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Highlights

e D-A-D type diphenylsulfone derivatives were synthesized.

e All compounds formed glasses with glass transition temperatures ranging from 68 to 162 °C.

e All hosts demonstrated high triplet energy levels of 2.99-3.08 eV.

e Hole-transporting properties with charge mobility exceeding 10* cm?/Vs were estimated by
time of flight technique.

e Bluish-green TADF OLEDs with EQE of 20% were fabricated.
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Abstract

In this work, we report on a series of diphenylsulfone derivatives substituted by 2-(trifluoromethyl)-
phenothiazinyl,  10,11-dihydro-5H-dibenz[b,flazepinyl, = SH-dibenz[b,flazepinyl, 4-methoxy-
carbazolyl and 1,2,3,4-tetrahydrocarbazolyl moieties. Utilization of such donating units provided
high triplet levels (2.99-3.12 eV) of the designed compounds. The compounds were characterized by
glass-forming properties (with glass transition temperatures of 68-162°C) and ionization potentials
of 5.61-5.99 eV. Depending on the donor substitution pattern, either hole or electron transport was
observed for the studied compounds with charge mobilities in the range from 5.3x10° to 2.8x10*
cm?/Vs at electric fields higher than 3.1:10° V/cm. Hosting properties of the compounds were studied
using widely known emitter exhibiting thermally activated delayed fluorescence. Among the studied
compounds, bis(4-(4-methoxy-9H-carbazole-9-yl)phenyl)sulfone showed the best performances in
both guest:host solid films (photoluminescence quantum yield of 87%) and electroluminescent
devices (maximum external quantum efficiency over 20%).

Keywords: diphenylsulfone, carbazole, TADF, host, OLED.
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1. Introduction

The technology of organic light emitting diodes (OLEDs) [1] takes over the market of displays and
lightning devices [2]. The spin-orbit coupling of phosphorescent dyes overcomes 25% limit of
internal quantum efficiency by utilizing triplet excitons in emissive processes which usually are
forbidden [3]. The high cost of rare-metal materials used as phosphorescent emitters is the greatest
disadvantage of the approach of phosphorescent OLEDs. As the alternative, the concept of thermally
activated delayed fluorescence (TADF) was proposed [4]. The main principle of the approach is
tuning molecule characteristics in order to provide small singlet-triplet energy splitting facilitating
reverse intersystem crossing of triplet excitons to the first singlet excited states with the following
TADF [4].

Because of its electron-withdrawing property and geometry, diphenylsulfone is one of the most
widely used acceptors in the design of deep blue TADF emitters [5]. The first series of such donor-
acceptor-donor (D-A-D) compounds was introduced in 2012 [6]. However, diphenylsulfone-based
host materials remain rare. Establishment of structural relationships with respect of effective energy
transfer is crucial for a rational design of diphenylsulfone derivatives capable of operating as host
materials for TADF OLEDs. In this context, seven-memberes cycles of donor moieties as well as
other heterocyclic donors were used in the design of the potential hosts in order to study structure-
properties relationship.

For testing of the ability of harvesting of TADF emission by host, it is more convenient to use green
dopant than the blue one. (4s,6s)-2,4,5,6-Tetra(9H-carbazol-9-yl)isophthalonitrile (4CzIPN) as one
of the most widely used green TADF emitter [7] was selected for this study. EQE of 19.3% was
reported for OLED using this emitter [7]. 4CzIPN showed photoluminescence quantum yield (PLQY)

above 90% and suitably short DF lifetime around Sus and consequently enhanced TADF [7].
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In this work, the newly synthesized donor-disubstituted diphenylsulfones were studied as potential
hosts for 4CzIPN using not only experimental but also theoretical tools TADF OLED with an EQE

over 20% based on one newly synthesized host is presented.

2. Experimental section

2.1 Materials

Bis(4-fluorophenyl)sulfone, 2-(trifluoromethyl)-10H-phenothiazine, 5H-dibenz[b,f]lazepine, 10,11-
dihydro-5H-dibenz[b,f]azepine and 1,2,3,4-tetrahydrocarbazole were purchased from Aldrich. 4-
Methoxy-9H-carbazole (I, m.p. 137-138 °C) was synthesized according to the previously reported

method [8].

2.2 Instrumentation

3C NMR, '"H NMR spectra were obtained using a Varrian Unity Inova (300 MHz ('H) and 75 MHz
(3C)). Mass (MS) spectra, infrared (IR) spectra were recorded, elemental, thermogravimetric analysis
(TGA), differential scanning calorimetry (DSC) measurements, absorption, photoluminescence (PL)
spectra of dilute solutions and of the films, cyclic voltammetry (CV) measurements were recorded as
described carlier [9]. Theoretical calculations had been carried with Gaussian 16 and Gaussview 6
softwares. lonization potential measurements of the solid samples were performed by photoelectron
emission method in air [10]. Electron and hole mobilities (., 4,) were studied by time of flight
technique [11]. OLEDs were fabricated by vacuum deposition of inorganic and organic layers onto
cleaned ITO coated glass. Vacuum of 10-° Torr was used. The active area of the obtained devices was

3x6 mm?. The current density voltage and luminance voltage dependences were recorded with
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semiconductor parameters analyzer (HP 4145A). Brightness was measured using a calibrated

photodiode. Electroluminescence spectra were recorded with an Ocean Optics modular spectrometer.

2.3 Synthesis and characterization

Bis(4-(2-(trifluoromethyl)-phenothiazine-10-yl)phenyl)sulfone (). 2-(Trifluoromethyl)-10H-
phenothiazine (2.31 g, 8.65 mmol) was dissolved in N-methyl-2-pyrrolidone (15 mL). Bis(4-
fluorophenyl)sulfone (1 g, 3.93 mmol), cesium carbonate (2.58 g, 7.93 mmol) were added into the
mixture, and stirred under 170 °C using oil bath for 12 h. The mixture was cooled to room temperature
and the product was extracted using methylene chloride. The organic layer was collected, filtered and
evaporated to remove the solvent. The residue was purified by column chromatography using »-
ethylacetate/n-hexane (8:1) as an eluent, crystallized from the mixture of ethylacetate and hexane to
get 1 as light yellow crystals. FW = 748.78 g/mol, yield: 1.26 g, 43%; m.p. 283-284 °C. 'H NMR
(300 MHz, CDCls, 6, ppm): 7.88 (d, J = 8.1 Hz, 4H), 7.44 (d, J = 8.1 Hz, 2H), 7.39 — 7.30 (m, 4H),
7.24 —7.20 (m, 4H), 7.19 — 7.12 (m, 6H), 7.01 (dd, J = 8.1, 1.0 Hz, 2H). *C NMR (75 MHz, CDCl;,
3, ppm): 147.8, 141.9, 140.9, 136.1, 135.4, 129.7, 129.3, 128.7, 128.5, 127.7, 126.0, 124.0, 122.2,
120.3, 119.9. MS (APCIY, 20 V), m/z: 750 ([M+H]"). Elemental analysis calcd (%) for
CisHynFgN>O,S5: C, 60.95; H, 2.96; F, 15.22; N, 3.74; O, 4.27; S, 12.85; Found: C, 60.99; H, 2.92; F,
15.18; N, 3.79.

