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Notations

N set of natural numbers.
R set of real numbers.
R+ set of strictly positive real numbers.
c1, c2, . . . constants of global scope.
ĉ1, ĉ2, . . . constants of a proof scope.
Rn set of real n-tuples.
a · b Euclidean inner product of a, b ∈ Rn.
|a| Euclidean norm of a ∈ Rn.
A closure of a set A ⊂ Rn according to Euclidean norm.
dist(A,B) distance between sets A, B ⊂ Rn.
diam(A) diameter of a set A ⊂ Rn.
ab a closed line segment between a, b ∈ Rn.
B(a, τ) an open ball with center a ∈ Rn and radius τ .
S(a, τ) a sphere with center a ∈ Rn and radius τ .
x, y, z elements of R2, or R3.
∂Ω boundary of a domain Ω.
ν outward unit normal of a surface Γ.
ω2 Lebesque measure over R2.
ω3 Lebesque measure over R3.
λΓ Lebesque surface measure over a surface Γ.
f |A restriction (or trace) of a function f : B 7→ R

on the subset A ⊂ B.
f ′ �rst order derivative of a function f : R 7→ R.
f ′′ second order derivative of a function f : R 7→ R.
∂if �rst order partial derivative along xi-axis

of a function f : Ω 7→ R.
∇f gradient of a function f : Ω 7→ R.
∇ · (∇f) Laplasian of a function f : Ω 7→ R.
X∗ dual space for a normed space X.
‖v‖X norm of v ∈ X, where X is normed space.
〈· , ·〉 duality pairing for a normed space X and its dual space X∗.
M(A, ω) vector space of ω-measurable functions f : A 7→ R.
Lp(A) space of p-integrable (p ∈ [1, +∞]) functions f : A 7→ R.
L̃p(Ω) subspace of Lp(Ω) (p ∈ [1, +∞]), which consists of functions

{v ∈ Lp(Ω) : ∂3v = 0}.
H1(Ω) Sobolev space {v ∈ L2(Ω) : ∂iv ∈ L2(Ω) for i ∈ {1, 2, 3}}.
H1(Ω, Γ) subspace of H1(Ω), which consists of functions

{v ∈ H1(Ω) : v|Γ = 0 λΓ-a.e. on Γ}, where Γ ⊂ ∂Ω.
Vp(Ω, Γ) subspace of H1(Ω), which consists of functions
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{v ∈ H1(Ω) : v|Γ ∈ Lp(Γ)} and equipped
with a norm ‖ · ‖Vp(Ω, Γ) = ‖ · ‖H1(Ω) + ‖ · ‖Lp(Γ).
Here we assume that p ∈ [1, +∞] and Γ ⊂ ∂Ω.

V̇p(Ω, Γ1, Γ2) subspace of H1(Ω, Γ1), which consists of elements
{v ∈ H1(Ω, Γ1) : v|Γ2 ∈ Lp(Γ2)} and equipped
with a norm ‖ · ‖V̇p(Ω, Γ1, Γ2) = ‖ · ‖H1(Ω, Γ1) + ‖ · ‖Lp(Γ2).

Here we assume that p ∈ [1, +∞] and Γ1, Γ2 ⊂ ∂Ω.
Lip(A) space of Lipschitz continuous functions f : A 7→ R.
C1(A) space of functions f : A 7→ R with continuous �rst

order partial derivatives.
a, b, . . . lowercase bold Roman letters denote functionals over

functional spaces.
A, B, . . . uppercase bold Roman letters denote operators between

functional spaces.
A ◦B composition of operators A and B (if A, B are linear,

then we simply write AB).
o[v](w) denotes operators (functionals) of type X × Y 7→ Z

(X, Y , Z are normed spaces), such that
‖o[v](w)‖Z/‖w‖Y → 0, as ‖w‖Y → 0 (for every �xed v ∈ X).

I identity operator.
L (X, Y ) space of linear bounded operators from a normed

space X to a normed space Y .
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Chapter 1

Introduction

This thesis was developed at Faculty of Physics and Mathematics of Univer-
sity of Latvia under supervision of professor Uldis Raitums. The research was
supported by Europe Social Fund (contract 2004/0001/VPD1/ESF/PIAA/
04/NP/3.2.3.1/0001/0001/0063) and Latvian Council of Science (grant 01.04
41).

This work is devoted to sensitivity analysis for an optimal control prob-
lem of conductive-radiative heat transfer arising in the glass fabric industry
and primarily it is based on the author's earlier published papers ([Bi03],
[Bi051], [Bi052]), where are covered various mathematical aspects of the op-
timal control model for treatment of glass fabric sheets in high temperature
furnaces.

Mathematical models for treatment of simultaneous conductive, convec-
tive and radiative heat transfer were developed relatively recently. Here it
is important to note the publications of Tiihonen and Laitinen (see [LT97],
[LT98], [LT00]) at the end of 1990s and early 2000s. By mathematical formal-
ization of simultaneous conductive-radiative heat transfer in grey materials
they came to models with semilinear elliptic and parabolic boundary value
problems, for which they established basic results on existence of solutions.
We widely use this approach in this thesis, since there is only slight adapta-
tion necessary for those models to serve our needs.

After the series of works of Tiihonen and Laitinen, there was a short
break in research of the mathematical models of conductive-radiative heat
transfer. However, in recent years some interesting papers have been pub-
lished by Mayer, Philip and Tröltzsch (see [MPT04], [Ma05]). The research
topic of these publications is optimal control of temperature gradient in high
temperature furnaces of crystal growth. In order to deal with simultaneous
conductive-radiative heat transfer, which play important role in this case,
approach proposed by Tiihonen and Laitinen there is heavily exploited. The
main problems considered by Mayer, Philip and Tröltzsch are necessary and
su�cient optimality conditions, as well as existence of the optimal state.
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Although mathematical models considered by Mayer, Philip, Tröltzsch
and by us appear to be similar, they have some principal di�erences (we
are using temperature on the surface of the heaters as a control, whereas in
[MPT04], [Ma05] the control is volume heat source). As result, techniques
that can be used for mathematical analysis of those models are di�erent.

As it was already mentioned, the source for the problem considered by
this thesis is glass fabric industry. Usually glass �ber is saturated with oil
before weaving of fabric. After the fabric is produced, oil, which has been
added before, must be removed. This can be achieved by oil burn out at high
temperature in a special furnace. A sheet of glass fabric, after it has been
weaved, is dragged with constant speed through this furnace, where it heats
up and oil burns out. Unfortunately, quick glass fabric cooling after it has left
the furnace leads to mechanical resistance degradation of produced product
(see [BF99] for more details). Therefore, in order to maximize quality of
produced fabric, a way to ensure uniform and slow cooling of the fabric
sheet must be found via changing of physical characteristics of the furnace.

In this work we consider a simpli�ed situation from [BF99], where oil burn
out is neglected and process is steady in time. Here the furnace consists of
heater system {Ωi ⊂ R3 : i ∈ {1, . . . , m}} (see Fig. 1.1). A thin fabric sheet
Ωf = (−l1, l1) × (−l2, l2) × (−δ, δ) of thickness 2δ is dragged through the
furnace with a constant speed.

heater

heater

moving fabric
sheet (Ωf )

2δ x1x2

x3

Figure 1.1: Construction of the furnace

Due to high temperature Th on the heaters (1000-1100K) intensive heat
transfer processes occur in the furnace (see Fig. 1.2). Since space between
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heaters and sheet is �lled with transparent medium (air), but, on other
hand, the fabric sheet and the heaters are opaque for heat radiation, then
considerable heat �ux exists on the surface of the sheet Σ1 =

⋃
i∈{3, ..., 6} Si

(see Fig. 1.4 for more details about geometry of the problem) and on the
heater-air interface Σ2 =

⋃
i∈{1, ..., m} ∂Ωi due to heat radiation emission,

absorption and re�ection. In addition, heat exchange with surrounding air
also occurs on the interface Σ = Σ1 ∪ Σ2 and this considerably in�uences
overall heat �ow in the furnace. On other hand, heat transfer inside the
domain Ωf occurs only via conduction and medium movement, since, as it
was already mentioned, glass fabric is opaque for heat radiation.

heater (temp. Th)

heater (temp. Th)

fabric sheet
(temp. T )

air (temp. Tg)

air (temp. Tg)

2δ

Figure 1.2: Heat exchange in the furnace

In mathematical terms the overall heat balance in Ωf can be described
by a boundary value problem:

∇ · (k1∇T )− k2(∂1T ) = 0 in Ωf ,

− ν · ∇(k1T ) = q on Σ1,

− ν · ∇(k1T ) = 0 on S2,

T = Te on S1,

(1.1)

where T is temperature of the fabric in Ωf , Te is temperature of the fabric on
the surface S1 (see Fig. 1.3 for more details about geometry of the problem),
q is heat �ux through the interface Σ, ν is outer unit normal to ∂Ωf , k1

is thermal conductivity of the fabric and k2 is normalized velocity of sheet
movement.
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Ω1

Σ2

Σ2

S2Ωf

Σ1

Σ1

Ω2

S1

Figure 1.3: Geometry of the furnace

In order to optimize temperature �eld T and to achieve uniform and slow
cooling e�ect of the fabric sheet after it has been heated up in the furnace,
let us introduce an optimal control problem:

J (T ) 7→ min,

∇ · (k1∇T )− k2(∂1T ) = 0 in Ωf ,

− ν · ∇(k1T ) = q on Σ1,

− ν · ∇(k1T ) = 0 on S2,

T = Te on S1,

T ∈ V5(Ωf , Σ1),
Th ∈ {v ∈ L∞(Σ2) : 0 ≤ v(x) ≤ µ},

(1.2)

(for de�nition of the space V5(Ωf , Σ1) see Notations), where T is chosen
as state variable, Th - as control variable, but the cost functional J (T ) is
de�ned as:

J (T ) :=
∫

Ωf

(T − Td)2 dω3.

Here Td is a temperature �eld in Ωf , which we would like to achieve by
varying the control Th. It should have high temperature near the entrance
of the furnace to initialize oil burnout and it should also uniformly and slowly
decrease at the exit of the furnace. Actually, the cost functional J (T ) shows
deviation of the real temperature �eld T from desired Td (in L2 sense).

Since radiative heat transfer is taken into account in our model, then
the heat �ux q has nonlocal and nonlinear dependence from temperature
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Tsh = (T |Σ1 , Th) on the interface Σ. In the explicit form it can be expressed
by the following formula:

q = Q(Tsh) = G(|Tsh|3Tsh) + k3(Tsh − Tg), (1.3)

where Tg is temperature of air nearby Σ, k3 is convective heat transfer coef-
�cient (here it is assumed that k3 is strictly positive constant, nevertheless
the analysis can also be performed for the case, when k3 = 0). Since Σ is
di�use grey surface in our case (see [BF99]), then G ∈ L (L5/4(Σ), L5/4(Σ))
and it will have the following representation formula:

G = σL(I−K)(I− (I− L)K)−1L

where σ is the Stefan-Boltzmann constant, L ∈ L (L5/4(Σ), L5/4(Σ)):

L(v)(x) = ε(x)v(x) x ∈ Σ,

but K ∈ L (L5/4(Σ), L5/4(Σ)) represents irradiation on the interface Σ:

K(v)(x) =
∫

Σ
k(x, y)θ(x, y)v(y) dλΣ(y) x ∈ Σ,

k(x, y) =
|cos (ν(x), (y − x))||cos (ν(y), (x− y))|

π|x− y|2
x, y ∈ Σ,

θ(x, y) =

{
1, if x, y mutually see each other

0, otherwise
x, y ∈ Σ.

The function ε characterizes emissivity on the interface Σ and for physical
and mathematical reasons we assume that c1 ≤ ε ≤ 1 on Σ for some strictly
positive constant c1.

To overcome some mathematical problems that would rise to prove exis-
tence of T , in the formula (1.3) we write |Tsh|3Tsh instead of physically more
reasonable T 4

sh (according to Stefan's law). As we will see later on, this re-
placement don't a�ect the �nal result in any way, because under appropriate
mathematical conditions the function Tsh will be non-negative.

As we will see in Chapter 2, for every �nite partition of Σ into λΣ-
measurable and mutually disjoint subsets {Ai ⊂ Σ : i ∈ {1, . . . , n}, Σ =⋃

i∈{1, ..., n}Ai} the formula (1.3) can be rewritten in the matrix form: q|A1

...
q|An

 =

 QA1A1 · · · QAnA1

...
. . .

...
QA1An · · · QAnAn


 Tsh|A1

...
Tsh|An

 , (1.4)

where QAiAj : L5(Ai) 7→ L5/4(Aj) (i, j ∈ {1, . . . , n}) are block components
of the operator Q.
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Now, by putting n = 2, A1 = Σ1, A2 = Σ2 in the formula (1.4) and,
hence, by expressing the �ux q|Σ1 in an explicit form it becomes possible to
rewrite the optimal control problem (1.2) in the new form:

J (T ) 7→ min,

∇ · (k1∇T )− k2(∂1T ) = 0 in Ωf ,

− ν · ∇(k1T ) = QΣ1Σ1(T ) + QΣ2Σ1(Th) on Σ1,

− ν · ∇(k1T ) = 0 on S2,

T = Te on S1,

T ∈ V5(Ωf , Σ1),
Th ∈ {v ∈ L∞(Σ2) : 0 ≤ v(x) ≤ µ}.

(1.5)

As we will see later, every state T , satisfying the state equation of (1.5)
for some admissible control Th, can be represented in the form T = u+ T∗,
where T∗ ∈ V5(Ωf , Σ1) is extension of Te into the domain Ωf and u is solution
of the variational equality:∫

Ωf

(k1(∇(u+ T∗) · ∇η) + k2(∂1(u+ T∗))η) dω3

+
∫

Σ1

QΣ1Σ1(u+ T∗)η dλΣ1 = −
∫

Σ1

QΣ2Σ1(Th)η dλΣ1

∀η ∈ V̇5(Ωf , S1, Σ1) (1.6)

(for de�nition of the spaces V5(Ωf , Σ1), V̇5(Ωf , S1, Σ1) see Notations).
Under certain mathematical assumptions the variational equality (1.6)

has solutions in the function space V̇5(Ωf , S1, Σ1). Existence of solutions for
such type of variational equalities was already established by Tiihonen and
Laitinen (see [LT00]). They proved coercivity and pseudomonotonity for an
operator de�ned by a variational form and thereafter on basis of the Brezis'
theorem came to a conclusion about existence of solutions. We solve this
question in a slightly di�erent manner. We prove that semilinear di�erential
operator de�ned by left-hand side of (1.6) is coercive and can be represented
as sum of a monotone and a weakly continuous operators. But then from
general existence theorems (see [GGZ74]) it follows that there exists at least
one solution u of (1.6).

As we will see later, natural constraints on Tg, Te, Th:

0 ≤ Tg ≤ µ on Σ1,

0 ≤ Te ≤ µ on S1,

0 ≤ Th ≤ µ on Σ2,

and some speci�c properties ofQΣ1Σ1 , QΣ2Σ1 yield non-negativity and bound-
edness of u+ T∗. Indeed, by using a technique introduced in [Bi051] and by
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bearing in mind that the variational equality (1.6) holds, it can be shown
that:

0 ≤ (u+ T∗) ≤ µ a.e. in Ωf . (1.7)

The proof of (1.7) will be given in Chapter 3.
In continuation to analysis of (1.5) the next important issue to prove

is uniqueness of the state T for every �xed control Th and thus existence
of a control-to-state operator T = Γ(Th). Indeed, uniqueness of T can be
established by putting special sample functions η ∈ V̇5(Ωf , S1, Σ1) in the
variational form (1.6) and, thereafter, by getting the following estimates for
arbitrary state-control pairs (T, Th), (T̂ , T̂h):

‖T − T̂‖L∞(Ωf ) ≤ 4µ3‖Th − T̂h‖L∞(Σ2), (1.8)

‖T − T̂‖L∞(Σ1) ≤ 4µ3‖Th − T̂h‖L∞(Σ2). (1.9)

As it is easy to see, (1.8), (1.9) imply not only existence of Γ, but also its
Lipschitz continuity.

