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Anotacija

Saja darba tiek piedavata noslégta aksialsimetrisku matematisku modelu sistéma sta-
cionarai peldosas zonas (FZ) kristala augsanai, kas piemerota peldoso zonu apréekinam
liela diametra (piem., 8 collu) kristaliem. Fazu robezu aprekinu sérija 8 collu peldosajai
zonai vispirms tiek veikta, neieverojot kausejuma plusmu taja, tad 8, 4 un 2 collu peldo-
Sajam zonam aprekini tiek veikti, nemot vera art kausejuma plusmu. Tiek noskaidrots,
ka aprekini, kuros nav nemta vera kausejuma kustiba, dod tikai fazu robezu pirmo
tuvinajumu, kurpretim konvektivas siltuma parneses ieverosana noved pie loti labas
aprekinu rezultatu atbilstibas eksperimentaliem datiem. Tiek analizeta ar1 kausejuma
plusmas tiesa ietekme uz kauseéjuma brivas virsmas formu. Darba otra dala veltita
induktora novirzes no aksialas simetrijas ietekmei uz kausejuma 3D kustibu peldosaja
zona un uz ipatnéjas pretestibas sadalijumu izaudzetaja kristala. Rotacijas joslu (anglu
val.: rotational striations) paradisanas FZ kristalos tiek petita skaitliski, un aprekini

tiek salidzinati ar eksperimenta rezultatiem.
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Abstract

A closed system of axisymmetric mathematical models for steady-state FZ crystal
growth is proposed as applicable for calculation of floating zones with large crystal
diameters, e.g., 8 inch. Parametric studies of the phase boundaries for an 8 inch
floating zone are performed first by neglecting the melt flow, then calculations for 8-,
4- and 2 inch floating zones are performed with account for the melt flow as well. It is
found that the calculations neglecting the melt motion yield only a first approximation
of the phase boundaries, whereas accounting for the convective heat transfer brings a
very good agreement with experiments. The direct influence of the melt flow on the
free melt surface shape is analysed as well. Another part of the work is devoted to the
effect of the three-dimensionality of the inductor on the 3D melt flow in the floating
zone and on the resistivity distribution in the grown crystal. The phenomenon of
rotational striations in FZ crystals is examined numerically and the calculation results

are compared to experiment.
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1 Introduction

Hyper-pure single-crystalline silicon wafers are the usual substrate to the semiconduc-
tor devices and integrated circuit (IC) chips for the state-of-the-art micro-electronics
industry. Single crystal silicon is used instead of poly-crystalline silicon since the for-
mer does not have defects associated with grain boundaries found in polysilicon and
limiting the lifetimes of minority carriers. The silicon substrates must also have a
high degree of chemical purity and a high degree of crystalline perfection. The silicon
wafers presenting thin discs of small thickness (e.g. 0.70 to 0.75 mm) and relatively
large diameter (e.g. 76 to 300 mm) are obtained by slicing single crystal ingots, which
are grown carefully from molten polysilicon. The silicon wafer market is nowadays
the largest materials market in the semiconductor materials industry and obeys the
extreme dynamics of the semiconductor branch. An illustration can be seen on the
basis of data published by Gartner, Inc. Due to a major slump of semiconductor chip
demand, the worldwide silicon wafer market revenue in year 2001 totaled $ 5.4 billion
in U.S. dollars, a 31% decline from 2000 revenue of $ 7.8 billion. The industry returned
to positive growth in 2002. Wafer demand on surface area basis surged 19% in 2002 to
ca. 4,700 millions of square inches (ca. 30 billions of square centimeters) and produced
a total revenue of $5.7 billion, an increase of ca. 5% from 2001. The wafer market
continued to grow with uneven growth rates in the next years, topping the revenue
of the year 2000 first in 2004 and reaching $10.2 billion market volume in 2006, a
24% growth in revenues and 21% rise in area-based demand over 2005, according to
Gartner. In view of this market dynamics, a hard competition takes place and an
extreme flexibility of the participants is essential. The first and most critical step in
the manufacturing of silicon wafers is the growth of single crystal silicon ingots. The
high expenses of the single-crystalline silicon wafer production and the competition
among several main players in the branch have been a strong push for an intensive

research and development in the field of crystal growth over the last decade.

The single crystal silicon ingots are grown either by Czochralski or floating zone pro-

cess. Czochralski (CZ) crystal growth, the idea of which was first invented by Czochral-
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ski already in 1917, involves the crystal pulling from the melt sustained in a crucible
and heated by the infrared radiation of a resistance heater. Since the silica crucibles
used for silicon growth add oxygen to the melt, CZ technique only permits growth
of silicon crystals having relatively low resistivity, which is alright for application in
substrates of IC chips. The floating zone (FZ) crystal growth technique, the basic idea
of which was patented by Theuerer [1] in 1952, is in contrast crucible-free and more
complicated than CZ technique. The principle of FZ growth is shown schematically
in Fig. 1.1. The polysilicon feed rod is pushed continuously from above and melted
by a high-frequency induction coil. The molten silicon makes a liquid bridge between
the feed rod and the single crystal, which is pulled downwards as it grows. The melt
mass on top of the growing crystal is stabilized by the surface tension of the liquid.
The crystal and feed rods are rotated to ensure a better thermal symmetry and melt

mixing. A sketch of a modern FZ puller after [2] is shown in Fig. 1.2.
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Figure 1.1: Schematic picture of the bottom-seeded floating zone process for small
crystal diameters (a) and for large crystal diameters (b). The first one is the classical
FZ process, the last one is the so-called needle-eye process. In the classical process,

there is often a radiative heater instead of the inductor.

Featuring low oxygen content in a crystal, FZ method is suitable for obtaining sin-
gle crystals with high resistivity that is not available by CZ method. Furthermore,
by intentional introduction of electrically active elements (dopants) during the growth
process, the resistivity of FZ silicon can be varied in a very wide range from few m{2-cm
to several thousand €2-cm to cover the most different industry needs. The common

substitutional dopants are boron as p-type dopant and phosphorus as n-type dopant.
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Figure 1.2: Schematic sketch of a modern FZ-Si puller for the growth of large crystals
(after [2]).

The introduction of the dopants is usually carried out by gas doping' through nozzles
built in the coil which direct the gas jet onto the melt surface. The dopants are hence
transported with the fluid through the liquid zone toward the crystallization inter-
face, and consequently the resistivity homogeneity in the crystal is much dependent
on the melt flow pattern. An important issue for the crystal growers is to obtain the
resistivity distribution as homogeneous as possible both in the radial and axial direc-
tion of silicon ingot to meet the increasing quality requirements of the semiconductor
device industry. As an alternative to the doping during the growth process, for a
better resistivity homogeneity, the grown silicon ingot can be doped later through the
neutron transmutation doping process in which silicon isotopes 3°Si are converted in

phosphorous 3!'P leading to an n-type material. Nevertheless, since the neutron trans-

1 As a doping gas, BoHg is used for doping with boron and PHjs, for doping with phosphorus.
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mutation doping technique is rather expensive and there is no suitable reaction for a
p-type dopant available, the early dopant incorporation during the growth process is

the usual approach.

FZ wafers are used primarily for applications in which very high resistivity or superior
purity (particularly the absence of oxygen) are necessary for good device performance.
Such applications include discrete power, MOS power, high efficiency solar cells and
RF /wireless communication chips. FZ wafers make approximately 5% of the total
silicon wafer market, the other 95% are CZ wafers [2]. Provided that there is success
in producing FZ silicon significantly cheeper, the FZ share has a strong potential to

grow, e.g., due to the solar application segment [3].

Beside the crystal purity and resistivity homogeneity, the crystalline quality is of ut-
most importance for the device industry. So crystals with dislocations do not satisfy
the modern technological needs. Fortunately by the seed necking technique invented
by Dash [4, 5, 6], it is possible to grow fully dislocation-free crystals, which are now
standard in the silicon semiconductor industry. The Dash technique, however, only
ensures that the crystal is free of dislocations at the initial stage of the growth pro-
cess. The appearance of dislocations during the whole process must be avoided by the
crystal grower self. It is believed (see e.g. [7]) that a certain kind of disturbance at the
growth interface is enough to release the dislocation production by the high thermal
stress in the crystal. The disturbance can be a strong local change of temperature and
crystallization rate or small external particle reaching the growth interface. In many
cases the degree of probability of occurrence of such perturbations can be substantially

influenced by altering the puller configuration or growth parameters.

The crystalline quality of the single crystals is determined also by the intrinsic point
defects, i.e., vacancies and Si interstitial atoms, which are incorporated during the
growth process. While single point defects are normally not critical to the semicon-
ductor device performance, their aggregation to large clusters during the cool-down
phase of the crystal can lead to significant deterioration of the material. So the so-
called A-swirls or L-pit defects are related to self-interstitial aggregates and result in
damage to devices owing to their large size of several pm. The voids or vacancy aggre-
gates, named also crystal originated particles (COP), have a smaller size of ca. 150 nm
but make also effect on device functionality. It is well established that the pull rate
V' and the local axial temperature gradient G at the growth interface of the growing

crystal have a dominant influence on the defect types that develop in the crystal and



their spatial as well as their density /size distribution. If V/G exceeds a critical value,
vacancy aggregates develop, and if V/G is less than the critical value, self-interstitial
related defects are built (it was noticed first by Voronkov in 1982 [8]). The change
of the local value of V/G(r) along the crystal radius determine the concentric defect
regions in the grown crystal. A region free of significant defect agglomerates is found
where V/G is close to the critical value. The radial extension of the defect-free ring is,
however, determined by how homogeneous the radial distribution of V/G is. An ap-
propriate control of the pull rate and the thermal field in the crystal helps to increase
the area of the defect-free region and even to extend the region along the whole crystal
radius. The latter is a necessary condition to be met for the growth of the so-called
perfect or ultimate silicon, which is produced by the Czochralski method. With regard
to the FZ crystals, the aggregation of single point defects is fortunately suppressed by
the nitrogen, which is introduced in the atmosphere to avoid the arcing between the
electrodes of the inductor. Hence the FZ crystals grown in presence of nitrogen are
free of COP’s and L-pits but contain nitrogen atoms, which are usually of no relevance

for device production.

Another important issue is the size of the wafers. The semiconductor industry is
currently experiencing a changeover from 150 mm to 200 mm diameter for FZ crystals
and from 200 mm to 300 mm diameter for CZ crystals. Many semiconductor devices,
or chips, are made from the same wafer, and all chips from a particular wafer are
manufactured and processed simultaneously at each stage in the device manufacturing
process. Because of this, larger-sized wafers allow for a greater throughput from the
same semiconductor manufacturing process and allow semiconductor manufacturers
to spread their fixed costs of production over a larger volume of finished products.
Meanwhile the growing demand for larger and larger chips for the integration of higher-
density semiconductor circuits tends to reduce the number of chips that can be made

from one wafer. Hence the large-diameter crystal growth gets increasingly important.

Whereas the 8 inch (200 mm) FZ wafer has appeared not so long ago as a new market
product, the 6 inch (150 mm), 5 inch (125 mm) and 4 inch (100 mm) FZ wafers keep
significant industrial importance. FZ crystals of that large diameters are grown by
the so-called needle-eye technique [9, 10], which differs from the classical FZ technique
used for the growth of thin crystals up to ca. 15 mm in diameter. The problem with
the classical inductor (see Fig. 1.1a) is the inability to maintain the liquid bridge
between the polysilicon feed rod and the growing crystal if the diameter gets large.

The needle-eye inductor (see Fig. 1.1b) is therefore a pancake-shaped one-turn coil



6 CHAPTER 1. INTRODUCTION

with a central hole (the needle eye) smaller than the feed rod and crystal, in order to

allow the melting of the feed rod in its full thickness.

With regard to the diameter increase, the FZ technology meets several challenges due
to the high complexity of FZ process. One of them is that the induction coil must
be designed to melt off uniformly the polysilicon rod and, simultaneously, supply the
right distribution of heat to the melt in a way that ensures a round shaped and dislo-
cation free growth of the crystal despite the thermal stresses augmented with its size.
Meanwhile the radial resistivity distribution must stay homogeneous enough, which
fortunately is a minor problem for 8 inch crystal growth in contrast to 4 inch case,
due to a better melt mixing in a larger melt volume. To mention the other difficulties
of the FZ technology at large crystal diameter, the necessary voltage between the two
electrodes of the inductor reaches a level where arcing can hardly be avoided. Further-
more, the polysilicon rod must meet certain specifications, e.g., a smooth surface and

the absence of cracks, which are increasingly difficult to achieve with a larger diameter.

Due to the importance of the large-diameter crystal growth and, on the other hand, the
challenges associated with it, the research and development and hence also the numer-
ical modelling of the crystal growth processes gets increasingly relevant. The present
work focuses on the numerical modelling (in frame of the mechanics of continuous

media) of the needle-eye floating zone growth of silicon crystals of large diameter.

The work consists of the following parts. A short historical overview on the evolution of
the floating zone method with references to the relevant patents and other publications
as well as a survey of literature sources considering the modelling of the floating zone
process is given in Chapter 2, at the end of which also the objectives of the present work
can be found. The important physical features of a floating zone process with selected
derivations and equations used in the following parts are provided in Chapter 3. The
main part of the work is described in Chapters 4 and 5, which deal with axisymmetric
modelling of phase boundaries in FZ process. This is accomplished by analysis of
some three-dimensional effects in Chapter 6. Summary and conclusions are provided
in Chapter 7.



2 Historical and literature survey

2.1 Short history of the floating zone method

With the beginning of the transistor technology era in 1947/1948, there emerged a need
for semiconductor materials such as germanium or silicon with impurity concentration

3 or even less, which seemed unrealistic in those years. The first

as small as 104 cm™
solution was proposed in 1952 by US-American engineer William G. Pfann working at
Bell Laboratories and inventing the zone refining process for purifying germanium [11].
The multiple-pass purification process took advantage of the concentration change
by segregation for most impurities during the liquid—solid transition: the melt will
sustain a higher level of impurity concentration than the crystal itself. Pfann was
apparently unaware that a single pass purification technique had been proposed in a
paper published in 1928 by Russian physicist Peter Kapitza working for Rutherford
at Manchester University. The Pfann process involved localized melting by induction,
or other, heating the germanium ingot supported in a graphite boat inside a tube. By
moving the heater along the tube the molten zone passes down the ingot melting the
impure solid at its forward edge and leaving a wake of purer material solidified behind
it. In this way the impurities concentrate in the melt, and with each pass are moved

to one end of the ingot. After multiple passes the impure end of the ingot is cut off.

Unfortunately, while Pfann’s method worked well for refining germanium with a melt-
ing point of 937°C, it did not work for silicon whose melting point is 1414°C because
no suitable boat material could be found to withstand the high temperatures without
contaminating the melt. The problem was solved in 1953 by Bell Laboratories metal-
lurgist Henry C. Theuerer with the development of the floating zone method [1]. He
was able to create a molten zone in silicon by holding the ingot in a vertical position
and moving it relative to the heating element. In this vertical configuration the surface

tension of the molten silicon was sufficient to keep it from coming apart.

P. H. Keck and M. J. E. Golay (Bell Laboratories, [12]) grew the first silicon crystal
with this new method, still without rotating the crystal. R. Emeis [13] independently
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invented and initiated the development of the floating-zone process at Siemens, Ger-
many. He rotated the growing crystal, thus producing straight cylindrical crystals
with diameters up to 10 mm. The high-frequency induction heating instead of the
radiation heating of the floating zone was introduced by S. Miiller [14] and P. H. Keck
with coworkers [15]. By the end of 1954, the basic techniques for the floating-zone
growth of industrial high purity silicon had been established. Further development
(see the historical survey and description of technical aspects in [16]) was directed
mainly toward automation of the process control, improving the crystalline perfection

(reducing dislocations) as well as increasing the diameter of the grown crystals.

Figure 2.1: The worldwide first dislocation-free 200 mm FZ silicon crystal (courtesy
of Siltronic AG).

In 1956, Wolfgang Keller (Siemens) introduced a slim seed to reduce the dislocation
density. The first fully dislocation-free crystals, both float-zone and Czochralski, were
however grown by William C. Dash from General Electric, USA, during the late fifties.
Dash used a special seeding technique with an extremely thin tapered seed, tip etched
down to 0.25 mm [4, 5, 6]. In 1960, G. Ziegler (Siemens) simplified the seeding by
transforming the Dash’s method to the so-called bottle-neck technique. Ziegler used
an untapered thin seed and made a bottle-neck at the fusion point of seed crystal and
supply rod by means of rapid pulling [17]. This method established in the industrial

scale growth of dislocation-free float-zoned (FZ) silicon crystals.
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Until the end of the 1950s the crystal diameter size did not exceed 20 mm, whereas
during the 60s and beginning of 70s a dramatic increase to 50 mm and 75 mm was
achieved. One of the most important improvements that enabled the growth of large
diameter dislocation-free silicon crystals was the bottom-seeded needle-eye floating-
zone technique (invented first by Keller [9], then also by US-American researchers
[10]) with application of a flat one-turn pancake coil having the inner hole diameter
smaller than the diameter of both, the crystallizing single crystal and the feed rod. In
the last decades a further increase of crystal diameter has taken place: the 100 mm
crystal appears at the end of the 1970s, the 125 mm one in 1986, and the 150 mm one
at the end of the 1980s. The worldwide first dislocation-free 200 mm silicon crystal
was grown at Wacker Siltronic in September 2000 (Fig. 2.1).

Although the silicon crystals of large diameters are always grown by the needle-eye
FZ process and modelling of that is in the focus of the current work, the modelling of
the classical FZ process will be touched in the following literature survey as well, due
to the similarity of both processes and the common issues in modelling them. The
survey is, however, limited according to the content of the work to the macroscopic

(continuous media) theoretical investigations of FZ growth.

2.2 Modelling of floating zone growth

Separate theoretical aspects of the floating zone growth were considered already in
the 1950s. So Heywang [18] analysed the stability of the free melt surface during
F7Z growth. Neglecting the electromagnetic forces, the so-called Heywang limit for
the zone height in case of equal diameters of the grown crystal and feed rod was
found approximately at 2.84\/% where p; stands for the density of liquid silicon, ~
is the surface tension coefficient, and g, the gravity. Later, in the 1970s, more precise
numerical calculations by Coriell and Cordes [19] corrected this result to 2.67 %,
which corresponds to ca. 15 mm for silicon. Heywang had also found an estimation to
the maximum zone length if the crystal and feed rod diameters are strongly different.
His result, (2 + \/5)\/% ~ 3.41\/%, which corresponds to ca. 19-20 mm?, shows

agreement with the maximum zone limit that can be found also numerically in the

asymptotic case when both diameters are large keeping strong difference between them.

L Tt depends on the chosen surface tension of silicon, whose experimentally measured values are

distributed in a wide range, see the references mentioned below Table 3.1.
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With realistic crystal and melting interface diameters, as applicable for the calculation
of typical needle-eye processes, the Heywang limit is, however, a bit too high because
the diameter of the melting interface is not large enough for the asymptotic estimation

to work well.

In the late eighties, Riahi and Walker [20] studied the shape stability of a small floating
zone under the influence of electromagnetic pressure in case of the classical shape

inductor and Lie et al. [21] extended the study to a needle-eye inductor.

Till the mid-1990s, numerous two-dimensional (i.e. axisymmetric) computational stud-
ies including heat conduction with Stefan problem and fluid flow had been made to
investigate the classical optically heated floating zone process (in a mirror furnace) for
oxide crystals of small diameters [22, 23, 24, 25, 26, 27, 28, 29]. So in [24] Lan and Kou
(Taiwan) considered melt convection and calculated the convex interfaces induced by
the Marangoni flow. In [25] they considered also the effect of rotation and compared
with experimental observations. Further in [29], Lan considered the effects of magnetic

fields on dopant transport and investigated multiple steady states.

In the second half of the 1990s, Lan et al. [30, 31] extended their model to three
dimensions, first without melt convection. The 3D heat transfer in a double-ellipsoid
mirror furnace was considered. Later also the 3D melt flow and particularly its stability

was analysed by several authors [32, 33].

In the beginning years of the century, the models developed by Lan et al. for the clas-
sical optically heated FZ process included already the whole coupling of the 3D shape
of phase interfaces with the 3D time-dependent Marangoni-driven melt convection
(34, 35].

Also the group of Benz (Germany) had worked intensively on the modelling of the
classical FZ process. So in [36] Kaiser and Benz use the commercial program package
FIDAP to study numerically the melt flow, temperature- and dopant distribution with
a fixed geometry of the liquid zone and under the influence of different magnetic fields.
The heat sources due to the optical heater were approximated by a parabolic function.
It was shown that the Marangoni convection is in general three-dimensional but can
be reduced to axisymmetric under an axial magnetic field. A more general study of
the influence of different magnetic fields in the classical FZ process has been performed
in the Ph.D. thesis of Kaiser [37]. Rotating magnetic fields have been considered later

by Dold et al. in [38] showing their symmetrizing influence on the 3D flow structure.
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Beside the numerous studies on the magnetic fields as means of altering the fluid flow
in the floating zone, also e.g. the influence of axial vibrations has been investigated

numerically by Lyubimova et al. (Russia), see [39] and references therein.

As seen above, the numerical studies of the classical FZ process usually consider an
optical heater. The classical FZ process for a crystal of diameter 10 mm with a
radio-frequency inductor has been investigated by Munakata and Tanasawa (Japan)
at the end of the nineties. In [40] they use a two-dimensional model to calculate the
time-dependent melt flow numerically and compare it with experimental results. The
influence of an axial magnetic field on the flow is considered and a reduction of the

flow oscillations is detected.

For the modelling of the classical FZ growth of small-diameter crystals several simpli-
fications are typically possible: the zone shape can be assumed cylindrical or quasi-
cylindrical, which makes it easy to use structured finite volume grids, and the heat
sources or the heat flux on the free surface may be approximated by a predefined coor-
dinate function. These simplifications are normally not applicable in case of the more
complex needle-eye process calculations because of the specific shape of the molten
zone, the forming of the open melting front above the inductor, and the strong de-
pendence of the induced heat sources on the shape of the high-frequency inductor and
phase boundaries. The first numerical calculations for the needle-eye configuration
were though made in a simplified way by Miihlbauer et al. (Germany) [41] already in
the 1980s. They calculated the induced current distribution at the free melt surface
and the electromagnetically driven fluid flow in the floating zone with a presumed free

surface shape.

