King Saud University ## Journal of Saudi Chemical Society www.ksu.edu.sa #### **ORIGINAL ARTICLE** # Systematic trends in (001) surface *ab initio* calculations of ABO₃ perovskites R.I. Eglitis*, A.I. Popov Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga LV1063, Latvia Received 5 April 2017; revised 18 May 2017; accepted 31 May 2017 Available online 13 June 2017 #### KEYWORDS Ab initio calculations; B3PW; B3LYP; ABO₃ perovskites; (001) surfaces **Abstract** By means of the hybrid exchange–correlation functionals, as it is implemented in the CRYSTAL computer code, *ab initio* calculations for main ABO₃ perovskite (001) surfaces, namely SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃, were performed. For ABO₃ perovskite (001) surfaces, with a few exceptions, all atoms of the upper surface layer relax inward, all atoms of the second surface layer relax outward, and all third layer atoms, again, inward. The relaxation of (001) surface metal atoms for ABO₃ perovskite upper two surface layers for both AO and BO₂-terminations, in most cases, are considerably larger than that of oxygen atoms, what leads to a considerable rumpling of the outermost plane. The ABO₃ perovskite (001) surface energies always are smaller than the (011) and especially (111) surface energies. The ABO₃ perovskite AO and BO₂-terminated (001) surface band gaps always are reduced with respect to the bulk values. The B-O chemical bond population in ABO₃ perovskite bulk always are smaller than near the (001) and especially (011) surfaces. © 2017 King Saud University. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). #### 1. Introduction Surface and interface phenomena, occurring in the complex oxide materials and their nanostructures, the nature of surface and interface states, and the mechanisms of surface electronic processes are very important topics in modern solid state physics [1–15]. SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ perovskites belongs to the * Corresponding author. E-mail address: rieglitis@gmail.com (R.I. Eglitis). Peer review under responsibility of King Saud University. Production and hosting by Elsevier family of ABO₃-type perovskite oxides, and possess a large number of industrially important applications, including charge storage devices, capacitors, actuators, as well as many others [16–21]. Therefore, it is obvious, that in last quarter of century SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ perovskites and their (001) surfaces were worldwide extensively investigated both theoretically and experimentally [18–47]. Each of these ABO₃ perovskites displays a different sequence of structural phase transitions from the cubic paraelectric phase as the temperature is lowered. At room temperature SrTiO₃ and BaZrO₃ are known to have cubic structures, whereas CaTiO₃, SrZrO₃, PbZrO₃ and CaZrO₃ are at orthorhombic structures. On the other hand, PbTiO₃ shows tetragonal structure, while BaTiO₃ has the tetragonal–orthorhombic phase transition just at temperatures close to room temperature. The experimental temperature of the transition from the low temperature phase to the high temperature cubic structure, the appropriate experimental lattice parameters as well as experimentally evaluated band gap energies E_{σ} [48–68] are reviewed in Table 1. Note here that in most cases the experimental band gap energy values are obtained at room temperatures (RT) and in a few cases between 4.2 K and RT, while for most of the high temperature cubic modifications due to the technical impossibility to perform optical measurements, the appropriate experimental data are not available. It is worth to notice, that for BaTiO₃ perovskite no uniquely defined band gap can be detected from an exponential edge, Wemple proposes [50], using as a basis indirect arguments, that the room temperature band gaps are equal to 3.38 and 3.27 eV, respectively, for light polarized parallel and perpendicular to the ferroelectric c axis (Table 1). Caused by explosive development of new and emerging technologies, the atomic and electronic properties as well as the structure of the ABO₃ perovskite (001) surfaces have been intensively explored experimentally during the last years. For example, the SrTiO₃ (001) surface structure has been experimentally analyzed by means of the atomic force microscopy [39], transmission electron microscopy (TEM) [40], lowenergy electron diffraction and scanning tunneling microscopy [41], scanning probe microscopy [42] as well as high resolution X-ray photoelectron spectroscopy (XPS) [43]. Ultraviolet Photoelectron Spectroscopy (UPS) studies were performed on BaTiO₃ (001) surfaces [44]. Microscopic structure and electronic states on the (001) BaTiO₃ single-crystal surfaces annealed in ultrahigh vacuum were observed by scanning tunneling microscopy and spectroscopy (STM/S) [45]. Nevertheless, it is worth to notice, that for the SrO-terminated SrTiO₃ (001) surface, the low energy electron diffraction (LEED) [46] and reflection high-energy electron diffraction (RHEED) [47] experiments clearly contradict each other regarding the compression or extension of the interlayer distance Δd_{12} , probably because of differences in sample preparation or different interpretations of indirect experimental data on the atomic surface relaxations. On the theory side, it is much more easy to calculate the ABO₃ perovskite (001) surface, which is neutral, than the very complex polar and charged (011) or (111) surfaces [69–73]. In this paper, the comprehensive *ab initio* calculations dealing with SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ (001) surfaces focusing on surface relaxations, chemical bond covalencies, optical band gaps and surface energies were performed and obtained systematic