In conclusion of analysis of (1.5) we derive Fréchet di�erentiability of the
cost functional J (Γ(Th)):

J (Γ(T̂h))− J (Γ(Th)) = `[Th](T̂h − Th) + o[Th](‖T̂h − Th‖L∞(Σ2)), (1.10)

where `[Th] ∈ L∗∞(Σ2), but T̂h, Th are arbitrary admissible controls. This
result is obtained by proving Fréchet di�erentiability of the operator Γ and,
thereafter, by applying the chain rule on J (Γ(Th)).

Nevertheless, although the problem (1.5) precisely models relationship
between temperature T and Th, its usage is inconvenient in practice. The
main reason for this is the fact that geometry of Ωf is strongly degenerated,
since the fabric sheet is very thin. For example, sheet's thickness-width ratio
is about 1/15000. Therefore, to handle this problem, some passage should
be made from the original model (1.5) to a new model.

In Chapter 4 the asymptotic analysis is performed to investigate be-
haviour of T in the domain Ωf and on the surface Σ0 = S5 ∪ S6, as δ → 0
(see Fig. 1.4 for more details about geometry of the problem). As it turns
out, for small δ values T can be e�ectively approximated with some function
T̃ :

1
δ

∫
Ωf

(T − T̃ )2 dω3 → 0, as δ → 0, (1.11)∫
Σ0

(T − T̃ )2 dλΣ0 → 0, as δ → 0, (1.12)

where T̃ is solution of the problem:{
∂3T̃ = 0 in Ωf ,

A(QΣ0Σ0(T̃ ) + QΣ2Σ0(Th)) = 0 on Σ0.
(1.13)
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Here A ∈ L (L5/4(Σ0), L5/4(Σ0)) is de�ned as:

A(v)(x1, x2, x3) =
v(x1, x2, δ) + v(x1, x2, −δ)

2
(x1, x2, x3) ∈ Σ0,

but QΣ0Σ0 : L5(Σ0) 7→ L5/4(Σ0), QΣ2Σ0 : L5(Σ2) 7→ L5/4(Σ0) are taken
from (1.4) after putting n = 3, A1 = Σ0, A2 = Σ1 \ Σ0, A3 = Σ2. Notice,
that both T , T̃ are dependent from the parameter δ, but we will omit this
dependence in our further notations.

S3

S4

S5

Ωf

S6

Figure 1.4: Glass fabric sheet

The previous result suggests that it would be reasonable to replace the
problem (1.5) with the following one:

J (T̃ ) 7→ min,

A(QΣ0Σ0(T̃ ) + QΣ2Σ0(Th)) = 0 on Σ0,

T̃ ∈ {v ∈ L5(Ωf ) : ∂3v = 0},
Th ∈ {v ∈ L∞(Σ2) : 0 ≤ v(x) ≤ µ},

(1.14)

where T̃ is chosen as state function, but Th - as control variable.
Similarly as it was in the case of (1.5), the analysis of the optimal con-

trol problem (1.14) we will start by proving existence the state T̃ . Indeed,
by using the contraction mapping theorem it can be shown that for every
admissible control Th the state equation of (1.14) can have one and only one
solution T̃ in the functional space L̃∞(Ωf ) (for de�nition of the space L̃∞(Ωf )
see Notations), and, therefore, there exists an unique de�ned control-to-state
operator T̃ = Γ̃(Th). As we will see in Chapter 4, Γ̃ will be Lipschitz contin-
uous and Fréchet di�erentiable as mapping between appropriate functional
spaces. Furthermore, on basis of previously mentioned results we will be
able to obtain an analogue of the formula (1.10):

J (Γ̃(T̂h))− J (Γ̃(Th)) = ˜̀[Th](T̂h − Th) + o[Th](‖T̂h − Th‖L∞(Σ2)), (1.15)

where ˜̀[Th] ∈ L∗∞(Σ2), but T̂h, Th are arbitrary admissible controls.

12



Chapter 2

Preliminaries

2.1 Geometry of the furnace

As it was set down in Chapter 1, let the furnace consists of heater system
{Ωi ⊂ R3 : i ∈ {1, . . . , m}} and let a thin fabric sheet Ωf = (−l1, l1) ×
(−l2, l2) × (−δ, δ) is dragged through the furnace with a constant speed.
Further the sides of Ωf we will denote by

S1 := {x ∈ ∂Ωf : x1 = l1}, S2 := {x ∈ ∂Ωf : x1 = −l1},
S3 := {x ∈ ∂Ωf : x2 = l2}, S4 := {x ∈ ∂Ωf : x2 = −l2},
S5 := {x ∈ ∂Ωf : x3 = δ}, S6 := {x ∈ ∂Ωf : x3 = −δ}.

The surfaces Σ0, Σ1, Σ2, Σ, mentioned in Chapter 1, we de�ne as

Σ0 := S5 ∪ S6,

Σ1 := S3 ∪ S4 ∪ S5 ∪ S6,

Σ2 :=
⋃

i∈{1, ..., m}

∂Ωi,

Σ := Σ1 ∪ Σ2,

but overall volume in the furnace, �lled with opaque medium, as

Ω := Ωf ∪ (
⋃

i∈{1, ..., m}

Ωi).

Throughout this thesis we put the following assumptions on geometry of
the furnace:

A1 l1 ∈ R+, l2 ∈ R+, δ ∈ R+, δ ≤ min{l1, l2};

A2 For λS1∪S2-almost every x ∈ S1 ∪ S2 and every y ∈
⋃

i∈{1, ..., m} ∂Ωi

cos(ν(x), (y − x)) ≤ 0.
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Furthermore, we assume that there exist some d ∈ R+, l ∈ R+ such that:

A3 For every i ∈ {1, . . . , m} Ωi is bounded Lipschitz domain with the
constants d, l, i.e. for every x0 ∈ ∂Ωi there exist a transformation of
coordinates y = Γ[x0](x − x0) (Γ[x0] is orthogonal 3 × 3 matrix) and a
Lipschitz continuous function f [x0] ∈ Lip(R2) (with Lipschitz constant
l) such that for transformed coordinates we have

∂Ωi ∩ Cl, d = {(y1, y2, y3) ∈ R3 : y3 = f [x0](y1, y2)} ∩ Cl, d,

Ωi ∩ Cl, d = {(y1, y2, y3) ∈ R3 : y3 > f [x0](y1, y2)} ∩ Cl, d,

where

Cl, d = {(y1, y2, y3) ∈ R3 : y2
1 + y2

2 ≤ d2, −2ld ≤ y3 ≤ 2ld};

A4 For every i ∈ {1, . . . , m} dist(Ωf ,Ωi) ≥ d;

A5 For every i, j ∈ {1, . . . , m}, if i 6= j, then dist(Ωi,Ωj) ≥ d.

2.2 Further mathematical assumptions

We assume that the following conditions hold on quantities and functions
occurring in (1.5), (1.6):

B1 µ ∈ [0, +∞);

B2 k1 ∈ R+, k2 ∈ [0, +∞), k3 ∈ R+;

B3 Te ∈ L∞(S1), 0 ≤ Te(x) ≤ µ λS1-a.e. on S1;

B4 Th ∈ L∞(Σ2), 0 ≤ Th(x) ≤ µ λΣ2-a.e. on Σ2;

B5 Tg ∈ L∞(Σ), 0 ≤ Tg(x) ≤ µ λΣ1-a.e. on Σ1;

B6 T∗ ∈ H1(Ωf ) ∩ L∞(Ωf ), T∗(x) = Te(x) λS1-a.e. on S1.

Notice, that the assumption B6 is easy to ful�ll, if Te ∈ Lip(S1) and if we
de�ne the function T∗ as

T∗(x1, x2, x3) := Te(x2, x3) (x1, x2, x3) ∈ Ωf .

Let

U = {v ∈ L∞(Σ2) : 0 ≤ v(x) ≤ µ λΣ2-a.e. on x ∈ Σ2}

be the set of admissible controls and let Tsh = (T |Σ1 , Th) denote temperature
on the interface Σ.
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2.3 Heat transfer on interface

As it was mentioned in Chapter 1 heat �ux through the interface Σ exists
due to radiative heat transfer and due to heat exchange with surrounding
air.

In order to describe pure radiative heat transfer, we will adopt a math-
ematical model, proposed by Tiihonen and Laitinen in [LT00] for physical
systems with entirely opaque and transparent components, separated by dif-
fuse grey interfaces.

Let σ ∈ R+ be the Stefan-Boltzmann constant and let ε ∈ L∞(Σ) be
the emissivity of the surface Σ. For mathematical and physical reasons we
assume that

∃c1 ∈ (0, 1] : c1 ≤ ε(x) ≤ 1 λΣ-a.e. on x ∈ Σ. (2.1)

In order to characterize intensity of radiative heat exchange between
di�erent interface points, let us introduce the function

k(x, y) :=

{ |cos (ν(x),(y−x))||cos (ν(y),(x−y))|
π|x−y|2 , if ∃ν(x) and ∃ν(y)

0, otherwise
x, y ∈ Σ

and the visibility factor

θ(x, y) :=

{
1, if xy ∩ Ω = ∅
0, otherwise

x, y ∈ Σ.

The visibility factor shows, if an arbitrary pair of interface points x, y mutu-
ally see each other and heat radiation can directly propagate between them.
In proofs, what will follow, we will use the following properties of the visi-
bility factor θ(x, y) and the function k(x, y)θ(x, y).

Lemma 2.3.1

If x, y ∈ Σ and if there exists ν(x) and cos(ν(x), (y−x)) < 0, then θ(x, y) =
0.

Lemma 2.3.2

i. 0 ≤
∫
Σ k(x, y)θ(x, y) dλΣ(y) ≤ 1 for every x ∈ Σ2;

ii. ∃c2 ∈ [0, 1) : 0 ≤
∫
Σ k(x, y)θ(x, y) dλΣ(y) ≤ c2 for every x ∈ Σ1.

iii. k(x, y)θ(x, y) = k(y, x)θ(x, y) for all x ∈ Σ, y ∈ Σ;

iv. k(x, y)θ(x, y) ≥ 0 for all x ∈ Σ, y ∈ Σ.

J Proof of 2.3.2iii and 2.3.2iv is straightforward.
Proof of 2.3.2i. Let us �x arbitrary x ∈ Σ2. The inequality 0 ≤∫

Σ k(x, y)θ(x, y) dλΣ(y) is direct consequence of 2.3.2iv, if only there exists
an integral

∫
Σ k(x, y)θ(x, y) dλΣ(y).
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If ν(x) does not exist, then proof of the inequality
∫
Σ k(x, y)θ(x, y) dλΣ(y) ≤

1 is straightforward, since k(x, y)θ(x, y) = 0 for every y ∈ Σ.
Let us prove the inequality

∫
Σ k(x, y) dλΣ(y) ≤ 1 for a nontrivial case,

when ν(x) exists. For this reason we de�ne sets:

Ax,τ := Ω \B(x, τ),

Bx,τ := {z ∈ R3 : z = x+ t(y − x), y ∈ Ax,τ , t ∈ [1, +∞)} ∩B(x, dmax),

where τ ∈ (0, dmin], dmin = min{d, 2ld} and dmax = diam(Ω). Notice, that
Bx,τ is nonempty for every τ ∈ (0, dmin], therefore, we can de�ne functions
fi : Bx,τ 7→ R (i ∈ {1, 2, 3}):

fi(y) :=

{
cos(ν(x), (y−x))

π|y−x|3 (yi − xi), if cos(ν(x), (y − x)) ≥ 0

0, otherwise.

Since f1 ∈ C1(Bx,τ ), f2 ∈ C1(Bx,τ ), f3 ∈ C1(Bx,τ ) and Bx,τ can be rep-
resented as union of m + 1 Lipschitz domains, then the Gauss's formula
holds:∫

Bx,τ

3∑
i=1

(∂ifi(y)) dω3(y) =
∫

∂Bx,τ

3∑
i=1

νi(y)fi(y) dλ∂Bx,τ (y). (2.2)

Now, let us de�ne:

S+(x, τ) := {z ∈ S(x, τ) : cos(ν(x), (z − x)) ≥ 0},

where τ ∈ R+. It is easy to verify that the following equalities hold:

3∑
i=1

νi(y)fi(y) =
cos(ν(x), (x− y))

πτ2
for λ∂Bx,τ -a.e. y ∈ ∂Bx,τ ∩ S+(x, τ),

3∑
i=1

νi(y)fi(y) =
cos(ν(x), (y − x))

πd2
max

for λ∂Bx,τ -a.e. y ∈ ∂Bx,τ ∩ S+(x, dmax),

3∑
i=1

νi(y)fi(y) = k(x, y)θ(x, y) for λ∂Bx,τ -a.e. y ∈ ∂Bx,τ ∩ Σ,

3∑
i=1

νi(y)fi(y) = 0 for λ∂Bx,τ -a.e. y ∈ ∂Bx,τ \ (S+(x, τ) ∪ S+(x, dmax) ∪ Σ),

3∑
i=1

(∂ifi(y)) = 0 for a.e. y ∈ Bx,τ
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and, therefore, (2.2) will give∫
∂Bx,τ∩Σ

k(x, y)θ(x, y) dλ∂Bx,τ (y)

=
∫

∂Bx,τ∩S+(x, dmax)

cos(ν(x), (y − x))
πd2

max

dλ∂Bx,τ (y)

−
∫

∂Bx,τ∩S+(x, τ)

cos(ν(x), (y − x))
πτ2

dλ∂Bx,τ (y)

≤
∫

S+(x, dmax)

cos(ν(x), (y − x))
πd2

max

dλS(x, dmax)(y) = 1. (2.3)

The family of sets {∂Bx,τ ∩ Σ : τ ∈ (0, dmin]} is monotone and increasing,
as the parameter τ decreases. Moreover, Lemma 2.3.1 guaranties that {y ∈
Σ : k(x, y)θ(x, y) 6= 0} ⊂

⋃
τ∈(0, dmin](∂Bx,τ ∩Σ), therefore, 2.3.2iv together

with (2.3) will give:∫
Σ
k(x, y)θ(x, y) dλΣ(y) ≤

∫
S

τ∈(0, dmin](∂Bx,τ∩Σ)
k(x, y)θ(x, y) dλΣ(y) ≤ 1.

Proof of 2.3.2ii is almost identical with the proof of 2.3.2i. It slightly
di�ers in case, when x ∈ Σ1 and there exists ν(x). As we will see, in this
case it is possible to get "better" estimate than (2.3). Indeed, if we denote

Cx := {z ∈ S+(x, dmax) : (z2 − x2)2 + (z3 − x3)2 ≥ d2},

then due to A1, A2, A4 we will have Bx,τ ∩ S+(x, dmax) ⊂ Cx for every
τ ∈ (0, dmin]. Therefore∫

∂Bx,τ∩Σ
k(x, y)θ(x, y) dλ∂Bx,τ (y)

=
∫

∂Bx,τ∩S+(x, dmax)

cos(ν(x), (y − x))
πd2

max

dλ∂Bx,τ (y)

−
∫

∂Bx,τ∩S+(x, τ)

cos(ν(x), (y − x))
πτ2

dλ∂Bx,τ (y)

≤
∫

Cx

cos(ν(x), (y − x))
πd2

max

dλS(x, dmax)(y) = c2,

where c2 ∈ [0, 1) does not depend on x and τ . The last estimate afterwards
will yield ∫

Σ
k(x, y)θ(x, y) dλΣ(y) ≤ c2.

I
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According to proposed radiative heat transfer model (see [LT00] for more
details), the function k(x, y)θ(x, y) can be used to calculate irradiation from
the incoming radiation ρ:

K(ρ)(x) :=
∫

Σ
k(x, y)θ(x, y)ρ(y) dλΣ(y) x ∈ Σ.

Moreover, the ρ and Tsh on the interface Σ will be related in the following
way:

(I− (I− L)K)(ρ) = L(σ|Tsh|3Tsh), (2.4)

where
L(v)(x) := ε(x)v(x) x ∈ Σ.

This way, by taking into account radiative and convective heat transfer pro-
cesses on the interface Σ, the overall heat �ux q through Σ can be expressed
by the following formula:

q = (I−K)(ρ) + k3(Tsh − Tg). (2.5)

Now, let us enumerate some useful properties of the operators K, L.

Lemma 2.3.3

For every �xed p ∈ [1, +∞]:

i. K is linear and bounded from Lp(Σ) to Lp(Σ) and ‖K‖L (Lp(Σ), Lp(Σ)) ≤
1;

ii. 〈K(v), w〉 = 〈v, K(w)〉 for every v ∈ Lp(Σ), w ∈ Lp/(p−1)(Σ);

iii. if v ∈ Lp(Σ) and v ≥ 0 λΣ-a.e. on Σ, then K(v) ≥ 0 λΣ-a.e. on Σ.

