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Thermodynamic stability of non-stoichiometric SrFeO3-δ : a hybrid 
DFT study  

Eugene Heifets,*a,† Eugene A. Kotomin,b,c Alexander Bagaturyants,a,d and Joachim Maierb 

SrFeO3-δ is mixed ionic-electronic conductor with complex magnetic structure which reveals also colossal 

magnetoresistance effect. This material and its solid solutions are attractive for various spintronic, catalytic and 

electrochemical applications, including cathodes for solid oxide fuel cells and permeation membranes. Its properties 

strongly depend on oxygen non-stoichiometry. Ab initio hybrid functional approach was applied here for a study of 

thermodynamic stability of a series of SrFeO3-δ compositions with several non-stoichiometries δ, ranging from 0 to 0.5 

(SrFeO3 - SrFeO2.875 - SrFeO2.75 - SrFeO2.5)  as the function of temperature and oxygen pressure.  The results obtained by 

considering Fe as all-electron atom and within the effective core potential technique are compared. Based on our 

calculations, the phase diagrams were constructed allowing the determination of environmental conditions for the 

existence of stable phases. It is shown that (within an employed model) only the SrFeO2.5 phase appears to be stable. The 

stability region for this phase is re-drawn at the contour map of oxygen chemical potential, presented as a function of 

temperature and oxygen partial pressure. A similar analysis is also performed using experimental Gibbs energies of 

perovskite formation from the elements.  The present modelling strongly suggests a considerable attraction between 

neutral oxygen vacancies. These vacancies are created during a series of above mentioned SrFeO3-δ mutual 

transformations accompanied by oxygen release. 

 

1. Introduction 

Many cathode materials for solid oxide and protonic ceramic 

fuel cells (SOFC, PCFC) and oxygen permeation membranes are 

perovskite solid solutions with the general formula (A1-

xSrx)(Fe1-yBy)O3-δ, where A stands for Ba2+, La3+, Bi3+ or similarly 

large cations.1-4 Strontium ferrate SrFeO3-δ (SFO) is one of the 

parent materials for such solid solutions, and its study is a 

necessary step in the investigation of properties of complex 

cathode materials. SFO is a mixed ionic-electronic conductor 

(MIEC), used in many applications, such as SOFC cathodes,5 gas 

sensing electrodes,6 gas separation membranes7 and 

photocathodes.8 The composition of this material strongly 

depends on the temperature and oxygen partial pressure. 

Special measures, such as employing high oxygen pressure, are 

necessary to enforce a rather complete filling of crystalline 

sites with oxygen atoms (δ≈0)9. Four distinct phases of SFO 

were found10,11 in air at temperatures up to 1400°C: cubic 

perovskite (space group (SG) 𝑃𝑚3̅𝑚, # 221, Fig. 1), tetragonal 

(SG 𝐼4/𝑚𝑚𝑚, # 139, Fig. 2), orthorhombic (SG 𝐶𝑚𝑚𝑚, # 65, 

Fig. 3), brownmillerite (SGs 𝐼𝑚𝑚𝑎, #74, 𝐼𝑏𝑚2, # 46, 𝑃𝑏𝑚𝑎, # 

57, 𝑃𝑛𝑚𝑎, # 62, Fig. 2). These phases correspond to oxygen 

contents for the non-stoichiometries δ≈0 (SrFeO3), δ≈0.125 

(SrFeO2.875), δ≈0.25 (SrFeO2.75), δ≈0.5 (SrFeO2.5), respectively. 

The first two phases are metallic, with a helical magnetic order 

at zero magnetic field, whereas the two latter phases are 

insulating with anti-ferromagnetic (AFM) spin ordering. 

The AFM spin ordering in SrFeO2.75 exists among Fe3+ ions 

located within square pyramids, whereas spins on Fe4+ ions in 

octahedral surrounding are frustrated or disordered.12 

Direction of spins in SrFeO2.5 changes from one cell to nearest 

one along all three lattice [100] directions (G-type AFM).9 The  
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Fig. 2   Structure of SrFeO2.875.  Fig. 3   Structure of SrFeO2.75. 
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Fig. 4  Structures of four phases for SrFeO2.5   
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Fig. 1   Structure of SrFeO3. This figure as well as crystal structures presented in 

following Figs. 2 - 5 are prepared using Vesta code.13 
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interest in SFO is also due to multiple magnetic phases causing 

colossal magnetoresistance effect, and due to the sensitive 

dependence of the magnetic properties on oxygen content.14-

16  

Understanding thermodynamic stability and the phase 

diagram of pure SrFeO3-δ provides the basis for investigations 

of intrinsic defects (O vacancies), magnetic properties, surface 

structures, surface chemical reactions (e.g. oxygen reduction 

reaction), dependence of the properties on temperature, on 

oxygen content, and on the specific crystalline structure.  

Knowledge of the SFO phase diagram is vital for studies of 

solid solution formation, such as for above-mentioned SOFCs 

cathode materials, their possible crystalline structures, 

structural stability and other properties. The chemical phase 

diagram also provides a valuable guidance for synthesizing 

these materials. 

In the present study, we are interested in changes occurring 

in SFO on variation of temperature and oxygen non-

stoichiometry. Therefore, we restrict ourselves only to those 

SFO phases, which contain equal amounts of Sr and Fe atoms. 

Phase diagrams, describing areas of stability for different 

materials are characterized by the Gibbs energies of formation 

of these materials. Experimental data on energies of formation 

are available only for SrFeO2.5.17,18 The enthalpy of SrFeO2.5  

formation from binary oxides – strontium (SrO) and iron 

(Fe2O3) – was measured by high-temperature drop solution 

calorimetry in molten 2PbO∙B2O3 ,17 while the Gibbs energy of 

formation for several SrnFemOn+3m/2 compounds, including 

SrFeO2.5 were estimated in ref. 17 by electrochemical 

techniques using CaF2 as electrolyte. To our best knowledge, 

no theoretical studies of SFO phase diagram exist so far, the 

recent modelling of all four above mentioned SFO phases19 at 

0 K is the closest to such an investigation. The authors of that 

study19 considered the crystalline structures of four SFO 

phases and formation of single O vacancies therein. This 

modelling was performed using plane-wave basis set and the 

spin-polarized generalized gradient approximation (GGA), with 

the Perdew, Burke, and Ernzerhof (PBE) functional19 employed 

to describe the exchange-correlation potentials. On-site 

Coulomb interaction in Fe ions was corrected using the 

Hubbard U parameter21 to account for a strong electron 

correlation effects (DFT+U method). 

In this study, we used the hybrid density functional (hDF) 

with local atom-centered basis sets to calculate the total 

energies for all involved materials, in continuation of our 

previous work,22,23 on LaFeO3 and BiFeO3. Application of the 

same method allowed us to use the results of calculations for 

iron oxides obtained in these calculations. In the hDF method, 

the exchange part of employed density functional is mixed 

with a precise non-local Fock exchange term. The basis sets 

needed for our present modellings were also already 

optimized in the previous studies.22,23 The use of hDF has the 

advantage of treating all cations and anions on the same 

ground, in contrary to commonly employed DFT+U approach, 

where the Hubbard correction U is applied only at d- or f- 

atomic orbitals. This allows us to avoid the ambiguity of 

employing the same value of the Hubbard U correction to 

atoms with different oxidation states and in different chemical 

surroundings. Also, the bond energy of the O2 molecule 

calculated with the hDFs methods is in a very good agreement 

with its experimental value eliminating the need for their 

correction known for the GGA-type approach.22-25 

In constructing phase diagrams, we followed the 

thermodynamic approach, in which the required energies of 

formation for various materials were calculated using the total 

energies obtained from quantum-mechanical electronic 

structure calculations. Such an approach was applied recently, 

for example, to LaMnO3 
26 and used by us for investigations of 

BiFeO3, 
22  LaFeO3,23  SrTiO3.25 

Necessary details of the applied technique are described in 

Section 2. This section contains two subsections. The first one 

deals with specifics of the electronic structure computations 

for all considered crystal structures. The second subsection 

describes thermodynamic considerations necessary to build 

phase diagrams. The results of modelling are discussed in 

Section 3, where obtained crystal structures are described, and 

thermodynamic analysis of stability for all structures is 

presented. Finally, summary of the obtained results and 

conclusions are given in Section 4.  