trends, common for all eight perovskites, were analyzed. For example, experimentally detected Γ – Γ band gap for the SrTiO₃ bulk in the cubic phase is equal to 3.75 eV [49], whereas no experimental data exist for the band gap at BaTiO₃ cubic phase. The direct BaTiO₃ band gap detected in the tetragonal to orthorhombic phase transition temperature 278 K at different experimental conditions is equal to 3.27 or 3.38 eV [50]. It is well known that the Hartree-Fock (HF) method systematically overestimates the band gap of solids. Indeed, our by means of the HF method calculated Γ - Γ band gaps for SrTiO₃ and BaTiO₃ are equal to 12.33 and 11.73 eV, respectively [74]. From another side, the Density Functional Theory (DFT), as a rule, strongly underestimate the band gap of solids. For example, the LDA calculated Γ-Γ band gaps for SrTiO₃ and BaTiO₃ are equal to 2.36 and 1.98 eV, respectively [74]. In order to get a reliable basis for further ABO₃ perovskite bulk and (001) surface defect calculations, which requires a precise description of the optical band gap, we performed most of our calculations by means of the hybrid exchange-correlation functionals B3PW and B3LYP, which coinjoin 20% of the HF and 80% of the DFT Hamiltonian, as it is implemented in the CRYSTAL computer code. Logically, that the hybrid exchange-correlation functionals, since they are a combination of HF and DFT Hamiltonians, allows to achieve a fair agreement between ab initio calculated and experimentally measured band gaps for ABO₃ perovskite bulk as well as their (001) surfaces. | Table 1 | Experimental data for ABO ₃ perovskites, including band gap values (in eV) and lattice constants (in Å). | | | | | | | | |--------------------|---|---|-------------------------------------|---|--|--|--|--| | Material | Structure at RT | Band gap E_g (eV) at RT | Transition Temp. to cubic phase (K) | Expt. lattice const. (Å) in cubic phase | | | | | | SrTiO ₃ | Cubic | 3.75 eV (direct); 3.25 eV (indirect) .25 eV (indirect) [49] | 110 K [58] | 3.89845 Å-110 K [55]
3.9053 Å-293 K [51] | | | | | | BaTiO ₃ | Tetragonal ↔ orthorhombic (278 K) | 3.38 eV (// c);
3.27 eV (\perp c) [50] | 403 K [58] | 4.0037 Å-474 K [48]
4.0136 Å-674 K [48]
4.0239 Å-874 K [48]
4.0415 Å-1174 K [48]
4.0539 Å-1387 K [48]
4.0658 Å-1574 K [48]
4.0701 Å-1645 K [48] | | | | | | PbTiO ₃ | Tetragonal | 3.4 eV [60,66] | 763 K [54]
763 K [52] | 3.970 Å–777 K [52] | | | | | | CaTiO ₃ | Orthorhombic | ~3.5 eV [67] | 1647 K [62] | 3.8967 Å–777 K [62] | | | | | | SrZrO ₃ | Orthorhombic | 5.6 eV [68] | 1433 K [63]
1360 K [59] | 4.154 Å–1423 K [59] | | | | | | BaZrO ₃ | Cubic | 5.3 eV [60] | Cubic in all T | 4.199 Å–RT [56] | | | | | | PbZrO ₃ | Orthorhombic | 3.7 eV [60] | 501–508 K [53] | 4.1614 Å–520 K [61] | | | | | | CaZrO ₃ | Orthorhombic | 5.7 eV [65] | $2173 \pm 100 \text{ K } [57,64]$ | No data for cubic phase | | | | | The goal of work reported here was to perform necessary additional calculations in order to complete our more than fifteen year long work dealing with theoretical investigations of ABO₃ perovskite (001) surfaces. After completing *ab initio* calculations for SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ perovskites, the results were analyzed and systematic trends common for all eight ABO₃ perovskites were detected and systematized in a form easily accessible for a broad audience of readers. #### 2. Calculation details for the ABO₃ perovskite (001) surfaces Comparative *ab initio* calculations, using the hybrid exchange-correlation functionals B3PW [75] or B3LYP [76] and the CRYSTAL computer code [77], have been carried out in this paper for the eight most important ABO₃ perovskite (001) surfaces. The reciprocal-space integration, in most cases, were performed by sampling the Brillouin zone with an $8 \times 8 \times 8$ times extended Pack–Monkhorst net [78]. Strength of the CRYSTAL computer code is that it allows to calculate isolated two-dimensional slabs perpendicular to the crystal surface, without any artificial periodicity in the *z* direction. With aim to calculate ABO₃ perovskite (001) surfaces, symmetrical slabs consisting of nine alternating AO and BO₂ layers were used. First slab was terminated by AO planes and consisted of a supercell which contained 22 atoms (Fig. 1). Another slab from both sides was terminated by BO₂ planes and thereby consisted of a supercell containing 23 atoms (Fig. 2). Both slabs were non-stoichiometric, with following unit cell equations $A_5B_4O_{13}$ and $A_4B_5O_{14}$, respectively. First step, in order to calculate the energy for ABO_3 perovskite (001) surface is the cleavage energy calculations for unrelaxed AO and BO_2 -terminated (001) surfaces. The cleavage energy is equally distributed between the created surfaces, as a result of simultaneous (001) cleavage of the crystal. In **Fig. 1** Side view of the AO-terminated ABO₃ perovskite (001) surface which contains 9 layers. **Fig. 2** Side view of the BO₂-terminated ABO₃ perovskite (001) surface containing the definitions of the surface rumpling and the near-surface interplane distances. performed calculations, the nine-layer AO-terminated (001) slab with 22 atoms and BO₂-terminated slab, containing 23 atoms, represent together nine bulk unit cells, or in another words 45 atoms: $$E_{\textit{surf}}^{\textit{unr}}(\zeta) = \frac{1}{4} \left[E_{\textit{slab}}^{\textit{unr}}(AO) + E_{\textit{slab}}^{\textit{unr}}(BO_2) - 9E_{\textit{bulk}} \right],$$ where ζ means AO or BO₂. $E_{surf}^{unr}(\zeta)$ are the total energies for the unrelaxed AO or BO₂-terminated ABO₃ (001) slabs. E_{bulk} is the total energy per bulk unit cell. The factor of ½ comes as a consequence from the fact that four surfaces have been created upon the crystal cleavage procedure. As a next step, the relaxation energies for each of AO and BO₂-terminations were calculated, when both sides of the slabs relax, as follows: $$E_{rel}(\zeta) = \frac{1}{2} \left[E_{slab}^{rel}(\zeta) - E_{slab}^{unr}(\zeta) \right],$$ where $E_{\rm slab}^{\rm rel}(\zeta)$ is the slab energy after the geometry relaxation. Finally, the surface energy may be calculated as follows: $$E_{surf}(\zeta) = E_{surf}^{unr}(\zeta) + E_{rel}(\zeta).