.

The difference between the two probability distributions comes from two
sources. The first source is the difference between ¢, and ¥, (the states of M
before reading a,,—1). The second source is the possibility of M accepting while
reading a’, (the only part that is different in the two words). We bound each of
them.

The difference ¢, —1,,i can be partitioned into three parts.

by = Vyas, = (b — V1) + (W = Vi (1) + (Vi (1) = Yyas).  (3)

The first part is ¢, — ¢, = ¢ and [[¢2]] < 20-p) The second and the

n—1 -
third parts are both small. For the second part, notice that V, is unitary on
Ep,1 (because V,, is unitary and V,, () does not contain halting components
for o) € Ep,1). Hence, V| = preserves distances on E,,; and

6L = Vi @3 = IV (1) = Vs Wh)] < 6
For the third part of (3), remember that ¥,,: =V (¢,). Therefore,

Yyas, = Vai, () = Vi (y) = Vi () = Vi (y =) = Vi (1)

i
m



and ||1/12 || < § because ¢ > k. Putting all three parts together, we get

2(1 —p)
n—1
Lemma 3.3 [BV 97] Let ¢ and ¢ be such that ||¢]| < 1, ||¢]| < 1 and ||¢p — | <

€. Then the total variational distance resulting from measurements of ¢ and
s at most 4e.

+ 20.

||¢y - wyaﬁnH < ||¢y - wgl/” + ||w; - ya’ + ||wyafn - wyaﬁn” <

This means that the difference between any probability distributions gener-
ated by ¢, and v, is at most

2(1-p)

4
n—1

+ 80.
In particular, this is true for the probability distributions obtained by applying
Va,._1» Vs and the corresponding measurements to ¢, and ¢y,i .

- . . . P 2(1—
The probability of M halting while reading af, is at most |[¢2||*> = %‘
Adding it increases the variational distance by at most (1 p ) . Hence, the total

variational distance is at most

20-p) ,, 20=9) o _20-p) , [20=p)

%.
n—1 n—1 n—1 n_1 €

By definition of p, this is the same as (2p—1) +2¢. However, if M distinguishes y
and ya!, correctly, the variational distance must be at least (2p — 1) + 4e. Hence,
M does not recognize one of these words correctly.

Case 2. |lvz]| > 20-0) for every m € {2,...,n} and y € a} ...a%,_,.
We define a sequence of words y1,Y2,...,Ym € ai ...a). Let y1 = a; and

Yr = Yr—1a;* for k € {2,...,n} where iy is such that

€

! 2
Vi @3 )l <y =5
The existence of iy, is guaranteed by (ii) of Lemma 3.2.

We consider the probability that M halts on y, = ala;a? ...alr before
seeing the right endmarker Let k € {2,...,n}. The probability of M halting
while reading the a;* part of y,, is at least

2 2 ( - D) €
1302 = 1V 3, DI > =2 = —

By summing over all £ € {2,...,n}, the probability that A halts on y, is at

least o(1
(n—1)< 1-p) e >:2(1—p)—6.

n—1 n—1

This is the sum of the probability of accepting and the probability of rejecting.
Hence, one of these two probabilities must be at least (1 — p) — €/2. Then, the



probability of the opposite answer on any extension of y,, is at most 1 — (1 —p —

€/2) = p + €/2. However, y,, has both extensions that are in L,, and extensions

that are not. Hence, one of them is not recognized with probability p + €. O
By solving the equation (2), we get

Corollary 3.2 L,, cannot be recognized with probability greater than % + \/%
2
Let ny = 2 and n; = gnc’“—z‘l + 1 for k > 1 (where ¢ is the constant from
Theorem 3.1). Also, define p, = % + é Then, Corollaries 3.1 and 3.2 imply

Theorem 3.3 For every k > 1, Ly, can be recognized with by a 1-way QFA with
the probability of correct answer py, but cannot be recognized with the probability
of correct answer pr_.

Thus, we have constructed a sequence of languages Ly,, Ly,, ... such that,
for each L,, , the probability with which L,, can be recognized by a 1-way QFA
is smaller than for L,, .

Our final theorem is a counterpart of Theorem 2.2. It generalizes Theorem
2.3.

Theorem 3.4 Let L be a language and M be its minimal automaton. If there
is N0 q1,q2,q3, T,y such that

the states q1,q2,q3 are pairwise different,

If M starts in the state ¢, and reads x, it passes to gz,

If M starts in the state qo and reads x, it passes to q2, and

If M starts in the state g and reads y, it passes to qs,

If M starts in the state q3 and reads y, it passes to qs,

both g2 and g3 are neither "all-accepting” state, nor ”all-rejecting” state,

S S oo~

then L can be recognized by a 1-way quantum finite automaton with probability
p=0.68....

4 Conclusion

We have proved existence of a hierarchy of regular languages with respect to the
probability of their acceptance by 1-way quantum automata.
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Abstract. We solve an open problem by constructing a hierarchy of
regular languages in a two letter alphabet such that the current language
in the hierarchy can be accepted by l-way quantum finite automata
with a probability smaller than the corresponding probability for the

1

preceding language in the hierarchy. These probabilities converge to 3.

1 Introduction

Quantum finite automata (QFA) were introduced independently by Moore and
Crutchfield[CM 97] and Kondacs and Watrous[KW 97]. In this paper, we con-
sider the more general definition of QFAS[KW 97] (which includes the definition
of [CM 97] as a special case).

Quantum finite automata do not generalize deterministic finite automata.
Quantum finite automata can be exponentially more space-efficient[AF 98]. How-
ever, there are regular languages that cannot be recognized by quantum finite
automata[KW 97].

If the probability with which a QFA is required to be correct decreases, the
set of languages that can be recognized increases. In particular[AF 98], there are
languages that can be recognized with probability 0.68 but not with probability
7/9. In[ABFK 99] there was shown a hierarchy of regular languages in which each
next language can be recognized with a smaller probability than the previous
one. However, each language in this hierarchy is defined in larger alphabet than
the previous one.

In this paper we give a new construction of such hierarchy for languages in
a two letter alphabet solving an open problem ([GM 99], Open problem 2.15).

2 Preliminaries

A QFA is a tuple M = (Q; 2; V' qo; Qace; @rej) where @ is a finite set of states,
Y is an input alphabet, V is a transition function, gy € Q) is a starting state,
and Quec € @ and Qre; C @ are sets of accepting and rejecting states (Qqce N

* Research partially supported by the Latvian Council of Science, grant 96-0282; Eu-
ropean Commision, contract IST-1999-11234; Swedish Institute, project ML2000



Qrej = 0). The states in Qqcc and Q,j, are called halting states and the states
in Qnon = Q — (Qacc U Qrej) are called non halting states. x and $ are symbols
that do not belong to X'. We use x and $ as the left and the right endmarker,
respectively. The working alphabet of M is I' = X' U {k; $}.

The state of M can be any superposition of states in @ (i.e. any linear combi-
nation of them with complex coefficients). We use |¢) to denote the superposition
consisting of state ¢ only. l5(Q) denotes the linear space consisting of all super-
positions, with [5-distance on this linear space.

The transition function V is a mapping from I" X I5(Q) to I2(Q) such that,
for every a€ ', the function V : I5(Q) — 15(Q) defined by V,(z) = V(a,x)
is a unitary transformation (a linear transformation on l5(Q) that preserves o
norm).

The computation of a QFA starts in the superposition |gg). Then transfor-
mations corresponding to the left endmarker k, the letters of the input word
x and the right endmarker $ are applied. The transformation corresponding to
a€l’ consists of two steps.

1. First, V, is applied. The new superposition ¢’ is V,(¢)) where 1 is the
superposition before this step.

2. Then, ¢’ is observed with respect to Eqcc, Erej, Enon Where Eq.. = span{|q) :
4€Qacc}, Erej = span{|q) : ¢€Qre;}, Enon = span{|q) : ¢€Qnon }- It means that
if the system’s state before the measurement was

V= ey + Y Bilgd+ YL wla)

i €Qace 15 E€EQrej 4k €EQnon

then the measurement accepts ¢’ with probability Ya?, rejects with probability
X 6]2 and continues the computation (applies transformations corresponding to
next letters) with probability £vZ with the system having state ¢ = S, |qx).

We regard these two transformations as reading a letter a. We use V. to
denote the transformation consisting of V, followed by projection to E,,p,. This
is the transformation mapping ¢ to the non-halting part of V,(1). We use V)
to denote the product of transformations V,;, =V, V, ...V, V] , where a; is
the i-th letter of the word w. Also we use 1, to denote the non-halting part of
QFA’s state after reading the left endmarker x and the word y€X*. From the
notation follows that ¢, = V., (|¢0))-

We will say, that an automaton recognizes a language L with probability p
(p > %) if it accepts any word x€L with probability > p and rejects any word
x¢L with probability > p.

After introduction of QFA it appeared that not all regular languages can
be recognized by QFA[KW 97], but the class of languages recognized by QFAs
is a proper subset of regular languages. And also not all languages that are
recognizable by QFA can be recognized by QFA with probability 1. This is
illustrated by following theorem.

Theorem 1. [AF 98] Let L be a language and M be its minimal automaton
(the smallest DFA recognizing L). Assume that there is a word x such that M
contains states q, qo satisfying:



1 q # g,
2. If M starts in the state q1 and reads x, it passes to qo,

3. If M starts in the state g2 and reads x, it passes to qo, and
4. q2 is neither "all-accepting” state, nor "all-rejecting” state.

Then L cannot be recognized by a 1-way quantum finite automaton with proba-
bility 7/9 + ¢ for any fized ¢ > 0.

This result was extended in [ABFK 99] showing a hierarchy of regular lan-
guages in which each next language can be recognized with a smaller probability
than the previous one. These probabilities converge to %

Theorem 2. [ABFK 99] Let L, = afasalaj...a},. Then language L, can be
accepted with probability greater than %—i— ﬁ but not with greater than %—l— \/%

3 Results

We consider the language L,n in the two letter alphabet {a,b}.

L' _ {lfl;lmlm—l = b,lgi = a} if n is odd
n {l;l;lmbz_l = a,lgi = b} if n is even

Theorem 3.1 The languague Lln (n > 1) can be recognized by a 1-way QFA

with probability of correct answer p where p is the root of pz_ﬂ +p =1 1in the
interval [%;1].

Proof: Let p be the root ofp:_ﬂ +p = 1 and p; be the root ofp’fJrl -I-p’f_1 =1
It is easy to see that p = p' ™' and 1 —p = pJTt.

Now we describe a 1-way QFA M accepting this language. The automaton
has 4 states: o, ¢1, Gace and Grej. Qace = {ace}s @rej = {rej}- The state after
reading the left endmarker is /1 —p1|q) + /p1|q1) for n = 2k and |q) for

n = 2k — 1. The transition function is
Va(lg0)) = (1 = p1)lgo) + Vp1(1 = pi)lar) + /pildre;),

Va(lg1)) = Vpi(1 = p1)lgo) + prlar) — /1 = pilgre;)s
Vi(|90)) = lare;)s Va(la)) = lan),
Vs(l90)) = l@rej), Vs(lar)) = |qace)-

Informally the transformation V, mean the projection from the space E,,p,
to the line that contains the vector /1 — p1]qo) ++/p1]¢q1) and the transformation
V» mean the projection from the space E,,, to the line that contains the vector
lq1)-

Case 1.n=2k—1

The superposition after reading the word z; = sl}IF 1] .
lgj = a) is

.. l;_il_l(lgj_l = b,

i1—1

P )



but after reading the word z = &ljIF 15 ... 13; (Izj—1 = b, lo; = a) is

2ip—1

1 ° (V1=pilg) + pila)).

It is easy to see that the automaton cannot accept while reading these input
words. The only possibility to accept is reading the right endmarker. Since |q;)
is mapped to |gqcc) the accepting probability on 21§ is p>172 and the accepting

probability on z2$ is pf”.

1

Hence, the accepting probability for word = € L;1 is > p'”" = p and the
accepting probability for word z ¢ L, is < p?™ =1 —p.

Case 2. n = 2k.

The superposition after reading the word x; = ml:’{l;l; .. ~l;rz‘1_1(l2j—1 = a,
lzj = b) is

P (VT = pilao) + Vprlar))-

but after reading the word @» = klfI 15 ... 15, (lj—1 = a, lo; = b) is

2is
2ip—1
p 2 o).
The accepting probability on x1$ is p%i‘_l and the accepting probability on z2$
is pfirl.
Hence, the accepting probability for word = € L,n is > p?_l = p and the

accepting probability for word ¢ L, is < p'' =1—p. O

Corollary 3.1 The language Lln can be recognized by a 1-way QFA with the
probability of correct answer at least % + =, for a constant c.

Proof: By resolving the equation p:_iri +p=1weget p=3+06(L).

The proof of the upper bound of the language L’n is similar to the proof
for language L,[ABFK 99]. The remaining part of this paper contains the same
proof with some changes.

Theorem 3.2 The language Lln cannot be recognized by a 1-way QFA with prob-
ability greater than p where p is the root of

2(1-p) 4 2(1-p)

2p—1) =
(2p ) n—1 n—1

(1)

in the interval [1/2,1].

Proof: Assume we are given a 1-way QFA M. We will show that, for any € > 0,
there is a word such that the probability of correct answer is less than p + €.

Lemma 3.1 [AF 98] Let x € ¥ . There are subspaces Ey, Es such that Eyp, =
El D E2 and

(Z) Ifi/) S El, then Vw(dJ) S El,



(i) If Y € Ey, then ||V (¥)]| = 0 when k — oo.

Let us denote asr_1 = b,asr = a for odd n and asy_1 = a, asy = b for even
n. We will use n — 1 decompositions of this type: with z = as, z = ag, ...,
* = ap—1 and z = a,. The subspaces E;, E» corresponding to x = a,, will be
denoted Ey, 1 and Ey, ».

Let m € {2,...,n}, y € afa3...ak,_;. ¢, denotes the superposition after
reading y (with observations w.r.t. Enon @ Eqce ® Erej after every step). We
express it as ¢, +¢7, ¥y € Em 1, V) € B .

Case 1. There is m € {2,...,n} and y € af...a}, ; such that [[¢2]] <

2(1-p)
n—1

We con81der inputs yz and ya’, z, for an appropriate i > 0 where yz € L
but yal,z ¢ L We consider the dlstrlbutlons of probablhtles on M’s answers
“accept” and * reJect” on yz and ya’ 2. If M recognizes Ln with probability p+e,
it must accept yz with probability at least p+ € and reject it with probability at
most 1 — p — €. Also, yal,z must be rejected with probability at least p + € and
accepted with probability at most 1 — p — €. Therefore, both the probabilities of
accepting and the probabilities of rejecting must differ by at least

(pte)—(1—p—€)=2p—1+2e.

This means that the variational distance between two probability distributions
(the sum of these two distances) must be at least 2(2p — 1) + 4e. We show that
it cannot be so large.

First, we select i. Let k be so large that ||Va’$n(1/12)|| < 6 for & = €/4.
Yy Vo (03), Vs (1), ... is a bounded sequence in a finite-dimensional space.
Therefore, it has a limit point and there are ¢, 7 such that

IV, (1) = Vi (B0 <.

We choose ¢, j so that ¢ > k.

The difference between two probability distributions comes from two sources.
The first source is difference between 1, and 1,,: (the states of M before reading
am—1)- The second source is the possibility of M accepting while reading a’, (the
only part that is different in the two words). We bound each of them.

The difference ¢, — ¢, can be partitioned into three parts.

By — Yyas, = (G = 1)+ @ = Vi (1) + (Ve 1) = tyas ). (2)

The first part is ¢, — ¢, = ¢2 and [[¢2]] < 20— p) . The second and the

third parts are both small. For the second part, notlce that V, is unitary on
Ep,1 (because V,, is unitary and V,, (%) does not contain halting components
for ¢ € Ep,1). Hence, V| preserves distances on E,; and

Iy = Vi WD = IV (63) = Vs (0Dl < 6



For the third part of (2), remember that 1,,: = V/; (¥,). Therefore,
Uyai, = Vas () = Vi () = Vi (%) = Vi (y —0y) = Vi (1))

and ||z/1§ain || <& because i > k. Putting all three parts together, we get

2(1-p)

20.
n—1 +

||¢y - wyafn

<y = yll + 10y = Yyas 1+ 1040 = Yyai, | <
Next, we apply a lemma from [BV 97].

Lemma 3.2 [BV 97] Let ¢ and ¢ be such that ||| < 1, ||¢]] < 1 and || —¢|| <
€. Then the total variational distance resulting from measurements of ¢ and ¥
1s at most 4e.

This means that the difference between any probability distributions gener-
ated by ¢, and 1,4 is at most

2(1-p)

4
n—1

+ 84.

In particular, this is true for the probability distributions obtained by applying
Va,._1» Vs and the corresponding measurements to ¢y and ¢4 .

e . . . i s _ 2(17 )
The probability of M halting while reading af, is at most [[¢Z]|* = ==,
Adding it increases the variational distance by at most %. Hence, the total
variational distance is at most
2(1 - 2(1 — 2(1 - 2(1 -
A-p) 4 [20=D) o 20-p)  ,J20-D) o
n—1 n—1 n—1 n—1

By definition of p, this is the same as (2p—1) +2¢. However, if M distinguishes y
and yal, correctly, the variational distance must be at least (2p — 1) 4 4e. Hence,
M does not recognize one of these words correctly.

Case 2. |lvz]] > 2(;%1”) for every m € {2,...,n} and y € a}...al,_,.
We define a sequence of words yi,y2,...,ym € aj...a}. Let y1 = a; and

Yr = yk_laff for k € {2,...,n} where i), is such that

€

! 2
IVl @3l < (=
The existence of iy, is guaranteed by (ii) of Lemma 3.1. o

We consider the probability that M halts on y, = ajasas®...alr before
seeing the right endmarker. Let k € {2,...,n}. The probability of M halting
while reading the a}* part of y, is at least

2(1-p) €
22 12 2
192, 17 = 1V 02l > 222



By summing over all k € {2,...,n}, the probability that M halts on y,, at least

(n—1) (2(1_p) S >:2(1—p)—6‘

n—1 n—1

This is the sum of the probability of accepting and the probability of rejecting.

Hence, one of these two probabilities must be at least (1 — p) — €/2. Then, the

probability of the opposite answer on any extension of y,, is at most 1 — (1 —p—

€/2) = p+ €/2. However, y, has both extensions that are in L, and extensions

that are not. Hence, one of them is not recognized with probability p + €. O
By solving the equation (1), we get

Corollary 3.2 Lln cannot be recognized with probability greater than % + \/;’Tl

2
Let ny = 2 and nj, = 9":;1 + 1 for £ > 1 (where ¢ is the constant from

Theorem 3.1). Also, define p, = % + - Then, Corollaries 3.1 and 3.2 imply

Theorem 3.3 For every k > 1, L,n,e can be recognized with by a 1-way QFA with
the probability of correct answer py, but cannot be recognized with the probability
of correct answer pg_.

!

Thus, we have constructed a sequence of languages L, , L;w,
for each L, , the probability with which L,,

ng?
is smaller than for L,

... such that,
can be recognized by a 1-way QFA

k

1°
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On the class of languages recognizable by 1-way
quantum finite automata
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Abstract. It is an open problem to characterize the class of languages
recognized by quantum finite automata (QFA). We examine some neces-
sary and some sufficient conditions for a (regular) language to be recog-
nizable by a QFA. For a subclass of regular languages we get a condition
which is necessary and sufficient.

Also, we prove that the class of languages recognizable by a QFA is not
closed under union or any other binary Boolean operation where both
arguments are significant.

1 Introduction

A 1-way quantum finite automaton (QFA)! is a theoretical model for a quantum
computer with a finite memory.

Compared to classical (non-quantum) automata, QFAs have both strengths
and weaknesses. The strength of QFAs is shown by the fact that quantum au-
tomata can be exponentially more space efficient than deterministic or prob-
abilistic automata [AF 98]. The weakness of QFAs is caused by the fact that
any quantum process has to be reversible (unitary). This makes QFAs unable to
recognize some regular languages.

The first result of this type was obtained by Kondacs and Watrous [KW 97]
who showed that there is a language that can be recognized by a deterministic
finite automaton (DFA) but cannot be recognized by QFA. Later, Brodsky and
Pippenger [BP 99] generalized the construction of [KW 97] and showed that
any regular language that does not satisfy the partial order condition cannot be
recognized by a QFA. They also conjectured that all regular languages satisfying
the partial order condition can be recognized by a QFA.

*** Research supported by Berkeley Fellowship for Graduate Studies and, in part, NSF
Grant CCR-9800024.
t Research supported by Grant No.96.0282 from the Latvian Council of Science and
European Commission, contract IST-1999-11234.
! For the rest of the paper, we will omit “l-way” because this is the only model of
QFAs that we consider in this paper. For other models of QFAs, see [KW 97] and
[AW 99].



In this paper, we disprove their conjecture. We show that, for a language to
be recognizable by a QFA, its minimal deterministic automaton must not contain
several “forbidden fragments”. One of fragments is equivalent to the automaton
not satisfying the partial order condition. The other fragments are new.

A somewhat surprising feature of our “forbidden fragments” is that they
consist of several parts (corresponding to different beginnings of the word) and
the language corresponding to every one of them can be recognized but one
cannot simultaneously recognize the whole language without violating unitarity.

Our result implies that the set of languages recognizable by QFAs is not closed
under union. In particular, the language consisting of all words in the alphabet
{a, b} that have an even number of a’s after the first b is not recognizable by a
QFA, although it is a union of two recognizable languages. (The first language
consists of all words with an even number of a’s before the first b and an even
number of a’s after the first b, the second language consists of all words with an
odd number of a’s before the first b and an even number of a’s after it.) This
answers a question of Brodsky and Pippenger [BP 99].

For a subclass of regular languages (languages that do not contain ”two
cycles in a row” construction shown in Fig. 3), we show that our conditions
are necessary and sufficient for a language to be recognizable by a QFA. For
arbitrary regular languages, we only know that these conditions are necessary
but we do not know if all languages satisfying them can be recognized by a QFA.

Due to space constraints of these proceedings, most of proofs are omitted.

1.1 Definitions

Quantum finite automata (QFA) were introduced independently by Moore and
Crutchfield [MC 97] and Kondacs and Watrous [KW 97]. In this paper, we con-
sider the more general definition of QFAs [KW 97] (which includes the definition
of [MC 97] as a special case).

Definition 1.1. A QFA is a tuple M = (Q; X;V;qo; Qace; Qrej) where Q is a
finite set of states, X is an input alphabet, V is a transition function (explained
below), qo € Q is a starting state, and Qqcc C Q and Qre; C Q are sets of
accepting and rejecting states (Quec N Qrej = 0). The states in Quee and Qrej,
are called halting states and the states in Qpon = Q — (Qace U Qre;) are called
non halting states.

States of M. The state of M can be any superposition of states in @ (i.
e., any linear combination of them with complex coefficients). We use |g) to
denote the superposition consisting of state ¢ only. [2(Q)) denotes the linear
space consisting of all superpositions, with l»-distance on this linear space.

Endmarkers. Let x and $ be symbols that do not belong to X'. We use &
and $ as the left and the right endmarker, respectively. We call I' = X' U {k; $}
the working alphabet of M.

Transition function. The transition function V' is a mapping from I" x 12(Q)
to I13(Q) such that, for every a€l’, the function V, : l2(Q) — 12(Q) defined by



Va(z) = V(a,x) is a unitary transformation (a linear transformation on I5(Q)
that preserves ls norm).

Computation. The computation of a QFA starts in the superposition |qo).
Then transformations corresponding to the left endmarker k, the letters of the
input word x and the right endmarker $ are applied. The transformation corre-
sponding to a€l’ consists of two steps.

1. First, V, is applied. The new superposition v’ is V,(y)) where v is the
superposition before this step.

2. Then, ¢’ is observed with respect to Euce, Erej, Enon Where Eqc. = span{|q) :

€ Qacc}s Erej = span{|q) : ¢€Qrej}, Enon = span{|q) : ¢€Qnon}- If the state
before the measurement was

W= > sl + Y Bilg)+ D wla)

i €EQace 5 €EQrej Ak EQnon

then the measurement accepts ' with probability p, = Ya?, rejects with prob-
ability p, = Eﬁ? and continues the computation (applies transformations corre-
sponding to next letters) with probability p. = Xy with the system having the

(normalized) state HdJTH where ¢ = Yy [qx)-

We regard these two transformations as reading a letter a.

Unnormalized states. Normalization (replacing i by HwTH) is needed to
make the probabilities of accepting, rejecting and non-halting after the next let-
ter sum up to 1. However, normalizing the state after every letter can make the
notation quite messy. (For the state after k letters, there would be k normaliza-
tion factors m, o ”wl—k” - one for each letter!)

For this reason, we do not normalize the states in our proofs. That is, we

apply the next transformations to the unnormalized state ¢ instead of %

There is a simple correspondence between unnormalized and normalized
states. If, at some point, the unnormalized state is 1, then the normalized state
is ﬁ and the probability that the computation has not stopped is ||1||>. The

sums p, = Ya? and p, = X /3? are the probabilities that the computation has
not halted before this moment but accepts (rejects) at this step.

Notation. We use V) to denote the transformation consisting of V, fol-
lowed by projection to E,,y,. This is the transformation mapping ¢ to the non-
halting part of V,(v). We use V| to denote the product of transformations
Vo=V, Vi ...V, V. where a; is the i-th letter of the word w.

We also use 1)y, to denote the (unnormalized) non-halting part of QFA’s state
after reading the left endmarker £ and the word we X*. From the notation it
follows that v, = V., (Igo))-

Recognition of languages. A QFA M recognizes a language L with prob-
ability p (p > %) if it accepts any word z€L with probability > p and rejects any
word z¢L with probability > p. If we say that a QFA M recognizes a language
L (without specifying the accepting probability), this means that M recognizes
L with probability % + € for some € > 0.



1.2 Previous work
The previous work on quantum automata has mainly considered 3 questions:

1. What is the class of languages recognized by QFAs?

2. What accepting probabilities can be achieved?

3. How does the size of QFAs (the number of states) compare to the size of
deterministic (probabilistic) automata?

In this paper, we consider the first question. The first results in this direction
were obtained by Kondacs and Watrous [KW 97].

Theorem 1.1. [KW 97]

1. All languages recognized by QFAs are regular.
2. There is a reqular language that cannot be recognized by a QFA.

Brodsky and Pippenger [BP 99] generalized the second part of Theorem 1.1
by showing that any language satisfying a certain property is not recognizable
by a QFA.

Theorem 1.2. [BP 99] Let L be a language and M be its minimal automaton
(the smallest DFA recognizing L). Assume that there are words x and y such
that M contains states q1, qo satisfying:

1. q1 7£ q2,
2. If M starts in the state q1 and reads x, it passes to qo,

8. If M starts in the state g2 and reads x, it passes to qo, and
4. If M starts in qo and reads y, it passes to qi,

then L cannot be recognized by a quantum finite automaton(Fig.1).

Fig. 1. Conditions of theorem 1.2

A language L with the minimal automaton not containing a fragment of The-
orem 1.2 is called satisfying the partial order condition [MT 69]. [BP 99] conjec-
tured that any language satisfying the partial order condition is recognizable by
a QFA. In this paper, we disprove this conjecture.



Another direction of research studies the accepting probabilities of QFAs.
First, Ambainis and Freivalds [AF 98] proved that the language a*b* is recog-
nizable by a QFA with probability 0.68... but not with probability 7/9+ ¢ for any
€ > 0. Thus, the classes of languages recognizable with different probabilities are
different. Next results in this direction were obtained by [ABFK 99] who studied
the probability with which the languages af ...a}, can be recognized.