2. Theoretical 

Computational details 

Computations of the electron structure, optimization of 

crystalline structure and calculations of the total energies for 

considered SFO phases were performed using the CRYSTAL09 

computer code27 and the same computational parameters, to 

keep consistence with our previous similar modelling.22,23 This 

code allows us to perform ab initio calculations of the electron 

structure of molecules and periodical multi-atomic structures, 

including crystals, by means of the Hartree-Fock method and 

by a number of various DFT and hDF techniques. The 

calculations employ the localized atomic (Gaussian-type) basis 

functions centered at atomic nuclei28-30 and used to expand 

one-electron orbitals (linear combination of atomic orbitals - 

LCAO). The present simulations were performed using the 

hybrid B3PW functional,31 which includes a mixture of the 
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nonlocal exact Fock’s exchange, GGA,31-34 and local density 

approximation (LDA)35 exchange potentials, combined with the 

GGA correlation potential of Perdew and Wang.34,36 Due to the 

presence of iron ions in the considered materials, one can 

expect considerable electron correlation effects. The use of a 

hDF in modelling Fe-containing materials considerably reduces 

self-interaction errors of the standard density functionals. As 

mentioned above, employing hDF also allows us to avoid 

corrections to compensate for overestimate in the bond 

energies of O2 molecules3,37 used as the reference state in the 

thermodynamic calculations. 

The Monkhorst–Pack grids for integration over the Brillouin 

zone29 in the reciprocal space have to be chosen in such a way, 

that the results of calculations for various materials with 

different unit cells were comparable. Therefore, the k-grids 

were chosen, to ensure that distances between neighboring 

points of the net are approximately the same for all materials. 

It is reasonable to take the calculations of SrFeO3 as a 

reference for all other crystals. In the present study, we used 

an extended 2×2×2 SrFeO3 cubic unit cell of 40 atoms, because 

it allows us to compare all possible magnetic orderings of this 

perovskite material (FM, AFM:A, AFM:C, and AFM:G).  The 

computations employed the 8×8×8 Monkhorst–Pack grid. This 

size of the grid is sufficient to ensure convergence of the total 

energy for the employed extended unit cell. Modelling for 

SrFeO2.875 and for SrFeO2.75 employed the conventional unit 

cells (Fig. 2 and 3), which are twice as large as their primitive 

unit cells containing 78 and 38 atoms, respectively. 

Corresponding Monkhorst–Pack grids were chosen as 6×6×8 

and 6×12×8, respectively. Computations for SrFeO2.5 were also 

performed using conventional unit cells for all four possible 

phases. For phases with crystal symmetries 𝐼𝑚𝑚𝑎 , 𝐼𝑏𝑚2 , 

𝑃𝑛𝑚𝑎 such unit cells contain 36 atoms (Fig. 4a-c) and 12x4x12 

Monkhorst–Pack grids were used. The SrFeO2.5 phase with 

𝑃𝑏𝑚𝑎 symmetry has twice a larger unit cell with 72 atoms (Fig. 

4d) and the Monkhorst–Pack grid of size 8x4x12 was 

employed. 

The inner core electrons of heavy atoms were replaced by 

the effective core potentials (ECPs) what allows us to reduce 

considerably computational time. The ECPs reproduce 

interactions of the replaced core electrons with the rest of 

electrons in the system. For a better description of atoms, 

electrons of two external (valence and core-valence) electron 

shells were not included into the ECPs but described explicitly. 

The scalar-relativistic energy-consistent ECPs developed by the 

Stuttgart/Cologne group38 were used. Basis sets required for 

present simulations were optimized and published in our 

previous paper23 and could be also found on the CRYSTAL 

code’s web-site.39 The ECP28MDF potential40,41 and basis set 

contracted according to s411p411d11 pattern42 were used for 

Sr atoms. Since O atoms have only two electron shells, all 

electrons at O atoms were described explicitly and an all-

electron basis set43 was applied. Computational time saving 

due to use of ECPs at Fe atoms is moderate because only 10 

electrons occupy two inner core electron shells. Therefore, 

before starting massive use of ECP and respective basis set in 

the calculations, one has to evaluate and weight computer 

time savings versus loss of accuracy due to the ECP use. We 

performed modelling for both cases: (i) employing ECP10MFD 

potential44,45 with respective basis set contracted according 

s411p411d411 scheme from46 on Fe atoms, and (ii) all-electron 

Fe ion treatment with basis set from47 contracted according 

s86411p6411d411 pattern, in order to make a choice for 

future modelling. 

At ambient temperatures, spins of Fe atoms in various SFO 

phases have different magnetic orderings. There are three 

possible AFM phases in the perfect perovskite lattices (i) in the 

A-type AFM ordering the Fe ion spins are arranged 

ferromagnetically (parallel) within the (001) planes, but spins 

in the nearest neighbouring planes change orientation to 

opposite, (ii) in the C-type AFM spins are arranged 

ferromagnetically (FM) along one of the [001] directions, but 

have opposite (anti-parallel) arrangement in the planes 

perpendicular to this direction, and (iii) in the G-type AFM case 

spins on all nearest neighbour iron ions are oppositely 

directed. In the present simulations, all three SFO-AFM 

orderings were considered with different oxygen contents. 

However, in three phases (SrFeO2.875, SrFeO2.75, SrFeO2.5) there 

is the lattice direction, which is characteristic for arrangement 

of layers in their crystal structures: ‘c’ ([001]) for SrFeO2.875 and 

‘b’ ([010]) for SrFeO2.75 and SrFeO2.5. Unit cells for these 

compounds shown in Figs. 2-4 are rotated, to align them with 

the Oz axis. In our calculations for the A and C types of AFM 

orderings, we limited ourselves to these arrangements. 

The magnetic structure of SrFeO3 and SrFeO2.875 is known 

to be helical.9 Such structure cannot be reproduced using the 

CRYSTAL code, because of its limitation to the collinear spin 

structures. Therefore, helical structures were replaced by 

ferromagnetic ones, which are close to these incommensurate 

helical magnetic structures. 

Thermodynamic investigation of materials stability 

The standard way to evaluate relative stabilities of different 

phases is to compare their Gibbs energies: the most stable 

material has the lowest Gibbs energies among its competitors. 

Because unit cells of crystals are small and their volume 

changes with temperature very little, the contribution of the 

pV term to Gibbs energies usually is neglected. According to,48 

the vibrational contributions to the internal energy and to 

entropy usually almost cancel each other. Thus, we neglect 

here the vibrational contributions without any significant 

effect on the phase diagram. Such an approximation allows us 
to replace the Gibbs energy (per formula unit) 𝐺𝐴𝑎𝐵𝑏𝑂𝑐

 for a 

double oxide AaBbOc by the total electronic energy, obtained in 
the electronic structure calculations:  𝐺𝐴𝑎𝐵𝑏𝑂𝑐

≈ 𝐸𝐴𝑎𝐵𝑏𝑂𝑐
.  