Bis(4-(10,11-dihydro-5H-dibenz[b,f]azepine-5-yl)phenyl)sulfone (2) was synthesized according to
the method similar to that used for the synthesis of 1, except that 10,11-dihydro-5H-
dibenz[b,flazepine (1.68 g, 8.65 mmol) was used. The crude product was purified by column
chromatography on silica gel using ethylacetate/n-hexane (7:1) as an eluent, crystallized from the
mixture of ethylacetate and hexane to get the final derivative 2 as light yellow crystals. FW = 660.87
g/mol, yield: 1.06 g, 41%; m.p. 195-196 °C. 'H NMR (300 MHz, CDCls, 3, ppm): 7.81 (dd, J = 8.7,

5.1 Hz, 4H), 7.52 (d, J = 9.0 Hz, 4H), 7.31 — 7.21 (m, 4H), 7.17 (d, J = 6.2 Hz, 4H), 7.04 (t, /= 8.6
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Hz, 4H), 6.51 (d, J = 9.0 Hz, 4H), 2.88 (s, 8H). *C NMR (75 MHz, CDCl;, 3, ppm): 165.7, 163.2,
152.6,142.1,139.2,137.6,131.2,129.8, 129.5, 129.2,129.0, 128.5, 128.0, 127.4,116.3, 116.1, 112.3,
30.5. MS (APCI*, 20 V), m/z: 662 ([M+H]"). Elemental analysis calcd (%) for C4H3,N,0,S: C,
79.97; H, 6.10; N, 4.24; O, 4.84; S, 4.85; Found: C, 79.93; H, 6.14; N, 4.19.
Bis(4-(5H-dibenz[b,f]azepine-5-yl)phenyl)sulfone (3) was synthesized according to the method
similar to that used for the synthesis of 1, except that SH-dibenz[b,f]azepine (1.67 g, 8.65 mmol) was
used. The crude product was purified by column chromatography on silica gel using ethylacetate/n-
hexane (6:1) as cluent, crystallized from the mixture of ethylacetate and hexane to afford the final
derivative 3 as light yellow crystals. FW = 656.83 g/mol, yield: 0.95 g, 37%; m.p. 377-378 °C. 'H
NMR (300 MHz, CDCl;, 8, ppm): 7.43 —7.26 (m, 20H), 6.74 (s, J= 8.5 Hz, 4H), 6.15 (d, J= 8.5 Hz,
4H). 3C NMR (75 MHz, CDCls, 8, ppm): 151.9, 141.6, 135.7, 131.0, 130.5, 130.2, 129.9, 129.5,
128.3, 127.6, 111.4. MS (APCI", 20 V), m/z: 658 ([M+H]"). Elemental analysis calcd (%) for
C4H,sN,0,S: C, 80.46; H, 5.52; N, 4.26; O, 4.87; S, 4.88; Found: C, 80.41; H, 5.56; N, 4.21.
Bis(4-(4-methoxy-9H-carbazole-9-yl)phenyl)sulfone (4) was synthesized according to the method
similar to that used for the synthesis of 1, except that 4-methoxy-9H-carbazole (1.70 g, 8.65 mmol)
was used. The crude product was purified by column chromatography on silica gel using
ethylacetate/n-hexane (8:1) as eluent and crystallized from the mixture of ethylacetate and hexane to
afford the final derivative 4 as light yellow crystals. FW = 608.70 g/mol, yield: 1.55 g, 65%; m.p.
245-246 °C."H NMR (300 MHz, CDCl;, 3, ppm): 8.43 (d, J = 7.6 Hz, 2H), 8.28 (d, /= 8.7 Hz, 4H),
7.85(d, J=8.7 Hz, 4H), 7.48 (d, J = 8.2 Hz, 2H), 7.46 — 7.31 (m, 6H), 7.12 (d, /= 8.2 Hz, 2H), 6.81
(d, J = 8.2 Hz, 2H), 4.14 (s, 6H). 13C NMR (75 MHz, CDCl;, 3, ppm): 156.4, 142.8, 141.3, 139.3,
139.1 129.6, 127.2, 126.8, 125.4, 123.4, 122.5, 121.1, 113.2, 108.9, 102.4, 102.0, 55.6. MS (APCI*,
20 V), m/z: 609 ([M+H]"). Elemental analysis calcd (%) for C3gHsN,O4S: C, 74.98; H, 4.64; N, 4.60;
0, 10.51; S, 5.27; Found: C, 75.01; H, 4.59; N, 4.61.
Bis(4-(1,2,3,4-tetrahydrocarbazole-5-yl)phenyl)sulfone (5) was synthesized according to the method

similar to that used for the synthesis of 1, except that 1,2,3,4-tetrahydrocarbazole (1.48 g, 8.65 mmol)
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was used. The crude product was purified by column chromatography on silica gel using
ethylacetate/n-hexane (8:1) as eluent, crystallized from the mixture of ethylacetate and hexane to get
5 as light yellow crystals. FW = 556.72 g/mol, yield: 0.74 g, 34%; m.p. 219-220 °C. '"H NMR (300
MHz, CDCl;, 8, ppm): 8.06 (d, J = 8.6 Hz, 4H), 7.49 (d, J = 8.6 Hz, 4H), 7.45 — 7.40 (m, 2H), 7.26 —
7.19 (m, 2H), 7.14 — 7.00 (m, 4H), 2.64 (d, J= 5.4 Hz, 8H), 1.82 (d, /= 5.4 Hz, 8H). 3C NMR (75
MHz, CDCl;, 6, ppm): 142.8, 138.9, 136.5, 135.1, 129.1, 128.4, 127.1, 122.1, 120.6, 118.2, 113.1,
109.6, 23.6, 23.4, 22.8, 21.1. MS (APCI*, 20 V), m/z: 557 ([M+H]"). Elemental analysis calcd (%)

for C56H3,N,0,S: C, 77.67; H, 5.79; N, 5.03; O, 5.75; S, 5.76; Found: C, 77.71; H, 5.73; N, 4.98.
3. Results and discussion
3.1 Synthesis and characterization