$$ In order to describe the chemical bonding and covalency effects for both ABO₃ perovskite bulk and their (001) surfaces, we employed a standard Mulliken population analysis for the effective atomic charges q, chemical bond populations P and other local properties of electronic structure, for example, bond orders, atomic covalencies as well as full valencies [77,79]. Our calculated ABO₃ perovskite (001) and (011) surface B–O chemical bond populations are detected for fully relaxed, final surface structures. In our ABO_3 perovskite (001) surface structure calculations we allowed all atoms of the three outermost surface layers to relax only the in direction along the z-axis, since surfaces of perfect cubic perovskite crystals by symmetry have no forces acting along the x- and y-axes. Our calculated ABO_3 perovskite (001) surface BO_2 layers contain two by symmetry equivalent oxygen atoms, which both exhibit completely equal relaxation magnitudes and directions. We reported in tables the relaxation values only for one oxygen atom, but the relaxation parameters for the second oxygen are exactly the same. # 3. Calculation results for $(0\,0\,1)$ surfaces by means of B3PW or B3LYP functionals As a starting point of our B3PW and B3LYP calculations, the theoretical bulk lattice constants were calculated for SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ perovskites [18–20,29,32,38,69,73,74] and compared with the available experimental data [52,56,59,61,62,80] (Tables 1 and 2). As we can see from Table 2, the B3PW calculated BaTiO₃ bulk lattice constant (4.008 Å) only by 0.2% overestimate the experimental value of (4.00 Å) [80]. Our B3PW and B3LYP calculations gives exactly the same result for BaZrO₃ bulk lattice constant 4.234 Å. Thereby our B3PW and B3LYP calculated BaZrO₃ bulk lattice constant (4.234 Å) is only by 0.83% overestimated with respect to the experimental value of 4.199 Å [56]. It is interesting to notice that our B3LYP calculated bulk lattice constants for all AZrO₃ (A = Ca; Sr; Pb; Ba) perovskites (4.157 Å; 4.195 Å; 4.220 Å; 4.234 Å) are always larger than for ATiO₃ perovskites (3.851 Å; 3.94 Å; 3.96 Å; 4.04 Å) (Table 2). Moreover, for both AZrO₃ and ATiO₃ perovskites, the B3LYP calculated bulk lattice constants increases exactly in the same order as a function from A (A = Ca; Sr; Pb and Ba). In Figs. 3, 4, 5 and 6 on the x axis we ordered all eight perovskites (CaTiO₃; SrTiO₃; PbTiO₃; BaTiO₃; CaZrO₃; SrZrO₃; PbZrO₃ and BaZrO₃) in direction of increase in our B3LYP calculated bulk lattice constants (3.851 Å; 3.94 Å; 3.96 Å; 4.04 Å; 4.157 Å; 4.195 Å; 4.220 Å; 4.234 Å), **Table 2** B3PW, B3LYP, PWGGA and HF calculated bulk lattice constants (in Å) for the SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ bulk. The experimental results are listed for comparison purpose. | Material | Functional | Theory | Experiment | |--------------------|------------|------------|-------------------------| | SrTiO ₃ | B3PW | 3.904 [20] | 3.89 [80] | | | B3LYP | 3.94 [74] | | | BaTiO ₃ | B3PW | 4.008 [19] | 4.00 [80] | | | B3LYP | 4.04 [74] | | | PbTiO ₃ | B3PW | 3.936 [19] | 3.97 [52] | | | B3LYP | 3.96 [74] | | | CaTiO ₃ | B3PW | 3.851 [18] | 3.8967 [62] | | | B3LYP | 3.851 [73] | | | | PWGGA | 3.884 | | | | HF | 3.863 | | | $SrZrO_3$ | B3PW | 4.155 | 4.154 [59] | | | B3LYP | 4.195 [29] | | | | GGA | 4.176 | | | | HF | 4.182 | | | BaZrO ₃ | B3PW | 4.234 [32] | 4.199 [56] | | | B3LYP | 4.234 [69] | | | | PWGGA | 4.240 | | | | HF | 4.250 | | | $PbZrO_3$ | B3LYP | 4.220 [29] | 4.1614 [61] | | $CaZrO_3$ | B3LYP | 4.157 [38] | No data for cubic phase | **Fig. 3** Calculated surface energies for AO-terminated (1) and BO₂-terminated (2) (001) surfaces of CaTiO₃ (CTO), SrTiO₃ (STO), PbTiO₃ (PTO), BaTiO₃ (BTO), CaZrO₃ (CZO), SrZrO₃ (SZO), PbZrO₃ (PZO) and CaZrO₃ (CZO) perovskites by means of the hybrid B3PW or B3LYP exchange–correlation functionals. **Fig. 4** Calculated and experimental bulk Γ - Γ band gaps for eight ABO₃ perovskites obtained by means of different exchange-correlation functionals: (1) PWGGA; (2) Experiment; (3) B3LYP; (4) HF. respectively. It is worth to notice, that the increase in our B3LYP calculated ABO₃ perovskite bulk lattice constants in direction from CaTiO₃ to BaZrO₃ may be explained with an increase in ionic radiuses of divalent metallic ions in the same direction Ca⁺² (0.99 Å); Sr⁺² (1.12 Å); Pb⁺² (1.20 Å) and Ba⁺² (1.34 Å). The ionic radius for tetravalent Zr⁺⁴ (0.79 Å) is larger than for Ti⁺⁴ (0.68 Å) [81]. B3PW and B3LYP calculation results for the surface atomic relaxations for AO and BO₂-terminated SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ material upper two or three (001) surface layers are listed in Tables 3 and 4. As we can see from Tables 3 and 4, the relaxation of surface metal atoms for ABO₃ perovskite upper two surface layers for both (001) terminations—AO and BO₂, in most cases, are considerably larger than that of **Fig. 5** Calculated bulk (1) as well as AO (2) and BO₂-terminated (3) (001) surface Γ - Γ band gaps for eight ABO₃ perovskites using B3PW or B3LYP hybrid exchange–correlation functionals. **Fig. 6** Calculated bulk (1) and BO₂-terminated (2) (001) surface B–O chemical bond populations for eight ABO₃ perovskites using B3PW or B3LYP hybrid exchange–correlation functionals. oxygen atoms (Tables 3 and 4), what