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Abstract. Energy harvesting with lowest environmental impact is one of key elements for 

cleaner future. Photocatalytic as well as electrocatalytic CO2 reformation processes are 

considered as prominent methods. Thus, extensive research of CO2 reformation is being done to 

find the right materials that holds crucial qualities. For photocatalysis that includes pronounced 

separation of light-generated opposite sign charge carriers, sensitivity to visible light, high 

quantum yield. In electrocatalysis high CO2 adsorption, chemical stability, multielectron reaction 

catalysts are necessary. Additionally, materials participating in the reaction process must be 

provided with charge carriers at proper reduction and oxidation potentials. To meet the set goal 

of lowering environmental impact and lower CO2 amounts exhausted into the atmosphere by 

human activities, it is necessary to find right technology for capturing, storing, and reusing 

carbon dioxide. Various technologies and materials in different levels of readiness are available 

and under development, such as CuO loaded TiO2 nanotubes for photocatalytic reformation or 

electrocatalytic reduction on copper. Not only the proof of concept is necessary but estimation 

and more importantly determination of the efficiency of both electro and photo catalytic 

reformation of CO2. In this work review of reactions and efficiency of both processes based on 

existing established technological methods is done. 

1.  Introduction 

It is well known that proactive steps towards pollution reduction and shift from oil based energy are 

being pursued not only generally by legislation and agreements [1] but also by long term development 

strategy and research, such as EU climate-neutral plan by 2050. Not only energy harvesting with lowest 

environmental impact is on of key elements for cleaner future, but also use of accessible resources more 

efficiently. Electrocatalytic and photocatalytic CO2 reformation are considered as prominent methods 

for lowering atmospheric pollution and providing possible shift to more sustainable energy production. 

CO2 can be reformed into various hydrocarbons that can be directly used as fuel or substitute 

conventional chemical production. Extensive research on CO2 reformation is being done to find the right 

materials for successful catalytic CO2 reduction. It is known that straightforward CO2 reduction requires 

substantial amount of energy and special conditions such as high pressure and temperature [2,3]. It is 

possible to increase efficiency of the process using catalytic reformation under lower temperatures and 

increase production yields. Materials participating in the reaction must possess adequate CO2 adsorption 

properties, provide with charge carriers with proper reduction and oxidation potentials for successful 

reformation of CO2.  

http://creativecommons.org/licenses/by/3.0
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Various technologies and catalysts in different technology readiness levels are available or are under 

development, such as CuO loaded TiO2 nanotubes for photocatalytic reformation [4] or electrocatalytic 

reduction on various forms of copper [5,6]. Estimation and more importantly determination of the 

efficiency of both electrocatalytic and photocatalytic reformation of CO2 is necessary. 

In this work review of reactions and efficiency of both processes based on existing technological 

methods was done. 

2.  Electrocatalytic process 

CO2 electrocatalytic reduction has been under investigation for decades, but many uncertainties still 

remain, such as the reformation pathway from CO2 to higher hydrocarbons, electrolyte influence, etc. 

The question has been tackled by deWulf and Bard looking into copper electrode using electrochemical 

methods [7], Firet et al. investigation of silver thin films through spectroscopic methods [8], Shen et al. 

investigating cobalt protoporphyrin immobilized on a pyrolytic graphite [9] or Kuhl et al. investigating 

various metal surfaces [10]. It has come to classifications of CO2 reduction products into two categories: 

1) gaseous; 2) liquid products, requiring different physical separation and characterization/identification 

methodologies. On the other hand, the reformation reactions also can be classified by the required 

number of electrons necessary for a product. Then the reactions can be written as  

CO2(g) + 2H+ + 2e− = HCOOH(l)                                       E =  −250 mV   (1) 

CO2(g) + H2O(l) + 2e− = CO(g) + H2O(l)                        E =  −1078 mV  (2) 

CO2(g) + 2H+ + 2e− = CO(g) + H2O(l)                             E =  −110 mV  (3) 

CO2(g) + 2H2O(l) + 2e− = CO(g) + H2O(l)                      E =  −930 mV  (4) 

CO2(g) + 4H+ + 4e− = CH2O(l) + H2O(l)                         E =  −70 mV  (5) 