There is also a lot of results about the number of states needed for QFA to
recognize different languages. In some cases, it can be exponentially less than for
deterministic or even for probabilistic automata [AF 98 K 98]. In other cases, it
can be exponentially bigger than for deterministic automata [ANTV 98,N 99].

A good survey about quantum automata is Gruska [G 00].

2 Main results

2.1 Necessary condition

First, we give the new condition which implies that the language is not recog-
nizable by a QFA. Similarly to the previous condition (Theorems 1.2), it can
be formulated as a condition about the minimal deterministic automaton of a
language. In Section 3, we will give an example of a language that satisfies the
condition of Theorem 2.1 but not the previously known condition of Theorem
1.2 (the language Ly).

Theorem 2.1. Let L be a language. Assume that there are words x, y, 21, 22
such that its minimal automaton M contains states qi, q2, q3 satisfying:

1. g # g3,

2. if M starts in the state g1 and reads x, it passes to qs,

3. if M starts in the state qo and reads x, it passes to qs,

4. if M starts in the state g1 and reads y, it passes to qs,

5. if M starts in the state q3 and reads v, it passes to qs,

6. for any word t € (x|y)* there exists a word t1 € (x|y)* such that if M
starts in the state qo and reads tt1, it passes to qo,

7. for any word t € (x|y)* there exists a word t, € (z|y)* such that if M
starts in the state q3 and reads tt1, it passes to qs,

8. if M starts in the state qo and reads zy, it passes to an accepting state,

9. if M starts in the state qo and reads z», it passes to a rejecting state,

10. if M starts in the state g3 and reads z1, it passes to a rejecting state,

11. if M starts in the state q3 and reads zo, it passes to an accepting state.
Then L cannot be recognized by a QFA.

Proof. We use lemmas from [BV 97] and [AF 98].

Lemma 2.1. /[BV 97] If ¢ and ¢ are two quantum states and || — ¢|| < € then
the total variational distance between probability distributions generated by the
same measurement on ¢ and ¢ is at most® 2e.

2 The lemma in [BV 97] has 4¢ but it can be improved to 2e.



Fig. 2. Conditions of theorem 2.1, conditions 6 and 7 are shown symbolically

Lemma 2.2. [AF 98] Letx € X . There are subspaces Ey, Es such that Eyp, =
E, ® Es and

(i) If ¢ € Ey, then V;(¢) € Ey and ||V (¥)[| = [[¥]],
(ii) If ¢ € By, then ||V (¥)|| = 0 when k — oco.

Lemma 2.2 can be viewed as a quantum counterpart of the classification of
states for Markov chains [KS 76]. The classification of states divides the states
of a Markov chain into ergodic sets and transient sets. If the Markov chain is
in an ergodic set, it never leaves it. If it is in a transient set, it leaves it with
probability 1 — € for an arbitrary € > 0 after sufficiently many steps.

In the quantum case, E; is the counterpart of an ergodic set: if the quantum
random process defined by repeated reading of x is in a state ¢y € Ej, it stays
in F,. Es is a counterpart of a transient set: if the state is ¢ € Es, Es is left
(for an accepting or rejecting state) with probability arbitrarily close to 1 after
sufficiently many z’s.

The next Lemma is our generalization of Lemma 2.2 for the case of two
different words = and y.

Lemma 2.3. Let z,y € Xt. There are subspaces E,, Es such that E,,, =
E1 (&) E2 and

(i) If ¥ € Ey, then V() € By and Vy(¢) € Ey and |[V(4)| = [[¢[ and

IVy ) = NI,
(i) If i € Es, then for any € > 0, there exists t € (z|y)* such that ||V/ (¥)]] < e.

Proof. Omitted. O
Let L be a language with its minimal automaton M containing the ”forbidden
construction” and M, be a QFA. We show that M, cannot recognize L.
For a word w, let 1, = ¥} + 92, ¥l € Ey, ¢2 € Es.



Fix a word w after reading which M is in the state g;. We find a word
a € (z|y)* such that after reading za M is in the state g2 and the norm of
W2 = VI(¢2,) is at most some fixed € > 0. (Such word exists due to Lemma
2.3 and conditions 6 and 7.) We also find a word b such that [l || < e.

Because of unitarity of V; and V,; on E; (part (i) of Lemma 2.3), there exist
integers i and j such that [|lv, 1 — Yyl < e and [l 05 — Yyl <e.

Let p be the probability of M, accepting while reading sw. Let p; be the
probability of accepting while reading (za)? with a starting state 1,,, po be the
probability of accepting while reading (yb)? with a starting state v, and ps, py
be the probabilities of accepting while reading 21$ and 20$ starting at 1. .

Let us consider four words kw(za)'z:$, kw(za)ze$, kw(yb)’ 218, kw(yb)’ z2$.

Lemma 2.4. M, accepts kw(za)'z1$ with probability at least p + p1 + ps — 4e
and at most p+ p1 + p3 + 4e.

Proof. The probability of accepting while reading xw is p. After that, M, is in
the state v, and reading (za)? from v,, causes it to accept with probability p;.

The remaining state is ¢y (gq)i = w}u(m)i + d)fu(m)i. If it was 1L, the proba-
bility of accepting while reading the rest of the word (21$) would be exactly ps.
It is not quite 1. but it is close to 1L . Namely, we have

”ww(za)i - ’(p%uH < ||¢121)(za)’

+ ||¢111)(za)1 - ¢111)|| <ete= 2e.

By Lemma 2.1, the probability of accepting during z;$ is between p3 — 4e and
p3 + 4e. O

Similarly, on the second word M, accepts with probability between p + p; +
p4 — 4e and p + p1 + ps + 4e. On the third word M, accepts with probability
between p + p» + p3 — 4e and p + p» + ps + 4e. On the fourth word M, accepts
with probability p 4+ ps + ps — 4€ and p + ps + pg + 4e.

This means that the sum of accepting probabilities of two words that belong
to L (the first and the fourth) differs from the sum of accepting probabilities of
two words that do not belong to L (the second and the third) by at most 16e.
Hence, the probability of correct answer of M, on one of these words is at most
1 + 4e. Since such 4 words can be constructed for arbitrarily small €, M, does
not recognize L. O

2.2 Necessary and sufficient condition

For languages whose minimal automaton does not contain the construction of
Figure 3, this condition (together with Theorem 1.2) is necessary and sufficient.

Theorem 2.2. Let U be the class of languages whose minimal automaton does
not contain "two cycles in a row” (Fig. 8). A language that belongs to U can
be recognized by a QFA if and only if its minimal deterministic automaton does
not contain the "forbidden construction” from Theorem 1.2 and the ”forbidden
construction” from Theorem 2.1.



Fig. 3. Conditions of theorem 2.2

3 Non-closure under union

In particular, Theorem 2.1 implies that the class of languages recognized by
QFAs is not closed under union.

Let Ly be the language consisting of all words that start with any number of
letters a and after first letter b (if there is one) there is an odd number of letters
a. Its minimal automaton G; is shown in Fig.4.

Fig. 4. Automaton G,

This language satisfies the conditions of Theorem 2.1. (¢1, g2 and g3 of The-
orem 2.1 are just q1, g2 and g3 of G;. z, y, 21 and z, are b, aba, a and b.) Hence,
it cannot be recognized by a QFA.

Consider 2 other languages Lo and L3 defined as follows.

Lo consists of all words which start with an even number of letters a and
after first letter b (if there is one) there is an odd number of letters a.

L3 consists of all words which start with an odd number of letters a and after
first letter b (if there is one) there is an odd number of letters a.

It is easy to see that Ly = Lo |J Ls.

The minimal automata G5 and G3 are shown in Fig.5 and Fig.6. They do
not contain any of the “forbidden constructions” of Theorem 2.2. Therefore, Lo
and L3 can be recognized by a QFA and we get




Theorem 3.1. There are two languages Lo and Lz which are recognizable by a
QFA but the union of them L1 = Lo |J L3 is not recognizable by a QFA.

Corollary 3.1. The class of languages recognizable by a QFA is not closed under
UNION.

This answers a question of Brodsky and Pippenger [BP 99].

As Ly L3 = 0 then also Ly = Lo ALs. So the class of languages recognizable
by QFA is not closed under symmetric difference. From this and from the fact
that this class is closed under complement, it follows:

Corollary 3.2. The class of languages recognizable by a QFA is not closed under
any binary boolean operation where both arquments are significant.

Instead of using the general construction of Theorem 2.2, we can also use
a construction specific to languages Lo and L3. This gives simpler QFAs and
achieves a better probability of correct answer. (Theorem 2.2 gives QFAs for
L, and L3 with the probability of correct answer 3/5. Our construction below
achieves the probability of correct answer 2/3.)

Fig. 5. Automaton G2 Fig. 6. Automaton G3

Theorem 3.2. There are two languages Lo and Lz which are recognizable by a
QFA with probability % but the union of them Ly = Loy |J L3 is not recognizable
with a QFA (with any probability 1/2 + ¢, € > 0).

This is the best possible, as shown by the following theorem.

Theorem 3.3. If 2 languages L1 and Lo are recognizable by a QFA with proba-
bilities p1 and ps and pl—l + p% < 3 then L = Ly |J L» is also recognizable by QFA

with probability zﬁﬁ :

Corollary 3.3. If 2 languages L1 and Lo are recognizable by a QFA with prob-
abilities p1 and ps and py > 2/3 and ps > 2/3, then L = L1 |J L is recognizable
by QFA with probability p3 > 1/2.



4 More ”forbidden” constructions

If we allow the "two cycles in a row” construction, Theorem 2.2 is not longer true.
More and more complicated ”forbidden fragments” that imply non-recognizability
by a QFA are possible.

Theorem 4.1. Let L be a language and M be its minimal automaton. If M
contains a fragment of the form shown in Figure 7 where a,b,c,d,e, f,g,h,i € X*

are words and qo, qa, Qs des ads Gaes Qods Qof s ees def are states of M and

1. If M reads x € {a,b,c} in the state qo, its state changes to q.

2. If M reads x € {a,b,c} in the state q, its state again becomes qy.

3. If M reads any string consisting of a, b and c in the state q, (z € {a,b,c}),

it moves to a state from which it can return to the same q, by reading some

(possibly, different) string consisting of a, b and c.

If M reads y € {d,e, f} in the state q. (v € {a,b,c}), it moves to qy,.>

If M reads y € {d,e, f} in the state qgy, its state again becomes ¢y, .

If M reads any string consisting of d, e and f in the state g, it moves

to a state from which it can return to the same state g, by reading some

(possibly, different) string consisting of d, e and f.

7. Reading h in the state qqq, ¢ in the state qv. and g in the state q.¢ lead to
accepting states. Reading g in qqe, h in qpy and i in geq lead to rejecting
states.

S T~

then L is not recognizable by a QFA.

The existence of the “forbidden construction” of Theorem 4.1 does not imply
the existence of any of previously shown “forbidden constructions”. To show
this, consider the alphabet X' = {a,b,c,d, e, f, g, h,i} and languages of the form
Ly .. = xz(alble)*y(d|e|f)*z where z € {a,b,c},y € {d,e, f}, z € {g,h,i}. Let L
be the union of languages L, , . corresponding to black squares in Figure 8.

Theorem 4.2. The minimal automaton of L does not contain the “forbidden
constructions” of Theorems 1.2 and 2.1.

However, one can easily see that the minimal automaton of L contains the
“forbidden construction” of Theorem 4.1. (Just take gy to be the starting state
and make a, b, ..., i of Theorem 4.1 equal to corresponding letters in the alpha-
bet X.) This means that the existence of “forbidden construction” of Theorem
4.1 does not imply the existence of previous “forbidden constructions”.

Theorem 4.1 can be generalized to any number of levels (cycles following one
another) and any number of branchings at one level as long as every arc from
one vertex to other is traversed the same number of times in paths leading to
accepting states and in paths leading to rejecting states.

A general “forbidden construction” is as follows.

3 Note: we do not have this constraint (and the next two constraints) for pairs ¢ =
a,y=f,x=0b,y=eand z = ¢, y = d for which the state ¢, is not defined.



Fig. 7. Conditions of theorem 4.1

9 h 9 h 9 h
dI dE dr:
a. e b: e c. e
f f f

Fig. 8. The language L

Level 1 of a construction consists of a state ¢; and some words a1, a2, . ...

Level 2 consists of the states g21, @22, - .. where the automaton goes if it reads
one of words of Level 1 in a state in Level 1. We require that, if the automaton
starts in one of states of Level 2 and reads any string consisting of words of Level
1 it can return to the same state reading some string consisting of these words.
Level 2 also has some words as1, a2, .. ..

Level 3 consists of the states g1, ¢32, ... where the automaton goes if it reads
one of words of Level 2 in a state in Level 2. We require that, if the automaton
starts in one of states of Level 3 and reads any string consisting of words of Level
2 it can return to the same state reading some string consisting of these words.
Again, Level 3 also has some words asy, asa, .... ...

Level n consists of the states ¢n1, gn2, ... where the automaton goes if it
reads one of words of Level n — 1 in a state in Level n — 1.



Let us denote all different words in this construction as ay,as, as, ... ,Qp.

For a word a; and a level j we construct sets of states B;; and D;;. A state
g in level j 4 1 belongs to B;; if the word a; belongs to level j and M moves to
g after reading a; in some state in level j. A state belongs to D;; if this state
belongs to the Level n and it is reachable from B;;.

Theorem 4.3. Assume that the minimal automaton M of a language L con-
tains the “forbidden construction” of the general form described above and, in
this construction, for each D;; the number of accepting states is equal to the
number of rejecting states. Then, L cannot be recognized by a QFA.

Theorems 2.1 and 4.1 are special cases of this theorem (with 3 and 4 levels,
respectively).
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Abstract. One of the properties of Kondacs-Watrous model of quan-
tum finite automata (QFA) is that the probability of the correct answer
for a QFA cannot be amplified arbitrarily. In this paper, we determine
the maximum probabilities achieved by QFAs for several languages. In
particular, we show that any language that is not recognized by an RFA
(reversible finite automaton) can be recognized by a QFA with probabil-
ity at most 0.7726....

1 Introduction

A quantum finite automaton (QFA) is a model for a quantum computer with
a finite memory. QFAs can recognize the same languages as classical finite au-
tomata but they can be exponentially more space efficient than their classical
counterparts [AF 98].

To recognize an arbitrary regular language, QFAs need to be able to perform
general measurements after reading every input symbol, as in [AW 02,C 01,P 99].
If we restrict QFAs to unitary evolution and one measurement at the end of
computation (which might be easier to implement experimentally), their power
decreases considerably. Namely [CM 97,BP 99], they can only recognize the lan-
guages recognized by permutation automata, a classical model in which the
transitions between the states have to be fully reversible.

Similar decreases of the computational power have been observed in several
other contexts. Quantum error correction is possible if we have a supply of
quantum bits initialized to |0) at any moment of computation (see chapter 10 of
[NC 00]). Yet, if the number of quantum bits is fixed and it is not allowed to re-
initialize them by measurements, error correction becomes difficult [ABIN 96].
Simulating a probabilistic Turing machine by a quantum Turing machine is
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f Research supported by Grant No.01.0354 from the Latvian Council of Science and
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trivial if we allow to measure and reinitialize qubits but quite difficult if the
number of qubits is fixed and they cannot be reinitialized [W 98].

Thus, the availability of measurements is very important for quantum au-
tomata. What happens if the measurements are allowed but restricted? How
can we use the measurements of a restricted form to enhance the abilities of
quantum automata? Can quantum effects be used to recognize languages that
are not recognizable by classical automata with the same reversibility require-
ments?

In this paper, we look at those questions for “measure-many” QFA model by
Kondacs and Watrous [KW 97]. This model allows intermediate measurements
during the computation but these measurements have to be of a restricted type.
More specifically, they can have 3 outcomes: “accept”, “reject”, “don’t halt” and
if one gets “accept” or “reject”, the computation ends and this is the result of
computation. The reason for allowing measurements of this type was that the
states of a QFA then have a simple description of the form (|1} , pa, pr-) Where pq,
is the probability that the QFA has accepted, p, is the probability that the QFA
has rejected and |v) is the remaining state if the automaton has not accepted or
rejected. Allowing more general measurements would make the remaining state
a mixed state p instead of a pure state |¢). Having a mixed state as the current
state of a QFA is very reasonable physically but the mathematical apparatus for
handling pure states is simpler than one for mixed states.

For this model, we have [AF 98]

— Any language recognizable by a QFA! with a probability 7/9 + ¢, € > 0 is
recognizable by a reversible finite automaton (RFA).

— The language a*b* can be recognized with probability 0.6822.. but cannot
be recognized by an RFA.

Thus, the quantum automata in this model have an advantage over their classical
counterparts (RFAs) with the same reversibility requirements but this advantage
only allows to recognize languages with probabilities at most 7/9, not 1 — e with
arbitrary € > 0. This is a quite unusual property because, in almost any other
computational model, the accepting probability can be increased by repeating
the computation in parallel. As we see, this is not the case for QFAs.

In this paper, we develop a method for determining the maximum probability
with which a QFA can recognize a given language. Our method is based on the
quantum counterpart of classification of states of a Markov chain into ergodic
and transient states [KS 76]. We use this classification of states to transform
the problem of determining the maximum accepting probability of a QFA into
a quadratic optimization problem. Then, we solve this problem (analytically in
simpler cases, by computer in more difficult cases).

Compared to previous work, our new method has two advantages. First, it
gives a systematic way of calculating the maximum accepting probabilities. Sec-
ond, solving the optimization problems usually gives the maximum probability

! For the rest of this paper, we will refer to “measure-many” QFAs as simply QFAs
because this is the only model considered in this paper.



exactly. Most of previous work [AF 98, ABFK 99] used approaches depending on
the language and required two different methods: one for bounding the proba-
bility from below, another for bounding it from above. Often, using two different
approaches gave an upper and a lower bound with a gap between them (like
0.6822... vs. 7/9 + € mentioned above). With the new approach, we are able to
close those gaps.

We use our method to calculate the maximum accepting probabilities for a
variety of languages (and classes of languages).

First, we construct a quadratic optimization problem for the maximum ac-
cepting probability by a QFA of a language that is not recognizable by an RFA.
Solving the problem gives the probability (52 + 41/7)/81 = 0.7726.... This prob-
ability can be achieved for the language a™ in the two-letter alphabet {a, b} but
no language that is no recognizable by a RFA can be recognized with a higher
probability. This improves the 7/9 + € result of [AF 98].

This result can be phrased in a more general way. Namely, we can find the
property of a language which makes it impossible to recognize the language by an
RFA. This property can be nicely stated in the form of the minimal deterministic
automaton containing a fragment of a certain form.

We call such a fragment a “non-reversible construction”. It turns out that
there are many different “non-reversible constructions” and they have different
influence on the accepting probability. The one contained in the a™ language
makes the language not recognizable by an RFA but the language is still rec-
ognizable by a QFA with probability 0.7726.... In contrast, some constructions
analyzed in [BP 99,AKV 01] make the language not recognizable with probabil-
ity 1/2 + € for any € > 0.

In the rest of this paper, we look at different “non-reversible constructions”
and their effects on the accepting probabilities of QFAs. We consider three con-
structions: “two cycles in a row”, “k cycles in paralle]” and a variant of the
at construction. The best probabilities with which one can recognize languages
containing these constructions are 0.6894..., k/(2k—1) and 0.7324..., respectively.

The solution of the optimization problem for “two cycles in a row” gives
a new QFA for the language a*b* that recognizes it with probability 0.6894...,
improving the result of [AF 98]. Again, using the solution of the optimization
problem gives a better QFA that was previously missed because of disregarding
some parameters.

2 Preliminaries

2.1 Quantum automata
We define the Kondacs-Watrous (“measure-many”) model of QFAs [KW 97].

Definition 1. A QFA is a tuple M = (Q; X;V;qo; Qace; Qrej) where Q is a
finite set of states, X' is an input alphabet, V is a transition function (explained
below), qo € Q is a starting state, and Quee C @ and Qre; C Q are sets of
accepting and rejecting states (Qace N Qrej = 0). The states in Quce and Qre;,



are called halting states and the states in Qpon = @ — (Qace U Qrej) are called
non halting states.

States of M. The state of M can be any superposition of states in @ (i.
e., any linear combination of them with complex coefficients). We use |g) to
denote the superposition consisting of state ¢ only. I5(Q) denotes the linear
space consisting of all superpositions, with [s-distance on this linear space.

Endmarkers. Let x and $ be symbols that do not belong to X. We use &
and $ as the left and the right endmarker, respectively. We call I' = X' U {x; $}
the working alphabet of M.

Transition function. The transition function V' is a mapping from I"x l2(Q)
to l2(Q) such that, for every a€l’, the function V, : l2(Q) — [2(Q) defined by
Va(z) = V(a, ) is a unitary transformation (a linear transformation on l»(Q)
that preserves [y norm).

Computation. The computation of a QFA starts in the superposition |qo).
Then transformations corresponding to the left endmarker k, the letters of the
input word z and the right endmarker $ are applied. The transformation corre-
sponding to a€l’ consists of two steps.

1. First, V, is applied. The new superposition v’ is V(1) where ¢ is the
superposition before this step.

2. Then, 9’ is observed with respect to Egcc, Erej, Enon Where Eqee = span{|q) :
q€Qacc}y Erej = span{lq) : ¢€Qrej}, Enon = spani|q) : ¢€Qnon}. It means that
if the system’s state before the measurement was

W= D e+ Y Bila)+ Y wla)

¢i€Quacc Qi EQrej qEQnon

then the measurement accepts 1’ with probability p, = Ya?, rejects with prob-
ability p, = X 672 and continues the computation (applies transformations corre-
sponding to next letters) with probability p. = X7 with the system having the
(normalized) state ”://j—” where ¥ = Xy |qx).

We regard these two transformations as reading a letter a.

Notation. We use V, to denote the transformation consisting of V, fol-
lowed by projection to E,,y,. This is the transformation mapping 1 to the non-
halting part of V,(¢). We use V, to denote the product of transformations

w

Vo =V, Vo ...V, V], where q; is the i-th letter of the word w.
We also use 1y, to denote the (unnormalized) non-halting part of QFA’s state
after reading the left endmarker x and the word weX™*. From the notation it
follows that ¥, = V.., (Igo))-
Recognition of languages. We will say that an automaton recognizes a
language L with probability p (p > %) if it accepts any word x€L with probability

> p and rejects any word x¢ L with probability > p.

2.2 Useful lemmas

For classical Markov chains, one can classify the states of a Markov chain into
ergodic sets and transient sets [KS 76]. If the Markov chain is in an ergodic set,



it never leaves it. If it is in a transient set, it leaves it with probability 1 — € for
an arbitrary € > 0 after sufficiently many steps.

A quantum counterpart of a Markov chain is a quantum system to which
we repeatedly apply a transformation that depends on the current state of the
system but does not depend on previous states. In particular, it can be a QFA
that repeatedly reads the same word x. Then, the state after reading x k + 1
times depends on the state after reading x k times but not on any of the states
before that. The next lemma gives the classification of states for such QFAs.

Lemma 1. [AF 98] Let x € X%+. There are subspaces E1, Es such that Eyop =
Ei @ Es and

(1) If ¥ € Ey, then Vi (¢) € Ey and [[V(¥)] = [[¥]],
(ii) If 1 € Ea, then ||V, (¥)|| — 0 when k — oo.

Instead of ergodic and transient sets, we have subspaces Fi and FEs. The
subspace E7 is a counterpart of an ergodic set: if the quantum process defined
by repeated reading of x is in a state ¥ € Eq, it stays in E;. Es is a counterpart
of a transient set: if the state is 1) € Es, E» is left (for an accepting or rejecting
state) with probability arbitrarily close to 1 after sufficiently many x’s.

In some of proofs we also use a generalization of Lemma 1 to the case of two
(or more) words z and y:

Lemma 2. [AKV 01] Let x,y € X*. There are subspaces Ey, Es such that
Enon = E1 ® E> and

(i) If ¥ € En, then V(1) € Er and V (¥) € Ei and |Vy(¥)|| = [[¥| and

Vgl = lI9ll,
(i) If 1 € Es, then for any € > 0, there exists t € (z|y)* such that ||V} (¥)] < e.

We also use a lemma from [BV 97].

Lemma 3. [BV 97] If ¢ and ¢ are two quantum states and ||t — ¢|| < € then
the total variational distance between probability distributions generated by the
same measurement on v and ¢ is at most> 2e.

3 QFAs vs. RFAs

Ambainis and Freivalds [AF 98] characterized the languages recognized by RFAs
as follows.

Theorem 1. [AF 98] Let L be a language and M be its minimal automaton. L
is recognizable by a RFA if and only if there is no q1,q2,x such that

1. q1 # q.
2. If M starts in the state q1 and reads x, it passes to qo,

2 The lemma in [BV 97] has 4¢ but it can be improved to 2¢.



8. If M starts in the state g2 and reads x, it passes to g2, and
4. qo is neither "all-accepting” state, nor "all-rejecting” state,

An RFA is a special case of a QFA that outputs the correct answer with
probability 1. Thus, any language that does not contain the construction of
Theorem 1 can be recognized by a QFA that always outputs the correct answer.
Ambainis and Freivalds [AF 98] also showed the reverse of this: any language L
with the minimal automaton containing the construction of Theorem 1 cannot
be recognized by a QFA with probability 7/9 + e.

O O=]

Fig. 1. “The forbidden construction” of Theorem 1.

We consider the question: what is the maximum probability of correct answer
than can be achieved by a QFA for a language that cannot be recognized by an
RFA? The answer is:

Theorem 2. Let L be a language and M be its minimal automaton.

1. If M contains the construction of Theorem 1, L cannot be recognized by a
1-way QFA with probability more than p = (52 + 4v/7)/81 = 0.7726....

2. There is a language L with the minimal automaton M containing the con-
struction of Theorem 1 that can be recognized by a QFA with probability
p= (52 +47)/81 = 0.7726....

Proof. We consider the following optimization problem.

Optimization problem 1. Find the maximum p such that there is a finite
dimensional vector space E,,:, subspaces E,, E, such that E, 1L E,., vectors
vy, vo such that v; L ve and ||vy + v2| = 1 and probabilities p;, p2 such that
p1+p2 = [[v2]* and

L [[Pa(v1 4 v2)[? > p,
2. | Po(v1)[I? + p2 > p,
3. p2<1—p.

We sketch the relation between a QFA recognizing L and this optimization
problem. Let Q) be a QFA recognizing L. Let py,, be the minimum probability
of the correct answer for @), over all words. We use () to construct an instance
of the optimization problem above with p > pyin.

Namely, we look at @ reading an infinite (or very long finite) sequence of
letters . By Lemma 1, we can decompose the starting state ¢ into 2 parts
Y1 € E1 and Yo € FEs. Define v1 = 1 and vy = 9. Let p; and ps be the
probabilities of getting into an accepting (for p;) or rejecting (for po) state while



reading an infinite sequence of x’s starting from the state vs. The second part
of Lemma 1 implies that p; + pa = ||va||%.

Since ¢; and g2 are different states of the minimal automaton M, there is
a word y that is accepted in one of them but not in the other. Without loss of
generality, we assume that vy is accepted if M is started in ¢; but not if M is
started in go. Also, since ¢ is not an “all-accepting” state, there must be a word
z that is rejected if M is started in the state go.

We choose E, and E, so that the square of the projection P, (P,) of a vector
v on E, (E,) is equal to the accepting (rejecting) probability of @ if we run @)
on the starting state v and input y and the right endmarker $.

Finally, we set p equal to the inf of the set consisting of the probabilities of
correct answer of @ on the words y and z'y, z*z for all i € Z.

Then, the first requirement of the optimization problem, ||P,(v1 + v2)||? > p
is true because the word y must be accepted and the accepting probability for
it is exactly the square of the projection of the starting state (vy + va) to P,.