leads to a considerable rumpling of the outermost plane (Table 5). The only two exceptions are the ZrO₂-terminated SrZrO₃ and CaZrO₃ perovskite (001) surface upper layers, where the Sr and Ca metal atom relaxations are smaller, than the oxygen atom relaxations. For the AO and ZrO2-terminated (001) surfaces of ABO₃ perovskites, the systematic trend, according to performed B3PW and B3LYP calculations, is that all atoms of the first surface layer relax inward, all atoms of the second surface layer relax outward, and all atoms of the third surface layer, again, relax inward. The only exceptions are SrOterminated SrTiO₃ (001) surface first, and SrZrO₃ (001) surface second layer, respectively, oxygen atoms, which relax in opposite directions, as well as TiO₂-terminated PbTiO₃ (001) surface upper layer oxygen atom (Tables 3 and 4). It is worth to notice, that the ZrO₂-terminated BaZrO₃ (001) surface third layer oxygen atom displacement is already negligible. namely close to zero (0.00), and it is impossible, according to performed B3PW calculations, to detect the displacement direction for this atom (Table 4). According to performed B3LYP calculations, the CaO-terminated CaZrO₃ (001) surface upper layer Ca atom exhibit the strongest relaxation between all calculated AO and BO₂-terminated ABO₃ perovskite (001) surface atoms. The Ca atom inward relaxation magnitude exceeds ten percent of the lattice constant, and according to performed B3LYP calculations is equal to 10.01%. With an aim to compare experimental results with our B3PW and B3LYP calculated (001) surface structures, the surface rumpling s (the relative displacement of oxygen atom regarding to the metal atom in the upper surface layer) and the changes in interlayer distances Δd_{12} and Δd_{23} are listed in Table 5. The surface rumpling and interlayer distances were calculated for fully relaxed ABO3 perovskite (001) surfaces, where all atoms are located at the energy minimum positions. For ab initio calculations of the interlayer distances we used the positions of relaxed metal atoms, which are much stronger electron scatterers than oxygen atoms [46]. Our B3PW calculations for SrTiO₃ (001) surfaces [20] are in a good agreement with previous LDA calculations performed by Meyer et al. [58], which give the same sign for changes of the interlayer distances. Our calculated surface rumpling amplitudes s for SrO and TiO₂-terminated SrTiO₃ (001) surfaces are in a qualitative agreement with the existing LEED [46] and RHEED [47] experiments. Nevertheless, the calculated interlayer distance changes disagree with the LEED experiments for the TiO₂terminated SrTiO₃ (001) surface. At the same time both LEED and RHEED experiments (Table 5) contradict each other regarding the sign of Δd_{12} for the SrO-terminated SrTiO₃ **Table 3** Our B3PW and B3LYP calculated relaxation of atoms (in percent of bulk lattice constant) for SrO, BaO, PbO and CaO-terminated SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ (001) surfaces totally came from references [18–20,29,32,38]. Positive (negative) values refer to displacements outward from (inward to) the surface. | | • | ~ | • | | ` | | | | | |------------|---------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | Material | | SrTiO ₃ | BaTiO ₃ | PbTiO ₃ | CaTiO ₃ | SrZrO ₃ | BaZrO ₃ | PbZrO ₃ | CaZrO ₃ | | (001)-term | ination | SrO | BaO | PbO | CaO | SrO | BaO | PbO | CaO | | Layer | Ion | B3PW | B3PW | B3PW | B3PW | B3LYP | B3PW | B3LYP | B3LYP | | 1 | A | -4.84 | -1.99 | -3.82 | -8.31 | -7.63 | -4.30 | -5.69 | -10.01 | | | O | 0.84 | -0.63 | -0.31 | -0.42 | -0.86 | -1.23 | -2.37 | -0.79 | | 2 | В | 1.75 | 1.74 | 3.07 | 1.12 | 0.86 | 0.47 | 0.57 | 1.11 | | | O | 0.77 | 1.40 | 2.30 | 0.01 | -0.05 | 0.18 | 0.09 | 0.01 | | 3 | A | _ | _ | _ | _ | -1.53 | -0.01 | -0.47 | -2.60 | | | O | _ | _ | _ | _ | -0.45 | -0.14 | -0.47 | -0.48 | | | | | | | | | | | | | Table 4 | Our B3PW and B3LYP calculated atomic relaxation for BO ₂ -terminated SrTiO ₃ , BaTiO ₃ , PbTiO ₃ , CaTiO ₃ , SrZrO ₃ , BaZrO ₃ , | |--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | PbZrO ₃ | and CaZrO ₃ (001) surfaces totally came from references [18–20,29,32,38]. | | Material | | SrTiO ₃ | BaTiO ₃ | PbTiO ₃ | CaTiO ₃ | SrZrO ₃ | BaZrO ₃ | PbZrO ₃ | CaZrO ₃ | |------------|---------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------| | (001)-term | ination | TiO_2 | TiO_2 | TiO_2 | TiO_2 | ZrO_2 | ZrO_2 | ZrO_2 | ZrO_2 | | Layer | Ion | B3PW | B3PW | B3PW | B3PW | B3LYP | B3PW | B3LYP | B3LYP | | 1 | В | -2.25 | -3.08 | -2.81 | -1.71 | -1.38 | -1.79 | -2.37 | -1.30 | | | O | -0.13 | -0.35 | 0.31 | -0.10 | -2.10 | -1.70 | -1.99 | -2.31 | | 2 | A | 3.55 | 2.51 | 5.32 | 2.75 | 2.81 | 1.94 | 4.36 | 4.23 | | | O | 0.57 | 0.38 | 1.28 | 1.05 | 0.91 | 0.85 | 1.04 | 1.25 | | 3 | В | _ | _ | _ | _ | -0.04 | -0.03 | -0.47 | -0.05 | | | О | | - | - | - | -0.05 | 0.00 | -0.28 | -0.09 | **Table 5** B3PW and B3LYP calculated and experimentally measured surface rumpling s and relative displacements Δd_{ij} (in percent of the bulk lattice constant) of the three near-surface planes for the AO and BO₂-terminated SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ (001) surfaces [18–20,29,32,38,46,47]. LDA and GGA calculation results of other authors from Refs. [58,82,83] are listed for comparison purposes. | Material | Method | AO-terminat | ed | | BO ₂ -terminat | ted | | |--------------------|------------|-------------|-----------------|-----------------|---------------------------|-----------------|-----------------| | | | S | Δd_{12} | Δd_{23} | S | Δd_{12} | Δd_{23} | | SrTiO ₃ | B3PW [20] | 5.66 | -6.58 | 1.75 | 2.12 | -5.79 | 3.55 | | | LDA [58] | | -3.4 | 1.2 | | -3.5 | 1.6 | | | LEED [46] | 4.1 ± 2 | -5 ± 1 | 2 ± 1 | 2.1 ± 2 | 1 ± 