In the 1990s, Lie et al. [42] calculated the melt motion in the floating zone under
strong axial magnetic field. The influence of the inductor slit on the distribution of
the electromagnetic (EM) field has been analysed by Miihlbauer et al. [43, 44] by

means of 3D (i.e. three-dimensional) calculations of the EM field.

In the following publication by the international team of Miihlbauer in 1995 [45] and
in the Ph.D. thesis of Virbulis (Latvia) [46] an axisymmetric model was presented for
calculation of the phase boundaries and global heat transfer with melt convection in
a needle-eye FZ process for growth of large crystals of diameter e.g. 4 inch (ca. 100
mm). Their model considered most of the physical features possible to consider in a
2D model, even including the large open part of the melting front, which is character-

istic to the needle-eye process. Meantime Riemann et al. [47] performed calculations
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of the interface shape and heat transfer by a more limited model, without melt con-
vection and open melting front calculation, and analysed the thermal stress inside the
crystal. Later Mithlbauer, Muiznieks and Virbulis [48, 49] completed their model with
axisymmetric calculation of the time-dependent dopant transport in the melt, derived
the resistivity variation in the grown crystal from the time-dependent dopant distri-
bution, and compared the theoretical results with resistivity measurements performed
by Riemann and Liidge. A good agreement of the calculation model with laboratory
experiment was achieved with regard to the interface shape and the radial resistivity
profile. An overview of the full model is given in [50]. Raming et al. used the above
model to study the influence of different magnetic fields on the resistivity distribution
of FZ-grown crystals [51] (see also the Ph.D. thesis of Raming [7]).

Also Japanese researchers have developed axisymmetric calculation models of the
needle-eye FZ process and compared the results to crystal resistivity measurements.
Togawa et al. [52] calculate the global heat transfer and the liquid zone shape, a time-
dependent melt flow and the dopant transport, and they obtain the radial resistivity
distribution in the crystal. The work of Togawa et al. is complemented with better
radiation heat transfer models by Guo et al. in [53]. The effect of the vertical magnetic
field on the FZ growth process has been investigated by Kimura et al. [54, 55]. Their
calculations, however, have been performed for a very simplified shape of the molten

zone.

The approximation of the radiation heat transfer is an important issue of the modelling
of the phase boundaries in FZ growth of large crystals. Regarding the references
mentioned above, only Guo et al. [53] have considered the view factors associated
with surface of the sample including crystal, melt and feed rod, with the inductor and
with the casing. They also study the importance of the consideration of the specular
property of the crystal and melt surfaces instead of treating all of them as diffuse.
Guo et al. conclude that the specular property is important. It can however be seen
in Fig. 8 of [53] that the corrections made by accounting the specular character of the

free melt surface and crystal are rather small from the practical point of view.

Togawa et al. and Guo et al., as well as Riemann et al. before, do not calculate the shape
of the open melting front and the position of the inner triple point (the melt/feed/gas
trijunction where the wetting of the feed rod by the bulk melt begins) but take it from
experimental observations. Virbulis and Mithlbauer et al. [45, 46] do calculate the open

front, but they meet two problems with it [56]: 1) the calculated position of the open
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front near the feed rim tends to lie lower than that at the middle radius due to the
insufficiency of the semi-empirical model used (see the empirical constant & in [45]);
and 2) the calculation of the position of the inner triple point (ITP) is a bit handwork
because of lack of a reliable automated calculation procedure. Another point is that
the model of the electromagnetic field calculation does not include the influence of the
main inductor slit. They also use the simplest model for the radiation heat transfer,
i.e., the T*-radiation to ambience neglecting view factors, which lowers the precision of
results, particularly in case of large crystal growth where the temperature differences
at the radiating surfaces are higher. Hence the models described in [45, 46] loose their

applicability with larger crystal diameters (like 8 inch).

Excepting the works by Miihlbauer et al. [43, 44|, where the influence of the inductor
slit on the distribution of the EM field has been analysed by means of 3D calculations
of the EM field, the rest of publications before year 1999 that were considering the

needle-eye FZ process treated the system in frame of a 2D model as axisymmetric.

2.3 Objectives and publications of the present work

Motivated by the industrial needs on the one hand (see Chapter 1) and the above-
mentioned limitations of the floating zone modelling on the other hand, the objectives

of the present work have been set as follows:

e Development of a fully closed system of mathematical models for axisymmetric
calculations of steady-state phase boundaries for large floating zones up to 8 inch

diameter and implementing the models into a computation code.

e Investigation of the phase boundaries with the developed computation code and

verification of the results by comparison to experimental data.

e Going beyond the axisymmetric model by studying the influence of the inductor’s
three-dimensionality in order to see the 3D structure of the melt flow and the

resulting rotational striations in the grown crystal.

Significant part of this work has already been published. Here a short outline follows.

To overcome the disadvantages with respect to 8 inch crystal growth modelling inherent

in the phase boundary calculation model by Virbulis and Miihlbauer et al. [45, 46] and
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to proceed with modelling transient processes like cone growth, we developed our own
calculation model as published in [57, 58]. The content of these publications can
be found in a more complete form in Chapters 4 and 5, which contain also recent
unpublished work concerning parametric studies of the phase boundaries for 8 inch
crystal growth and modelling of the melt flow effect on the crystallization interface

shape, as well as the experimental verification of the predicted phase boundaries.

Usually it is enough to consider a steady-state floating zone by assuming that the pro-
cess parameters like pulling rate and crystal diameter stay approximately unchanged.
For modelling inherently transient stages of the growth process like cone growth, addi-
tional enhancement of the above model has been done in collaboration with Rudevics
et al., see publications [59, 60, 61]. These model developments, however, stay outside

the scope of the present work, which is fully devoted to the steady-state floating zone.

In [62] we presented for the first time a coupled 3D model for the melt flow-, temperature-
and dopant concentration fields in the floating zone under influence of a 3D EM field
created by a pancake-shaped one-turn inductor with a slit and current suppliers. The
calculation results demonstrated the generation of the rotational striations in the crys-
tal, assuming the EM field as the single source of asymmetry. The study was extended
in our further publications [63, 64, 65, 66], three of which are included in Chapter 6,
as well as in the project report for the VW-foundation [67]. The results of the work

are reviewed also in the articles [68, 69].
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3 Physical features of FZ-Si process

Here we consider the main characteristic features of large floating zone silicon growth
processes: the physical properties of silicon, the distribution of the magnetic field, the
forces acting in the melt, the melt flow and the free surface of the melt. The aim
is to put down the background assumptions and equations that are common for the
two-dimensional and three-dimensional models in Chapters 4 and 6. The more specific
parts of the models are not considered here but postponed instead to the respective

sections where the models are developed.

At the end of this chapter, a more detailed analysis is devoted to the influence of the
fluid motion on the free surface of the melt, since it seems that this aspect has not

been considered in previous works about FZ modelling.

3.1 Properties of silicon

In the temperature region about the melting point of silicon, not all physical properties
of silicon are known precisely enough. Hence some of the properties assumed for the
floating zone modelling and summarized in Table 3.1 are just a choice between different
values in literature. Not shown in the table is the temperature dependence of the
thermal conductivity and emissivity of solid silicon, which is assumed, after [45, 46],

as follows:
As(T) = A(Tp) - [4.495 — 7.222 - (T/Tp) + 3.728 - (T/Tp)?]

es(Th) - 1.39, if T/Ty < 0.593,
es(To) - [1.96 — 0.96 - (T/Ty)], if T/T, > 0.593,

e(T) =

where the designations correspond to those in Table 3.1.

Some of the silicon properties used in the 3D flow calculations in Chapter 6, which
have been performed earlier, have values differing from the ones listed in Table 3.1.

They can be found together with the calculations in Chapter 6.
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Silicon property Symbol Value
Melting point T 1687 K
Density of liquid ) 2580 kg/m?
Density of solid s 2329 kg/m?
Heat capacity [on 1000 J/(kg-K)
Latent heat of fusion Q 1.8-10° J/kg
Electric conductivity of liquid ol 1.2-10°% S/m
Electric conductivity of solid o 5.0-10* S/m
Thermal conductivity of liquid Al 67 W/(m-K)
Thermal conductivity of solid at Tj As(Th) 22 W/(m-K)
Emissivity of liquid €] 0.27
Emissivity of solid at Tj es(Th) 0.46
Surface tension vy 0.88 N/m
Thermal gradient of dv/0T | —2.5-107* N/(m-K)
Growth angle oo 11 deg
Thermal expansion coefficient of liquid 3 1.0-107* K!
Dynamic viscosity n| 86-107* kg/(ms)

Table 3.1: Physical properties of silicon, after [45, 46, 70, 71, 72, 73].
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3.2 High-frequency EM field

Let us consider the alternating harmonic electromagnetic (EM) field created by the
inductor in a typical FZ growth system. The frequency of the field is f ~ 3 MHz. Since
the typical size of the puller is much smaller than the wavelength of the field (¢/f =~
100 m), the EM field is quasi-stationary and we neglect the displacement currents.
There are no ferromagnetic materials in the FZ growth system under consideration,

le, u=1.

Due to the high frequency, the EM field penetrates only in a thin skin layer of the
silicon sample and inductor itself, the latter being made of copper or silver. The

penetration depth of the field is calculated by (see e.g. [74])

1

where o is the electrical conductivity of silicon or inductor material. Values of ¢ for

the materials usually relevant in case of FZ growth are listed in Table 3.2.

material | o, S/m 0, mm

Si (solid) | 5-10% [45] 1.3

Si (liquid) | 1.2- 109 [45] | 0.27

Cu, Ag 5-10"—6-107 | 0.041— 0.038

Table 3.2: The penetration depth of EM field of frequency 3 MHz in different materials.

Since the penetration depth ¢ is small in comparison to the characteristic length scales
of the floating zone, the equivalent integrated quantities such as the surface density
of electric current, Joulean heat flux density on silicon surfaces and surface density of
EM force are used instead of the volume current density, volume power density and

volume force density, respectively.

In order to write the relations between these quantities, we introduce local orthogonal
coordinates (&1, &, &) with & and & along the surface of the conductor and &; directed
into the material and normal to the surface. Due to the distinct skin-effect, we can
assume that the magnetic field B and the current volume density j in the skin layer

are parallel to the surface, i.e.

B = elBl + eng, B3 = 0, (32)
J= e+ e, J3 =0, (3.3)
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where e; and e, are unity vectors in the directions & and &, respectively.

The change of the electromagnetic field in the normal direction &3 is much steeper as
in the directions & and &. Under these circumstances, the solution of the Maxwell’s
equations (see [74]) and the material relation between the electric field intensity and

volume current density (the Ohm’s law?!),
j=0oE, (3.4)

yield
j=17J% exp(—&3/0) - cos(wt — &3/0 + w/4), (3.5)

where j* designates the amplitude of j at the surface, and w = 27 f. The reference

point of time ¢ is chosen in order to reduce the expressions following below.

The surface current density is defined by

i— [ i (3.6)
0
and with account of (3.5) we have
i=1i"-cos(wt), (3.7)
where i, the amplitude of i, is related to j* by

o =jo 2 (3.8)

The corresponding effective value of the time-dependent surface current, i, is defined
as follows (line above variable stands for averaging in time):

Z‘(l

i =12  or o = —= . (3.9)

V2

From the current density distribution (3.5) and the Maxwell’s equation for the quasi-

stationary EM field, neglecting the displacement currents,

foj = rotB, (3.10)

L At that high frequencies, the second part in the Ohm’s law j = o(E + u x B), i.e., the cross-
product of fluid velocity and magnetic field, is much smaller than the electric field E that is induced
by the change of B. Indeed, one can show that «- B < E will be true if u/L < f, where L is the
characteristic length (radius). In our case, f ~ 3-10°% Hz, v ~ 0.1 m/s, L ~ 0.1 m, and the above

inequality is satisfied.
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with account of (3.2), (3.3) and (3.8), we get the distribution of the magnetic field in
the skin layer:

B =B® - exp(—¢&;/9) - cos(wt — &5/9), (3.11)
B¢ = Mo - €3 X ia, (312)
Bef = /*LOZ-ef : eXp<_€3/5>7 (313)

where B is the amplitude of B at the surface and the effective value B, is defined
like that of i, cf. (3.9).

Comparing (3.7) and (3.11) we see that there is no phase shift between the surface
current i and the magnetic field near the surface of the conductor, B|g,—. Since the
EM field is quasi-stationary (i.e., no wave process has to be taken into account), the
B-field has a constant phase in the whole atmosphere between the inductor and the
silicon body. The above conclusion about the phases of B¢, and i holds for silicon
surface as well as for the surface of the inductor. As a consequence, we have no phase
shift other than 0° or 180° between the surface currents on inductor and silicon parts?.
That brings a simplification for the calculation procedures both in 3D and 2D models:
the surface currents may be treated as real vectors and the mathematical formalism
in complex numbers, which is often used in harmonic EM field analysis, becomes
redundant (as stated in [75]).

The above thesis about no phase shift between the surface currents and magnetic field
is based on the used high-frequency approximation: it works if the skin layer depth is
sufficiently small and the magnetic field has no normal component to the conducting
surface, see (3.2). The applicability of this approximation for the FZ system with field
frequency about 3 MHz has been tested and found appropriate in [46].

3.3 Joulean power and EM force in HF approximation

In the high-frequency approximation, the induction heating effect can be described by
the Joulean heat flux density at the conducting surface, ¢®™, called also the surface

power density, which can be expressed via surface current i by using expressions (3.5),

2 If the system is close to axisymmetric, the surface currents on inductor are oriented opposite to
the surface currents on the other parts. That is why one speaks about a phase shift of 180°, although

there is no principal difference to the phase shift of 0°.
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(3.8) and (3.9):

o 9 - 2
EM J Lof
= 2dés = ) 3.14
q /0 o §s 5o ( )
This formula is only valid if the thickness of the conducting body is large compared to

the EM field penetration depth ¢, otherwise the high-frequency approximation would
not be applicable.

The melt flow in the floating zone is strongly influenced by the EM force. From the

expression for the force volume density f,

f=jxB, (3.15)
and from the Maxwell’s equation (3.10) it follows that
1 1
f = —— grad(B*) + —(BV)B. 3.16
s mrad(BY) 4 - (BY) (3.16)

In the high-frequency approximation, from the equations (3.2), (3.3) and (3.10) we
also have 0By/0&; = 0By /0&,, and consequently

1 0B? 0B? 1
BV)B=-(e;— —— | = = grad, ,(B?).
BV)B =3 (e + e ) = Jaad,(B)
With respect to the fluid flow in the melt and the shape of the free melt surface, the

time-averaged value of the force (3.16) is relevant:
2

- B B?
f = —grad —efl + grad [—Ef] . 3.17
g {2% grady o 210 ( )

It can be seen that the first part of the expression (3.17) is a potential force and we
denote it by f, = — grad p™. The second part is a tangential force having no normal
component, we denote this part by f,. Both the expression denoted by p*™ and f.
decay to zero with £5 — oco. It can be shown that the splitting up of the total force in

two parts having the above properties,
f=f +f =—gradp™ +f,, (3.18)

is unique®, and that the potential part f, has no direct influence on the solution of the

3 Let us assume that f = —grad(p; + p2) + f, and that there is another way of splitting up,

namely f = — grad p; + (f, — grad ps), such that the normal component of (f, — grad p,) is zero. The
latter means that dps/0&3 = 0, i.e., po depends only on the tangential coordinates. According to the
condition that the EM pressure in both expressions of f decays to zero deep in the conducting body,
we have (p1 + p2)|e;—o00 = 0 and pi]e;—00 = 0. Consequently pa|e, 0o = 0 must be fulfilled for all
tangential coordinates. Recalling the previous constraint on ps, we have p, = 0. Hence both ways of

splitting up of f are identical.
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Navier-Stokes equations? and hence is only responsible for the equilibrium shape of
the free surface of the liquid, whereas the tangential part f, influences solely the fluid
motion. The influence on the shape of the free surface by the fluid motion itself must

not be considered at this point and is postponed to Section 3.5.

The above splitting up of f defines a unique coordinate function p™ that decays to
zero at &3 — 0o. We call it the electromagnetic pressure and have the expression

2
EM _ Bef

D .
2410

We will not consider the values of the electromagnetic pressure inside the skin layer,
hence we keep the designation p™ for the electromagnetic pressure at the free surface
of the liquid. With account of (3.13) we have on the surface {3 = 0:

;2
pEM = Mo;ef ' (3.19)

For the tangential part f. we have with account of (3.13):

f = % grad, 5 (i) - exp(—2€3/6). (3.20)

The tangential force volume density f, is integrated over the skin layer to get the force

surface density, called also the tangential shear stress:

o0 1 :
FEM = / fd&s = ZM05 : gradlg(ch). (3.21)
0

3.4 Melt flow in the floating zone

In the high-frequency approximation, there are no volume forces except the gravity
acting in the bulk of melt. We consider the silicon melt flow as an incompressible
Newtonian fluid flow described by the Navier-Stokes equation (see e.g. [76]):

0
pi {a—? + (uV)u} =-Vp+nAu+ g, (3.22)

where u and p are the velocity- and pressure fields, respectively, g is the gravity, 7,

the dynamic viscosity, which is assumed constant, and p, is the melt density (the

4 Writing the modified pressure p’ = p + pPM instead of the fluid pressure p in the Navier-Stokes
equations of an incompressible fluid flow allows to account for the potential force f, = —Vp*M without

changing the velocity field of the fluid.
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subscript 1 stands for liquid). The assumption of incompressibility means that the
density change due to the changes in pressure may be neglected. The temperature
dependence of the density, however, has to be taken into account at least for the
gravity term, in order to allow for the buoyancy effect. In the other terms of the
equation, the density variation may be neglected (the Boussinesq approximation, see
e.g. [77]). The temperature dependence of density is expressed using the coefficient of

volume expansion, = —(1/p)(0p1/9T),, as follows:
pr=px[1=B(T-Tp)],

where T is the temperature and p, is the density of liquid at the melting point 7j. It

is, of course, assumed that (|7 — Ty| < 1 overall in the liquid volume.

Consequently, the original equation (3.22) transforms to:

0
ol [a—ltl + (UV)U} =-Vp+pg+nAu—p (T -1T,)g.

Since p; g is a potential force, it is balanced exactly by a pressure equal to
P15 = prgz + const = —p; gz + const, (3.23)

i.e., the hydrostatic pressure of fluid in rest and equilibrium (u = 0, 7" = Tp). In
the above expression g = |g.| and the constant depends on the reference point of the

coordinate z being measured vertically upwards.
The rest of the absolute pressure p can be named the hydrodynamic pressure,

PP =p—p", (3.24)
and is the only part of pressure left in the above Navier-Stokes equation after elimi-
nation of the hydrostatic part: —Vp + p g = —V(p — p'®) = —VpHP.

The system of equations for the fluid flow in the floating zone consists of the con-
tinuity equation, the Navier-Stokes equation transformed as shown before, and the

temperature equation neglecting viscous dissipation [77]:

Vu = 0, (3.25)
1
du +uViu = —— Vp'P + 7 Au - B(T —To)g, (3.26)
ot P Pl
oT A
il T = —— AT .2
5 + (uV) Pyt (3.27)

where ) is the thermal conductivity and ¢,, the specific heat of the liquid.
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Buoyancy force

Figure 3.1: Schematic sketch of the action of forces in the floating zone.

As boundary condition for the temperature on the melting and crystallization inter-
faces, the melting point temperature is used. On the free melt surface, both the
radiation heat transfer and the heat flux corresponding to the electromagnetic power
surface density (3.14) have to be accounted. For considering boundary conditions for
the fluid flow in the molten zone, a cylindrical coordinate system (r, ¢, z) with the sym-
metry axis coinciding with the crystal and feed rod rotation axis and the cylindrical

components of the velocity vector u, i.e., u,, u, and u,, are practical.

The boundary conditions for the velocity field consider the rotation of the feed rod

and melting process at the melting interface:
u =0, u,=-Vs, wu,=2mrQp, (3.28)

where Vg is the supply velocity of molten silicon from feed rod and €2, the rotation
rate of feed rod. It is a simplification to assume that Vg is constant over the melting
interface. On the growth interface, the crystallization process and the rotation of the

crystal are considered:
ur =0, w,=—Vor, u,=21rQc, (3.29)

where V¢, is the pull rate of the single crystal and (¢;, its rotation rate.

Due to the small penetration depth of the EM field in the melt, the free surface of the
melt is considered as a boundary with tangential shear stress, or the so-called surface
force F. For the total value of F, both the electromagnetic force (3.21) and Marangoni
force (see Fig. 3.1) are accounted:

)
F = FFM a—; grad, , T, (3.30)
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where 7 is the surface tension of the melt.

The precise flow boundary conditions at the free surface and the equation of the free
surface shape are described later in Section 3.5. Here, let us first consider the di-
mensionless numbers characterizing the flow in the floating zone. For this purpose
we introduce the characteristic length scale L as a half of crystal radius R, and the
characteristic azimuthal velocity U, = 27 L{)c,, and take the characteristic meridional
velocity U,, = 0.01 m/s and the characteristic melt temperature difference © = 30 K
from numerical calculations of 4 to 8 inch floating zones. We also assume the charac-
teristic values of crystal rotation rate 2c, being 5 rpm for 4 inch crystals and 2 rpm

for 8 inch crystals.

The ratio of inertial to viscous forces and the stability of the flow is characterized by
the Reynolds number. Since the flow structure could have certain anisotropy due to
the crystal rotation, it is meaningful to consider two Reynolds numbers: the meridional
Reynolds number Re,, = LU, /v and the azimuthal Reynolds number Re, = LU, /v,
where we use the kinetic viscosity v = n/p. Other important dimensionless numbers
are: the Prandtl number Pr = v/y;, i.e., the ratio of momentum diffusivity (viscosity)
and thermal diffusivity x = Ai/(pic,); the Grashof number Gr = g36 L3 /1%, which ap-
proximates the ratio of the buoyancy to viscous force acting on the liquid; the Rayleigh
number Ra = Gr - Pr, which characterizes whether conduction or free convection dom-
inates the heat transfer; and the Péclet number Pe = Re - Pr relating the rate of

advection of a flow to its rate of thermal diffusion.

The estimated values of the dimensionless numbers are shown in Table 3.3. The
values of Reynolds number show that the transition to turbulence, which could be
expected occurring in Reynolds number region 2000—3000, is not yet achieved even
with the large 8 inch zone. The Rayleigh number, however, is high, which indicates to

a significant presence of buoyancy.