CO2(g) + 3H2O(l) + 4e− = CH2O(l) + 4OH−                    E =  −900 mV (6) 

CO2(g) + 6H+ + 6e− = CH3OH(l) + H2O(l)                      E =  +20 mV  (7) 

CO2(g) + 5H2O(l) + 6e− = CH3OH(l) + 6OH−                E =  −810 mV  (8) 

CO2(g) + 8H+ + 8e− = CH4(g) + 2H2O(l)                        E =  +170 mV (9) 

CO2(g) + 6H2O(l) + 8e− = CH4(g) + 8 OH−                    E =  −660 mV  (10) 

2CO2(g) + 2H+ + 2e− = H2C2O4(aq)                                 E =  −500 mV  (11) 

2CO2(g) + 2e− = C2O4
2−(aq)                                                  E =  −590 mV  (12) 

2CO2(g) + 12H+ + 12e− = CH2CH2(g) + 4H2O(l)         E =  +60 mV  (13) 

2CO2(g) + 12H+ + 12e− = CH3CH2𝑂𝐻(l) + 3H2O(l)   E =  +80 mV  (14) 

2CO2(g) + 12H+ + 12e− = C2𝐻4(𝑔) + 4H2O(l)              E =  +80 mV  (15) 

 

here electrode potential E vs standard hydrogen electrode (SHE) in normal conditions [11–14].  

 

We clearly see that hydrocarbons such as ethanol and ethylene reactions require multi-electron 

transfer. In addition, overpotential plays an important role in the propagation of a reaction, especially 

involving higher number of electrons. Other parameters, such as electrolyte composition and 

concentration, pH, temperature, catalyst crystalline facets, dopants, must be considered. For example, 

majority products on Ag is CO, Cd produces HCOO-, on the other hand, various forms of Cu can produce 

wide variety of products [11,12,15–17]. Let’s assume interest in hydrocarbons, such as C2H4, then 

appropriate catalyst will be selected by majority product, faradaic efficiency (FE), overpotential and 

catalyst synthesis process. 

In early work of Hori et al [18] the reformation of CO to CH2 and C2H4 was discussed. Process was 

carried out at copper electrode in aqueous electrolyte. It was reported that CO electrocatalytic reduction 

didn’t proceed as the cathodic currents were on scale of 10-5 Acm-2 [18]. Nowadays the current densities 

reported are with magnitude of 10-2 [19] and up to 101 [13]. 

In later work of Hori et al. it was pointed out that CO2 must initially be reduced to CO, which is 

adsorbed on the catalyst. Only then further reformation to C2 and C3 products are possible. Investigation 

of pH showed that CH4 production is promoted at low pH and C2H4 at high pH, due to increase in 

electrolyte concentration of KHCO3. Dependency was explained as -OH neutralization by nearby HCO3
-
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. It is noteworthy that current densities for C2H4 and C2H5OH were reported independent of pH level 

[20].  

Electrolyte concentration influence on FE and production of hydrocarbons was investigated by 

Zhong et al. where they suggested that higher electrolyte concentrations provide with lower 

overpotentials at the same time increasing H2 production FE [21]. At the same time it was reported that 

C2H4 production is more favourable under low overpotentials [5]. Thus, indicating that if we are 

interested in C2H4 production, a catalyst with low overpotential must be chosen and an electrolyte with 

high pH level can be used, due to reported current density independence of pH. But high concentration 

and pH promotes H2 production, that sometimes is considered the rate determining step.  

It was proposed as H2
+ (ads) or 𝐻𝑎𝑑𝑠 + 𝐻+ in comparison with previously assumed 𝐻2

+(𝑎𝑑𝑠) +
𝑒− → 𝐻2, where H2

+ (ads) is transition state. If carbon adsorption on electrode followed by OH 

electronation and not H2
+ (ads) or 𝐻𝑎𝑑𝑠 + 𝐻+ is the rate determining step for ethylene, a formation 

diagram was proposed (See Figure 1) [20].  
 

Figure 1. Reaction pathway of CO2 reduction with intermediate adsorbed CO, COH, C and OH. 

Adopted from [20], molecules were drawn by using [24]. 