Usually, atomic chemical potentials for each element are 

measured as deviations with respect to its standard state. For 

metals M=A or B, which standard state is a solid, this gives: 

∆𝜇𝑀 = 𝜇𝑀 − 𝐺𝑀
𝑏𝑢𝑙𝑘 ≈ 𝜇𝑀 − 𝐸𝑀 ,                     (1) 

where 𝐺𝑀
𝑏𝑢𝑙𝑘  𝑎𝑛𝑑  𝐸𝑀  are Gibbs energy and the total energy 

(both are given per atom) in a metal M. The standard state for 

oxygen is O2 gas. Therefore, the O atom chemical potential is 
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defined here as its deviation from the energy of an atom in O2 

molecule:  

∆𝜇𝑂(𝑇, 𝑝𝑂2
) = 𝜇𝑂(𝑇, 𝑝𝑂2

) −
1

2
𝐸𝑂2

,                    (2) 

and the ideal gas model is employed to describe oxygen gas48:  

∆𝜇𝑂(𝑇, 𝑝𝑂2
) =

1

2
{∆𝐺𝑂2

𝑔𝑎𝑠(𝑇, 𝑝0) + 𝑘𝐵𝑇𝑙𝑛(
𝑝𝑂2

𝑝0
)} + 𝛿𝜇𝑂

0 .     (3) 

Here T is temperature in the system; 𝑝𝑂2
 is oxygen gas partial 

pressure;  𝑝0 = 1 atm. Is the standard pressure; 𝑘𝐵  is 

Boltzmann constant; the first term in brackets is the 

temperature change of the oxygen Gibbs energy at the 

standard pressure, and the correction  𝛿𝜇𝑂
0  is used to match 

zeros for the experimental variation of the O chemical 

potential and for our theoretical estimates. The variation of 

the Gibbs energy for oxygen gas at standard pressure   

∆𝐺𝑂2

𝑔𝑎𝑠(𝑇, 𝑝0) as a function of temperature was taken from 

experimental data collected in NIST Chemistry WebBook.49  

While a material with a formula AaBbOc is stable, the 

chemical potentials of three elements involved are connected 

by the relation  

𝑎∆𝜇𝐴 + 𝑏∆𝜇𝐵 + 𝑐∆𝜇𝑂 ≈ ∆𝐸𝑓,𝐴𝑎𝐵𝑏𝑂𝑐
   ,                   (4) 

where the energies of formation Δ𝐸𝑓  for a compound AaBbOc 

(any of stoichiometric coefficients a or b could be equal to 0, 

to include into consideration also simple oxides) from 

elements are 

∆𝐸𝑓,𝐴𝑎𝐵𝑏𝑂𝑐
= 𝐸𝐴𝑎𝐵𝑏𝑂𝑐

− 𝑎𝐸𝐴 − 𝑏𝐸𝐵 −
𝑐

2
𝐸𝑂2

.                (5) 

According to Eq. (4), only two of three chemical potentials 

are independent variables. ∆𝜇𝑂  could be chosen as one of 

these independent variables, to relate the results of our 

analysis with the environmental conditions; ∆𝜇𝐵 = ∆𝜇𝐹𝑒  is 

used here as the second independent variable. Contrary, 

𝐴𝑎′𝐵𝑏′𝑂𝑐′ is unstable, if  

𝑎′∆𝜇𝐴 + 𝑏′∆𝜇𝐵 + 𝑐′∆𝜇𝑂 ≤ ∆𝐸𝑓,𝐴𝑎′𝐵𝑏′𝑂𝑐′
 ,                        (6) 

where the first term could be eliminated using Eq. (4). In this 

study, we analyse the stability of SrFeO3-δ and its possible 

decomposition into simple Sr- and Fe oxides (SrO, SrO2, FeO, 

Fe3O4,  and  Fe2O3),  elemental  Sr  and  Fe  metals,  and  O2  

gas.  

 

Table 1  Inequalities, defining the boundaries of stability regions for various phases of SrFeO3-δ. 

 Stability conditions for: 

 SrFeO3 SrFeO2.875 

Bounds for chemical 
potentials deviations: ∆𝜇𝑆𝑟 + ∆𝜇𝐹𝑒 + 3∆𝜇𝑂 = 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂3

 ∆𝜇𝑆𝑟 + ∆𝜇𝐹𝑒 + 2.875∆𝜇𝑂 = 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875
 

Prevents precipitation 
(release) of: 

  

   ECP All-e  ECP All-e 

 O2 gas ∆𝜇O ≤ 0   ∆𝜇O ≤ 0   

 Sr ∆𝜇𝑂 ≥ (𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂3
− ∆𝜇𝐹𝑒)/3   ∆𝜇𝑂 ≥ 8(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875

− ∆𝜇𝐹𝑒)/23   

 Fe ∆𝜇𝐹𝑒 ≤ 0   ∆𝜇𝐹𝑒 ≤ 0   

 SrO ∆𝜇𝑂 ≥ (𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂3
− 𝐸 𝑓,𝑆𝑟𝑂 − ∆𝜇𝐹𝑒)/2   ∆μ𝑂 ≥ 8(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875

− 𝐸𝑓,𝑆𝑟𝑂 − ∆𝜇Fe)/15   

 SrO2 ∆𝜇𝑂 ≥ 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂3
− 𝐸𝑓,𝑆𝑟𝑂2

− ∆𝜇𝐹𝑒   ∆μ𝑂 ≥  8(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875
− 𝐸𝑓,𝑆𝑟𝑂2

− ∆𝜇Fe)/7   

 FeO ∆𝜇𝑂 ≤ 𝐸𝑓,𝐹𝑒𝑂 − ∆𝜇𝐹𝑒   ∆𝜇𝑂 ≤ 𝐸𝑓,𝐹𝑒𝑂 − ∆𝜇𝐹𝑒   

 Fe3O4 ∆𝜇𝑂 ≤ (𝐸 𝑓,𝐹𝑒3𝑂4
− 3∆𝜇𝐹𝑒)/4   ∆𝜇𝑂 ≤ (𝐸 𝑓,𝐹𝑒3𝑂4

− 3∆𝜇𝐹𝑒)/4   

 Fe2O3 ∆𝜇𝑂 ≤ (𝐸 𝑓,𝐹𝑒2𝑂3
− 2∆𝜇𝐹𝑒)/3   ∆𝜇𝑂 ≤ (𝐸 𝑓,𝐹𝑒2𝑂3

− 2∆𝜇𝐹𝑒)/3   

 SrFeO3    ∆𝜇𝑂 ≤ 8(𝐸𝑓,𝑆𝑟𝐹𝑒𝑂3
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875

) 0.927 1.682 

 SrFeO2.875 ∆𝜇𝑂 ≥ 8(𝐸𝑓,𝑆𝑟𝐹𝑒𝑂3
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875

) 0.927 1.682 -   

 SrFeO2.75 ∆𝜇𝑂 ≥ 4(𝐸𝑓,𝑆𝑟𝐹𝑒𝑂3
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75

) 1.050 0.825 ∆𝜇𝑂 ≥ 8(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75

) 1.172 -0.032 

 SrFeO2.5 ∆𝜇𝑂 ≥ 2(𝐸𝑓,𝑆𝑟𝐹𝑒𝑂3
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5

) 0.817 0.588 ∆𝜇𝑂 ≥ 8(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5

)/3 0.780 0.223 

        

 SrFeO2.75 SrFeO2.5 
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Bounds for chemical 

potentials deviations: 
∆𝜇𝑆𝑟 + ∆𝜇𝐹𝑒 + 2.75∆𝜇𝑂 = 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75

 ∆𝜇𝑆𝑟 + ∆𝜇𝐹𝑒 + 2.5∆𝜇𝑂 = 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5
 

Prevents precipitation 

(release) of: 
  

   ECP All-e  ECP All-e 

 O2 gas ∆𝜇O ≤ 0   ∆𝜇O ≤ 0   

 Sr ∆𝜇𝑂 ≥ 4(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75
− ∆𝜇𝐹𝑒)/11   ∆𝜇𝑂 ≥ 2(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5

− ∆𝜇𝐹𝑒)/5   

 Fe ∆𝜇𝐹𝑒 ≤ 0   ∆𝜇𝐹𝑒 ≤ 0   

 SrO ∆μ𝑂 ≥ 4(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75
− 𝐸𝑓,𝑆𝑟𝑂 − ∆𝜇Fe)/7   ∆μ𝑂 ≥ 2(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5

− 𝐸𝑓,𝑆𝑟𝑂 − ∆𝜇Fe)/3   

 SrO2 ∆μ𝑂 ≥  4(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75
− 𝐸𝑓,𝑆𝑟𝑂2

− ∆𝜇Fe)/3   ∆μ𝑂 ≥  2(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5
− 𝐸𝑓,𝑆𝑟𝑂2

− ∆𝜇Fe)   