3.5 Free surface of the floating zone

To obtain the boundary conditions at the free surface we use the equation for the jump
in stress across the interface between gas (g) and liquid (1), see e.g. [76], with adding

the contributions (3.19) and (3.30) caused by the high-frequency electromagnetic field
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Characteristic quantity | Units F7Z 47 F7Z 8"
Rey m 0.050 0.100
L = R¢,/2 m 0.025 0.050
U, m/s 0.010 0.010
S} K 30 30
Qcr 1/s 0.083 0.033
U, =2mLQc, m/s 0.013 0.010
v=n/m m?/s | 3.3-1077 | 3.3-1077
X =N/ (pep) m?/s | 2.6-107° | 2.6 -107°
Pr=v/x 1 0.013 0.013
Re,, = LU, /v 1 750 1500
Re, = LU, /v 1 980 1500
Gr = gpOL3/v? 1 4.1-10%| 3.3-107
Ra = gBOL?/(vy) 1 | 53-10°| 4.2-10°
Pe = LU,./x 1 9.6 19

(rounded to two significant digits) for the melt flow in FZ processes.

25

Table 3.3: The characteristic parameters and estimation of the dimensionless numbers
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Figure 3.2: Sketch of the local orthogonal coordinates (7, ¢,n) at the free surface of

the floating zone. I'TP is the inner triple point and ETP, the exterior triple point.

and Marangoni forces:

Z opn, — Z oy,n, =vKn, + p™'n, — F, (3.31)
7 J
where the normal vector n points from liquid into gas and K is the curvature of the
interface, being reckoned here as positive when the corresponding center of curvature
lies in the liquid region. Since we do not intend to calculate the flow of gas, the stress
everywhere in the gas may be approximated (see [76]) by 0% = —p®d,,, where p® is a
constant gas pressure. The stress in the incompressible Newtonian liquid, however,
is considered explicitly: o, = —(p" + p"'P)d,, + 2ne,), where p'® and p"'P are the
hydrostatic pressure (3.23) and hydrodynamic pressure (3.24), respectively, and e, is
the rate-of-strain tensor. Consequently, substituting the stresses into (3.31) yields the

following boundary condition for the rate of strain of liquid at the free surface:

2> eyn, = (po— pgz — K — p™ + p"°) n, + F, (3.32)
J

where p, is containing constant contributions from p™ and p® and might be named

the gauge pressure.

Let us assume now that the liquid zone has an axisymmetric shape. We obtain the
local orthogonal coordinate system (7, ¢, n) in each point of the free surface (7 standing
for the tangential direction and n, for the normal direction locally at the surface, see
Fig. 3.2) by rotation of the local cylindrical coordinates (7, ¢, z) about the azimuthal

direction ¢, which plays now the role of the other tangential direction beside 7.

With the local coordinate system introduced, the sum on the left side of equation

(3.32) is interpreted as e,,, where ¢ stands for 7, ¢ or n. The respective expressions of
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the rate-of-strain tensor’s components are:

1 (0u, , Ou,
@n—*§<5:+an)
. 1(182@ r@(uw/r)>
o 2 \r 0y on

~ Ouy,
“n = o

The expressions of e, and e, can be simplified by taking into account that for a
static free surface
u, =0, (3.33)

which implies that also the gradient of u,, along the free surface vanishes. Consequently,

(3.32) yields the following free surface conditions:

ou, F.
- T 3.34
5 p (3.34)
Ou, Uy or F,
T oy (3:35)
EM HD Ouy,
po— pgz — YK —p™ +pP — 25 = =0 (3.36)

The conditions (3.33), (3.34) and (3.35) are the flow boundary conditions at the free
surface of the floating zone. The additional equation (3.36) determines the static shape
of the free surface. The last two terms on the left side of (3.36) describe the influence

of fluid flow on the surface shape.

HD along the free

Let us consider the distribution of the hydrodynamic pressure p
surface under assumption of an axisymmetric fluid flow. The 7-projection of the

Navier-Stokes equation (3.26) with taking into account the continuity (3.25) yields:

Ou, Ou, Ou, ulor _1op™ L I(rw)

Tr 4, L _ e — 4. B(T —T,
ot +Ur or + U on r ot p Ot or on 9-5( o)
where 5 5
U Uy,
WE(VXU%OZan—E

Taking into account u,, = 0 at the free surface and assuming that the time-dependence
of the flow is slow enough, the Navier-Stokes equation simplifies and we have the
expression for the gradient of the hydrodynamic pressure along the free surface,

op'P plufo@ ~pou | no(rw) or

or  r or 2 0r r on +plgﬁ(T_T0)3_n
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the integration of which yields:

T 2 2 T
0 (7) = / plus@ﬁ dr — PUr 4+ / (280%0) + mgB(T — To)gr) dr,  (3.37)
70

n TOOT 2 on on

where 7y is a reference point where u, = 0, so that p"P(r) = 0. Let us choose as

reference point the outmost end-point of the free surface: 79 = mgp.

3.6 Flow influence on the free surface shape

Since it seems that this question has not found place in works on modelling of floating
zone before, let us consider the flow influence on the free surface shape in more detail
and roughly estimate the comparative order of magnitude of the different flow-related

terms in the free surface equation (3.36) with (3.37).

We need for analysis more characteristic quantities than already introduced in Sec-
tion 3.4. From numerical calculations of 4 to 8 inch floating zones we take the char-
acteristic length scale in the vertical direction, L., as a half of the bulk liquid height

Hy,, and the characteristic electric current surface density at the free surface, Ig:

L.=Hy/2 = 0.0085 m,
I, = 8000 A/m.

To avoid underestimation of the w-term in (3.37), let us assume that the characteristic
flow boundary layer thickness L,, at the free surface is significantly smaller than the
length scale L and has the expression: L, = L/+/Re,.,.

We use below the following dimensionless numbers beside the ones from Table 3.3:
e Galilei number, Ga = gL.L?/1?
e Laplace number, La = vL*/(p/%L,),

e and an electromagnetic number, Em = poI2L*/(p?).

The equations (3.36) and (3.37) are made dimensionless by dividing them by pgL.,
which is the characteristic value of the hydrostatic pressure p™. The following list

shows the terms of equations and their respective dimensionless representation (a hat
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Equation term F7Z 47 F7 8"
pgz-term (3.38) 1 1
yK-term (3.39) 0.5 0.5
pM-term (3.40) 0.2 0.2
u2-term (3.41) 2.10%| 11073
u?-term (3.42) 6-1071 6-1071
w-term (3.43) 1-1073 1-1073
T-term (3.44) A-9-107% | A-2-1072
Ou, /On-term (3.45) 6-107° 3-1076

Table 3.4: Estimated dimensionless magnitudes T/(TpgL.) of the terms in the free
surface equations (3.36) and (3.37).

over a term denotes that it is dimensionless):

p™S = const — pigz — P _ 1 P (3.38)
plng
L ( La/G P (3.39)
a— IC — - —La a * & .
b 7 plng P
;2 EM
EM Holef -p 1 ~EM
- - — = —:E . A4
P 9 — plgLZ B m/Ga P (3 0)
T U2 o T —~
mrp  TOT pgL.
2
prus T >
To=—"r = = TaRen/Ge T (B42)
T a T ~A
T, — / norw) g L iR jca Ty (3.43)
TP | on pgL.
T or T, A
T, = T —Ty))=—d = —A-Gr/Ga - 7T 3.44
ouy, ou,  u; Or T =
To=-2 =2 —— = =4Re,,/Ga - T 3.45
0 T on n(c‘)T * 7‘87) L. s/ G o (34)

The factor A in (3.44) is the characteristic value of Or/dn at the free surface and
emphasizes that the term T, can become negligible independently on how large the

Grashof number is, if the free surface is horizontal.

Finally, the resulting dimensionless magnitudes, i.e., the dimensionless coefficients of
kind Y/(TpgL.), are calculated for all the different terms in Table 3.4. It can be seen
that, for the considered 4 inch and 8 inch floating zones, the gravitational, capillary

and electromagnetic terms in the free surface equation are some orders of magnitude
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larger than any of the flow-related correction terms. Hence it is justified, in these
cases, to neglect the flow effect on the shape of the free surface or just to take the

largest of the correction terms.

Comparing the flow correction terms, it should be taken into account that the factor
A in the temperature term is small because of a rather horizontal free surface if the
diameter of the crystal is large enough. One of the largest of the flow correction terms
is hence the ufo—term (3.41), which represents the effect of the centrifugal forces. An
advantage of this flow-related term is that it is possible to account for it even without
calculating the melt flow explicitly. If approximating the fluid rotation in the floating
zone by a solid-body rotation with the rotation rate of the crystal, then u, ~ 2mr Q¢,

and integration yields:

T U2 a
/ pl_wa_r dr ~ 2n%p Q2. r? + const, (3.46)
TETP r T

where the constant equals —27%p; Q2% R%_ and can be eliminated from the final surface

equation by a corresponding redefinition of the gauge pressure py.
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4 Axisymmetric model of phase

boundaries

In this chapter, the models and methods of calculation of FZ phase boundaries as

implemented in own calculation code FZONE are described.

The FZ growth system is assumed to be axisymmetric except the inductor, which
may have radial slits according to the industrial practice (Fig. 4.1). The influence of
the inductor slits is taken into account in an approximate way and an axisymmetric
electromagnetic field is used instead of the real three-dimensional one for the heat

generation and phase boundary calculation.

The placement and shape of the phase interfaces between solid and melt is solved by
a transient approach (see Section 4.1), meanwhile the free melt surface is treated by a
simplified steady-state method without requesting conservation of the melt volume (see
Section 4.4). Beside that, the mathematical models contain some other steady-state
features. Thus it is altogether a partly transient approach and is usable for obtaining

the final stationary growth situation but not the explicit evolution in time.

4.1 Phase interfaces

Starting from an initial phase interface shape, the move rates of each point of the
melting and crystallization interfaces are calculated by requesting fulfilment of the
local heat balance equation at the respective interface:

oT ‘ oT

il R Vel
on |, !

As
on

+ psQ Vi, (4.1)
1

where the temperature field 7" in solid and liquid is known after solving the global heat
transfer (see Section 4.8.1), @ denotes the latent heat of fusion, p, the density, A, the
thermal conductivity, the subscripts s and 1 stand for solid and liquid, respectively,
and V,, is the unknown front’s normal rate of solidification in the reference system of

the solid phase or, equally, the normal projection of the front’s move rate with the
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Figure 4.1: FZ growth system and the inductor with radial slits.

positive directions as shown by the vectors n in Fig. 4.2 (hence, for example, V,, < 0
when melting instead of solidification occurs). The solidification rate V,, is related to
the local front’s normal velocity v, in the laboratory reference system (i.e. the reference

system of the inductor and the furnace around) by the relation:
Vo =Vin, + Un, (42)

where V; denotes the move rate of the solid silicon in the laboratory reference system,
which equals to the move rate of feed, Vg, or crystal, Vi, when considering the melting
or crystallization interface, respectively. The value of v, characterizes how transient
the process is (e.g. in a steady-state case v, = 0) and can be calculated from the

balance equation (4.1):

o
s Ps@ on

A OT
vy, =

=0 B — Vin,. (4.3)

1

The formula (4.3) applies to the melting and crystallization interfaces. For the open
melting front, the velocity expression has to account also the Joulean heat flux ¢"™M

and the radiation heat flux ¢*a4:

)\s oT qrad _ qEM
vy = —| +—
psQ On g psQ

The calculation of the Joulean heat flux ¢™ at the open front requires assumptions

— Vin. (4.4)

about the open front structure. The fluid film model and the expression for ¢" are
derived in Section 4.3. The calculation of the radiation heat flux ¢"*¢ is considered in
Section 4.7.
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Figure 4.2: Sketch of the model for FZ growth.

For solving the phase boundaries numerically, they are divided into linear elements
and the velocities v, are calculated in the nodes according to the formulas (4.3) and
(4.4). All quantities needed for this procedure, including the temperature gradients,
electric currents and radiation heat fluxes, are interpolated to the nodes and the nor-
mal direction n is represented locally by the bisector at the respective node (e.g. see

Fig. 4.6). Chosen a time step At, each node is moved by v, At in the direction n.

4.2 Axisymmetric model of high-frequency EM field

In order to obtain the Joulean heat fluxes on all conducting surfaces and the electro-
magnetic pressure on the free melt surface, the electromagnetic field in the FZ system

has to be calculated.

Due to the inductor shape used in FZ process, a 3D EM calculation would actually be
necessary in order to take the azimuthal average of the Joulean heat source distribution,

for the axisymmetric phase boundary calculation. Since the EM field recalculation
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is repeated several times in each calculation step, it costs too much computational
resources and must be replaced by effective 2D EM field calculations. It is possible to
include the approximate influence of the inductor slits in the axisymmetric EM field
model. The method and its physical background for induction furnaces with regularly
slitted crucible has been described in [78]. In the present work, the methodology from
[78] is adapted to the case of FZ system with a slitted inductor. Additionally, an

approximate account of the main slit of the inductor is included.

The boundary lines in the cross-section of the FZ system that are relevant in the elec-
tromagnetic part of calculation are shown in Fig. 4.3: the silicon surface (SilSurf), the
surface of the inductor part that is not slitted if not counting the main slit (/ndSurf),
the surface of the slitted part of the inductor (IndSlit), and the end-line of the slits
in the middle of inductor (I/ndMidd). The inner plane of the slit is the shaded region
in Fig. 4.3. We can attach a local Cartesian coordinate system (z,y) to this (and any
other) slit plane. Assuming the axial symmetry is not disturbed much by the slits,
the electric current in the high-frequency approximation is going along the surfaces
SilSurf, IndSurf and IndSlit only in the azimuthal direction. We will designate, in
this section, this azimuthal surface current by J. A part of current is flowing also in
the plane of slit and has there some x- and y-component. The slit current will be
designated here by 1= {3,,3,}.

4.2.1 Equations for the non-slitted parts

The EM field is solved in terms of the magnetic vector-potential A, defined by rot A =
B. The field is to be found in the space surrounding the conducting bodies by setting
boundary conditions at the surfaces of the conductors. The vector-potential in the non-
conducting space is governed by the Poisson equation: AA =0 . Only the azimuthal
component of A differs from zero in axisymmetric model, A = A,. Therefore

2
AA(T,Z)—A<T’Z) =0 or 12( 8A) - A+aA:O. (4.5)

— 7"_ — [
r? ror or rz2 022

It follows directly from the definition of the magnetic vector-potential that the field
lines of B are as well the isolines of (r - A), in the axisymmetric case. Using the
assumption about the magnetic field lines going parallel along the conducting surfaces,

it follows for the non-slitted surfaces:

@ =0 at SilSurf (and IndSurf without slit), (4.6)
-
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Figure 4.3: The different boundary lines relevant in the calculation.

where 7 is the local tangential direction along the boundary lines. For IndSurf the
condition (4.6) is valid only when not accounting the main slit of the inductor. The

modification including the main slit’s influence see below.

Since the silicon surface includes points at the symmetry axis and A must have a finite

value everywhere, the boundary condition for vector-potential follows from (4.6):
A=0 at SilSurf. (4.7)

In frame of a model not accounting the main slit’s influence, the equation (4.6) yields
the boundary condition also for the non-slitted part of inductor:

C
A== at IndSurf (without the main slit!) (4.8)
r

4.2.2 Inductor model with m slits

It follows (see [78]) from the Maxwell equations that one can introduce a scalar po-

tential for the slit current J in the slit plane, f (z,y), such that

) 0
_or 4 _or

JZVF or Jx—%, y—a—y.

(4.9)
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At the line IndSlit, the azimuthal current and the normal component of the current in
the slit plane are equal: 1, = J (assuming the normal direction as shown in Fig. 4.3).

On the other hand, J,, = g_fw therefore we obtain:

0
J= 8—2 at IndSlit. (4.10)
Taking into account the properties of the magnetic field B and the definition of the
vector-potential A, the relation between the magnetic fields outside and inside the slit

is yielding the following condition at the IndSlit-line [78]:

d(rA) N mbpo OF
or or Ot

0 at IndSlit, (4.11)

where m — the count of slits, b — the width of each slit, 7 — the tangential coordinate
along the line IndSlit like shown in Fig. 4.3.

From the assumption that the normal component of the high-frequency magnetic field
at the conducting surfaces is zero, it follows:

0
8—’: =0 at IndMidd. (4.12)
Since the current satisfies the condition divl = 0, we obtain with help of (4.9) the
equation for the scalar potential in the slit plane:

or  or

AF (z,y)=0 or 927 + a7 0. (4.13)

This equation should be solved in the slit plane (the shaded area in Fig. 4.3). For a
boundary condition we use (4.12), moreover we may choose zero level for the constant
[ at IndMidd:

F =0 at IndMidd. (4.14)

We have no other boundary conditions for f, but we have the equation (4.11) coupling
at IndSlit together the fields of scalar potential F and vector-potential A. This can
be rewritten in a more convenient form:

At 0 ppr = €0 ot masut, (4.15)
2rr T

where the constant Cyy equals that in (4.8) to ensure fitting together of the conditions
(4.15), (4.8) and (4.14) in the two common endpoints of the boundary lines IndSlit,
IndSurf and IndMidd.
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4.2.3 Approximation for the main slit

There are several different possibilities of introducing the main slit in the mathematical
model above. However, some of them ask for a considerable increasing in the num-
ber of equations for the final numerical problem formulation, which is a disadvantage.
Since any of the axisymmetric models can, in principle, produce only a very approx-
imate image of the main slit’s effect, we have chosen the most rough of the possible

approaches, which asks only one additional equation.

The idea is to replace the constant Cj in the boundary condition (4.8) by a function
C (r) that is changing along IndSurf in order to take in account the vertical flux of
magnetic field going through the outer part (i.e., the part at the right hand side from
IndMidd) of the main slit. The inner part of the main slit was already accounted
together with the small slits, therefore it is out of interest at this point. So the new

boundary condition takes the form

)

r

A at IndSurf (with the main slit!) (4.16)

The shape of the function C'(r) must be obtained from physical considerations. The
vertical component of the magnetic field near the slit plane, By, is coupled with the
horizontal current density in the slit, 1., by the relation B, = —poJ,. Let us introduce
an effective dimensionless parameter Iy defined as the ratio between the effective
integral current flowing horizontally in the slit plane and the total current Iy going
through the inductor. It is clear that always Iy;; < 1. Then the approximate expression
for the horizontal current density is: J, = IgiIo/Hay, where H,, is the average height
of the outer part of the main slit. Consequently, if the length of the outer part of the
main slit is L; and the width is by, then the magnetic flux going through is:

d=F5- bl . Ll = ﬂOIslitIO . blLl/Hav- (417)

On the other hand, the same magnetic flux can be expressed also with the vector-
potential values at the inner and outer radial positions of the outer part of the main
slit:

O =27 [Fimax A(Pmax) — TmidA(Tmia)] 5 (4.18)

where 7.« 1S the outer radius of the inductor and r,,;q 1S the maximum radius of the

line IndMidd as shown in Fig. 4.3. The previously introduced parameter L; equals to



38 CHAPTER 4. AXISYMMETRIC MODEL OF PHASE BOUNDARIES

Tmax — Tmid- Using (4.16), the last expression for the magnetic flux can be transformed

in terms of C. Together with (4.17) it yields:

~ ~ [si I
O ) = Clrma) = F52 b1 Ly Ho. (4.19)

Assuming a linear change of the function é(r) between riq and 7. and recalling
that C(rmiq) must be equal to Cy in order to fit the boundary conditions at IndSlit
and IndMidd, we obtain:

~ JRT)
C(r) = lg]ﬁ—llivlfo -max {0;7 — rmia} + Co. (4.20)

The meaning of the “max”-function is to retain consistent boundary conditions also

for a case with a slightly sloped IndMidd-line, as in the example in Fig. 4.3.

4.2.4 The numerical method

The problem formulated above with the modified boundary condition (4.16) and (4.20)
is solved numerically by the Boundary Element Method (BEM). The boundary lines
shown in Fig. 4.3 are discretised into boundary elements. The elements are indexed
with index k and we can write symbolically & € SilSurf, IndSurf, IndSlit, IndMidd,
meaning that the boundary element belongs to one of these surfaces. The vector-
potential A(z) in some spatial point denoted by 2 (or in the center of the boundary
element with index 1) is expressed as a sum of the partial vector-potentials (Ag(z) -
Jx) created in the point 2 by the element k (i.e., by the axisymmetric surface ring

represented in 2D by the line segment k):

A= > M) I (4.21)
SilSurf
k€| IndSurf

IndSlit

Each term (Ag(2) - Ji) is a fundamental solution of the Poisson’s equation (4.5) and
contains the current density J in the element k. The coefficients Ay (2) can be expressed

with the elliptic integrals K(p) and E(p):

) = 2 k) (1-5) - 20)] (4.22)
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with
4r*

p:
2 22 4 o 17
r Z— Z

* *

rt=—, 2t = ,
Tk Tk

where dj, is the cross-section length of the boundary element k, while r, and z; are

the coordinates of its middle point.

The scalar potential f is expressed as a sum of the partial scalar potentials (Py(2) - Ky)

created by the so called “charges” K in the boundary elements k of the slit boundary:

FoO) = Y R K (4.23)

Indslit
ke(IndMidd)

The coefficients Py(2) in the fundamental solutions (P (2) - Kj) of the equation (4.13)

are:

P(1) = di - In/(r — )2+ (2 — 21,)2% (4.24)

It follows from the relation (4.10) that the azimuthal current density at the boundary

of the small slit is:

1) _OF(2)

1€IndSlit on

= ) N0)-K (4.25)

2€IndSlit IndSlit
ke (IndMidd)

where

. 8Pk(z
~ On

~—

Ny (2) . (4.26)

To solve the problem numerically, the equations arising from the boundary conditions
(4.14), (4.15), (4.7) and (4.16) by substituting the expressions (4.21), (4.23) and (4.25)
are written for each of the boundary elements (¢ running over all the boundaries). The
variables to be solved are the currents Ji, (k € SilSurf, IndSurf) and the “charges”
Ky (k € IndSlit, IndMidd). One additional variable, the total inductor current I
renormalized so that Cy = 1, arises because of the accounting of the main slit and
implies solving of an additional equation (the first one of the equations below). The

equations are as follows:
1=20:

I+ Z dy - Jp + Z [ Z dgNk<£)] K, =0 (4.27)
)

keIlndSurf kE(IIr:icll\S[‘liltd £€IndSlit
n 11
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1 € SilSurf :
S AL T+ Y [ > A)NL(O)] Ky =0 (4.28)
e re(ty) L
1 € IndSurf :
fob1 Lyt T'mid
_ PO¥LSslit 1 — B
2rH.,, max (O’ r(z))

+ Y AT+ Y [Z Ag(z)Nk(E)]-Kk:%Z) (4.29)
)

ke( SilSurf) ke( IndSlit ¢€IndSlit

IndSurf IndMidd

1 € IndSlit :

SoAW T+ Y [Z AN)M(M%PA@]-&:% (4.30)
)

ke(ISi(liSSurff) ke(;x:;ﬁ'l;td £eIndSlit
1 € IndMidd :
> B()-Ki=0 (4.31)
k€ (mantin)

The system of linear algebraic equations is solved by a direct method (Gauss elimina-

tion).