The second requirement follows from running @) on a word z'y for some large
i. By Lemma 1, if i > k for some k, [|[V/;(v2)|| < €. Also, vy, V](v1), V/2(v1),
... Is an infinite sequence in a finite-dimensional space. Therefore, it has a limit
point and there are i, j, ¢ > k such that

Vs (v1) = Vs (o) < e.

We have
Vi (v1) = Vs (01) = Vi (1 = Vi (v1)).

Since ||V (¥)|| = (||| for o € Ex, ||V (v1 — V]i(v1))]| = [lor — V[i(v1)| and we
have
o1 = V3 ()] < e

Thus, reading z* has the following effect:

1. vy gets mapped to a state that is at most e-away (in Il norm) from vy,
2. vy gets mapped to an accepting/rejecting state and most € fraction of it stays
on the non-halting states.

Together, these two requirements mean that the state of @ after reading z° is at
most 2e-away from vy. Also, the probabilities of () accepting and rejecting while
reading z* differ from p; and p» by at most e.

Let pi, be the probability of @ rejecting x'y. Since reading y in g2 leads to
a rejection, x'y must be rejected and p,i, > p. The probability p,i, consists of
two parts: the probability of rejection during z* and the probability of rejection
during y. The first part differs from ps by at most €, the second part differs from
| P-(v1)]|? by at most 4e (because the state of @ when starting to read y differs
from vy by at most 2¢ and, by Lemma 3, the accepting probabilities differ by at
most twice that). Therefore,

Paiy — 5€ < po+ || Pr(v1)]|? < pyiy + Be.



|2. By appropriately choosing

&

Since pyi, > p, this implies p — 5e < pa + || Pr(v1)
i, we can make this true for any ¢ > 0. Therefore, we have p < pa + || P-(v1)
which is the second requirement.

The third requirement is true by considering z’z. This word must be ac-
cepted with probability p. Therefore, for any i, @ can only reject during ¢ with
probability 1 — p and ps <1 — p.

This shows that no QFA can achieve a probability of correct answer more
than the solution of optimization problem 1. It remains to solve this problem.

The key idea is to show that it is enough to consider 2-dimensional instances
of the problem.

Since v; L wvs, the vectors vy, vs,v1 + v form a right-angled triangle. This

means that ||vi|| = cos B||vy + va]| = cos B, ||v2|] = sin B||vy + va]| = sin 8 where
[ is the angle between vy and vy + vs. Let wy and ws be the normalized versions
of v; and vo: w1 = ”5—1”, Wy = ”:j—ill Then, v; = cos fw; and vo = sin Sws.

Consider the two-dimensional subspace spanned by P, (w1 ) and P, (w1). Since
the accepting and the rejecting subspaces E, and F, are orthogonal, P,(w;)
and P.(w;) are orthogonal. Therefore, the vectors w, = |P,(w1)) || Ps(w1)| and
wy = Pr(w1)||Pr(wy)|| form an orthonormal basis. We write the vectors wy, vy
and v; + v in this basis. The vector wj is (cosq,sin«) where « is the angle
between wy and w,. The vector v1 = cos fwy is equal to (cos [ cos a, cos fsin a).

Next, we look at the vector v +wv2. We fix a, 3 and v1 and try to find the v
which maximizes p for the fixed o, 3 and vy. The only place where vy appears in
the optimization problem 1 is || P,(v; + v2)||? on the left hand side of constraint
1. Therefore, we should find vy that maximizes ||P,(vi + v2)||>. We have two
cases:

1. a>p.

The angle between v +vs and wy, is at least a— 3 (because the angle between
v1 and w, is « and the angle between vy + vy and vy is ). Therefore, the
projection of v1 + va to w, is at most cos(aw — ). Since w, is a part of the
rejecting subspace E., this means that || P,(v; + v2)||? < cos?(a — 3). The
maximum || P, (v1 + v2)|| = cos?(a — ) is achieved if we put vy + vy in the
plane spanned by w, and w,: v1 + vo = (cos(a — B3), sin(a — 3)).

Next, we can rewrite constraint 3 of the optimization problem as 1 —ps > p.
Then, constraints 1-3 together mean that

p = min(|| Pa(v1 + v2)||, | P (v1) [* + p2,1 = p2). 1)

To solve the optimization problem, we have to maximize (1) subject to the
conditions of the problem. From the expressions for v; and vy + vo above, it
follows that (1) is equal to

p = min(cos?(a — B),sin® a cos® B+ pa, 1 — p2) (2)

First, we maximize min(sin2 acos? B+p2,1—p2). The first term is increasing
in po, the second is decreasing. Therefore, the maximum is achieved when



1—sin® o cos? 8

both become equal which happens when p; = ~—*5->. Then, both

2 2 . .
2ocos? B+ po and 1 — po are W Now, we have to maximize

1 + sin® a cos? ﬁ)
5 .

sin

p = min (cosQ(oz - B), (3)
We first fix a — 8 and try to optimize the second term. Since sinacos 8 =

w (a standard trigonometric identity), it is maximized when
a+ (=7 and sin(a+ ) = 1. Then, 3 = § — a and (3) becomes

2
1—|—sin4a>

; ()

p = min (Sin2 2a,
The first term is increasing in «, the second is decreasing. The maximum is

achieved when
1+sinta

. (5)

The left hand side of (5) is equal to 4sin? acos®>a = 4sin® a1 — sin® ).
Therefore, if we denote sin® a by y, (5) becomes a quadratic equation in y:

sin? 2a =

C1+y?
==

Solving this equation gives y = 27 and 4y(1 — y) = 32£NT — 0.7726....
La< .

We consider min(|| P, (v1)]|% + p2, 1 — p2) = min(sin® avcos® B + p2, 1 — pa).
Since the minimum of two quantities is at most their average, this is at most

dy(1—y)

&

1+ sin® avcos?
B E— ©)

in2 2
Since o < 3, we have sina < sin and (6) is at most W This

is maximized by sin? 3 = 1/2. Then, we get # = % which is less than

p = 0.7726... which we got in the first case.

This proves the first part of the theorem.
The second part is proven by taking the solution of optimization problem 1

and using it to construct a QFA for the language at in a two-letter alphabet
{a,b}. The state ¢, is just the starting state of the minimal automaton, ¢, is the
state to which it gets after reading a, * = a, y is the empty word and z = b.

Let a be the solution of (5). Then, sin® a = (4++/7)/9, cos? a = 1 —sina =

(5 —7)/9, cos2a = cos? a — sin® a = (1 — 2v/7)/9, cos®2a = (1 — 2V/7)%/81 =
(29 — 44/7)/81 and sin? 2a = 1 — cos? 2a = (52 4 44/7)/81. sin® 2« is the proba-
bility of correct answer for our QFA described below.

The QFA M has 5 states: qo, q1, Gaces Qrej and Qrej1- Qace = {Qacc}a Qrej =

{@rej, Grej1}. The initial state is sin a|go) + cosa|gi). The transition function is

1+sin?a COS (¢

Va(l0)) = lao), Va(lgr)) = 5 ldace) + qumj),



V(l90)) = lgre) Valla1)) = laresn),

Vs(|qo)) = sina|qace) + cosalgres), Vs(|q1)) = — cos alqace) + sin aqre;)

To recognize L, M must accept all words of the form a® for i > 0 and reject the
empty word and any word that contains the letter b.

1. The empty word.
The only tranformation applied to the starting state is V. Therefore, the
final superposition is

2

Vs (sin a|qo) + cosalqr)) = (sin? a — cos? @)|qace) + 2 sin a cos algre;)-

The amplitude of |gre;) in the final superposition is 2 sin o cos o = sin 2a and
the word is rejected with a probability sin® 2a = 0.772....

2. a* for i > 0.
First, V, maps the cos|g1) component to

1—|—sin2a| >+0052a| >
cosa\| ———— —_— .
9 Gacc \/i Qrej

The probability of accepting at this point is cos? a%. The other com-
ponent of the superposition, sin algg) stays unchanged until Vg maps it to

sin” a|qaee) 4 sin o cos algre; )-

The probability of accepting at this point is sin® a. The total probability of
accepting is

1+ sin’ 1+ sin’ 1+ sin’
COSQOéw +sina = (1 — sin? a)w +sinta = w

By equation (6), this is equal to sin®2a.
3. A word containing at least one b.

If b is the first letter of the word, the entire superposition is mapped to
rejecting states and the word is rejected with probability 1. Otherwise, the
first letter is a, it maps cosa|qi) to cosa %macc) + %mrq). The
probability of accepting at this point is cos? a(1+sin® a)/2 = (1—sin® a)(1+
sin?a)/2 = (1 — sin® @) /2. By equation (6), this is the same as 1 — sin® 2a.
After that, the remaining component (sina|go)) is not changed by next as
and mapped to a rejecting state by the first b. Therefore, the total probability
of accepting is also 1 — sin? 2« and the correct answer (rejection) is given
with a probability sin? 2cv.

O

10



4 Non-reversible constructions

We now look at fragments of the minimal automaton that imply that a language
cannot be recognized with probability more than p, for some p. We call such
fragments “non-reversible constructions”. The simplest such construction is the
one of Theorem 1. In this section, we present 3 other “non-reversible construc-
tions” that imply that a language can be recognized with probability at most
0.7324..., 0.6894... and k/(2k — 1). This shows that different constructions are
“non-reversible” to different extent. Comparing these 4 “non-reversible” con-
structions helps to understand what makes one of them harder for QFA (i.e.,
recognizable with worse probability of correct answer)

4.1 “Two cycles in a row”

The first construction comes from the language a*b* considered in Ambainis
and Freivalds [AF 98]. This language was the first example of a language that
can be recognized by a QFA with some probability (0.6822...) but not with
another (7/9 + €). We find the “non-reversible” construction for this language
and construct the QFA with the best possible accepting probability.

Theorem 3. Let L be a language and M its minimal automaton.

1. If M contains states q1, qo and g3 such that, for some words x and y,

(a) if M reads x in the state g1, it passes to qi,

(b) if M reads y in the state q1, it passes to qo,

(¢) if M reads y in the state g, it passes to qo,

(d) if M reads x in the state g2, it passes to qs,

(e) if M reads x in the state gs, it passes to qs

then L cannot be recognized by a QFA with probability more than 0.6894....
2. The language a*b* (the minimal automaton of which contains the construc-

tion above) can be recognized by a QFA with probability 0.6894....

Proof. By a reduction to the following optimization problem.

8 8 8
() o)—{n)

Fig. 2. “The forbidden construction” of Theorem 3.

Optimization problem 2. Find the maximum p such that there is a finite-
dimensional space E, subspaces E,, E, such that £ = E, & E,, vectors vy, v
and vs and probabilities pg,, Pr,, Pas, Pro such that

11



lvr + w2 +v3| =1,

(%1 J_Ug,

v +v2 + vz L v,

v1 + vy L vs.

[v3]|> = pay + Dry;

||U2||2 = Day + Drys

(| Pa(v1 + 2 + v3) |1 > p;
||Pa(v1 + U2)||2 + Day 2 D;
||Pa(v1)||2 + Pay + Paz <1 —p.

© 0N oW

We use a theorem from [BP 99].

Theorem 4. Let L be a language and M be its minimal automaton. Assume
that there is a word x such that M contains states q1, qo satisfying:

1. q1 # g,

2. If M starts in the state q1 and reads x, it passes to qo,

8. If M starts in the state g2 and reads x, it passes to q2, and

4. There is a word y such that if M starts in q2 and reads vy, it passes to qq,

then L cannot be recognized by any 1-way quantum finite automaton.

Let Q be a QFA recognizing L. Let g4 be state where the minimal automaton
M goes if it reads y in the state ¢3. In case when ¢2 = q4 we get the forbidden
construction of Theorem 4. In case when ¢o # g4 states ¢go and ¢4 are different
states of the minimal automaton M. Therefore, there is a word z that is accepted
in one of them but not in the other. Without loss of generality, we assume that
y is accepted if M is started in g2 but not if M is started in g4.

We choose E, so that the square of the projection P, of a vector v on E, is
equal to the accepting probability of @ if we run ) on the starting state v and
input yz and the right endmarker $.

We use Lemma 1. Let Ef be E; and ES be E» for word x and let EY be E,,
and EY be E, for word y.

Without loss of generality we can assume that ¢ is a starting state of M. Let
1, be the starting superposition for (). We can also assume that reading z in this
state does not decrease the norm of this superposition. We divide 1), into three
parts: v1, vo and v3 so that vy +vy € EY and vs € EY, V; € EY and vy € ES. Due
to v1 + w2 + v3 is the starting superposition we have ||v; +v9 4 v3|| = 1(Condition
1).

Since v1 + v + v3 € E¥ we get that v1 4+ v2 + v3 L vo(Condition 3) due to
vy € E¥. Similarly v; + va L v3(Condition 4) and vy L ve(Condition 2).

It is easy to get that ||P,(v1 + v + v3)||? > p(Condition 7) because reading
yz in the state ¢; leads to accepting state.

Let pq, (pr,) be the accepting(rejecting) probability while reading an infinite
sequence of letters y in the state v1 + va +wvs. Then p,, + pr, = ||v3]|?(Condition
5) due to v1 +ve € EY and v3 € EY.

12



Let pa, (pr,) be the accepting(rejecting) probability while reading an infinite
sequence of letters  in the state v1 + ve. Then pg, + pr, = ||v2||?(Condition 6)
due to v; € Ef and vy € EF.

We find an integer ¢ such that after reading y* the norm of t,,: — (v1 + v2)
is at most some fixed € > 0. Now similarly to Theorem 2 we can get Condition
8: || Pa(v1 +v2)|* + pay > p.

Let wﬁy.; =11 + o, Y1 € EY, 1pa € EF. We find an integer j such that after
reading x’/ the norm of v¥,,i,; — ¥ is at most €. Since 1 — v1 L 12 — v2 then
1 — v1|[2 + [|[th2 — val|? = ||ty — (v1 + v2)]|* < €2. Therefore, |[th1 — v1]| <.
Then |[1yyizi —v1|] < ||Vryizi —1]|+|¥1—v1]| < 2€ due to previous inequalities.
Now similarly to Theorem 2 we can get Condition 9: || Py (v1)||?+pay +Pay < 1—p.

We have constructed our second optimization problem. We solve the problem
by computer. Using this solution we can easily construct corresponding quantum
automaton. O

4.2 k cycles in parallel

Fig. 3. “The forbidden construction” of Theorem 5.

Theorem 5. Let k > 2.

1. Let L be a language. If there are words x1,xo,...,x, such that its minimal
automaton M contains states qo,q1,...,qr Satisfying:
(a) if M starts in the state qo and reads x;, it passes to ¢;,
(b) if M starts in the state ¢;(i > 1) and reads x;, it passes to q;,
(c) for each i the state q; is not “all-rejecting” state,
Then L cannot be recognized by a QFA with probability greater than %
2. There is a language such that its minimal deterministic automaton contains
this construction and the language can be recognized by a QFA with proba-
bility 5.

13



Proof.

Impossibility result.

This is the only proof in this paper that does not use a reduction to an
optimization problem. Instead, we use a variant of the classification of states
(Lemma 2) directly.

For k = 2, a related construction was considered in [AKV 01]. There is a
subtle difference between the two. The “non-reversible construction” in [AKV 01]
requires the sets of words accepted from ¢; and g2 to be incomparable. This extra
requirement makes it much harder: no QFA can recognize a language with the
“non-reversible construction” of [AKV 01] even with the probability 1/2 + e.
Therefore, we are interested only in the case when the sets of words accepted
from g; and g; are not incomparable.

Let L; be the set of words accepted from ¢;(¢ > 1). This means that for each
i,7 we have either L; C L; or L; C L;. Without loss of generality we can assume
that Ly C Lo C ... C Li. Now we can choose k words z1, 22, ...,z such that
z; € L1, Lo, ..., Lgy1—; and z; ¢ Ligyo—g, ..., L. The word z; exists due to the
condition (c).

We use a generalization of Lemma 2.

Lemma 4. Let x1,...,x1 € XT. There are subspaces Ey, Es such that Eyon =

Ey & Es and

(i) If € En, then Vi (¥) € Ex, ..., Vi, (¥) € Ey and |V ()| = [[¢], ...,
IVa, (D)l = Il

(i) If 1) € Es, then for any e > 0, there exists a word t € (x1]...|xg)* such that
Vi)l <e.

The proof is similar to lemma 2.

Let L be a language such that its minimal automaton M contains the "non
reversible construction” from Theorem 5 and M, be a QFA. Let p be the ac-
cepting probability of M,. We show that p < %

Let w be a word such that after reading it M 1is in the state go. Let v, =

L2 ol € By, 92 € Ey. We find a word ay € (x1]...|x;)* such that after
reading z1a; the norm of 2 = V! (¥2,,) is at most some fixed ¢ > 0.

wri1a wr

(Such word exists due to Lem;na; 4.) We aulso1 find words as,...,a; such that
12 | < € o (62 gy, <

Because of unitarity of V, , ..., V; on Ej (part (i) of Lemma 4), there exist
integers i1 .4k such that vy . i —Yull <€ [V g a0 — Yol S

Let p,, be the probability of M, accepting while reading xw. Let p1, ..., pr be
the probabilities of accepting while reading (z1a1)™,..., (zrar)™ with a start-
ing state v, and and pll, ceey p;g be the probabilities of accepting while reading
218, ..., 2,$ with a starting state ] .

Let us consider 2k — 1 words:
kw(rrar) 28,
kw(roas)® 218,
kw(roas)®? 219,
(z303)

kw(zsas)?®zp_1$,

14



KW (Tp—1ak-1)"* " 228,

kw(zpag)™ 228,

kw(zgak)™ 21$.

Lemma 5. M, accepts kw(x1a1)™ zx$ with probability at least py, + p1 —|—p;C —4e
and at most Py, + p1 —i—p;c + 4e.

Proof. The probability of accepting while reading xw is p,,. After that, M,
is in the state v, and reading (z1a1)" in this state causes it to accept with
probability p;.

The remaining state is Yu(a,a)in = Yib(piayin + Voerayi- I it Was ¥,
the probability of accepting while reading the rest of the word (z;$) would be
exactly p}c. It is not quite ¥} but it is close to v} . Namely, we have

wa(xlal)il _wzlLH < ||¢12u(xlal)il

By Lemma 3, this means that the probability of accepting during 2;$ is between

p/k — 4¢ and p/k + 4e. O
This Lemma implies that p,, +p1 + p;c +4e > p because of x1 2, € L. Similarly,

1—py—po —p;c +4e > p because of x22;, ¢ L. Finally, we have 2k —1 inequalities:

Pw+ 1+ +de > p,

1—py —p2— py +4e > p,

Pu+ P2+ Py +4e>p,

1—pw—ps3 —Plk_l +4e > p,

|"'||¢1 —¢llu||§6+e:2e.

w(ziar)l

Puw+P-1+py +4e > p,
L—pw —pr —py+4e=>p,
Pw + Pk + Pq + 4e > p.

By adding up these inequalities we get k — 1 + py, + p1 + p,l +4(2k — 1)e >
(2k — 1)p. We can notice that p, + p1 + p; < 1. (This is due to the facts that

pr < U212 py < ([112 and 1= py < [[ull? = (|92 + [[¢]*.) Hence,
p < % +4e. Since such 2k — 1 words can be constructed for arbitrarily small e,
this means that M, does not recognize L with probability greater than % O

Constructing a quantum automaton.

We consider a language Lq in the alphabet by, bo,..., by, 21,22, ..., 2% such
that its minimal automaton has accepting states qo, q1, . . . , gx and rejecting state
gre; and the transition function V; is defined as follows:

Vi(qo,bi) = qi, Vi(qo, zi) = q1, Vi(qi,b;) = qi(i > 1), Vi(qi,25) = qi(i +j <
k + 1)7 Vl(‘]iv Zj) = %‘ej(i +j>k+ 1)7 Vl(%“eja bz) = Qrej, V1<QTeja Zz) = QTej)-

It can be checked that this automaton contains the "non reversible construc-
tion” from Theorem 4. Hence, this language cannot be recognized by a QFA
with probability greater than %k_ T

Next, we construct a QFA M, that accepts this language with such proba-
bility.
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The automaton has 3(k+1) states: qé, q;, cee, q,;, Gao>Qags -+ -+ Gars ros ras - - - 5
ry. - Qacc = {Qam Gass -+ s 9ay }7 Qrej = {an Qroy .- aq”,}' The initial state is

k 1 1
5 Iqo> T |q2> T qu>

The transition function is

Vi (ao) = |/ haaa) + 4 a) Vi 14) = 16 > 2),

V.o (160) = [dao)s Var (103)) = [aa,) (i + 5 < k+1), Vo, (1)) = lar,) (i + 5 > k + 1),
Vs(14;)) = lda,)-

1. The empty word.
The only tranformation applied to the starting state is Vg. Therefore, the
final superposition is

1 1
2k |qa0> 2k |qa2> N Qk |qak>

and the word is accepted with probability 1

2. The word starts with z;.
Reading z; maps |g,) to |ga,). Therefore, this word is accepted with proba-
bility at least (1/527)? = 77

3. Word is in form b;(b; V...V bi)*. The superposition after reading b; is

e BV Ry S P Ny S )
2% — 1 Gao 2% — dr 2% — D) . 2% — dy;
At this moment M, accepts with probability k;,;l_li and rejects with proba-
bility = 2/c

1 / 1 /

Clearly, that reading of all remaining letters does not change this superpo-
sition. Since Vg maps each |q;) to an accepting state then M, rejects this

word with probability at most 2k 1 < 2’“16—11
4. Word x starts with b;(b1 V...V by)*z;. Before reading z; the superposition
is
R 1

Case 1. i+j>k+1.ac¢L1.
Since i 4 j > k+1 then reading z; maps at least k —i 41 states of g, ..., q,
to rejecting states. This means that M, rejects with probability at least

i—1 +k—i+1_ k
2%k —1 2%k—1  2k—1"
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Case 2. i+ j < k+ 1.z € Ly. Since i + j < k + 1 then reading z; maps

at least 7 — 1 states of q,Q, . ,q,; to accepting states. This means that M,
accepts with probability at least
k+1—1 i—1 k

k-1 T 2k—1 9k_-1

4.3 0.7324... construction
Theorem 6. Let L be a language.

1. If there are words x, z1, z2 such that its minimal automaton M contains
states q1 and qo satisfying:
(a) if M starts in the state g1 and reads x, it passes to ga,
(b) if M starts in the state qo and reads x, it passes to qo,
(¢) if M starts in the state q1 and reads z1, it passes to an accepting state,
(d) if M starts in the state g1 and reads zo, it passes to a rejecting state,
(e) if M starts in the state qo and reads z1, it passes to a rejecting state,
(f) if M starts in the state g2 and reads zo, it passes to an accepting state.
Then L cannot be recognized by a QFA with probability greater than % +

WIS — 0.7324....

2. There is a language L with the minimum automaton containing this con-
struction that can be recognized with probability % + % =0.7324....

Z, . z,.
) )

5o
z, z,”

Fig. 4. “The forbidden construction” of Theorem 6.

Proof.

Impossibility result.

The construction of optimization problem is similar to the construction of
Optimization problem 1. For this reason, we omit it and just give the optimiza-
tion problem and show how to solve it.

Optimization problem 3. Find the maximum p such that there is a finite
dimensional vector space E,,;, subspaces F,, E, (unlike in previous optimization
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problems, E, and E, do not have to be orthogonal) and vectors v, vo such that
v1 L vy and ||v; +v2|| = 1 and probabilities p1, p2 such that p; +ps = ||v2||? and

N Pa(vr +02)[* > p,
NP (o1 +v2)]]? > p,
1= [[Pa(v)]]* = p1 = p,
=P () |I* = p2 > p.

Without loss of generality we can assume that ||P,(v1)|| < ||Pr(v1)]]. Then
these four inequalities can be replaced with only three inequalities

L ||Pa(v1 4+ v2)||* > p,

2. 1—||Pa(v1)|®> —p1 > p,
3. 1= |[Pa(vr)]* —p2 > p.

—

=W N

_ el
2

Clearly that p is maximized by p; = po . Therefore, we have

L 1Pa(vr +v2)l|* 2 p, |
I

2. 1— || Pu(on)||? — 1222 > p,

Next we show that it is enough to consider only instances of small dimension.
We denote Eop — Eq as Ep. First, we restrict E, to the subspace E!, generated
by projections of v; and vy to E,. This subspace is at most 2-dimensional.
Similarly, we restrict Ej, to the subspace E; generated by projections of vy and
v9 to Ep. The lengths of all projections are still the same. We fix an orthonormal
basis for E,,: so that P,(v1) and Py(v;) are both parallel to some basis vectors.
Then, v = (21,0, 23,0) and vo = (y1, Y2, Y3, y4) where the first two coordinates
correspond to basis vectors of E/, and the last two coordinates correspond to basis
vectors of Ej. We can assume that z1 and z3 are both non-negative. (Otherwise,
just invert the direction of one of basis vectors.)

Let A = ||v1]| = v/2? + 23. Then, thereis a € [0, 7/2] such that 71 = Acos
x3 = Asina. Let § = \/y? +y3. Then, y; = dsina, y3 = —dcosa because
21y1 +23y3 = 0 due to vy L vo. If y4 # 0, we can change y; and y3 to §’ sin v and
—§" cosa where &' = \/y? + y3 + y7 and this only increases || P, (v1 +v2)||. Hence,
we can assume that y4 = 0. We denote € = y5. Then, v; = (Acosa, 0, Asinq, 0),
vy = (dsina, €, —d cos a, 0).

Let E = VA2 + 42, Then, A = Esin and § = Ecos 3 for some 3 € [0, 7/2]
and E? 4 €2 = 1. This gives

1. ||Pa(v1 +w2)||> = E%(sin B cos a+ cos Bsina)? + €2 = E%sin*(a+ () +€2 > p,
2. 1—||Pa(v1)]? — % =1— E?sin?Bcos?a — M >p.

Then after some calculations we get
1. 1 — E?cos®*(a+ ) > p,

1—E? sin® B cos 2a
9, 1=Elsin feos?a >,

If we fix a + 8 and vary 3, then —sin® 3 cos 2a (and, hence, M) is
maximized by 8 = 2a — 7/2. This means that we can assume § = 2a— 7/2 and

we have
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1. 1 — E?sin*(3a) > p,
_E2 cos®
9. 1-FE 020 (2a) > p.

If we consider cos?a > 1/2 then p < 1-5° C;S3(2°‘) = 1_E2(20352 a—1)° < 1/2.
This means that we are only interested in cos® a < 1/2.
2 3
Let f(E% a) = 1 — E?sin*(3a) and g(E? a) = PECT%(%‘) If we fix a

and vary E?, then f and g are linear functions in £? and f(0,a) > ¢(0,a). We
consider two cases.

Case 1. f(1,a) > g(1,a). (This gives f(E? a) > g(E? a) for each E2. There-
fore, in this case we only need to maximize the function g.)

This means that
1 —sin?(3a) > 1_%83(%“),
1 — 2sin’(3a) + cos®(2a) > 0,
1 —2(1 — cos?(3a)) + cos®(2a) > 0,
1—2(1 - (4cos®a — 3cos)?) + cos®(2a) > 0,
1—2(1—16cos® a+ 24 cos* a —9cos® a) + (2cos’ a — 1)* >0,
20cos® o — 30 cos* a + 12¢cos’ v — 1 >0,
(1 —2cos? a)(—10cos* a + 10 cos> a — 1) > 0.
So that cos? a < 1/2, we have
—10costa + 10cos’ a — 1 > 0.
This means that cos?a € [ — ¥15 1],

2 2 \3
Since g(E?,a) = 1=B7Qcos a=l)’ 4 is maximized by E2 = 1 and cos® o =

2
% - %. This gives p equal to % + %3_5.