J The assertion 2.3.3i will follow due to estimate 2.3.2i (see [DS57] for more
details). Similarly, the assertions 2.3.3ii, 2.3.3iii will follow from 2.3.2iii,
2.3.2iv, respectively.

I

Lemma 2.3.4

For every �xed p ∈ [1, +∞]:

i. L is linear and bounded from Lp(Σ) to Lp(Σ);

ii. ‖I− L‖L (Lp(Σ), Lp(Σ)) = (1− c1) < 1;

iii. if v ∈ Lp(Σ) and v ≥ 0 λΣ-a.e. on Σ, then (I − L)(v) ≥ 0 λΣ-a.e. on
Σ.

Since 2.3.3i, 2.3.4ii, 2.3.3iii and 2.3.4iii hold, then there exists the inverse
operator (I− (I− L)K)−1.
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Lemma 2.3.5

For every �xed p ∈ [1, +∞] there exists

(I− (I− L)K)−1 =
∞∑

n=0

((I− L)K)n

as linear and bounded operator from Lp(Σ) to Lp(Σ). Furthermore, if v ∈
Lp(Σ) and v ≥ 0 λΣ-a.e. on Σ, then (I− (I− L)K)−1(v) ≥ 0 λΣ-a.e. on Σ.

Now, by applying the operator (I − (I − L)K)−1 on both sides of (2.4) we
will get

ρ = (I− (I− L)K)−1L(σ|Tsh|3Tsh) =
∞∑

n=0

((I− L)K)nL(σ|Tsh|3Tsh). (2.6)

Next, for convenience let us de�ne:

G := σL− σLK(I− (I− L)K)−1L,

H := I− L + LK(I− (I− L)K)−1L.

Basic properties of these operators are given by the following lemma.

Lemma 2.3.6

For every �xed p ∈ [1, +∞]:

i. G, H are linear and bounded from Lp(Σ) to Lp(Σ);

ii. G = σ(I−H);

iii. if v ∈ Lp(Σ) and v ≥ 0 λΣ-a.e. on Σ, then H(v) ≥ 0 λΣ-a.e. on Σ.

iv. 〈G(v), w〉 = 〈v, G(w)〉, 〈H(v), w〉 = 〈v, H(w)〉 for every v ∈ Lp(Σ),
w ∈ Lp/(p−1)(Σ);

v. G(1) ≥ 0 λΣ-a.e. on Σ;

vi. ∃c3 ∈ (0, 1] : G(1) ≥ σc3 λΣ1-a.e. on Σ1;

vii. ‖H‖L (Lp(Σ), Lp(Σ)) ≤ 1.

J The assertions 2.3.6i-2.3.6v, 2.3.6vii can be proved by using results of
Lemma 2.3.3, Lemma 2.3.4 and Lemma 2.3.5 (see [LT98], [LT00]). The
assertion 2.3.6vi can be proved in a similar way as 2.3.6v, however, in this
case the proof will be based on the estimate 2.3.2ii and 2.3.6iv.

I

Now, if we de�ne

Q(Tsh) := (I−K)(I− (I− L)K)−1L(σ|Tsh|3Tsh) + k3(Tsh − Tg),
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then (2.5) together with (2.6) will yield the formula (1.3):

q = Q(Tsh) = G(|Tsh|3Tsh) + k3(Tsh − Tg).

Next, in order to split the operator Q into "blocks" and to derive the
formula (1.4), let us introduce some auxiliary operators. Let A is an arbitrary
λΣ-measurable subset of Σ and let us de�ne a restriction type operator on
M(Σ, λΣ):

MA(v) := v|A.

Let us also de�ne an extension type operator on M(A, λA):

NA(v) :=

{
v on A

0 on Σ \A.

Then for every p ∈ [1, +∞]

MA ∈ L (Lp(Σ), Lp(A)), ‖MA‖L (Lp(Σ), Lp(A)) = 1,

NA ∈ L (Lp(A), Lp(Σ)), ‖NA‖L (Lp(A), Lp(Σ)) = 1.

Now, one can easily check that for every �nite partition of Σ into λΣ-
measurable and mutually disjoint subsets {Ai ⊂ Σ : i ∈ {1, . . . , n}, Σ =⋃

i∈{1, ..., n}Ai} the formula (1.4) will hold q|A1

...
q|An

 =

 QA1A1 · · · QAnA1

...
. . .

...
QA1An · · · QAnAn


 Tsh|A1

...
Tsh|An

 ,

if we will put

QAiAj = MAj ◦Q ◦NAi i, j ∈ {1, . . . , n}.

Moreover, if we now de�ne for arbitrary λΣ-measurable sets A ⊂ Σ,
B ⊂ Σ that

QAB := MB ◦Q ◦NA, GAB := MBGNA, HAB := MBHNA,

then these operators will have the following properties.

Lemma 2.3.7

For every �xed p ∈ [1, +∞] and arbitrary chosen λΣ-measurable sets A ⊂ Σ,
B ⊂ Σ:

i. QAB maps L4p(A) to Lp(B), but GAB, HAB are linear and bounded
from Lp(A) to Lp(B);

ii. if v ∈ L4p(A), then QAA(v) = GAA(|v|3v) + (v − Tg|A);
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iii. GAA = σ(I−HAA);

iv. if A ∩B = ∅ and v ∈ L4p(A), then QAB(v) = GAB(|v|3v);

v. if A ∩B = ∅, then GAB = −σHAB;

vi. if v ∈ Lp(A) and v ≥ 0 λA-a.e. on A, then HAB(v) ≥ 0 λB-a.e. on B;

vii. 〈GAA(v), w〉 = 〈v, GAA(w)〉, 〈HAA(v), w〉 = 〈v, HAA(w)〉 for every
v ∈ Lp(A), w ∈ Lp/(p−1)(A);

viii. if A ∩ B = ∅ and A ∪ B = Σ, then GAA(1) + GBA(1) ≥ 0 λA-a.e. on
A;

ix. ‖HAA‖L (Lp(A), Lp(A)) ≤ (1− c3) < 1;

x. ‖HAB‖L (Lp(A), Lp(B)) ≤ 1.

J The assertions 2.3.7i-2.3.7viii, 2.3.7x directly follow from Lemma 2.3.6,
the formula (1.3) and properties of the operators MB, NA. The assertion
2.3.7ix can be proved in a similar way as 2.3.6vii. At the �rst step by using
the estimate 2.3.6vi and 2.3.7vi, 2.3.7vii we can show that

‖HAA‖L (L1(A), L1(A)) ≤ (1− c3),

‖HAA‖L (L∞(A), L∞(A)) ≤ (1− c3).

Then from the Riesz interpolation theorem it will follow that for every p ∈
(1, +∞)

‖HAA‖L (Lp(A), Lp(A)) ≤ (1− c3)

(see [LT98], [LT00]).

I

2.4 Preliminaries for reduced problem

Let us de�ne
Qf := (−l1, l1)× (−l2, l2).

In Chapter 4 we will investigate asymptotic behaviour of T , as δ → 0.
Some proofs there will be based on technique, when functions of class L∞
are made smooth and di�erentiable via applying some mollifying operator.

Therefore, for arbitrary τ ∈ R+ and v ∈ L∞(Qf ) let us de�ne

Tτ (v)(x) :=
∫

Qf

ςτ (x, y)v(y) dω2 x ∈ Qf ,

where

ςτ (x, y) := max{ 3
πτ2

(1− |x− y|
τ

), 0} x, y ∈ Qf .
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As it turns out, Tτ can be used as molli�er of functions of the class L∞(Qf ).
Indeed, it is easy to verify that images of this operator will have the following
properties.

Lemma 2.4.1

If v ∈ L∞(Qf ) and 0 ≤ v(x) ≤ ĉ1 a.e. in Qf for some ĉ1 ∈ [0, +∞), then
for every τ ∈ R+:

i. Tτ (v) ∈ C1(Qf );

ii. 0 ≤ Tτ (v)(x) ≤ ĉ1 a.e. in Qf ;

iii. |∇Tτ (v)(x)|2 ≤ 18(ĉ1/τ)2 a.e. in Qf .

Furthermore, Tτ (v) → v in L2(Qf ), as τ → 0.
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Chapter 3

Analysis of original problem

3.1 Existence of the state T

Let us start sensitivity analysis of the optimal control problem (1.5) by
rewriting the variational equality (1.6) in operator form. For this reason
let us de�ne functionals:

f1(v, η) :=
∫

Ωf

(k1(∇v · ∇η) + k2(∂1v)η) dω3 +
∫

Σ1

k3vη dλΣ1

v, η ∈ V̇5(Ωf , S1, Σ1),

f2(v, η) :=
∫

Σ1

GΣ1Σ1(|v + T∗|3(v + T∗))η dλΣ1

v, η ∈ V̇5(Ωf , S1, Σ1),

and

f3(w, η) := −
∫

Σ1

GΣ2Σ1(|w|3w)η dλΣ1 +
∫

Σ1

k3Tgη dλΣ1

−
∫

Ωf

(k1(∇T∗ · ∇η) + k2(∂1T∗)η) dω3 −
∫

Σ1

k3T∗η dλΣ1

w ∈ L∞(Σ2), η ∈ V̇5(Ωf , S1, Σ1).

By using embedding theorems for H1(Ωf , S1) and by taking into account
properties of the functions Tg, Th, T∗ and the operators GΣ1Σ1 , GΣ2Σ1 , one
can get that f1(v, · ) ∈ V̇ ∗

5 (Ωf , S1, Σ1), f2(v, · ) ∈ V̇ ∗
5 (Ωf , S1, Σ1), f3(w, · ) ∈

V̇ ∗
5 (Ωf , S1, Σ1) for every �xed v ∈ V̇5(Ωf , S1, Σ1), w ∈ L∞(Σ2). Therefore,

if we de�ne the following operators:

B1(v) := f1(v, ·), B2(v) := f2(v, · ), B3(w) := f3(w, · ),
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then

B1 : V̇5(Ωf , S1, Σ1) 7→ V̇ ∗
5 (Ωf , S1, Σ1),

B2 : V̇5(Ωf , S1, Σ1) 7→ V̇ ∗
5 (Ωf , S1, Σ1),

B3 : L∞(Σ2) 7→ V̇ ∗
5 (Ωf , S1, Σ1).

Now, by using the introduced operators, we can rewrite the variational
equality (1.6) in the following form:

B1(u) + B2(u) = B3(Th). (3.1)

Let us prove existence of solutions for this equation by using methodology
from [GGZ74].

Lemma 3.1.1

The operator B1 is monotone, radial-continuous (see [GGZ74] for de�nitions)
and there exists a constant c4 ∈ R+ such that

c4‖v‖2
H1(Ωf , S1) ≤ f1(v, v) ∀v ∈ H1(Ωf , S1). (3.2)

J Let us �x arbitrary v ∈ H1(Ωf , S1). Then due to properties of the
constants k1, k2, k3:

f1(v, v) :=
∫

Ωf

(k1(∇v · ∇v) + k2(∂1v)v) dω3 +
∫

Σ1

k3v
2 dλΣ1

≥
∫

Ωf

k1(∇v · ∇v) dω3 +
∫

Ωf

k2(∂1v)v dω3

=
∫

Ωf

k1(∇v · ∇v) dω3 +
∫

S2

k2v
2

2
dλS2

≥
∫

Ωf

k1(∇v · ∇v) dω3. (3.3)

As v ∈ H1(Ωf , S1), then

ĉ1‖v‖2
L2(Ωf ) ≤

∫
Ωf

(∇v · ∇v) dω3

for some constant ĉ1 ∈ R+ such that it does not depend on chosen v (see
[LU68]). Therefore, if we take c4 = k1 min{1, ĉ1}/2, then (3.3) will give

c4‖v‖2
H1(Ωf , S1) ≤ f1(v, v).

Now, as V̇5(Ωf , S1, Σ1) ⊂ H1(Ωf , S1) and as (3.2) holds, then B1 will
be radial-continuous and monotone due to its linearity (see [GGZ74]).

I
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Lemma 3.1.2

The operator B2 is weakly continuous (see [GGZ74] for de�nition).

J Let us �x arbitrary sequence {vn}n∈N ⊂ V̇5(Ωf , S1, Σ1) such that there
exists some v∗ ∈ V̇5(Ωf , S1, Σ1) that vn ⇀ v∗ in V̇5(Ωf , S1, Σ1), as n →
+∞.

As V̇5(Ωf , S1, Σ1) is embedded both in L5(Σ1) and in H1(Ωf , S1), then
vn ⇀ v∗ in L5(Σ1) and also in H1(Ωf , S1), as n → +∞. But then there
must exist some constants ĉ1 ∈ R+, ĉ2 ∈ R+ such that:

‖vn‖L5(Σ1) ≤ ĉ1, ‖vn‖H1(Ωf , S1) ≤ ĉ2 ∀n ∈ N. (3.4)

Now, let us look at the sequence {|vn+T∗|3(vn+T∗)}n∈N and let us prove
that |vn + T∗|3(vn + T∗) ⇀ |v∗ + T∗|3(v∗ + T∗) in L5/4(Σ1), as n→ +∞.

Since (3.4) holds, then there exists another constant ĉ3 ∈ R+ such that

‖|vn + T∗|3(vn + T∗)‖L5/4(Σ1) ≤ ĉ3 ∀n ∈ N.

Therefore, as L5/4(Σ1) is re�exive, then there must exist at least one L5/4(Σ1)-
weakly convergent subsequence of {|vn + T∗|3(vn + T∗)}n∈N.

If we want to show that |vn + T∗|3(vn + T∗) ⇀ |v∗ + T∗|3(v∗ + T∗) in
L5/4(Σ1), as n → +∞, it is su�cientlly to prove that for every L5/4(Σ1)-
weakly convergent subsequence {|vnk

+T∗|3(vnk
+T∗)}k∈N there will be |vnk

+
T∗|3(vnk

+ T∗) ⇀ |v∗ + T∗|3(v∗ + T∗) in L5/4(Σ1), as k → +∞.
Let us �x arbitrary L5/4(Σ1)-weakly convergent subsequence {|vnk

+
T∗|3(vnk

+ T∗)}k∈N, where |vnk
+ T∗|3(vnk

+ T∗) ⇀ v∗∗ ∈ L5/4(Σ1), as
k → +∞. As embedding of H1(Ωf , S1) into L2(Σ1) is completely con-
tinuous, then ‖vnk

− v∗‖L2(Σ1) → 0, as k → +∞. But then without loss of
generality it is reasonable to assume that vnk

→ v∗ λΣ1-a.e. on Σ1 and thus
|vnk

+ T∗|3(vnk
+ T∗) → |v∗ + T∗|3(v∗ + T∗) λΣ1-a.e. on Σ1, as k → +∞.

Since simultaneously we have that |vnk
+ T∗|3(vnk

+ T∗) ⇀ v∗∗, as k → +∞,
then there must be |v∗ + T∗|3(v∗ + T∗) = v∗∗ (see [GGZ74], for instance).

Now, as both GΣ1Σ1 ∈ L (L5/4(Σ1), L5/4(Σ1)) and |vn + T∗|3(vn +
T∗) ⇀ |v∗ + T∗|3(v∗ + T∗) in L5/4(Σ1), as n → +∞, then also GΣ1Σ1(|vn +
T∗|3(vn +T∗)) ⇀ GΣ1Σ1(|v∗ +T∗|3(v∗ +T∗)) in L5/4(Σ1), as n→ +∞. Since

V̇5(Ωf , S1, Σ1) is embedded in L5(Σ1), then this means that

f2(vn, η) → f2(v∗, η) ∀η ∈ V̇5(Ωf , S1, Σ1),

as n→ +∞.

I

Lemma 3.1.3

The operator B1 + B2 is coercive (see [GGZ74] for de�nition).
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J To prove this lemma, it should be su�ciently to show that there exist
some constants c5 ∈ R+, c6 ∈ [0, +∞) such that:

c5(‖v‖V̇5(Ωf , S1, Σ1) − 1)2 − c6 ≤ f1(v, v) + f2(v, v) (3.5)

for every v ∈ V̇5(Ωf , S1, Σ1), where ‖v‖V̇5(Ωf , S1, Σ1) ≥ 1.