4.3 Open melting front: the “fluid film model”
4.3.1 Fluid film thickness h

The proposed model for the open melting front is an improvement of that used in
Ref. [45]. Although in reality the structure is more complicated, we assume that the
molten silicon at the open melting front forms a thin fluid film, of which the thickness
changes smoothly in the meridional direction but not in the azimuthal direction. Due
to gravity, the fluid flow is directed downwards along the front in the meridional
direction and obeys the Navier-Stokes equation, which may be written in the specific

case as follows: )
d“v

Tan2
where 7 is the dynamic viscosity, g, the gravity and v = v(n), the flow velocity, which

+ pgsind =0,

together with the chosen reference of the normal coordinate n and the angle 0(r) is
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depicted in Fig. 4.2. Requiring zero velocity at the melt—solid boundary and zero shear
stress at the free surface of the fluid film, we get the parabolic velocity profile in the
film:

in ¢
v(n) = % (n* —n?), (4.32)

where h denotes the fluid film thickness. The fluid discharge at fixed location r is
proportional to the integral of the velocity over n and is related to the melting rate

upward from that location. For a stationary process:
0
R 27rr/ v(n)dn = pg - m (RF2 — 7’2) Ve, (4.33)
—h

where Vf is the constant feed move rate and Ry, the radius of the feed rod. From (4.32)
and (4.33), we obtain, in frame of the simplified model, the film thickness distribution

along the open melting front:

h:

(4.34)

3
3npsVi (Re* — 1?) Y
2p%2gsinf(r) - r

4.3.2 Joulean heat flux at the open melting front

The integral surface density of the induced power in the skin layer of the bulk melt or
solid can be calculated by the formula (3.14), as shown in Section 3.3. This formula is
not applicable in case of the open melting front because of the inhomogeneous material
properties along the depth of the skin layer. The total Joulean heat flux density at
the open front, ¢®™, including both, the power ¢i! in the molten film of depth h and

the power ¢i™ deeper in the solid feed, is expressed as follows:
¢ = o =& anes (4.35)

where g™ is the surface density of a fictitious power calculated for case when the fluid
film thickness is much larger than the skin layer depth, and the factor ¢ is introduced
like in [45] to account how much higher is the power due to the finite depth of the film.

To derive £ analytically, we consider the penetration of the EM field into the conducting
medium near the open front. By neglecting the displacement currents in the Maxwell
equation and using the material relation j = oE for the volume current density, we

have

rotB = ppo(n)E,
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where the change in the normal direction of the conductivity ¢ is emphasized due to
the jump at the melt—feed boundary at n = —h (see the orientation of the n-axis in
Fig. 4.2). With help of the other Maxwell equations, we obtain the equation for the
azimuthal component E of the electric field,

OE(n,t) E(n,t)
g~ M) =g

where we account for the spatial change only in the normal direction. The solution
is sought in the form FE(n,t) = E*(n)cos(wt + A), where w = 27f, and the field
amplitude E* must decrease exponentially with the penetration depth. The solution

satisfying the continuity at n = —h is:

E(n,t)|_pcneo = £*(0) - "/ cos <wt + g)
1

/ h
E(n,t)],,«_y, = E*(0)e™""" - "% cos (wt + 52 N 5)

with the designation &' = (1/6, — 1/d5)~! and
1

\V4 o fo ls

for the skin layer depth in the liquid and solid, respectively.

51,5 =

The relation between the field and the volume current density,
j(”? t) = U(ﬂ)E(Tl, t>7
and the relation between j and the effective surface current i, i.e.,

i% = (/_ioj(n,t)dn)Q,

allow to express the amplitude of j at the free surface of the film, j2(0) = 6;£%(0), in

terms of 7et. The latter is known since calculated by the boundary element method
(Section 4.2). The volume current density distribution j(n,t) is hereby determined

and yields the Joulean heat flux:

qEM:/O jQ(”at) dn.

oo 0(n)

This way, the expression (4.35) is evaluated and the coefficient £ is found:

1—(1—r)e %

§(h) = 1—-2(1—r)etcosl+ (1 —r)2e2t’

(4.36)
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Figure 4.4: Dependence of the dimensionless heat fluxes &, &y and &p on the film

thickness h in frame of the “fluid film model” for the open front.
where
¢=1{(h)=h/d,

R = \/O’S/O'l = 51/55.

The expression for ¢&™__ in (4.35) is identical to that for the Joulean heat flux at the

h—oo

free surface of the bulk melt, cf. (3.14):

-2
EM log _ [Tpof o
== = ) 4.37
Ih—oo 0_151 ol Lot ( )

M we obtain by the way also the separate

Deriving the formula of &, respectively, ¢
expressions of ¢EM and ¢&M, which are needed when considering the vicinity of the inner
triple point (see Section 4.5.1). The coefficient £ may be regarded as the dimensionless
counterpart of the heat flux ¢®™. Similarly, we can introduce the coefficients & and
& (satisfying & + & = €) as the dimensionless counterparts of the heat fluxes gi!
and ¢EM:

B = e and  gp = Ep e (4.38)

The expressions for & and & are as follow:

1— 6722

- 4.
1-2(1—k)etcosl+ (1 —k)2e 2’ (4.39)

&m(h)

me_%

T 1-2(1—r)eLcosl+ (1—r)Ze 2t

&r(h) (4.40)
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The shapes of the functions (h), &u(h) and Ep(h) corresponding to the conductivities
of liquid and solid silicon and to the EM frequency of 2.8 MHz are shown in Fig. 4.4.
We see, e.g., that the value £ = 1.4 used in [45] corresponds to a constant thickness of
the fluid layer h = 0.2 mm. The advantage of the new model is a variable h according

to (4.34) and, consequently, a variable £ along the open front according to (4.36).

4.4 Shape of the free melt surface

The free surface equation has been derived in Section 3.5 and the flow-related terms
have been analysed in Section 3.6. Here, a simplified version of equation (3.36), i.e.,
with neglecting the most of the flow-related terms and keeping just the contribution
due to the centrifugal forces, which is integrated by assuming a solid-body rotation as
shown in (3.46), is used to derive a practical calculation procedure for the free melt
surface. From the above-mentioned equations, it follows that the effective pressure

imbalance
cos¢p 1

R

must equal zero in the equilibrium state at every point (r; z) of the free melt surface.

D =po— pgz—7 ( ) — p™M 4 217 02, (4.41)

The designations in (4.41): ¢ denotes the local surface angle with vertical (see Fig. 4.2),
~ is the surface tension of the melt, R, the meridional curvature radius (positive for
a convex surface), Qc;, the rotation rate of the crystal rod, py, the gauge pressure
in the melt, and p®™, the EM pressure (3.19), i.e., the integral effective value in the

high-frequency approximation as derived in Section 3.3.

For a given gauge pressure py, the equality to zero of the imbalance (4.41) allows to
determine the shape of the free surface with fixed inner and exterior triple points. The
value of py is unknown and its determination needs an additional condition. In frame
of the steady-state model, the exterior rim of the crystal grows vertical and the free
surface makes a definite angle with the vertical, pprp = @9, at the exterior triple point
(ETP). For silicon, the meniscus angle required to keep a constant crystal diameter,

¢ ~ 11°, is known from the literature.

The free surface is divided into linear elements in order to require zero imbalances
(4.41) in every node. The curvature radius R’ is approximated in the nodes by the
radius of a circle drawn through the node of interest and its two neighbouring nodes.
At the inner triple point, the next node of the open melting front is taken as one

of the neighbouring nodes. A special approach is used at the exterior triple point.
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Figure 4.5: The discretized free melt surface and the curvature radius Rpp at the

exterior triple point.

A circle is drawn through ETP and a next node of the free surface and its radius is
chosen so that the tangent at ETP makes angle ¢y with the vertical. From geometrical
considerations, as shown in Fig. 4.5,

I 2-sin(¢y — )
Rigrp L 7

(4.42)

where L is the length of the first element and «, the actual angle that the first element

makes with the vertical.

The equality to zero of the imbalance at the exterior triple point, Dgrp = 0, yields

the gauge pressure:

cos ¢ 1
Do = PgzETP + Y ( L + = ) + pgl%dp - QWQpIQ%rTQa (4.43)
TETP Rirp

where the curvature radius at the triple point, Rprp, is obtained by (4.42). Thus,
for a fixed distribution of electric current, the gauge pressure py depends upon the
position of the first node next to ETP, i.e. pg = po(L,«). Due to this reason, the
minimization of imbalance begins at this node and the other nodes of the free surface
are considered sequentially from ETP to ITP. The shifting of nodes is performed along

the bisector between the neighbouring surface elements. By displacing the first node
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in the direction of action of the pressure imbalance, the minimum of |D| is searched
by putting the actual value (4.43) of py into formula (4.41). At the following nodes,
the imbalance is reduced similarly but the gauge pressure is kept constant as known
from the last calculation of the first node. The advantage of the described approach
is that no special iteration cycle for py is needed to accomplish the angle condition at
ETP.

With a fixed EM field, the sweeps through all nodes are repeated many times and the
imbalance value at I'TP is used to judge about the convergence of the free surface. To
couple the free surface and the EM field, some outer iterations are performed. During
these iterations, ITP stays fixed but the value of the pressure imbalance at the inner
triple point, Drp, is obtained. It is further used to calculate the location of ITP as

described below.

4.5 The inner triple point and related numerical aspects
4.5.1 Inner triple point

The inner triple point is the point in the model where the melting interface, the free
surface and the open front are going together. The calculation procedure of ITP is
based on the assumption that the transition “melting interface—open front” is smooth.
This assumption fits well to the fluid film model of the open front since the transition
between the fluid film and the bulk melt must be smooth. The front’s normal direction
at ITP is calculated like in every other node of the melting interface or open front
(see Fig. 4.6) and the distribution of the front velocity v, is kept continuous at ITP,
as described below. Consequently, what concerns the front movement, we treat the
melting interface and the open front as one united front. This ensures the first degree
of freedom of ITP (denoted by “1” in Fig. 4.6), i.e., the motion due to moving of the

melting front.

Another degree of freedom of ITP (denoted by “2” in Fig. 4.6) is the motion due to
changing of the free surface shape, which raise the pressure imbalance at the inner
triple point, Dirp, as considered in Section 4.4. The location of ITP at the united
melting front is chosen in order to minimize the absolute value of the imbalance. Each
new trial position of the inner triple point and detection of D;p requires a recalculation

of the free surface shape coupled with the EM field, therefore special algorithms are
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Figure 4.6: The numerical approach to the inner triple point.

used to reduce the count of recalculations needed.

The third possibility of motion of I'TP in this model is the one denoted by “3” in
Fig. 4.6. When the free surface touches the melting interface below the I'TP location,
the inner triple point moves downwards in order to eliminate the degenerate bulk melt

layer, the thickness of which is vanishing.

The above-mentioned continuity of the front velocity v, at ITP is essential and is
obtained by correcting the expression (4.3) for velocity of the melting interface to take
into account that a part of the interface is very close to the free melt surface. If the
penetration depth of the EM field is comparable to the depth of the fluid layer covering
the feed, a part of the total induced power ¢"™, namely, ¢5™, is induced in the feed
volume and hence should be included in the velocity formula for the melting interface

close below ITP:

S EN i S A ”»

Up = — - — —
psQ On F ps@ ps@ On

where T designates the temperature field calculated under assumption of a small EM

1

skin depth allowing the integral heat flux boundary conditions (4.62) as applied for
the temperature calculation in the melt (see Section 4.6). Consequently 7" does not

describe the temperature gradient inside the skin region. The terms in (4.44) that are
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grouped in parenthesis correspond to the correct heat flux in feed in the vicinity of
the interface. Beside that, since ¢i™ is accounted inside the feed, it is meaningful to

M= i 4 e

use only the heat flux ¢iM, instead of the total ¢ , as the boundary

condition at the free surface of the melt closely below ITP!:

orT

N =aq" — ¢ 4.45

'an qm q ( )
It can be seen that the open front velocity (4.4) and the corrected melting interface
velocity (4.44) are equivalent at the inner triple point if the field T satisfies the bound-
ary condition (4.45) precisely. This condition is, however, not so precisely fulfilled due
to the numerical model used and it is thus better to calculate the velocity at ITP by
the open front formula (4.4). The accuracy of the melting interface formula (4.44)
improves in the next nodes below I'TP with increasing distance between the front and

the free surface of the bulk melt.

In this context, we introduce a small transition zone, where the formula (4.4) smoothly
turns into formula (4.44). The transition zone is that part of the melting interface
from where the geometrical distance to the modelled free surface, h2, is less than the
fluid film thickness in the triple point, hArrp. The transition zone allows to avoid the
contradiction between the modelling of the open front as a single line and I'TP as a
single point, which means hfy, = 0, and considering at the same time a finite fluid
film thickness h according to (4.34), i.e., hyrp > 0. The following mixed velocity value

is used at the melting interface in the transition zone h® < hyrp:

h® hure — 0% G,

mix __ ~
n

v — .
n
hITP

: 4.46
hITP ( )

film

1 1s the velocity

where ¥, is the corrected melting interface velocity (4.44) and v
calculated according to (4.4) like for the open front under a fluid film of thickness

h® + hirp.

Under certain circumstances, it may happen that the front actually has a corner at the
location of the inner triple point and the respective front velocity undergoes a discon-
tinuity. To maintain the degrees of freedom of I'TP in our calculation, the algorithm
avoids a sharp corner between neighbouring discretization elements of the front by
using a local smoothing in the region of ITP (see Section 4.5.4). The smoothing, how-

ever, does not, deteriorate the solution in larger scale with multiple elements as it can

1 Analogical considerations are applicable also to the calculation of the EM pressure on the free

surface near ITP.
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Figure 4.7: Examples of triangulation.

be seen in Fig. 4.6: the uppermost open front element shown and the leftmost melting
interface element shown make a corner of 90°. Thus it is enough to use reasonably fine

discretization to calculate states with a corner at I'TP.

4.5.2 Triangular grid generation with refinement at I'TP

The temperature field in the molten zone, feed rod and single crystal as well as the
hydrodynamics in the molten zone are calculated in FZONE by the Finite Element
Method (FEM) as described in further sections. Each of the three calculation domains
is discretized in linear finite elements (triangles). Since the domain boundaries are
changing during the calculation process, the triangular grid is adjusted at each step in

order to fit the respective boundaries.

The grid generator used in FZONE is the C code “Triangle” (version 1.2) by Jonathan
Richard Schewchuk [79, 80, 81]. It computes Delaunay triangulations and constrained
Delaunay triangulations by the exact arithmetic. Quality meshes, i.e. meshes having
no small angles are generated using Ruppert’s Delaunay refinement algorithm. Among
other features of the generator the ones used in FZONE are the possibility to set the

user-specified constraints on angles and triangle areas and the possibility to put the
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Figure 4.8: Examples of the ITP refinement with forced additional nodes.

obligatory nodes in the inner volume as well as on the boundary.

In the implementation in FZONE, the grid generation in each of the calculation domains
(melt, feed rod and crystal) is performed separately, one after each other. An example
of the mesh is shown in Fig. 4.7. The grid density in the domains is controlled by the
density of the elements at the domain boundaries. Hence beside the phase interfaces
and the boundaries that are needed for the electromagnetic field calculation by the
Boundary Element Method as described in Section 4.2, there are also boundaries
defined at the central axis of all three domains. To avoid too big element areas in the
middle of domains far from the boundaries, area constraint is imposed on the elements
generated. For a domain with maximum boundary element length being equal d,, 4.,
the area constraint is set to A, = v/3/4 - d2,,, (the area of a triangle whose each side
equals dpq,). Furthermore an angle constraint of 33° for the minimum inner angle of
the triangles is imposed for obtaining a high-quality mesh. This level of mesh quality
remains sometimes unachieved due to geometrical reasons like domain boundary with
a small inner angle or too big aspect ratio of two neighbouring boundary elements.
The first reason, the boundary with a small inner angle, usually takes place in the melt
domain closely below the inner triple point. To obtain an optimum grid for the region
below I'TP, FZONE puts additional nodes in the melt volume that forces mesh generator
to make a better refinement at this place. Examples of the I'TP refinement for two
different cases, smooth connection between the open front and melting interface and

a corner-like connection, are shown in Fig. 4.8.
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4.5.3 Numerical stabilization in case of quasi-vertical melting front

The melting front has often a vertical or nearly vertical part about or below the I'TP.
The approach to the phase boundary calculation as described in Section 4.1 leads to
a numerical problem: the quasi-vertical part of the melting front becomes numerically
instable and shows nonphysical wavy shapes that change and even grow with time.

The reason of these convergence difficulties is explained in the following way.

Let us first consider v, the local normal velocity of the melting front in the laboratory
reference system, i.e. the velocity that characterizes the unsteadiness of the process,
as described in Section 4.1. The vertical component n, of the normal vector n, the
direction of which at the melting front is depicted in Fig. 4.2, is significantly influencing

the value of v,. Indeed, the equation (4.2) can be rewritten in the form
Up = Vn — VFTLZ

with V,,, the normal front velocity in the reference system of the feed rod, i.e. the
melting rate from the atomic point of view, and Vg, the feed move rate, which is a
positive constant. At the quasi-vertical part of the front we have V,, < Vr because
little melting occurs in the radial direction if we consider a nearly steady-state shape
of the front. Meantime the value of n, is close to zero at the quasi-vertical part
and consequently n. is changing relatively much from node to node and from one
calculation step to another due to the numerical character of the solution process.
For the purpose of illustration of the numerical problem, we can assume that the
fluctuation of n, brings along the fluctuation of the front velocity v, in agreement
with the relation

vy, ~ —Vrn,. (4.47)

Further we consider the discretization of the melting front. The variables in FZONE
are generally stored at the discretization nodes and, if necessary, the values of the
variables inside the boundary elements or triangular finite elements are found by linear
interpolation from the node values. This way also the local normal front velocity v,
and the local normal direction n are considered in the nodes of the front. For defining
the front normal direction in a boundary node, a bisector is drawn between the two
normal directions of the neighbouring boundary elements found each side from the
node. Figure 4.9 illustrates a vertical part of melting front with one node (the node
designated by “2”) shifted to the right, which can occasionally happen due to the

solution process with permanent shifting of the front. The melting front itself is
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Feed Melt

___— Melting front

Figure 4.9: Ilustration to the mechanism of appearing of numerical instabilities at
a quasi-vertical melting front if using the bisectors as normal directions for velocity

calculation in the nodes.

drawn by a thick solid line. The thin solid lines and arrows show the bisectors and
the corresponding normal vectors in the nodes 1, 2 and 3. The thick arrows are
the velocities v, calculated by the formula (4.47) from the normal vectors. After
performing the time step with those velocities, the new shape of the front will be
something like the dashed line. At the node 2, the bisector direction will be changed
and the corresponding new velocity is shown by the dashed arrow. Meanwhile, the
bisectors and the velocities in nodes 1 and 3 preserve their directions. Therefore the
following time steps will lead to nodes 1 and 2 shifting considerably to the left and
node 3 going to the right and making a sharp corner similar to that the node 2 made
at the beginning. Continuing the calculation this way, uncontrolled appearance and
motion of a sharp step somewhere at the front can be obtained due to the described

numerical effect.

Hence a small numerical fluctuation, like at the node 2 in the above example but
smaller, is enough to introduce growing deviations from an even front shape. The
issue is that using the bisectors as normal directions work well when those directions

are not changing too steep from one node to another, which can take place not only
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Figure 4.10: Illustration to the calming of numerical fluctuations by a special choice

of n, in the expression of v,.

due to a fluctuation but also when the discretization is too coarse.

Let us consider the solution of this problem. In principle, the choice of the normal
direction at a node can be modified in the limits of the discretization error, i.e., the
normal direction can be any direction between the directions of the real normal vectors
of the two neighbouring boundary elements. Therefore, to calm down the influence of
fluctuations and in the same time not overrun the discretization error, one can choose
as the node-normal the one of the element-normals that brings a stabilizing effect on

the shape fluctuations.

Following this idea in FZONE, the value of the normal velocity v, at a node of the
melting front is calculated by using n, from the one of the two neighbouring elements
that makes a smaller angle by absolute value, in the limits 0°—180°, with a vertical
line drawn upwards from the node. Only the value of v,, is modified, while the direction
of the velocity vector and therewith the node movement are preserved in the bisector

direction as previously. This approach solves the instability problem.

The illustration of how a successful smoothing works in case of the example discussed

above is shown in Fig. 4.10. The difference from the previous behaviour (Fig. 4.9)
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Figure 4.11: Large turning angle o from one boundary element to the next.

is that the moving velocities v,, are converging to zero now, and the shape is getting
more smooth with each time step. It should be emphasized that the “smoothness” is
relative with respect to the discretization element sizes, therefore also strongly curved
melting front shapes can, of course, be solved well if they are discretized fine enough.
The method described above works under the threshold of the discretization error and

therefore does not cause any additional artificial surface tension at the melting front.

4.5.4 Smoothness control of the discretized melting interface

In order to enable a good performance of the inner triple point moving algorithm
described in Section 4.5.1, the melting interface must be smooth enough. Often there
arise a problem with the discretized melting interface bending at some nodes, i.e., the
turning angle « from one boundary element to the next becomes large (see Fig. 4.11),
which leads to big discretization errors when the front is moving. Especially this
problem tends to appear in the vicinity of I'TP and deteriorates its flexibility needed
by the algorithm. A possible way to solve this problem would be simply refining
the discretization, however there are times when this does not help if the solution
intrinsically contains a corner. Consequently another approach is necessary. The
specific method implemented in FZONE for avoiding sharp melting interface angles by
using what we call “selective artificial surface tension” is described below. It is also
explained why this works only locally and does not damage the solution as a non-

selective artificial surface tension could do.