Case 2. f(1,a) < g(1, ). (This is equivalent to cos?a € [0, 5 — %})
This means that p is maximized by f(E?,a) = g(E?, a). Therefore,

1. 1 — E?sin?(3a) = p,
— 2COS3 {07
9. 1B cos Ba) _

Let y be —cos2a = 1—2cos? a. Then y € [\/g, 1] and sin?(3a) = 1—cos?(3a) =

1—(4cos® a—3cosa)? = 1—cos? a(dcos® a—3)? = 1 - 154 (1+2y)% = ﬁ%‘lﬁ.
Therefore,

1. 2— E?(4y® — 3y + 1) = 2p,
2. 1+ E%y® = 2p.
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Now we express p using only y. We get p = % + 535 v Finally, if we vary

3—3y+1)°
y through the interval [\/g ,1], then p is maximized by y = \/g . This gives p
equal to % + %01_5 . O

Construction of a QFA.

We consider the two letter alphabet {a, b}. The language L is the union of the
empty word and a®b(a V b)*. Clearly that the minimal deterministic automaton
of L contains the "non reversible construction” from Theorem 5 (just take a as
z, the empty word as z; and b as z5).

Next, we describe a QFA M accepting this language. Let « be the solution

of 1 —2cos?a = \/é in the interval [0, 7/2]. It can be checked that cos®(3a) =

1, 3V/15 :..2 _ 2 2 _ 3 w21 V3
5 + =52, sin” 2a = £, cos” 2a = g, sin af2+2\/5.

The automaton has 4 states: qo,q1, dace and Grej- Qace = {dacc}, @rei =
{qre;j}- The initial state is cos(3cr)|qo) + sin(3c)|g1). The transition function is

. sin a sin o
Va(|g0)) = cos® alqo) + cosassinalgr) + W|Qacc> + WI(JM%
COS & COS &

Va(lg1)) = cosasinalgo) + sin? algr) —

W|Qacc> - W|Qrej>v
Vi(lo)) = lare;)s Volla1)) = |dace),
V$(|Q0>) = |Qacc>’VgB(|q1>) = |Q7’€J'>7

1. The empty word.
The only tranformation applied to the starting state is Vg. Therefore, the
final superposition is cos(3a))|¢ace) + sin(3a)|gre;) and the word is accepted
with probability cos?(3a) = 3 + 35—‘/01_5.

2. b(aVb)*.
After reading b the superposition is sin(3a’)|gqace) + cos(3a)|¢re;) and word
is rejected with probability cos?(3a) = % + %(}_5

3. at.
After reading the first a the superposition becomes

sin 2« sin 2«

W|Qacc> - 7'%”83‘)-

At this moment M accepts with probability WTQQ = % and rejects with

probability % The computation continues in the superposition

cos a cos 2ar|qo) + sin v cos 2ar|q1) —

cos & cos 2allqo) + sin a cos 2aqy ).

It is easy to see that reading all of remaining letters does not change this
superposition.
Therefore, the final superposition (after reading $) is

COS @ COS 2t|Gqce) + Sin ¥ cOS 2¢t|qre;) -
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This means that M rejects with probability

3.1 3 1 1
sin2a00822a+5 :5(54—%)4-5:54_

4. a*b(aVb)*.
Before reading the first b the superposition is

cos a cos 2allqo) + sin a cos 2a|qq )
and reading this b changes this superposition to
sin a cos 2ae|qqce) + COS @ COS 20| qre) -

This means that M accepts with probability

1 1 3V15

2
2 _- = —
Q COS a+5 3 50

sin>

5 Conclusion

Quantum finite automata (QFA) can recognize all regular languages if arbitrary
intermediate measurements are allowed. If they are restricted to be unitary,
the computational power drops dramatically, to languages recognizable by per-
mutation automata. In this paper, we studied an intermediate case in which
measurements are allowed but restricted to ”accept-reject-continue” form (as in
[KW 97,AF 98 BP 99)).

Quantum automata of this type can recognize several languages not recog-
nizable by the corresponding classical model (reversible finite automata). In all
of those cases, those languages cannot be recognized with probability 1 or 1 —,
but can be recognized with some fixed probability p > 1/2. This is an unusual
feature of this model because, in most other computational models a probability
of correct answer p > 1/2 can be easily amplified to 1 — € for arbitrary ¢ > 0.

In this paper, we study maximal probabilities of correct answer achievable
for several languages. Those probabilities are related to “forbidden construc-
tions” in the minimal automaton. A “forbidden construction” being present in
the minimal automaton implies that the language cannot be recognized with a
probability higher than a certain p > 1/2.

The basic construction is “one cycle” in figure 1. Composing it with itself
sequentially (figure 2) or in parallel (figure 3) gives “forbidden constructions”
with a smaller probability p. The achievable probability also depends on whether
the sets of words accepted from the different states of the construction are subsets
of one another (as in figure 1) or incomparable (as in figure 4). The constructions
with incomparable sets usually imply smaller probabilities p.

The accepting probabilities p quantify the degree of non-reversibility present
in the “forbidden construction”. Lower probability p means that the language is

21



more difficult for QFA and thus, the “construction” has higher degree of non-
reversibility. In our paper, we gave a method for calculating this probability and
used it to calculate the probabilities p for several “constructions”.

Accepting probabilities of QFAs p might be just one way of quantifying the
degree of non-reversibility in different non-reversible constructions. Other ways
of quantifying the non-reversibility might be interesting to study as well.
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Abstract

One of the properties of the Kondacs-Watrous model of quantum finite automata
(QFA) is that the probability of the correct answer for a QFA cannot be amplified
arbitrarily. In this paper, we determine the maximum probabilities achieved by
QFAs for several languages. In particular, we show that any language that is not
recognized by an RFA (reversible finite automaton) can be recognized by a QFA
with probability at most 0.7726....

Key words: quantum computation, finite automata, quantum measurement.

1 Introduction

A quantum finite automaton (QFA) is a model for a quantum computer with
a finite memory. QFAs can recognize the same languages as classical finite au-
tomata but they can be exponentially more space efficient than their classical
counterparts [AF 98].
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To recognize an arbitrary regular language, QFAs need to be able to perform
general measurements after reading every input symbol, as in [AW 01,C 01,P 99].
If we restrict QFAs to unitary evolution and one measurement at the end of
computation (which might be easier to implement experimentally), their power
decreases considerably. Namely [CM 97,BP 99|, they can only recognize the
languages recognized by permutation automata, a classical model in which the
transitions between the states have to be fully reversible.

Similar decreases of the computational power have been observed in several
other contexts. Quantum error correction is possible if we have a supply of
quantum bits initialized to |0) at any moment of computation (see chapter
10 of [NC 00]). Yet, if the number of quantum bits is fixed and it is not al-
lowed to re-initialize them by measurements, error correction becomes difficult
[ABIN 96]. Simulating a probabilistic Turing machine by a quantum Turing
machine is trivial if we allow to measure and reinitialize qubits but quite dif-
ficult if the number of qubits is fixed and they cannot be reinitialized [W 98].

Thus, the availability of measurements is very important for quantum au-
tomata. What happens if the measurements are allowed but restricted? How
can we use the measurements of a restricted form to enhance the abilities
of quantum automata? Can quantum effects be used to recognize languages
that are not recognizable by classical automata with the same reversibility
requirements?

In this paper, we look at those questions for “measure-many” QFA model by
Kondacs and Watrous [KW 97]. This model allows intermediate measurements
during the computation but these measurements have to be of a restricted
type. More specifically, they can have 3 outcomes: “accept”, “reject”, “don’t
halt” and if one gets “accept” or “reject”, the computation ends and this is the
result of computation. The reason for allowing measurements of this type was
that the states of a QFA then have a simple description of the form (|1) , pa, pr)
where p, is the probability that the QFA has accepted, p, is the probability
that the QFA has rejected and [¢)) is the remaining state if the automaton has
not accepted or rejected. Allowing more general measurements would make
the remaining state a mixed state p instead of a pure state |¢). Having a
mixed state as the current state of a QFA is very reasonable physically but
the mathematical apparatus for handling pure states is simpler than one for
mixed states.

For this model, it is known that [AF 98]

e Any language recognizable by a QFA 3 with a probability 7/9 +¢, € > 0 is
recognizable by a reversible finite automaton (RFA).

3 For the rest of this paper, we will refer to “measure-many” QFAs as simply QFAs
because this is the only model considered in this paper.



e The language a*b* can be recognized with probability 0.6822.. but cannot
be recognized by an RFA.

Thus, the quantum automata in this model have an advantage over their
classical counterparts (RFAs) with the same reversibility requirements but
this advantage only allows to recognize languages with probabilities at most
7/9, not 1 — e with arbitrary € > 0. This is a quite unusual property because,
in almost any other computational model, the accepting probability can be

increased by repeating the computation in parallel. As we see, this is not the
case for QFAs.

In this paper, we develop a method for determining the maximum probability
with which a QFA can recognize a given language. Our method is based on the
quantum counterpart of classification of states of a Markov chain into ergodic
and transient states [KS 76]. We use this classification of states to transform
the problem of determining the maximum accepting probability of a QFA into
a quadratic optimization problem. Then, we solve this problem (analytically
in simpler cases, by computer in more difficult cases).

Compared to previous work, our new method has two advantages. First, it
gives a systematic way of calculating the maximum accepting probabilities.
Second, solving the optimization problems usually gives the maximum prob-
ability exactly. Most of previous work [AF 98, ABFK 99] used approaches de-
pending on the language and required two different methods: one for bounding
the probability from below, another for bounding it from above. Often, using
two different approaches gave an upper and a lower bound with a gap between
them (like 0.6822... vs. 7/9 + ¢ mentioned above). With the new approach, we
are able to close those gaps.

We use our method to calculate the maximum accepting probabilities for a
variety of languages (and classes of languages).

First, we construct a quadratic optimization problem for the maximum ac-
cepting probability by a QFA of a language that is not recognizable by an
RFA. Solving the problem gives the probability (52 + 41/7)/81 = 0.7726....
This probability can be achieved for the language a™ in the two-letter alpha-
bet {a, b} but no language that is no recognizable by a RFA can be recognized
with a higher probability. This improves the 7/9 + € result of [AF 98].

This result can be phrased in a more general way. Namely, we can find the
property of a language which makes it impossible to recognize the language
by an RFA. This property can be nicely stated in the form of the minimal
deterministic automaton containing a fragment of a certain form.

We call such a fragment a “non-reversible construction”. It turns out that
there are many different “non-reversible constructions” and they have dif-



ferent influence on the accepting probability. The one contained in the a™
language makes the language not recognizable by an RFA but the language is
still recognizable by a QFA with probability 0.7726.... In contrast, some con-
structions analyzed in [BP 99,AKV 01] make the language not recognizable
with probability 1/2 + € for any € > 0.

In the rest of this paper, we look at different “non-reversible constructions”
and their effects on the accepting probabilities of QFAs. We consider three
constructions: “two cycles in a row”, “k cycles in paralle]” and a variant of
the a™ construction. The best probabilities with which one can recognize lan-
guages containing these constructions are 0.6894..., k/(2k — 1) and 0.7324...,
respectively.

The solution of the optimization problem for “two cycles in a row” gives a
new QFA for the language a*b* that recognizes it with probability 0.6894...,
improving the result of [AF 98]. Again, using the solution of the optimization
problem gives a better QFA that was previously missed because of disregarding
some parameters.

2 Preliminaries

2.1  Quantum automata

We define the Kondacs-Watrous (“measure-many”) model of QFAs [KW 97].

A QFA is a tuple M = (Q; X; V5 qo; Quee; @rej) Where @ is a finite set of states,
¥ is an input alphabet, V' is a transition function (explained below), ¢o€Q is a
starting state, and Qu.c C @ and Q,.; C @ are sets of accepting and rejecting
states (Quee N Qrej = 0). The states in Quee and Q;, are called halting states
and the states in Qnon = Q — (Qace U Qrej) are called non halting states.

States of M. The state of M can be any superposition of states in @ (i.
e., any linear combination of them with complex coefficients). We use |q) to
denote the superposition consisting of state ¢ only. I5(Q)) denotes the linear
space consisting of all superpositions, with [,-distance on this linear space.

Endmarkers. Let x and $ be symbols that do not belong to ¥. We use x and
$ as the left and the right endmarker, respectively. We call T' = X U {k; $} the
working alphabet of M.

Transition function. The transition function V' is a mapping from I' x [5(Q)
to l2(Q) such that, for every a€l'; the function V, : [3(Q) — [2(Q) defined by



Vo(z) = V(a,x) is a unitary transformation (a linear transformation on l5(Q)
that preserves [y norm).

Computation. The computation of a QFA starts in the superposition |qo).
Then transformations corresponding to the left endmarker x, the letters of
the input word x and the right endmarker $ are applied. The transformation
corresponding to a€l’ consists of two steps.

1. First, V, is applied. The new superposition ¢’ is V(1)) where ¢ is the
superposition before this step.

2. Then, ¢/ is observed with respect to Eyce, Frejy Fnon where Eye. = span{|q) :

qEQacc}; Erej = Span{|Q> : quTej}a Enon = Spafn{|Q> : qEQnon}~ It means
that if the system’s state before the measurement was

W'=Y aila)+ D Bila)+ D wlaw)

4 €Qace qjeQrej Qe €EQnon

then the measurement accepts ¢’ with probability p, = Ya?, rejects with
probability p, = Eﬁf and continues the computation (applies transformations
corresponding to next letters) with probability p, = 47 with the system
having the (normalized) state ”z/p’—” where ¥ = Xk |qr)-

We regard these two transformations as reading a letter a.

Notation. We use V! to denote the transformation consisting of V, followed
by projection to F,.,. This is the transformation mapping ¢ to the non-
halting part of V,(¢). We use V.! to denote the product of transformations
V=V, Vo ...V, V. where q; is the i-th letter of the word w.

We also use 1, to denote the (unnormalized) non-halting part of QFA’s state
after reading the left endmarker x and the word weX*. From the notation it
follows that ¥, = V! (|q0))-

Recognition of languages. We will say that an automaton recognizes a

language L with probability p (p > %) if it accepts any word z € L with

probability > p and rejects any word x¢L with probability > p.

2.2 Useful lemmas

For classical Markov chains, one can classify the states of a Markov chain into
ergodic sets and transient sets [KS 76]. If the Markov chain is in an ergodic
set, it never leaves it. If it is in a transient set, it leaves it with probability
1 — e for an arbitrary ¢ > 0 after sufficiently many steps.



A quantum counterpart of a Markov chain is a quantum system to which we
repeatedly apply a transformation that depends on the current state of the
system but does not depend on previous states. In particular, it can be a QFA
that repeatedly reads the same word x. Then, the state after reading x k£ + 1
times depends on the state after reading x k£ times but not on any of the states
before that. The next lemma gives the classification of states for such QFAs.

Lemma 1 [AF 98] Let x € Xt. There are subspaces Fy1, FEy such that Epy, =
E, @ Es and

(i) If ¥ € Eq, then Vi(y) € Ey and V()| = [|4]].
(it) If ¢ € Ey, then ||V).(¥)|| — 0 when k — oo.

Instead of ergodic and transient sets, we have subspaces F; and F5. The
subspace I is a counterpart of an ergodic set: if the quantum process defined
by repeated reading of x is in a state ¢ € Fj, it stays in ;. Fy is a counterpart
of a transient set: if the state is ¢ € Fy, Fy is left (for an accepting or rejecting
state) with probability arbitrarily close to 1 after sufficiently many x’s.

In some of proofs we also use a generalization of Lemma 1 to the case of two
(or more) words x and y:

Lemma 2 [AKV 01] Let x,y € X". There are subspaces Fy, Ey such that
Enon = E1 @ Ey and

(i) If ¥ € Fy, then V(1) € Ey and V,(¥) € Ey and [|[Vy()|| = [[+] and

A
(i1) If 1 € By, then for any € > 0, there exists t € (x|y)* such that |V} (¥)]| <
€.

We also use a lemma from [BV 97].
Lemma 3 [BV 97] If ¢ and ¢ are two quantum states and ||¢) — ¢|| < € then

the total variational distance between probability distributions generated by the
same measurement on ¥ and ¢ is at most* 2e.

3 QFAs vs. RFAs

Ambainis and Freivalds [AF 98] characterized the languages recognized by
RFAs as follows.

4 The lemma in [BV 97] has 4¢ but it can be improved to 2¢.
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Fig. 1. “The forbidden construction” of Theorem 4.

Theorem 4 [AF 98] Let L be a language and M be its minimal automaton.
L is recognizable by a RFA if and only if there is no q1, g2, x such that

(1) q1 # @2,
(2) If M starts in the state q1 and reads x, it passes to qo,

(3) If M starts in the state qz and reads x, it passes to qs, and
(4) q2 is neither "all-accepting” state, nor "all-rejecting” state,

An RFA is a special case of a QFA that outputs the correct answer with
probability 1. Thus, any language that does not contain the construction of
Theorem 4 can be recognized by a QFA that always outputs the correct answer.
Ambainis and Freivalds [AF 98] also showed the reverse of this: any language L
with the minimal automaton containing the construction of Theorem 4 cannot
be recognized by a QFA with probability 7/9 + .

We consider the question: what is the maximum probability of correct answer
than can be achieved by a QFA for a language that cannot be recognized by
an RFA? The answer is:

Theorem 5 Let L be a language and M be its minimal automaton.

(1) If M contains the construction of Theorem 4, L cannot be recognized by
a 1-way QFA with probability more than p = (52 + 4v/7)/81 = 0.7726....

(2) There is a language L with the minimal automaton M containing the con-
struction of Theorem 4 that can be recognized by a QFA with probability
p = (524 44/7)/81 = 0.7726....

Proof. We consider the following optimization problem.

Optimization problem 1. Find the maximum p such that there is a finite
dimensional vector space F,,, subspaces F,, E, such that £, L E,, vectors
v1, V9 such that v; L vy and ||v; + v2]| = 1 and probabilities p;, ps such that
p1+ p2 = |Jvg]|* and

(1) [[Pa(vr + v2)[]* > p,
(2) 1P (v)]]> 4 p2 > p,
(3) pp<1-—p.

We sketch the relation between a QFA recognizing L and this optimization
problem. Let @ be a QFA recognizing L. Let p,,;,, be the minimum probability
of the correct answer for (), over all words. We use () to construct an instance
of the optimization problem above with p > pin.



Namely, we look at @) reading an infinite (or very long finite) sequence of letters
r. By Lemma 1, we can decompose the starting state v into 2 parts ¥, € F;
and vy € Iy, Define v1 = 91 and vy = 9. Let p; and ps be the probabilities
of getting into an accepting (for p;) or rejecting (for p,) state while reading an
infinite sequence of z’s starting from the state vy. The second part of Lemma
1 implies that p; + ps = [|v2||*.

Since ¢, and ¢y are different states of the minimal automaton M, there is a
word ¥y that is accepted in one of them but not in the other. Without loss of
generality, we assume that y is accepted if M is started in ¢; but not if M is
started in go. Also, since ¢» is not an “all-accepting” state, there must be a
word z that is rejected if M is started in the state ¢».

We choose E, and F, so that the square of the projection P, (P,) of a vector
v on F, (E,) is equal to the accepting (rejecting) probability of @) if we run
() on the starting state v and input y and the right endmarker $.

Finally, we set p equal to the inf of the set consisting of the probabilities of
correct answer of ) on the words y and z'y, 2’z for all i € Z.

Then, Condition 1 of the optimization problem, ||P,(v; + v3)||*> > p is true

because the word y must be accepted and the accepting probability for it is
exactly the square of the projection of the starting state (v; + v3) to P,.

Condition 2 follows from running @ on a word 'y for some large i. By Lemma
1, if ¢ > k for some k, ||V/i(v2)| < €. Also, vy, VI (v1), V/2(v1), ... is an infinite
sequence in a finite-dimensional space. Therefore, it has a limit point and there
are i, j, ¢ > k such that

V2 (01) = Viss (w) | < e

We have

V;y' (v1) — V’z‘+j<U1> =V, (v1 — V;c/z@l))

x Z

Since [[Vi()[| = (|9 for & € En, [V (vr = Vii(w)l| = llor = Vii(on) || and we

have

lor = V(o) < e

Thus, reading z* has the following effect:

(1) vy gets mapped to a state that is at most e-away (in Iy norm) from vy,
(2) vy gets mapped to an accepting/rejecting state and most € fraction of it
stays on the non-halting states.



Together, these two requirements mean that the state of Q) after reading z° is
at most 2e-away from v;. Also, the probabilities of () accepting and rejecting
while reading z* differ from p; and p, by at most e.

Let p,i, be the probability of @ rejecting z'y. Since reading y in ¢o leads to a
rejection, z'y must be rejected and p,i, > p. The probability p,., consists of
two parts: the probability of rejection during z* and the probability of rejection
during y. The first part differs from p, by at most ¢, the second part differs
from || P.(v1)]|?> by at most 4¢ (because the state of Q) when starting to read
y differs from »; by at most 2¢ and, by Lemma 3, the accepting probabilities
differ by at most twice that). Therefore,

Paiy — 5e < D2 + ||PT(Ul)||2 < Paiy + de.

||>. By appropriately choosing

I

Since pyi, > p, this implies p—5¢ < po+ || P, (v1)
i, we can make this true for any e > 0. Therefore, we have p < py + || P.(v1)
which is Condition 2.

Condition 3 is true by considering z'z. This word must be accepted with
probability p. Therefore, for any 4, Q can only reject during z* with probability
l—pandp, <1-—np.

This shows that no QFA can achieve a probability of correct answer more than
the solution of optimization problem 1. It remains to solve this problem.

Solving Optimization problem 1.

The key idea is to show that it is enough to consider 2-dimensional instances
of the problem.

Since v; L wq, the vectors vy, v9,v1 + v9 form a right-angled triangle. This
means that ||v]| = cos B||vy +va|| = cos 3, ||va|| = sin B]|v1 + v2|| = sin B where
[ is the angle between v, and v, +vs. Let w; and wsy be the normalized versions

of v; and vy: wy = Wy = ”;’;”. Then, v; = cos fw; and vy = sin Sw,.

Consider the two-dimensional subspace spanned by P,(w;) and P,.(w;). Since
the accepting and the rejecting subspaces F, and F, are orthogonal, F,(w)

and P,(w;) are orthogonal. Therefore, the vectors w, = ”?(zi)”
Pr(wl)

B (w1 form an orthonormal basis. We write the vectors wy, v; and v1 4+ v in
™

this basis. The vector w; is (cos «, sin ) where « is the angle between w; and
w,. The vector v; = cos fw; is equal to (cos [ cos a, cos 5 sin a).

and w, =

Next, we look at the vector v; + vo. We fix «, 4 and v; and try to find the
vo which maximizes p for the fixed «, 8 and v,;. The only place where vy
appears in the optimization problem 1 is || P,(v; + v3)||? on the left hand side



of Condition 1. Therefore, we should find vy that maximizes || P,(v; + v2)]|%

We have two cases:

(1) a>p.

The angle between v, + v, and w, is at least a — 3 (because the angle
between v; and w, is a and the angle between v; + vy and vy is ().
Therefore, the projection of v; + vy to w, is at most cos(a — 3). Since w,
is a part of the rejecting subspace E,, this means that || P,(v; + vs)]]? <
cos®’(a — ). The maximum ||P,(v; + v2)|| = cos*(a — 3) is achieved if
we put v + vy in the plane spanned by w, and w,: v; + vy = (cos(a —
3),sin(a — 3)).

Next, we can rewrite Condition 3 of the optimization problem as 1 —
p2 > p. Then, Conditions 1-3 together mean that

p = min(|| Pa(vr + o) [I%, 1P (vi)[I* + p2, 1 = pa). (1)

To solve the optimization problem, we have to maximize (1) subject to
the conditions of the problem. From the expressions for v; and vy + vy
above, it follows that (1) is equal to

p = min(cos®(a — 3), sin? acos?® B + pa, 1 — po) (2)

First, we maximize min(sin® o cos? 3+ps, 1 —ps). The first term is increas-

ing in po, the second is decreasing. Therefore, the maximgm isz achieved
when both become equal which happens when p, = M Then,

2
acos” B Now, we have to max-

both sin® v cos 3 + py and 1 — p, are 52

imize

(3)

. 1 + sin? o cos?
p = min (cosQ(oz - 5), g :

2
We first fix a— (3 and try to optimize the second term. Since sin avcos § =

sinfatf)tsinteh) (y standard trigonometric identity), it is maximized when
a+ 3 =75 and sin(a + 3) = 1. Then, 3 =5 — a and (3) becomes

(4)

1+ sin* o
5 .

. )
p = min (sm 2a,

The first term is increasing in «, the second is decreasing. The maximum
is achieved when

1+ sin*a
2

(5)

sin?2a =

The left hand side of (5) is equal to 4sin® acos? a = 4sin* a(1 — sin® a).
Therefore, if we denote sin? o by , (5) becomes a quadratic equation in

10



1+
Solving this equation gives y = 4+T‘ﬁ and 4y(1—y) = 5227‘;\/7 = 0.7726....
(2) a< .
We consider min(|| Py (v1)||2+pa, 1 —po) = min(sin® acos? B+py, 1—ps).
Since the minimum of two quantities is at most their average, this is at
most

I

1 + sin® acos? 3

: (©
Since o < 3, we have sina < sin 3 and (6) is at most w This
is maximized by sin? 3 = 1/2. Then, we get 1+21/ 1= % which is less than

p = 0.7726... which we got in the first case.
This proves the first part of the theorem. O

Construction of a QFA.

This part is proven by taking the solution of optimization problem 1 and using
it to construct a QFA for the language a™ in a two-letter alphabet {a, b}. The
state ¢; is just the starting state of the minimal automaton, ¢, is the state to
which it gets after reading a, r = a, y is the empty word and z = b.

Let a be the solution of (5). Then, sin?a = (4 ++/7)/9, cos’a = 1 —sina =
(5—+/7)/9, cos 2a = cos® a—sin® a = (1—2v/7)/9, cos? 2o = (1—-2v/7)?/81 =

(29 — 44/7)/81 and sin®2a = 1 — cos?2a = (52 + 44/7)/81. sin®2a is the
probability of correct answer for our QFA described below.

The QFA M has 5 states: 4o, 41, Qaccy Qrej and Grej1- Qacc = {Qacc}a Qrej =
{@rejs @rej1 }- The initial state is sin a|go) + cos ar|qy). The transition function is

[1+sin?« COS &
%(|QO>) = |q0>7 ‘/;1<|Q1>) = #|Qacc> + W|qrej>a

%(|q0>) = |Q7"ej>7vb(|QI>> = |QTej1>7

‘/$(|QO>> = SinalQacc> + cos alQrej>7 V$(|Q1>> = - COS@|Qacc> + Sina|Qrej>

To recognize L, M must accept all words of the form a’ for i > 0 and reject
the empty word and any word that contains the letter b.

(1) The empty word.

11



The only tranformation applied to the starting state is V5. Therefore,
the final superposition is

Vs(sin a|qo) + cos a|q1)) = (sin? a — cos® @) |qace) + 2'sin a cos agre;)-

The amplitude of |g.¢;) in the final superposition is 2sin a cos a = sin 2«
and the word is rejected with a probability sin?2a = 0.772....
a for i > 0.

First, V, maps the cos|q;) component to

/1+sin2a| > cos? al >
Cos & 9 Gacc \/> Qrej

The probability of accepting at this point is cos a1+sm 2, The other
component of the superposition, sin a|qg) stays unchanged untll Vs maps
it to

sin? & quce) + Sin @ cos @ gre;)-

The probability of accepting at this point is sin® a. The total probability
of accepting is

, l+sin’a ., .
cos” a———— +sin a=(1—sin

204)1 + sin « L sinta — 1 +sin*a
2 2
By equation (6), this is equal to sin®2a.
A word containing at least one b.
If b is the first letter of the word, the entire superposition is mapped to
rejecting states and the word is rejected with probability 1. Otherwise,

the first letter is a, it maps cos alq;) to cos m/%ﬁaw) 4 cos” 5 dres)-
The probability of accepting at this point is cos? a(1 + sin® a) / 2=(1-
sin?a)(1+sin? a)/2 = (1 —sin* a)/2. By equation (6), this is the same as
1—sin? 2av. After that, the remaining component (sin a|go)) is not changed
by next as and mapped to a rejecting state by the first b. Therefore, the
total probability of accepting is also 1 — sin? 2a: and the correct answer
(rejection) is given with a probability sin? 2a.