Let us �x arbitrary v ∈ V̇5(Ωf , S1, Σ1). We can write

f2(v, v) =
∫

Σ1

GΣ1Σ1(|v + T∗|3(v + T∗))(v + T∗) dλΣ1

−
∫

Σ1

GΣ1Σ1(|v + T∗|3(v + T∗))T∗ dλΣ1 (3.6)

Due to 2.3.7i we have∫
Σ1

GΣ1Σ1(|v + T∗|3(v + T∗))T∗ dλΣ1

≤ ‖GΣ1Σ1(|v + T∗|3(v + T∗))‖L5/4(Σ1)‖T∗‖L5(Σ1)

≤ ĉ1‖v + T∗‖4
L5(Σ1)‖T∗‖L5(Σ1) ≤ ĉ2‖v + T∗‖4

L5(Σ1)

≤ ĉ2(‖v‖L5(Σ1) + ‖T∗‖L5(Σ1))
4. (3.7)

Due to 2.3.7i, 2.3.7iii, 2.3.7ix we also have∫
Σ1

GΣ1Σ1(|v + T∗|3(v + T∗))(v + T∗) dλΣ1

= σ

∫
Σ1

|v + T∗|5 dλΣ1 − σ

∫
Σ1

HΣ1Σ1(|v + T∗|3(v + T∗))(v + T∗) dλΣ1

≥ σ‖v + T∗‖5
L5(Σ1) − σ‖HΣ1Σ1(|v + T∗|3(v + T∗))‖L5/4(Σ1)‖v + T∗‖L5(Σ1)

≥ σc3‖v + T∗‖5
L5(Σ1) ≥ σc3(‖v‖L5(Σ1) − ‖T∗‖L5(Σ1))

5. (3.8)

Therefore, in view of (3.6), (3.7), (3.8), we will get

f2(v, v) ≥
5∑

i=0

c̃i‖v‖5−i
L5(Σ1)

and, since c̃0 = σc3 ∈ R+, then there exist constants ĉ3 ∈ R+, ĉ4 ∈ [0,+∞)
such that

ĉ3‖v‖5
L5(Σ1) − ĉ4 ≤ f2(v, v). (3.9)

Notice, that both ĉ3, ĉ4 here do not depend on v.
Next, let us de�ne for every τ ∈ [1, +∞) the following set:

Ξτ := {ξ ∈ V̇5(Ωf , S1, Σ1) : ‖ξ‖V̇5(Ωf , S1, Σ1) = τ}.
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Then for arbitrary chosen τ ∈ [1, +∞), vτ ∈ Ξτ due to estimates (3.2), (3.9)
we will have

f1(vτ , vτ ) + f2(vτ , vτ ) ≥ c4(τ − ‖vτ‖L5(Σ1))
2 + ĉ3‖vτ‖5

L5(Σ1) − ĉ4

≥ min
ξ∈Ξτ

{c4(τ − ‖ξ‖L5(Σ1))
2 + ĉ3‖ξ‖5

L5(Σ1)} − ĉ4

≥ min{c4, ĉ3}
2

(τ − 1)2 − ĉ4.

Now, if we choose c5 = min{c4, ĉ3}/2, c6 = ĉ4, then we will get (3.5).

I

Now, Lemma 3.1.1, Lemma 3.1.2, Lemma 3.1.3 together with the fact
that the variational equality (1.6) can be rewritten as the equation (3.1)
imply the following existence result (see [GGZ74]):

Theorem 3.1.4

For every �xed control Th ∈ U the variational equality (1.6) has at least one

solution u ∈ V̇5(Ωf , S1, Σ1) and thus for every �xed control Th ∈ U there
exists at least one feasible state T of the optimal control problem (1.5).

3.2 Boundedness of the state T

In order to prove boundedness of the state T we will use technique introduced
in [Bi051]. Let us start by proving that T is non-negative.

Theorem 3.2.1

If u ∈ V̇5(Ωf , S1, Σ1) is a solution of (1.6) for some �xed Th ∈ U , then
0 ≤ u(x) + T∗(x) a.e. in Ωf . Therefore, if T is a feasible state of (1.5) for
some �xed Th ∈ U , then 0 ≤ T (x) a.e. in Ωf .

J Let us suppose that inequality 0 ≤ u(x) + T∗(x) does not hold a.e. in
Ωf .

Let us de�ne the function

η(x) := min{u(x) + T∗(x), 0} x ∈ Ωf .

According to the previous assumption, η 6= 0. Moreover, since T∗(x) ≥ 0
λS1-a.e. on S1 and u ∈ V̇5(Ωf , S1, Σ1), then η ∈ V̇5(Ωf , S1, Σ1).

As η 6= 0 and η ∈ V̇5(Ωf , S1, Σ1), then∫
Ωf

k1(∇(u+ T∗) · ∇η) dω3 =
∫

Ωf

k1|∇η|2 dω3 > 0. (3.10)

27



In addition, the following inequality will hold:∫
Ωf

k2(∂1(u+ T∗))η dω3 =
∫

Ωf

k2(∂1η)η dω3 =
∫

S2

k2η
2

2
dλS2 ≥ 0. (3.11)

Next, since Th(x) ≥ 0 λΣ2-a.e. on Σ2 and η(x) ≤ 0 λΣ1-a.e. on Σ1, then
2.3.7v, 2.3.7vi will yield

−
∫

Σ1

GΣ2Σ1(|Th|3Th)η dλΣ1 =
∫

Σ1

σHΣ2Σ1(|Th|3Th)η dλΣ1 ≤ 0. (3.12)

Similarly, since Tg(x) ≥ 0 λΣ1-a.e. on Σ1, then we will get∫
Σ1

k3Tgη dλΣ1 ≤ 0. (3.13)

In order to obtain an estimate for the integral∫
Σ1

GΣ1Σ1(|u+ T∗|3(u+ T∗))η dλΣ1

we de�ne the function

γ(x) := max{u(x) + T∗(x), 0} x ∈ Ωf .

Properties of η and γ yield:

|u(x) + T∗(x)|3(u(x) + T∗(x)) = |η(x)|3η(x) + |γ(x)|3γ(x) (3.14)

and
η(x)γ(x) = 0 (3.15)

λΣ1-a.e. on Σ1.
Now, as the operator GΣ1Σ1 is linear, then the equality (3.14) implies∫
Σ1

GΣ1Σ1(|u+ T∗|3(u+ T∗))η dλΣ1

=
∫

Σ1

GΣ1Σ1(|η|3η)η dλΣ1 +
∫

Σ1

GΣ1Σ1(|γ|3γ)η dλΣ1 . (3.16)

From 2.3.7i, 2.3.7iii, 2.3.7ix it follows that∫
Σ1

GΣ1Σ1(|η|3η)η dλΣ1 = σ

∫
Σ1

|η|5 dλΣ1 − σ

∫
Σ1

HΣ1Σ1(|η|3η)η dλΣ1

≥ σ‖η‖5
L5(Σ1) − σ‖HΣ1Σ1(|η|3η)‖L5/4(Σ1)‖η‖L5(Σ1)

≥ σc3‖η‖5
L5(Σ1) ≥ 0. (3.17)
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Since γ(x) ≥ 0, η(x) ≤ 0 λΣ1-a.e. on Σ1, then due to 2.3.7iii, 2.3.7vi, (3.15)
we will get∫

Σ1

GΣ1Σ1(|γ|3γ)η dλΣ1 = σ

∫
Σ1

|γ|3γη dλΣ1 − σ

∫
Σ1

HΣ1Σ1(|γ|3γ)η dλΣ1

= −σ
∫

Σ1

HΣ1Σ1(|γ|3γ)η dλΣ1 ≥ 0. (3.18)

Therefore, the estimates (3.17), (3.18) together with the formula (3.16) will
yield ∫

Σ1

GΣ1Σ1(|u+ T∗|3(u+ T∗))η dλΣ1 ≥ 0. (3.19)

Next, we also have∫
Σ1

k3(u+ T∗)η dλΣ1 =
∫

Σ1

k3η
2 dλΣ1 ≥ 0. (3.20)

Now, by putting the estimates (3.10), (3.11), (3.12), (3.13), (3.19), (3.20)
together, we will get∫

Ωf

(k1(∇(u+ T∗) · ∇η + k2(∂1(u+ T∗))η) dω3

+
∫

Σ1

GΣ1Σ1(|u+ T∗|3(u+ T∗))η dλΣ1 +
∫

Σ1

k3(u+ T∗)η dλΣ1

+
∫

Σ1

GΣ2Σ1(|Th|3Th)η dλΣ1 −
∫

Σ1

k3Tgη dλΣ1 > 0.

But this inequality contradicts with the equality (1.6) for the given η.

I

As we see, the last theorem justi�es using |Tsh|3Tsh instead of T 4
sh to

characterize intensity of emitted radiation by the interface Σ (for example,
see (1.3), (2.4)), since now it turns out that Tsh is non-negative function
for every given Th ∈ U . If we would used T 4

sh instead of |Tsh|3Tsh from the
beginning, then it would be hard to prove coercivity of the operator B1 +B2

and, therefore, also existence of T .
After non-negativity of the state T is proved, we are ready to prove its

boundedness from above.

Theorem 3.2.2

If u ∈ V̇5(Ωf , S1, Σ1) is a solution of (1.6) for some �xed Th ∈ U , then
u(x) + T∗(x) ≤ µ a.e. in Ωf . Therefore, if T is a feasible state of (1.5) for
some �xed Th ∈ U , then T (x) ≤ µ a.e. in Ωf .
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J As it was in the case of Theorem 3.2.1, here we will use similar proof
technique. Therefore, let us suppose that inequality u(x) + T∗(x) ≤ µ does
not hold a.e. in Ωf .

Let us de�ne the functions:

η(x) := max{u(x) + T∗(x)− µ, 0} x ∈ Ωf ,

γ(x) := min{u(x) + T∗(x), µ} x ∈ Ωf .

According to the previous assumption, η 6= 0. Moreover, since T∗(x) ≤ µ
λS1-a.e. on S1 and u ∈ V̇5(Ωf , S1, Σ1), then η ∈ V̇5(Ωf , S1, Σ1).

Next, the following estimates hold∫
Ωf

k1(∇(u+ T∗) · ∇η) dω3 > 0, (3.21)∫
Ωf

k2(∂1(u+ T∗))η dω3 ≥ 0 (3.22)

by analogy with (3.10), (3.11).
In order to estimate the integral∫

Σ1

(GΣ1Σ1(|u+ T∗|3(u+ T∗)) + GΣ2Σ1(|Th|3Th))η dλΣ1

let us introduce the sets:

A := {x ∈ Σ1 : η(x) > 0},
B := {x ∈ Σ1 : η(x) ≤ 0}.

Properties of η and γ yield:

u(x) + T∗(x) = η(x) + γ(x) λΣ1-a.e. on Σ1.

Therefore, due to Theorem 3.2.1:

|u(x) + T∗(x)|3(u(x) + T∗(x)) = (u(x) + T∗(x))4

= η(x)4 + 4η(x)3γ(x) + 6η(x)2γ(x)2 + 4η(x)γ(x)3

+ γ(x)4 λΣ1-a.e. on Σ1. (3.23)

Furhermore, it is easy to check that the following estimates hold:

γ(x) = µ λΣ1-a.e. on the A, (3.24)

γ(x) ≤ µ λΣ1-a.e. on the B. (3.25)
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Now, as the operator GΣ1Σ1 is linear, then the equality (3.23) gives∫
Σ1

GΣ1Σ1(|u+ T∗|3(u+ T∗))η dλΣ1

=
∫

Σ1

GΣ1Σ1(η
4)η dλΣ1 +

∫
Σ1

4GΣ1Σ1(η
3γ)η dλΣ1

+
∫

Σ1

6GΣ1Σ1(η
2γ2)η dλΣ1 +

∫
Σ1

4GΣ1Σ1(ηγ
2)η dλΣ1

+
∫

Σ1

GΣ1Σ1(γ
4)η dλΣ1 . (3.26)

Let us estimate the expression∫
Σ1

GΣ1Σ1(γ
4)η dλΣ1 +

∫
Σ1

GΣ2Σ1(|Th|3Th)η dλΣ1 .

From (3.24), (3.25), 2.3.7vi it follows that HΣ1Σ1(γ
4)(x) ≤ HΣ1Σ1(µ

4)(x)
λΣ1-a.e. on Σ1. Therefore, due to 2.3.7iii we will have:

GΣ1Σ1(γ
4)(x)η(x) = σ(γ4(x)η(x)−HΣ1Σ1(γ

4)(x)η(x))

≥ σ(µ4η(x)−HΣ1Σ1(µ
4)(x)η(x))

= µ4GΣ1Σ1(1)(x)η(x) λΣ1-a.e. on A. (3.27)

In addition, as we have that η(x) = 0 λΣ1-a.e. on B, then:

GΣ1Σ1(γ
4)(x)η(x) = µ4GΣ1Σ1(1)(x)η(x) = 0 λΣ1-a.e. on B. (3.28)

Next, due to B4 and 2.3.7vi we have HΣ2Σ1(|Th|3Th)(x) ≤ HΣ2Σ1(µ
4)(x)

λΣ1-a.e. on Σ1. Therefore, 2.3.7v will yield:

GΣ2Σ1(|Th|3Th)(x)η(x) = −σHΣ2Σ1(|Th|3Th)(x)η(x)

≥ −σHΣ2Σ1(µ
4)(x)η(x) = µ4GΣ2Σ1(1)(x)η(x) λΣ1-a.e. on Σ1. (3.29)

Now, due to (3.27), (3.28), (3.29), 2.3.7viii, we will have:∫
Σ1

GΣ1Σ1(γ
4)η dλΣ1 +

∫
Σ1

GΣ2Σ1(|Th|3Th)η dλΣ1

≥
∫

Σ1

µ4(GΣ1Σ1(1) + GΣ2Σ1(1))η dλΣ1 ≥ 0. (3.30)

Next, let us estimate the integrals:∫
Σ1

GΣ1Σ1(η
iγ4−i)η dλΣ1 i ∈ {1, 2, 3, 4}.
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From (3.24), (3.25), 2.3.7vi it follows thatHΣ1Σ1(η
iγ4−i)(x) ≤ HΣ1Σ1(η

iµ4−i)(x)
λΣ1-a.e. on Σ1. Therefore, 2.3.7iii will give

GΣ1Σ1(η
iγ4−i)(x)η(x) = σ(γ4−i(x)ηi(x)−HΣ1Σ1(η

iγ4−i)(x)η(x))

= σ(µ4−iηi+1(x)−HΣ1Σ1(η
iγ4−i)(x)η(x))

≥ σµ4−i(ηi+1(x)−HΣ1Σ1(η
i)(x)η(x)) λΣ1-a.e. on A. (3.31)

In addition, since η(x) = 0 λΣ1-a.e. on B, then

GΣ1Σ1(η
iγ4−i)(x)η(x) = σµ4−i(ηi+1(x)−HΣ1Σ1(η

i)(x)η(x)) = 0
λΣ1-a.e. on B. (3.32)

Now, due to (3.31), (3.32), 2.3.7i, 2.3.7ix we will have∫
Σ1

GΣ1Σ1(η
iγ4−i)η dλΣ1 ≥

∫
Σ1

σµ4−i(ηi+1 −HΣ1Σ1(η
i)η) dλΣ1

≥ σµ4−i‖η‖i+1
Li+1(Σ1) − σµ4−i‖HΣ1Σ1(η

i)‖L(i+1)/i(Σ1)‖η‖Li+1(Σ1)

≥ σc3µ
4−i‖η‖i+1

Li+1(Σ1) ≥ 0. (3.33)

The estimates (3.30), (3.33) and the formula (3.26) yield:∫
Σ1

(GΣ1Σ1(|u+ T∗|3(u+ T∗)) + GΣ2Σ1(|Th|3Th))η dλΣ1 ≥ 0. (3.34)

Next, since u(x) + T∗(x) ≥ µ λΣ1-a.e. on A and as η(x) = 0 λΣ1-a.e. on
B, then due to B5 we have:

(u(x) + T∗(x)− Tg(x))η(x) ≥ 0 λΣ1-a.e. on Σ1.