1 | -1 ± 1 | | | RHEED [47] | 4.1 | 2.6 | 1.3 | 2.6 | 1.8 | 1.3 | | BaTiO ₃ | B3PW | 1.37 | -3.74 | 1.74 | 2.73 | -5.59 | 2.51 | | | LDA [58] | | -2.8 | 1.1 | | -3.1 | 0.9 | | PbTiO ₃ | B3PW | 3.51 | 6.89 | 3.07 | 3.12 | -8.13 | 5.32 | | | LDA [58] | | -4.2 | 2.6 | | -4.4 | 3.1 | | CaTiO ₃ | B3PW | 7.89 | -9.43 | 1.12 | 1.61 | -4.46 | 2.75 | | | GGA [82] | 0.37 | -0.44 | 0.22 | 0.13 | -0.41 | 0.33 | | SrZrO ₃ | B3LYP | 6.77 | -8.49 | 2.39 | -0.72 | -4.19 | 2.85 | | | LDA [83] | 7.9 | -9.1 | 3.2 | -0.7 | -6.1 | 4.2 | | | GGA [83] | 7.8 | -9.3 | 3.3 | 0.3 | -7.4 | 4.9 | | $BaZrO_3$ | B3PW | 3.07 | -4.77 | 0.48 | 0.09 | -3.73 | 1.97 | | PbZrO ₃ | B3LYP | 3.32 | -6.26 | 1.04 | 0.38 | -6.73 | 4.83 | | CaZrO ₃ | B3LYP | 9.22 | -11.12 | 3.71 | 1.01 | -5.53 | 4.28 | (001) surface, as well as for Δd_{23} on the TiO₂-terminated (001) surface. LDA and GGA calculation results for CaTiO3 and SrZrO₃ perovskites from Refs. [82,83] are listed in Table 5 for comparison purposes. As follows from our performed B3PW calculations, the amplitude of surface rumpling for SrO-terminated SrTiO₃ (001) surface is considerably larger than that for TiO2-terminated SrTiO3 (001) surface. Just opposite, the rumpling of BaTiO₃ TiO₂-terminated (001) surface, according to performed B3PW calculations, exceeds the surface rumpling for BaO-terminated BaTiO₃ (001) surface by a factor of two. The B3PW calculated surface rumpling for PbO-terminated PbTiO₃ (001) surface (3.51) is rather close to the TiO₂-terminated PbTiO₃ (001) surface rumpling (3.12). Two largest surface rumplings, among all eight calculated ABO₃ perovskites for AO and BO₂-terminated (001) surfaces, are B3LYP calculated surface rumpling for CaZrO₃ CaOterminated (001) surface (9.22), and B3PW calculated surface rumpling for CaTiO₃ CaO-terminated (001) surface (7.89). It is interesting to notice, that among all eight calculated ABO₃ perovskites, there are only two almost perfectly coinciding negative surface rumplings, namely, for ZrO_2 -terminated $SrZrO_3$ (001) surface (-0.72) obtained in our B3LYP calculations [29] as well as (-0.7) according to LDA calculations performed by Wang et al. [83]. As we can see from Table 5, for both terminations of all eight calculated perovskites, all our B3PW and B3LYP calculated surfaces exhibit the reduction of the interlayer distance Δd_{12} and expansion of Δd_{23} . The single exception from this general trend in our calculations is the PbTiO₃ PbO-terminated (001) surface, where the expansion between the first and second surface layer equal to 6.89% of a_0 was observed. Nevertheless, it is worth to notice, that the LDA calculations performed in the Ref. [58] are in a line with the systematic trend and yields the reduction of the interlayer distance Δd_{12} for the PbO-terminated PbTiO₃ (001) surface by 4.2% of a_0 . For all eight B3PW and B3LYP calculated ABO₃ perovskites, the changes in interlayer distances Δd_{12} are larger than the respective changes in the interlayer distances Δd_{23} . The largest reduction of the interlayer distance Δd_{12} between all eight calculated ABO₃ perovskites is observed for CaOterminated CaZrO₃ (001) surface (-11.12), whereas the largest expansion of the interlayer distance Δd_{23} is observed for TiO₂-terminated PbTiO₃ (001) surface (5.32). According to our performed B3PW calculations (Table 6 and Fig. 3), the surface energy for the CaO-terminated CaTiO₃ (001) surface is 0.94 eV, which is by 0.19 eV smaller than the calculated surface energy of 1.13 eV for the TiO2-terminated CaTiO₃ (001) surface [18]. In contrast to the ABO₃ perovskite (001) surfaces, the different terminations of the (011) and especially (111) surfaces lead to a huge differences in the surface energies. According to performed B3PW calculations for the CaTiO₃ (011) surface, the lowest surface energy is 1.86 eV for the O-terminated (011) surface. The B3PW calculated surface energy for the TiO-terminated CaTiO₃ (011) surface (3.13 eV) is considerably larger than the calculated surface energy for Ca-terminated CaTiO₃ (011) surface (1.91 eV) [18]. Nevertheless, the largest CaTiO₃ surface energies are for the CaTiO₃ (111) surfaces [73]. They are much larger, than the CaTiO₃ (001), and even CaTiO₃ (011) surface energies. So, the B3LYP calculated CaO₃-terminated CaTiO₃ (111) surface energy is equal to 5.86 eV, but the Ti-terminated CaTiO₃ (111) surface energy is 4.18 eV. Similar surface energy trends, according to our performed B3PW and B3LYP calculations, are observed also for another ABO₃ perovskites. For example, BaZrO₃ (001) surface energies almost coincide [32]. They are, according to performed B3PW calculations, 1.30 eV for the BaO-terminated BaZrO₃ (001) surface, and 1.31 eV for the ZrO₂-terminated BaZrO₃ (001) surface. Again, BaZrO₃ (011) surface energies are much larger than the (001) surface energies, similar as for another ABO₃ perovskites. The B3PW calculated O-terminated BaZrO₃ (011) surface energy 2.32 eV is the lowest surface energy between all BaZrO₃ (011) surface energies. The ZrOterminated BaZrO₃ (011) surface energy 3.09 eV is larger than the Ba-terminated (011) surface energy 2.90 eV. Again, the B3LYP calculated BaZrO₃ (111) surface energies are considerably larger, than even the BaZrO3 (011) surface energies [69]. They are equal to 9.33 eV for the BaO₃-terminated BaZrO₃ (111) surface and 7.94 eV for the Zr-terminated BaZrO₃ (111) surface. Our B3PW and B3LYP calculated bulk optical band gaps [18–20,29,32,38,69,73] for ABO₃ perovskites, as a rule, are in a better agreement with the experimental values [49,60] than the Hartree–Fock or Density Functional Theory calculation results (Table 7 and Fig. 4). For example, the BaZrO₃ bulk optical Γ - Γ band gap calculated by us using the B3PW exchange-correlation