Scheme 1 illustrates synthesis of 1-5. The target compounds (1-5) were easily obtained in moderate
yields by single step via nucleophilic cross-coupling reactions between bis(4-fluorophenyl)sulfone
and the corresponding heterocyclic compound containing secondary amino group. 'H NMR, 13C
NMR, elemental analysis, mass spectrometry were employed to validate the chemical structures of
1-5. The derivatives were soluble in chloroform, dichloromethane, ethylacetate and other organic

solvents.
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Scheme 1. Synthetic routed to 1-5. Reagents and conditions: (a) 2-(trifluoromethyl)-10H-
phenothiazine, 10,11-dihydro-5H-dibenz[b,f]azepine, 5SH-dibenz[b,f]azepine, 4-methoxy-

9H-carbazole or 1,2,3,4-tetrahydrocarbazole, Cs,CO3;, NMP, 170 °C, 12 h.

3.2 Theoretical calculations

Density functional theory (DFT) calculations were executed to estimate geometries of the derivatives
(1-5) at ground state (Figure 1). The dihedral angles between diphenylsulfone and 2-
(trifluoromethyl)-phenothiazinyl moieties in compound 1 were found to be of ca. 71°. The large
dihedral angles of 1 make the molecule highly twisted. In derivatives 4 and S, the dihedral angles
between diphenylsulfone moiety and 1,2,3,4-tetrahydrocarbazolyl or 4-methoxy-carbazolyl moieties
were 49 and 51°, respectively. The determined geometries of 1-3 resulted in the HOMO distribution
on different donor substituents, whereas HOMO of compounds 4 and 5 were delocalized on the donor
moieties extending to the diphenylsulfone units. LUMOs of 1, 4 and 5 were predominantly localized
on the diphenylsulfone units, while in 2 and 3 LUMOs were shifted to the donor moieties.

The time-dependent DFT (TD-DFT) calculations allowed to predict excitation energies for
derivatives 1-5 which are are given in Table S1 and Figure S6. The main transitions in compounds 1,
4 and 5 are n-m* in nature, meanwhile transitions in compounds 2 and 3 are m-n* transitions. The
strong absorption bands calculated at the B3LYP level were found at 418.83, 374.59 and 384.55 nm
for 1, 4 and 5, respectively.

Due to the small dihedral angles between the acceptor and donor moieties, and a weak overlap of the
HOMOs and LUMOs, 4 and 5 showed relatively high oscillator strengths of 0.2950 and 0.1343,

respectively, indicating a highly facilitated radiative decay.
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Figure 1. Optimized geometries and HOMO/LUMO of derivatives 1-5 calculated at

B3LYP/6-31(d,p) level in vacuum.
3.3 Thermal characterization
The thermal properties of derivatives 1-5 were estimated by thermogravimetric analysis
(TGA) and differential scanning calorimetry (DSC) under nitrogen atmosphere. TGA curves
are depicted in supporting information (Figure S7). The temperatures of 5% weight loss (T4.

s0,) of the derivatives were found to be enough high and ranged from 339 to 433 °C.

Table 1. Thermal characteristics of derivatives 1-5.

T, [°C]? (scan rate of 10 Ta.s0. [°C]9 (scan rate
Derivative T,, [°C]?
°C/min) of 20 °C/min)
1 288 103 385
2 199 68 339
3 382 162 433
4 251 141 406
5 224 121 405
8
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9 Ty, - melting temperature (nitrogen atmosphere). » T, - glass-transition temperature, second

heating scan. 9 Tq_so, - 5% weight loss temperature (nitrogen atmosphere).

After the synthesis diphenylsulfone-based derivatives 1-5 were isolated as crystalline materials. As it
was endorsed by DSC, they could be transmuted into molecular glasses by cooling their melts. DSC
thermograms of derivative 3 are displayed in Figure 2. In the first heating scan the endothermal
melting signal (T,,) of the sample of 3 was observed at 382°C. In the cooling scan any signal of
crystallization was not observed. The second heating scan demonstrated glass transition (T,) at 162
°C. The analogous behaviour in DSC experiments was observed for derivatives 1, 2, 4 and 5. When
the samples of 1, 2, 4 and 5 were heated they showed endothermic T, signals at 288, 199, 251 and
224 °C, respectively. In the second heating scans the derivatives showed relatively T, at 103, 68, 141
and 121 °C, respectively. Glass transition temperatures of derivatives 1 and 3-5 having 2-
(trifluoromethyl)-phenothiazinyl, S5H-dibenz[b,f]azepinyl, 4-methoxy-carbazolyl and 1,2,3,4-
tetrahydrocarbazolyl moieties was found to be higher by 35, 94, 73 and 53 °C than that of derivative
2 containing 10,1 1-dihydro-5H-dibenz[b,f]azepinyl substituent. This observation can be explained by

the weaker intermolecular interaction in the sample of 2.

5
A
== — < __ 2”heating
0- -~
Cé) cooling
@ 7
3 T,=162°C
C
D104
l'”" T =382°C
-20 T

T T T T T T T T
0 100 200 300 400
Temperature, °C

Figure 2. DSC thermograms of compound 3.