Therefore, it follows that∫
Σ1

k3(u+ T∗ − Tg)η dλΣ1 ≥ 0. (3.35)

Now, by putting the estimates (3.21), (3.22), (3.34), (3.35) together, we
will get∫

Ωf

(k1(∇(u+ T∗) · ∇η + k2(∂1(u+ T∗))η) dω3

+
∫

Σ1

GΣ1Σ1(|u+ T∗|3(u+ T∗))η dλΣ1 +
∫

Σ1

k3(u+ T∗)η dλΣ1

+
∫

Σ1

GΣ2Σ1(|Th|3Th)η dλΣ1 −
∫

Σ1

k3Tgη dλΣ1 > 0.

But the last inequality contradicts with the equality (1.6) for the given η.

I

32



3.3 Continuous dependence and uniqueness of so-

lutions

In this section we will prove existence of the control-to-state operator T =
Γ(Th) and obtain its Lipschitz continuity in appropriate functional spaces.
Let us start with the following lemma.

Lemma 3.3.1

For every two arbitrary chosen state-control pairs (T, Th), (T̂ , T̂h) the fol-
lowing inequalities hold:

‖T − T̂‖L∞(Ωf ) ≤ 4µ3‖Th − T̂h‖L∞(Σ2), (3.36)

‖T − T̂‖L∞(Σ1) ≤ 4µ3‖Th − T̂h‖L∞(Σ2). (3.37)

J At the �rst step of the proof let us prove that T (x)− T̂ (x) ≤ 4µ3‖Th −
T̂h‖L∞(Σ2) a.e. in Ωf .

Let us suppose that this inequality does not hold and let us de�ne the
constant

ĉ1 := (4µ3‖Th − T̂h‖L∞(Σ2))
1/4

and the functions:

η(x) := max{T (x)− T̂ (x)− ĉ1, 0} x ∈ Ωf ,

γ(x) := min{T (x)− T̂ (x), ĉ1} x ∈ Ωf .

According to our assumption, η 6= 0. Moreover, since T (x) − T̂ (x) ≤ ĉ1
λS1-a.e. on S1 and (T − T̂ ) ∈ V̇5(Ωf , S1, Σ1), then η ∈ V̇5(Ωf , S1, Σ1).

Since η ∈ V̇5(Ωf , S1, Σ1), then the following equalities must hold (see
(1.6)):∫

Ωf

(k1(∇T · ∇η) + k2(∂1T )η) dω3

+
∫

Σ1

QΣ1Σ1(T )η dλΣ1 = −
∫

Σ1

QΣ2Σ1(Th)η dλΣ1 ,

∫
Ωf

(k1(∇T̂ · ∇η) + k2(∂1T̂ )η) dω3

+
∫

Σ1

QΣ1Σ1(T̂ )η dλΣ1 = −
∫

Σ1

QΣ2Σ1(Th)η dλΣ1 .

33



If we now substract the second equality from the �rst one, then due to
Theorem 3.2.1 we will get∫

Ωf

(k1(∇(T − T̂ ) · ∇η) + k2(∂1(T − T̂ ))η) dω3

+
∫

Σ1

GΣ1Σ1(T
4 − T̂ 4)η dλΣ1 +

∫
Σ1

k3(T − T̂ )η dλΣ1

= −
∫

Σ1

GΣ2Σ1(T
4
h − T̂ 4

h )η dλΣ1 . (3.38)

Since η 6= 0 and η ∈ V̇5(Ωf , S1, Σ1), then the following inequalities will
hold:∫

Ωf

k1(∇(T − T̂ ) · ∇η) dω3 =
∫

Ωf

k1|∇η|2 dω3 > 0, (3.39)∫
Ωf

k2(∂1(T − T̂ ))η dω3 =
∫

Ωf

k2(∂1η)η dω3 =
∫

S2

k2η
2

2
dλS2 ≥ 0. (3.40)

Now, one can easily check that

T (x)− T̂ (x) = η(x) + γ(x) λΣ1-a.e. on Σ1,

therefore, since the operator GΣ1Σ1 is linear, then∫
Σ1

(GΣ1Σ1(T
4 − T̂ 4) + GΣ2Σ1(T

4
h − T̂ 4

h ))η dλΣ1

=
3∑

i=0

4−i∑
j=0

c̃ij

∫
Σ1

GΣ1Σ1(γ
4−i−jηjT̂ i)η dλΣ1

+
∫

Σ1

GΣ2Σ1(T
4
h − T̂ 4

h )η dλΣ1 , (3.41)

where c̃ij ∈ R+ for every i ∈ {0, 1, 2, 3}, j ∈ {0, . . . , 4 − i}. Furthermore,
there will be c̃00 = 1.

Next, let us introduce the sets:

A := {x ∈ Σ1 : η(x) > 0},
B := {x ∈ Σ1 : η(x) ≤ 0}.

Then properties of η and γ then will yield:

γ(x) = ĉ1 λΣ1-a.e. on A, (3.42)

γ(x) ≤ ĉ1 λΣ1-a.e. on B. (3.43)

Now, let us estimate the expression∫
Σ1

GΣ1Σ1(γ
4)η dλΣ1 +

∫
Σ1

GΣ2Σ1(T
4
h − T̂ 4

h )η dλΣ1 .
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From (3.24), (3.25), 2.3.7vi it follows that HΣ1Σ1(γ
4)(x) ≤ HΣ1Σ1(ĉ

4
1)(x)

λΣ1-a.e. on Σ1. Therefore, 2.3.7iii will give

GΣ1Σ1(γ
4)(x)η(x) = σ(γ4(x)η(x)−HΣ1Σ1(γ

4)(x)η(x))

≥ σ(ĉ41η(x)−HΣ1Σ1(ĉ
4
1)(x)η(x))

= ĉ41GΣ1Σ1(1)(x)η(x) λΣ1-a.e. on A. (3.44)

In addition, since we have η(x) = 0 λΣ1-a.e. on B, then

GΣ1Σ1(γ
4)(x)η(x) = ĉ41GΣ1Σ1(1)(x)η(x) = 0 λΣ1-a.e. on B. (3.45)

Next, due to B4, 2.3.7vi we will have HΣ2Σ1(T
4
h − T̂ 4

h )(x) ≤ HΣ2Σ1(4µ
3‖Th−

T̂h‖L∞(Σ2))(x) λΣ1-a.e. on Σ1. Therefore, 2.3.7v will yield

GΣ2Σ1(T
4
h − T̂ 4

h )(x)η(x) = −σHΣ2Σ1(T
4
h − T̂ 4

h )(x)η(x)

≥ −σHΣ2Σ1(ĉ
4
1)(x)η(x) = ĉ41GΣ2Σ1(1)(x)η(x) λΣ1-a.e. on Σ1. (3.46)

Now, due to (3.44), (3.45), (3.46), 2.3.7viii, we will have:∫
Σ1

GΣ1Σ1(γ
4)η dλΣ1 +

∫
Σ1

GΣ2Σ1(T
4
h − T̂ 4

h )η dλΣ1

≥
∫

Σ1

ĉ41(GΣ1Σ1(1) + GΣ2Σ1(1))η dλΣ1 ≥ 0. (3.47)

Next, let us estimate the integrals∫
Σ1

GΣ1Σ1(γ
4−i−jηjT̂ i)η dλΣ1 ,

where i ∈ {0, 1, 2, 3}, j ∈ {0, . . . , 4 − i} and i, j are not simultaneously
zeros. For this purpose let us de�ne the functions fij := ηj T̂ i. Then from

(3.42), (3.43), 2.3.7vi it follows thatHΣ1Σ1(γ
4−i−jfij)(x) ≤ HΣ1Σ1(ĉ

4−i−j
1 fij)(x)

λΣ1-a.e. on Σ1. Therefore, 2.3.7iii will give

GΣ1Σ1(γ
4−i−jfij)(x)η(x)

= σ(γ4−i−j(x)fij(x)−HΣ1Σ1(γ
4−i−jfij)(x))η(x)

= σ(ĉ4−i−j
1 fij(x)−HΣ1Σ1(γ

4−i−jfij)(x))η(x)

≥ σĉ4−i−j
1 (fij(x)−HΣ1Σ1(fij)(x))η(x) λΣ1-a.e. on A. (3.48)

In addition, since η(x) = 0 λΣ1-a.e. on B, then

GΣ1Σ1(γ
4−i−jfij)(x)η(x) = σĉ4−i−j

1 (fij(x)−HΣ1Σ1(fij)(x))η(x) = 0
λΣ1-a.e. on B. (3.49)
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Now, due to (3.48), (3.49), 2.3.7i, 2.3.7ix we will have∫
Σ1

GΣ1Σ1(γ
4−i−jηjT̂ i)η dλΣ1 ≥

∫
Σ1

σĉ4−i−j
1 (fij −HΣ1Σ1(fij))η dλΣ1

≥ σĉ4−i−j
1 ‖η‖L1(Σ1)(‖fij‖L∞(Σ1) − ‖HΣ1Σ1(fij)‖L∞(Σ1))

≥ σc3ĉ
4−i−j
1 ‖η‖L1(Σ1)‖fij‖L∞(Σ1) ≥ 0. (3.50)

Now, the estimates (3.47), (3.50) together with the formula (3.41) imply
that∫

Σ1

GΣ1Σ1((T
4 − T̂ 4))η dλΣ1 +

∫
Σ1

GΣ2Σ1(T
4
h − T̂ 4

h )η dλΣ1 ≥ 0. (3.51)

Next, since T (x)− T̂ (x) ≥ ĉ1 λΣ1-a.e. on A and η(x) = 0 λΣ1-a.e. on B,
then due to B5 we have

(T (x)− T̂ (x))η(x) ≥ 0 λΣ1-a.e. on Σ1.

Therefore, it follows that∫
Σ1

k3(T − T̂ )η dλΣ1 ≥ 0. (3.52)

Now, by putting the estimates (3.39), (3.40), (3.51), (3.52) together, we
will get∫

Ωf

(k1(∇(T − T̂ ) · ∇η) + k2(∂1(T − T̂ ))η) dω3

+
∫

Σ1

GΣ1Σ1(T
4 − T̂ 4)η dλΣ1 +

∫
Σ1

k3(T − T̂ )η dλΣ1

+
∫

Σ1

GΣ2Σ1(T
4
h − T̂ 4

h )η dλΣ1 > 0.

But the last inequality contradicts with the equality (3.41), what shows that
there must hold

T (x)− T̂ (x) ≤ 4µ3‖Th − T̂h‖L∞(Σ2) a.e. in x ∈ Ωf . (3.53)

Next, by performing similar analysis, we can prove that

T̂ (x)− T (x) ≤ 4µ3‖Th − T̂h‖L∞(Σ2) a.e. in x ∈ Ωf . (3.54)

But then by putting (3.53), (3.54) together we will get (3.36), (3.38).

I

Now, by using Lemma 3.3.1 it is easy to get the following result.
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Theorem 3.3.2

There exists an unique de�ned control-to-state operator T = Γ(Th) of the
optimal control problem (1.5) as mapping from U to H1(Ωf ). Furthermore,

for every two arbitrary chosen controls Th ∈ U , T̂h ∈ U the following in-
equalities hold:

‖Γ(Th)− Γ(T̂h)‖L∞(Ωf ) ≤ 4µ3‖Th − T̂h‖L∞(Σ2),

‖Γ(Th)− Γ(T̂h)‖L∞(Σ1) ≤ 4µ3‖Th − T̂h‖L∞(Σ2).

3.4 Linearized equation

In order to get the �nal result - Fréchet di�erentiability of the cost func-
tional J (Γ(Th)) (see the formula (1.10)), let us prove some results about a
"linearized" operator of B1 + B2.

Let us de�ne the functionals:

f4(v, η, ψ) :=
∫

Σ1

GΣ1Σ1(|ψ|v)η dλΣ1 v, η ∈ H1(Ωf , S1), ψ ∈ L∞(Σ1),

f5(w, η, ϑ) :=
∫

Σ1

GΣ2Σ1(|ϑ|w)η dλΣ1 w, ϑ ∈ L∞(Σ2), η ∈ H1(Ωf , S1).

By using embedding theorems for H1(Ωf , S1) and by taking into account
properties of the operators GΣ1Σ1 , GΣ2Σ1 , one can get that f4(v, · , ψ) ∈
H∗

1 (Ωf , S1) for every �xed v ∈ H1(Ωf , S1), ψ ∈ L∞(Σ1) and f5(w, · , ϑ) ∈
H∗

1 (Ωf , S1) for every �xed w, ϑ ∈ L∞(Σ2). Therefore, if we de�ne the
following operators:

B4[ψ](v) := f4(v, · , ψ),
B5[ϑ](w) := f5(w, · , ϑ),

then B4[ψ] : H1(Ωf , S1) 7→ H∗
1 (Ωf , S1) for every �xed ψ ∈ L∞(Σ1) and

B5[ϑ] : L∞(Σ2) 7→ H∗
1 (Ωf , S1) for every �xed ϑ ∈ L∞(Σ2). Furthermore,

B4[ψ] ∈ L (H1(Ωf , S1), H∗
1 (Ωf , S1)), B5[ϑ] ∈ L (L∞(Σ2), H∗

1 (Ωf , S1)). In
addition, it is easy to see that also B1 ∈ L (H1(Ωf , S1), H∗

1 (Ωf , S1)).
In view of the previous considerations, it turns out that B1 + B4[ψ] ∈

L (H1(Ωf , S1), H∗
1 (Ωf , S1)) for every �xed ψ ∈ L∞(Σ1). In order, to prove

existence of an inverse operator (B1 + B4[ψ])−1 for an arbitrary chosen ψ ∈
L∞(Σ1), let us obtain some temporary results.

Lemma 3.4.1

The equation
B1(ξ) + B4[ψ](ξ) = 0 (3.55)

can have only a trivial solution ξ for every �xed parameter ψ ∈ L∞(Σ1).
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J Let us �x arbitrary ψ ∈ L∞(Σ1) and let us assume that the statement of
this lemma does not hold and, therefore, there exists some nontrivial solution
ξ ∈ H1(Ωf , S1) of (3.55).

It is easy to prove that the equality |ψ(x)|ξ(x) = 0 can not hold λΣ1-a.e.
on Σ1, because, if it would be so, then due to linearity of GΣ1Σ1 there will
be ∫

Σ1

GΣ1Σ1(|ψ|ξ)η dλΣ1 = 0

for every η ∈ H1(Ωf , S1), i.e. B4[ψ](ξ) = 0. Therefore, due to the equa-
tion (3.55) there will be B1(ξ) = 0. The estimate (3.2) in its turn (see
Lemma 3.1.1) yields that there exists B−1

1 ∈ L (H∗
1 (Ωf , S1), H1(Ωf , S1)),

and, therefore, it follows that ξ(x) = 0 a.e. in Ωf . But this result contradicts
with the assumption that ξ was a nontrivial solution of (3.55).

Let us de�ne the functions:

ητ (x) := max{min{ξ(x)/τ, 1},−1} x ∈ Ωf , τ ∈ (0, 1]
η(x) := sign{ξ(x)} x ∈ Ωf ,

γτ (x) := max{ξ(x), τ}+ min{ξ(x),−τ} x ∈ Ωf , τ ∈ (0, 1].

It is easy to see that ητ ∈ H1(Ωf , S1), γτ ∈ H1(Ωf , S1) for every �xed
τ ∈ (0, 1].

Now, we will have the following estimates:∫
Ωf

k1(∇ξ · ∇ητ ) dω3 ≥
∫

Ωf

k1τ |∇ητ |2 dω3 ≥ 0 (3.56)

and∫
Ωf

k2(∂1ξ)ητ dω3 =
∫

Ωf

k2(τ(∂1ητ )ητ + (∂1|γτ |)) dω3

=
∫

S2

k2(
τη2

τ

2
+ |γτ |) dλS2 ≥ 0. (3.57)

Next, 2.3.7i, 2.3.7iii, 2.3.7vii, 2.3.7ix give∫
Σ1

GΣ1Σ1(|ψ|ξ)η dλΣ1 =
∫

Σ1

|ψ|ξGΣ1Σ1(η) dλΣ1

= σ(
∫

Σ1

|ψ|ξη dλΣ1 −
∫

Σ1

|ψ|ξHΣ1Σ1(η) dλΣ1)

≥ ‖ψξ‖L1(Σ1) − ‖ψξ‖L1(Σ1)‖HΣ1Σ1(η)‖L∞(Σ1)

≥ c3‖ψξ‖L1(Σ1) > 0. (3.58)

Since ‖ητ − η‖L1(Σ1) → 0, as τ → 0, then also∫
Σ1

GΣ1Σ1(|ψ|ξ)ητ dλΣ1 →
∫

Σ1

GΣ1Σ1(|ψ|ξ)η dλΣ1 ,
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as τ → 0. But then due to (3.58) there must exist some τ0 ∈ (0, 1] such that
the following estimate holds∫

Σ1

GΣ1Σ1(|ψ|ξ)ητ dλΣ1 > 0 (3.59)

for every τ ∈ (0, τ0].
In addition, we also have the inequality∫

Σ1

k3ξητ dλΣ1 ≥ 0. (3.60)

Now, by putting the estimates (3.56), (3.57), (3.59), (3.60) together, we
will get∫

Ωf

(k1(∇ξ · ∇ητ ) + k2(∂1ξητ )) dω3 +
∫

Σ1

k3ξητ dλΣ1

+
∫

Σ1

GΣ1Σ1(|ψ|ξ)ητ dλΣ1 > 0

for every τ ∈ (0, τ0]. But the last inequality contradicts with the equation
(3.55) and this shows that the assumption about non-triviality of ξ was
wrong.