The main principle of the method of “selective artificial surface tension” is to select
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and influence only those turning angles that are “bad”, i.e., greater than a predefined
critical value ag. The front moving velocity v at the bad nodes must be corrected so
that the correction dv supports the motion towards the center of the front’s curvature,
which means diminishing the badness of the angle. The value of the velocity correction

may be obtained by

0 f < Qlri
v = b o (4.48)
v (CE - acrit) it a> Qcrit s

where « is assumed positive and « is the artificial surface tension coefficient, which is
unknown and must be determined by the algorithm. The original velocity v may be
directed either in the direction of the center of the curvature (the “good” direction)
or in the opposite direction (the “bad” direction) in which the movement is increasing
the angle a. A large value of v ensures overcoming the original velocity in case it is
directed in the bad direction. On the other hand, a too large v leads to steep changes
in the velocity magnitude from one time step to the next and makes the calculation

of the front moving process hard and slow.

The considerations above have led to the following method for the choice of . First
we introduce a new limiting value of angle, ay,.x, Which is greater than ag; and which
serves as the maximum allowed value of the turning angle. Let us assume now that
among the “bad” nodes there are some “very bad” nodes, i.e., nodes with angles larger
or equal to .. We can find for each of them the minimum 7 necessary to ensure
that the corrected velocity is not directed in the bad direction. Indeed, for the original
velocity in the bad direction, which is assumed the positive direction, the corrected

velocity will be reduced to zero or even made negative (see Fig. 4.12), i.e.
Veorr = V=00 = v —7 - (@ — Qeriy) < 0,

if the artificial surface tension coefficient for the given node satisfies the inequality
S —

O — Orit

We have to use the same artificial surface tension coefficient for all nodes with bad
angles o > agy. Hence the maximum over the very bad nodes of the minimum
necessary -y is taken. If the « value in the previous step has been larger than the new
value, then the old value is retained for the actual step to avoid permanent fluctuations
of v during the calculation. So we determine v by

~v = max {L; fyold} , 1 € {nodes 1 : @, > Qpax}- (4.49)
o,

¢ — CQlerit
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Figure 4.12: The original “bad” velocity v in a node with the turning angle a@ > aax,

the correction dv, and the resulting corrected velocity veor < 0.

The calculation is started with v = 0 and it is adjusted at each step using the formula
(4.49). Only the nodes with «, > ae are touched by the corrections dv, (see (4.48))
and only in case some angle tends to increase larger than ay,., the coefficient v is
increased. As a result, 7 increases in the first steps till a certain level, which is the
minimum necessary to keep the angles below .. The influence of the specific value
of amax chosen is illustrated in Fig. 4.13. The selectivity of this “surface tension” is the
reason why the effect is local and influences only some nodes, presumed the parameter
Q¢ has been set large enough. We can suppose that the changes in these nodes are
not exceeding the actual limits of the discretization error due to the finite length of
the discretization elements. By refining the discretization, it is possible to obtain more
precise solution and the region of the influence of the selective artificial surface tension

becomes more localized.

Figure 4.14 illustrates the local character of the influence of smoothing with a,.;; = 30°
and a,,., = 45°, which are the standard values approved for calculations. The differ-

ence in scales in Figs. 4.14(a)-4.14(b) can be seen from the distribution of nodes.
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) Qerit = 30°, Qmax = 45°,n =2 ) Qerit = 15°, amax = 30°,n =3

Figure 4.13: Applying the smoothing algorithm with different parameters ap,., and

Qerit, Which results in different number of corrected nodes, n.

pavd

) Close view: the rounded corner ) More global view of the same picture:

the influence of smoothing vanishes

Figure 4.14: Local character of the smoothing at ITP (ariy = 30°, max = 45°).
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4.6 Axisymmetric melt flow
4.6.1 The v — w equations in cylindrical coordinates

To calculate the temperature field in the molten zone, an axisymmetric model of the
melt flow and heat transfer is applied. For the incompressible fluid flow, the mass-
conservation equation (3.25) and the Navier-Stokes equations with the Boussinesq
approximation (3.26) are transformed from the pressure-velocity variables (p'P, w,.,
Uyp, Uy) to the variables ¢, w and wu,, which brings the advantage that the mass
conservation is satisfied automatically and the number of equations to solve is reduced
[76, 82]. The stream function ¢ and the vorticity w are defined by

10y 1 8¢

Up = ———— U
" N rafr’

roz’

Oou, Ou,

0z or’

= (V x u), = (4.50)

and the whole set of hydrodynamic equations including the heat transfer equation

(3.27) is written in the cylindrical coordinates (r, ¢, z) as follows?:

o [10v\ 0 (100 -

E(;E)_{_&(Ta )+w—0 (4.51)
oT | OT  oT 1o ( or\ o (T )
ot " or T~ ror \Mar 9: \ Moz '
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where x is the thermal diffusivity of the liquid, x = Ai/(picp), v is the kinematic
viscosity, v = n/p;, and g = |g.|. Since the electromagnetic force is treated in the
high-frequency approximation as a surface force as well as the Joulean power is ap-
proximated by a heat flux through the boundary (see Section 3.3), there are no volume

forces beside gravity and no volume heat sources included in these equations.

2 Obviously there has been a mistake in expressing the vorticity equation in cylindrical coordinates
in previous works like [45, 46, 7] where the equation (4.54) has been written without the vortex-
stretching-related term w,w/r, which arises due to the curvature of the coordinate system when

taking the ¢-component of the vorticity equation

%d + (uV)d = vAG + (WV)u+ gf x VT.

Here & = V x u while the designation w as defined by (4.50) always stands for the ¢-component of

& = (W, w,w,), with subscript ¢ just being dropped for convenience.
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4.6.2 Boundary conditions

The general flow boundary conditions were considered in Section 3.4 and, particularly
for the free surface, in Section 3.5. Here the boundary conditions are rewritten for the

1) — w formulation.

Let us choose a vertical cross-section plane going through the symmetry axis of the
molten zone and a line in this plane, e.g., a line on the boundary of the melt. From
the coordinates (r, z), we can switch everywhere along this line to local coordinates
(1, n), with 7 being the tangential- and n, the normal direction locally at each point
of the chosen line. This coordinate transformation allows the following recasting of
the definitions (4.50):

10y B 1(9_¢ _ Ouy  Ouy,

Uy = Uy = — w
i ron’ " or’ on or

. (4.55)

If neglecting the relatively slow (few millimeters per minute) flow across the solid—melt
interfaces occurring due to the crystallization and melting, we can assume u,, = 0 at
all boundaries of the melt®. According to (4.55), we have then a constant value of 1
at all melt boundaries and can choose this value equal to zero. At boundaries with
the no-slip condition we get additionally according to (4.55) a zero normal derivative

of the stream function.

E
Boundary with u, =0 = =0, w=2t I (4.56)
on n
. o
Boundary with u, =0 = = 0 (4.57)

F. in (4.56) is the tangential stress at the boundary. At the free melt surface, this
vorticity boundary condition corresponds to (3.34) and F; is created by the action

of the electromagnetic and Marangoni forces as given by the expressions (3.30) and

(3.21):
_wd i) | 90T
4 Or oT ot

F, (4.58)

At the symmetry axis, which is also one of the melt boundaries in the axisymmetric

problem formulation, we can put simply F, = 0. At the rigid boundaries, however,

3 This corresponds to putting u, = 0 in (3.28) and (3.29). Such simplification is favourable for the
1) — w formulation, additional measures have, however, to be met if the precise resolution of the flow
at interfaces is necessary, e.g., in case of the calculation of dopant concentration, which typically has

a very steep boundary layer due to the segregation.
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the tangential stress is not explicitly known and a more specific formulation of the
boundary condition for the vorticity w has to be considered:
1 0?
Boundary with w, =0, v, =0 = w= ———w.
r On?
To make this boundary condition of w suitable for the calculation procedure, we ap-
proximate the second order derivative of ¢ by lower order derivatives by using the

beginning of the Taylor series of the function ¢(n) near the boundary n = 0:

Vln) = 9(0) +n 5

n* 0%
2 On?

n=0 n=0

Due to the boundary conditions for ¢ from (4.56) and (4.57), the first two terms on the
right-hand side of the approximate equation equal zero. Hence we have the following
no-slip boundary condition for w, which is known as the Thom condition:

2 lim M

Boundary with uw, =0, v, =0 = w=— 5
r n—0 n

(4.59)

To summarize, the boundary conditions for the thermal-hydrodynamic problem in the

melt are as follows.

1. Symmetry axis (u, = 0, F, = 0):

or

E*O’ u,=0, =0, w=0. (4.60)

2. Crystallization and melting interfaces (u, = 0, u, = 0):

T =Ty, u,=2mrQcr, =0 w=-—

(4.61)

with 7y denoting the melting point temperature, (¢, r, the rotation rate of the
crystal (Cr) or feed rod (F), r, the radial coordinate of the considered boundary
point, and 1 (n,), the value of the stream function at as small as possible distance
n, from the boundary (in practice this distance is determined by the locations

of the nearest nodes).

3. Free melt surface (u, =0, F, = (4.58)):

or 0 0
NI EM _ grad, Ouy _ Up OF

F.
on —4 on  r on’ v=0 wz?’ (4.62)
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where ¢"* is calculated as described in Section 4.7 and ¢™ is calculated by (3.14)
or (4.37) based on a previously calculated distribution of surface currents (the
calculation of the surface currents see in Section 4.2). For the free melt surface
in the vicinity of ITP, the ¢i™ must be used instead of ¢®™, as pointed out in
Section 4.5.1. The boundary condition for the azimuthal velocity u, comes from
(3.35) by setting Fi, = 0 due to the axial symmetry of the model. For the sake
of the numerical method described below, the following equivalent form of the

free surface boundary condition for the azimuthal velocity is used:

(ru,) or
8n = 2u¢,%

(4.63)

4.6.3 The numerical method: SUPG-stabilized FEM

For the numerical solving of the flow and heat transport problem, the Finite Element
Method (FEM) is used. Let us shortly consider the principles of the method for

application to a flow problem like that one formulated above.