functional (4.93 eV) is in almost perfect agreement with the experimental value of 5.3 eV [60] (Fig. 7). Our B3PW calculated electronic band structures for BaO and ZrO₂-terminated BaZrO₃ (001) surfaces are graphically depicted in Fig. 8. Our B3PW calculated optical BaOterminated BaZrO₃ (001) surface Γ - Γ band gap is equal to 4.82 eV, whereas ZrO₂-terminated (001) surface Γ - Γ band gap is even more reduced with respect to the BaZrO3 bulk band gap value and is equal to 4.48 eV. From Fig. 7 for the BaZrO₃ bulk case we can see that the bottom of the lowest conduction band (CB) lies at the Γ -point with quite flat fragment between the Γ and X points and consist of Zr-4d sates. The highest valence band (VB) for the BaZrO3 bulk is relatively flat, with the top at R point and also flat between M and R points (Fig. 7). The VB top in the BaZrO₃ bulk consists mainly of O2p atomic orbitals. As we can see from Fig. 8a, the top of the VB for the BaO-terminated BaZrO₃ (001) surface is quite flat throughout the Brillouin zone. The O-2p electronic states make a major contribution to the VB top, while the CB bottom is mostly composed from Zr-4d and Ba-6 s electronic states. Finally, as we can see from Fig. 8b, our B3PW calculated band structure for ZrO2-terminated BaZrO3 (001) surface has not so flat VB top, as that for the BaOterminated (001) surface. The VB top for the ZrO₂terminated BaZrO₃ (001) surface is located at the M point. The VB top consists mostly from O-2p electronic states, while the CB bottom mainly is composed of Zr-4d electronic states. For all B3PW and B3LYP calculated ABO3 perovskites their AO and BO₂-terminated (001) surface optical band gaps are reduced with respect to the bulk optical band gap values (Table 7 and Fig. 5). It is worth to notice that for SrTiO₃, PbZrO₃ and CaZrO₃ perovskites their AO-terminated (001) surface optical band gaps are smaller, than the BO₂terminated (001) surface optical band gaps. Just opposite, for CaTiO₃, BaTiO₃, PbTiO₃, SrZrO₃ and BaZrO₃ perovskites their BO₂-terminated (001) surface optical band gaps are smaller than the AO-terminated (001) surface optical band gaps. B3PW and B3LYP calculated B–O chemical bond populations for ABO₃ perovskite bulk are in the range from 0.084*e* for the CaTiO₃ bulk case to 0.108*e* for the BaZrO₃ bulk (Table 8 and Fig. 6). It is worth to notice, that the Ti-O chemical bond populations for the BaTiO₃ and PbTiO₃ perovskite bulk coincide and both population values are equal to **Table 6** Our B3PW and B3LYP calculated surface energies (in eV per surface cell) for SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ (001), (011) and (111) surfaces. | Material | (001) surface | | (011) surface | | | (111) surface | | |--------------------|---------------|-----------|---------------|-----------|-----------|---------------|-----------| | Terminat. | AO | BO_2 | BO | A | О | AO_3 | В | | SrTiO ₃ | 1.15 [20] | 1.23 [20] | 3.06 [20] | 2.66 [20] | 2.04 [20] | 6.30 [73] | 4.99 [73] | | BaTiO ₃ | 1.19 [19] | 1.07 [19] | 2.04 [19] | 3.24 [19] | 1.72 [19] | 8.40 [71] | 7.28 [71] | | PbTiO ₃ | 0.83 [19] | 0.74 [19] | 1.36 [19] | 2.03 [19] | 1.72 [19] | 8.11 [71] | 6.14 [71] | | CaTiO ₃ | 0.94 [18] | 1.13 [18] | 3.13 [18] | 1.91 [18] | 1.86 [18] | 5.86 [73] | 4.18 [73] | | $SrZrO_3$ | 1.13 [29] | 1.24 [29] | 3.61 [29] | 2.21 [29] | 2.23 [29] | 9.45 [71] | 7.98 [71] | | BaZrO ₃ | 1.30 [32] | 1.31 [32] | 3.09 [32] | 2.90 [32] | 2.32 [32] | 9.33 [69] | 7.94 [69] | | $PbZrO_3$ | 1.00 [29] | 0.93 [29] | 1.89 [29] | 1.74 [29] | 1.85 [29] | 8.21 [71] | 6.93 [71] | | CaZrO ₃ | 0.87 [38] | 1.33 [38] | | | | | | **Table 7** Our B3PW, B3LYP, PWGGA and HF calculated optical band gaps for SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ bulk as well as for AO and BO₂-terminated (001) surfaces. Experimental bulk band gap values are listed for comparison purpose. | Material | Method | Band gap | | | | | | |--------------------|------------|-----------|-------------------------|----------------|------------------------------|--|--| | | | Bulk | Experiment | AO-term. (001) | BO ₂ -term. (001) | | | | SrTiO ₃ | B3PW [74] | 3.96 | 3.75 [49] | 3.72 | 3.95 | | | | BaTiO ₃ | B3PW [74] | 3.55 | No data for cubic phase | 3.49 | 2.96 | | | | PbTiO ₃ | B3PW [74] | 4.32 | No data for cubic phase | 3.58 | 3.18 | | | | CaTiO ₃ | B3PW | 4.18 | No data for cubic phase | 3.87 | 3.30 | | | | | B3LYP | 4.20 [73] | | 3.88 | 3.33 | | | | | PWGGA | 2.34 | | 2.19 | 2.06 | | | | | HF | 12.63 | | 12.53 | 11.86 | | | | $SrZrO_3$ | B3PW | 5.30 | No data for cubic phase | 5.01 | 4.98 | | | | | B3LYP [29] | 5.31 | | 5.04 | 4.91 | | | | | PWGGA | 3.53 | | 3.20 | 3.17 | | | | | HF | 13.54 | | 13.25 | 13.19 | | | | $BaZrO_3$ | B3PW | 4.93 | 5.3 [60] | 4.82 | 4.48 | | | | | B3LYP | 4.79 [69] | | 4.71 | 4.37 | | | | | PWGGA | 3.24 | | 3.08 | 2.76 | | | | | HF | 12.96 | | 12.84 | 12.62 | | | | $PbZrO_3$ | B3LYP | 5.63 [29] | No data for cubic phase | 3.86 | 4.60 | | | | CaZrO ₃ | B3LYP | 5.40 [38] | No data for cubic phase | 5.00 | 5.22 | | | Fig. 7 Our B3PW calculated electronic band structure for \mbox{BaZrO}_3 bulk. 0.098e. B3PW and B3LYP calculated B-O chemical bond populations near the ABO₃ perovskite (001) surfaces are in the range from 0.102e for the CaZrO₃ (001) surface case till 0.132e for the BaZrO₃ perovskite (001) surface. The (001) surface B-O chemical bond population coincides for all three PbTiO₃, CaTiO₃ and SrZrO₃ perovskite (001) surfaces and are equal to 0.114e. The (011) surface B-O chemical bond populations are even larger than the respective chemical bond populations for the (001) surface, and are in the range from 0.128e for the CaTiO₃ (011) surface case, to 0.152e for the BaZrO₃ perovskite (011) surface. The systematic trend for all calculated ABO3 perovskites