I

Lemma 3.4.2

The operator B4[ψ] is completely continuous for every �xed parameter ψ ∈
L∞(Σ1).

J Let us �x arbitrary ψ ∈ L∞(Σ1) and a bounded sequence {vn}n∈N in
H1(Ωf , S1). As embedding of H1(Ωf , S1) in L2(Σ1) is completely contin-
uous, then there exists some subsequence {vnk

}k∈N and v∗ ∈ L2(Σ1) such
that vnk

→ v∗ in L2(Σ1), as k → +∞. Next, due to 2.3.7i we will have that
GΣ1Σ1(|ψ|vnk

) → GΣ1Σ1(|ψ|v∗) in L2(Σ1), as k → +∞. Finally, as L2(Σ1)
is embedded in H∗

1 (Ωf , S1), then this will yield that B4[ψ](vnk
) → B4[ψ](v∗)

in H∗
1 (Ωf , S1), as k → +∞.

I

Now, on basis of the previous two lemmas it is possible to prove the
following result.

Lemma 3.4.3

For every �xed parameter ψ ∈ L∞(Σ1) there exists the inverse operator
(B1 + B4[ψ])−1 ∈ L (H∗

1 (Ωf , S1), H1(Ωf , S1)).

39



J Let us �x arbitrary ψ ∈ L∞(Σ1). Due to the estimate (3.2) (see Lemma 3.1.1),
there exists B−1

1 ∈ L (H∗
1 (Ωf , S1), H1(Ωf , S1)). Therefore, there will hold

the following equalities:

B1 + B4[ψ] = B1(I + B−1
1 B4[ψ]), (3.61)

I + B−1
1 B4[ψ] = B−1

1 (B1 + B4[ψ]). (3.62)

Since the opeator B4[ψ] is completely continuous (see Lemma 3.4.2),
then also the operator B−1

1 B4[ψ] will be completely continuous. Next, the
equality (3.62) and Lemma 3.4.1 imply that an equation

ξ + B−1
1 B4[ψ](ξ) = 0

can have only trivial solutions. But then, due to Fredholm alternative, there
will exist the bounded inverse (I + B−1

1 B4[ψ])−1.
Finally, since there exist B−1

1 and (I + B−1
1 B4[ψ])−1, then the equality

(3.61) implies existence of bounded inverse (B1 + B4[ψ])−1.

I

3.5 Fréchet di�erentiability

In this section we will �nalize analysis of the optimal control problem (1.5).
As a result, we will prove Fréchet di�erentiability of the control-to-state
operator T = Γ(Th) and the cost functional J (Γ(Th)) (see the formula
(1.10)).

Let us start with the Fréchet di�erentiability of the control-to-state op-
erator T = Γ(Th).

Theorem 3.5.1

For every two arbitrary chosen controls Th ∈ U , T̂h ∈ U the following formula
holds:

‖Γ(T̂h)−Γ(Th)−Λ[Th](T̂h−Th)‖H1(Ωf , S1) = o[Th](‖T̂h−Th‖L∞(Σ2)), (3.63)

where Λ[Th] ∈ L (L∞(Σ2), H1(Ωf , S1)).

J Let us �x arbitrary state-control pairs (T, Th), (T̂ , T̂h) and let us tem-
porarily denote:

u = T − T∗, û = T̂ − T∗, ψ = 4|T |3, ϑ = 4|Th|3.

Lemma 3.4.3 and the equation (3.1) imply that

Γ(T̂h)− Γ(Th)− (B1 + B4[ψ])−1(B3(T̂h)−B3(Th))

= (T̂ − T )− (B1 + B4[ψ])−1(B3(T̂h)−B3(Th))

= (B1 + B4[ψ])−1((B1 + B4[ψ])(T̂ − T )− (B1 + B2)(û) + (B1 + B2)(u))

= (B1 + B4[ψ])−1(B4[ψ](T̂ − T )−B2(û) + B2(u)).
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By using the last equality, we can get that

‖Γ(T̂h)− Γ(Th)− (B1 + B4[ψ])−1(B3(T̂h)−B3(Th))‖H1(Ωf , S1)

≤ ‖(B1 + B4[ψ])−1‖L (H∗
1 (Ωf , S1), H1(Ωf , S1))

× ‖B2(û)−B2(u)−B4[ψ](T̂ − T )‖H∗
1 (Ωf , S1). (3.64)

Next, due to (3.64) and Lemma 3.3.1, we can write

‖Γ(T̂h)− Γ(Th)− (B1 + B4[ψ])−1(B3(T̂h)−B3(Th))‖H1(Ωf , S1)

‖T̂h − Th‖L∞(Σ2)

≤ ĉ1
‖B2(û)−B2(u)−B4[ψ](T̂ − T )‖H∗

1 (Ωf , S1)

‖T̂ − T‖L∞(Σ1)

≤ ĉ2
‖GΣ1Σ1(|T̂ |3T̂ − |T |3T − 4|T |3(T̂ − T ))‖L∞(Σ1)

‖T̂ − T‖L∞(Σ1)

. (3.65)

At the same time the following formula holds:

|T̂ |3T̂ − |T |3T − 4|T |3(T̂ − T )

=
∫ 1

0
12|T + t(T̂ − T )|(T + t(T̂ − T ))(T̂ − T )2(1− t) dt.

If we now put the last equality in the inequality (3.65), then due to Theo-
rem 3.2.1, Theorem 3.2.2 and the assertion 2.3.7i we will get that

‖Γ(T̂h)− Γ(Th)− (B1 + B4[ψ])−1(B3(T̂h)−B3(Th))‖H1(Ωf , S1)

‖T̂h − Th‖L∞(Σ2)

≤ ĉ3
‖
∫ 1
0 12|T + t(T̂ − T )|(T + t(T̂ − T ))(T̂ − T )2(1− t) dt‖L∞(Σ1)

‖T̂ − T‖L∞(Σ1)

≤ ĉ4‖T̂ − T‖L∞(Σ1). (3.66)

Next, let us temporarily de�ne the functional

f(η) :=
∫

Σ1

GΣ2Σ1($(T̂h − Th)2)η dλΣ1 η ∈ H1(Ωf , S1),

where

$ =
∫ 1

0
12|Th + t(T̂h − Th)|(Th + t(T̂h − Th))(1− t) dt.

By using embedding theorems for H1(Ωf , S1) and by taking into account

properties of the operator GΣ2Σ1 and the functions Th, T̂h, one can get that
f ∈ H∗

1 (Ωf , S1) and

‖f‖H∗
1 (Ωf , S1) ≤ ĉ5‖GΣ2Σ1($(T̂h−Th)2)‖L∞(Σ2) ≤ ĉ6‖T̂h−Th‖2

L∞(Σ2). (3.67)
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Since the following formula holds:

|T̂h|3T̂h − |Th|3Th − 4|Th|3(T̂h − Th)

=
∫ 1

0
12|Th + t(T̂h − Th)|(Th + t(T̂h − Th))(T̂h − Th)2(1− t) dt,

then we can write:

B3(T̂h)−B3(Th) = −B5[ϑ](T̂h − Th)− f(η). (3.68)

Now, from (3.66), (3.67), (3.68) it will follow that

‖Γ(T̂h)− Γ(Th)− (B1 + B4[ψ])−1(−B5[ϑ](T̂h − Th))‖H1(Ωf , S1)

‖T̂h − Th‖L∞(Σ2)

≤ ĉ4‖T̂ − T‖L∞(Σ1) + ĉ7
‖f‖H∗

1 (Ωf , S1)

‖T̂h − Th‖L∞(Σ2)

≤ ĉ4‖T̂ − T‖L∞(Σ1) + ĉ8‖T̂h − Th‖L∞(Σ2).

It is easy to see that the last inequality yields statement of this theorem, if
one will choose

Λ[Th] = −(B1 + B4[ψ])−1B5[ϑ].

I

Finally, one can easily check that the cost functional J (T ) is Fréchet
di�erentiable as mapping from H1(Ωf , S1) to R. If we now combine this
result with the previous theorem, then by applying the chain rule for the
functional J (Γ(Th)) it is easy to get the following theorem.

Theorem 3.5.2

For every two arbitrary chosen controls Th ∈ U , T̂h ∈ U the following formula
holds (see the formula (1.10)):

J (Γ(T̂h))− J (Γ(Th)) = `[Th](T̂h − Th) + o[Th](‖T̂h − Th‖L∞(Σ2)),

where `[Th] ∈ L∗∞(Σ2).
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Chapter 4

Analysis of reduced problem

4.1 Boundedness of gradient

Before we start sensitivity analysis of the optimal control problem (1.14)
and justify transition from the original problem (1.5) to reduced one, let us
de�ne the following functions:

h(x) := −GΣ2Σ1(T
4
h )(x) + k3Tg(x) + σHΣ1Σ1(T

4)(x) x ∈ Σ1,

hi(x) := −GΣ2Si(T
4
h )(x) + k3Tg(x) + σHΣ1Si(T

4)(x) x ∈ Si,

gi(x) := −GΣ2Si(T
4
h )(x) + k3Tg(x) + σHΣ0Si(T

4)(x) x ∈ Si,

fi(x) := −GΣ2Si(T
4
h )(x) + k3Tg(x) x ∈ Si,

where i ∈ {3, 4, 5, 6}. Due to Theorem 3.2.1 and Theorem 3.2.2 we have
0 ≤ T (x) ≤ µ λΣ1-a.e. on Σ1. But this fact together with properties
of the operators GΣ2Σ1 , GΣ2Si , HΣ1Σ1 , HΣ1Si , HΣ0Si (see Lemma 2.3.7)
and B1, B2, B4, B5 will give boundedness of the functions h, hi, gi, fi

(i ∈ {3, 4, 5, 6}):

h ∈ L∞(Σ1), 0 ≤ h(x) ≤ 2µ4 + k3µ λΣ1-a.e. on Σ1,

hi ∈ L∞(Si), 0 ≤ hi(x) ≤ 2µ4 + k3µ λSi-a.e. on Si,

gi ∈ L∞(Si), 0 ≤ gi(x) ≤ 2µ4 + k3µ λSi-a.e. on Si,

fi ∈ L∞(Si), 0 ≤ fi(x) ≤ µ4 + k3µ λSi-a.e. on Si.

Now, one can easily check that by replacing u+ T∗ with T it is possible
to rewrite the variational equality (1.6) as∫

Ωf

(k1(∇T · ∇η) + k2(∂1T )η) dω3

+
∫

Σ1

σT 4η dλΣ1 +
∫

Σ1

k3Tη dλΣ1

=
∫

Σ1

hη dλΣ1 ∀η ∈ V̇5(Ωf , S1, Σ1). (4.1)
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Let us also introduce the following functions:

g+(x1, x2, x3) :=
g5(x1, x2) + g6(x1, x2)

2
(x1, x2, x3) ∈ Ωf ,

g−(x1, x2, x3) :=
g5(x1, x2)− g6(x1, x2)

2
(x1, x2, x3) ∈ Ωf ,

ġ(x1, x2, x3) :=
Tδ1/4(g5)(x1, x2) + Tδ1/4(g6)(x1, x2)

2
(x1, x2, x3) ∈ Ωf ,

ξ(x1, x2, x3) := min{x1 min{l1/2
1 , l

1/2
2 }

l1δ1/2
, 1} (x1, x2, x3) ∈ Ωf ,

ĝ(x1, x2) :=
g5(x1, x2) + g6(x1, x2)

2
(x1, x2) ∈ Qf ,

f̂(x1, x2) :=
f5(x1, x2) + f6(x1, x2)

2
(x1, x2) ∈ Qf .

Let us recall that Qf = (−l1, l1)×(−l2, l2), but Tτ is molli�er (see Chapter 2
for more details). After applying results of Lemma 2.4.1 it is possible to get
that ∫

Ωf

|∇ġ|2 dω3 ≤ 144c28l1l2δ
1/2, (4.2)

∫
Ωf

|∇ξ|2 dω3 ≤
4 min{l1/2

1 , l
1/2
2 }l2

l1
δ1/2. (4.3)

Now, let us prove boundedness of ‖|∇T |2ξ2‖L1(Ωf ).

Lemma 4.1.1

There exists a constant c9 ∈ [0, +∞) such that for every state-control pair
(T, Th) of (1.5) there is ∫

Ωf

|∇T |2ξ2 dω3 ≤ c9. (4.4)

Furthermore, here c9 does not depend on the parameter δ.

J Let us de�ne the function

η := Tξ2.

It is easy to see that η ∈ V̇5(Ωf , S1, Σ1).
Since the functions T , h, η are uniformly bounded with respect to δ, then

|
∫

Σ1

σT 4η dλΣ1 |+ |
∫

Σ1

k3Tη dλΣ1 |+ |
∫

Σ1

hη dλΣ1 | ≤ ĉ1. (4.5)
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Next, for arbitrary chosen τ ∈ R+ we have

|
∫

Ωf

k2(∂1T )η dω3| = |
∫

Ωf

k2(∂1T )Tξ2 dω3|

≤ k2τ

∫
Ωf

(∂1T )2ξ2 dω3 +
k2

4τ

∫
Ωf

T 2ξ2 dω3

and, therefore, if we choose τ = k1/4k2, then due to uniform boundedness
of T with respect to δ we will have

|
∫

Ωf

k2(∂1T )η dω3| ≤
k1

4

∫
Ωf

|∇T |2ξ2 dω3 + ĉ2. (4.6)

For every arbitrary chosen τ ∈ R+ we also have∫
Ωf

k1(∇T · ∇η) dω3 ≥ k1

∫
Ωf

|∇T |2ξ2 dω3

− k1τ

∫
Ωf

|∇T |2ξ2 dω3 −
k1

4τ

∫
Ωf

|∇ξ|2T 2 dω3

and, if we choose τ = 1/4 this time, then due to uniform boundedness of T
with respect to δ and the estimate (4.3) we will have∫

Ωf

k1(∇T · ∇η) dω3 ≥
3k1

4

∫
Ωf

|∇T |2ξ2 dω3 − ĉ3, (4.7)

Now, since η ∈ V̇5(Ωf , S1, Σ1), then the integral equality (4.1) must hold
for this η. If we will combine (4.1) with the estimates (4.5), (4.6), (4.7), then
this will yield (4.4) for some c9 ∈ [0, +∞). Here c9 will be independent on
the parameter δ (ĉ1, ĉ2, ĉ3 are non-negative and independent on δ).

I

4.2 Asymptotic behaviour of T in domain

In this section we investigate asymptotic behaviour of the state T in the
degenerating domain Ωf , as δ → 0.

Lemma 4.2.1

For every �xed Th ∈ U the corresponding state T of (1.5) has the following
asymptotic behaviour:

1
δ

∫
Ωf

(σT 4 + k3T − g+)2 dω3 → 0,

as δ → 0.
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J Let us de�ne the function

η := (σT 4 + k3T − ġ)ξ2.