The equations (4.51), (4.52), (4.53) and (4.54) have the general form

stu + Sconvu = ﬁfﬁéu +5£1)u+5£0)
~~~ S—— N~ ——

time change convection diffusion source terms

where £, are the differential operators corresponding to different parts of the equation,
u = u(x) is the unknown field over the calculation domain x € =, the source term
(59)11) is the part proportional to u, and s is the u-independent part of sources.
Because the solution of the above equation is, in general, time dependent, we calculate
the instantaneous field u at time ¢ by taking in account the “old” field distribution
ud at time t — At. The field u°! has been calculated or predefined previously. For
the sake of numerical robustness at large time steps At, the implicit scheme is used:
the field u° appears only in the time-derivative term while the actual field u is placed

in the rest part of equation. The time derivative is approximated by

old
u—u 1 0
7 :—Eg)u—ﬁg)

L

where 5,51) = —1/At and 5%0) = u’d/At. This way the form of the general equation

can be simplified by including the time derivative in the source terms:

Leomtt = L5pu + 5D+ 50 (4.64)
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with s = s + sV and 5© = §'¥ + {0,

We have discretized the calculation domain = and look for the approximate solution
in the form of a linear combination of predefined basis functions N, (called also shape

functions or trial functions):

u(x) = Z N,(x)u,, (4.65)

1€{nodes}
where u, are the unknown coefficients. The number of the basis functions and the
number of the coefficients are here both equal to the number of nodes. In FEM, only

the weak form of equation (4.64) is solved:
/ W, (Econvu — e — sMy — 5(0)> d= =0, 1 € {nodes}, (4.66)

where W, = W,(x) are the weight functions (or test functions). The number of weight
functions is also equal to the number of nodes. The idea in FEM is to substitute (4.65)
into (4.66) to get the system of equations for the unknown coefficients u,. A typical
problem is however the diffusion term ngf, which has second order derivatives and
creates singularities if the first derivative of the basis functions N, (and hence that of
the approximate solution (4.65)) is discontinuous. This takes place if the chosen basis
functions are piecewise linear, which is typical. The approach used in FEM is reducing
the order of derivatives from 2 to 1 with help of partial integration or the divergence

theorem. In general form:

/ W, £Budz = / Lag(W,,u)dE+ ¢ W,Dudd= (4.67)
= = o=

where L4 (-, -) is a bilinear differential operator with first order derivatives only. The
last term on the right hand side integrates over the boundary 0= of the domain = and
the operator ® is a differential operator of first order as well (it is typically proportional

to the normal gradient at the boundary).

The boundary integral in (4.67) is evaluated by means of boundary conditions of the

second or third kind, which can be written in the general form as
r Du+ qYu = q© at part of 0= with 2nd or 3rd kind BCs, (4.68)

where q(® and q(!) are prescribed fields at the boundary and ¢ equals 0 or 1 (dependent
on the specific form of the boundary condition). In case of the second kind boundary

conditions, V) equals zero.
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Consequently, the equation system (4.66) transforms to:

q©

(1)
/S(Wl,u) dE+7{ T/qur—gud(?::/ W,s© d= + WZ? do=, 1 € {nodes},
= o= =

0=

where the bilinear operator
£(0,1) = 0Lontt — Lag(v,u) — vsVy

has been introduced for briefness. Substitution (4.65) yields a system of linear algebraic

equations with respect to the unknown coefficients u,:

> {/: LW, N,) d= +

7€{nodes} = o=

LR
(0)
/ W, d= + VVZqT_C do=, 1 € {nodes}. (4.69)
= o=

The solution of the problem reduces hence to: 1) choosing appropriate basis and weight
functions and calculating the integrals, 2) solving the particular linear (or linearized)
system of equations (4.69) for one of the flow variables, and 3) iterating over the whole

(nonlinear) system of equations for all flow variables.

Choosing the weight functions equal to the basis functions, W, = N,, leads to the
standard Bubnov-Galerkin weak formulation. With convection-dominated problems,
i.e., when the nonlinearity is strong enough, the standard Bubnov-Galerkin FEM fails
if no stabilization is added to avoid non-physical oscillation of the solution. Artificial
addition of stabilization while using the Bubnov-Galerkin weight functions, however,
makes the problem statement inconsistent. Therefore it is preferable to introduce
the stabilization by changing the weight functions themselves, which is known as the
Petrov-Galerkin weak formulation. The Petrov-Galerkin weight functions W, # N,
can be viewed as perturbed Bubnov-Galerkin weight functions and the several pos-
sible Petrov-Galerkin approaches differ by the kind of perturbation used. One of
the most popular applications is the streamline upwind/Petrov-Galerkin stabiliza-
tion (SUPG), which is constructed by adding streamline-upwind perturbations to the
Bubnov-Galerkin weight functions (see e.g. [83], [84]):

Wz - Nz + 7—Efconv]\[z; (470)

where 7 is a stabilization parameter that weights the perturbation. Since according to

the weak problem formulation the perturbation is multiplied with the residual of the
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differential equation, the consistency is fulfilled in that the exact solution also satisfies

the stabilized form exactly.

The stabilization parameter 7 (denoted in what follows by 7,, since it is, in general,
different for each weight function) determines the actual amount of stabilization and is
calculated with help of the coth-formula (also called the optimal stabilization formula),

which is derived from a simplified (1D) convection—diffusion model, see Section 4.6.7.

4.6.4 Basis functions and system matrix

When calculating the integrals in (4.69), it has to be taken into account that we work
with cylindrical coordinates in a 3D domain =. Often, however, the term “calculation
domain” is also used to indicate the cross-section of the domain = with one half-plane
(r,z) with » > 0. Let us denote here this cross-section by S and its boundary by
I'. The domain S is discretized i.e. subdivided in triangular elements S, such that
Y. Se =5, as described in Section 4.5.2. Each element has three nodes and each node
belongs to several elements. The nodes are connected by edges. Hence the boundary
I' is subdivided in edges that connect the boundary nodes. The elements e that are
placed near the boundary I have got edges* T'. on the boundary, such that Y T. =T.

For elements having no edges on the boundary, the I'; is an empty set (or zero).

According to the approach of linear FEM, we choose piecewise linear and localized
basis functions N,, i.e., basis functions that are linear inside every element and have a
value 1 just at one node, with zero at all other nodes:

1if =1
N, (node y) = (4.71)

0 if y #.

This choice of basis functions implies that the coefficients u, in (4.65) receive the
meaning of nodal values of u.
Inside element e with nodes 1, y and k, the basis function N, equals:

(3 bl K3
N(r,z) = ST SE (17

where A is the area of element e and the element-specific coefficients a,, b, and ¢, are

4 We assume here for simplicity of notation that there are no elements with more than one edge

lying on the boundary.
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defined based on coordinates (r,, z,) of the three nodes of the same element by

(
a, =T —1,

b, =z, — 2

C, = Ty2 — TkZ,
vFkF

\%(b,a] —ba,) =A>0.

A consequence of the choice of basis functions N, as local functions is that the weight
functions W, (4.70) are local as well. Hence if splitting the integrals of (4.69) into
separate element integrals, the ¢-th equation will only include non-zero integrals over
elements e that contain the node 2. Let us designate the set of such elements by e > 1.

Equation (4.69) can be rewritten:

o>y {/S (W, N,) rdrdz +

€31 je{nodes}

qu(l)N]rl_CdF} =

Te

Z {/ VVZE(O) rdrdz +
Se

esd1

W,q© rl_CdF} : 1 € {nodes}.

Te

Another consequence of the locality of N, is that £(:,N,) is local too. Hence the
integral over S, on the left hand side equals zero if the j-th node does not belong to
the same element. The boundary integral on the left hand side behaves, of course,
similarly due to N, in the integral. Concerning the weight functions (4.70), we follow
[84] and define the stabilization contributions only inside element interiors, setting
them to zero on the boundaries. Hence we replace W, by N, in the boundary integrals
and find the final reduced form of the equation (4.69):

> Dy, {/S (W, N,) rdrdz +

ed1 jee

qu(l)erl_CdF} —

Te

Z { W5 rdrdz + [ Ng© rlCdF} , 1 € {nodes}, (4.73)

esd1 Se Te
or in matrix form:

Z Z Ml(f)u] = Z B, 1 € {nodes}. (4.74)

ed1 jJce ed1

The matrices M and B(®) are called the local (or element) matrices because the

indices are running over the three nodes of the element e only. Building the global
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matrix of the system of linear algebraic equations includes thus calculating 9 matrix

elements Mz(f) and 3 matrix elements B\ for each element e.

4.6.5 Integration of diffusion terms and boundary conditions

In order to perform the integration, let us write down explicitly the diffusion terms

obtained by the transformation (4.67). For the temperature we have:

10 or 0 or
/S {;E (X?‘W) Ee (X8 )} W,rdrdz =

/ [8T ON, 8T ON,
— [ xr

B 02’1 dr dz—i—]{XT—N dr, (4.75)

where the weight function W, (cf. (4.70)) has been taken equal to:

(4.76)

ON, ON,
m:Nz+Tz(urz )

or T Ung,

Here u,, and u,, are the values of velocity components at the node 2. Such weight
function implies that the stabilization contribution is constant in each element and:
oW, _ ON,

or or °

For the vorticity and azimuthal velocity the diffusion term is slightly different because

of the nature of these variables as p-components of vectorial fields:

0 (v O(ruy,) 9 ( Ouy, B
/S {87’ (7’ or ) * 0z ( 0z Wordrdz =

v [0(ru,) O(rN,)  O(ruy,) O(rN,) 7{ O(ru,)
— | - N, dIl', (4.
/s r [ or o o o: drdz+ T "on " dr, (477)

where, in order to eliminate the stabilization contribution from the diffusion term as
successfully as for the T-equation above, the following slightly modified weight function

has been chosen for the w- and wu,-equations (r, stands for the node value of r):

r, ON, ON,
Wz = Nz 1 T 217 | 4.78
+ 7, . (u o +u ER > ( )
which implies that (TWZ) = % in each element.

The first integral on the right hand side of (4.77) can be transformed further to:

Ou, ON,  Ou, ON, Ou, E)NZ U,
/V [87" o T 5, 8, } drdz / (87’ N, + o3 4—7]\7Z drdz. (4.79)
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In the stream function equation, there is no convection term and hence no streamline-
upwind correction to the weight function: W, = N,. Consequently the diffusion term

becomes:

0 (10y 0 (10y
/s [c% (r 8r> + 0z (r 82)1 Nordrdz =
10y d(rN,) 0¥ ON, %81/)
— - — —L— N, dI". (4.
/S|:T or or N 0z 0z drdz+ ron T, (4.80)

where the first integral on the right hand side can be transformed further to:

oy ON, ~ OpON, / %
- — — - —N, 4.81
/5{87" 87’+8282}drdz g T Or drdz. (4.81)

Taking into account the form (4.72) of the basis functions N,, the following approxi-

mations for the diffusion integrals in elements are obtained:

b,b,
T —/ Laig(W,, N,) rdrdz = Xr—ala] +
s, 4A
_a,a,+bb, b +0b A
W, Uy —/Se Lag(W,, N,) rdrdz = v (T’ J4A I 4 5 4 12_(1 —|—5ZJ)>

a,a, 4+ bb, b,
4A * 67’

where a bar above a variable stands for the average nodal value of the variable in

—/ Laig(W,, N,) rdrdz =
Se

the chosen element (it coincides with the average value over the element area only for
variables that are linear coordinate functions):
in element S, : X = - Z X,.
€e
The boundary integrals like in equations (4.75) and (4.77) are calculated with help of
the second or third kind boundary conditions. As seen at the end of Section 4.6.2, we
have 2nd kind boundary conditions for the temperature and both 2nd and 3rd kind
boundary conditions for the azimuthal velocity. With using the denotation of (4.68),

the respective edge integrals are then written as follows:
oT

T : ®T=x—, (=0, qP =0
on
L N
N,q© rdl' = S (rzq(o) +7q0 + rq(0)>
Fe
u, : Du,= v O(ru,) =1
r on

L _
/ Ng®dr =2 (q§”> + 2q(0)>

L
/ N,qWN,dl = o (q( )+ gt + 26,90 )
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where L is the length of the edge I'. and a bar above a variable stands this time for
the average nodal value of the variable on this edge (hence averaging over two nodes
only):
— 1
on edge I', : X:§ZX1.

Both temperature and azimuthal velocity have also first kind boundary conditions. For
the vorticity and stream function, according to the introduced problem formulation,
the first kind boundary conditions even are the only ones existent. The treatment of
these boundary conditions is different from that above: the equations of (4.73) that
correspond to the boundary nodes 2 with first kind boundary conditions are simply

rewritten with using explicitly the boundary value uB¢:

u, = ulC 1 € {nodes with 1st kind BC} (4.82)

(the matrix elements for all u,., are set to zero).

4.6.6 Integration of convection and source terms

Since there is no convection term in the stream function equation, the weight function
for this variable is taken equal to the basis function. For the other variables, however,
we use the stabilized version of the weight function as shown above in (4.76) and (4.78):

7\ ¢ ON, ON,
Wz = Nz + 7 (?) (UMW + uzz%) )

where ¢ = 0 for temperature and ( = 1 for the vorticity and azimuthal velocity. After

integration, taking into account (4.72), the convection terms have hence the form:

/ W, Leonw N, rdrdz =
Se
N, N, _
N, Leony N, rdrdz + Tz’f’f/ ML —i—uma— Leome N, =drdz =
Se Se 8r 82
3+4r,)T o N TS _ (Upby + uza,) (b, + uza,)
2 0) o) o)
24 (ajﬁr 9z ) TTF) T 1A

The elements near the symmetry axis need special treatment. In the elements whose

at least one node lies on the axis, the first part of the above expression is replaced by

34T 8_¢_9+3ﬁ/?2+6n/T+2(rz/F)2b8_@/)
~ T Yo 120 18,

/ N, Leonv N, rdrdz
Se

r—0
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The derivatives of ¢ in the above expressions are assumed constant inside every element
and are obtained from the three node values of ¢ of that element, according to (4.65)

and (4.72), in the following way:

o 1 o 1
E = ﬂ Zezebﬂ/)l s % = 2A Zalwl. (483)

ce

The node values of the radial and axial velocity components are obtained after each
calculation of the stream function field by averaging the stream function derivatives

in the neighbouring elements:

10y 10y
=D (Ew )/ T w5

(=) et es>t

Ae) > A

et

Let us now consider the source terms s = s{" + 551). For the azimuthal velocity,

e = —u,./r. The respective contribution to the system matrix is as follows:

W,sUN, rdrdz = ——a—d’( 146, + 7

T Uy (U by + Ua,)
s 127 0z '

67

For elements near the symmetry axis, the first term on the right hand side of the above
expression is replaced by

- @Br+rntr)A 8_¢(1
6072 0z

+6,,).

M = u,/r, and consequently the

For the vorticity, there is a similar source term, s,
expressions of the integrals are analogous to the ones above but with the opposite
sign.

The inertial part of source term, 5§1), is present for all variables excepting 1. For the

azimuthal velocity and vorticity we have:

3r+r,+r)A

rz(urzbz + uzzaz)
60 At '

6 At

- / W,sN, rdrdz = (1+46,) + 7,
Se

For temperature, the same expression is used but the stabilization part is replaced by

. (37 + 1) (urb, + uza,)
! 24 At '

And finally, we write down the contributions to the left side of the linear equation

system arising due to the source terms s = s 5( )



70 CHAPTER 4. AXISYMMETRIC MODEL OF PHASE BOUNDARIES

For the stream function v we have s = s = w and the respective integral equals:

A
/ W,s0 rdrdz = 0 [3(37 + r,)w + (37 + 2r,)w, + 37W] .
Se

For the vorticity w, the 5&0)—part of the source term is more complicated and equal to

50 = 2up Oup gﬁ%—f. The respective integral is expressed as follows:

r Oz
Al ou 9B . oT
[ w0 rards = G [ 40 G2 GG 4
U Qup 9B OT
T, 7o (Urby + Uz,00,) < 5 2o )

The derivatives of azimuthal velocity and temperature are assumed constant in ele-
ments and are calculated in an analogous way as the derivatives of v, see (4.83). For
elements near the symmetry axis, the first term on the right hand side of the above

expression is replaced by

A

6

3T+ 1)U, Ou,  gf3 3r2 +2r2\ OT
p OUy )

= %% 10 (3(37“ +2r,) + = o

For the temperature and azimuthal velocity, there are no sources 5,(50).

The inertial part of the source term, written in the general form as 5§0) = uld /AL,

yields the following integral for the temperature 7"

W,s rdrdz = ——
. s, ' rdrdz GOAT

[3(3? +7,)T°M + (37 + 2r,) T + 37“T°1d] +
Up, by, + Uz —_—
U2 T Ut (gl Told> .
"TTTSAL ( re
For the azimuthal velocity u, and vorticity w, the expressions of the integral are similar

but 7° is replaced by u‘;ld or w4, respectively, and the stabilization term is modified:

T Urzbz + Uz Ay m
7 7
2 At ¢

old , for the vorticity).

old

instead of ug;

(or with w

4.6.7 Stabilization parameter 7

The stabilization parameter 7, which is responsible for the appropriate weighting of

the amount of stabilization, is calculated in each element based on a formula derived
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from a simplified equation in one dimension. Let us consider the one-dimensional

convection—diffusion equation for the scalar field y(z),

W2 %y
Ox Ox?’
which has the exact solution
y™(x) = Cyexp % + Oy,
where the constants C'; and C5 depend on the boundary conditions. Then it can
be shown (see e.g. [84]) that using the linear FEM and a uniform distribution of
nodes along x brings the nodally exact solution of the above equation if the following

stabilization parameter is applied:

Ax 1
= — |coth(Pe) — —
T {CO (Pe) Pe} ’
where Az is the distance between nodes and Pe is the Peclet number defined by
lu| Az
Pe = ——
T 2D

Such definition of 7 is often called the “optimal” in the literature. A more complicated
formula can be written for an irregular node distribution as well, the usage of the above
simple coth-law can, however, be well justified also in this case, since most important
part of the stabilization effect (the stabilization of the downstream node) will be in
both cases equal [84]. Noteworthy, the stabilization parameter depends always only
on the relative positions of the next two nodes and is independent on the boundary

conditions, hence the definition of 7 is local.

The above formula is used as approximation for the general case of more than one
dimension and arbitrary node or element distributions. For our specific case, the

stabilization parameter is introduced in the triangle elements:

he
Te = T [Coth(Pee) -

o
Pe. |’
where the element length in streamline direction, h., is used instead of Az, and the
Peclet number of element e is defined by
_ el he

2D

Here D stands for the respective diffusion coefficient, i.e., v or x, and the elemental

Pe.

velocity u, comprises only the radial and azimuthal components:

10 10
‘Ue‘ =V uge +u§e y  Ure = ___w Uze = —_8_2/)7
Te OT

7. 0z
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where the derivatives of ¢ are obtained according to (4.83).

The element length in streamline direction, h., can be calculated by using the functions

N, (see (4.72)) of the three nodes of the element e:
) -1

In order to ensure that one constant stabilization parameter is used throughout the

ON, ON,
or Hze 0z

1-th equation, we define the nodal value of stabilization parameter, 7,, as the maximum

of the values of 7, in the elements containing the considered node:

T, = Max T, .
(=X

4.6.8 Numerical solution and coupling of all flow variables

The equation systems are build for each of the flow variables (¢, T, u, and w) as
shown above. Since each node interacts only with the neighbouring nodes and itself,
the matrices of the linear systems are sparse and the diagonal elements are nonzero. No
preconditioning is needed and the sparsity is used to speed up the process of iterative
solution and reduce the storage memory by introducing arrays of neighbouring node
indices for each node. These arrays define hence the positions of the nonzero matrix
elements at each row of the system matrix and allow skipping the large amount of

non-necessary arithmetic operations with zero elements.

The full solution of the axisymmetric fluid flow at a given time step includes a cyclic
recalculation of the four systems of equations: first we calculate the stream function,
which yields the radial and axial velocity components, then the azimuthal velocity
and temperature. At this point also the boundary conditions for the vorticity are
modified. At the last step, the vorticity itself is solved. The cycle is repeated until the
convergence is reached. Normally, with a small enough time step (typically 0.002 s),
only one such cycle per time step is needed, due to the good initial conditions (the
change of solution from one time step to another is small), and the calculation proceeds

for the next time step.
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4.6.9 Test of the flow solver

The developed axisymmetric HD solver of FZONE was tested by comparing to another
axisymmetric HD solver FZHD (which uses also the ¥ — w formulation) developed in
the nineties by Prof. Muiznieks. The code FZHD solves hydrodynamics in the melt
with prescribed shape of boundaries and uses a somewhat different approximation
and numerical implementation as FZONE. Instead of the streamline upwind/Petrov-
Galerkin scheme, a simpler upwind approximation scheme with empirically chosen
weighting factor for the stabilization of the convective terms is used in FZHD. The test
calculations with FZONE and FZHD have shown [85]:

e [f calculating on similar triangular grids, the calculation results between FZONE
and FZHD differ. If refining the grid for FZHD, the results get equal. This is
explained by a higher numerical viscosity in FZHD, hence the choice of the stabi-

lization parameter in FZONE is better.

e FZONE is more stable than FZHD if the grid is bad (i.e., the triangles are some-
where too stretched): the solution with FZHD diverges whereas FZONE just may
get a worse convergence. That FZONE does not diverge is explained by a bet-
ter approximation of the integrals. This advantage of FZONE is important for
successful calculation of fluid flow with permanently deforming grid due to the

change of the shape of the floating zone.

Since the code FZHD has been compared earlier to the well-known commercial CFD
package FLUENT and the agreement was well, i.e., FZHD showed even better behaviour
than FLUENT®, the above comparison between FZONE and FZHD was enough to conclude
that FZONE is in agreement with FLUENT as well.

5 FLUENT needed finer grid than FZHD to get the same solution, hence FLUENT had a higher numerical
viscosity, which could be related to the fact that FLUENT solves in the natural velocity—pressure

variables.
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4.7 Radiation modelling with view factors

The surface-to-surface radiation model with view factors is modelled in FZONE mainly
following the recipes by Dupret et al. in [86] (the publication considers the Czochralski
growth) and including additionally a formalism in terms of “space node” for the case of
a non-closed radiative surface system, i.e., when the enclosing surfaces are left outside
the model, as preferred for floating zone modelling. Also the numerical implementation
of the radiation model is different from that described in [86].

4.7.1 Equations for an open radiative system
Introductory assumptions and relations
The following assumptions are used:

e Radiation is only diffuse. This approximation is supposed to work satisfactory

well because real solid surfaces are generally non-smooth.

e Surfaces are opaque. Emission, absorption and reflection of radiating waves only

occur at the surfaces of the bodies and not within the bodies themselves.

e Bodies are optically gray. The optical material properties are assumed temper-

ature and wavelength independent in the whole spectrum.

According to the Planck’s law, the spectral emissive power ey (T") of a black body (or

a perfect absorber) at the given temperature T and wavelength A equals

271'01
A5 (ng/)\T _ 1)’

Eb\ (T) =

where C; = 0.595448 - 10®* W pm?* m~2 and Cy = 14388 um K. Integrating over the
whole spectrum yields the total power ¢,(7") emitted by the black body per unit area,

qb(T) = / GbA(T> d)\ = 0'5137147
0

where ogg = 5.67 - 1078 W m~2 K~* is the Stefan-Boltzmann constant. The total

power ¢, emitted by a non-black body per unit area is given by the expression

Ge(x) = €(x) ap(T(x)) = €(x) 05T (x), (4.84)
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where €(x) < 1 is the surface emissivity at a generic point x on the radiating surface.

Any surface element is emitting itself and meanwhile bombarded by waves coming
from the other surface elements. The incident heat flux ¢(x) can either penetrate
the body or be reflected. The penetrating waves are totally absorbed by the opaque

surfaces. The absorbed heat flux equals

Qa(x) = Oé(X) Qi<x)=

where « is the surface absorptivity. According to the Kirchhoff’s law for thermody-
namic equilibrium in isothermal enclosure, the absorptivity and emissivity are equal.

Hence, the absorbed and reflected heat fluxes, ¢, and ¢,, are given by

¢a(X) = €(x) ¢:i(x), (4.85)
(%) = (1 — €(x)) ¢i(x). (4.86)

The total outgoing heat flux ¢, is the sum of the emitted and reflected fluxes:

Go(X) = qo(xX) + (%) = €(x) ossT(x) + (1 — €(x)) ¢:(x). (4.87)

What one actually needs for the global heat exchange calculation is the net radiation-
caused heat flux from the radiating surfaces, i.e., the difference between the outgoing

and incident fluxes:
7 (%) = (%) — @i(x). (4.88)

Using equations (4.87) and (4.88), the incident and outgoing fluxes at x are expressed
in terms of the net flux ¢"*4(x):
6(x) = 05T (%) — 55 ¢°(x),
(4.89)

Go(x) = ospT*(x) — 522 ¢ (x).

View factors

The total incident heat flux ¢;(x) is the sum of the contributions of the outgoing fluxes
¢o(x*) from all other points x* on the enclosure. If the system of surfaces is not closed,

the incident heat flux contains also the contribution from the space node.

Let dS and dS* be infinitesimal areas at points x and x*. The fraction of the incident

flux on dS that leaves dS* is calculated by

dgi(x) = K(x,X7) - go(x7) dS™, (4.90)
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where K(x,x*) is the surface view factor between x and x*. According to the Lam-
bert’s cosine law for diffuse radiation, whenever dS and dS* see each other, K (x, x*)
is given by the formula

[(x" —x) - n[(x* — x) - n]

KX = = le =) - o0 =P

, (4.91)

where n and n* are the unit normals to dS and dS* (these are outer normals on the
surface of the radiating body). On the other hand, when dS and dS* do not see each
other, K (x,x*) vanishes:

K(x,x") = 0. (4.92)

Hence the view factor K(x,x*) is always symmetrical:

K(x,x") = K(x*,x). (4.93)

Space node

Since Dupret et al. [86] consider the Czochralski process with full casing, a modification
has been made here by including additionally a formalism in terms of the so-called
space node in order to reduce the task and avoid calculating a fully closed radiating
surface system of the floating zone process. The space node characterizes the influence
of the surrounding space. It accumulates all the radiative heat flux not incident on the
explicit surfaces and does not reflect anything but radiates back as a black body with
an effective temperature, the ambient temperature 7,,;,. Hence, for the space node,

the outgoing radiation heat flux (4.87) reduces to
go(space) = ospT i, (4.94)

It is also assumed that a space view factor K®P*°(x) may be defined so that it fulfills

two equations:

e The part of incident flux at point x that is supplied by the space node equals
K®Pa¢(x) - g, (space).
This leads, if using (4.90), to the following total incident heat flux at x:

¢(x) = K(x,X") - go(x*) dS™ + K*P*°(x) - go(space), (4.95)

x*€S

where S designates the whole radiating surface.
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e On the other hand, the integral incident flux onto the space node contributed by

a radiating surface element dS* positioned at point x* equals
Kspace(x*) . qO(X*) dS*’

where ¢,(x*) is the outgoing flux at x*. Adding the integrated contribution of
the same surface element d.S* over the whole surface S leads to the total outgoing

power from dS*:

¢o(x*)dS™ = / [K(x,X") - qo(x") dS™] dS 4+ K*P*°(x") - go(x*) dS™.

x€ES

Dividing both sides of the last equation by ¢,(x*) dS* leads to an integral relation the

view factors satisfy:

/ K(x,x*)dS + K*P¢(x*) = 1. (4.96)
xX€eS

The obtained equation (4.96) yields K®*P*°(x*) for each x* € S if the calculation

procedure of K(x,x*) is known.

Radiative integral equation

To write the integral equation for the net heat fluxes ¢"24(x), the expressions (4.89)
and (4.94) are substituted into (4.95):

qrad(x)_ 1 —e(x") % x*) ¢4 (x* *
) / ) Kex) g dS

= O'SBT4(X) — USBT;lmb

KPP*ee(x) — / ossT*(x*) K (x,x*)dS*.
x*es

In the special case of a closed system, i.e., without free surrounding space, we have

K®Pa¢(x) = 0 and the above equation reduces to the 3D integral equation in [86].