 FeO ∆𝜇𝑂 ≤ 𝐸𝑓,𝐹𝑒𝑂 − ∆𝜇𝐹𝑒   ∆𝜇𝑂 ≤ 𝐸𝑓,𝐹𝑒𝑂 − ∆𝜇𝐹𝑒   

 Fe3O4 ∆𝜇𝑂 ≤ (𝐸 𝑓,𝐹𝑒3𝑂4
− 3∆𝜇𝐹𝑒)/4   ∆𝜇𝑂 ≤ (𝐸 𝑓,𝐹𝑒3𝑂4

− 3∆𝜇𝐹𝑒)/4   

 Fe2O3 ∆𝜇𝑂 ≤ (𝐸 𝑓,𝐹𝑒2𝑂3
− 2∆𝜇𝐹𝑒)/3   ∆𝜇𝑂 ≤ (𝐸 𝑓,𝐹𝑒2𝑂3

− 2∆𝜇𝐹𝑒)/3   

 SrFeO3 ∆𝜇𝑂 ≤ 4(𝐸𝑓,𝑆𝑟𝐹𝑒𝑂3
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75

) 1.050 0.825 ∆𝜇𝑂 ≤ 2(𝐸𝑓,𝑆𝑟𝐹𝑒𝑂3
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5

) 0.817 0.588 

 SrFeO2.875 ∆𝜇𝑂 ≤ 8(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75

) 1.172 -0.032 ∆𝜇𝑂 ≤ 8(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.875
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5

)/3 0.780 0.223 

 SrFeO2.75 -   ∆𝜇𝑂 ≤ 4(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5

) 0.584 0.350 

 SrFeO2.5 ∆𝜇𝑂 ≥ 4(𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.75
− 𝐸 𝑓,𝑆𝑟𝐹𝑒𝑂2.5

) 0.584 0.350    

 

 

 Relevant expressions for boundaries of stability regions for 

target materials derived from Eqs. (4) and (6) for all considered 

compounds are collected in Table 1.  

Molecules and non-metallic compounds usually are well 

described by hDFs. However, the description of metals is not 

so reliable. Additional problems appear, when the LCAO 

approximation is employed. These problems arise because 

calculations of metals demand the use of quite diffuse basis 

functions which are often difficult to optimize in metals. 

Besides, different calculations could be compared only, if they 

are performed using the same basis sets. To avoid explicit 

computations of metals and related complications, the total 

energy of an atom in a metal can be estimated using 

experimental values of the energy of formation for its oxide.26 

This estimate can be done using the definition of the Gibbs 

energies of formation for the binary oxides 𝑀𝑥𝑂𝑦  48,50 : 

𝐸𝑀 =
1

𝑥
(𝐸 𝑀𝑥𝑂𝑦

− ∆𝐺𝑓,𝑀𝑥𝑂𝑦

0 −
𝑦

2
(𝐸𝑂2

+ ∆𝐺𝑂2

𝑔𝑎𝑠(𝑇0, 𝑝0) + 𝛿𝜇𝑂
0 )) ,(7) 

where ∆𝐺𝑓,𝑀𝑥𝑂𝑦

0   is the Gibbs energy of formation for 𝑀𝑥𝑂𝑦   

under the standard conditions available from thermodynamic 
tables;48,51  𝐸 𝑀𝑥𝑂𝑦

 the total energy of 𝑀𝑥𝑂𝑦  (per unit cell) and  

 

Table 2    Lattice parameters and relative energy differences (ΔE) of SrFeO3 phases 

Phase 
Obtained 

from 

Basis 

seta 

Lattice parameters 
Zb ΔE, meV/f.u. 

Description 
Magnetic 

order 

Space group 

label # a=b, Å c, Å α=β, ° γ, ° 

Cubic perovskite FM 𝑃𝑚3̅𝑚 221 Exptl.52  7.702 7.702 90 90 8  

            

Cubic perovskite FM 𝑃𝑚3̅𝑚 221 Opt./DFT+U 19 PW 7.76 7.76 90 90 8      0 

Cubic perovskite AFM:G 𝑃𝑚3̅𝑚 221 Opt./DFT+U 19 PW 7.78 7.78 90 90 8 260 

            

Cubic perovskite FM 𝑃𝑚3̅𝑚 221 Opt. ECP 7.713 7.713 90 90 8     0 

    Opt. all-e 7.714 7.714 90 90 8     0 

Distorted cubic AFM:A 𝑃4𝑚𝑚 99 Opt. ECP 7.716 7.705 90 90 8   66 

perovskite    Opt. all-e 7.718 7.704 90 90 8   56 

 AFM:C 𝐶𝑚𝑚𝑚 65 Opt. ECP 7.748 7. 736 90 89.99 8 172 

    Opt. all-e 7.776 7.736 90 89.78 8 148 

 AFM:G 𝑅3𝑚 160 Opt. ECP 7.768 7.768 89.47 89.47 8 393 

    Opt. all-e 7.773 7.773 89.64 89.64 8 414 

a The computations with the ECP and all-electron (all-e) basis sets on Fe ion were performed. PW stands for plane wave basis set.  b  Z is the number of formula units in 

unit cell.  

 

∆𝐺𝑂2

𝑔𝑎𝑠(𝑇0, 𝑝0)  change of the Gibbs energy of oxygen gas from 

0 K to the standard conditions.  

Often several oxides for a given metal exist. In the case of 

SFO, two stable oxides (SrO and SrO2) exists for Sr metal and 

three different oxides (FeO, Fe2O3, Fe3O4) are known for Fe. 

Thus, the metal energies here were obtained from several 

different oxides (e.g. for Fe atom from three oxides) are then 

averaged, to establish a common reference. 

The Gibbs energy of formation for compound AaBbOc 
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∆𝐺𝑓,𝐴𝑎𝐵𝑏𝑂𝑐
(𝑇, 𝑝𝑂2

) = 𝐸 𝐴𝑎𝐵𝑏𝑂𝑐
− 𝑎𝐸𝐴 − 𝑏𝐸𝐵 − 𝑐𝜇𝑂(𝑇, 𝑝𝑂2

)    (8) 

can be re-written using the definitions for the variation of the 

O atom chemical potential (2) and the energy of formation (5) 

as  

∆𝐺𝑓,𝐴𝑎𝐵𝑏𝑂𝑐
(𝑇, 𝑝𝑂2

) = ∆𝐸𝑓,𝐴𝑎𝐵𝑏𝑂𝑐
− 𝑐∆𝜇𝑂(𝑇, 𝑝𝑂2

),           (9) 

This expression shows that, within our approximations, the 

dependence of Gibbs energy of formation on environmental 

conditions (temperature and oxygen partial pressure) arises 

entirely from the last term in Eq. 9. This expression illustrates 

also meaning of the energies of formation Eq. (5) as the Gibbs 

energies of formation at T=0K.  

3. Results and discussion 

Structure and relative energies for various related materials 

To construct the phase diagrams, we began from calculations 

of very basic properties of relevant materials, such as the 

equilibrium atomic structure and the total energies (per 

formula unit) for considered phases of SFO, Sr and Fe oxides. 

The employed B3PW hybrid functional gives for the free O2 

molecule (used in our calculations as the reference state) the 

bond length of 1.202 Å and the bond energy of 5.38 eV, which 

agree well with the experimental values of 1.208 Å and 5.12 

eV.49 Computations of iron oxides were performed in our 

previous studies22,23 under identical computational conditions 

as in the present study. Therefore, we used these results for 

FeO, Fe3O4, and Fe2O3 in the present study.  