3.4 Photyphysical properties
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UV absorption, photoluminescence (PL) spectra of neat films and dilute solutions of the studied
derivatives recorded at room and liquid nitrogen temperature are presented in Figure 3. Position of
the main absorption spectral peak at low-energy wavelength depends strongly to the type of donor
substituents. At the same time, the influence of diphenylsulfone moiety on absorption spectra of
compounds 1-5 was practically not detectible. The low-energy absorption peaks of the films appeared
at 302 nm for 3, at 306 nm for 2, at 317 nm for 1, at 337 nm for 4 at 340 nm for 5 strongly depending
on the conjugation of the donors. Exploration of the possibility of solvatochromism was additionally
performed (Figures S8-12). The absence of significant correlation with the solvent polarity showed
no substantive charge transfer (CT) nature of absorption. The obtained experimental data are in
accordance with the theoretical absorption spectra obtained by means of TD-DFT calculation (Figure
S6). The absorption spectra of neat films and toluene solutions of the derivatives were practically
identical. As expected, the absorption spectra of 4 and S consisted of sharp peaks with the highest
oscilator strength (Table S1) for the Sy—S; excitation at ~340 nm attributed to the HOMO-LUMO
transition. In contrast, the main broad absorption bands of 1, 2 and 3 correspond to the high energy
So—S; 4 transitions. Absorption spectra of the samples of 2 conform to the absorption of the 10,11-
dihydro-5H-dibenz[b,f]azepinyl moiety [12], however, with a bathochromic shift to 305 nm. Partial
LUMO localization on donor moieties in the case of 2 and 3 points to contribution of local excited

(LE) states to various m-n* transitions and the red-shift of the UV spectrum of 2. Eogt values of 2.53,

2.36 2.39, 2.55 and 2.38 eV for 1-5, respectively, were taken from the absorption spectra onsets of
the films and were used as the closest representation of a HOMO-LUMO gap for approximate

estimation of the energy levels of frontier molecular orbitals of compounds by substraction of E"gt

from IP values (Table 3).

10



591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649

=)
L
\

-

1.0 P S
—1 3 Toluene —2
o8] 2 Toluene © 08 3
06 _i 2 7 —g
:.'E 0.4 5 g 0.4
© g2 D o2
< oo = ‘ : ; ‘
O a5 300 350 400 T 30 400 450 500 550 600 650 700
2 10] ﬁ 1.0 -
—_ . - — .
Q o8] Film T 08 Film
2 os] € o6
9 04
04 > o
02 02
0.0 T T 0.0 T T T T
250 300 350 400 350 400 450 500 550 600 650 700
Wavelength, nm
Wavelenath. nm
(a) (b)
e — 190 —20-—3e—4 5 . 10 —°FL
> 1 phosphorescence
. 05A
15000 ®
- 00
14000 > 1.0
= 2
13000 N 05 M
S 12000 c
€ 11000 O oo e~
[&] c 3
. 10000 = 05
5 9000 8
|'>m8000_ N 99T . Y
7000 © 051 4
6000 £
S oo el
5000 -] S BT ; * T T T " ; T T
4000 z 05 5
3000 T T T T T T T L Lo \ 1
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.0 - T t T T T - T f T T
Af 16 18 20 22 24 26 28 3.0 32 34 36 38

Photon energy, eV
() (d)
Figure 3. 1-5: (a) Absorption spectra of neat thin films and dilute toluene solutions. (b) PL spectra
of neat thin films and dilute toluene solutions. (¢) Lippert-Mataga plot showing the relation
bettween Stokes shift and orientation polarisability of the different solvents. (d) PL and

phosphorescence spectra of dilute THF solutions recorded at 77 K.

The Onsager description of non-specific electrostatic interactions between solvent and solute gives a
pass to theories of solvatochromic effect in absorption and emission spectra [13]. The Lippert-Mataga

plots [14] for 1-5 based on relation of the Stokes shift 4 v and orientation polarizability Af defined as

24f

Av = m(ye - ,ug)z + Av° are presented in Figure 5¢. Superscript *is an indication of the absence
0

of solvent. a stands for the Onsager cavity radius. The slope for 3 was found to be negative and close

11
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to 0. This is due a fact that no strong correlations between solvent polarity and peak positions appeared
for the derivaitve. The assumptions of the Lippert-Mataga approach requires a linearity and a positive
value of the slope [15]. It cannot be applied for a description of 3. We can assume that this compound
has a zero dipole moment. For the purpose of better fit, the data for polar protic methanol solution of
5 was excluded from the plotting. The CT-character of emission of 1, 2, 4 and 5 in a polar medium is
evidenced by the monotonical bathochromic shift of PL spectral peak with increasing solvent polarity
(hexane (4= 0.0001) — toluene (4f=0.0135) — chloroform (4= 0.1483) — tetrahydrofuran (4=
0.2085) — acetone (4f = 0.284) — acetonitrile (4f = 0.3055) — methanol (4f = 0.3086). The
approximated slopes for these compounds (Table 2) with linear relationships (R-square coefficients
are from 0.69 to 0.96) corresponds to the (u, — ,ug)z, reveal the changes of dipole moments after
excitation. The obtained values correlate well with the theoretical predictions and disclose the
intramolecular CT nature of emission. High electronegativity of CF; and metoxy- groups indicates a
strong electron withdrawing as the major cause of this observation for 1 and 4. The geometry of 2

leads to slightly smaller differences of the dipole moments in the excited y, and ground p, states.

Table 2. Photophysical data derived from spectral measurements.

g Lifetimes?, ~Slopes:, E°}Y,  Egf  Epf  ABEgs
2 ORI Dy D Ducen®
g ns 10° cm™! eV eV eV eV
@]
3.60 3.08 0.52
1 0.02 0.02 0.12 0.22 1.8,4.2 16.2 2.53
(2.96) (2.85) (0.11)
3.73 3.12 0.61
2 0.56 0.33 0.2 0.76 0.5,6.4 11.8 2.36
(3.17)  (2.66) (0.51)
3.5,13.7, 3.87 - -
3 ~0.0001 ~0.0001 0.13 0.29 -3.2 2.39
36.9 (.14)  (2.66) (0.48)

338 3.03 035
4 049 043 049 087 49,113 144 255
(3.31)  (3.01) (0.30)
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329 299 030
5 022 033 027 028 35,115 15.5 2.38
(322)  (2.95) (0.27)

2) PLQY values of deoxygenated dilute solutions of compounds. ® PLQY values of neat films of
compounds. ¥ PLQY values of thin films of 4CzIPN doped in compounds (5wt%). 9 Calculated from
PL decay curves of neat films of compounds (Figure S13). © Slopes of Lippert-Mataga plots. D E°§tis
the onset wavelength of UV absorption spectrum of films. & Estimated from onsets of emission
spectra of dilute tetrahydrofuran solutions recorded at 77 K. The theoretical values of E1y, AEgr, Es;

are depicted in parentheses.