Using (4.96) and (4.93), we obtain the final form of the 3D integral equation for an

open set of radiating surfaces:

) [ L)
0 Loy e KX as

= osp [T"(x) = Tommp) — / L0 [T (x*) — Tt,,] K(x,x*)dS*. (4.97)
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2D radiative integral equation and the axisymmetric view factor K.

The next step is to take into account the axial symmetry of the radiating surface S.
Let 7, # and z denote the cylindrical coordinates of the point x and let p(S) stand
for the intersection of the axisymmetric surface S and the half-plane § = 0. The

“axisymmetric view factor” K.(x,x’) is defined then by the integral
Ko(x,X) = 2 / K(x,x")do" (4.98)
0
with the following x, x" and x* given in Cartesian components:

x =(r,0,2) € p(S)
x' =(,0,z2)€p(S) (4.99)

x* = (r'cos0*, r'sinf*, 2') € S.

For each x € p(S) we rewrite the integral equation (4.97) in the 2D form

qrad(x) _ 1_6(X/) r x.x) " (x") ds’
) /x@@ ) Relex) g d

= ogp [T*(x) — T] — / osg [T(x) — To] 7' Ko(x,x)ds’, (4.100)
x’'ep(S)
where s is the curvilinear abscissa on p(S5).

According to equations (4.93), (4.98), (4.99) and keeping in mind the invariance of
the system with respect to rotational transformations, it is easy to proof that the
axisymmetric view factors K.(x,x’) obey the same symmetry rule as the 3D view
factors K (x,x*):

K.(x,x") = K.(X/,x). (4.101)
Considering the relation (4.96), there is an analogous rule for the axisymmetric view

factor, too. By using the equations (4.93), (4.96), (4.98), (4.99) and the identity

2T

Jores K(x,x*)dS* = fx’Ep(S) [ o K(x,x*)do*| r'ds’, we obtain

/ r' K.(x,x')ds" + K%*°(x) = 1. (4.102)
x'ep(S)

Calculation of the axisymmetric view factor

In what follows, we keep the designations (4.99) considering x, x’, x* and also introduce

the following expressions in Cartesian components for the respective unit normals n,
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n’ and n* (outer normals on the surface of the radiating bodies):

n = (coso, 0, sin @)
n’ = (cos¢’, 0, sin¢’) (4.103)

n* = (cos ¢’ cos 6, cos ¢’ sin 0*, sin ¢'),

where ¢ and ¢’ stand for the polar angles of the vectors n and n’, respectively, in the

plane 6 = 0.
Introducing the vectors (4.99) and (4.103) into the equation (4.91), we can express the

dependence of K (x,x*) on 6*:

a +b cos0*)(a" + V" cosb*)
7 (a+ b cos 0*)?

K(x,x*) = K(0%) = ( (4.104)

?

where a,b,a’, ¥/, a”,b" only depend on r, 2,1, 2/ ¢, ¢ (which are fixed) but not on 6*.

The explicit expressions are:

(

a =r*4+r?+ (2 —2)?

b = —2rr

a =rcosp— (2 —z)sing
b = —r' cos¢

a’ =1 cos¢ + (¢ — z) sing’
b" = —r cos ¢’

Integrating equation (4.104) with respect to #* and taking into account that a? > b?
leads to the primitive function I(6) of K (6*):

10) = /Oek(e*) do*

a—lb) tan9/2> + C

sin 6
a+bcosf’

= A0+ B arctan ( (4.105)

where coefficients A, B and C are functions of a,b,a’,b’,a”,b”. The expressions of the

coefficients (not given explicitly in [86] ) have been obtained as follows.
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If r#0,r #0 and x # x/, then

, by

A pu—
7 b?
_a3b/b//+2ab2b/b//+ab2a/a//_b3a//b/_b3a/b//

T2 +\/(a+b)(a—"0b)(a+Db)(a—Db)
- _(ab —bd) (abd" —bd")
L wb(a+b)(a—0b)

B =2

If " #0and x # x’ but r =0 (which implies b=10" =0 ), then

a a
A —
T a?
B =0
C _ a//b/
\ Ta

If »#0and x# x' but 7 =0 (which implies b =10 =0 ), then

i

a a
A =
T a?
B =0
C _ a/b//
\ Ta

If x =x' (which implies a+b=a+b0 =a"+b"=0)or r=1" =0, then

i

( aa
A:
T a?
§B =0
C =0
\

To calculate the axisymmetric view factor K.(x,x’) we need to know the range © of

values of §* for which K (x,x*) does not vanish:
K@#*)>0 & 6 eo. (4.106)
It is possible to characterize © as a set of intervals (6, Ow,) :

O = (Omer rr), 0 < Oy < Oy, < 7. (4.107)

(2
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According to (4.98), (4.104) and (4.105), knowledge of © allows to calculate the ex-

pected result:

(x,x' _QZ (Ort) — 1(Oumy))- (4.108)

In order to obtain O, the values of 6,,, and )y, must be detected considering the viewed
and hidden parts of the radiating surfaces. It is done following closely the analytical
approach described in [86], which is based on the cylindrical symmetry of the system.
Since the procedure is complex and described well in the reference, the details are

omitted here.

4.7.2 Numerical implementation of the radiation model

Discretization of the integral equation

rad(x) along the

In order to obtain the distribution of the net radiation heat fluxes ¢
radiating surface S with fixed distribution of temperature 7'(x), the equation (4.100)
is discretized and solved numerically as a system of linear equations by means of the

Gauss procedure.

The surface S is discretized to coaxial ring-type elements S,, where ¢ represents the
element index. For the corresponding line segments p(S,), the length L, and the mid-
point x* = (r,0,z") € p(S,) is considered. Inside the ¢-th element, the emissivity e,
the temperature 7 and the net radiation heat flux ¢ are assumed constant and are

rad

denoted by ¢,, T, and ¢**¢, respectively. The quantities ¢"¢ are the ones to be found

via the solution of the radiation equation (4.100), which is discretized by splitting
the integrals [, ep(S)
midpoint, a system of linear algebraic equations with respect to ¢/ is built up (index

into sums ), fx rep(S))" By writing the equation at each element

¢ runs over all elements):
1
Z —[0, — (1 —¢€) V- rad = OsB Z ok — Vi) Tk Tamb) (4.109)
;9

where §,, is the Kronecker symbol and V,, is the designation for the integral over the

7-th element:

Vi :/ rK.(x",x") ds’. (4.110)
x'ep(S;)
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Approximation of integrals and speed optimization

The building of matrix for the system of equations (4.109) includes calculation of the
axisymmetric view factors K.(x,x’). Each calculation of a view factor contains a run
through all surface elements to detect the visible and hidden parts (see [86]). Thus
there is a threefold run through all surface elements, which makes the matrix building

time-critical.
To reduce the necessary computational resources, the simplest approximation for the
integrals (4.110) is used, which is justified by a small size of the elements:

V, = L,-r" K.(x",x"). (4.111)

J 1)

Due to the symmetry property (4.101) of the axisymmetric view factors, we actually
need to calculate only those view factors K.(x}", x}") with 2 < 7. To reduce the amount
of necessary calculations to obtain the values of the view factors, different tricks related
to the algorithm detecting the visible and hidden parts have been used. So, during
calculation of a certain K.(x}",x}"), we have to run through all the surface elements
and check if they are the “hiding elements”, i.e., if they partly or fully hide element
1 from element j. It is possible, however, to use different strategies to decrease the
number of elements that have to undergo the control. For example, we exclude from
consideration as an eventual hiding element the elements whose z-coordinate is higher
or lower than both z, and z,. We stop the control run after the first detection of a fully
hiding element. In this context much helps also a prior control of the elements 2 and

7, because they often are oriented in a way that one of them is a fully hiding element
itself.

The result of the used algorithm optimizations was a considerable reduction (about a
factor of 20) in the necessary computational resources for the view factors calculation

and building of the radiation matrix.

Test of precision
According to equations (4.102) and (4.110), the following equality holds:

NV, K =1, (4.112)

J
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where

Kzspace = Kspace(Xin)‘

Using the identity (4.112), we can check the accuracy of the approximated integration
(4.111) by a similar method as done by Dupret et al. in [86]. We verify the deflection
from 1 of the left-hand side of (4.112) in locations from which the surface element d.S
may not see the space. In these locations the space view factor K®P*° is zero. We
have detected the error level 3-4%, which can be regarded as very good in the context
of the reference work [86], where the authors notice errors even about 70-80%. They
have solved this problem by subdividing selected surface elements. Our good success
without the additional measures is obviously a consequence of the relatively small sizes

of the surface elements we use.

4.8 Coupling of all models in FZONE
4.8.1 Temperature — radiation coupling

The radiating surfaces include the surfaces of the inductor, which is kept cold by means
of cooling, and, eventually, one or several reflectors. In the present implementation,
however, the temperature field in these bodies is not calculated explicitly but the
inductor surface temperature Ti,q and the reflector surface temperature T,.q are taken
as fixed model parameters and applied for the radiation calculation, together with the
respective emissivity values e;,q and €. Also the temperature of the open melting
front is fixed and equals the melting point temperature of silicon. The temperature
on the rest of the radiating surfaces has to be calculated by taking into account the

radiation.

The previous description of the calculation of the net heat fluxes ¢**4(x) (see Section
4.7) included the distribution of the temperature 7'(x) at the radiating surfaces as
fixed parameters in the equations. To obtain the actual temperature distribution on
the surfaces where it is variable, the temperature calculation inside the silicon parts
and the radiation calculation have to be repeated several times. The view factors for

a constant geometry need meanwhile to be calculated only once.

Each of the separate temperature calculations in crystal, melt and feed rod is performed

iteratively. The calculation of temperature inside the melt in presence of convection
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was described in details in Section 4.6. The calculation of the temperature in crystal
and feed rod is also performed with FEM but is simpler than the calculation in melt
since no fluid flow has to be calculated parallel to temperature and no stabilization
is needed (hence a simple Bubnov-Galerkin formulation can be used). Nevertheless,
the convection term due to the constant downwards movement of the crystal and feed
rod is taken into account. Also taken into account is the temperature dependence
of the thermal conductivity of solid silicon, which makes the temperature equation
non-linear. Another source of non-linearity (at the global level though) is the radi-
ation heat exchange, which is taken into account as heat flux ¢"4(x) via boundary
conditions in each of the separate temperature calculation procedures. The coupling
of the temperature calculations in the separate parts of silicon and the global heat ex-
change via radiation is performed in an outer iteration cycle where the last calculated

temperature distribution is the input for the next radiation calculation and vice versa:

= Ty — qffl‘)i — Ting1) — qff;il) — ...

If the intermediate results for temperature, T(,), are calculated till a full convergence
of the temperature iterations in crystal and feed rod, then the outer iteration sweep
diverges due to the non-linearity of the global heat exchange. To avoid that, we
couple closer the temperature with the radiation fluxes by finishing the intermediate
calculation of T,y in the crystal and feed rod as soon as the maximum allowed
change in temperature with the respective iteration process is reached, i.e., when
max |T(n+1) - T(n)| ~ AnaxI(n). The value of parameter A, 1(,) is dependent on the
actual outer iteration. The starting value, A7), is a chosen constant, for example
5 K. In course of the outer temperature-radiation iterations the parameter AT is
modified automatically in order to get a convergence. The following simple rule is used:
if the sign of max{7T{(,11) — T(n)} is opposite to the sign of max{7(,) — T(n-1)}, then
let ApaxT(n+1) = %AmaXT(n), otherwise let AyaxT(n41) = AmaxI(n)- Such a treatment
avoids divergence and amplifying of the oscillations around the solution during the
temperature-radiation iterations, which is particularly important at the beginning
stages of calculation with the initial guess of temperature distribution strongly different

from the sought solution.
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4.8.2 Total calculation algorithm

The quasi-transient calculation algorithm leading to a steady-state (with respect to
the laboratory reference system) solution of phase boundaries is depicted in a sim-
plified way in Fig. 4.15. The choice of a time step (called also the geometry time
step and having the typical order of magnitude 1 second) and moving of the fronts
(see Section 4.1) is followed by finding the new ITP location, which is coupled to the
EM field (Section 4.2) and the free surface shape (see Section 4.4). The new ITP is
found by minimization of Dirp, the pressure imbalance at ITP. The following coupled
calculation of the temperature and radiation (see Section 4.8.1) yields the necessary
temperature gradients for the determination of the new front velocities. In the melt,
the temperature calculation includes also the calculation of the melt flow as described
in Section 4.6. The geometry time step is subdivided in smaller time steps (the hydro-
dynamics time step is typically only some milliseconds large) and a time dependent
flow is calculated. The relevant heat fluxes at the fronts are averaged over all hydrody-
namics time steps in frame of the current geometry time step. Sometimes reasonable
studies of the phase boundaries can also be performed by neglecting the effect of the
melt flow in order to reduce the computational recourses needed (see one such study
in Section 5.2). For more accurate comparisons to measurements, however, the flow

effect can occur being important, as it is shown in Section 5.3.

If the new front velocities are very different from the old ones, the precision might
be low due to the geometry time step chosen and the calculation is repeated with a
smaller time step. Otherwise, the next step is made and the calculation proceeds.
Such repeating of the last geometry step is, however, only reasonable in case the

hydrodynamics is neglected.

As the solution approaches a steady state, the front velocities diminish. We assume
that the stationary solution is found when all velocity values fall below a predefined
convergence level. In case the melt flow has strong effect, it can though occur that
there is no real steady state at all, due to the time-dependent character of the flow,

and the shape of fronts will be oscillating about some average shape.
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Figure 4.15: Simplified calculation scheme. The temperature calculation includes the

calculation of the melt motion in the floating zone.
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4.8.3 Zone height targeting by adjusting inductor current

It will be seen below in Sections 5.2— 5.3 that the most floating zone calculations have
as input parameter the zone height Hy, instead of the inductor current /. For targeting
the needed zone height, the following simple algorithm for the change of the inductor

current has been implemented in FZONE.

Before the calculation, the initial step of change of the electric current, Al), has to be
chosen (a typical value could be 16 A). The adjustment of I during the calculation is
then performed along with the convergence check (cf. the control box “steady state?”

in Fig. 4.15) before going to the next time step.

Let us assume we have finished the n-th time step (n > 1). Prior to modifying 7, the
actual step of change Al(,) is calculated from the previous value, Al,_1y. In doing
so, the values of the zone height at the actual moment, Hy,), and time step back,

Hy(,—1), are taken into account and compared to the target value H'8. If
(Hy"™® — Hyny) - (Hz"® — Hz(n-1)) <0

then the zone height (as a function of time) is crossing the target. In this case the

step of change of I is reduced:

AV

Al = max ( , Amin1> )

where the value of A,/ is a predefined constant (e.g., 1 A). In all other cases the old
step of change of I is kept: Al = Al(,—1). Hence: Al € [Apind, Al) for all n.

The current [ is only changed if the zone height is going away from the target:
|H7"™® = Hywy| > [Hy™ — Hyn).
In this case the new value of the inductor current is calculated by
Inir) = In) + sign(Hg"™® — Hz) - Ay,

where it has been taken into account that an increase in current is needed to augment

the zone height. If the above condition is not fulfilled, the old value of current is kept:
L) = Lny-

Despite the simplicity, the targeting algorithm showed a very good performance.
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5 Calculation of phase boundaries

The models for the axisymmetric calculation of FZ phase boundaries and their imple-
mentation in the computation code FZONE were described in Chapter 4. In the present
chapter, actual calculations with FZONE are undertaken in order to study the phase
boundaries in an 8 inch FZ growth process and to make a comparison of the results

to experimental data.

5.1 Calculation example

To illustrate the way of functioning of the phase boundary calculation, let us consider as
example an 8 inch FZ crystal growth process and neglect, for simplicity, the melt flow.
The silicon properties are taken from Table 3.1. The emissivity of the open melting
front is assumed equal to e5(7y). The chosen inductor current I, crystal radius Rc;,
feed rod radius Rp and other process parameters are summarized in Table 5.1. The
reflector is positioned like in Fig. 4.1, the main slit and three additional slits for the
HF inductor are considered as well like in Fig. 4.1. The effective width of each slit is

set 2 mm. The modelling parameter [,,q;; is assumed equal to 0.5.

The initial rectilinear geometry used is shown in Fig. 5.1 together with three succes-
sive stages of the convergence illustrating a typical calculation progress. The vectors
of the front velocities in the reference system of inductor, v,, are vanishing as the
solution approaches the steady state. The initial melt, crystal and feed domains are
triangulated as needed for the FEM calculation. In the course of calculation, the finite
element mesh is adapted in every step and the triangulation is repeated time by time
due to the strong changes in shapes of the domains. The final mesh and the obtained

steady-state phase boundaries and the temperature field are shown in Figs. 5.2-5.3.

The lines of magnetic field of the HF inductor are depicted in Fig. 5.2. Most of
them are crossing the inductor due to accounting of slits in frame of the axisymmetric

approximation. The vertical separator drawn inside the cross-section of the inductor
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Parameter Symbol Value
Inductor current 1 1500 A
EM field frequency f 2.8 MHz
Single crystal radius Rer 102.0 mm
Feed rod radius Rr 77.5 mm
Single crystal pull rate Ver | 1.80 mm/min
Feed rod push rate VF | 3.12 mm/min
Crystal rotation rate Qe 5 rpm
Emissivity of inductor €ind 0.3
Emissivity of reflector Erefl 0.3
Temperature of inductor Tind 400 K
Temperature of reflector Trenl 1000 K
Ambient temperature Torb 600 K

Table 5.1: Calculation example: FZ process parameters and other input parameters.

marks the end of the additional slits. At larger distances from the center, the few field
lines still going through the inductor are due to the main slit. The influence of the

end of the additional slits on the shape of the open front can be observed.

rad ot the silicon surfaces is

The distribution of the net radiation heat flux density ¢
shown by the varying length of the vectors in Fig. 5.3. Steep change in ¢**! takes place
at the inner and exterior triple points due to the different emissivity of the liquid and
solid phases. A slight influence of the reflector may be observed in the net radiation

flux from the crystal and the temperature field inside the crystal.

The numerical solution of the ITP region and the respective finite element mesh in the
melt and feed are in view in Fig. 5.4. The inner edge of the inductor shows the scale
in Fig. 5.4(a). An even closer view of the finite element meshes in the ITP vicinity is
demonstrated in Fig. 5.4(b). These two pictures display the smooth transition “melting
interface—open front”, which, however, does not seem smooth in large scale, e.g. in
Fig. 5.2. Since we use approximate model of ITP, the large-scale image (like Fig. 5.2)
should be considered as the result of the ITP calculation while Figs. 5.4(a) and 5.4(b)

mostly reflect the numerical approach.
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Figure 5.2: Steady state solution: the temperature isolines in the melt with step 2.9 K

(maximum 1745 K) and the magnetic field lines. Shown is also the finite element mesh

in the crystal and feed rod.
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Figure 5.3: Steady state solution: the temperature isolines with step 10 K in the
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Shown is also the finite element mesh in the melt.

at the silicon surfaces.
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A

Inductor

Figure 5.4: The inner triple point and its triangulated vicinity in the melt and feed

rod.
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5.2 Numerical study without melt flow

In this section, we use FZONE to study numerically the qualitative and quantitative
relationships between the various growth process characteristics as well as explore
the limits of the process parameters allowing the existence of a steady-state floating
zone. The existence of the floating zone is considered with the focus on having a
permanent liquid bridge between the feed melting front and the crystallization front.
It is ensured by a sufficient melting of the feed rod, especially of the central part of it,
and by avoiding a breakdown of the neck of the liquid zone, i.e., by the existence of a

stationary free melt surface.

We neglect at this stage the convective heat transfer due to the melt motion in the
molten zone and concentrate our attention on the other factors forming the zone
shape. This approximation is justified by the existence of many flow structures of
practical relevance (which can be created, e.g., by different ways of crystal rotation)
that influence the phase boundaries negligibly. Consideration of the influence of flow
on the zone shape and comparison with concrete measurement data is the subject of
Section 5.3.

We consider 8 inch FZ silicon crystal growth. The reflector position as well as the main
slit and the three additional slits of the HF inductor are considered like in Fig. 4.1. The
most relevant process parameters for the reference configuration are listed in Table 5.2,
for the rest of parameters see Section 5.1. The material properties of silicon used in
the calculations were given in Section 3.1. The chosen growth system configuration is

taken as the starting-point for the study of the influence of different modifications.

The steady-state phase boundaries, the temperature field and the lines of magnetic field

of the high-frequency inductor for the reference configuration are shown in Fig. 5.5.

5.2.1 Zone height and inductor current

A significant FZ process parameter is the height of the zone, Hz, i.e., the distance along
the vertical between the edge of the feed rod and the exterior triple point (ETP), at
which the exterior surface of the single crystal is adjoined by the free surface of the
melt. In the example in Fig. 5.5, the zone height is H; = 37 mm. It is possible to
adjust the zone height by changing the inductor power and keeping all other process

parameters constant. That is illustrated in Fig. 5.6 showing the phase boundaries
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Parameter Symbol Value
Inductor current 1 1510 A
EM frequency f 2.8 MHz
Needle-eye hole radius of inductor Ry 16.5 mm
Length of the additional slits Lt 36 mm
Radius of the additional slits Ryt 52.5 mm

= Ru + Lt
Single crystal radius Rey 102.0 mm
Feed rod radius Ry 77.5 mm
Single crystal pull rate Ver | 1.80 mm/min
Feed rod push rate Vr | 3.12 mm/min

Table 5.2: Parameters of the chosen reference configuration (some other model param-

eters see also in Section 5.1).

Additional slits
end here l/

S~ 1687 K

Figure 5.5: The temperature isolines in the melt (AT = 58 K) and the magnetic field
lines for the reference configuration. The zone height Hz = 37 mm, the crystallization

interface deflection He, = 48 mm and the melting interface deflection Hy; = 4 mm.
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\ 1610 A

Figure 5.6: Phase boundaries with different zone heights corresponding to inductor
current values from 1410 till 1610 A with step 50 A. The thick phase boundary lines

correspond to the reference case with 1510 A and Hz = 37 mm.

calculated for different inductor current values. The reference case with the current
1510 A and zone height 37 mm is shown with a thick line. The inductor current has
been changed up to 1610 A and down to 1410 A, i.e., only 100 A or 7% of the
reference current value. On both ends of the change area, the further change was
limited by physical reasons. So a further lifting of the current above 1610 A (say to
1660 A) leads to a cutting of the liquid zone neck. The disconnection of the upper and
lower part of the growth system prohibits a stable growth process. On the other hand,
if the inductor current falls below 1410 A, then the distance of the inductor to the
open melting front and meniscus becomes critical. This is seen also in Fig. 5.7. The
zone neck radius Ry of the liquid floating zone approaches the inductor hole radius
Ry as the current value diminishes. The other curve on Fig. 5.7 shows the zone height
as a function of the inductor current /. The curve Hyz([) is linear and it is explained

by the relatively small change of I.

The calculated region around the inner triple point in three cases with very high values
of I, implying large zone heights, is treated in more detail in Fig. 5.8. Despite the
numerical algorithm of the triple point calculation, which smoothes the angle between
the melting interface and open melting front, a sharp solid rim can be seen at ITP.
Although these modelling limitations hinder obtaining a more precise picture of ITP,

the calculation result agrees well with the tendency known in practice: uncontrolled
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f(l
5 _(),mm
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Figure 5.7: The zone height Hz/mm = 62.3 - I /kA + 56.9 and the zone neck radius

Ry as function of the inductor current I. The inductor hole radius Ry is shown too.

Figure 5.8: The calculated inner triple point in case of very high inductor current: [ =
1590 A, 1610 A, 1630 A.

growth of sharp pikes (“noses”) occurs at ITP in case of the zone height being too
large [87].

As discussed above, the change area of the inductor current allowing the existence of
a steady-state floating zone constitutes only about +7% of the absolute current value.
Although the power supply from the vacuum tube HF generator to the inductor and
the corresponding current value can be altered monotonically, e.g. with the power
supply from DC circuit, the spatial distribution of the HF current density on the
surfaces of current suppliers and other parts of the oscillation circuit makes it difficult
in praxis to measure the absolute value of the HF' electric current precisely enough

concerning that high growth system sensibility. Hence it is reasonable to use the zone
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height Hy as the control parameter of the process by relative changing of inductor
current to meet the target value of Hyz. In the following numerical studies, we adjust

appropriately the inductor current I to keep the zone height constantly at 37 mm.

5.2.2 Reflector

A side reflector (see the example in Fig. 4.1) is used in praxis to reduce the temper-
ature gradient and thermal stress in the crystal where high temperature differences
arise, particularly due to the large diameter of the crystal. In our calculation model,
we assume the silver reflector being slitted to avoid eddy currents, hence the magnetic
field lines are freely crossing the reflector as shown in Fig. 5.5. The comparison of the
phase boundaries with and without reflector is given in Fig. 5.9. The case with re-
flector positioned low is the reference configuration as shown in Figs. 4.1 and 5.5 with
inductor current 1510 A. In case with reflector positioned high, the reflector has been
shifted upwards so that the top edge of the reflector is approximately at the height
of the exterior triple point (ETP). In this case the inductor current is only 1460 A.
Without any reflector a much higher current (1600 A) is necessary in order to maintain
the same zone height. It is explained by the action of the reflector as a passive heater.
Another effect of the reflector is seen on the temperature field in the crystal center
where the heat flux from the crystallization interface has to find a long way down to
the lower edge of the reflector in order to radiate away through the free end of the
mono-crystalline ingot. Hence the presence of a reflector reduces not only the radial-