The results of lattice structure optimization for SrFeO3 in all 

magnetic states are collected in Table 2. The FM state is found 

to be the lowest in energy, in agreement with experimental 

data9 and plane-wave DFT+U calculations.19 The order of 

different AFM states is the same for both basis sets on Fe ions: 

AFM:A state has the next lowest energy, followed by AFM:C, 

and AFM:G state has the highest energy within this group. The 

energy difference between AFM:G and FM states is 

reproduced reasonably well in calculations with ECP on Fe 

ions, in comparison with the calculations with full all-electron 

basis set at Fe: the underestimate is only 5%. However, such 

energy differences for AFM:A and AFM:C are overestimated by 

18% and 16%.  Optimization of the lattice constant for both 

basis sets on Fe produced the values of the constant (7.713 Å 

with ECP/ 7.714 Å all-electron) in much better agreement with 

the experimental value of 7.702 Å,52 than DFT+U calculations.19  

The FM state is conductive, which is consistent with both 

experiment9,14 and DFT+U calculations.19 

Table 3 contains the results of lattice optimizations for 

SrFeO2.875, where, in comparison to SrFeO3, one oxygen atom 

per 8 formula units is removed in such a way to reproduce 

bulk-centered tetragonal structure presented at Fig. 2. The 

ground state for this crystal composition remains FM and 

conductive, in agreement with both experiment9 and 

calculations.19 The energy differences between FM and AFM 

states computed with ECP at Fe are significantly 

underestimated relatively to calculations with all-electron 

case.  Such an underestimate for AFM:A and AFM:C is larger 

than 100 meV (per formula unit), and  about half of that for 

AFM:G state.  This leads for the energy difference between 

AFM-A and FM states calculated with ECP to   be  about  a  half  

of the  same  difference   obtained   from  

 

Table 3  Lattice parameters and relative energy differences(ΔE) for SrFeO2.875 phases 

Phase 
Obtained 

from 
Basis 
seta 

Lattice parameters 
Zb  ΔE, meV/f.u. 

Description 
Magnetic  

order 

Space group 

label # a=b, Å c, Å 

Tetragonal bulk-centred FM(helical) 𝐼4/𝑚𝑚𝑚 139 Exptl.9  10.900 7.684 16  
          

Tetragonal bulk-centred FM 𝐼4/𝑚𝑚𝑚 139 Opt./DFT+U 19 PW 11.03 7.76 16 0 
 AFM:G   Opt./DFT+U 19 PW 11.04 7.78 16 80 
          

Tetragonal bulk-centred FM 𝐼4/𝑚𝑚𝑚 139 Opt. ECP 10.961 7.734 16 0 
    Opt. all-e 10.957 7.748 16 0 
 AFM:A   Opt. ECP 11.005 7.673 16 125 
    Opt. all-e 11.002 7.675 16 244 
 AFM:C   Opt. ECP 10.975 7.681 16 7 
    Opt. all-e 10.980 7.679 16 124 
 AFM:G   Opt. ECP 10.920 7.798 16 135 
    Opt. all-e 10.918 7.865 16 188 

a The computations with the ECP and all-electron (all-e) basis sets on Fe ion were performed. PW stands for plane wave basis set.  b  Z is the number of formula units in 

unit cell.  
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Table 4  Lattice parameters and relative energy differences (ΔE) for SrFeO2.75 phases 

Phase 
Obtained 

from 

Basis 

seta 

Lattice parameters 
Zb ΔE, meV/f.u. 

Description 
Magnetic  

order 

Space group 

label # a, Å b, Å c, Å 

orthorhombic AFM 𝐶𝑚𝑚𝑚 65 Exptl.9  7.70 10.97 5.467 8  

           

orthorhombic FM 𝐶𝑚𝑚𝑚 65 Opt./DFT+U 19 PW 7.78 11.09 5.52 8 100 

 AFM:G   Opt./DFT+U 19 PW 7.80 11.05 5.51 8     0 

           

orthorhombic FM 𝐶𝑚𝑚𝑚 65 Opt. ECP 7.770 11.005 5.491 8 119 

    Opt. all-e 7.784 11.007 5.490 8 136 

 AFM:A(b)   Opt. ECP 7.690 11.061 5.509 8 212 

    Opt. all-e 7.688 11.067 5.512 8 215 

 AFM:C(b)   Opt. ECP 7.724 11.010 5.494 8     0 

    Opt. all-e 7.732 11.013 5.496 8     0 

 AFM:G   Opt. ECP 7.766 10.986 5.479 8    35 

    Opt. all-e 7.776 10.984 5.477 8    22 

a The computations with the ECP and all-electron (all-e) basis sets on Fe ion were performed. PW stands for plane wave basis set.  b  Z is the number of formula units in 

unit cell.  

 

all-electron calculations. For AFM:C state such an 

underestimate is even more significant, since in calculations 

with all-electron description of Fe AFM:C state is located by 

124 meV above the FM state. The calculations with ECP at Fe 

allocate the AFM:C state only by 7 meV above FM state. The 

optimized lattice constants are larger than experimental values 

less than 1%. This is a very good agreement, which was not 

achieved by DFT+U calculations.19 

The results of calculations for SrFeO2.75 are summarized in 

Table 4. The ground state of SrFeO2.75 is AFM:C. Note that our 

consideration of magnetic state of SrFeO2.75 was limited to a 

few spin configurations and was not capable reproducing 

details of the complicated magnetic ordering in this material.12 

In the present modelling, DFT+U calculations,19 and in 

experiment9 the ground state is insulating. The energy 

differences between ground AFM-C and all other magnetic 

states are in a reasonable agreement among calculations 

performed with ECP and the those using all-electron 

description. The obtained lattice structure for SrFeO2.75 is also 

in very good agreement with the experimental one. Indeed, 

the calculated lattice constants overestimate experimental 

ones by less than 0.3% and, again, and are closer to the 

experimental results than achieved by the DFT+U 

computations.19 

Lastly, SrFeO2.5 has a brownmillerite structure (Fig. 4). To 

derive it from the cubic perovskite lattice, one has to remove 

one sixth of oxygen atoms from chains running along one of 

the [110] directions. Such chains of oxygen vacancies occur in 

each second octahedral layer. The resulting lattice has a 

layered structure, where layers of FeO6 octahedra alternate 

with layers of FeO4 tetrahedra. If rotations of tetrahedra are 

not allowed, such lattice has 𝐼𝑚𝑚𝑎  symmetry. Since 

tetrahedra are connected by corners, they can rotate only 

synchronously through each chain. Such rotations of 

tetrahedra produce an energy gain in SrFeO2.5. In Fig. 4b-d red 

and blue shadings of tetrahedra mark opposite directions of 

their rotations. Three basic patterns (and corresponding 

phases) of tetrahedra rotations were considered: (i) tetrahedra 

within all chains rotate in the same direction – SG 𝐼𝑏𝑚2, # 46; 

(ii) tetrahedra within chains of each layer rotate the same way, 

but with opposite rotation directions in neighboring layers – 

SG 𝑃𝑏𝑚𝑎, # 57; (iii) alternation of rotation direction occurs 

already within each layer of tetrahedra - SG 𝑃𝑛𝑚𝑎, # 62.  

The results of optimization of above described 

brownmillerite lattices are assembled in Table 5. For all four 

primary structures for SrFeO2.5, the lowest energy states have 

the AFM:G magnetic ordering. The high symmetry 𝐼𝑚𝑚𝑎 

structure (Fig. 4a) has the largest energy (per formula unit) 

among considered phases. The structure with symmetry 𝑃𝑏𝑚𝑎 

appears to be the ground state. However, all three lower 

symmetry states have energies within a very few meV each 

from another. This variance is too small to reliably determine, 

which of these three states should be visible in experiment. 