 

In case of pathway depicted in Figure 1, the rate determining step can be CO adsorption and 

following reformation into CH4 in addition to various intermediates. It is noteworthy that other authors 

also came to similar conclusions and results for Cu nanoparticles [22,23]. 

Kortlever et al. suggested that CO2 reduction can be viewed as multiple proton-electron reactions 

with products C1, C2+ and water, summarizing all probable product equations as equation (16) 

𝑘𝐶𝑂2 + 𝑛(𝐻+ + 𝑒−) ⇆ 𝑃 + 𝑚𝐻2𝑂    (16) 

where P is the C1 and C2+ products [12].  

Reaction involving more than 2 electrons (and protons) will involve intermediate steps, thus it will 

cause catalytic irreversibility. The role of intermediates in the CO2 reduction was discussed. For 

example, ethylene formation starts with *CO and *CH2 intermediates, which follows abovementioned 

pathway [12]. But during investigation three unexplained observations were made. First, formation of 

methane from CO shows different pH dependency compared to ethylene. Second, often ethylene 

formation happened at more positive (less negative) potential without methane formation. Third, there 

is a structure sensitive and pH dependent pathways on Cu. Cu(111) reduction of CO to methane and 

ethylene is observed simultaneously, but on Cu(100) different pathway is observed, where only ethylene 

is formed, especially at high pH values [12]. On the electrode surface due to CO2 reduction there is a 

H+, e- 

(COH) 

e- 2H2
+, e- 

2H2
+, e- 

2H2
+, e- 
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pH gradient that influences product selectivity. The pH value and ion presence can stabilize reaction 

intermediates, thus promoting formation of one or the other product [25]. Due to proton consumption 

during the reduction process and hydrogen evolution reaction (HER) the local pH at the electrode 

deviates from bulk, thus CO2 can react with OH- and form bicarbonate or carbonate [12]. On the other 

hand, Resasco et al. did an extensive investigation on production of CO, HCOO-, C2H4 and CH3CH2OH 

on Cu electrode, and concluded that the concentration of electrolyte anions has very little influence on 

production. Attributing it to lack of involvement of hydrogen atoms. At the same time providing with 

evidence for hydrogen and CH4 production high sensitivity to anion concentration [26].  

Malik et al [27] described electrochemical reduction of CO2 process on various Cu morphologies, 

with FE of 26% at -2.75V. It was reported that grown dendrites on the surface capture some of gaseous 

products lowering overall efficiency. In addition, the use of Cu nanoparticles increased CO production, 

with selectivity dependence on size [27,28] attributing it to low-coordination site activity. Similar results 

concerning increase in CO production was found by Reske et al. decrease in particle size promotes H2 

and CO production, at the same time providing with higher current density in comparison with bulk Cu 

[28].  

Authors investigation CO2 reformation on metals as Fe, Au, Zn, Ni, Pt and Ag propose similar 

reformation pathway [29,30] as seen in Figure 1. Leading to conclusion that first step in CO2 reformation 

is adsorption of CO2, then CO is formed and desorbed or transformed into *CHO or *CHO species, that 

later forms into hydrocarbons as methane and methanol. It is noteworthy that metals as Pt, Pd, and Ni 

were reported to bind CO too strongly, which leads to electrode poisoning by *CO [25,31]. As 

previously mentioned crystallographic facets show selectivity for production: Cu (111) for CH4 and Cu 

(100) for C2H4, suggesting that CO adsorption and lower surface energy is the reason of selectivity 

[27,32,33]. An overview of FE of different materials in various formations is presented in Table 1.  