4 Non-reversible constructions

We now look at fragments of the minimal automaton that imply that a lan-
guage cannot be recognized with probability more than p, for some p. We call
such fragments “non-reversible constructions”. The simplest such construction

12



Fig. 2. “The forbidden construction” of Theorem 6.

is the one of Theorem 4. In this section, we present 3 other “non-reversible con-
structions” that imply that a language can be recognized with probability at
most 0.7324..., 0.6894... and k/(2k—1). This shows that different constructions
are “non-reversible” to different extent. Comparing these 4 “non-reversible”
constructions helps to understand what makes one of them harder for QFA
(i.e., recognizable with worse probability of correct answer)

4.1 “Two cycles in a row”

The first construction comes from the language a*b* considered in Ambainis
and Freivalds [AF 98]. This language was the first example of a language that
can be recognized by a QFA with some probability (0.6822...) but not with
another (7/9+ €). We find the “non-reversible” construction for this language
and construct the QFA with the best possible accepting probability.

Theorem 6 Let L be a language and M its minimal automaton.

(1) If M contains states q1, qo and g3 such that, for some words x and y,
(a) if M reads x in the state qq, it passes to qq,
(b) if M reads y in the state qy, it passes to s,
(c) if M reads y in the state qa, it passes to qa,
(d) if M reads x in the state qq, it passes to qs,
(e) if M reads x in the state qs, it passes to qs
then L cannot be recognized by a QFA with probability more than 0.6894....
(2) The language a*b* (the minimal automaton of which contains the con-
struction above) can be recognized by a QFA with probability 0.6894....

Proof. By a reduction to the following optimization problem.

Optimization problem 2. Find the maximum p such that there is a finite-
dimensional space F, subspaces F,, I, such that £ = E, ® F,, vectors vy, vy
and vs and probabilities py,, Pris Pays Pr, such that

(1) ||7)1—|—1)2—|—1)3|| = 1,
(2) (% 1 V2,

(3) vi+v2+ws L vy,
(4) V1 + Vg 1 V3.

(5) ”/03”2 = Pay +p7"1;

13



(6) llv2ll® = pay + Pro

(7) |Pa(vr + vz + v3)[* = p;

(8) [[Pa(ve + v)lI + pa, = p;

(9) 1Pa(o)lI* + pay + Pay < 1 = p.
We use a theorem from [BP 99].

Theorem 7 Let L be a language and M be its minimal automaton. Assume
that there is a word x such that M contains states q1, qo satisfying:

(1) q1 # G,
(2) If M starts in the state 1 and reads x, it passes to qa,

(8) If M starts in the state qx and reads x, it passes to g, and
(4) There is a word y such that if M starts in qx and reads y, it passes to qi,

then L cannot be recognized by any 1-way quantum finite automaton.

Let @ be a QFA recognizing L. Let ¢4 be state where the minimal automaton
M goes if it reads vy in the state ¢g3. In case when ¢; = g4 we get the forbidden
construction of Theorem 7. In case when ¢, # ¢4 states ¢, and g4 are different
states of the minimal automaton M. Therefore, there is a word z that is
accepted in one of them but not in the other. Without loss of generality, we
assume that vy is accepted if M is started in ¢, but not if M is started in g4.

We choose FE, so that the square of the projection P, of a vector v on I, is
equal to the accepting probability of ) if we run () on the starting state v and
input yz and the right endmarker $.

We use Lemma 1. Let Ef be F; and E} be Es for word z and let EY be E,
and EY be E, for word y.

Without loss of generality we can assume that ¢ is a starting state of M.
Let v, be the starting superposition for ). We can also assume that reading
x in this state does not decrease the norm of this superposition. We divide
1, into three parts: vy, v, and vz so that v; + v, € EY and vz € EY, V; €
EY and vy € EJ. Due to vy + vs 4 v3 is the starting superposition we have
||v1 + va + v3|| = 1(Condition 1).

Since vy + vy + v3 € Ef we get that v; + vy + v3 L vo(Condition 3) due to
ve € E3. Similarly vy + ve L v3(Condition 4) and v; L ve(Condition 2).

It is easy to get that || P,(vy + ve + v3)||* > p(Condition 7) because reading yz
in the state ¢, leads to accepting state.

Let pq, (pr,) be the accepting(rejecting) probability while reading an infinite
sequence of letters y in the state v +vy+v3. Then p,, +py, = ||vs][*(Condition

14



Fig. 3. “The forbidden construction” of Theorem 8.

5) due to vy + vy € EY and v € EY.

Let pa,(pr,) be the accepting(rejecting) probability while reading an infinite
sequence of letters x in the state v +vy. Then py, + pr, = ||v2]*(Condition 6)
due to v; € £} and vy € EF.

We find an integer ¢ such that after reading y" the norm of ¢, — (v + v2) is
at most some fixed ¢ > 0. Now similarly to Theorem 5 we can get Condition
8: || Pa(vi +02)|* + pay > p.

Let . = 1 + 9, 1 € EY, 1y € E5. We find an integer j such that
after reading 27 the norm of ¢y,i,; — 91 is at most e. Since ¢ — vy L
¥y — g then |ty — vi|[? + ||t — v2|[* = [[they: — (01 + 0)|]* < €. There-
fore, ||t)1 — v1|| < e. Then |[¢eyizi — v1]| < |[|uyini — U1|| + ||t01 — 01| < 2¢ due
to previous inequalities. Now similarly to Theorem 5 we can get Condition 9:
||Pa(vl)||2 + Pay + Pay < 1—p.

We have constructed our second optimization problem. We solve the prob-
lem by computer. Using this solution we can easily construct corresponding
quantum automaton. O

4.2k cycles in parallel

Theorem 8 Let k > 2.

(1) Let L be a language. If there are words x1, xo, . . ., x) such that its minimal
automaton M contains states qo, q1, ..., qx Satisfying:
(a) if M starts in the state qo and reads x;, it passes to q;,
(b) if M starts in the state q;(i > 1) and reads x;, it passes to q;,
(c¢) for each i the state q; is not “all-rejecting” state,
Then L cannot be recognized by a QFA with probability greater than %

15



(2) There is a language such that its minimal deterministic automaton con-
tains this construction and the language can be recognized by a QFA with
probability Tk_1

For k = 2, arelated construction was considered in [AKV 01]. There is a subtle
difference between the two constructions (the one considered here for k = 2
and the one in [AKV 01]). The “non-reversible construction” in [AKV 01]
requires the sets of words accepted from ¢; and ¢s to be incomparable. This
extra requirement makes it much harder: no QFA can recognize a language
with the “non-reversible construction” of [AKV 01] even with the probability
1/2+e.

Proof.

Impossibility result. This is the only proof in this paper that does not
use a reduction to an optimization problem. Instead, we use a variant of the
classification of states (Lemma 2) directly.

We only consider the case when the sets of words accepted from ¢; and g;
are not incomparable. (The other case follows from the impossibility result in

[AKV 01].)

Let L; be the set of words accepted from ¢;(i > 1). This means that for each
i,J we have either L; C L; or L; C L;. Without loss of generality we can
assume that I, C Ly C ... C L. Now we can choose k words 21, 29, ..., 2k
such that z; € Ly, La, ..., Lgy1 and z; & Lgio g, ..., Li. The word z; exists
due to the condition (c).

We use a generalization of Lemma 2.

Lemma 9 Let z,...,x; € X7. There are subspaces Ey, Fy such that E,,, =
E1 ) EQ and

(i) If Y € By, then V, (V) € Ey, ..., V. (¥) € By and ||V, (V)| = |2, ...,

IVa, (DI = 1],
(11) If 1p € Fy, then for any € > 0, there exists a word t € (xy|...|zg)* such

that [V} (¥)]| <.
The proof is similar to lemma 2.

Let L be a language such that its minimal automaton M contains the "non
reversible construction” from Theorem 8 and M, be a QFA. Let p be the
accepting probability of M,. We show that p < %

Let w be a word such that after reading it M is in the state qo. Let ¢, =
L2 ol € By, Y2 € By We find a word a; € (z1]...|zy)* such that after

w w? w w
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reading xya; the norm of ¢2, . = V/ (¢2, ) is at most some fixed ¢ > 0.

(Such word exists due to Lemma 9.) We also find words as, . .., ay such that
[Vasas | S € - oy [Vl < €.

Because of unitarity of V, , ..., V, on E; (part (i) of Lemma 9), there exist

integers iy ... i, such that (|9, .0 — Yull S € o W a0 — Yull < €

Let p, be the probability of M, accepting while reading xw. Let py, ..., pk
be the probabilities of accepting while reading (xya;)™, ..., (zpap)™* with a
starting state v, and and pj,...,p, be the probabilities of accepting while
reading 1%, ..., z;$ with a starting state ¢}

w*

Let us consider 2k — 1 words:

Lemma 10 M, accepts kw(x1a;)™ 2,$ with probability at least py+py+pj, —4¢
and at most p,, + p1 + p;f + 4e.

Proof. The probability of accepting while reading xkw is p,,. After that, M,
is in the state v,, and reading (z,a;)" in this state causes it to accept with
probability p;.

The remaining state is ¥y, 0)n = ¢1111(a:1a1)il + wi}(xlal)il‘ If it was 9}, the
probability of accepting while reading the rest of the word (2;$) would be
exactly p. It is not quite ¢}, but it is close to 1. Namely, we have

wu w*

||¢w(ac1a1)i1 - ,wayH < ”djg)(azlal)il ” + ”djzlu(a:lal)il - ,wauH Sete=2e

By Lemma 3, this means that the probability of accepting during z;$ is be-
tween p, — 4¢ and p, + 4e. O

This Lemma implies that p, + p1 + pj, + 4€ > p because of 12, € L. Simi-
larly, 1 — py, — p2 — p;c + 4¢ > p because of x92, ¢ L. Finally, we have 2k — 1
inequalities:

Pw + P1+ Py + 4e > p,

1= pu — p2 — py +4€ > p,

Pw + P2+ Py e > p,

1l = pw —p3 — pp—y +4e = p,
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Pw + Pro1+ Py +4e > p,
l—pw—pk,—p2+462p,
Dw + Pr + Dy +4e > p.

By adding up these inequalities we get k—14py4p1+p;+4(2k—1)e > (2k—1)p.
We can notice that p,,+p; +p; < 1. (This is due to the facts that p; < |2 1|2,

py < [[eull? and 1= py < [[9u]]” = [[51° + [[¢y|*.) Hence, p < 55 + 4e.
Since such 2k — 1 words can be constructed for arbitrarily small ¢, this means
that M, does not recognize L with probability greater than % O

Constructing a quantum automaton.

We consider a language L in the alphabet by, bs, ..., by, 21, 29, ..., 2 such that
its minimal automaton has accepting states qo, g1, ..., qr and rejecting state
qre; and the transition function V) is defined as follows:

Vi(qo, b)) = ai, Vi(qo, zi) = a1, Vilainby) = qi(i > 1), Vi(gi, 2) = qu(i + 5 <
k + 1)7 ‘/I(Qiazj) = %"ej(i +] >k + 1)7 Vl(Qrejvbi) = Qrej, ‘/I(QTejaZi> = QTej>-

It can be checked that this automaton contains the "non reversible construc-
tion” from Theorem 4. Hence, this language cannot be recognized by a QFA
with probability greater than Tk1

Next, we construct a QFA M, that accepts this language with such probability.

The automaton has 3(k + 1) states: gy, Gy, - - - » G Gags Gags - - - » Gars Qo> Gros - - - »
qry,- Qacc = {ana Gagy -+« Qak}a Qrej = {qT07 Qray - - - JQTk}' The initial state is

k 1 1

The transition function is

Viallao)) = |/ b)) i ll) =l > 2),

Vai(la0)) = 1dao)s Ve (14)) = 14a,) i +5 < k+1),Var(1a)) = law, )i+ > k+1),
Vs(|4;)) = lga,)-
(1) The empty word.

The only tranformation applied to the starting state is V5. Therefore,
the final superposition is

k 1 1

Qk |an> Qk |q02> . Qk |qak>
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and the word is accepted with probability 1
(2) The word starts with z;.
Reading z; maps |¢,) to |qa,). Therefore, this word is accepted with

probability at least (1/525)% = 5.
(3) Word is in form b;(by V ...V bg)*. The superposition after reading b; is

o )+ \f el [l + )
% —1 Qag) + 2k: Qro o Qs o\ g o Qs

k+1 z

At thls moment M, accepts with probablhty and reJects with prob-

1 1

Clearly, that reading of all remaining letters does not change this super-
position. Since Vs maps each |q7) to an acceptmg state then M, rejects
this word with probability at mos <o 1

(4) Word z starts with b;(by V.. .\/bk)*zj Before reading z; the superposition
is

1 1

Case 1.i+j>k+1.x¢ L.
Since ¢ + j > k + 1 then reading z; maps at least & — ¢ + 1 states of
Qs - - - s q}c to rejecting states. This means that M, rejects with probability
at least
1—1 k—i+1  k
%1 21  2—1
Case 2. i4+7 < k+1. 2 € L;. Since i +j < k+1 then reading z; maps
at least i — 1 states of q;, e q,; to accepting states. This means that M,
accepts with probability at least

k+1—i+i—1_ k
2% — 1 2% —1 2k—1

4.8 0.7324... construction

Theorem 11 Let L be a language.

ere are words x, z1, zo such that its minimal automaton M contains
1) If th d. h that it mimal aut ton M tas
states q1 and qo satisfying:
(a) if M starts in the state q1 and reads x, it passes to g,
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R )

Fig. 4. “The forbidden construction” of Theorem 11.

(b) if M starts in the state qa and reads x, it passes to ga,
(c) if M starts in the state q1 and reads zy, it passes to an accepting state,
(d) if M starts in the state q1 and reads z3, it passes to a rejecting state,
(e) if M starts in the state qo and reads z1, it passes to a rejecting state,
(f) if M starts in the state gz and reads zs, it passes to an accepting state.
Then L cannot be recognized by a QFA with probability greater than % +
315 — (.7324....

(2) There is a language L with the minimum automaton containing this con-

struction that can be recognized with probability % + 3,)—\/(}_5 =0.7324....
Proof.
Impossibility result.

The construction of optimization problem is similar to the construction of Op-
timization problem 1. For this reason, we omit it and just give the optimization
problem and show how to solve it.

Optimization problem 3. Find the maximum p such that there is a finite
dimensional vector space E,,;, subspaces F,, E, (unlike in previous optimiza-
tion problems, F, and E, do not have to be orthogonal) and vectors vy, vy such
that v; L vy and ||v;+vs|| = 1 and probabilities p;, ps such that p;+py = ||vs]|?
and

(1) [[Pa(vr +v2)[I? > p,
(2) 1P (1 +v2)|I* > p,
(3) 1= [|Pa(u)I” = p1 > p,
(4) 1= [P (v)]*> = p2 > p.

Solving optimization problem 3.

Without loss of generality we can assume that ||P,(v1)]| < ||P(v1)]|. Then
these four inequalities can be replaced with only three inequalities

(1) [[Pa(vr + v2)[]* > p,
(2) 1= ||Pa(v)|I* = p1 > p,
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(3) 1= [1Pa(v)ll* = p2 > p.

— lwaf?

Clearly that p is maximized by p; = p; = 5.

Therefore, we have

(1) [[Pa(vr + 02| = p,
(2) 1= [[Pa(on)|? — 12

2

[

2> P

Next we show that it is enough to consider only instances of small dimension.
We denote E,,, — E, as E. First, we restrict F, to the subspace E! generated
by projections of v; and vy to E,. This subspace is at most 2-dimensional.
Similarly, we restrict Fj, to the subspace Fj generated by projections of v;
and vy to Ej. The lengths of all projections are still the same. We fix an
orthonormal basis for E,,; so that P,(v;) and Py(v;) are both parallel to some
basis vectors. Then, v; = (x1,0,23,0) and vy = (y1, Y2, Y3, ya) where the first
two coordinates correspond to basis vectors of £/ and the last two coordinates
correspond to basis vectors of Ej. We can assume that z; and z3 are both non-
negative. (Otherwise, just invert the direction of one of basis vectors.)

Let A = ||v1|| = /2% + 23. Then, there is « € [0, 7/2] such that z; = Acosa,

x5 = Asina. Let 6 = \/y? +y3. Then, y; = dsina, y3 = —J cosa because
r1Yy1 + x3ys = 0 due to v; L we. If y4 # 0, we can change y; and y3 to
8’ sin @ and —d’ cos a where ¢’ = /y? + y3 + y3 and this only increases || P, (v1+
v9)||. Hence, we can assume that y, = 0. We denote ¢ = yy. Then, v; =
(Acosa, 0, Asina, 0), v, = (dsin o, €, —d cos a, 0).

Let E = /A% + 42, Then, A = Esin3 and § = Ecos 3 for some 3 € [0, 7/2]
and E? + ¢2 = 1. This gives

(1) || Pu(v1+0v)||? = EQ(Zsinﬁcos a+-cos 3sin a)2—|—622= 2E2 si2n2(a+ﬁ)+e2 > p,
(2) 1—||Pu(v)|]* = @ =1 — E?sin? Bcos® a — % > p.

Then after some calculations we get

(1) 1— E2cos*(a+ ) > p,
1—FE2sin? B cos 2
(2) S 5 COS z2(x Z p

If we fix a + 8 and vary 3, then — sin? 3 cos 2a (and, hence, M) is

maximized by 5 = 2a — 7/2. This means that we can assume [ = 2a — 7/2
and we have

(1) 1 — E?sin®*(3a) > p,

(2) 1—E2(:;)s3(2a) > p.

If we consider cos?a > 1/2 then p < I*EQCQOS?)(QO‘) = 1*E2(2C§SQO‘*1)3 < 1/2.

This means that we are only interested in cos? a < 1/2.
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Let f(F? a) = 1 — E?sin?(3a) and g(E? ) = % If we fix a and

vary E?, then f and g are linear functions in E? and f(0,a) > ¢(0,a). We
consider two cases.

Case 1. f(1,a) > g(1,a). (This gives f(FE? «) > g(E? a) for each E*. There-
fore, in this case we only need to maximize the function g.)

This means that
1 — cos®(2a)

5 ;
1 — 2sin?(3a) + cos®(2a) > 0,
1 —2(1 — cos?(3a)) + cos®(2ar) > 0,
1 —2(1— (4cos® a — 3cosa)?) + cos(2a) > 0,
1 —2(1 —16cos® o + 24 cos’ o — 9cos? o) + (2cos? v — 1) > 0,
20 cos® o — 30 cos* av + 12 cos® v — 1 >0,
(1 —2cos?a)(—10cos* a + 10cos* a — 1) > 0.
So that cos® a < 1/2, we have

1 —sin®*(3a) >

—10cos*a+ 10cos®>a — 1 > 0.

This means that cos® o € [ — %, 3l.
Since g(E? a) = M, g is maximized by E? = 1 and cos’a =

1

3V15
2 50 °

— %. This gives p equal to % +

Case 2. f(1,a) < g(1,a). (This is equivalent to cos®a € [0, 5 — %])

This means that p is maximized by f(E? ) = g(E?, «). Therefore,

(1) 1;21*?2381;12(304) =,
(2) =G =y,

Let y be —cos2a = 1 — 2cos?a. Then y € [\/g, 1] and sin*(3a) = 1 —

cos?(3a) =1 — (4cos* e — 3cosa)? = 1 — cos> a4 cos? v — 3)2 = 1 — 2(1 +
2y)? = ﬁfu"g. Therefore,

(1) 2 — E?(4y® — 3y + 1) = 2p,

(2) 1+ E*y* = 2p.
Now we express p using only y. We get p = £ + 2(57%
y through the interval [\/g , 1], then p is maximized by y = \/g This gives p
3V15

50

. Finally, if we vary

equal to % +

Construction of a QFA.
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We consider the two letter alphabet {a,b}. The language L is the union of the
empty word and a™b(aVb)*. Clearly that the minimal deterministic automaton
of L contains the "non reversible construction” from Theorem 5 (just take a
as x, the empty word as z; and b as z3).

Next, we describe a QFA M accepting this language. Let o be the solution of
1 —2cos’a = \/g in the interval [0,7/2]. It can be checked that cos?(3a) =

+3\/_ 2 3 V3

.2
5o, Sin 2a—5,cos 2a—5,sm o= —1—2\/—

The automaton has 4 states: qo, q1, qace A0d Grej. Qace = {Qace}, Qrej = {Grej}-
The initial state is cos(3a)|qo) + sin(3a)|g1). The transition function is

. sin o sin o
Va(lgo)) = cos® alqo) + cos asin algr) + N |Gace) + 7 |Gres)s
Ccos «v Ccos &

Va(lg1)) = cos asin alqo) + sin? o) —

\/* |Qacc> - \/* |QTeJ>

%(|q0>) = |QT6,7'>7%(|Q1>> = |Qacc>7

%(|QO>> = |Qacc>av$(|ch>> = |QTej>7

(1) The empty word.

The only tranformation applied to the starting state is V5. Therefore,
the final superposition is Cos(Sa)|qacc> + sin(3a)|qrej) and the word is
accepted with probability cos?(3a) = —i— 3\5/01_5.

(2) blaVb)*.
After reading b the superposition is sin(3c)|qace) + cos(3a)|gre;) and

word is rejected with probability cos?(3ar) = £ + %0_

(3) at.
After reading the first a the superposition becomes

sin 2« sin 2«

\/— |qacc>_ \/— |qrey>

cos v cos 2a|qo) + sin avcos 2alq1) —

At this moment M accepts with probability S”“ 2o — % and rejects with

probability i . The computation continues in the superposition

cos a cos 2a/qp) + sin v cos 2alqy).
It is easy to see that reading all of remaining letters does not change this
superposition.

Therefore, the final superposition (after reading $) is

COS (¢ COS 20t|Qee) + SIN (v COS 20¢|Gre;) -
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This means that M rejects with probability

1 3

.2 2
2 —_ = —
sin® av cos a+5 5(

N —
[\
S

(4) a™b(a V b)*.
Before reading the first b the superposition is

cos @ cos 2a|qo) + sin acos 2a|qy)
and reading this b changes this superposition to
sin a cos 2a|qqee) + €OS €08 2x|Gre;) -

This means that M accepts with probability

3v15

50

9 1
ocos 2+ — =

2 1
52

sin +

5 Conclusion

Quantum finite automata (QFA) can recognize all regular languages if ar-
bitrary intermediate measurements are allowed. If they are restricted to be
unitary, the computational power drops dramatically, to languages recogniz-
able by permutation automata [CM 97,BP 99]. In this paper, we studied an
intermediate case in which measurements are allowed but restricted to ”accept-
reject-continue” form (as in [KW 97,AF 98,BP 99]).

Quantum automata of this type can recognize several languages not recog-
nizable by the corresponding classical model (reversible finite automata). In
all of those cases, those languages cannot be recognized with probability 1 or
1 — ¢, but can be recognized with some fixed probability p > 1/2. This is an
unusual feature of this model because, in most other computational models
a probability of correct answer p > 1/2 can be easily amplified to 1 — ¢ for
arbitrary ¢ > 0.

In this paper, we study maximal probabilities of correct answer achievable for
several languages. Those probabilities are related to “forbidden constructions”
in the minimal automaton. A “forbidden construction” being present in the
minimal automaton implies that the language cannot be recognized with a
probability higher than a certain p > 1/2.
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The basic construction is “one cycle” in figure 1. Composing it with itself
sequentially (figure 2) or in parallel (figure 3) gives “forbidden construc-
tions” with a smaller probability p. The achievable probability also depends
on whether the sets of words accepted from the different states of the construc-
tion are subsets of one another (as in figure 1) or incomparable (as in figure 4).
The constructions with incomparable sets usually imply smaller probabilities

p.

The accepting probabilities p quantify the degree of non-reversibility present
in the “forbidden construction”. Lower probability p means that the language
is more difficult for QFA and thus, the “construction” has higher degree of
non-reversibility. In our paper, we gave a method for calculating this probabil-
ity and used it to calculate the probabilities p for several “constructions”. The
method should apply to a wide class of constructions but solving the optimiza-
tion problems can become difficult if the construction contains more states (as
for language ajaj ... ajp studied in [ABFK 99]). In this case, it would be good
to have methods for calculating the accepting probabilities approximately.

A more general problem suggested by this work is: how do we quantify non-
reversibility? Accepting probabilities of QFAs provide one way of comparing
the degree of non-reversibility in different “constructions”. What are the other
ways of quantifying it? And what are the other settings in which similar ques-
tions can be studied?
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On the Properties of Probabilistic Reversible
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Abstract. We show a clear relationship between two known conditions
for a language not to be recognizable by a probabilistic reversible au-
tomata (PRA).

We also show that use of end-markers in the definition of PRA is optional.

1 Introduction

A. Ambainis and R. Freivalds [AF 98] raised the question what kind of proba-
bilistic automata can be viewed as a special case of quantum finite automata.
Quantum finite automata were introduced by C. Moore and J. P. Crutchfield in
[MC 97] and by A. Kondacs and J. Watrous in [KW 97]. This notion is not a
generalization of the deterministic finite automata, but rather a generalization
of deterministic reversible (permutation) automata.

To answer the question above and study relationship between quantum fi-
nite automata and probabilistic finite automata, M. Golovkins and M. Kravtsev
[GK 02] introduced a notion of probabilistic reversible automata (PRA, or dou-
bly stochastic automata). They showed that the class of languages recognizable
by this model of automata is closed under any Boolean operation.

M. Golovkins and M. Kravtsev also proved that any language that is recog-
nizable by a PRA with any probability p > % is recognizable by a PRA with
probability 1—e for any € > 0. In Section 4 we prove that the probability 1 can be
reached if and only if language is recognizable by permutation automata ([T 68]).
Also in Section 4 we show that the class of languages recognizable by PRA is
not closed under homomorphisms but is closed under inverse homomorphisms
and word quotient.

M. Golovkins and M. Kravtsev found two conditions of a language which
make it impossible to recognize by a PRA. (Recently it has been proved that
these necessary conditions are also sufficient ones [ABGKMT 03].) These condi-
tions can be nicely stated in the form of the minimal deterministic automaton
containing a fragment of a certain form. We call such a fragment a “non-reversible

* Research supported by Grant No0.01.0354 from the Latvian Council of Science; Eu-
ropean Commission, contract IST-1999-11234 and University of Latvia, Kristaps
Morbergs fellowship.



construction”. In Section 5 we show that for any language containing one of
these “non-reversible constructions” implies containing second “non-reversible
constructions” in reverse of this language.

In Section 6 we prove that use of end-markers does not affect computational
power of PRA. For every PRA with end-markers which recognizes some language
it is possible to construct a PRA without end-markers which recognizes the same
language. (Number of states needed may increase, however.)

2 Definition of Probabilistic Reversible Automaton

Probabilistic reversible automaton A = (Q, X, qo, QF, d) is specified by a finite
set of states @, a finite input alphabet X, an initial state gy € @, a set of accepting
states Qr C @, a set of rejecting states Qr = @ — Q, and a transition function
0:QxI xQ — Ryy), where I' = XU {#,8} is the input tape alphabet of
A and #, $ are end-markers not in Y. Furthermore, transition function satisfies
the following requirements:

V(g,o1) €QxT Y d(qu,01,9) =1 (1)
q€Q

V(g,01) €Qx I Y 8(q,o1,q1) =1 (2)
9EQ

For every input symbol o € I', the transition function may be determined
by a |@Q| x |Q| matrix V,, where (V,);; = 6(q;,0,q;). (It is easy to see that all
matrices V, are doubly stochastic iff conditions (1) and (2) hold.)