The lattice structures of SrFeO2.5 obtained from neutron 

diffraction experiments have been interpreted as  𝐼𝑚𝑚𝑎 52,53  

𝐼𝑏𝑚2 ,54 or 𝑃𝑏𝑚𝑎 .28,29  Evidently, it is not reliably settled. The 

obtained close energies for different structures predict that 

simultaneously several phases could coexist in the SrFeO2.5 

crystal and it is difficult to discern them in experiment. In such 

a case the high symmetry 𝐼𝑚𝑚𝑎 structure could be obtained 

due   to   averaging   the    diffraction    picture    over    

multiple  

Table 5   Lattice parameters and relative energy differences (ΔE) of SrFeO2.5 phases 

Phase 
Obtained 

from 
Basis 
seta 

Lattice parameters 
Zb ΔE, meV/f.u. Space group Magnetic 

order label # a, Å b, Å c, Å 

𝐼𝑚𝑚𝑎 74 AFM:G Exptl. 53  5.6688 15.5775 5.5253 8  
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𝐼𝑚𝑚𝑎 74 AFM:G Exptl. 52  5.672 15.59 5.527 8  
𝐼𝑏𝑚2 46 AFM:G Exptl. 54  5.6685 15.5823 5.5265 8  
𝑃𝑏𝑚𝑎 57 AFM:G Exptl. 29  11.3505 15.5888 5.5288 16  

          
𝑃𝑏𝑚𝑎 57 AFM:G Opt./DFT+U 55 PW 11.311 15.407 5.503 16 0 
𝐼𝑏𝑚2 46 AFM:G Opt./DFT+U 55 PW 5.659 15.402 5.501 8 13 
𝑃𝑛𝑚𝑎 62 AFM:G Opt./DFT+U 55 PW 5.659 15.413 5.499 8 23 

          
𝐼𝑏𝑚2 46 AFM:G 

Opt./DFT+U 19 PW 
5.74 15.62 5.57 

8 
0 

𝐼𝑏𝑚2 46 FM Opt./DFT+U 19 PW 5.77 15.70 5.58 8 270 
          

𝐼𝑚𝑚𝑎 74 FM Opt. ECP 5.763 15.213 5.669 8 418 
  FM Opt. all-e 5.769 15.210 5.675 8 448 
  AFM:A  Opt. ECP 5.766 15.108 5.683 8 342 
  AFM:A Opt. all-e 5.772 15.097 5.690 8 361 
  AFM:C Opt. ECP 5.735 15.276 5.633 8 227 
  AFM:C Opt. all-e 5.740 15.280 5.635 8 234 
  AFM:G Opt. ECP 5.743 15.171 5.647 8 164 
  AFM:G Opt. all-e 5.748 15.167 5.650 8 163 

𝐼𝑏𝑚2 46 FM Opt. ECP 5.753 15.558 5.562 8 212 
  FM Opt. all-e 5.764 15.541 5.569 8 242 
  AFM:A  Opt. ECP 5.762 15.453 5.573 8 138 
  AFM:A Opt. all-e 5.773 15.424 5.583 8 158 
  AFM:C Opt. ECP 5.723 15.599 5.542 8 64 
  AFM:C Opt. all-e 5.724 15.649 5.545 8 73 
  AFM:G Opt. ECP 5.736 15.489 5.556 8 1 
  AFM:G Opt. all-e 5.744 15.468 5.562 8 1 

𝑃𝑏𝑚𝑎 57 FM Opt. ECP 11.495 15.572 5.563 16 212 
  FM Opt. all-e 11.519 15.549 5.570 16 242 
  AFM:A  Opt. ECP 11.511 15.463 5.576 16 138 
  AFM:A Opt. all-e 11.534 15.436 5.585 16 158 
  AFM:C Opt. ECP 11.439 15.608 5.544 16 63 
  AFM:C Opt. all-e 11.455 15.595 5.549 16 73 
  AFM:G Opt. ECP 11.462 15.501 5.558 16 0 
  AFM:G Opt. all-e 11.480 15.476 5.564 16 0 

𝑃𝑛𝑚𝑎 62 FM Opt. ECP 5.750 15.578 5.559 8 214 
  FM Opt. all-e 5.762 15.559 5.566 8 244 
   AFM:A  Opt. ECP 5.758 15. 473 5.572 8 141 
  AFM:A Opt. all-e 5.769 15.448 5.580 8 161 
  AFM:C Opt. ECP 5.722 15.612 5.540 8 65 
  AFM:C Opt. all-e 5.731 15.597 5.545 8 74 
  AFM:G Opt. ECP 5.733 15.507 5.554 8 3 
  AFM:G Opt. all-e 5.741 15.485 5.560 8 2 

a The computations with the ECP and all-electron (all-e) basis sets on Fe ion were performed. PW stands for plane wave basis set.  b  Z is the number of formula units in 

unit cell.   

 

(a)                                                  (b) 

Fig. 5 Structures of strontium oxides (a) SrO, (b) SrO2 

Table 6 Lattice parameters of crystallographic cells for Sr oxides and z position of 

irreducible O atoms in SrO2  (in fractional coordinates) 

Oxide 
Obtained 

from 
Phase 

Symmetry  

group 

Lattice  

parameters z position  

of O atoms 
   label # a=b, Å c, Å 

SrO Exptl.57 
Rock salt,  

cubic 
𝐹𝑚3̅𝑚 225 5.16 5.16  

  
Rock salt,  

cubic 
𝐹𝑚3̅𝑚 225 5.189 5.189  

SrO2 Exptl.58 tetragonal 𝐼4/𝑚𝑚𝑚 139 3.563 6.616 0.388 

  tetragonal 𝐼4/𝑚𝑚𝑚 139 3.557 6.776 0.391 

 

crystallites, present in a sample. All calculated AFM:G states 

are non-conductive. Deviations of optimized lattice constants 

for SrFeO2.5 are within 3% from the mentioned experimental 
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data, which is a sufficient agreement, considering the 

anisotropic crystal lattice of this material.  

A comparison with the DFT+U calculations19 shows usual 

larger overestimate than in the present work. Contrary, 

another DFT+U calculations55 produced slightly 

underestimated set of lattice constants with respect to 

experiments. Note that the former calculations19 considered 

only the  𝐼𝑏𝑚2 structure of SrFeO2.5, showing that energy of 

AFM:G state is smaller than the energy of the FM state, what is 

consistent with present results. Instead, comparison of the 

energies for all three low-symmetry structures of SrFeO2.5 with 

AFM:G spin order in the DFT+U modelling, 55 points to the  

𝑃𝑏𝑚𝑎 structure as the ground state. This coincides with the 

present calculations, while the differences in the energies of 

these structures are by about an order of magnitude larger 

than in the present calculations. Note that these two DFT+U 

simulations were performed using different density 

functionals: PBE in ref. 19, and PBE with improved description 

of solids (PBEsol)56 in ref. 55. In addition, the former 

calculations used Hubbard parameter U= 3 eV, while the latter 

one used U=5 eV. This could contribute to the difference in the 

results of two similar methods. 

There are two known Sr oxides: SrO and SrO2, both are 

nonmagnetic. The former has a “rock salt” face-centered cubic 

structure (Fig. 5a). The lattice structure of SrO2 is similar, but 

Table 7  The energies of formation (ΔEf) and standard Gibbs energies of formation 

(ΔG0f) of Sr and Fe oxides, and SrFeO3-δ 

Material Phase Magnetic  
order 

Basis set a  

or Expt. 

ΔEf,  
eV  b Δ G0

f, eV  b 

FeO cubic AFM:[111] Exptl.51 -2.88 -2.61 

   ECP -2.99 -2.71 

   All-e -3.05 -2.77 

Fe2O3 α-phase AFM Exptl.51 -8.50 -7.68 

   ECP -8.38 -7.57 

   All-e -8.32 -7.45 

Fe3O4 cubic FiM: 

↑↑ ↓↓↓↓c 

Exptl.51 -11.63 -10.55 

 rhombohedral  ECP -11.48 -10.39 

   All-e -11.48 -10.39 

SrO rock salt  Exptl.51 -6.08  -5.81 

   ECP -6.27 -6.00 

SrO2 tetragonal  Exptl.51 -6.58 -6.03 

   ECP -6.39 -5.85 

SrFeO3 cubic AFM:G ECP/ECP -10.61 -9.79 

  AFM:G All-e/ECP -10.68 -9.87 

SrFeO2.875 tetragonal 

bulk-centered 

FM ECP/ECP -10.72 -9.94 

  FM All-e/ECP -10.89 -10.11 

SrFeO2.75 orthorhombic AFM:C(b) ECP/ECP -10.87 -10.12 

   All-e/ECP -10.89 -10.14 

SrFeO2.5 brownmillerite AFM:G Expt.18 -11.04 -10.36 

(-0.67; -0.4917) 

  AFM:G ECP -11.01 -10.33 (-0.56) 

  AFM:G All-e -10.97 -10.29 (-0.58) 

a The computations with the ECP and all-electron (all-e) basis sets on Fe ion were 

performed. Sr atoms are described with ECP only. b Values for SrFeO2.5 in brackets 

are Gibbs energies of formation with respect to formation of the brownmillerite 

from oxides (SrO and Fe2O3).  
c
  The arrows denote the ferrimagnetic order in 

Fe3O4 with spins of four Fe ions in octahedral sites directed in opposite direction 

with respect to the spins of two Fe ions in tetrahedral sites of spinel lattice.23 

 

 

each O2- ion is replaced by 𝑂2
2−ion, oriented along one of the 

[001] directions; accordingly, the crystal is elongated in this 

direction. As the result, SrO2 has a bulk-centered tetragonal 

lattice structure (Fig. 5b). The results of our crystalline 

structure optimization for Sr oxides are provided in Table 6. 