PL spectra of the films correlate to a great extent with PL spectra of dilute toluene solutions with
insignificant spectral shifts. The only exclusion is the film of 2 which exhibited major PL peak
assigned to LE emission with a CT-tail. The other films emit in a blue spectral range. As one of the
direct results of extremely high torsion angles between the diphenylsulfone and 2-(trifluoromethyl)-
phenothiazinyl moieties and consequent decreased values of oscillator strength of So— S, excitation
transitions, PLQY of the film and of deoxygenated solutions of 1 are the lowest in the series of the
films and solutions of the studied compounds (Table 2). The evidence of the phenomenon of
aggregation induced emission (AIE) [16] is postulated from the PLQY increase of 3 from practically
zero for dilute deoxygenated solutions to 13% for a solid sample. The restriction of intramolecular
vibrational and rotational motion is the reason of the AIE [17,18]. PL lifetime values derived from
fitting a reconvolution of exponential functions of the PL decay curves of neat films can be attributed
to prompt fluorescence. Energy levels of the first singlet and triplet excited states of studied
compounds were calculated from onsets of PL and phosphorescence spectra, respectively, of their
frozen dilute THF solutions (Figure 3d). Due to extremely weak phosphorescence, spectrum and
corresponding Et; value for 3 were not obtained. The singlet and triplet excited state geometries were
calculated using TD-DFT. The triplet levels (Et) of derivatives estimated both experimentally and

theoretically were found to be reliant on Et; of the donors. The values of Er; of 1, 4 and 5 having 2-
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(trifluoromethyl)-phenothiazinyl, 4-methoxy-carbazolyl and 1,2,3,4-tetrahydrocarbazolyl moieties
were found to be higher than 2.85 eV. The energy spitting AEst between first singlet and triplet

excited states were found to be in order of 0.30-0.61 eV.

3.5 Photyphysical properties of host-guest systems

Bipolar compounds 1-5 having triplet energy levels higher than 3 eV can be good candidates for being
host materials. In order to provide comparable study of hosting properties of the developed derivatives
1-5 for TADF dopants, thin host-guest films with Swt% concentration of 4CzIPN were prepared.
TADF emitter 4CzIPN was selected since its triplet energy level of 2.4 eV [19] are considerably lower
than those of 1-5 for efficient harvesting of triplet excitons and its HOMO and LUMO values match
well those of 1-5 [7]. Absorption and PL spectra of the doped films are presented in Figure 4a.
Absorption spectra of the samples conform to the respective absorption spectra of films of the
derivatives. However, the low energy bands (LEB) of absorption at ~375 nm with a low intensity
caused by small transition dipole moments the films of molecular mixtures 4CzIPN:1, 4CzIPN:2,
4CzIPN:3 are related to Sp— S, transitions of hosts predicted by theoretical investigation (Table S1,
Figure S6). They were well spectrally resolved (Figure 3a) due to impact of guest/host interactions
on the positions of molecular orbitals. The broad tails in the range from ca. 420 nm to ca. 590 nm are
ascribed to CT processes. While absorption spectra of the doped films correspond to those the
compounds 1-5, PL spectra correspond to 4CzIPN emission. This observation affirms the electronic
excitation energy transfer from the host to the guests. This is due the fact that PL spectra of most of

the studied compounds matched with absorption of 4CzIPN [20].
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Figure 4. Absorption and PL spectra (a) and PL decay curves of thin films of 5wt% solid solutions

of 4CzIPN in 1-5.

PL peak positions of the host-guest systems are slightly affected by the polarity of the host materials
being in the order of 1>5>4>2>3 as it is for slopes of Lippert-Mataga plots (Figure 3¢, Table 2). PL
decay curves of the molecular mixtures of the same weight concentration are shown in Figure 4b.
Low polarity of the host leads to the smallest DF lifetime for the system 4CzIPN:3 in the series as the
result of absence of CT. Correspondingly, PLQY of this guest:host system is as low as 29%. Due to
unfavorable HOMO distribution of 5, the PLQY value of the system 4CzIPN:3 is almost the same.
HOMO localization on donor units of compounds 2 and 4 facilitates CT leading to the longest
emission lifetimes (in ps range) and the highest PLQY values of 76 and 87% of the films of 4CzIPN
doped in 2 and 4, respectively. The PLQY value of the film of 87% for 4CzIPN(5 wt%):4 is even
slightly higher than that 83% observed for the film of 4CzIPN(5 wt%):4,4’-bis(carbazol-9-

yl)biphenyl (CBP) [7].

3.6 Electrochemical and photoelectrical properties

The electrochemical characteristics of compounds 1-5 were studied by cyclic voltammetry

(CV). Derivatives 1-5 showed single oxidation peaks, which can be intended to oxidation of
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electron rich 2-(trifluoromethyl)-phenothiazinyl, 10,1 1-dihydro-5H-dibenz[b,f]azepinyl, SH-
dibenz[b,flazepinyl, 1,2,3,4-tetrahydrocarbazolyl or 4-methoxy-carbazolyl moiecties,
respectively. Derivatives 1, 4 and 5 exhibited slightly lower oxidation potential than 2 and 3.
This result indicates that 2-(trifluoromethyl)-phenothiazinyl, 1,2,3,4-tetrahydrocarbazolyl or
4-methoxy-carbazolyl moieties exhibit stronger electron-donating character as compared to
that of 10,11-dihydro-5H-dibenz[b,flazepinyl, 5H-dibenz[b,f]lazepinyl moieties (Figures 5,

S14).

Table 3. Oxidation potential, HOMO/LUMO energies, electron affinities, ionization

potentials and of derivatives 1-5.

Eolgl);(et Vs IPCV[a]’ EACV[b]a Eogt’ [pPES9 IPPES’
Derivative

Fc,[V] HOMOI[eV] LUMOI [eV]  [eV] [eV]el [eV]Hf]
1 0.54 5.35/-5.41 1.85/-1.87 3.50 5.99 2.53
2 0.82 5.74/-5.29 2.02/-1.48 3.72 5.88 2.28
3 0.78 5.69/-5.29 2.06/-1.47 3.63 5.72 2.15
4 0.58 5.41/-5.41 2.06/-1.60 3.35 5.83 2.56
5 0.31 5.03/-5.35 1.78/-1.63 3.25 5.61 2.41

(@1 TPcy = |-(1.4x1exEqfeer vs Fe/V) — 4.6] eV [21]. T EAcy = —([TPcy[—E°F") (Egpaer- Onset
oxidation potential vs. the Fc¢/Fc*. [l Theoretically estimated HOMO/LUMO levels. 41 E°R* =
1240/Acqge, Where Aegge is the onset wavelength of UV absorption spectrum of the dilute

toluene solution (Table 2). [¢1 7,PES is the ionization potential of thin solid layers estimated by

photoelectron emission spectrometry. 1 £ ,/PES is electron affinity for the samples in solid-state.