is that the B-O chemical bond populations are larger near the (011) surface, than near the (001) surface, and the B-O chemical bond populations in the ABO₃ perovskite bulk always are smaller than near their (001) and, of course, (011) surfaces. For example, for the **Fig. 8** Our B3PW calculated electronic band structure for BaZrO₃ BaO (a) and ZrO₂-terminated (b) (001) surfaces. BaZrO₃ perovskite bulk, the Zr–O chemical bond population is equal to 0.108e. The Zr–O chemical bond population becomes larger near the ZrO₂-terminated BaZrO₃ (001) | Material | Method | B-O chemical bond population | | | | | |-------------------------|--------|------------------------------|---------------|---------------|--|--| | | | Bulk | (001) surface | (011) surface | | | | SrTiO ₃ [20] | B3PW | 0.088 | 0.118 | 0.130 | | | | BaTiO ₃ [19] | B3PW | 0.098 | 0.126 | 0.130 | | | | PbTiO ₃ [19] | B3PW | 0.098 | 0.114 | 0.132 | | | | CaTiO ₃ [18] | B3PW | 0.084 | 0.114 | 0.128 | | | | SrZrO ₃ [29] | B3LYP | 0.092 | 0.114 | 0.142 | | | | BaZrO ₃ [32] | B3PW | 0.108 | 0.132 | 0.152 | | | | PbZrO ₃ [29] | B3LYP | 0.106 | 0.116 | 0.148 | | | | CaZrO ₃ [38] | B3LYP | 0.086 | 0.102 | | | | **Table 8** B3PW and B3LYP calculated B–O chemical bond populations for SrTiO₃, BaTiO₃, PbTiO₃, CaTiO₃, SrZrO₃, BaZrO₃, PbZrO₃ and CaZrO₃ bulk as well as for BO₂-terminated (001) and BO-terminated (011) surfaces (in *e*). surface 0.132e, and it reaches the largest value of 0.152e near the ZrO-terminated BaZrO₃ (011) surface. #### 4. Summary and conclusions Based on the large amount of our B3PW and B3LYP calculations, performed for ABO₃ perovskite (001) surfaces, following systematic trends were detected: - The relaxation of (001) surface metal atoms for ABO₃ perovskite upper two surface layers for both AO and BO₂terminations, in most cases, are considerably larger than that of oxygen atoms, what leads to a considerable rumpling of the outermost plane. - 2. For the AO and BO₂-terminated (001) surfaces of ABO₃ perovskites, the systematic trend, with a few exceptions, according to performed B3PW and B3LYP calculations, is that all atoms of the first surface layer relax inward, all atoms of the second surface layer relax outward, and all atoms of the third surface layer, again, relax inward. As a result of this relaxation, our calculated surfaces exhibit the reduction of the interlayer distance Δd_{12} and expansion of Δd_{23} . - 3. For all eight B3PW and B3LYP calculated ABO₃ perovskites, the changes in interlayer distances Δd_{12} are larger than the respective changes in the interlayer distances Δd_{23} . - 4. The ABO₃ perovskite (001) surface energies for both AO and BO₂-terminations are almost equal. In contrast (011) and especially (111) surface energies for different terminations, in most cases, are quite different. - 5. The ABO₃ perovskite (001) surface energies always are smaller than the (011) and especially (111) surface energies. - 6. According to our performed B3PW, B3LYP, PWGGA and HF calculations, the ABO₃ perovskite AO and BO₂-terminated (001) surface band gaps are always reduced with respect to their bulk band gap values. The only exception, to the best of our knowledge, is the paper by Meyer et al. [58], where the LDA calculated band gaps for SrO-terminated SrTiO₃ (1.86 eV), BaO-terminated BaTiO₃ (1.80 eV) as well as TiO₂-terminated PbTiO₃ (1.61 eV) (001) surfaces are larger than the respective SrTiO₃ (1.85 eV), BaTiO₃ (1.79 eV) and PbTiO₃ (1.54 eV) bulk band gaps. Nevertheless, the bulk and surface band gap values presented in Ref. [58] are very close, and thereby they are practically in the precision limit of calculations, and cannot rigorously refute our conclusion, that the ABO₃ perovskite (001) surface band gaps are always reduced with respect to the bulk band gap values. The B–O chemical bond population in ABO₃ perovskite bulk always are smaller than near the (001) and especially (011) surfaces. #### Acknowledgements This work was supported by the Latvian Council of Science Grant No. 374/2012 and the Latvian National Research Program IMIS2. Many stimulating discussions with D. Vanderbilt, K.M. Rabe, M. Rohlfing, E. Heifets, J. Maier, G. Borstel and E.A. Kotomin are greatly acknowledged. #### References - [1] L. Kronik, Y. Shapira, Surf. Sci. Rep. 37 (1999) 1-206. - [2] A. Weizman, D. Fuks, E.A. Kotomin, D. Gryaznov, Solid State Ionics 230 (2013) 32–36. - [3] M.M. Kuklja, Y.A. Mastrikov, B. Jansang, E.A. Kotomin, Solid State Ionics 230 (2013) 21–26. - [4] C. Lushchik, E. Feldbach, A. Frorip, M. Kirm, A. Lushchik, A. Maaroos, I. Martinson, J. Phys.: Condens. Matter 6 (1994) 11177. - [5] R. Yukawa, K. Ozawa, S. Yamamoto, R.Y. Liu, I. Matsuda, Surf. Sci. 641 (2015) 224–230. - [6] B.G. Janesko, S.I. Jones, Surf. Sci. 659 (2017) 9-15. - [7] S.N. Vidhya, O.N. Balasundaram, M. Chandramohan, J. Saudi Chem. Soc. 20 (2016) 703–710. - [8] A. Irfan, A.G. Al-Sehemi, S. Muhammad, A.R. Chaudhry, A. Kalam, M. Shkir, A.E. AL-Salami, A.M. Asiri, J. Saudi Chem. Soc. 20 (2016) 680–685. - [9] M.R. Belkhedkar, A.U. Ubale, J. Saudi Chem. Soc. 20 (2016) 553–560. - [10] V. Dimza, A.I. Popov, L. Lace, M. Kundzins, K. Kundzins, M. Antonova, M. Livins, Curr. Appl. Phys. 17 (2017) 169–173. - [11] S. Min, X. Yang, A. Lu, C. Tseng, M.N. Hedhili, Z. Lai, L. Li, K. Huang, J. Saudi Chem. Soc. 21 (2017) 708–712. - [12] Yu.F. Zhukovskii, N. Pugno, A.I. Popov, C. Balasubramanian, S. Bellucci, J. Phys.: Condens. Matter 19 (2007) 395021. - [13] M. Haghighi, K. Nikoofar, J. Saudi Chem. Soc. 20 (2016) 101– 106 - [14] A.U. Ubale, M.V. Bhute, G.P. Malpe, P.R. Raut, K.S. Chipade, S.G. Ibrahim, J. Saudi Chem. Soc. 20 (2016) 227–236. - [15] L. Miao, R. Jia, Y. Wang, C.-P. Kong, J. Wang, R.I. Eglitis, H.