For SrO obtained lattice constant is in excellent agreement 

with experiment, exceeding it by less than 0.6%. The 

calculated unit cell for SrO2 is more elongated than the 

experimental one. Its height exceeds that of the experimental 

cell by 2.5%, while lattice constants in other direction exceed 

the experimental ones only by less than 0.2%; all that indicates 

a good accuracy of calculations. 

Thermodynamic stability regions 

The energy of a Fe atom in Fe metal and the energy of an O 

atom in an oxygen molecule were calculated in previous 

modelling.22,23 Here we used the results for their energies as 

well as for the energies for iron oxide formation from these 

works. The energy of Sr atom in the metal was calculated using 
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(a) ECP on Fe:  

 (b) All-electron Fe:  
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Eq. (7) and then averaged over values derived from SrO and 

SrO2 oxides. Using these energies, we re-calculated the 

formation energies for Sr oxides with respect to Sr in the 

metal. The obtained energies allow us calculations of the 

energies of formation (Eq. 5) and the standard Gibbs energies 

of formation (Eq. 8,9) for all four SFO phases. The results of 

calculations are summarized in Table 7. Here we do not discuss 

iron oxides, since they were treated earlier.22,23
 

The 3% error occurring in the final Gibbs energies of 

formation for strontium oxides rises due to averaging of Sr 

atom energy in metal phase obtained from two different Sr 

oxides. Comparison of the Gibbs energy of formation for SFO 

phases with experiment is possible only for SrFeO2.5. The 

energies and the standard Gibbs energies of formation from 

elements for this composition are in excellent agreement with 

electrochemical measurements.18 Accuracy of the Gibbs 

energy of formation from oxides is lower. This discrepancy 

(still within 15%) arises due to a less accurate reproduction of 

Gibbs energies of formation for oxides. High-temperature drop 

solution calorimetry experiments17 provides the enthalpy of 

formation from oxides. To convert this to the Gibbs energy of 

formation, we extracted standard entropy for SrFeO2.5 from 

electrochemical experiment18 and used data for oxides from 

thermodynamic tables,49 to calculate standard entropy of 

formation of SrFeO2.5 from the oxides; the latter was combined 

with the enthalpy of formation from measurements17 to 

produce respective experimental estimates for the Gibbs 

energy of formation of the brownmillerite phase from the 

oxides. The calculated energies lie between two mentioned 

experimental estimates for Gibbs energy of formation from 

oxides. 

In the calculations, which used ECP on Fe atoms, the energy 

gain for perovskite formation from elements (per formula unit) 

monotonically increases with decreased oxygen content, i.e. 

from SrFeO3 to SrFeO2.5, suggesting enhanced stability. In all-

electron calculations, SrFeO3 appears still to be the least stable 

and SrFeO2.5 is the most stable composition, while SrFeO2.875 

and   SrFeO2.75 compositions have very close energies. 

The sequence of the formation energies of phases with 

different oxygen content (from SrFeO3 to SrFeO2.875, then to 

SrFeO2.75, and finally to SrFeO2.5) determine their relative 

stabilities.  To illustrate this, we calculated the right-hand side 

of inequalities in the last four rows for each phase in Table 1, 

which describe stability conditions for different phases. (In 

these calculations the standard Gibbs energies of formation 

from Table 7 were used.) A positive ΔµO , corresponding to 

consequent transitions between these phases, immediately 

point to instability  with respect to oxygen gas release. As the 

result the only stable phase is brownmillerite SrFeO2.5 , which 

is the last in the row. The values in the last lines of Table 1, 

have also the meaning of an average energy gain due to 

oxygen release. Taken with opposite sign, this is the energy of 

an oxygen vacancy formation. Correspondingly, the Gibbs 

energies calculated here for vacancies formation are negative 

for all three mentioned phases. At a first glance, such the 

result contradicts to the modelling,19 where the energies of 

single oxygen vacancy formation have been found positive for 

all four SFO phases discussed here. In other words, formation 

of oxygen vacancies in simulations19 cost energy, while in the 

present simulations it leads to an energy gain. This seeming 

contradiction can be reconciled by noticing that in ref. 19 a 

single vacancy is created in large supercells for each of SFO 

phases; therefore, interaction between the vacancies was 

largely avoided. Contrary, in our calculations phase 

transformations are associated with a high concentration of 

closely neighboring vacancies accompanying series of SFO 

transformations. Therefore, their mutual attraction could 

effectively lead to the negative average energies of vacancy 

formation.  

Since the three first phases turned out to be 

thermodynamically unstable and the only stable phase left 

(within present model) is SrFeO2.5, only this phase diagram is 

 (c) Experimental:  

 
Fig. 6  Phase diagrams for SrFeO2.5: (a) based on Fe ECP treatment (b) based on Fe all electron treatment (c) based on experimental energies of formation. The energies of 
formation used to build these diagrams are provided in Tables 1 and 7. The lines, pointed by numbers in circles describe conditions of forming of: (1) FeO, (2) Fe2O3, (3) Fe3O4, (4) 
SrO, (5) SrO2, (6) SrFeO3,  (7) SrFeO2.875, (8) SrFeO2.75, (9) Sr metal. Green area marks SrFeO2.5 stability region. Side panels at (a-c) serve to convert values of oxygen chemical 
potential ∆𝜇𝑂 to easy observable values of T and oxygen partial pressure 𝑝𝑂2

 . This figure as well as all phase diagrams presented in following Figures are prepared using OriginPro 

2015 package.59  
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presented in Fig. 6. Figs. 6a and 6b were constructed for both 

representations of Fe atoms: with ECP and with all-electron 

description. (The phase diagrams for three other phases could 

be found in ESI (Figures S1-S3)). The phase diagram for 

SrFeO2.5 can also be constructed using the experimental data 

on the Gibbs formation energies for iron- and strontium oxides 

from thermodynamic tables49 and for SrFeO2.5 from 

electrochemical measurements,18 while data on other phases 

of SFO are not required due to their instability. Such the 

diagram is plotted in  

Fig. 6c. Side panels in all presented phase diagrams allow one 

to relate the oxygen chemical potential ΔµO to observables: 

oxygen partial pressure and temperature.23 More details on 

how to work with diagrams like the ones presented in Fig. 6 

can be found in our previous paper.23 

Because we restricted our SFO consideration to the phases 

with equal number of Sr and Fe atoms, the phase diagram 

does not contain any Sr-rich and Fe-reach materials. Within 

the employed approximation, no defects in crystals are 

allowed. The stability region of SrFeO2.5 (marked in green in 

Fig. 6) is limited on above by condition ∆𝜇𝑂 < 0, violation of 

which means release of oxygen gas.  

Fig.6 allows us also to draw some conclusions on stabilities of 

SFO in the case of different Sr/Fe ratios. For instance, if Fe 

atoms are in slight excess, then SrFeO2.5 should co-exist iron-

rich double oxides (e.g. SrFe12O19, SrFe2O4, Sr4Fe6О13). 