 

Table 1. FE and major product summary NP – nanoparticle, NW – nanowire, D – dendrite, NR – 

nanorods, NC – nanocubes,  NF – nanoflowers, 

Ref Catalyst electrolyte pH 
U, V vs 
RHE FE Product Ref nr 

Chen et al Cu0 - Cu2O 0.1M KHCO3 6.8 -1 32.1 C2H4 [34] 

Chen et al Cu0 - Cu2O 0.1M KHCO3 6.8 -1 16.4 C2H5OH [34] 

Chen et al Cu2O-PdClx 0.1M KHCO3 6.8 -1 30.1 C2H6 [34] 

Chen et al Graphite-PdCl2 0.1M KHCO3 6.8 -1  4.7 HCOO- [34] 

Chen et al Graphite-PdCl2 0.1M KHCO3 6.8 -1  8.1 CO [34] 

Chen et al Graphite-PdCl2 0.1M KHCO3 6.8 -1  0.2 CH4 [34] 

Hori et al Cu KCl 5.9 -1.44  47.8 C2H4 [5] 

Hori et al Cu KHCO3 6.8 -1.41 30.1 C2H4 [5] 

Tang et al Cu NP    30 CO [35] 

Tang et al Cu NP    35 C2H4 [35] 

Reske et al Cu NP 0.1 M KHCO3 6.8 -1.1 V 20/70 CO/H2 [28] 

Raciti et al Cu NW   -0.6 V  30.7 HCOOH [36] 

Raciti et al Cu NW 0.1M KHCO3  -0.4 V  60 CO [36] 

Chen et al Cu mesocrystal 0.1M KHCO3  -0.99 V  81 C2H4 [37] 

Roberts et 

al Cu NC 0.1M KHCO3  -0.6 V   C2H6 [38] 

Sen et al Cu foam 0.5M KHCO3  -0.5 V 26 HCOOH [39] 

Sen et al Cu smooth 0.5M KHCO3  -0.5 V 3 HCOOH [39] 

Sen et al Cu foam 0.5M KHCO3  -0.9 V 37 HCOOH [39] 

Kas et al  0.1 M KHCO3 6.8 -1.1 V  40 C2H6 [40] 

Malik et al Cu NR 0.5 M KHCO3  -2.75 V  24.5 CO [27] 
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Malik et al Cu D 0.5 M KHCO3  -3 V  7 C2H6 [27] 

Malik et al Cu D 0.5 M KHCO3  -2.75 V  7 C2H4 [27] 

Malik et al Cu octahedral 0.5 M KHCO3  -3,0 V  5 CO [27] 

Malik et al Cu D 0.5 M KHCO3  -2,5 V  2,8 CH4 [27] 

Lui et al Sn/SnO2 0.5 M KHCO3 7.2 -1.4 V 70 HCOO-
 [41] 

Mistry et al Au/Cu NP 0.1 M KHCO3 6.8 -1.2 V 20 CO/CH4 [42] 

Wang et al Cu2Cd/Cd/Cu 0.1 M KHCO3  -1.0 V 84 CO [43] 

Bernal et al CuCo NP 0.1 M KHCO3  -1.1 V 11 HCOOH [44] 

Bernal et al CuCo NP 0.1 M KHCO3  -1.1 V 7.5 CO [44] 

Yang et al Co NF 0.1 M KHCO3  -0.456 V 63.4 Formate [45] 

Ge et al SnO2   -0.8 V 80 CO/Formate [46] 

Kaneco et al Cu NP with Pb 

NaOH in 

CH3OH 14 -2.3 V 80 HCOOH [47] 

Kaneco et al Cu NP with Zn 
NaOH in 
CH3OH 14 -2.1 V  12 CH4 [47] 

Cook et al  Cu on GDE 1 M KOH 14 - 2.8 V 69 C2H4 [48] 
 

Particle size also influence not only selectivity but also FE. CuCo NP showed decrease in HER, with 

increase of Cu content NP. On the other hand increased Cu content lead to increase in production of CO 

and HCOOH [44]. Flower like structures were proven to improve production of formate up to 63% FE. 

From Table 1 we can see that Cu is promising material for CO2 reformation. Similar results were 

presented by Zhang et al. not only for Cu, but also for Zn and Sn based catalysts [49].  

 

3.  Photocatalytic CO2 reduction 

One of the problems in photocatalytic CO2 reduction is that hydrogen donors, such as H2O, CH4, and 

alcohols, act as hole scavengers, thus it is necessary to separate reduction products from bulk electrolyte. 

This correlates with hydrogen production problems. Assuming that the CO2 reduction reaction can 

proceed without limits set by charge carrier potentials (valence band (VB) and conduction band (CB) 

band position) [50].  