-X. Zhang, J. Saudi Chem. Soc. 21 (2017) 111–117. - [16] H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, Y. Tokura, Nat. Mater. 11 (2012) 103–113. - [17] T. Matsuda, S. Yamanaka, K. Kurosaki, S.I. Kobayashi, J. Alloys. Compd. 351 (2003) 43–46. - [18] R.I. Eglitis, D. Vanderbilt, Phys. Rev. B 78 (2008) 155420. - [19] R.I. Eglitis, D. Vanderbilt, Phys. Rev. B 76 (2007) 155439. - [20] R.I. Eglitis, D. Vanderbilt, Phys. Rev. B 77 (2008) 195408. - [21] M. Dawber, K.M. Rabe, J.F. Scott, Rev. Mod. Phys. 77 (2005) 1083–1130. - [22] N. Erdman, K.R. Poeppelmeier, M. Asta, O. Warschkow, D.E. Ellis, L.D. Marks, Nature 419 (2002) (2002) 55–58. - [23] E. Heifets, R.I. Eglitis, E.A. Kotomin, J. Maier, G. Borstel, Phys. Rev. B 64 (2001) 235417. - [24] J.M.P. Martirez, E.H. Morales, W.A. Saidi, D.A. Bonnell, A.M. Rappe, Phys. Rev. Lett. 109 (2012) 256802. - [25] J.M. Zhang, Q. Pang, K.W. Hu, V. Ji, Surf. Interface Anal. 40 (2008) 1382–1387. - [26] G.Z. Wang, C.R. Li, J. Cui, Z.Y. Man, Surf. Interface Anal. 41 (2009) 918–923. - [27] J.R. Sambrano, V.M. Longo, E. Longo, C.A. Taft, J. Mol. Struct. (Thoechem) 813 (2007) 49–56. - [28] H. Tian, A.J. Mao, H.J. Zhao, Y. Cui, H. Li, X.Y. Kuang, Phys. Chem. Chem. Phys. 18 (2016) 7680–7687. - [29] R.I. Eglitis, M. Rohlfing, J. Phys.: Condens. Matter 22 (2010) 415901. - [30] R.I. Eglitis, S. Piskunov, Comput. Condens. Matter 7 (2016) 1– - [31] M. Arrigoni, T.S. Bjørnheim, E.A. Kotomin, J. Maier, Phys. Chem. Chem. Phys. 18 (2016) 9902–9908. - [32] R.I. Eglitis, J. Phys.: Condens. Matter 19 (2007) 356004. - [33] Y.X. Wang, M. Arai, T. Sasaki, C.L. Wang, W.L. Zhong, Surf. Sci. 585 (2005) 75–84. - [34] R.I. Eglitis, Int. J. Mod. Phys. B 28 (2014) 1430009. - [35] S. Piskunov, R.I. Eglitis, Solid State Ionics 274 (2015) 29-33. - [36] S. Piskunov, R.I. Eglitis, Nucl. Instr. Methods Phys. Res. B 374 (2016) 20–23. - [37] M.G. Brik, C.G. Ma, V. Krasnenko, Surf. Sci. 608 (2013) 146– 153. - [38] R.I. Eglitis, Ferroelectrics 483 (2015) 75-85. - [39] A. Biswas, P.B. Rossen, C.H. Yang, W. Siemons, M.H. Jung, I. K. Yang, R. Ramesh, Y.H. Jeong, Appl. Phys. Lett. 98 (2011) 051904. - [40] G.Z. Zhu, G. Radtke, G.A. Botton, Nature 490 (2012) 384-387. - [41] R. Shimizu, K. Iwaya, T. Ohsawa, S. Shiraki, T. Hasegawa, T. Hashizume, T. Hitosugi, Appl. Phys. Lett. 100 (2012) 263106. - [42] T. Kubo, H. Orita, H. Nozoye, Phys. Chem. Chem. Phys. 13 (2011) 16516–16519. - [43] M.S.J. Marshall, D.T. Newell, D.J. Payne, R.G. Egdell, M.R. Castell, Phys. Rev. B 83 (2011) 035410. - [44] R. Courths, Phys. Stat. Sol. B 100 (1980) 135–148. - [45] T. Shimizu, H. Bando, Y. Aiura, Y. Haruyama, K. Oka, Y. Nishihara, Jpn. J. Appl. Phys. 34 (1995) L1305–L1308. - [46] N. Bickel, G. Schmidt, K. Heinz, K. Muller, Phys. Rev. Lett. 62 (1989) 2009–2011. - [47] T. Hikita, T. Hanada, M. Kudo, M. Kawai, Surf. Sci. 287–288 (1993) 377–381. - [48] J.W. Edwards, R. Speiser, H.L. Johnston, J. Amer. Chem. Soc. 73 (1951) 2934–2935. - [49] K. van Benthem, C. Elsässer, R.H. French, J. Appl. Phys. 90 (2001) 6156–6164. - [50] S.H. Wemple, Phys. Rev. B 2 (1970) 2679–2689. - [51] J.G. Bednorz, H.J. Scheel, J. Cryst. Growth 41 (1977) 5. - [52] S.A. Mabud, A.M. Glazer, J. Appl. Cryst. 12 (1979) 49-53. - [53] H. Fujishita, S. Hoshino, J. Phys. Soc. Jpn. 53 (1984) 226-234. - [54] R.J. Nelmes, W.F. Kuhs, Solid State Commun. 54 (1985) 721- - [55] M. Sato, Y. Soejima, N. Ohama, A. Okazaki, H.J. Scheel, K.A. Müller, Phase Trans. 5 (1985) 207–218. - [56] M.D. Mathews, E.B. Mirza, A.C. Momin, J. Mater. Sci. Lett. 10 (1991) 305–306. - [57] Y. Du, Z.P. Jin, P.Y. Huang, J. Am. Ceram. Soc. 75 (1992) 3040. - [58] B. Meyer, J. Padilla, D. Vanderbilt, Faraday Discuss. 114 (1999) 395–405. - [59] B.J. Kennedy, C.J. Howard, B.C. Chakoumakos, Phys. Rev. B 59 (1999) 402. - [60] J. Robertson, J. Vacuum Sci. Technol. B 18 (2000) 1785–1791. - [61] S. Aoyagi, Y. Kuroiwa, A. Sawada, H. Tanaka, E. Nishibori, M. Takata, M. Sakata, J. Phys. Soc. Japan 71 (2002) 2353–2356. - [62] R. Ali, M. Yashima, J. Solid State Chem. 178 (2005) 2867. - [63] M. Yoshino, H. Yukawa, M. Morinaga, Mater. Trans. 45 (2004) 2056–2061. - [64] P. Stoch, J. Szczerba, J. Lis, D. Madej, Z. Peogonekdzich, J. Eur. Ceram. Soc. 32 (2012) 665–670. - [65] I.L.V. Rosa, M.C. Oliveira, M. Assis, M. Ferrer, R.S. André, E. Longo, M.F.C. Gurgel, Ceram. Int. 41 (2015) 3069–3074. - [66] C.H. Peng, J.F. Chang, S. Desu, Mater. Res. Soc. Symp. Proc. 243 (1992) 21–24. - [67] K. Ueda, H. Yanagi, R. Noshiro, H. Hosono, H. Kawazoe, J. Phys.: Condens. Matter 10 (1998) 3669–3677. - [68] Y.S. Lee, J.S. Lee, T.W. Noh, D.Y. Byun, K.S. Yoo, K. Yamaura, E. Takayama-Muromachi, Phys. Rev. B 67 (2003). - [69] R.I. Eglitis, Solid State Ionics 230 (2013) 43-47. - [70] N. Sivadas, H. Dixit, V.R. Cooper, D. Xiao, Phys. Rev. B 89 (2014) 075303. - [71] R.I. Eglitis, Appl. Surf. Sci. 358 (2015) 556-562. - [72] H. Chen, Y. Xie, G.X. Zhang, H.T. Yu, J. Phys.: Condens. Matter 26 (2014) 395002. - [73] R.I. Eglitis, Phys. State Sol. B 252 (2015) 635-642. - [74] S. Piskunov, E. Heifets, R.I. Eglitis, G. Borstel, Comput. Mater. Sci. 29 (2004) 165–178. - [75] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652. - [76] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785–789. - [77] V.R. Saunders, R. Dovesi, C. Roetti, N. Causa, N.M. Harrison, R. Orlando, C.M. Zicovich-Wilson, CRYSTAL-2009 User Manual University of Torino Italy, 2009. - [78] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13 (1976) 5188-5192. - [79] R.C. Bochicchio, H.F. Reale, J. Phys. B 26 (1993) 4871–4883. - [80] K.H. Hellwege, A.M. Hellwege, Landolt-Bornstein New Series, Springer, Berlin, 1969. p. 3. - [81] R.S. Roth, J. Res. Natl. Bureau Stand. 58 (1957) 75-88. - [82] Y.X. Wang, M. Arai, T. Sasaki, C.L. Wang, Phys. Rev. B 73 (2006) 035411. - [83] Y.X. Wang, M. Arai, Surf. Sci. 601 (2007) 4092.