According to the procedure reported earlier [21], ionization energy (IPcy) values were
estimated using the equation IPcy = |-(1.4X1exE 2% vs Fc/V) — 4.6] eV. The values of IPcy

are listed in Table 3. They ranged from 5.03 to 5.74 eV. Derivative 5 having 1,2,3.,4-
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tetrahydrocarbazole moiety showed the lowest value of IPcy. Electron affinities (EAcy)

estimated from the optical band gaps (E Dgt) and IPcy values were found to range from 1.78 to

2.06 eV.
-5
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Figure 5. (a) Cyclic voltammograms of dilute solution of derivative 3 in dry dichloromethane (scan

rate 100 mV/s). (b) Electron photoemission spectra of compounds 1-5 recorded in air.

Electron photoemission spectrometry (PES) was exploited for getting ionization potentials (£,/%5) of
compounds 1-5 in solid-state. The values of 1,25 are collected in Table 3. They were taken at
crossing points of abscissa axis with extrapolated linear parts of low-energy edges of the
corresponding photoelectron emission spectra (Figure 5b). Using optical band-gap energies (E,) taken
from absorption spectra of vacuum-deposited films, electron affinities (£ ,7Z5) of the solid samples of
1-5 were calculated by the formula E,25= Ip'25-E, (Table 3). Because of the different donating
abilities of the donor moieties, the values of 7,725 and E /£ for the studied diphenylsulfone derivatives
were found in the ranges of 5.61-5.99 and 2.15-2.56 eV, respectively. 1,25 and E /25 values of the
compounds are suitable for their usage as OLED hosts. Both efficient charge-injection from
electrodes and efficient exciton transfer from the host to the guest may be expected exploiting

appropriate device structures and OLED emitters [22].
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3.7 Charge-transporting properties

To estimate the potential of compounds 1-5 as OLED hosts, their charge-transporting properties were
investigated by time-of-flight (TOF) method. Applying electric fields of different polarity,
photocurrent transients for holes or electrons for vacuum-deposited films of compounds 1-5 were
recorded (Figure S15). Transit times for both holes and electrons at different electric fields could be
clearly determined from the plotted in log-log scales corresponding photocurrent transients of the
layer of compound S show in Figures 6a,b. This finding indicates bipolar charge-transporting
properties of derivative 5. The same properties were detected for compound 3. In case of compound
4, only hole-transporting properties were proved by TOF technique since transit times for electrons
were not well visible (Figure S15). Neither hole nor electron transport was proved for the layers of
compounds 1 and 2. The corresponding transit times were not well detectable from the photocurrent
transients (Figure S15). Difficulties to determine transit times for holes/electrons in the films of
compounds 1 and 2 may be explained either by the strong charge-transport dispersity which is evident
from the shapes of their photocurrent transients or by higher relaxation times of photogenerated

charges than the TOF transit times.
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Figure 6. Photocurrent transients of holes (a) and electrons (b) for vacuum-deposited film of

compound 5 and electric field dependences of charge mobilities for the layers of compounds 3-5
(c). Fitting was performed according Poole-Frenkel type mobility (y = pge%t *® where U 1S zero-

field mobility; o is field dependence parameter, and E is electric field [23].

4-Methoxy-9H-carbazole-substituted diphenylsulfone derivative 4 showed the highest hole mobility
reaching 2.8x10* cm?/Vs at electric field of 5.6x10° V/cm (Figure 6¢). Lower value of hole mobility
0of 4.6x1075 cm?/Vs at the same electric field was observed for derivative 3. At the same electric field,
only slightly higher value of electron mobility of 5.1x10-° ¢cm?/Vs was observed for compound 3
indicating charge transport balance required for OLED hosts [9,24]. Derivative 5 showed hole and
electron mobilities of 5.3x10¢ and 9.1x10¢ cm?/Vs respectively at electric field of 3.1x10° V/em.
Decrease of charge mobilities in the range 4>3>5 reflects the effect of different donor substituents on
charge-transporting properties of para-substituted diphenylsulfone derivatives. Charge mobilities of
compounds 1 and 2 may be even lower than those of 3-5. Thus, 4-methoxy-9H-carbazole-based

compound 4 demonstrated the highest hole mobility among the studied compounds

3.8 Device fabrication and characterization
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Series A-E of OLEDs with the structure of ITO/HAT-CN (4 nm)/TCTA (40 nm)/mCP (10
nm)/4CzIPN:host (5wt%, 30 nm)/TSPO1 (4 nm)/TPBi (45 nm )/LiF (0.6 nm)/Al with 1-5 as hosts,
respectively, were fabricated and analyzed with the purpose of testing TADF host capabilities of the
compounds. The energetic diagram representating energy levels of frontier orbitals of the respective
organic materials is presented in Figure 7a. Major electroluminescent data of OLEDs A-E are showed
in Table 4 and shown in Figure 7, S16-S20. The Ilayers of 1,4,589,11-
hexaazatriphenylenehexacarbonitrile (HAT-CN) and LiF were used for the injection of charge
carriers. The layers of 4,4'4"-tris(carbazol-9-yl)triphenylamine (TCTA) and 2,2'2"-(1,3,5-
benzinetriyl)-tris(1-phenyl-1-H-benzimidazole (TPBi) were employed as hole and -electron
transporting layers, respectively. 1,3-Di(9H-carbazol-9-yl)benzene (mCP) was taken for the
fabrication of exciton blocking layer. Second exciton blocking layer of diphenyl[4-
(triphenylsilyl)phenyl]phosphine oxide (TSPO1) was also used for the blocking of hole penetration
into the layer of TPBi. Electrodes were the layers of indium-tin oxide (ITO) and aluminium (Al).

As it could be predicted from the highest PLQY value at 87% of the respective doped films containing
compound 4 of the same weight concentration, device D based on compound 4 exhibited the best
results from the series with maximum EQE over 20%, luminance of 28.9 thousand cd/m? and CIE
color index best representing 4CzIPN emission (Figure 7 b-d, Table 4) [25]. This result was partly
contributed by the highest charge mobility of compound 4 (Figure 6¢). Efficiency of device B with
the host material 2 was found to be much lower, apparently, due to lower charge carriers mobilities

of 2.

20



1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239

Normalized intensity, a.u.