The automaton accepts an input word iff it enters an accepting state after
having read the whole input word. The language recognition is defined in an
equivalent way as in [R 63].

By p.,4 we denote the probability that an input « is accepted by an automa-
ton A. We denote P, = {py.a | 2 € L}, P, = {ps.a | © ¢ L}, p1 = sup Py,
ps = inf Py,

We say that an automaton A recognizes a language L with bounded error and
interval (p1,p2), if p1 < po. We say that an automaton recognizes a language with
probability p if the automaton recognizes the language with interval (1 — p, p).

3 An Example

To explain the definition we will give a short example of probabilistic reversible
automaton. Let L be the language a*b* in the two letter alphabet {a,b}. We
construct probabilistic reversible automaton M that recognizes L with proba-
bility %. The automaton has 4 states: qo,q1,q2 and g3. qo is an initial state.
Qr = {q,q} and Qr = {g2,q3}. The transition function is defined by the



following doubly stochastic matrices:

1002 1000 %%00 1000
0100 0310 53500 0100

— — — 2 2 =
#=10010]|"= 0%%0 Ye=16010]"% {0010
30042 0001 0001 0001

The starting configuration is (1,0,0,0).

1. The empty word. Reading the left endmarker changes the configuration to
(%, 0,0, %) and after reading the right endmarker the configuration remains
the same. So M accepts with probability % due to gqg is an accepting state.

2. a™. The configuration after reading left endmarker is (%,0,0, £). And read-
ing all of letters a’s does not change the configuration. So M accepts with
probability 2.

3. a*bt. Before reading the first b the configuration is (%, 0,0, %) Then reading
the first b changes it to (%, %, 0, %) and after reading all of remaining b's the
configuration remains the same. So M accepts with probability % + % = %
due to both of states gy and ¢; are accepting states.

4. a*bta™(alb)*. Before reading the first letter a after all letters b's the con-
ﬁquration is (2,2,0,2). Then reading next a changes the configuration to
(2,1,1,2). It is easy to see that for every doubly stochastic m x m ma-

trix A and for every vector X = (x1,...,2y) with 21 > 0,... 2, > O:

min(X) < min(AX). This implies that the probability of the state g, will

never be less than 1 because min(2, $,%,2) = . So M rejects with proba-

bility at least % + % = %.

4 On the Class of Languages Recognizable by PRA

In almost any computational model, the accepting probability can be increased
by repeating the computation in parallel. M. Golovkins and M. Kravtsev [GK 02]
showed that this is true for PRA, too. However, this is not true for quantum
finite automata [AF 98, ABFK 99,AK 03].

Theorem 1. [GK 02] If a language is recognized by a PRA, it is recognized by
PRA with probability 1 — €.

We answer to the question what is the class of languages for which PRA can
reach the probability 1 precise.

Theorem 2. If a language is recognized by a PRA with probability 1, the lan-
guage is recognized by a permutation automaton.

Proof. Let us consider a language L and a PRA A, which recognizes L with
probability 1.

If a word is in L, the automaton A has to accept the word with probability
1. Conversely, if a word is not in L, the word must be accepted with probability



0. Therefore, Vg € Q Yw € X* either qw C QF, or qw C Q. Consider a relation
between the states of A defined as R = {(¢i,q;) | Vw qiw C Qr < qjw C Qr}.
R is symmetric, reflexive and transitive, therefore () can be partitioned into
equivalence classes Q/R = {[qo], [gi,],---,[¢,]}- Suppose A is in a state g. So
Yw 3In qw C [g;,]. In fact, having read a symbol in the alphabet, A goes from
one equivalence class to another with probability 1.

Hence it is possible to construct the following deterministic automaton D,
which simulates A. The states are sg, ..., s and s,0 = sy, iff [g;, ]o C [¢;,,,] and
sp is an accepting state iff [¢;,] C Q. Since all transition matrices of A are
doubly stochastic, all transition matrices of D are permutation matrices. O

M. Golovkins and M. Kravtsev [GK 02] proved that the class recognizable
by PRA is closed under any Boolean operation.

Theorem 3. [GK 02] The class of languages recognized by PRA is closed under
intersection, union and complement.

We can characterize languages recognized by PRA in terms of their minimal
deterministic automata.

Definition 1. [GK 02] A regular language is of Type 1 (Figure 1) if the follow-
ing is true for the minimal automaton recognizing this language: exist two states
q1, q2, exist words x, y such that

g # @ 2) qr=q, r=q¢; 3)@y=aq.

Definition 2. [GK 02] A regular language is of Type 2 (Figure 2) if the fol-
lowing is true for the minimal automaton recognizing this language: exist three
states q, q1, q2, exist words x, y such that
D) g1 # g 3) T =q1, @y = q;
2) qr=q, @y =q; 4) @ =, @Y=

X,
X
Fig. 1. Type 1 construction Fig. 2. Type 2 construction

Next results are the negative results about recognizing of languages by PRA.

Theorem 4. [GK 02] If a regular language is of Type 1 or Type 2, it is not
recognizable by any PRA.

Type 1 languages are exactly those languages that violate the partial order
condition of [BP 02] and are not recognizable by quantum finite automata, too.
And we can notice that all other known languages which are not recognizable
by quantum finite automata are Type 2 languages [AKV 01].

Our next theorem shows non-closure under homomorphisms:



Theorem 5. The class of languages recognizable by PRA is not closed under
homomorphisms.

Proof. Consider a homomorphism a — a, b — b, ¢ = a. We use Theorem 2.7
from [GK 02], namely:

For every natural positive n, a language L,, = aja}...a}, is recognizable by
some PRA with alphabet {aj,as,...,a,}.

Similarly as in this theorem, the language (a,b)*cc* is recognizable by a PRA.
However, by Theorem 4 the language (a,b)*aa*=(a,b)*a is not recognizable. O

However, the following theorem shows that the class of languages recognizable
by PRA is closed under inverse homomorphisms and word quotient.

Theorem 6. The class of languages recognized by PRA is closed under inverse
homomorphisms and word quotient.

Proof. Let us consider finite alphabets X, T, a homomorphism h : ¥ — T™,
a language L C T* and a PRA A = (Q,T, o, QF, ), which recognizes L with
interval (p1, p2). We prove that exists an automaton B = (Q, X, qo, @, ") which
recognizes the language h~'(L).

Transition function 6 of A sets transition matrices V,, where 7 € T. To
determine ', we define transition matrices V,, o € X. Let us define a tran-
sition matrix Vo, : Voo = Vin(ow)m Vik(or)lmo1 - - - Vib(ox)]:» Where m = |h(og)].
Multiplication of two doubly stochastic matrices is a doubly stochastic matrix,
therefore B is a PRA. Automaton B recognizes h~!(L) with interval (ai,as),
where a1 < p1, a2 > po.

Taking into consideration presence of end-markers #,$, closure under word
quotient is an immediate consequence. O

5 Relationship Between “Non-reversible Constructions”

In this section we shall use Lemma 2.10 from [GK 02], namely:

Lemma 1. If A is a deterministic finite automaton with a set of states () and
alphabet X, then Vq € Q Yz € X* Ik > 0 gz = qz?F.

The following theorem illustrates the relationship between Type 1 and Type
2 languages.

Theorem 7. A regular language L is of Type 1 iff LT is of Type 2.

Proof. Tt is a well known fact, that the class of regular languages is closed under
reversal.

1) Consider a Type 1 regular language L C X*. Since L is of Type 1, it is
recognized by a minimal automaton D = (Q, X, qo, QF,d) with particular two
states qi1, g2, such that ¢1 # q2, 17 = @2, 2= = q2, @2y = q1, where z,y € X*.
Furthermore, exists w € X* such that qow = ¢1, and exists z € X* such that



¢172 € Qp if and only if ¢22 ¢ Q. Minimal automata of a regular language and
of its complement are isomorphic, so without loss of generality we assume that
@1z € Qr and 22 ¢ Qp.

So w{zy,z}*rz C L and w{zy,z}*(ry)z C L, and in the case of the reverse of
L, 28R {yfgR pBy* R ¢ LR and 2R (yRaR){yFzl o }*wf C LT, We denote
o1 = 2, 05 = yBa® hence 280y {02, 01 }*w C LE and 2Fo5{0y, 01 }*wh C LE.

Consider a minimal automaton DT = (Qf, ¥, 59, Q%, %), which recognizes
LT Let s = sozf'. Let Q1 = {s7 | 7 € 01{02,01}*} and Q2 = {s7 | T €
02{02,01}*}. For any ¢ € Q1, qw® ¢ QF and for any ¢ € @, ™ € QF.
Therefore Q1 N Q2 = @. Furthermore, it is impossible to go from a state in @
to a state in )3, or vice versa, using only words in {o1,02}*. So s ¢ @; and
s ¢ Q.

Consider a relation R = {(s;,5;) € Q% | s; € s;{01,02}*}. R is a weak order-
ing, so R' = {(s;,s;) | siRs; and s;Rs;} is an equivalence relation, partitioning
(1 into equivalence classes. Since the number of states in ) is finite, exists
a class S C @1, which is minimal, i.e, Vg € S V7 € {01,02}* g7 € S. Since
S C @1, exists a word 71 € {o1,02}*, such that s(o;7) € S. Now by Lemma
1,3dp > 03s; € S s(o171)P = s1 and s1(0171 )P = s1. Since S is an equivalence
class of R',Vq € S V7 € {01,02}* A € {01,02}* q(772) = q. So, exists 72, such
that 81(0’27’2) = S81.

Let us denote a = (o171)P, B = 0972, SO s = s1, S = 81, 813 = s1, where
51 € Q1.

By Lemma 1, it is possible to construct a sequence of states tg, ti,...,
tm—1,- .., where tg = s, such that

to(,@’akl) = t1 and tlakl = tl,
tl (,BOék2) = t2 and tzak2 = tQ,

tm_1(Bakrm) =t,, and t,,af™ = t,,,

Because 8 € o02{01,02}" and a € o1{01,02}", Vi > 0 t; € Q2. Let T}, =
{to,...,tm}. Since the number of states in Q- is finite, exists i, such that
t; € T;—1. So, exists j, 0 < j < 4, such that t; = t; and starting with ¢;, the
sequence becomes periodic. Let k = kiks ... k;. Now, Vm > 0 t,,(B8a*) = t;41
and t,, 410" = t,,41. By Lemma 1, 3r > 0 3s,, such that s(3a*)” = s, and

s9(Ba®)" = s5. The state sy = t,., 50 53 € Q2 and soak = s,.

So we have sa* = s1, s;af = 51, 51(Ba¥)" = 51, s(Ba¥)" = 59, s2(Ba
s, sp0¥ = s5. Since 51 € Q1, s2 € Qa, s1 is not equal to sy, thus we have

obtained a Type 2 construction.

k)r —

2) Consider a Type 2 regular language L C X*. Since L is of Type 2, it is
recognized by a minimal automaton D = (Q, X, qo, @, d) with particular three
states q, q1, g2, such that q1 # g2, ¢ = q1, 1T = q1, Y = q1, @Y = G2, 2T = G,
q2y = @2, where z,y € X*. Furthermore, exists w € X* such that ¢ow = ¢, and
exists z € X* such that ¢1z € Qp if and only if g2z ¢ Qr. Without loss of
generality we assume that g1z € Qp and g2z ¢ Qp.



So wx{r,y}*z C L and wy{z,y}*2 C L, and in the case of the reverse of
L, 2 {zf y"yafuf ¢ LR and 2P {zf, yB}yyBRwf ¢ LE. We denote 0, = z,
oy =y, hence 28{0y, 00} 1w C LT and 2{0y, 02} oow’ C LE.

Consider a minimal automaton Df = (Qf, ¥, 5o, Q%, %), which recognizes
LB Let s = sozft. Let Q1 = {s7 | 7 € {o1,02}*01} and Q2 = {s7 | T €
{o1,09}*02}. For any t € Qi, tw?® € QF and for any t € Q», twf ¢ Q.
Therefore Q1 N Q2 = 0.

Let T = Q1 U Q2. Consider a relation R = {(s;,s;) € T? | s; € s;{0o1,02}*}.
R is a weak ordering, so R’ = {(s;,s;) | s;Rs; and sjRs;} is an equivalence
relation, partitioning 7' into equivalence classes. Since the number of states in
T is finite, exists a class S C T, which is minimal, i.e, Vi € S V7 € {01,02}*
tr € S.

Consider a state t € S. If the state t is in (1 then toy € S is in Q5. If the
state t is in )2 then toq € S is in Q1. So exist t1, to, such that ¢t; € Q1 NS,
ty € Q2N S. Take s; € Q1 NS. By Lemma 1, 3k > 0 Isy, such that s;05 = sy
and syof = s5. The state sy is in Q2 N S. Since S is an equivalence class of R,
Jdo € {01,002}, such that soo = 1.

So we have s;05 = s, 520% = 55, 550 = 5. Since s; € Q1, s2 € Q2, 51 is not
equal to so, thus we have obtained a Type 1 construction. O

6 End-marker Theorems for PRA

In this section, we prove that the use of end-markers in case of PRA is optional.
We denote a PRA with both end-markers as #.,$-PRA. We denote a PRA
with left end-marker only as #-PRA.

Theorem 8. Let A be a #,3-PRA, which recognizes a language L. There exists
a #-PRA which recognizes the same language.

Proof. Suppose A = (Q, X, qo,QF,d), where |Q] = n. A recognizes L with inter-

val (p1, p2). We construct the following automaton A’ = (Q’, X, o0, @, ") with

mn states. Informally, A’ equiprobably simulates m copies of the automaton A.
Q= {CIO,O, < 5q0,m—1,91,0,- -, q1,m—15---,4n—1,05 - - - 7qn71,m71}'

é iy 0545 7fk:l
If o # #, 0'(¢i,k,0,¢51) = {o(qifl(cfaqéjl). 1

Otherwise, §'(qo,0,#,a1) = =0(qo,#,4q;), and if ¢ # o0, O (Giks F#.q) =

1—4'(g0,0,#,49)
mn—1

of PRA.
We define Q' as follows. A state ¢;r € Q% if and only if 0 < k < mp(q;),

def
where p(¢;) = Y 8(4i,$, ).
qEQF
Suppose #w$ is an input word. Having read #w, A is in superposition
n—1

n—1
> a¥q;. After A has read $, #w$ is accepted with probability p, = > a¥p(g;)-
i=0 i=0

. Function ¢’ satisfies the requirements (1) and (2) of the definition



m—1n—1
On the other hand, having read #w, A’ is in superposition - Z Z ay'q; ;.
7=0 i=

n—1
So the input word #w is accepted with probability p/, = L Z: a¥ [mp(g;)]-

n—1
Consider w € L. Then pl, = = > a¥[mp(q;)] > Z a¥p(q;) = pw > pa-

1_0

n—1
Consider ¢ ¢ L. Then p, = L S e Tmp(a)] < S aép(ar) + LS af =
=0 1=0 1=0

Pe+ o <1t

Therefore A’ recognizes L with bounded error, provided m > O

p2— 171

Now we are going to prove that PRA without end-markers recognize the
same languages as #-PRA automata.

If A is a #-PRA, then, having read the left end-marker #, the automa-
ton simulates some other automata Ag, A1, ..., A,_1 with positive probabilities
Do, - - -, Pm—1, respectively. Ag, Ay, ..., Ap_1 are automata without end-markers.
By piw, 0 <1 < m, we denote the probability that the automaton A; accepts
the word w.

We prove the following lemma first.

Lemma 2. Suppose A’ is a #-PRA which recognizes a language L with interval

(a1,a2). Then for everye, 0 < e < 1, exists a #-PRA A which recognizes L with

interval (a1, az), such that
a’)ifweLPOw"_plw"_ +pn 1w>fi€
b)lfw¢[/p0w+p1w+ -+ Pn— 1,w<17n

Here n is the number of automata without end-markers, being simulated by A,

and p; ., is the probability that i-th simulated automaton A; accepts w.

S

Proof. Suppose a #-PRA A’ recognizes a language L with interval (a1, as). Hav-
ing read the symbol #, A’ simulates automata Ay, ..., Al _; with probabilities
Doys - - 5 Phn_1, respectively. We choose ¢, 0 < & < 1.

By Dirichlet’s principle ([HW 79], p. 170), Vo > 0 exists n € INT such that
Vi pin differs from some positive integer by less than ¢.

Let 0 < ¢ < min (L,¢). Let g; be the nearest integer of pln So |pin—gi| < ¢
—1

n-— Zgi

=0

< 22 < £ Since |pin — g;| < ¢, we have

ngi — n°

< pm < 1.

m—1
Therefore, since g; € INT, Z gi = n.

i=0

Now we construct the #-PRA A, which satisfies the properties expressed in
Lemma 2. For every ¢, we make g; copies of Al. Having read #, for every ¢ A
simulates each copy of A} with probablhty . Therefore A is characterlzed by
doubly stochastic matrices. A recognizes L w1th the same interval as A,
(a1,az).

Using new notations, A simulates n automata Ag, A1,...,A,_1 with proba-
bilities po, p1, .- -, Pn—1, respectively. Note that Vi |pi — %| < £. Let p;,, be the
probability that A; accepts the word w.



Consider w € L. We have popo,w + PiP1,w -+ Pn—1Pn—1,w > az. Since

pi < L:f’ e (pO,w +Piwt .t Pn—1 w) > as. Hence PowtPrwt.  +Pn-1,0 >
asn asn
14+¢ > 14+e*

Con51der f ¢ L. We have popoe + pip1e + ... + Pn—1Pn—1,¢ < a1. Since
pi > 52, 52 (pog+pie+ . +Pn-1e) <ar. Hence pog+pie+.. +pn-1 <
ajn - lam O
1—¢ —e*’

Theorem 9. Let A be a #-PRA, which recognizes a language L. There exists a
PRA without end-markers, which recognizes the same language.

Proof. Consider a #-PRA which recognizes a language L with interval (ay, as).
Using Lemma 2, we choose ¢, 0 < € < 22121, and construct an automaton A’
which recognizes L with interval (ay,as), with the following properties.

Having read #, A’ simulates Aj,..., Al _, with probabilities pj,...,pl,_1,

respectively. A, ..., Al _, are automata without end-markers. A% accepts w with
probability p; . f w € L, p , + ) o+ + Py, > B2 Otherwise, if w ¢ L,

alm

p6,w +p,1,w +... +p£n—1,w < 1—e "

That also implies that for every n = km, k € INT, we are able to construct
a #-PRA A which recognizes L with interval (a1, as), such that

a’) fwe La Pow T Plwt+ .o+ Pro1w > %;

b) if w ¢ L, DPo,w +p1,w + ... +pn71,w < (111,1::
A simulates Ay, ..., A,_1. Let us consider the system F,, = (Ao, ..., Ap_1). Let
§ = (a1 + ay). Since e < =4 @2 > § and {2 < 4. As in the proof of
Theorem 1, we define that the system accepts a word, if more than nd automata
in the system accept the word.

Let us take 7o, such that 0 < no < 1% — 40 < ¢ — ;. Consider w € L.

n—1
We have that Z Piw > 15; > nd. As a result of reading w, y;; automata in
=0
the system accept the word, and the rest reject it. The system has accepted the
n—1
§ < L3 piw— 0, we have
=0

word, 1f”" > J. Since 0 < o < 1% —

n—1
o My 1
P - — ; .

{ " >(5} { n nzpz,w <770} (3)

=0

w n—1
If we look on ”—7? as a random variable X, E(X) = % > piw and variance
n—1 -
V(X) = 711—2 Diw(l — piw), therefore Chebyshev’s inequality yields the fol-
=0
e n—1 n—1
lowing: P{ T" % 3 Piw| > 770} < e > piw(l — piw) That is
i=0 i=0
w n—1
equivalent to P{ #T" — % 3 piw| < 770} >1-— W So, taking into account
i=0
3. )

P 1
P{2>6>1— . 4
{ n” }_ g @



n—1
On the other hand, consider £ ¢ L. So ) pi¢ < {£2 < nd. Again, since
=0

n—1
0<mo<6—1% <d—2 % pi,
=0

P u€ 1) P ug 1n5_1 ! 5
n < n_ . > <
{ n - } = n n i:()pl,ﬁ =M r = dnmg (5)

The constant 79 does not depend on n and n may be chosen sufficiently
large. Therefore, by (4) and (5), the system F}, recognizes L with bounded error,
ifn > ﬁ

It is possible to construct a single PRA without end-markers, which simulates

the system F),, and therefore recognizes the language L. O
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Abstract

We use tools from the algebraic theory of automata to investigate the
class of languages recognized by three models of Quantum Finite Automata
(QFA): Kondacs and Watrous’ 1-way model, Brodsky and Pippenger’s end-
decisive model, and a new QFA model whose definition is motivated by imple-
mentations of quantum computers using nucleo-magnetic resonance (NMR).
In particular, we are interested in the new model since nucleo-magnetic res-
onance was used to construct the most powerful physical quantum machine
to date. We give a complete characterization of the languages recognized by
the new model and the Brodsky-Pippenger model, and for Kondacs-Watrous
we make significant progress. Along the way, we also characterize the lan-
guages recognized by Golovkins and Kravtcev’s recently introduced model
of reversible probabilistic automata. Our results show a striking similarity
in the class of languages recognized by the end-decisive QFAs and the new
model, even though these machines are very different on the surface.

1 Introduction

In the classical theory of finite automata, it is unanimously recognized that the
algebraic point of view is an essential ingredient in understanding and classify-
ing computations that can be realized by finite state machines, i.e. the regular
languages. It is well known that to each regular language L can be associated a
canonical finite monoid M (L) and unsurprisingly the algebraic structure of this
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monoid strongly characterizes the combinatorial properties of the correspond-
ing languages. The theory of pseudo-varieties of Eilenberg (which in this paper
will be called M-varieties for short) provides an elegant abstract framework in
which these correspondences between monoids and languages can be uniformly
discussed.

Finite automata are a natural model for classical computing with finite mem-
ory, and likewise quantum finite automata are a natural model for quantum com-
puters that have few resources apart from the quantum aspect. Quantum com-
puting’s more general model of quantum circuits gives us an upper bound on
the capability of quantum machines, but the fact that several years have passed
without the construction of such a machine (despite the efforts of many scien-
tists) suggests that the first quantum machines are not going to be unrestricted
in this way. Thus it is not only interesting but practical to study simpler models
alongside of the more general quantum circuit model.

There are several models of quantum finite automata [16, 14, 7, 5, 8] which
differ in what quantum measurements are allowed. The most general model [§]
allows any sequence of unitary transformations and measurements. The class
of languages recognized by this model is all regular languages. In contrast, the
model of [16] allows unitary transformations but only one measurement at the
end of computation. The power of QFAs is then equal to that of permutation
automata [16, 7] (i.e. they recognize exactly group languages). In intermediate
models [14, 7, 5], more than one measurement is allowed but the form of those
measurements is restricted. The power of those models is between [16] and [8]
but has not been characterized exactly, despite considerable effort [4, 2]. The
most general model of QFAs describes what is achievable in principle according
to laws of quantum mechanics while some of more restricted models correspond
to what is actually achieved by current implementations of quantum computers.

In view of the enduring success of the algebraic approach to analyze classical
finite state devices, it is natural to ask if the framework can be used in the
quantum context as well. The work that we present here answers the question in
the affirmative. We will analyze three models of quantum finite automata: the
models of [14] and [7] and a new model that models nucleo-magnetic resonance
(NMR) quantum computing. Among various physical systems used to implement
quantum computing, liquid state NMR has been the most successful so far, with
quantum computers with up to 7 quantum bits [23]. Liquid state NMR imposes
restrictions of what measurements can be performed. We introduce and study a
model of quantum automata corresponding to this type of measurements.

In two of the three cases (the model of [7] and the new NMR model) we are
able to provide a complete algebraic characterization for the languages that these
models can recognize. It turns out that the class of languages recognized by these
two models coincide almost exactly (up to Boolean combinations), which is quite
surprising considering the differences between the two models (for example, the
NMR model allows mixed states while the [7] model does not). For the [14] case,



our investigation is still incomplete and we propose a conjecture, again algebraic
in nature, to describe the computations that can be realized. It is a pleasant
fact that the M-varieties that turn up in analyzing quantum finite automata are
natural ones that have been extensively studied by algebraists.

Besides using algebra, our arguments are also based on providing new con-
structions to enlarge the class of languages previously known to be recogniz-
able in these models, as well as proving new impossibility results using subspace
techniques (as developed in [4]), information theory (as developed in [17]), and
quantum Markov chains (as developed in [3]). In particular, we show that the
Brodsky-Pippenger model cannot recognize the language aX*, and that our new
quantum model cannot recognize aX* or ¥*a.

The paper is organized as follows. In Section 2 we give an introduction to the
algebraic theory of automata and we define the models. In successive sections we
present results on each of the three models we introduced, and in the last section
we outline some open problems.

2 Preliminaries

2.1 Algebraic Theory of Automata

The key link between languages and monoids comes from the following definition.
Let M be a finite monoid, i.e. a finite set equipped with a binary associative
operation that admits a 2-sided identity element, and let L C ¥* be a language;
M recognizes L iff there exist a homomorphism ¢ : ¥* — M and a subset F C M
such that L = ¢ '(F). An easy consequence of Kleene’s theorem is that L is
regular iff it can be recognized by some finite monoid M. Moreover it can be shown
that for any regular language L there is a unique monoid M (L) that recognizes
it and that has cardinality smaller than any other monoid with that property;
M(L) is called the syntactic monoid of L and can be computed effectively from
the minimal automaton for L.

The natural unit of classification for finite monoids is the variety.

An M-variety V is a class of finite monoids satisfying the following conditions:

e if S € V and T is a submonoid of S then T' € V;
e if Se€Vand p:S5 — T is a surjective homomorphism then T' € V; and
eifSeVandT €V then SxT €V.

Given an M-variety V, to each finite alphabet ¥* we associate the class of regular
languages V(¥*) ={L CX*: M(L) € V}.

It can be shown that V(3*) is a Boolean algebra closed under quotients,
ie. if L € V(¥*) then u 'Lv~! = {z : uzv € L} € V(X*). Furthermore, if
L € V(X*) and ¢ : B* — %* is a homomorphism then ¢~!(L) € V(B*). Any
class of languages satisfying the above closure properties is called a *-variety of



languages. It is known that there exists a 1-1 correspondence between M-varieties
and #-varieties of languages and a driving theme in automata theory has been to
find explicit instantiations of this abstract correspondence.

Example 1- Simon [22]: On a finite monoid M, define the equivalence J by
sJt it MsM = MtM. M is J-trivial iff J is the the equality relation. The
class J = {M : M is J-trivial} form an M-variety. A difficult theorem shows
that M(L) € J iff L is a finite Boolean combination of languages of the form
Y*a1X*asg ... apX*, where each a; is in X.

Example 2 — Eilenberg X.3 [9]: On a finite monoid M, define the equivalence
R by sRt iff sM = tM. M is R-trivial iff R is the equality relation. The class
R ={M : M is R-trivial} forms an M-variety. One can show (rather easily) that
M(L) € R iff L is a finite disjoint union of languages of the form 3ja; ... a3},
where 3; C ¥ and a; € X\%;.

Example 3: It is easily verified that the class G of finite groups forms an M-
variety. No satisfactory description of the languages recognized by groups (the
so-called group languages) is known; the difficulty is in understanding the com-
binatorics of simple nonabelian groups.

Example 4: Several operations are commonly used to manufacture new varieties
from old ones. A classical example is the wreath product operation, denoted by x*.
We will not need the explicit definition of this operation, but only the following
two specific cases.