Electrons are excited into the CB, with that, a hole is created in VB, where these charge carriers could 

be trapped in shallow or deep sites. In TiO2 it could be TiIIIOH and TiIVOH• shallow sites. TiIII also could 

trap electrons in bulk material. If no site is found, charge carriers recombine and create excess heat on 

the material surface. Hydrocarbons can be produced only if hydride reductants are oxidized 

simultaneously. Thus, there is a need of oxidizing agents and oxidizing mechanism [50,51].  

Direct oxidizing species are holes, but there are additional molecules with similar oxidizing 

properties: hydroxyl radicals (•OHfree and •OHads [52]), superoxide (•O2
- [53]), singlet oxygen (-O2 [54]), 

also some authors report hydrogen peroxide and oxygen [55]. Karamian et al summarizes that •OH 

radicals are mostly product of surface hydroxyl and adsorbed water oxidation process. In this process 

peroxide can be produced and oxidized as described by equations (17) to (21).  

Superoxides are supposed to be a weak oxidizing species as a product of one CB electron reduction 

of molecular oxygen or oxidizing hydrogen peroxide by VB hole (equation 22 to 24), whereas single 

oxygen is a strong oxidant and can be a product of •O2
- and a trapped hole, though it has a short lifetime 

2 µs on the surface, especially compared with hydroxyl radical with lifetime 5 times longer [50,54,55].  

 

𝐻2𝑂2 + ℎ𝜈 → • 𝑂𝐻𝑓𝑟𝑒𝑒/𝑎𝑑𝑠 +• 𝑂𝐻𝑓𝑟𝑒𝑒/𝑎𝑑𝑠 (17) 

𝐻2𝑂2 + 𝑒𝐶𝐵
− → • 𝑂𝐻𝑎𝑑𝑠 + 𝑂𝐻−  (18) 

𝐻2𝑂2 + • 𝑂2
− → • 𝑂𝐻𝑓𝑟𝑒𝑒/𝑎𝑑𝑠 + 𝑂𝐻− + 𝑂2 (19) 

𝐻2𝑂2 + ℎ𝑉𝐵
+ + 2𝑂𝐻− → • 𝑂2

− + 2𝐻2𝑂 (20) 

𝐻2𝑂2 + • 𝑂𝐻 + 𝑂𝐻− → • 𝑂2
− + 2𝐻2𝑂 (21) 
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𝑂𝐻− + ℎ𝑉𝐵
+ →  •𝑂𝐻𝑎𝑑𝑠   (22) 

𝑂2 + 𝑒𝐶𝐵
− →  •𝑂2

−   (23) 

𝑂2 + 2𝑒𝐶𝐵
− + 2𝐻+ → 𝐻2𝑂2   (24) 

 

It must be remembered that CO2 is very stable molecule, difference between lowest unoccupied 

molecular orbital (LUMO) and highest occupied molecular orbital states is 13.7 eV. Adsorption of CO2 

onto catalyst is the best way to lower its energy due to the bend in LUMO level. One electron transfer 

initiates the adsorption and following chemical reactions. Electron or proton transfer provides with C-

O bond breaking and C-H bond creation. It is believed that capturing electron from CB of photocatalyst 

is the first step in •CO2
- anion radical as described in the following equation (25). Additional reductant 

is necessary, it is supposed that carbon-free reductants such as H2 or water allow C1 products and carbon 

containing reductants such as CH4 can promote C2, C3 products [50].  

𝐶𝑂2 + 𝑒𝐶𝐵
− → ∙ 𝐶𝑂2

−   (25) 

P-type photocathodes and earth-abundant n-type anodes such as WO3, Fe2O3, TiO2 can be used for 

photocatalytic CO2 reduction. By utilizing metallic and composite catalysts as cathodes one can gain 

high FE and products as CH4 and C2H4. In a photocatalytic cell using WO3 and Cu or Sn/SnOx electrodes 

CO2 reduction potential of -3.0 V and +0.2V vs Reversible hydrogen electrode (RHE) has been reported. 

Thus the photocatalytic CO2 reduction is described by equations (1)-(15) with lower bias potential due 

to photocatalytic charge carrier generation [56]. FE and necessary bias potentials for photocatalytic CO2 

reduction are provided in Table 2. 