29 D4 -253236-239-255-238
= LiF/Al
< a
-4 = = s
e o|S = &
= 1ITO |F|g 80 L
o e 5]
5 -5 4.7 =
L] 5.5 -
6 % ﬁ EaeaEE: ‘Beman L]
i 7§ 1-5-99-5.88-5.72-5.83-5.61 6
= ABCDEL ]
-7 -6.8
(a)
—A
X
i
8 13 = A L
e B| " "
~ C
v D
E
400 500 600 ' 700 o1 01 1 10 100
Wavelength, nm Current density, mA/cm?
(b) ()

Ns>4<fN q.[;‘i} IQIDTj‘I’

()

Q1 P
(j OEOg Cfgj@

TSPO1

TPBi

(d)

21



1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

Figure 7. Energy level diagram of the materials of organic layers of OLEDs A-E estimated from

the Eogt and IP values (a), EL spectra recorded at 9 V (b) EQE-current density characteristics (c)

and molecular structures of the organic compounds used in the devices (d).

Bluish-green electroluminescence with similar 1931 CIE chromaticity coordinates was recorded for
the fabricated devices A-E (Figure 7b, Table 4). EL spectra of the devices are mainly attributed to
emission of the used guest 4CzIPN [8]. Because of the differences in dipole moments of the designed
hosts 1-5 which are evident from the slopes of Lippert-Mataga plots decreasing in the row 1>5>4>2>3
(Figure 3c, Table 2), all the fabricated devices showed the host contribution into emission slightly
influencing 4CzIPN-related spectral peak position. High-energy band peaked at 385 nm attributed to
emission of host 2 was observed in EL spectra of device B (Figure S17). This observation indicates
weak host-guest energy transfer in the light-emitting layer of device B. Similarly, the high-energy
shoulder (because the host emission) was observed in EL spectra of device C due to the weak host-
guest energy transfer (Figure 7b). As a result, lower maximum EQEs of 2.9 and 4% were obtained
for devices B and C in comparison to that of device D with efficient host-guest energy transfer in its
light-emitting layer (Figure 7c, Table 4). The TADF quenching observed from a PL decay curve
(Figure 4b) was apparently the reason of relatively low EQE of 4% observed for device C. Emission
of hosts were practically not observed in EL spectra of devices A and E. However, their corresponding
maximum EQE values (0.8 and 7.6%) were also lower than that of device D. This results can be
mainly explained by 1) the lower PLQY's (22 and 28%) of the light-emitting layers of 4CzIPN:1 and
4CzIPN:5 than that (87%) of 4CzIPN:4 due to the higher polarity of the hosts 1 and 5 in comparison
to the polarity of 4 (Table 2); and 2) the lower charge mobility at least of host 5 in comparison to that
of host 4 (the charge mobility of host 1 was most probably also lower than that of host 4 but this was
not proved by TOF measurements) (Figure 6¢). Meanwhile, the “perfect” relationship between
charge-transporting/-injecting properties, appropriate [26] polarity and rigidity resulted in the high

PLQY value of the guest 4CzIPN and efficient host-guest energy transfer occurred in the case of host
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4. Therefore, the highest maximum EQE of 20.1% was obtained for device D in comparison to those
of all other fabricated devices despite the same device structure and the same TADF emitter used.
These findings well demonstrate effect of different donor substituents of diphenylsulfone-based hosts
on out-put characteristics of electroluminescent devices highlighting potential of diphenylsulfone-

and 4-methoxy-9H-carbazole-based host 4.

Table 4. Characteristics of OLEDs.

Lmaxaa 1 03 EQEmaxba

Device Host PE.¢ Im/W  CE,.,4, cd/A CIE,*
cd/m? %
A 1 22 0.8 (0.7) 0.9 (0.7) 2.1(1.7) (0.23, 0.43)
B 2 0.5 29(2.7) 2.9 (2.6) 6.0 (5.7) (0.18, 0.32)
C 3 9.1 40(2.2) 6.8 (2.6) 102(5.5)  (0.20,0.38)
D 4 28.9 20.1(149)  392(25.6)  57.3(42.4)  (0.21,0.47)
E 5 10.8 7.6 (5.9) 13.0(8.8)  203(158)  (0.20,0.42)

Efficiency values at 100 cd/m? are showed in parentheses. ¥ Maximum brightness. ® Maximum EQE.
9 Maximum power efficiency. 9 Maximum current efficiency. ® 1931 CIE chromaticity calculated

from EL spectra at 9 V.

Conclusions

It was shown, that donor substituents have significant influence on photophysical and charge-
transporting properties of donor-acceptor-donor type para-substituted diphenylsulfone derivatives.
The nature of a donor also affects electroluminescent performances of the respective devices
containing the newly synthesized diphenylsulfone derivatives as the hosts. The compounds
demonstrated relatively high triplet levels (2.99-3.12 eV). Among the synthesized compounds, bis(4-

(4-methoxy-9H-carbazole-9-yl)phenyl)sulfone demonstrated the best hosting properties, which can
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be explained by its relatively high hole mobility (2.8x10* cm?/Vs at electric field of 5.6-10° V/cm)
and high photoluminescence quantum yield (87%) of its molecular mixture the emitter exhibiting
thermally activated delayed fluorescence. Using this host, green thermally activated delayed
fluorescence organic light emitting diode was fabricated with brightness of 28.9 thousand cd/m? and
maximum external quantum efficiency of 20.1%. The device showed power and current efficiencies

of 25.6 Im/W and 42.4 cd/A respectively at operating brightness of 100 cd/m?.
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Figure 1. Optimized geometries and HOMO/LUMO of derivatives 1-5 calculated at

B3LYP/6-31(d,p) level in vacuum.
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Figure 7. Energy level diagram of the materials of organic layers of OLEDs A-E estimated from
the Eg"pt and IP values (a), EL spectra recorded at 9 V (b) EQE-current density characteristics (c)

and molecular structures of the organic compounds used in the devices (d).



Table 1. Thermal characteristics of derivatives 1-5.

Tum, [°C]¥ (scan rate of 10 Ta.s%, [°C]® (scan rate
Derivative Te, [°C]”
°C/min) of 20 °C/min)
1 288 103 385
2 199 68 339
3 382 162 433
4 251 141 406
5 224 121 405

9 T - melting temperature (nitrogen atmosphere). ® T, - glass-transition temperature,

second heating scan. © Tq.so - 5% weight loss temperature (nitrogen atmosphere).



Table 2. Photophysical data derived from spectral measurements.