4. a) The M-varieties J and G are combined to yield the M-variety J * G. For
any L, M(L) € J* G iff L is a Boolean combination of languages of the form
Loai Ly ...apL; where a; € A and each L; is a group language. Alternatively it
can be shown that the x-variety of languages corresponding to J « G is the largest
one that does not contain ¥X*a nor aA* for arbitrary alphabets ¥. This M-variety
is particularly ubiquitous; it shows up naturally in topological analysis of lan-
guages [19], in questions related to non-associative algebras [6], and in constraint
satisfaction problems [13].

Because of the cancellative law in groups, This class of languages can also
be defined by requesting w € L iff w = wgaiw; ...agwg where for each 1,
woaiwy ... w; € L; for some prespecified group languages Lo, ..., Lg.

4. b) The M-varieties R and G can also be combined to yield the M-variety
R x G. The x-variety of languages that corresponds to R+ G can be characterized
by the fact that it is the largest one not containing >*a for arbitrary >, where
4] > 2.

Membership in R * G is decidable; a monoid M is in R * G iff for all e = e?,
f=/f%in M, Me = Mf implies e = f. Membership in J * G is also decidable; a
monoid M isin J * G iff M € R * G and M® (the reversal of M) is in R * G as
well.



2.2 Models

We adopt the following conventions. Unless otherwise stated, for any machine M
where these symbols are defined, () is the set of classical states, ¥ is the input
alphabet, go is the initial state, and Quec € Q (Qrej C Q) are accepting (rejecting)
states. If Qqec and Qre; are defined then we require Quec N Qrej = (0. Also, each
model in this paper uses distinct start and endmarkers, ¢ and $ respectively. On
input w, M processes the characters of ¢w$ from left to right.

Let |Q] = m. For all QFA in this paper, the state of the machine M is a
superposition of the n classical states. A superposition is a linear combination
> 7€ @ilis where a; € C is the amplitude with which M is in the classical state
i, and we require Y |o;|? = 1.

Superpositions are often given as a vector in C". We fix some unitary basis
for C" and to each basis element we associate a g € (), which we now denote |g).
Now the superposition above can be written as the vector ) 4e0 a;lg;). We now
require each such vector to have an lo norm of 1, where the ls norm || Y a;|g;)||2
of > a|q;) is /Y |a;[?. When C" is equipped with the ls norm it is called a
Hilbert space.

A transformation of a superposition is a linear transformation with respect
to a unitary matrix. A € C"*" is called unitary if A* = A~!, where A* is the
Hermitian conjugate of A and is obtained by taking the conjugate of every el-
ement in A”. Unitary transformations preserve the I, norm when applied to a
vector, and the product of two unitary matrices is also unitary. A measurement
of a superposition 1) is a projection into one of j disjoint subspaces Fy @ --- @ E;
spanning C", each with probability || P;9||%, where P; is a projection operator for
FE;. These subspaces usually correspond to subsets of ). For Qgu.., we define
E4ce = span{Qacc} and Py to be an operator that projects a state vector onto
Eoce (we likewise define E,¢j, Prej, Enon, and Ppep). A set {Ag} of transforma-
tions is defined for each machine, one for each o € ¥ U {¢, $}.

We will consider two modes of acceptance. For a probabilistic machine M, we
say that M recognizes L with bounded (two-sided) error if M accepts any w € L
and rejects any w ¢ L with probability at least p, where p > % We say that M
recognizes L with bounded positive one-sided error if any w € L is accepted with
probability p > 0 and any w € L is rejected with probability 1.

Kondacs-Watrous QFA (KWQFA). One-way QFA were introduced in [14].
A KWQFA is defined by a tuple M = (Q,%,{As}, g0, Qaccs Qrej) where each A,
is unitary. We additionally define Qpnon = Q\(Qacec U Qrej)-

Let 1) be the current state of M. On input o the state becomes 1)’ = A, and
then ¢ is measured w.r.t. Egec @ Erej ® Epop. If after the measurement the state
is in Eyee or Eypej, M halts and accepts or rejects accordingly. Otherwise, 9’ was
projected into E,,, and we continue. We require that after reading $ the state is
in F,,, with probability 0. The acceptance mode for KWQFA is bounded error.

Brodsky-Pippenger QFA (BPQFA). A special case of KWQFA called ‘end-



decisive with positive one-sided error’ (we abbreviate this to BPQFA), was con-
sidered in [7]. A BPQFA M is a variant of of KWQFA where M is not permitted
to halt in an accepting state until the $ is read, and the acceptance mode is
bounded positive one-sided error. Given a BPQFA M recognizing L we can con-
struct KWQFA M’ recognizing L [7].

Probabilistic Reversible Automata (PRA). Golovkins and Kravtsev [11]
introduced a restriction on classical probabilistic automata called ‘1-way prob-
abilistic reversible C-automata’ (we abbreviate this to PRA). A PRA M =
(Q,2,{As}, q0, Qace), where each A, is a doubly stochastic matrix. A matrix
is doubly stochastic if the elements in each row and each column sum up to 1.
The acceptance mode for PRA is bounded error.

NMR: Liquid state NMR is the technique used to implement quantum comput-
ing on 7 quantum bits [23]. NMR uses nuclei of atoms as quantum bits, and the
state of the machine is a molecule in which 7 different atoms can be individually
adressed. One of features of NMR is that quantum transformations are simulta-
neously applied to a liquid containing 10?! molecules. Thus, we have the same
quantum computation carried out by 10! identical quantum computers.

Applying a measurement is problematic, however. On different molecules, the
measurement can have a different result. Because of that, a sequence of operations
‘Measure the first quantum bit. Then, if it is 1, apply transformation U’ becomes
impossible. The measurement can result in 0 on some fraction of molecules, 1 on
the rest. We could determine the fraction of molecules that give 0, however we
cannot separate the molecules which gave result 0 and the molecules which gave
result 1. Thus, applying U conditional on the result is impossible. On the other
hand, measurements which do not affect the next transformation are allowed.
We can, for example, use measurements to steer a quantum state in the right
direction.

Based upon these restrictions, we define a new model of quantum automata,
in the next paragraph. We will see that it recognizes a class of languages that
is larger than one recognizable if just unitary transformations are allowed (the
latter is the model of [16] which recognizes only group languages).

Latvian QFA (LQFA). A LQFA is a tuple M = (Q, %2, {As},{Ps}, 90, Qace)
such that {A,} are unitary matrices, and {P,} are measurements (each P, is
defined as a set Ei,..., E; of orthogonal subspaces). We define Qrej = Q\Qacc
and we require that Ps is a measurement with respect to Fye. © Fyej.

Let 1 be the current state. On input input o, ¢’ = Ay is computed and
then measured with respect to P,. After processing the $, M will be in either
Eqcc or Ere; and so M accepts or rejects accordingly. The acceptance mode for
this machine is bounded error.

A superset of this model has been studied in [17, 5]. This model is presented
as QRA-M-C in the classification of reversible automata introduced in [11].



3 Results for BPQFA

In their paper, Brodsky and Pippenger gave a construction for recognizing lan-
guages of the form Y*a;X*as ... apX* with BPQFA. We were able to extend this
construction to recognize the language L defined by w € L iff w = woaiwy ... apwy
where for each i, woajw; ... w; € L; for some prespecified group language L;. In
fact, this extended construction essentially characterizes the power of BPQFA.

Closure properties. BPQFA are known to be closed under union, and intersec-
tion [7]. They are also closed under inverse homomorphisms, and word quotient
by the same argument given for KWQFA in [7].

Theorem 1 BPQFA can recognize the language L defined above.
Proof: In appendix. O

Theorem 2 BPQFA cannot recognize any language whose syntactic monoid lies

outside of J x G.
Proof: In appendix. O

Our results allow us to state a surprizing connection between the algebraic
theory of automata and quantum finite automatas:

Corollary 1 A language L is recognized by a monoid in the variety J « G if and
only if it is a Boolean combinations of languages recognized by BPQFA.

Note that we have to take Boolean closure since it is unknown whether this
model is closed under complement.

4 Kondacs-Watrous QFA (KWQFA)

As this was the first 1QFA to be introduced, the KWQFA model is the most
studied of all the QFA models. In our investigation, we used results from the
algebraic automata theory combined with our new BPQFA results to tighten both
the upper and lower bounds on the class of languages recognized by KWQFA. We
also found an upper bound for the class of the languages recognized by Boolean
combinations of KWQFA.

Closure properties: KWQFA are trivially closed under complement, since one
can always swap the accepting and rejecting states. They are closed under inverse
homomorphisms and word quotient [7]. However, they are not closed under union
or intersection [4].

Theorem 3 KWQFA recognize all languages whose syntactic monoid is in J+xG.



Proof: In Theorem 4.15 of [7] it is shown that a single KWQFA can recognize any
Boolean combination of BPQFA so long as they only put nonnegative amplitude
into the accept states. This is true of our construction in Theorem 1. O

Theorem 4 KWQFA recognize strictly more than the class of languages whose
syntactic monoid is in J x G.

Proof: Follows from Theorem 3 and the fact that KWQFA recognize a¥* [14].
O

Theorem 5 (Kondacs-Watrous) KWQFA cannot recognize ¥*a.

Theorem 6 KWQFA recognize strictly less than the class of languages whose
syntactic monoid is in R x G.

Proof: Containment within R x G follows from the results of Example 4b in
Section 2.1 and Theorem 5, and the closure properties. Inclusion is proper from
nonclosure under union. O

Corollary 2 If Ly, Ly are languages recognized by KWQFA such that L1 U Lo
(L1 N Ls) is not recognized by any KWQFA, then the syntactic monoid for one of
these languages must lie outside of J x G.

Our next result shows that even if we take Boolean combinations of KWQFA,
we cannot recognize any languages whose syntactic monoid is outside of R *x G.

Theorem 7 The language YX*a is not a Boolean combination of languages recog-
nized by KWQFA.

Proof: In appendix. O

Certainly the Boolean closure of the class of languages recognized by KWQFA
is strictly larger than the class of languages recognized by a single KWQFA. We
conjecture the following:

Conjecture: The class of languages that are Boolean combinations of languages
recognized by KWQFA are exactly those languages whose syntactic monoid is in
R x G.

5 PRA and Latvian QFA

The classical PRA model and the quantum LQFA model are related in the
following way: If M is a LQFA such that each P, measures with respect to

D,cq span{|q)} for every o in the input alphabet, then M can be simulated by
a PRA.



There is also a partial converse: a PRA can be simulated by a LQFA if each
A, of the PRA has a unitary prototype [11]. A matrix U = [u;;] is a unitary
prototype for S = [s;;] if for all 4,5: |u;j|> = s;;. If such a U exists, then the
PRA transformation S can be simulated on an LQFA by the transformation U
followed by a complete measurement. Doubly stochastic matrices which have
unitary prototypes are called unitary stochastic [15].

There exists doubly stochastic matrices that are not unitary stochastic, and
it not clear that the quantum states of an LQFA can be simulated by a PRA.
However, we have found that both models have ezactly the same power in terms
of language recognition; more specifically, they both recognize exactly those lan-
guages whose syntactic monoids are in J * G.

Closure properties. Both PRA and Latvian QFA are closed under union, in-
tersection, complement, inverse homomorphisms, and word quotient. The closure
properties for PRA were shown in [11], and we proved the closure properties for
LQFA in our investigation.

Theorem 8 If L is recognized by LQFA M with bounded error, then there exists
an LQFA recognizing L with probability 1 — ¢ for any € > 0.

Proof: In appendix. O
Theorem 9 L(QFAs are closed under union, intersection, and complement.
Proof: In appendix O

Theorem 10 LQFAs are closed under inverse homomorphisms and word quo-
tient.

Proof: In appendix. O

Theorem 11 Any languages recognized by a PRA has its syntactic monoid in
JxG.

Proof: In appendix. O

Theorem 12 Any languages recognized by an LQFA has its syntactic monoid in
JxG.

Proof: In appendix. O

Theorem 13 PRAs can recognize Y*a1%*aq ... apX™ with probability p for any
p<l1.

Proof: In appendix. O



Theorem 14 LQFAs can recognize YX*a13%as ... apX* with probability p for any
p <1

Proof: In appendix. O

Theorem 15 PRAs can recognize any language whose syntactic monoid is in
JxG.

Proof: In appendix. o

Theorem 16 LQFAs can recognize any language whose syntactic monoid is in
JxG.

Proof: In appendix. O

Theorem 17 LQFAs and PRAs recognize exactly the class of languages whose
syntactic monoid is in J x G.

Proof: Follows from Theorems 11, 12, 15, and 16. O

If we compare this characterization to the one obtained for BPQFA, we see
that BPQFA recognize almost exactly the same class of languages as LQFA, in
the sense that they are the same up to closure under complement.

Corollary 3 It is decidable if a languages can be recognized by an LQFA or a
PRA.

6 Future work

The biggest open problem with respect to QFAs is the complete characteriza-
tion of languages recognized by KWQFA. Algebraic tools have shown us that
the answer lies somewhere between J x G and R * G, and is possible that our
characterization can be pushed further. Another open problem is the closure of
BPQFA under complement.

KWQFA have the property that some languages are recognized with prob-
ability p but not p 4+ €, so another open problem with respect to KWQFA is a
characterization of languages recognized with probability p but not p + €. There
has been some work to characterize this behavior [2, 4], and we believe that
algebraic methods are powerful enough to answer this question.
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A  Proofs

When working with QFA, the tensor product ‘®’ is a very useful operation on
matrices. Let A, B be square matrices such that A = [a]; jeq1,..n) and B =
[bij]i jeq1,..,my- Then the tensor product of A and B is defined as:

a11B te alnB
A®B= Pt
amB -+ apB

In their seminal paper, Kondacs and Watrous introduced a method of an-
alyzing certain models of 1-way QFAs. We will use this technique here. Let
M = (Q,%,q0,{As}, Quce; Qrej) be a KWQFA or BPQFA. Let ¢ be an unnor-

malized state vector of M. We define V() = P, Aystp. Likewise for any word
w = w ... wy define Vy, (¢) =V, o---0V, . We can now present a useful lemma:

Lemma 1 (Ambainis, Kikusts, Valdats [/]) Let {z,y} C XT. There are sub-
spaces F1, By such that E,,, = F1 ® Ey and

o If 9 € By, then Vy(¢) € Ey and V() € Er and ||Vy(¢)|| = [[9| and
V@)1 = [l

o If 1 € Es, then for any € > 0, and for any word t € (x|y)* there exists a
word t1 € (x|y)* such that |Vi, (¥)|| < e.

In a BPQFA, V. (¢) completely describes the probabilistic behavior of M
when reading w while in state 1), since ||V, (1)||3 is the probability that M did
not halt before reading all of w, and H‘/‘ﬁ% is the state of M in the case that
M did not halt.

For KWQFA the situation is more complex, since this model is permitted
to accept or reject while reading w. So to completely describe the behavior
of a KWQFA M we must also keep separate track of the accepting/rejecting
probabilities. As in [14], define the total state (1y,pa,pr) of M after reading w
to be an element of YV = C x R x R such that 1,, is the unnormalized nonhalting
part of M after reading w, and p, and p, are the probabilities that M accepts or
rejects while reading w.

We can define the total state constructively. For any a € X, we define a
unitary operator T, : V — V as follows:

To (s paspr)) = (PronVa(¥), pa + ||Paccva('¢)||%, pr + ||Prejva('¢)||%)-

For any w € ¥*, we extend T into T}, by taking the composition of T, , ..., Ty,,
where each w; is the ith character of w.
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We define the difference of two total states termwise. We define the norm of
a total state to be:

(Ill2 + lpal + lpr])

||(1/}7pa7p7")”u = 5) .

So if {vy,v9} C V are such that ||v; — vo|| < €, then v; and vy differ in their
accepting and rejecting probabilities by at most 2¢. As ¢ — 0 the total states vy
and v2 become indistinguishable.

A.1 Proof of Theorem 1

Brodsky and Pippenger gave a construction to recognize ¥*a1¥*ay . .. a;p %" in [7].
We augment this construction so that it recognizes L. In order to keep the
notation consistent with the current paper, we present their construction here in
full with minor modifications.

The key to their construction is what they call a trigger chain. A trigger chain
recognizing aq,...,ay is constructed out of interleaved tuples of vertices, one for
each a; with ¢ > 2. A link in the chain is activated by the following transition:

1 1 1
2 2 2
T—=| L 0 —L
v
2 22

Whenever the middle element is 0 in a three-element vector, 1" has the following
effect:

r_(a,. B o B a p\'
T(a707/8) _<§+§7ﬁ_ﬁ75+_>

Thus if @ and § are positive reals, then T averages the amplitude between the
first and the third element, and places any excess amplitude into the middle state.
If @ = 3, then the trigger will have no effect. In the construction, the middle
state will correspond to a rejecting state and so its amplitude will always be 0 at
the beginning of every transition. Also define T; to be the matrix that acts as T
on states i, 2 + 1, and 7 + 2, and as the identity everywhere else.

Now a machine M = (Q, %, qo, {As}, Quces @rej) is constructed to recognize
Yra X . Y ap X using 2k + 3 states as follows:

Q = {q07"'7q2k+2}7
Qrej = {91,63,---,02k—3, Q2h+1,QP2k+2}>

Qacc = {Q2k~1}'

To simplify the construction of the transitions, we will define I,,, to be the

m X m identity matrix, and R = [ (1) é ]
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For each character o € X, we define A, = U, ... Uy, where for each ¢,

R
if+=0and a1 = o,
U — Lokt
7 TQZ'_4 if2§i§kanda1:a,
g3 otherwise.

2k 1

We define the initial transition A¢ such that Ag¢lgo) = > .7, Wkpi), and

finally we define Ag = F'Ty;_o, where:

Lg-1)®R
0 0 0 0 1
01 0 0 O
F= 00 0 10
001 0O
I 1000 0]

Here is an outline of the proof of correctness given in [7]. Initially, after reading
¢ the amplitude is distributed among the nonhalting states. When a; is read, the
amplitude of ¢y becomes 0 and M halts and rejects with small probability. If ao
is now read then states ¢o and g4 are averaged, causing a bounded decrease in
amplitude of ¢4. Inductively, there will be a bounded amount of amplitude in
the accepting state gox_1 if and only if aq, ... a; and the endmarker were read in
sequence. The I;_1) ® R submatrix serves to channel all the unused amplitude
into the rejecting states.

Now given M we construct M’ = (Q', %, g5, {As}, Queer @re;) to recognize L.
For all i let G; = M(L;). Also let ; : ¥* — G; and F; be such that goi_l(Fi) =L,
We can compose these groups into a single group G = G X - - - X G with identity
1=(1,1,...,1).

For the endmarkers, define Ay, = (A¢ ® I,) and Ag = (Ag ® I;;). For each
o € 3, we define A, = P,U.,,...,U,. Each U], is the matrix that acts as Uy;
on @ x {f} for each f € F;_; and as the identity everywhere else. Finally P, is
a permutation matrix such that P,|q, g) = |q,go) for all |q, g).

Proof of correctness: Note that the transition matrices are constructed so
that, after reading any partial input w, the state vector will be in the subspace
E = span{|q,1w) : ¢ € Q}.

The construction contains k+ 1 triggers. Brodsky and Pippenger showed that
if a series of such triggers are activated in sequence, then as the last trigger is
applied there will be a bounded amount of amplitude sent to the last trigger’s
middle state. For 1 <4 < k the ith trigger is activated when q; is read at the same
time that the current group element is in the set F;_;. When the right endmarker
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is read, the last trigger is activated. This places amplitude into (g2;_1,9) (where
g is the current group element) if and only if aq,...,a; are read in the correct
context in order. Finally, we accept only if the current group element g is in Fj,.
M’ rejects with probability 1 any word not in the language, and accepts any word
in the language with bounded probability, thus M’ recognizes L.

A.2 Proof of Theorem 2

First, BPQFA cannot recognize ¥*a, since KWQFA cannot recognize X*a [14]
and any language recognized by a BPQFA can be recognized by a KWQFA.

Next we show BPQFA cannot recognize aX*. Let M be any BPQFA that
accepts w € aX* with probability p > 0 and rejects w ¢ aX* with probability 1.
Let ¢ = V{(lq0)), and let b be some letter in X\{a}. As in Lemma 1, separate
the state space into two subspaces E; and Fo with respect to the words z = a
and y = b. Then we can rewrite i as 9 = 11 + 12, where ¢; € E;. We know that
l41|3 > p, since aX* contains arbitrarily long strings.

By the Lemma, for any ¢, if a is read first then there is some word t, such that
Vg, () = 1| < e (Likewise for b, ¢y, and ||V, (¢) — 41| < €). So for sufficiently
small e, an input string starting with a becomes indistinguishable from an input
string starting with . Thus M cannot recognize aX*.

Finally, these two results along with the results from Example 4a of 2.1 prove
the theorem.

A.3 Proof of Theorem 7

Our strategy is to generalize the proof for single KWQFAs given in [14]. First we
need a few lemmas.

Lemma 2 (Watrous, reported in Gruska [12]) If |u) and |v) are vectors such that
for a linear operator A, reals 0 < e <1 and pp > 0, ||A(u —v)||2 < € and ||v||2,
llull2, ||Aull2, ||Av|le are in [p,u + €), then there is a constant c¢ that does not
depend on e such that ||u — v||s < ce'/*.

The intuition for this Lemma is that if ||A(u — v)||2 is small, it would follow that
u and v are close.

Lemma 3 Let M,..., My be a finite set of KWQFAs. Also, for w € {a,b}* let
1/1551)0 = Vi (l0)), where Vi, corresponds to M;. Also let:

w(w, i) = inf{||¢$;1)uw,||2 cw' € {a, b}*} .
Then, for all €, there exists a w such that for all M; we have:

19 11z € [(w, ), p(w, i) + ).

16



Proof: Notice that for any w and i, we can find a w’ such that ||1/1¢ww,||2 is
arbitrarily close to p(w,4). Fix an e. We construct w iteratively on the number
of machines. Let w = wy ... wy, with w; € ¥* for all 4.

For the basis, we choose wy such that:

19 1l € [w(A 1), w(A, 1) +€).

Define w; = wy ... w; and let wg = X. So Ww; = w;—jw;. At step ¢ > 2, assume
that we have constructed w;_;. Next we choose w; such that:

i, o ll2 € [u(ibim, ), p(ibio1, ) +e).

We can iteratively construct w; in this fashion. Now for each machine i we
have:

(g, ) < 1S ll2 < 11950 Nl < p(tim1,0) + e < (g, i) +e.

It follows that:

15 1l2 € [, i), (i, i) +¢)  for alli.
So w = wy, satisfies the appropriate conditions and we are done. O

Proof of Theorem: Assume that {a,b}*a can be written as a Boolean combi-
nation of the languages Ly, ..., Lg, where each L; is recognized by the KWQFA
M; with bounded error. For each M;, let ¢8) be the unnormalized nonhalting
part of M; after reading w.

By Lemma 3 we can find a word w such that ||¢¢) ll2 € [p(w, i), u(w,i) + €)
for all M;. So for each machine and any 7,

(V) 9 all2 € [(w,0), (. i) +e),

where V} is defined for machine i. In general these could be different for each
machine, but it should be clear from the context which operator is to be used.

Now consider the following set of k-tuples of nonhalting states:

LV e (V) )1 € 27y

Each element of this set describes the nonhalting behavior of all the machines on
input word ¢wab’. But each (V} )]1/}¢wa has norm contained in [p(w, 1), u(w,i)+¢)
for all j, so all of these k-tuples reside in a closed space. Thus there exists m,n
such that, for all machines 7,

| (v, = (W )

< €.

‘2
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Now we can apply Lemma 2 to show that:

|48, - Vg, 1/4

<de
2
for some ¢’. From this inequality it follows that:

| T¢was (190)5 0,0) — Tewapes (|g0), 0,0)|| < e'/4

for each machine. So none of the machines can distinguish between wa and
wab™ with bounded error. But all of the machines recognize some language L;
with bounded error, so for each j it must be that either {wa,wab™} C L; or
{wa,wab™} C L;. We will show that this implies that either {wa,wab"} C L or
{wa, wab™} C L.

We proceed by induction on the length of the Boolean formula B. If B
contains just one language with no operators then we are done. Now there are
three inductive cases.

The first case is where B defining a language L is the complement of a Boolean
formula B, defining L,. By the inductive assumption, either {wa,wab™} C L =
Lo or {wa,wab"} C L = L.

The second case is where B = B, N By for Boolean formulas B, and Bg defin-
ing L, and Lg respectively. By the inductive assumption, either {wa, wab™} C L,
or {wa, wab"} C L, and likewise for By, so there are four possibilities. It is easy
to show that, in either case, we must have either {wa,wab”} C L, U Lg or
{wa, wab"} C L, ULg .

The last case is where B = B1UB5y. This case follows from the intersection and
complement cases, and we are done. Thus, we must have either {wa,wabd"} C L
or {wa,wab™} C L. But if L = {a,b}*a we must have wa € L and wab" ¢ L, a
contradiction.

A.4 Proof of Theorem 8

Proof (outline): As in the proof for PRA in [11], we note that we can boost
probability of recognition by running m trials of M on input w and then accepting
iff at least k of the trials end in acceptance. For appropriately chosen m and k,
the probability of recognition in this boosted strategy will be arbitrarily close
to 1. We can simulate these m trials using a single LQF A machine. From
M = (Q,%,q90,{As},{Pys}, Qucc), we construct a tensor product machine M’
such that the set of states are Q' = Q*, the initial state is (qo, ..., qo). For each &
the transition matrix is A, = @;~, A, and the projections are similarly defined.
Finally we set Quce{(¢z1,---qz,) : [{qe; € Qacc}| > k}. This machine simulates m
trials of M as required.
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A.5 Proof of Theorem 9

For all these proofs, let M; and Ms be LQFA recognizing L, and Ly with proba-
bility p; > % and pg > %, respectively.

Latvian QFA are trivially closed under complement, since for any LQFA M
recognizing L, we can construct a machine L by swapping the accepting and
rejecting states of M.

Next we prove closure under union and intersection. W.l.o.g. assume p; > %
and py > %, and construct the tensor product M’ of M; and M5 as in Theorem 8,
but set Qb = {(¢i,45) : ¢ € Quace V ¢ € Q2,acc}- 1t is easy to check that M’
accepts any w € L U Ly with probability at least %, and accepts any w ¢ L1 U Ly
with probability at most % So M’ recognizes L1 U Ly with probability at least
%. Closure under intersection follows from closure under union and complement.

A.6 Proof of Theorem 10

First we show closure under inverse homomorphisms. Assume we have a sequence
of | unitaries U; on a space E, each of them followed by a measurement E;; &
P Ei k-

Define a new space E’ of dimension (dim E) - []; k;. It is spanned by states
lO)g1) .- |30), |) € E, j; € {0, ..., (ki-1)}. Each U; can be viewed as a transfor-
mation on E’ that acts on [¢) part of the state and leaves j; unchanged. (More
formally, transformation U on E corresponds to tensor product U @ I on E'.)

Replace the measurements by unitary transformations V; defined by

Vil)lan) - 1di) -+ 130y = Vilg)lgn) - [(Gi + ) mod ki) ... |ji)

for |¢) € Eij.
Then, performing Uy, Vi, ..., U, V; and then measuring all of ji, ..., j; is
“equivalent” to performing the sequence unitary-measurement-unitary-etc.
More precisely,

Claim 1 Consider a sequence of | unitaries and | measurements on E. Assume
that starting from |v), it produces a mized state such that M is in a classical
probability distribution (p;, |1;)) over a finite set of possible states, each |1);) with
probability i. Then, if we start |¢)|j1)...|j) and perform Uy, Vi, ..., Uy, V; and
then measure all of j1, ..., ji, the final state is |v;)|51) ... |4]) for some ji, ..., j,
with probability p;.