It is easy to see that η ∈ V̇5(Ωf , S1, Σ1).
Since the estimates (4.2), (4.3), (4.4) hold and the functions T , ġ are

uniformly bounded with respect to δ, then∫
Ωf

|∇η|2 dω3 ≤
∫

Ωf

48(σT 3 + k3)2ξ4|∇T |2 dω3 +
∫

Ωf

12ξ4|∇ġ|2 dω3

+
∫

Ωf

24(σT 4 + k3T − ġ)2ξ2|∇ξ|2 dω3 ≤ ĉ1 (4.8)

Next, due to the same reasons we will have∫
Ωf

k1(∇T · ∇η) dω3

= k1

∫
Ωf

(4σT 3 + k3)ξ2|∇T |2 dω3 − k1

∫
Ωf

ξ2(∇T · ∇ġ) dω3

+ k1

∫
Ωf

2(σT 4 + k3T − ġ)ξ(∇T · ∇ξ) dω3

≥ −k1(
∫

Ωf

ξ2|∇ġ|2 dω3)1/2(
∫

Ωf

|∇T |2ξ2 dω3)1/2

− k1(
∫

Ωf

(σT 4 + k3T − ġ)2|∇ξ|2 dω3)1/2(
∫

Ωf

|∇T |2ξ2 dω3)1/2

≥ −ĉ2δ1/4, (4.9)

∫
Ωf

k2(∂1T )η dω3 = k2

∫
Ωf

(∂1T )(σT 4 + k3T − ġ)ξ2 dω3

≥ −k2(
∫

Ωf

(σT 4 + k3T − ġ)2ξ2 dω3)1/2(
∫

Ωf

|∇T |2ξ2 dω3)1/2

≥ −ĉ3δ1/2. (4.10)

Now, let us get an upper estimate for the integral

−
∫

Σ1

σT 4η dλΣ1 .

By using the Gauss's formula we can rewrite this integral as

−
∫

Σ1

σT 4η dλΣ1 = −
∫

Ωf

σ

δ
(∂3(T 4ηx3)) dω3 −

∫
S3∪S4

σT 4η dλS3∪S4 . (4.11)
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We also have the following expansion:∫
Ωf

σ

δ
(∂3(T 4ηx3)) dω3 =

∫
Ωf

4σ
δ
T 3(∂3T )ηx3 dω3

+
∫

Ωf

σ

δ
T 4(∂3η)x3 dω3 +

1
δ

∫
Ωf

σT 4η dω3. (4.12)

Since the estimates (4.4), (4.8) hold and the functions T , ġ, η are uniformly
bounded with respect to δ, then∫

Ωf

4σ
δ
T 3(∂3T )ηx3 dω3

≥ −[(
∫

Ωf

16(
σ

δ
x3)2T 6(σT 4 + k3T − ġ)2ξ2 dω3)1/2

× (
∫

Ωf

|∇T |2ξ2 dω3)1/2]

≥ −ĉ4(
∫

Ωf

(
σ

δ
x3)2 dω3)1/2 ≥ −ĉ5δ1/2, (4.13)

∫
Ωf

σ

δ
T 4(∂3η)x3 dω3

≥ −(
∫

Ωf

(
σ

δ
x3)2T 8 dω3)1/2(

∫
Ωf

|∇η|2 dω3)1/2

≥ −ĉ6(
∫

Ωf

(
σ

δ
x3)2 dω3)1/2 ≥ −ĉ7δ1/2 (4.14)

and ∫
S3∪S4

σT 4η dλS3∪S4 ≥ −ĉ8δ. (4.15)

Now, if we put (4.11), (4.12), (4.13), (4.14), (4.15) together, then �nally we
will get

−
∫

Σ1

σT 4η dλΣ1 ≤ −1
δ

∫
Ωf

σT 4η dω3 + ĉ9δ
1/2. (4.16)

Next, by using Gauss's formula and estimation techniques introduced
before, one can get the following estimates:∫

Σ1

hη dλΣ1 ≤
1
δ

∫
Ωf

g+η dω3 + ĉ10δ
1/2, (4.17)

−
∫

Σ1

k3Tη dλΣ1 ≤ −1
δ

∫
Ωf

k3Tη dω3 + ĉ11δ
1/2. (4.18)
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Now, since η ∈ V̇5(Ωf , S1, Σ1), then the integral equality (4.1) must hold
for this η. If we will combine (4.1) with estimates (4.9), (4.10), (4.16), (4.17),
(4.18), then this will yield the following inequality for some ĉ12 ∈ [0, +∞),
which will be independent on the parameter δ (ĉ2, ĉ3, ĉ9, ĉ10, ĉ11 are non-
negative and independent on δ):

−ĉ12δ
1/4 ≤ 1

δ

∫
Ωf

(g+ − σT 4 − k3T )η dω3,

i.e.
1
δ

∫
Ωf

(σT 4 + k3T − g+)η dω3 ≤ ĉ12δ
1/4. (4.19)

If we now consider the set Ω
′
f := {x ∈ Ωf : ξ(x) = 1}, then (4.19) will imply

1
δ

∫
Ω
′
f

(σT 4 + k3T − g+)2 dω3 ≤ ĉ12δ
1/4

+
1
δ

∫
Ω
′
f

(σT 4 + k3T − g+)|g+ − ġ| dω3

and, therefore, for an arbitrary τ ∈ R+ we will have

1
δ

∫
Ω
′
f

(σT 4 + k3T − g+)2 dω3 ≤ ĉ12δ
1/4

+
τ

δ

∫
Ω
′
f

(σT 4 + k3T − g+)2 dω3 +
1

4τδ

∫
Ωf

(g+ − ġ)2 dω3.

Now, if we put τ = 1/2 in the last expression, then due to uniform bound-
edness of T with respect to δ we will get

1
δ

∫
Ω
′
f

(σT 4 + k3T − g+)2 dω3

≤ 2ĉ12δ
1/4 +

ĉ13
δ

∫
Ωf

(g+ − ġ)2 dω3 ≤ 2ĉ12δ1/4

+
ĉ13

2

∫
S5

(Tδ1/4(g5)− g5)2 dλS5 +
ĉ13
2

∫
S6

(Tδ1/4(g6)− g6)2 dλS6 .

But the last inequality together with Lemma 2.4.1 imply that

1
δ

∫
Ω
′
f

(σT 4 + k3T − g+)2 dω3 → 0, (4.20)

as δ → 0. At the same time Ωf\Ω
′
f = (0, l1δ1/2

min{l1/2
1 , l

1/2
2 }

)× (−l2, l2)× (−δ, δ),
and, since the functions T , g+ are uniformly bounded with respect to δ, then∫

Ωf\Ω
′
f

(σT 4 + k3T − g+)2 dω3 ≤ ĉ14δ
3/2,

48



and, therefore, we will have that

1
δ

∫
Ωf\Ω

′
f

(σT 4 + k3T − g+)2 dω3 → 0, (4.21)

as δ → 0.
If we now put the formulas (4.20), (4.21) together, then this will yield

the statement of this lemma.

I

4.3 Asymptotic behaviour of T on boundary

In this section we investigate asymptotic behaviour of the state T on the
boundary of the degenerating domain Ωf , as δ → 0.

Lemma 4.3.1

For every �xed Th ∈ U the corresponding state T of (1.5) has the following
asymptotic behaviour on the boundary:∫

Σ0

(σT 4 + k3T − g+)2 dλΣ0 → 0,

as δ → 0.

J Proof of this lemma is similar to the proof of the previous lemma. There-
fore, let us de�ne the function

η := (σT 4 + k3T − ġ)ξ2.

It is easy to see that η ∈ V̇5(Ωf , S1, Σ1).
Next, the following estimates hold∫

Ωf

|∇η|2 dω3 ≤ ĉ1, (4.22)∫
Ωf

k1(∇T · ∇η) dω3 ≥ −ĉ2δ1/4, (4.23)∫
Ωf

k2(∂1T )η dω3 ≥ −ĉ3δ1/2 (4.24)

by analogy with (4.8), (4.9), (4.10).
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Now, since the functions T , η are uniformly bounded with respect to δ
on the surface Σ0, then we get that

−
∫

Σ1

σT 4η dλΣ1

≤ −
∫

S3∪S4

σT 4η dλS3∪S4 −
∫

S5∪S6

σT 4η dλS5∪S6

≤ ĉ4δ −
∫

S5

σT 4η dλS5 −
∫

S6

σT 4η dλS6 . (4.25)

Similarly one can get∫
Σ1

(h− k3T )η dλΣ1 ≤ ĉ5δ

+
∫

S5

(g5 − k3T )η dλS5 +
∫

S6

(g6 − k3T )η dλS6 . (4.26)

Since η ∈ V̇5(Ωf , S1, Σ1), then the integral equality (4.1) must hold for
this η. If we now combine it with the estimates (4.23), (4.24), (4.25), (4.26),
then the following inequality will hold:

− ĉ6δ
1/4 ≤

∫
S5

(g5 − σT 4 − k3T )η dλS5

+
∫

S6

(g6 − σT 4 − k3T )η dλS6

=
∫

Σ0

(g+ − σT 4 − k3T )η dλΣ0

−
∫

S5

g−η dλS5 +
∫

S6

g−η dλS6 . (4.27)

Next, by using of Gauss's formula, we will have

−
∫

S5

g−η dλS5 +
∫

S6

g−η dλS6 =
∫

Ωf

(∂3(g−η)) dω3 =
∫

Ωf

g−(∂3η) dω3.

(4.28)
Since the estimates (4.4), (4.22) hold and the function g− is uniformly
bounded with respect to δ, then∫

Ωf

g−(∂3η) dω3 ≤ (
∫

Ωf

g2
− dω3)1/2(

∫
Ωf

|∇η|2 dω3)1/2 ≤ ĉ7δ
1/2. (4.29)

Now, due to the equality (4.28) and the estimates (4.27), (4.29) the following
inequality will hold for some ĉ9 ∈ [0, +∞), which will be independent on δ
(see (4.19)): ∫

Σ0

(σT 4 + k3T − g+)η dλΣ0 ≤ ĉ9δ
1/4. (4.30)
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Further proof of this lemma is similar with the proof of Lemma 4.2.1 (see
after (4.19)). However, the proof in this case will be based on the estimate
(4.30) instead of using of (4.19).

I

4.4 Reduced problem

In this section we will perform sensitivity analysis of the optimal control
problem (1.14). We will start by proving existence of feasible states for
this problem. As it will turn out, there exists exactly one feasible state T̃
for every �xed admissible control Th, therefore, this fact will automatically
yield existence of the control-to-state operator T̃ = Γ̃(Th). Afterwards we
will obtain Lipschitz continuity and Fréchet di�erentiability of the control-
to-state operator T̃ = Γ̃(Th) in appropriate functional spaces. Finally, we
will prove Fréchet di�erentiability of the cost functional J (Γ̃(Th)) (see the
formula (1.15)).

Let us start with some de�nitions. Let us de�ne the function

a(τ) := σ|τ |3τ + k3τ τ ∈ R.

Since
a′(τ) = 4σ|τ |3 + k3 > 0 ∀τ ∈ R,

then due to the implicit function theorem there exists a function b : R 7→ R
such that

b(a(τ)) = τ ∀τ ∈ R.

Next, let us also de�ne the function

c(τ) := σ|b(τ)|3b(τ) τ ∈ R.

Lemma 4.4.1

There exist some constants c10 ∈ [0, +∞), c11 ∈ [0, +∞), c12 ∈ [0, +∞),
c13 ∈ [0, +∞) such that for all τ ∈ R the following estimates hold:

|b′(τ)| ≤ c10, (4.31)

|c′(τ)| ≤ c11, (4.32)

|b′′(τ)| ≤ c12, (4.33)

|c′′(τ)| ≤ c13. (4.34)

J Let us �x arbitrary τ ∈ R.
As b is inverse function of a, then we will have

|b′(τ)| = 1
(4σ|b(τ)|3 + k3)

≤ 1
k3
.
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For the second order derivative the previous estimate will yield

|b′′(τ)| = 24σ|b(τ)|2|b′(τ)|
(4σ|b(τ)|3 + k3)2

≤ max{24σ
k3

,
24

16k5
3

}.

Now, according to de�nition of the function c, we will get

|c′(τ)| = 4σ|b(τ)|3|b′(τ)| = 4σ|b(τ)|3

(4σ|b(τ)|3 + k3)
≤ 1.

And again, for the second order derivative the estimate for |b′(τ)| yields

|c′′(τ)| ≤ 12σ|b(τ)|2|b′(τ)|
(4σ|b(τ)|3 + k3)

+
48σ2|b(τ)|5|b′(τ)|
(4σ|b(τ)|3 + k3)2

≤ 12σ|b(τ)|2

k3(4σ|b(τ)|3 + k3)
+

48σ2|b(τ)|5

k3(4σ|b(τ)|3 + k3)2

≤ 2
k3

max{ 3
k3
, 12σk3, 48σ2k3

3}.

Now, in order to �nish the proof, let us take:

c10 :=
1
k3
, c11 := max{24σ

k3
,

24
16k5

3

},

c12 := 1, c13 :=
2
k3

max{ 3
k3
, 12σk3, 48σ2k3

3}.

I

Now, let us recall that Qf = (−l1, l1) × (−l2, l2) and introduce the fol-
lowing operators:

W1(v)(x1, x2) := c(v(x1, x2)) (x1, x2) ∈ Qf ,

W2(v)(x1, x2) := b(v(x1, x2)) (x1, x2) ∈ Qf ,

A1(v)(x1, x2) :=
v(x1, x2, δ) + v(x1, x2, −δ)

2
(x1, x2) ∈ Qf ,

A2(v)(x1, x2, x3) := v(x1, x2) (x1, x2, x3) ∈ Σ0,

A3(v)(x1, x2, x3) := v(x1, x2) (x1, x2, x3) ∈ Ωf

For convenience let us also de�ne:

U1(v) := A1HΣ0Σ0A2(v), U2(v) := −A1GΣ2Σ0(v
4) + k3A1(Tg|Σ0).

Basic properties of these operators are formulated in the following lemma.

Lemma 4.4.2

For every �xed p ∈ [1,+∞]:
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i. W1 is Lipschitz continuous from Lp(Qf ) to Lp(Qf ) with Lipschitz
constant less or equal to 1;

ii. W2 is Lipschitz continuous from Lp(Qf ) to Lp(Qf ) with Lipschitz
constant less or equal to 1/k3;

iii. (W2)−1 maps L4p(Qf ) to Lp(Qf );

iv. A3 is linear and bounded from Lp(Qf ) to L̃p(Ωf ) ⊂ Lp(Ωf ) (for de�-
nition of the spaces L̃p(Ωf ) see Notations);

v. U1 is linear and bounded from Lp(Qf ) to Lp(Qf ) and ‖U1‖L (Lp(Qf ), Lp(Qf )) ≤
(1− c3) < 1;

vi. U2 maps L4p(Σ2) to Lp(Qf );

J Let us �x p ∈ [1,+∞] and some arbitrary functions v ∈ Lp(Qf ), v̂ ∈
Lp(Qf ). Since

b(0) = 0, c(0) = 0,

then due to the estimates (4.31), (4.32) we will have:

|c(v̂(x1, x2))− c(v(x1, x2))| ≤ |v̂(x1, x2)− v(x1, x2)|,

|b(v̂(x1, x2))− b(v(x1, x2))| ≤
|v̂(x1, x2)− v(x1, x2)|

k3
,

|c(v(x1, x2))| ≤ |v(x1, x2)|,

|b(v(x1, x2))| ≤
|v(x1, x2)|

k3

for almost every (x1, x2) ∈ Qf , and, therefore, this will yield 4.4.2i, 4.4.2ii.
Now, let us �x an arbitrary function v ∈ L4p(Qf ). Since

(W2)−1(v) = σ|v|3v + k3v,

then 4.4.2iii follows automatically.
4.4.2iv also follows automatically. Since it can be proved that A1 ∈

L (Lp(Σ0), Lp(Qf )), A2 ∈ L (Lp(Qf ), Lp(Σ0)) and ‖A1‖L (Lp(Σ0), Lp(Qf )) =
1, ‖A2‖L (Lp(Qf ), Lp(Σ0)) = 1, therefore, due to 2.3.7i, 2.3.7ix, B5 and de�ni-
tions of U1, U2 we will get 4.4.2v, 4.4.2vi.

I

Now, since A = A2A1 (for de�nition of A see Chapter 1), therefore we
can rewrite the problem (1.13) as{

∂3T̃ = 0 in Ωf ,

A2A1(QΣ0Σ0(T̃ ) + QΣ2Σ0(Th)) = 0 on Σ0,
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where T̃ ∈ L∞(Ωf ) is the unknown function. Furthermore, by using a trans-
formation T̃ = A3(Ṫ ) the last problem can be to reduced to a single equation

(I−U1 ◦W1) ◦ (W2)−1(Ṫ ) = U2(Th), (4.35)

where now Ṫ ∈ L∞(Qf ) is the unknown function.
By using properties of the operators W1, U1 there can be proved the

following result.