However, due to neglect of these phases in our modelling, the 

phase diagram suggests co-existence of SrFeO2.5 only with iron 

oxides. With decreasing the oxygen chemical potential ∆𝜇𝑂  the 

excessive iron ions will be reduced and Fe2O3 oxide will be 

replaced, first for Fe3O4, and then FeO. With further decrease 

of ∆𝜇𝑂  excessive irons will be completely reduced to metallic 

phase, which still for while co-exists with SrFeO2.5. And finally, 

iron from SrFeO2.5 itself will also be reduced to a metal, leaving 

behind only SrO and Fe and released oxygen gas. Instead, in 

the phase diagram based on experimental energies of 

formation, the step of FeO formation is skipped and Fe3O4 is 

directly reduced to a metallic iron.  

Similarly, for slight Sr-excess, SrFeO2.5 should co-exist with 

strontium-rich double oxides (e.g. Sr3Fe2O6, Sr2FeO4, Sr3Fe2O7), 

but   due   to  their  neglect  in  the  present  model   our  phase  

(a) 

(b)  

(c)  

Fig. 7. Regions of SrFeO2.5 stability (green) vs temperature and oxygen pressure 
on the maps of oxygen chemical potential ∆𝜇𝑂 defined by Eq.(3). (a) The stability 
region for calculations with ECP at Fe ions; (b) The stability region for the Fe all-
electron basis set; (c) The same with the experimental energies of formation. In 
this figure the short-dashed lines correspond to conditions, where an iron oxide 
(FeO in calculated diagram and Fe3O4 in the experimental one) coexists with 
metallic iron. These lines are very close to contour line at ∆𝜇𝑂 = 3 𝑒𝑉. The 
dashed lines correspond to coexisting Fe2O3 and Fe3O4. The dot-dash line 
represents conditions, where Fe3O4 coexists with FeO. The dot lines marks 
conditions, where SrO and SrO2 coexist. At plot (c) based on experimental data 
the later line coincides with contour line at ∆𝜇𝑂 = 0.5 𝑒𝑉 . Corresponding 
reduction or oxidation occurs, when conditions cross these lines.  

 

Table 8 Chemical potentials O atoms ( ∆𝜇𝑂 ,eV) corresponding to crossings of 

precipitation lines and significant for the present analysis 

Crossings between 
precipitation lines 

∆𝜇𝑂, 𝑒𝑉 

Exptl. All-e at Fe ECP at Fe 

Fe2O3 Fe3O4 
-2.22 -1.82 -2.18 

Fe3O4 FeO 
 -2.34 -2.52 

Fe3O4 Fe(∆𝜇𝐹𝑒 = 0 𝑒𝑉) 
-2.91   

FeO Fe(∆𝜇𝐹𝑒 = 0 𝑒𝑉) 
 -3.05 -2.99 

SrO2 SrO -0.50 -0.12 -0.12 
SrO Fe(∆𝜇𝐹𝑒 = 0 𝑒𝑉) -3.31 -3.14 -3.16 
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diagrams suggest formation of strontium oxides co-existing 

with SrFeO2.5. Under O-rich conditions (high oxygen chemical 

potential ∆𝜇𝑂), the excess Sr is present in SrO2 form, which 

transforms into SrO while ∆𝜇𝑂  becomes smaller. Lastly, at the 

O-poor side of diagram (a very low oxygen chemical potential 

∆𝜇𝑂) SrFeO2.5 fully decomposes to SrO, Fe metal and O2 gas. 

Table 8 summarizes the oxygen chemical potentials  (∆𝜇𝑂) 

where transformation of Fe- and Sr oxides and decomposition 

of SrFeO2.5 take place. These data allow us to draw the region 

of stability for SrFeO2.5 at a contour map of the oxygen 

chemical potential ∆𝜇𝑂  as a function of the observable 

environmental parameters:  temperature T and oxygen partial 
pressure 𝑝𝑂2

. The information on the boundaries of the 

stability region, in terms of directly measurable physical 
parameters (T, 𝑝𝑂2

) is seen in the phase diagram in Fig. 6. 

However, it is more convenient to redraw the stability map 

(for SrFeO2.5 here) by presenting the oxygen chemical potential 

as an explicit function of two independent environmental 
conditions (T, 𝑝𝑂2

). Such maps – theoretical (for both Fe atom 

basis sets) and derived from experimental data – are shown in 

Fig. 7. Each contour line in Fig. 7 corresponds to a constant 

value of ∆𝜇𝑂  , in an interval between 0 eV and –8 eV, with the 

increment of -0.5 eV. The lower boundary of the stability 

region for SrFeO2.5 is defined by the oxygen chemical potential, 

where the material decomposes. The upper boundary of the 

SrFeO2.5 stability is the line for ∆𝜇𝑂 = 0 eV, where release of 

O2 gas begins. Additional lines are drawn at ∆𝜇𝑜, values where 

Fe or Sr atom oxidation states change according to Table 8.  

4. Conclusions 

The atomic structures of nonstoichiometric SrFeO3-δ (δ=0, 

0.125, 0.25, 0.5) and strontium oxides (SrO, SrO2), which are 

among possible simple products of SrFeO3-δ decomposition, 

were optimized, and the total energies for these structures 

were calculated using the B3PW hybrid density functional. The 

obtained energies of different phases were compared. The 

calculated atomic structures for different phases of SrFeO3-δ 

and Sr oxides are in good agreement with experiments. The 

ground states for SrFeO3 and SrFeO2.875 were found to be 

metallic and having FM spin ordering, in agreement with the 

experiment.9 In contrast, the ground states of SrFeO2.75 and 

SrFeO2.5 are insulating. Spins in the ground state of SrFeO2.5 

are arranged according AFM:G  ordering, also in agreement 

with experiment.9 

The present calculations yield the Gibbs energies of 

formation for a series of SrFeO3-δ (δ=0, 0.125, 0.25, 0.5) and 

strontium oxides (SrO, SrO2). These energies were used to 

construct the phase diagrams and stability regions for all four 

considered SFO compositions. Only SrFeO2.5 composition is 

predicted to be stable. An analogous diagram for SrFeO2.5 was 

constructed using the experimental Gibbs energies of 

formation. These diagrams allow us to understand possible 

chemical transformations in the system, whenever the system 

contains equal numbers of Sr and Fe atoms or there is an 

excess of one of these metals. (The results of calculations for 

iron oxides (FeO, Fe3O4, and Fe2O3) were discussed in refs. 22, 

23.) 

Our hybrid B3PW calculations with optimized  basis sets 

give SrFeO2.5 energy of formation from binary oxides which is 

underestimated with respect to electrochemical 

measurements,18 while it is larger, than the value derived from 

drop solution calorimetry.17 At the same time, the standard 

Gibbs energy of formation from elements almost coincide with 

that from the experiments.18 The larger error in Gibbs energy 

of formation of SrFeO2.5 from oxides is related to inconsistency 

of the energy for atoms of Sr and Fe metals, when determined 

from different oxides. 

The oxygen chemical potential range, in which SrFeO2.5 is 

stable and co-exists with various oxides or metallic iron, were 

determined from the phase diagrams and drawn as contour 

maps. This allowed us to compare theoretical prediction of 

SrFeO2.5 stability regions with the same regions obtained from 

the experimental data in terms of temperature and oxygen 

partial pressure, which can be directly obtained from 

measurements. Such contour maps are also much more 

convenient to use in experimental and industrial settings 

because they are drawn in terms of immediately accessible 

measurement results. 

Comparison of the Gibbs energies of formation for different 

nonstoichiometric phases of SrFeO3-δ indicates an increase in 

stability of phases with growing number of oxygen vacancies. 

The precipitation lines for these phases with non-

stoichiometries δ=0, 0.125, 0.25 are located at positive oxygen 

chemical potentials. All these facts together with positive 

energies of formation of an additional single oxygen vacancy in 

SrFeO3-δ, obtained in earlier DFT+U simulations19 suggest 

strong mutual attraction between the vacancies and 

spontaneous formation on vacancy clusters during a series of 

SrFeO3 - SrFeO2.875 - SrFeO2.75 - SrFeO2.5 transformations. The 

latter conclusion still requires direct confirmation by 

respective modelling and will strongly influence mechanisms 

of formation of different phases in SFO.  
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