Thus, when we restrict to |1) part of the state, the two sequences of transfor-
mations are effectively equivalent. Finally, composing 2! transformations U; and
V; gives one unitary U and we get one unitary followed by one measurement.

Closure under word quotient follows from the closure under inverse homo-
morphisms and the presence of endmarkers. For example let L C ¥*. Define a
homomorphism A such that h(o) = o for all o € ¥ U {$} and h(¢) = ¢w. Then
w~'L = h~!(L), which is recognized by an LQFA. Right word quotient is similar.
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(*”) Construction (*’”) Construction

Figure 1: Forbidden constructions

A.7 Proof of Theorem 11

It has been shown that the constructions of Figure 1 cannot occur in the minimal
automaton of any language recognized by PRA.

The minimal automaton for ¥*a contains (*”), where ¢ = z and b = y. The
minimial automaton for aX* contains (*’), where a = z and b = y. Thus neither
of the languages are recognized by PRA, from which the results follows.

A.8 Mixed states, density matrices and CPSOs

This section provides definitions of some more advanced notions needed for the
proof of theorem 12 which we give in the next section. For more information, see
[18].

Mixed states: A mixed state is a classical probability distribution (p;, |1;)),
0<p; <1, ,pi =1 over quantum states |1;) (which will be called pure
states). The quantum system described by a mixed state is in the state |1);)
with probability p;.

Density matrices: A density matrix of a pure state |¢) is |[1){()|. A density
matrix of a mixed state is p = >, p;|1;)(1;|. We often identify the mixed
state with its density matrix.

Unitary transformations and measurements: Definitions of unitary trans-
formations and measurements extend naturally to mixed states. For exam-
ple, a unitary transformation U maps a mixed state (p;, [1;)) to (pi, U|1i)).

This can be described in terms of density matrices. If, before U, the system
was in a mixed state with a density matrix p, the state after the transfor-
mation is the mixed state with the density matrix UpUT.

If we measure a state with density matrix p with respect to F1 @ ... ® Ej,
the result is ¢ with probability TrP;p, T'r being trace of a matrix (sum of
its diagonal entries). The remaining state is P;pPF;.
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Completely positive superoperators: Transformations allowed by quantum
mechanics are various combinations of unitary transformations and mea-
surements. Any such transformation F has the following properties:

1. Let p be a density matrix and Ep be the density matrix of the state
which results if we apply E. p — Ep is a linear transformation on the
d?-dimensional space of d x d matrices.

2. F is trace-preserving: TrFEp = Trp.

3. Eis completely positive, i.e. for any additional space H', the transfor-
mation F ® I is a positive map on H ® H'.

A transformation satisfying those requirements is called a trace-preserving
CPSO (completely positive superoperator). Any trace-preserving CPSO
can be constructed from unitary transformations and measurements [18].
Therefore, these three properties can be taken as an alternative definition
of a 7transformation permitted by quantum mechanics”.

Kraus decomposition: Any trace-preserving CPSO A can be represented by k&
matrices Ay, ..., Ag such that Zle AZ-AI = [ and, for Ap = Zle AZ-,OA;r
for any p.

A.9 Proof of Theorem 12

Again it is sufficient to show that LQFA cannot recognize aX* or ¥X*a. First,
one can see that >*a is not recognized since LQFA are a special case of Nayak’s
Enhanced QFA [17], where the transition at every step consists of exactly one
unitary transformation followed by exactly one measurement. Nayak showed
that X*a cannot recognized by EQFA, from which the results follows.

Now we show that LQFA cannot recognize a>*. We start with a proof outline.
During this outline, we will state 3 lemmas (Lemmas 5, 6, 7) and prove the
theorem, assuming these lemmas. Then, we will prove the lemmas.

Let E be a sequence Uy, Py, Uy, Ps, ..., U, P, with U; being unitary trans-
formations and P; being measurements (for example, F could be the unitary
transformation + measurement corresponding to reading a letter or it could be
a sequence of unitaries and measurements corresponding to reading a word). We
view E as one operation mapping (mixed) quantum state p to (mixed) quantum
state Ep. E is a particular case of CPSO (completely positive superoperator).

In our case, we have an additional constraint on E. Not every CPSO can be

represented as a sequence Uy, P, Uy, P, ..., U;, P,. For example, a mapping
that replaces any quantum state by a fixed state (say, |0)) is a CPSO. However, it
cannot be represented as a sequence Uy, Py, Us, Py, ..., U, P, (and is not allowed

in NMR implementations of quantum computing as well). This constraint is
nicely captured by a quantity called Shannon entropy. (The Shannon entropy is
defined as — ), \;logy A;, with \; being the eigenvalues of p. For this proof, three
properties of S are sufficient. These properties are given by Lemmas 4, 8, 9.)
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Lemma 4 [5] Let E be a sequence Uy, P, Us, Ps, ..., Uy, P, with U; being
unitary transformations and P; being measurements. Then, for any p, S(Ep) >

S(p).-

From this moment, we assume that the transformation corresponding to each
letter z is a CPSO E with the property that S(Ep) > S(p).

We study the effect of repeatedly applying F to a (mixed) quantum state p.
We would like to study the sequence p, Ep, E?p, .... However, this sequence
might not converge (for example, if E is a unitary transformation

10
7=(0h)

this sequence is periodic with period 2). To avoid this problem, define E’ as an
operation consisting of applying E with probability 1/2 and applying identity
otherwise.

Note 1. This is similar to making a periodic Markov chain aperiodic by
adding self-loops.

Note 2. A similar periodicity problem comes up in quantum walks [3]. There,
it is solved by a different approach (Cesaro limit). We think our approach (in-
troducing E') gives results that are similar to Cesaro limit. In this paper, we
choose to introduce E’ instead of using Cesaro limits because this seems to make
analysis of our problem simpler.

Lemma 5 1. For any CPSO E such that S(Ep) > p and any mized state p,
the sequence E'p, (E')?p, ..., (E')'p, ... converges.

2. Let Eyy, be the map p — Ep. Then, Ej;p, is a CPSO and S(Eymp) > S(p)
for any density matriz p.

Lemma 6 Let A, B be two sequences of unitary transformations and measure-
ments. Let C = Ay Blim and D = Bl Aim- Then, Clim = Diim,.

Assume that we are given an LQFA M. We show that M does not recognize
the language a3*.

Let A, B be the transformations corresponding to reading letters a, b. We
also consider Alima Blim, C = AlimBlim, D = BlimAlim, Clz'm and Dlim-

Intuitively, Ay, (Bpim) corresponds to reading a long sequence of letters a
(b), with the length being a random variable. Cj;,, (D) corresponds to a long
sequence of a’ and b’ alternating with a’ at the beginning (b’ at the beginning) If
QFA is correct, it must accept if Cj;, is applied to the starting state and reject if
Dy is applied. However, by lemma, 6, Cj;,,, = Dy, which causes a contradiction.

More formally, let p, be the (mixed) state after reading the word x. We
consider two sets of mixed states @), and Q. @, consists of all probabilistic
combinations of states p,,. @y consists of all probabilistic combinations of states
pbe- Let Qq, Qp be closures of Q, and Qy.
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Lemma 7 Let p be the state after reading the left endmarker. Then, Climp € Qq
and Diimp € Qp-

We consider applying the right endmarker and the final measurement to the
state Clymp = Dymp. This state belongs to Q,. Therefore, it is a limit of a
sequence p1, p2, ... with each p; being a probabilistic combination of final states
of M on words which belong to aX*. If M accepts aX*, applying the right
endmarker and the final measurement to any such p; must cause acceptance with
probability at least p. Therefore, M must accept with probability at least p. On
the other hand, since Clyp = Djimp also belongs to Qp, M must reject with
probability at least p as well. This is a contradiction, proving that M does not
recognize aX*.

To prove the theorem, it remains to prove Lemmas 5, 6 and 7.

Proof: [Lemma 5] Let H(p) = —plogyp — (1 — p)logy(1 — p) be the usual von
Neumann entropy and S(p) be Shannon entropy of a mixed quantum state p.

Lemma 8 [5] Let 19, 71 be two density matrices and T = %7’0 + %7‘1. If there is
a measurement that, given T;, outputs i correctly with probability at least p, then

S(7) 2 5(8(r) + 5(r)) +1 - Hp).

Lemma 9 [5] For any mized state p in d dimensions, S(p) < logyd, with the
equality if and only if p is a d-dimensional completely mized state.

We also need the following simple property.
Lemma 10 1 — H(p) < 2|p — | for all p € [0,1].

Proof: The function f(p) =1 — H(p) is concave in the interval [0,1]. (This can
be verified by taking the second derivative of f(p).) Also, f(0) = f(1) = 1 and
f(3) = 0. Therefore, for all p € [0, 3], f(p) < (1 —2p)f(0)+2pf(3) = 1—2p and,
for all p € [5,1], f(p) < (2-2p)f(3) +(2p— 1) f(1) =2p—1. O

Let pg be the initial state and p;11 = E’p; be the sequence we are studying.
Notice that E'p; is a probabilistic combination of Ep; and p; with probabilities
% each. Let p; be the probability with which we can distinguish 79 = p; from
71 = Ep;.

Proposition 1 S(p;j+1) > S(pi) +1 — H(ps).

Proof: By Lemma 8,

(S(pi) + S(Ep;i)) +1 — H(p;).

N | =

S(pit1) >

We also have S(Ep;) > S(p;) which implies the claim. O
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Consider the sequence of numbers s; = S(p;). By Proposition 1, this is an
non-decreasing sequence. By Lemma 9, this sequence is bounded from above by
log, d. Therefore, it converges to a value syp,.

Let ng be such that s, —sp, < €. Proposition 1 implies Zn>n0 1-H(p,) <e.
By Lemma 10, 3,5, |pn — 3| < 2e.

Proposition 2 Let 19, 71 be mized states. Then, there is a measurement that,
given a state T;, answers i with probability at least %—i— M, where ||||¢ is the
trace norm on density matrices.

Proof: By the relationship between trace distance and distinguishability [10, 18],

there is a measurement that answers 0 with probability p + w on pg and

probability p — M on p; for some p which might not be equal to 1/2. Take a
strategy that with probability p/2 answers 1, with probability (1 — p)/2 answers
0 and with probability 1/2 performs the above measurement. O

Therefore, 3, <, |lon+1 — pnlls < 8ke. Since this is true for any € > 0, the
sequence p, converges. This proves the first part of lemma 5.

To see the second part, notice that the limit of a sequence of linear maps on
d X d matrices is a linear map on d X d matrices. Furthermore, if each map is
trace-preserving, the limit is trace preserving. We also need S(Eym,p) > S(p).
This follows from S(p) < S(E'p) < S((E")?p) < ... and S being continous. O
Proof: [Lemma 6]

Proposition 3 For a mized state p, Ciimp = p if and only if Dymp = p.

Proof: It suffices to prove that Cj,p = p implies Dyp = p because both
directions are similar.

Climp = p implies Cp = p (otherwise, by Lemma 8, S(C'p) > S(p) and, since
S((C")'p) > S(C'p) (Lemma 4), we have S(Ciimp) > S(p) and Climp # Chp.

We can rewrite Cp = p as ApmBiimp = p. Definition of By, implies that
Byjim = BjimB'. Therefore, Ay, BiimB'p = p. Similarly to previous paragraph,
this implies S(B'p) = S(p) and Bp = p. Therefore, B'p = p, Bymp = p and
Atimp = Atim Blimp = p-

This implies Dp = Bjim Aiimp = Biimp = p and Dyjpp = p. O

Proposition 4 Let A be an arbitrary CPSO. Assume that p is such that Ap = p.
Let H be the support of p (subspace spanned by pure states from which p consists).
Then A(H) C H.

Proof: For a contradiction, assume that p’ is a state in H which is not mapped

to H by A. We can represent p as a probabilistic combination ep’ + (1 — €)p”

where p” is some other density matrix. This implies that p is not mapped to H

either and p # Ap. a
We now use these two claims to show that, for any p, Ciipmp = Dimp-
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Let pgig = Climp — Diimp. We would like to show that pgiz = 0. Ciipp is
fixed by Cj;, and, by Proposition 3, by Dy, as well. Similarly, Dy,p is fixed
by both Dy;,, and Cy;,,. Therefore, the difference of these two density matrices is
fixed by both C and D as well: Climpdiff = Dlimpdiﬁ = Pdiff -

We decompose pgip = p+—p—, with p; being the state formed by eigenvectors
of pgi with positive eigenvalues and p_ being the state formed by eigenvectors
with negative eigenvalues. Then, we must have Cjppyr = Djymp+ = p+. and
Climp— = Diimp— = p—.

Let H, and H_ be the subspaces spanned by states forming p.. By Propo-
sition 4, H, and H_ are fixed by Cj;, and Dyjp,.

We consider a measurement which measures a state p with respect to H; and
its complement. The probability of obtaining H is equal to T'r Py, p where Py
is a projection to Hy and T'r is the trace of a matrix.

Proposition 5 Let E be a CPSO such that S(Ep) > S(p). Let H be such that
E(H) C H. Then, for any p, TrPyp = TrPyEp.

Proof: First, we show that E(H) C H implies E(H*) C H+. To see that, let
[41), ..., |1k) be a basis for H and let |¢]), ..., |¢]) be a basis for H-. Let p;
be the mixed state that is |1;) i € {1,...,k} with probability 1. Let ps be the
mixed state that is [¢]) ¢ € {1,...,1} with probability % Let p = kLle + k%_lpg.
Then, S(p1) = logy k and S(p) = log,(k +1). By Lemma 4, S(Ep1) > log, k and
S(Ep) > logy(k +1). By Lemma 9, this means Fp; = p; and Ep = p. Therefore,
E(p2) = E(p — p1) = p— p1 = po. By Proposition 4, this means that H* is fixed
by E.

Next, we show T'r Pyp = Tr Py Ep for any p. It suffices to show this for pure

states p = [)(y]. We write [¢) = valy1) + VI —al), [41) € H, |y2) € H.
Then, the density matrix of |1} is

[P) (] = apr + (1 — a)p2 + Va(l — a)ps,

p1 = |P1) (1], p2 = [1h2) (9],

p3 = |1) (2| + [h2) (9],

Prrp = aly1) (31| and TrPgp = a. Since H and H+ are mapped to themselves by
E, the states p; and po are mapped to mixed states in H and Ht. To complete
the proof, it suffices to show that TrPyps = 0.

Let Ay, ..., Ay, be Kraus decomposition of E. Consider the state E(|1)1){11]).
We have

E(n)shil) = > Ailpn)(gpr 4]
=1
Remember that E maps H to itself. This is only possible if all A;|i) are in H.
Similarly, A;|¢9) € HL. Therefore, Eps is a sum of |$)(¢|, with one of |¢) and
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|¢’) in H and the other in H'. For each such matrix, Tr P |¢)|¢') = 0. Therefore,
TrPyps = 0. Od
By this proposition, TrPry, Ciymp = TrPry p = TrPry, Dyyp. This im-
plies
Trpy = TrPry, paig = TrPra, (Climp — Diimp) = 0.

By definition, p, is the part of pgr with positive eigenvalues. Therefore, Trp, =
0 iff p1 = 0. Similarly, p_ = 0 and we get pgigy = 0 and Clipp = Diimp. O
Proof: [Lemma 7]

Proposition 6 A(Q.) C Qu; B(Qa) € Qu; A(Qs) € Qp; B(Qs) C Qs

Proof: A maps pu; t0 pezq. Therefore, a probabilistic combination of states pgy
gets mapped to a probabilistic combination of states pgz, and A(Q,) C Q4. This
implies A(Q,) C A(Qq) C Q4. Other inclusions are similar. |

EOpOSition 7 Allm(@) - @; Alzm(@) - @; Blim(@) - @; Blzm(@) c
Qb;

Proof: Since A(Qq) C Qg and ziis a probabilistic combination of A and identity,
A'(Qq) C Qq. Therefore, (A (Qu) C Qu. Ay is the limit of (A")?. Since Q, is
closed, A (Qq) € Qq. Again, other inclusions are similar. m]

Proposition 8 Let p be the state of M after reading the left endmarker. Then,
pa = Alimp € Qo and pp = Bimp € Q.

Proof: It suffices to prove the first part. Let p; = (A')’p. This state is a
probabilistic combination of A7p, for j € {0,...,i}. All of those, except for
A% = p are in Q,. Therefore, (A')'p = =p+ (1 = %)pl, p € Qq.

Let pa = lim;_,o p;- Then, pa = lim;_, pl. Since pl € Q,, we have ps € Qq-
a

Furthermore, by Proposition 7, Cp = BjimAtimp = Blimpa € Qa. By applying
Proposition 7 repeatedly, we get C'p = (BiimAiim)'p € Qq. The closure of Q,
gives us Clmp € Qq. Similarly, from pp € Qp, we get Dp € Qp and then
Diimp € Qo U

A.10 Proof of Theorem 13
We start by solving a slightly simpler problem:

Lemma 11 PRAs can recognize Y*a13* with probability p for any p < 1.

Proof: The idea is to simulate the Markov chain with the following transition
function: for all ¢; and ¢;, at each timestep we move from state ¢; to state g;
with probability % This transition function can be simulated by a PRA using
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the n x n unitary stochastic matrix 11 (where 1 is a square matrix of all ones)
as a transition matrix.

Choose the set of states @ = {qo0,q2--.,qn} so that n > ( nE The start state
is qo and the accepting states are Q\{qo}. Let A, be the transition matrix for
input character o. We define A,, = 11 and A, = I for all o € X\{a1}.

It is easy to see the behavior of this PRA. If at least one « is read, then this
machine will accept with probability (n— 1). If no a; is read, then this machine
will reject with probability 1. Thus thls machine will correctly recognize input
words with probability ("n;l) |

Proof of Theorem: Let a = aq,...,a; be the subword in question. We give
a construction that recognizes a Wlth probability (2= 1) , where n is any natural
number.

Choose an appropriate n. We construct our PRA inductively on the length
of the subword. For £ = 1 we use the construction from Lemma 11. Call this
machine M) = (QW, ¢o, %, {Ag,l)}, Qg?c) This machine contains (n—1) accepting
states and recognizes X*aX* probability ”;1 Also define Q(O) = {q}

Assume we have a machine M1 = (Q1 ¢, = {A 1) } Qt(fccl ) such that
if M1 has read the subword at ... Q-1 then the total probability of being
in one of the states of Qalc' D s (2=1)"1, We construct a machine M @) =

n
(QW, ¢, %, {A “}aeg, Qacc) such that after reading aj . .. a; the total probability
of being in one of the states of Qacc with probability ( )Z.
Our augmentation will proceed as follows. First let Qacc be a set of (n — 1)
new states all distinct from QU1 and let Q) = Q-1 U Qacc For each of the

states q € Q((fc_cl ) we uniquely associate n — 1 states ¢o,...,q, € Qacc We leave
the start state unchanged.

All that remains is to define the A® matrices. We define AE,“ = Cgi)B((,i),
where:

° C,(Ti) acts as the transformation A,(fi_l) to the states of Q(H) and as the
identity everywhere else;

o B((,i) = I if 0 # a;, else for each ¢ € Q((ll;l), B((,i) works as %1 to the states
492,93, - - - ,qn and as the identity everywhere else.

Note that the matrices are applied from right to left. At the end we have a machine
M = M®) that recognizes ay,...,as. Also note that the transition matrices are
constructed in such a way that we cannot move from a state ¢ € Q2 to ¢’ € QW
in one step.

Lemma 12 Let w be any word. As we process the characters of w with M, for all
0 < i < k the total probability of being in one of the states of Q) is nondecreasing.
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Proof: Initially M is in Q) with probability 1 for all i (note that these
sets are embedded). For all 4 the only way to move out of QM is by applying

the matrix A and likewise the only way to move back into Q' is by applying
A

Qi1
Qi41*

We prove the Lemma by induction. For the basis we consider Q(®). The
transition matrix Ag, is such that if M is in a state of Q(¥) we move to a state of
Q\Q with probability 2=1. On the other hand if M was in a state of Q\Q(®) we
would move to QQy with probablhty +. Let a () be the total probability of being
in a state of Q) (Q\Q®) just before reading A,,. Then A; does not increase
the probability of being in state ¢o unless 5 > (n — 1)a, but this never occurs.
Therefore Q(¥) is nonincreasing.

For the inductive step we assume that Q~1 is nonincreasing and prove that
QW 1s nonincreasing. The only way to move out of Q¥ is by readlng a;11 while

in Qacc. and likewise the only way to move from a state of Q\Q to a state of
Q" is by reading a;1.

Recalling the construction of A for 4 > 1 it is sufficient to consider

QAj41
o)y«
AL = [ (Cs”) ; ] Agi i1

since the (C((,i)) part operates completely within Q¥ and by the assumption,
QU~Y is decreasing.

Accordmg to Al the probability of moving out while M is in Q,(fc)c reading

Ait1
a; is T and the probability of moving in if M is out of Q%) is at most % Noting
the inductive assumption we can apply the same argument as in the basis case.
a

Proof of correctness: It is not hard to see that M will reject any string that
does not contain the subword. We enter Q,(Llc)c for the first time only by reading
an a1. In general M enters a state from Q,(fc)c when reading ay only if we have
already read aq,...,ap-1. The set of accepting states is exactly Q((llz)c, so this is all
we need to show.

Next we show that we accept every word in the language. Let w be a word with
subword a. Then w can be written as woajwy . . . agwg, with w; € (X\{a;41})* for
all 1 < k and wy € X*. None of the transformations affect the state while reading
wg since the initial state is gy and this state can only be affected by reading
a1. When a; is read we will be in a state from Qacc with probability (n=1) " This
probability does not change as we read w; by Lemma 12 and the fact that wy does
not contain as by definition. After reading as we will be in Qacc with probability

(2= n=1)2 By the same reason, after reading a; we are in state Qacc with probablllty

> ("Tl) . In the end after reading woaiw; ... ax we are in a state from Qacc with

probability (”Tfl)k, and this will not decrease when reading wy by Lemma 12.
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Thus the machine will accept with probability at least(“-1)*. This probability
can be made arbitrarily large.

In summary, our construction rejects words not in the languages with proba-
bility 1, and accept strings in the language with arbitrarily large probability.

A.11 Proof of Theorem 14

It is sufficient to show that all of the transition matrices in Theorem 13 have
unitary prototypes, and thus they can be implemented by a Latvian QFA that
performs a complete measurement after every step. Note that %1 has a unitary
prototype. A construction is given below:

1 1 1 1
2mi 4mi 2m(n=1)i
1 en en e n
1 4dmi 8mi dm(n=1)i
X=—11 en en ceee n
NG
27 (n=1)i 47 (n-1)i 27 (n=1)%i
1 e = e n ceeoe n

Observe that any block diagonal matrix such that all of the blocks are unitary
prototypes is itself a unitary prototype. also note that unitary prototypes are
trivially closed under permutations. Let A, be any of the transition matrices from
Theorem 13. Reorder the states so that all of the states that communicate with
each other are adjacent. This forms a block diagonal matrix, thus for all of the
transition matrices it is sufficient to consider each set of states that communicate
with each other.

If o does not occur in a, then A, = I trivially has a unitary prototype. If
there is no two consecutive characters in a that equal o, then all of the blocks
of A, contains either 11 or the 1 x 1 matrix [1]. and so again A, has a unitary
prototype.

The only nontrivial case is when a series of j consecutive o characters occur in
a, w.l.o.g. say these characters are ai,...,ay. The corresponding block diagonal
element is a product of matrices D1 D5 --- Dy, where for all 1 < i < 5 D; applies
B((,Z) to the appropriate set of states.

Each D; is a block diagonal matrix such that each nontrivial block is a %1
matrix. According to the X*a1X*as...a;X* construction, each nontrivial block
in D; operates on one state of QU1 and n states of Q). We simulate each D;
by replacing each %1 submatrix with the construction given above, in such a way
that the first row of the construction corresponds to the state of Q1. Call these
transformations D1, ..., D).

Now counsider D}, D). We show that D} D) is a unitary prototype for D1D,.
Assume w.l.o.g. that the first n states are the states of Q). Then

1y X
o=t o=
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Furthermore, Dy (and correspondingly DY) is constructed so that there is at most
one nonzero entry in the first n rows of each column, and D/, has only real values in
the first n rows. When we take the products we see that each d;; = ab for a,b € R,
and dj; = aff for « € R, § € C. Thus, dij = ab = |a*|8]> = |af|* = |d};]?, So
D\ D) i 1s a unitary prototype for DiDs by definition. In the same way it can be
shown that D] Dj - -- Dj is a unitary prototype for DDy - - Dy.

A.12 Proof of Theorem 15

It is sufficient to show that PRAs recognize the language L defined by w € L iff
w = wopajw . ..apw, where for each i, wgawy ... w; € L; for some prespecified
group languages L, ..., L;. For all i let G; = M (L;). Also let ¢; : ¥* — G; and
F; be such that go;l(Fl) = L;. As we did for BPQFA, We compose these groups
into a single group G = Gy x - -+ X Gy with identity 1 = (1,1,...,1).

Let M = (Q,qo,2,{As}, Qucc) be a PRA recognizing the subword a; ... ax as
in Theorem 13. From M we construct M' = (Q', ¢}, X, {AL}, Qh..) recognizing
L.

We set Q' = Q x G, ¢, = (q0,1), Qhee = Qace X Fi, and A¢g = Ag = I. For
each o € X define Al as follows. Let P, be the permutation matrix that maps
(g,9) to (q,go) for each ¢ € Q and g € G. For each 1 < i < k let Al be the
matrix that, for each f € F;_1, acts as the transformation B((,Z) on QW x {f} and
as the identity everywhere else. Finally, A = P,Al, ... Al .

The A/ are constructed so that M’ keeps track of the current group element
at every step. If M is in state (g,g), then after applying A],..., A} it remains
in @ x {g} with probability 1. The P, matrix ‘translates’ all of the transition
probabilities from @ x {g} to @ x {go}. Initially M is in @ x {1}, so after reading
any partial input w, M will be in @ x {lw} with probability 1. In this way M
will always keep track of the current group element.

Each A/ matrix refines A, from the X*a1X*as ... a;X* construction in such
a way that, on input o after reading w, we do not move from QU to QO (The
action performed by B((fz.)) unless 0 = a; and w € F;_;. This is exactly what we
need to recognize L.

Lemma 13 Let w be any word. As we process the characters of w in M, for
all 0 < i < k the total probability of being in one of the states of Q) x G is
nondecreasing.

Proof: Same argument as in Lemma 12 holds.

Proof of correctness: It is easy to see that M will reject any word not in L. We
do not move out of Q(®) x G unless we read a; in the correct context. Inductively,
we do not move into Q4. unless we have read each subword letter on the correct
context and the current state corresponds to a group element f € Fj.

30



Now consider the case where w € L. Rewrite w as wgaq - - - apwg. Now M
does not move out of Q(©) x G while reading wy. The character a; is now read,
and M moves to (Q) x G)\(Q® x G) with probability “~1. By the previous
Lemma, this probability does not decrease while reading wi. So now after reading
woaiw; we will be in Q((llc)c x G with probability ”Tfl If a9 is read we move to
Q® with probability (”T_l)2 By induction after reading wga; ... wg_1ar we
move to (Q*) x G)\(Q¥D x @) with total probability at least (=1)*. Finally,
after reading wy we move to Q.. with total probability at least ("T_l)k , and so
we accept any w € L with this probability. By choosing a suitable n we can

recognize L with arbitrarily high probability.

A.13 Proof of Theorem 16

It is sufficient to show that there exists a unitary prototype for these transition
matrices. Since the group operation is just a permutation and unitary prototypes
are closed under permutations, it is sufficient to consider the B,(:) matrices. The

same argument as in Theorem 14 applies.
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