 

Table 2 Summary of FE and bias potentials in photocatalytic CO2 reduction. 

Ref Catalyst electrolyte pH 

Potential 

V vs RHE FE Product Ref nr λ, nm 

Magesh et al WO3-Cu KHCO3 7.5 +0.87 42.3 CH4 [57] >420 

‘’-‘’ WO3-Cu KHCO3 7.5 +0.65 64.6 CH4 [57] >420 

‘’-‘’ WO3-Cu KHCO3 7.5 +0.75 67 CH4 [57] >420 

‘’-‘’ WO3-Cu KHCO3 7.5 +0.87 4 C2H4 [57] >420 

‘’-‘’ WO3-Cu KHCO3 7.5 +0.65 4.5 C2H4 [57] >420 

‘’-‘’ WO3-Cu KHCO3 7.5 +0.75 2.7 C2H4 [57] >420 

‘’-‘’ WO3-Sn/SnOx KCl 7.5 +0.6 27.5 HCOOH [57] >420 

‘’-‘’ WO3-Sn/SnOx KCl 7.5 +0.7 27.5 HCOOH [57] >420 

‘’-‘’ WO3-Sn/SnOx KCl 7.5 +0.8 26.8 HCOOH [57] >420 

Hinogami et 

al p-Si 0.1 M KHCO3 6.8 -0.62 12 CO [58] >420 

‘’-‘’ Cu/p-Si 0.1 M KHCO3 6.8 -0.52 25 CH4 [58] >420 

‘’-‘’ p-Si  0.1 M KHCO3 6.8 -1.026 73.5 H2 [58] >420 

‘’-‘’ Ag 0.1 M KHCO3 6.8 -1.49 75.9 CO [58] >420 

‘’-‘’ part-Ag/p-Si 0.1 M KHCO3 6.8 -0.806 50.9 CO [58] >420 

‘’-‘’ Au 0.1 M KHCO3 6.8 -0.966 82.2 CO [58] >420 

‘’-‘’ part Au/p-Si 0.1 M KHCO3 6.8 -0.496 62.2 CO [58] >420 

Yoneyama 

et al  p-CdTe 0.1 M Na2CO3 n.a. -0.55 48.4 HCOOH [59] >450 

‘’-‘’ p-CdTe 0.1 M TEAP n.a. -0.55 65.6 CO [59] >450 

‘’-‘’ p-InP 0.1 M TEAP n.a. -0.55 17.5 HCOOH [59] >450 

‘’-‘’ p-InP 0.1 M Na2CO3 n.a. -0.55 36.2 HCOOH [59] >450 

Tan et al 5GO-OTiO2 

Gaseous CO2 

with H2O n.a. 0 3.45 CH4 [60] >400 
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‘’-‘’ 5GO-OTiO2 

Gaseous CO2 

with H2O n.a. 0 9.07 CO [60] >400 

‘’-‘’ 5GO-OTiO2 

Gaseous CO2 

with H2O n.a. 0 1.75 C2H4 [60] >400 

 
 

4.  Conclusions 

Catalytic CO2 reformation is yet to be fully understood. The pathways of electrocatalytic and 

photocatalytic reduction are similar but requires different parameter control and thus have different 

production efficiency.  

In electrocatalytic reduction higher hydrocarbons are produced under more negative overpotentials 

than -1.3 V vs NHE. Low carbonate and KCl concentrations provide higher FE for C2H4 formation. pH 

influence is not determined but results suggest that flow of electrolyte should be applied for higher FE. 

Electrocatalytic CO2 reduction in liquid electrolytes is characterized by higher production rates and 

photocatalytic reduction production volumes are substantially lower. Production of higher hydrocarbons 

is challenging in photocatalytic reduction, as the majority of products are C1 and C2. In addition, in 

many cases photocatalytic CO2 reduction requires bias potential, which increases overall energy 

consumption. It is necessary to investigate materials that would allow CO2 reduction without bias 

potential. Photocatalytic processes are not able to deliver high enough current densities for high volume 

production. 

If the goal is C2H4 then nanostructured Cu should be chosen as catalyst material, higher concentration 

electrolyte should be used in electrocatalytic CO2 reformation. 
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