"‘g Lifetimes?, Slopes®, E ;ptf, Esi&, Er&  AEgtS,
2 (OF s Dol Dpiin®  Dacapn®
g ns 10°em” oy eV eV eV
@)
3.60 3.08 0.52
1 0.02 0.02 0.12 0.22 1.8,4.2 16.2 2.53
(2.96) (2.85) (0.11)
3.73 3.12 0.61
2 0.56 0.33 0.2 0.76 0.5,6.4 11.8 2.36
(3.17)  (2.66) (0.51)
3.5,13.7, 3.87 - -
3 ~0.0001 ~0.0001 0.13 0.29 3.2 2.39
36.9 (3.14)  (2.66) (0.48)
3.38 3.03 0.35
4 0.49 0.43 0.49 0.87 49,11.3 14.4 2.55
(3.31)  (3.01) (0.30)
3.29 2.99 0.30
5 0.22 0.33 0.27 0.28 35,115 15.5 2.38

(322)  (2.95) (0.27)

9 PLQY values of deoxygenated dilute solutions of compounds. ® PLQY values of neat films of
compounds. © PLQY values of thin films of 4CzIPN doped in compounds (5wt%). ¢ Calculated

from PL decay curves of neat films of compounds (Figure S13). © Slopes of Lippert-Mataga
plots. D E; P%is the onset wavelength of UV absorption spectrum of films. ® Estimated from onsets

of emission spectra of dilute tetrahydrofuran solutions recorded at 77 K. The theoretical values

of Et1, AEsT, Esi are depicted in parentheses.



Table 3. Oxidation potential, HOMO/LUMO energies, electron affinities, ionization

potentials and of derivatives 1-5.

ES% . Vs Pyl EAcv®, ECP, LB, L
Derivative

Fc,[V] HOMO9 [eV] LUMOY [eV] [evydl  [eV]el  [eV]

1 0.54 5.35/-5.41 1.85/-1.87 3.50 5.99 2.53

2 0.82 5.74/-5.29 2.02/-1.48 3.72 5.88 2.28

3 0.78 5.69/-5.29 2.06/-1.47 3.63 5.72 2.15

4 0.58 5.41/-5.41 2.06/-1.60 3.35 5.83 2.56

5 0.31 5.03/-5.35 1.78/-1.63 3.25 5.61 2.41

BT [Pey = |-(1.4x1exES*__. vs Fe/V) — 4.6| eV [21]. ™ EAcv = —(|IPcv|-E°P%) (Bo%__.-
onset oxidation potential vs. the Fc/Fc'. [l Theoretically estimated HOMO/LUMO levels.
[4) ESP® = 1240/kedge, Where Acdge is the onset wavelength of UV absorption spectrum of
the dilute toluene solution (Table 2). ¢/ 1,725 is the ionization potential of thin solid layers

estimated by photoelectron emission spectrometry. I 4755 is electron affinity for the

samples in solid-state.



Table 4. Characteristics of OLEDs.

Lmaxa, 103 EQEmaxb,

Device Host PEmas, IM/W  CEmayd, cd/A CIEx,*
cd/m? %
A 1 22 0.8 (0.7) 0.9 (0.7) 21(17) (0.23.0.43)
B 2 0.5 2.9 (2.7) 2.9 (2.6) 6.0 (5.7) (0.18, 0.32)
C 3 9.1 40 (2.2) 6.8 (2.6) 102(5.5)  (0.20,0.38)
D 4 28.9 201 (149)  392(25.6)  57.3(424)  (0.21,0.47)
E 5 10.8 7.6 (5.9) 13.0(88)  203(158)  (0.20,042)

Efficiency values at 100 cd/m? are showed in parentheses. ¥ Maximum brightness. ® Maximum
EQE. © Maximum power efficiency. ¥ Maximum current efficiency. © 1931 CIE chromaticity

calculated from EL spectraat 9 V.
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Figure S6. The theoretical spectra of 1-5 were obtained by mean of TD-DFT calculations (gas phase).



Table S1. Theoretical optical characteristics of compounds 1-5.

Compound Excitation energy, nm AL Transition configuration

418.83 0.001 H—L (91%)

HoL+3 (38%)
357.23 0.0001 H-1—L+1 (22%)
H-1-L42 (35%)

1 H-35L (14%)
H-1-L+6 (35%)
305.05 0.0431 H—L+7 (34%)
H-1—L+4 (4%)
HoL+5 (5%)

H-1-L (20%)
HoL+1 (79%)

391.10 0.0011

H-1-L (79%)
H—-L+1 (21%)

326.56 0.0054

H-1—L+3 (19%)
H—L+2 (78%)

2 309.68 0.1307

H—L+4 (87%)
H-1-L+7 (3%)
H—-L+2 (3%)
H—L+8 (2%)

286.78 0.6568

H-1>L (18%)
H—L (81%)

395.43 0.0006

H-15L (80%)
H—L (19%)

330.23 0.0026

HoL+2 (79%)
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Figure S7. TGA curves of compounds 1-5.
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Figure S17. B OLED: (a) EL spectra recorded at various voltages; (b) Current density and brightness

versus voltage correlation; (c) Current, power efficiency and EQE versus current density characteristics.
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Figure S18. C OLED: (a) EL spectra recorded at various voltages; (b) Current density and brightness

versus voltage correlation; (c) Current, power efficiency and EQE versus current density characteristics.
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Figure S19. D OLED: (a) EL spectra recorded at various voltages; (b) Current density and brightness

versus voltage correlation; (¢) Current, power efficiency and EQE versus current density characteristics.

22



(a)

= >

>
L

Current efficiency, cd/A

A Currentefficiency
m Power efficiency
= EQE

T
0.1

T
1

T
10

T
100

Power efficiency, Im/W; EQE, %

(b)

=)
© 400 &(&@3’: 10000
= “ = 3
= g 350 ) (Sg&} °
o

2 < o0 é&“} N NE
Q IS S, e 31000 £
z - 250 ° o
= 5 & LI
o B 200 pf; ’ . @
e ® & $ 4
N O 150 “ J'° £
© = < 5

@ 100 5 - =
£ = C &

O ‘ 410
Z o04= : \ ! 1

400 500 600 700 o L S S S S S S S
0 1 2 3 4 5 6 7 8 9 10 11 12 13
Wavelength, nm Voltage, V

Current density, mA/cm’

()
Figure S20. E OLED: (a) EL spectra recorded at various voltages; (b) Current density and brightness

versus voltage correlation; (c) Current, power efficiency and EQE versus current density characteristics.
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