Lemma 4.4.3

For every �xed p ∈ [1, +∞] there exists a Lipschitz continuous inverse oper-
ator

(I−U1 ◦W1)−1 =
∞∑

n=0

(U1 ◦W1)n, (4.36)

which maps Lp(Qf ) to Lp(Qf ).

J Let us �x p ∈ [1,+∞], w ∈ Lp(Qf ) and let us consider the equation

(I−U1 ◦W1)(v) = w, (4.37)

where v is the unknown variable.
There exists exactly one solution of (4.37) due to the contraction mapping

theorem. Indeed, if we choose arbitrary functions v ∈ Lp(Qf ), v̂ ∈ Lp(Qf ),
then 4.4.2i, 4.4.2v imply that

‖(U1 ◦W1)(v̂)− (U1 ◦W1)(v)‖Lp(Qf )

≤ ‖U1‖L (Lp(Qf ), Lp(Qf ))‖W1(v̂)−W1(v)‖Lp(Qf )

≤ (1− c3)‖v̂ − v‖Lp(Qf ).

This shows that U1 ◦W1 is Lipschitz continuous as mapping from Lp(Qf )
to Lp(Qf ) and its Lipschitz constant is less than 1. Moreover, this property
is su�cient for the assertion of the lemma.

I

If we now apply the operator W2 ◦ (I − U1 ◦ W1)−1 to both sides of
(4.35) then for every �xed Th ∈ U we will get

Ṫ = W2 ◦ (I−U1 ◦W1)−1 ◦U2(Th),

and, since T̃ = A3(Ṫ ), then for every �xed Th ∈ U there will be

T̃ = A3 ◦W2 ◦ (I−U1 ◦W1)−1 ◦U2(Th). (4.38)

Next, it can be shown that for arbitrary Th ∈ U , T̂h ∈ U

‖U2(Th)−U2(T̂h)‖L∞(Qf ) ≤ 4µ3‖Th − T̂h‖L∞(Σ2).
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Therefore, since the operator A3 ◦W2 ◦ (I−U1 ◦W1)−1 is Lipschitz contin-
uous as mapping from L∞(Qf ) to L∞(Ωf ) (see results of the previous two
lemmas), then due to (4.38) we will have the following result.

Theorem 4.4.4

For every �xed control Th ∈ U there exists one and only one feasible state T̃
of the optimal control problem (1.14) and, therefore, there exists an unique
de�ned control-to-state operator T̃ = Γ̃(Th) of the optimal control problem
(1.14) as mapping from U to L̃∞(Ωf ) ⊂ L∞(Ωf ). Furthermore, there ex-
its some constant c14 ∈ [0, +∞) such that for every two arbitrary chosen
controls Th ∈ U , T̂h ∈ U the following inequality holds:

‖Γ̃(Th)− Γ̃(T̂h)‖L∞(Ωf ) ≤ c14‖Th − T̂h‖L∞(Σ2).

In order to get the �nal result - Fréchet di�erentiability of the cost func-
tional J (Γ̃(Th)) (see the formula (1.15)), let us prove Fréchet di�erentiabil-
ity of the control-to-state operator T̃ = Γ̃(Th). Therefore, for every �xed
ψ ∈ L∞(Qf ) let us de�ne:

W3[ψ](v)(x1, x2) := c′(ψ(x1, x2))v(x1, x2) (x1, x2) ∈ Qf ,

W4[ψ](v)(x1, x2) := b′(ψ(x1, x2))v(x1, x2) (x1, x2) ∈ Qf .

Lemma 4.4.5

For every �xed p ∈ [1, +∞] and ψ ∈ L∞(Qf ) operators W3[ψ], W4[ψ] are
linear and bounded from Lp(Qf ) to Lp(Qf ) and

‖W3[ψ]‖L (Lp(Qf ), Lp(Qf )) ≤ 1, ‖W4[ψ]‖L (Lp(Qf ), Lp(Qf )) ≤ 1/k3.

J Let us �x arbitrary v ∈ Lp(Qf ), ψ ∈ L∞(Qf ). Then due to (4.31), (4.32)
we will have

|c′(ψ(x1, x2))v(x1, x2)| ≤ |v(x1, x2)|,

|b′(ψ(x1, x2))v(x1, x2)| ≤
|v(x1, x2)|

k3

for almost every (x1, x2) ∈ Qf .

I

Lemma 4.4.6

For every �xed p ∈ [1, +∞] and ψ ∈ L∞(Qf ) there exists a linear and
bounded inverse operator

(I−U1W3[ψ])−1 =
∞∑

n=0

(U1W3[ψ])n, (4.39)

which maps Lp(Qf ) to Lp(Qf ).
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J This result can be easily proved by using the contraction mapping the-
orem. Indeed, due to 4.4.2v and Lemma 4.4.5 we have

‖U1W3[ψ]‖L (Lp(Qf ), Lp(Qf )) ≤ ‖U1‖L (Lp(Qf ), Lp(Qf ))‖W3[ψ]‖L (Lp(Qf ), Lp(Qf )) < 1.

I

Next, for convenience let us de�ne

S1 := (I−U1 ◦W1), S2[ψ] := (I−U1W3[ψ]),

where ψ ∈ L∞(Qf ), and let us prove a temporary lemma.

Lemma 4.4.7

W1, W2, S1, S−1
1 are Fréchet di�erentiable as mappings from L∞(Qf ) to

L∞(Qf ), but U2 is Fréchet di�erentiable as mapping from U to L∞(Qf ).

J Let us �x arbitrary v ∈ L∞(Qf ), v̂ ∈ L∞(Qf ). Since

c(v̂(x1, x2)) = c(v(x1, x2)) + c′(v(x1, x2))(v̂(x1, x2)− v(x1, x2))

+ [
∫ 1

0
c′′(v(x1, x2) + t(v̂(x1, x2)− v(x1, x2)))(1− t) dt

× (v̂(x1, x2)− v(x1, x2))2]

b(v̂(x1, x2)) = b(v(x1, x2)) + b′(v(x1, x2))(v̂(x1, x2)− v(x1, x2))

+ [
∫ 1

0
b′′(v(x1, x2) + t(v̂(x1, x2)− v(x1, x2)))(1− t) dt

× (v̂(x1, x2)− v(x1, x2))2]

for almost every (x1, x2) ∈ Qf , then

‖W1(v̂)−W1(v)−W3[v](v̂ − v)‖L∞(Qf )

‖v̂ − v‖L∞(Q)

=
‖
∫ 1
0 c

′′(v + t(v̂ − v))(v̂ − v)2(1− t) dt‖L∞(Qf )

‖v̂ − v‖L∞(Qf )

≤ ĉ1‖v̂ − v‖L∞(Qf ),

‖W2(v̂)−W2(v)−W4[v](v̂ − v)‖L∞(Qf )

‖v̂ − v‖L∞(Q)

=
‖
∫ 1
0 b

′′(v + t(v̂ − v))(v̂ − v)2(1− t) dt‖L∞(Qf )

‖v̂ − v‖L∞(Qf )

≤ ĉ2‖v̂ − v‖L∞(Qf ).
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But these estimates prove Fréchet di�erentiability of the operators W1, W2.
Next, since

S1 = (I−U1 ◦W1),

then due to di�erentiability of W1 and 4.4.2v we will get di�erentiability of
S1.

Now, let us prove di�erentiability of the operator S−1
1 . Therefore, let us

�x arbitrary v ∈ L∞(Qf ), v̂ ∈ L∞(Qf ) and let us denote

w := S−1
1 (v), ŵ := S−1

1 (v̂).

Since

S−1
1 (v̂)− S−1

1 (v)− S2[S−1
1 (v)]−1(v̂ − v)

= (ŵ − w)− S2[w]−1(S1(ŵ)− S1(w))

= S2[w]−1(S2[w](ŵ − w)− (S1(ŵ)− S1(w))),

then

‖S−1
1 (v̂)− S−1

1 (v)− S2[S−1
1 (v)]−1(v̂ − v)‖L∞(Qf )

≤ ‖S2[w]−1‖L (L∞(Qf ), L∞(Qf ))‖S1(ŵ)− S1(w)− S2[w](ŵ − w)‖L∞(Qf ).

Next, due to Lipschitz continuity of S−1
1 (see Lemma 4.4.3) we will have

‖S−1
1 (v̂)− S−1

1 (v)− S2[S−1
1 (v)]−1(v̂ − v)‖L∞(Qf )

‖v̂ − v‖L∞(Qf )

≤ ĉ3
‖S1(ŵ)− S1(w)− S2[w](ŵ − w)‖L∞(Qf )

‖v̂ − v‖L∞(Qf )

≤ ĉ4
‖S1(ŵ)− S1(w)− S2[w](ŵ − w)‖L∞(Qf )

‖ŵ − w‖L∞(Qf )
.

Since S1 is di�erentiable, then the last inequality will yield Fréchet di�eren-
tiability of the operator S−1

1 .
Finally, in order to prove Fréchet di�erentiability of U2 it is su�cient to

show di�erentiability of the operator v 7→ v4 as mapping from U to L∞(Σ2).
But for arbitrary chosen v ∈ U , v̂ ∈ U we have

‖v̂4 − v4 − 4v3(v̂ − v)‖L∞(Σ2)

‖v̂ − v‖L∞(Σ2)

=
‖
∫ 1
0 12(v + t(v̂ − v))2(v̂ − v)2(1− t) dt‖L∞(Σ2)

‖v̂ − v‖L∞(Σ2)

≤ ĉ5‖v̂ − v‖L∞(Σ2).
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I

Now, on basis of the representation formula (4.38) and results of the
previous lemma we will automatically obtain Fréchet di�erentiability of the
control-to-state operator T̃ = Γ̃(Th).

Theorem 4.4.8

For every two arbitrary chosen controls Th ∈ U , T̂h ∈ U the following formula
holds:

‖Γ̃(T̂h)− Γ̃(Th)− Λ̃[Th](T̂h−Th)‖L∞(Ωf ) = o[Th](‖T̂h−Th‖L∞(Σ2)), (4.40)

where Λ̃[Th] ∈ L (L∞(Σ2), L∞(Ωf )).

Finally, one can easily check that the cost functional J (T̃ ) is Fréchet
di�erentiable as mapping from L∞(Ωf ) to R. If we now combine this result
with the previous lemma, then by applying the chain rule for the functional
J (Γ̃(Th)) we will get the following theorem.

Theorem 4.4.9

For every two arbitrary chosen controls Th ∈ U , T̂h ∈ U the following formula
holds (see the formula (1.15)):

J (Γ̃(T̂h))− J (Γ̃(Th)) = ˜̀[Th](T̂h − Th) + o[Th](‖T̂h − Th‖L∞(Σ2)),

where ˜̀[Th] ∈ L∗∞(Σ2).

4.5 Relationship between original and reduced prob-

lems

In this section we will establish relationship between the original problem
(1.5) and the reduced problem (1.14). In other words, we will prove that for
small values of δ the state function T can be e�ectively approximated by the
state function T̃ .

Theorem 4.5.1

For every �xed control Th ∈ U there exist the following limits:

1
δ

∫
Ωf

(T − T̃ )2 dω3 → 0,∫
Σ0

(T − T̃ )2 dλΣ0 → 0,

as δ → 0.
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J Let us de�ne the functions

γ1(x1, x2) := T (x1, x2, −δ) (x1, x2) ∈ Qf ,

γ2(x1, x2) := T (x1, x2, δ) (x1, x2) ∈ Qf

and
γ3 := σγ4

1 + k3γ1, γ4 := σγ4
2 + k3γ2.

Since

‖γ3 − γ4‖L2(Qf ) ≤ ‖γ3 − ĝ‖L2(Qf ) + ‖ĝ − γ4‖L2(Qf )

(for de�nition of the function ĝ see at the begining of this chapter), then,
due to Lemma 4.3.1 we will get

‖γ3 − γ4‖L2(Qf ) → 0,

as δ → 0. Furthermore, Lipschitz continuity of W1 (see Lemma 4.4.2) will
imply that

σ‖γ4
1 − γ4

2‖L2(Qf ) = ‖W1(γ3)−W1(γ4)‖L2(Qf ) ≤ ‖γ3 − γ4‖L2(Qf ).

Therefore, we will have

‖γ4
1 − γ4

2‖L2(Qf ) → 0, (4.41)

as δ → 0.
If we now de�ne

γ5(x1, x2, x3) := γ1(x1, x2) (x1, x2, x3) ∈ Σ0,

then due to Lipschitz continuity of S1 (see Lemma 4.4.3) we will have

‖γ3 − S−1
1 (f̂)‖L2(Qf ) ≤ ĉ1‖S1(γ3)− f̂‖L2(Qf )

= ĉ1‖γ3 − σA1HΣ0Σ0(γ
4
5)− f̂‖L2(Qf ) (4.42)

(for de�nition of the function f̂ see at the begining of this chapter).
Since

γ5(x1, x2, x3) = γ1(x1, x2) (x1, x2, x3) ∈ S5,

T (x1, x2, x3) = γ1(x1, x2) (x1, x2, x3) ∈ S5,

γ5(x1, x2, x3) = γ1(x1, x2) (x1, x2, x3) ∈ S6,

T (x1, x2, x3) = γ2(x1, x2) (x1, x2, x3) ∈ S6,

then (4.41) yields that
‖γ4

5 − T 4‖L2(Σ0) → 0,
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as δ → 0. Therefore, due to 2.3.7v and Lemma 4.3.1 we will get

‖γ3 − σA1HΣ0Σ0(γ
4
5)− f̂‖L2(Qf )

→ ‖γ3 − σA1HΣ0Σ0(T
4)− f̂‖L2(Qf ) = ‖γ3 − ĝ‖L2(Qf ) → 0,

as δ → 0. In addition, since the estimate (4.42) holds, then

‖γ3 − S−1
1 (f̂)‖L2(Qf ) → 0 (4.43)

as δ → 0.
Next, by using similar techniques, one can prove that

‖γ4 − S−1
1 (f̂)‖L2(Qf ) → 0 (4.44)

as δ → 0.
Finally, due to 4.4.2ii, 4.4.2iii we will have∫
Σ0

(T − T̃ )2 dλΣ0

=
∫

Qf

(W2 ◦W−1
2 (γ1)−W2 ◦ S−1

1 (f̂))2 dω2

+
∫

Qf

(W2 ◦W−1
2 (γ2)−W2 ◦ S−1

1 (f̂))2 dω2

≤ 1
k2

3

∫
Qf

(γ3 − S−1
1 (f̂))2 dω2 +

1
k2

3

∫
Qf

(γ4 − S−1
1 (f̂))2 dω2,

and, therefore, (4.43), (4.44) will imply that∫
Σ0

(T − T̃ )2 dλΣ0 → 0, (4.45)

as δ → 0.
Now, let us de�ne the function

γ := σT 4 + k3T

and also

Tτ (x1, x2) := T (x1, x2, τ) (x1, x2) ∈ Qf , τ ∈ [−δ, δ],
γτ (x1, x2) := γ(x1, x2, τ) (x1, x2) ∈ Qf , τ ∈ [−δ, δ].

Due to (4.43), Lemma 4.2.1 and Lemma 4.3.1 we will get

1
δ

∫ δ

−δ

∫
Qf

(γτ − S−1
1 (f̂))2 dω2 dτ

→ 1
δ

∫ δ

−δ

∫
Qf

(γτ − γ3)2 dω2 dτ →
1
δ

∫ δ

−δ

∫
Qf

(γτ − ĝ)2 dω2 dτ

=
1
δ

∫
Ωf

(σT 4 + k3T − g+)2 dω3 → 0,
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as δ → 0, and, therefore, 4.4.2ii, 4.4.2iii will imply that

1
δ

∫
Ωf

(T − T̃ )2 dω3

=
1
δ

∫ δ

−δ

∫
Qf

(W2 ◦W−1
2 (Tt)−W2 ◦ S−1

1 (f̂))2 dω2 dτ

≤ 1
k2

3δ

∫ δ

−δ

∫
Qf

(γτ − S−1
1 (f̂))2 dω2 dτ → 0,

as δ → 0.

I
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