but also the axial gradient of temperature in the crystal. Consequently, the deflection
of the crystallization front, H¢,, becomes larger to ensure the balance of heat fluxes at
the phase interface. The calculation shows that without reflector the axial tempera-
ture gradient on the crystal axis near the phase boundary is about 8.7 K/mm whereas
with the low reflector, 7.3 K/mm only. Obviously the change in the temperature gra-
dient has not been fully compensated by the deflection of the crystallization interface,
because the lowering of the inductor power to preserve the zone height diminishes the
necessary augmentation of the crystallization interface deflection by reducing the heat
flux from the melt. Indeed, the axial temperature gradient in the melt center near
the phase boundary is about 1.0 K/mm and 0.56 K/mm without reflector and with
the low reflector, respectively. The maximum temperature difference in the melt is
reduced from 71 K (without reflector) to 58 K (with the low reflector) or even to 45 K
(with the high reflector). Also the increase in the deflection of the melting interface,
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Without reflector

\ Low reflector

High Without reflector
reflector \1

=~ Low reflector
Long reflector

Figure 5.9: Phase boundaries with the reflector positioned low or high, without the

reflector or with a prolonged reflector.

Reflector | I, A | AT, K | Hep, mm | Hy, mm
no 1600 71 35 2.2
low 1510 58 48 3.8
long 1460 45 45 8.6
high 1460 45 43 8.9

Table 5.3: Different reflectors (Hz = 37 mm).

Hyy, is explained by the reduction of the inductor power when applying a reflector.

Beside the low and high reflectors, a third example considered in Fig. 5.9 is a prolonged
reflector whose top edge coincides to that of the high reflector while the lower edge,
to that of the low reflector. Since the local action of the long reflector in the vicinity
of ETP is similar to that of the high reflector, the inductor power and the melting
interface are not changed significantly by replacing the high reflector by the long one.
The crystallization front, however, gets deflected slightly more than with the shorter
reflector (see Fig. 5.9). Hereby we see the pure effect of the reflector’s lower edge

height, without change of the inductor power.

The calculation results with different reflectors are summarized in Table 5.3: AT
stands for the maximum temperature difference in the melt, H¢,, for the crystallization

interface deflection and Hyy, for the melting interface deflection (as defined in Fig. 5.5).
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5.2.3 Pull rate

The pull rate of crystal is one of the most important FZ process parameters. During
the study of the zone shape at different growth rates the feed push rate was adjusted

to satisfy the steady-state FZ process condition:
Ve R: = Vo, RE,. (5.1)

The phase boundaries corresponding to the reference case with Vi, = 1.8 mm/min are
shown with the thick line in Fig. 5.10, the other lines correspond to different growth
rates. Table 5.4 shows the change of some parameters including the floating zone neck
radius, Ry, and the height of the free bulk liquid surface, Hy,, which is defined as
the vertical distance between ETP and ITP. The inner triple point, which delimits
the melting interface from the open melting front, has no exactly defined location in
frame of the fluid film model and the values of Hj, have an accuracy threshold below
0.5 mm. Since Hy depends strongly on the free surface angle at ITP, we also use
another characteristic quantity, the height of the zone neck, Hy, which is defined as
the vertical distance between ETP and the zone neck’s thinnest place, where the free
surface is vertical. Hy is dependent on the physical properties of the melt as well as

on the crystal size and neck radius determined by the inductor and feed.

The smaller the pull rate, the smaller the deflection of the crystallization front and
the higher the position of the melting interface. There exists a lower limit between 0.6
and 0.8 mm/min below which no steady-state floating zone for the considered 8 inch
process with the fixed zone height is possible. At that small pull rates, the melting
front stays above the inner edge of the inductor and enlarges the height of the free bulk
liquid surface, Hy,. If a critical value of Hy, (slightly above 18.5 mm) is exceeded, the
zone neck collapses due to the effect of surface tension. Nevertheless, the lower limit
of the pull rate depends substantially on the inductor and zone height. For example,
a stable free melt surface at a pull rate of only 0.1 mm/min can be made possible,
according to calculations, by means of enlarging the inductor hole diameter by 20 mm
and reducing the zone height to 33 mm, which helps to diminish the increase in Hy,.
Although Hj, reaches 19.5 mm (and Hy reaches 16.5 mm) in that case, the free melt
surface stays stable due to a large neck radius ( Ry exceeding 22 mm), which heightens

considerably the critical value of Hy..

With high pull rates, the deflection of both the crystallization and melting interfaces

increases. Especially the melting interface becomes steep. Despite the shape of the
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0.8 mm/min __

™ 2.8 mm/min y
/’/
0.8 mm/min
/
w
2.8 mm/min

Figure 5.10: Phase boundaries at different crystal pull rates from 0.8 till 2.8 mm/min

with step of 0.2 mm/min.

Ver (Vr), 22| I, A | AT, K | Hey, mm | Hy, mm | Ry, mm | Hy, (Hy), mm
0.8 (1.39) | 1510 80 31 1.1 73 | 185 (15.9)
1.2 (2.08) 1510 71 36 0.2 9.2 18.1 (16.0)
1.6 (2.77) 1510 62 44 2.1 10.3 17.1 (16.1)
1.8 (3.12) 1510 58 48 3.8 10.7 16.6 (16.1)
2.0 (3.46) 1510 54 54 6.3 11.0 16.1 (16.1)
2.4 (4.16) 1515 46 67 15 11.5 16.2 (16.2)
2.8 (4.85) 1525 40 84 33 11.9 15.9 (15.9)

Table 5.4: Different crystal pull rates (Hz = 37 mm).
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melting interface, the distance between the deepest point of the melting interface and
that of the crystallization interface is increasing with pull rate, in the considered area of
pull rates. Apart from the practical issues leading to crystal dislocation and cracking if
grown at too high speed with too steep crystallization front (as happens already above
2 mm/min), the limiting factor would be here the approaching of the open melting
front to the inductor, which does not melt the feed rod fast enough if the zone height is
fixed (see Fig. 5.10 showing the distance between the feed rod and inductor decreasing
with growth rate). The problem could be overcome by heightening the inductor power
and zone height appropriately. Another and unavoidable upper limit of the pull rate is
set by the total ability of the crystal surface to radiate the heat away. The maximum
growth rate can be achieved and the maximum heat can be emitted by the solid crystal
surface at the melting point temperature, i.e., when the crystallization interface nearly
coincides with the exterior surface of the crystal (a thin “nutshell” of crystal is left

over).

It is interesting that the zone height stays practically constant when reducing the pull
rate (and the feed push rate) at a constant inductor power. Hence the calculations
with fixed zone height for the pull rates about and below 2 mm/min correspond to the
inductor current 1510 A (see Table 5.4). At higher pull rates, a slightly heightened

inductor power was necessary, e.g., the case of 2.8 mm/min corresponds to I = 1525 A.

5.2.4 Single crystal diameter

FZ process development toward a larger single crystal size usually requires serious
modifications of the whole growth system including the HF inductor. Nevertheless,
for the purpose of illustration, we can consider here the zone shape with different
crystal diameters from 4 to 8 inches by keeping the inductor, the zone height and
the pull rate of the 8 inch process configuration. The reflector is removed to avoid
interference of different effects. We change the feed push rate, to satisfy the condition
(5.1), as well as the inductor power, to fuse the feed at the respective rate and keep

the zone height constant.

As seen in Fig. 5.11, the deflection of the crystallization interface is changing most
dramatically. The untypical convex crystallization front about the center of the 4 inch
zone is explained by the effect of the relatively long additional slits of the actual in-

ductor reducing the ratio of the heat supply in the central part to the heat supply in
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Rey, mm | Vg, 2221 I A | AT, K | He,, mm | Ry, mm | Hy, (Hy), mm
o1 0.78 1060 26 0 9.0 17.6 (16.7)
76 173 | 1305 | 44 13 9.8 17.2 (16.3)
102 3.12 1600 71 35 10.3 17.5 (16.1)

Table 5.5: Different single crystal sizes (Vo = 1.8 mm/min, Hz = 37 mm, no reflector).

r/l/

26 K TN

| 26K N N
44K_’,,//////////

AT=T71K
——————///

Diameter 4 in

A4

6in

>l 8in

Figure 5.11: Phase boundaries and the maximum temperature difference AT in the
melt for FZ processes with different crystal diameters (in all cases the zone height is

37 mm, the inductor is the same and no reflector is applied).

the periphery of the molten zone. Beside the deflection of the crystallization front, as
a consequence also the maximum temperature difference in the melt, AT, increases
rapidly with crystal diameter: the heat flux from the free melt surface has to be con-
ducted through a larger molten zone. Table 5.5 summarizes some calculation results
obtained with different crystal radii, Rc,, including the total height of the free melt
surface, Hy, and the height of the zone neck relative to ETP, Hy, as defined previ-
ously. We see that Hy, which was practically independent on the pull rate (see back
Table 5.4), decreases monotonically with crystal radius, whereas Hy, changes in a more
complicated way and is, for 8 inch zone, higher than in the case with reflector. The
value of Hy, stays however always (according to Tables 5.4 and 5.5) below the Heywang

limit for crystal and feed of strongly different diameters (see Section 2.2).
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Rp, mm | Vg, =2 | I, A | AT, K | Hy, mm
93.0 2.17 | 1580 58 1.4
77.5 3.12 | 1510 58 3.8
62.0 4.87 1440 o8 12
46.5 8.66 | 1395 56 39

Table 5.6: Different feed rod sizes (Hz = 37 mm, Vi, = 1.8 mm/min).

31 mm 93 mm

31 mm
(transient state)

Figure 5.12: Phase boundaries with feed rod radii form 93 mm till 31 mm. No sta-

tionary melting interface is possible with a feed rod radius of only 31 mm.

5.2.5 Feed rod diameter

The size of the feed rod enters the relation (5.1) and determines the feed supply speed
needed to grow the fixed-diameter single crystal with a given pull rate. In Fig. 5.12, a
series of calculation results with different poly silicon rods is shown. The feed diameter
has been changed from 186 mm down to 62 mm with a step of 31 mm. The pull rate
Veor = 1.8 mm/min is kept unchanged. The smaller the feed rod diameter, the larger the
feed push rate Vi and the deeper the melting interface deflection (see also Table 5.6).
It is seen that a too small feed rod size makes the steady state growth impossible and
a solid bridge is built between the feed and the grown crystal. The reason is the high
(about 19.5 mm/min for Rr = 31 mm) supply rate of the feed, which can not be fused

fast enough in the central part.
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33 mm, small zone height

N

63 mm

43 mm l

Figure 5.13: Phase boundaries obtained with varied length of the additional slits:
Rgix = 62.5;52.5;42.5 mm (Hy = 37 mm) and Ry, = 32.5 mm (Hz = 35 mm).

Ry, mm | Lgy, mm | Rgy, mm | I, A | AT, K| He,, mm | Hy, mm | Ry, mm
= Ry + Lgit
16.5 26 42.5 1600 73 53.7 -04 7.1
16.5 36 52.5 1510 58 48.4 3.8 10.7
16.5 46 62.5 1435 46 40.3 25 12.3

Table 5.7: Different inductor slit lengths (Hz = 37 mm).

The upper limit of the feed rod diameter is determined by the ability of the inductor

to ensure a sufficient slope everywhere at the open melting front so that the melt flows

constantly to the center and no accumulation and dropping of the melt occurs.

5.2.6 Inductor modifications

The dimensions and shape of the inductor have a crucial role in the performance of the

FZ growth process. Here we consider the effect of the inductor hole size and the length

of the additional slits. Both the increase of the inductor hole and the lengthening of the

slits reduce the induced power around the central part and shift the power maximum

on the free melt surface further outwards.

The phase boundaries shown in Fig. 5.13 demonstrate the effect of varied length of
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Small hole

Large hole

/

= Small hole

Figure 5.14: Phase boundaries obtained with varied radius of the hole of inductor:
Ry = 14.0;16.5;19.0 mm. To simplify the figure, the case Ry = 21.5 mm of Table 5.8

is not shown here.

105

Ry, mm | Ly, mm | Rgy, mm | I, A | AT, K| Hep, mm | Hy, mm | Ry, mm
= Ry + Lt
14.0 36 50.0 1560 63 50.4 0.8 7.6
16.5 36 52.5 1510 58 48.4 3.8 10.7
19.0 36 55.0 1465 54 46.0 9.2 13.3
21.5 36 57.5 1420 50 42.9 22 15.9

Table 5.8: Different inductor hole sizes (Hz = 37 mm).

the additional slits (see also Table 5.7). The slit length is reduced from Lg;; = 36 mm,

which is the reference configuration (Rg;; ~ 53 mm), to Ly = 26 mm (Rg;; ~ 43 mm)

and a steady-state solution is obtained. Another reduction of the slit length by 10 mm

leads to cutting of the zone neck at the defined zone height of 37 mm. It is, however,

possible to obtain a steady-state zone with that short slits at a smaller zone height of

35 mm (see the thin phase boundary lines in Fig. 5.13). It is theoretically possible to

remove the additional slits at all and to compensate the decrease of the zone neck radius

by a further reduction of the zone height (cf. Fig. 5.6) but it leads to a substantial

change of the open front’s slope, which may cause dropping of the liquid onto the

inductor from the insufficiently sloped surface.
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Increasing the length of the additional slits till Ly, = 46 mm (Rg; ~ 63 mm) leads
to a strongly deflected melting interface as well as reduced crystallization interface
deflection, due to the reduced inductor power. A further increase of the slit length
by 10 mm does not yield any stationary solution, as the melting front meets the

crystallization front.

Another possibility to change the power distribution and the neck radius considerably
is the variation of the inductor hole size (see Fig. 5.14 and Table 5.8), which, however,
does not impact remarkably the open melting front, excepting the neck region. The
length of the additional slits has been left unchanged. Like in case of the slit length
variation, the lower and upper limits of the inductor hole size are determined by cutting
of the zone neck and the melting interface deflection, respectively. That demonstrates

the necessity for a needle-eye inductor.

5.2.7 Frequency

According to the equations (3.1) and (3.14), the EM field frequency f influences di-

rectly the integral surface density of the induced power:

EM f -2
L 2
q 0.8 \/:Zef7 (5 )

where o is the electrical conductivity of the solid or liquid silicon and i, the local
effective surface current, which depends on the inductor current I. Hence increasing f
results in higher ¢® if not compensated by a reduction of 7. A more complicated effect
of the frequency takes place at the open melting front, which is covered, according to
the assumed model, by a thin fluid film. The higher the frequency, the larger the part
of the electric current induced inside the liquid film. Due to the different electrical
conductivities of the liquid and solid silicon, the total heat amount depends on the
ratio of the fluid film thickness and the EM skin layer depth. These effects are taken
into account in the mathematical model and produce the results illustrated in Fig. 5.15
where the phase boundaries corresponding to the reference frequency and a 4 times
higher frequency are shown. In order to keep the zone height unchanged, the inductor
current is reduced from 1510 A in the reference case to 1160 A in the high-frequency
case. We see that due to the change of the placement of the open melting front and
the subsequent redistribution of the surface currents 7%, the necessary decrease of the

inductor current I could not be estimated precisely enough by the expression (5.2).
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Figure 5.15: Influence of a 4 times higher EM frequency on the phase boundaries.

If not counting the strong changes in the inductor current, the influence of the EM
frequency on the phase boundaries is weak and the frequency change considered in
Fig. 5.15 has been chosen very large in order to see that influence good enough. For
real FZ growth, however, the frequency might not be changed in a so wide range
without disturbing the process performance. A high frequency necessitates a high
voltage at the inductor and increases the risk of arcing with subsequent EM field
breakdown. On the other hand, the frequency must stay high enough to ensure a
small field penetration depth into silicon (i.e., the skin effect) and consequently a
stable melting of the feed rod. A too low frequency leads to heat generation deep in

the solid, leaving the surface cold and deteriorating the melting process.

5.3 Influence of melt flow and its verification

The above study in Section 5.2 was performed without taking into account the melt
flow. This was justified by the wish to focus attention on the pure effect of other
parameters, whereas the effect of melt flow can vary depending on the rotation of the
crystal, which would make due to the additional degrees of freedom (the art of crystal
rotation) the above parameter study too immense and resources consuming. In some
cases, it can even be justified to neglect the effect of melt flow at all (e.g., it was stated
in [45] that the melt flow has only little influence on the phase boundaries). The

present axisymmetric flow calculations with FZONE show, however, that the flow can
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Figure 5.16: The photo-scanning resistivity measurement in the vertical cross-section
of an 8 inch FZ crystal (Siltronic AG) has been performed at the Institute of Crystal
Growth [88].

also have a significant influence on the phase boundaries, particularly on the shape of

the crystallization front, which is characterized, for simplicity, by its deflection Hc.

The melt flow effect is illustrated here for two cases, in which the calculations without
hydrodynamics yield a crystallization interface deflection significantly different from
the measured one, and for one case where the hydrodynamic influence is small. The
respective interface forms have been determined from the photo-scanning resistivity

measurements in the vertical cross-section of the grown crystal [88].

5.3.1 FZ 8 inch process

The first example is an 8 inch floating zone. The measured (see Fig. 5.16) deflection of
the crystallization interface is about 44 mm, whereas the calculation without account
of hydrodynamics yields a deflection of about 50 mm. Hence the flow calculation
was used to explain the difference. The flow showed a time-dependent character, see
Fig. 5.17 for the fluctuations of the maximum and minimum values of the stream func-
tion, characterizing the intensity of the flow vortices in one or the opposite direction,
respectively, and the maximum of the melt temperature. Due to the mixing of the
fluid, the latter is significantly lower than the characteristic temperature maximum in

calculation without hydrodynamics (see, e.g., the value of AT = 58 K in Fig. 5.5).

As can be observed from the frames shown in Fig. 5.18, the time dependence of the
distributions of the stream function and temperature is particularly strong in the

peripheral part of the molten zone, i.e., in the region near the exterior triple point,
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Figure 5.17: The calculated fluctuations of the maximum and minimum values of the
stream function (the upper figure) and the maximum of melt temperature relative to

the melting point, AT (the lower figure).
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Figure 5.18: Isolines of the stream function (left) and temperature (right) in the melt
in four successive time instants with interval of 0.5 s. (The transient flow calculation

was performed with a much smaller time step of 2 ms.)
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Figure 5.19: Comparison of the FZ 8 inch phase boundaries calculated with hydro-
dynamics (thick lines) to the measured crystallization interface (thin line) and to the
calculated interface without taking into account the melt flow (the thin line with larger

deflection).

where the Marangoni force tries to build a vortex with a movement towards ETP
along the free melt surface, whereas the electromagnetic force acts in the opposite
direction. This unstable vortex structure in the peripheral part of the zone has an
influence on the deflection of the crystallization interface, which consequently shows
a fluctuating character too. Since the melting/crystallization processes are relatively
slow in comparison to the melt flow fluctuations, the changes of the front deflection
take also relatively much time and long calculations of the time dependence of the flow
are needed to bring the crystallization interface to a steady-state position®, if started
from a bad initial guess. In Fig. 5.20, calculations with 3 different initial guesses
are considered: 40, 46 and 43 mm front deflection. It can be seen that in the first
two cases the interface showed clear tendency to move to a larger or smaller deflection,
respectively. Only for the third initial guess it stayed at the level slightly above 43 mm,
which is hence the found value of the interface deflection under the influence of melt

motion.

The picture showing the calculated zone shape and a comparison to the calculated
interface without accounting melt hydrodynamics, as well as the curve of the interface

drawn from the photo-scanning measurement is shown in Fig. 5.19.

1 Steady-state position for the crystallization interface means that the fluctuations take place

around a stable average shape. Ideal steady state, i.e., without fluctuations, is not possible if taking

into account the time-dependent melt motion.
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Figure 5.20: Calculation of the FZ 8 inch phase boundaries taking into account melt
flow: convergence of the deflection of the crystallization interface to a steady-state

value slightly above 43 mm.
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Parameter Symbol Value
Zone height He 22.7 mm
EM frequency f 3 MHz
Needle-eye hole radius of inductor Ry 15 mm
Single crystal radius Rey 25 mm
Feed rod radius Ryp 25 mm
Single crystal pull rate Ver | 2.8 mm/min
Feed rod push rate Vr | 2.8 mm/min
Crystal rotation rate Qor 6 rpm

Table 5.9: Parameters of the 2 inch process.

5.3.2 FZ 2 inch process

The second example is a 2 inch floating zone with inductor placed relatively close to
the free melt surface (Fig. 5.21). The main process parameters are listed in Table 5.9.
The measured deflection of the interface is about 7 mm [88], the calculation without
hydrodynamics yields, however, a much smaller deflection of 1.8 mm. Like in case of
the 8 inch example, this difference can be explained by the effect of the melt motion:
the interface deflection fluctuates due to the unstable flow around 6-7 mm, depending
on the calculation approach used (see Fig. 5.24). In the following we discuss it in more
detail.

Due to the proximity of the inductor to the free melt surface, the EM forces in the
melt create a very strong flow with a permanently changing pattern (see Fig. 5.25).
With the Reynolds number of the flow sometimes exceeding 10000, the calculation
by an axisymmetric model is not reliable, because the non-axisymmetric modes of
the flow instability are not taken into account. Since the goal of the calculation was,
however, just to demonstrate that the large difference between the thermal calculation
without HD and the measured interface deflection can be explained by the effect of

melt motion, the demands to DNS? were relaxed and the melt flow was calculated

2 DNS stands for Direct Numerical Simulation, i.e., the direct calculation of turbulent flows by the
Navier-Stokes equations. Differently from the turbulence modelling, where the mean-flow equations
instead of the Navier-Stokes equations are solved, the DNS calculation has to be able to resolve all
the scales of motion, hence the computational cost of such a calculation is immense (some estimations

are given in [89]).
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Figure 5.21: Comparison of the FZ 2 inch phase boundaries calculated with hydrody-

namics (thick lines) to the calculated interface without taking into account the melt

flow (thin lines).
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Figure 5.22: Finite element grid in the melt as used for the calculation of the 2 inch

floating zone. Because the phase boundaries move, the grid is regenerated from
to time during the calculation.
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Figure 5.23: Example of the direct effect of HD on the free surface shape: due to

instantaneous strong melt flow along the free surface, its distance to the inductor
increases by up to 0.8 mm in comparison to a calculation without accounting for this
effect.

with the axisymmetric solver of FZONE on the grid shown in Fig. 5.22 by using a time
step of 2 ms.

First a calculation for 3900 seconds was done by starting from an initial guess of
crystallization interface with deflection of 7 mm (i.e., the experimental value). This
part of calculation is shown on the top graph in Fig. 5.24. It should be taken into
account when interpreting these results that, as usually in FZ calculations, the zone
height was kept constant by changing the inductor current. The targeting of the zone
height was done by using the algorithm described in Sec. 4.8.3 (with the parameter
Apinl = 1 A). The continuation of the calculations from ¢ = 3900 s to 5600 s was
done with different approaches as shown in the middle and bottom graphs of Fig. 5.24.
So some calculations were made with keeping the inductor current constant at I =
488.9 A, which was the average value of the previous 3900 s (see the thin curves in the

graphs).

Because of the strong flow in contrast to typical 4-8 inch floating zone processes, the 2
inch example was calculated by accounting for the direct effect of the melt flow on the
shape of the free surface, which was considered in Sections 3.5 and 3.6. It was observed
that although important at the time instants with strong flow along the free surface
(see Fig. 5.23), this effect did change the average value of the interface deflection just
slightly, as seen if comparing the curves in the middle graph to those in the bottom
graph of Fig. 5.24, the latter having this effect turned off. These differences seem to

be below the numerical level of accuracy of the calculations.
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Figure 5.24: Calculation of the FZ 2 inch phase boundaries: fluctuation of the deflec-

tion of the crystallization interface about 7 or 6 mm with hydrodynamics (HD), and

the convergence to 1.8 mm if HD is turned off.
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Figure 5.25: Some typical stream function pictures of the very dynamical melt flow
in the calculated 2 inch floating zone. The arrows show the instantaneous moving

velocities of the solid-liquid phase boundaries. For the time instants ¢, cf. Fig. 5.24.

The proper result of the 2 inch floating zone study is shown in the middle graph of
Fig. 5.24: turning the hydrodynamics off lets the crystallization interface assume a flat
form very far from the measured one, while the calculation with hydrodynamics shows
fluctuations about a large value of deflection. Hence the measurement result with the
surprisingly large deflection can be explained by the convective heat transport in the

melt.

The convection effect reduced the maximum relative melt temperature from AT =
53 K (without HD) to AT = 31 K, i.e., by 22 K, which is more than in case of the

8 inch floating zone with only 13 K reduction.
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Figure 5.26: Calculation of the FZ 4 inch phase boundaries: fluctuation of the deflec-
tion of the crystallization interface about 9.3 mm with HD, and the convergence to
10.0 mm if HD is turned off. Both values agree well with the experimental value of ca.
10 mm. Both calculations have been started from an initial guess calculated without

HD on a coarser grid.

5.3.3 FZ 4 inch process

Let us shortly mention another calculation example, a 4 inch floating zone process
with pull rate 2.8 mm/min, where the influence of the melt flow did not bring much
change in the thermal field: the convection effect reduced the maximum relative melt
temperature from AT = 31 K (without HD) to AT = 27 K, i.e., by only 4 K. The
corresponding changes of crystallization interface were negligible. As seen in Fig. 5.26,
the difference between the interface deflections calculated with and without hydrody-
namics is about 0.7 mm, which can be considered being below the level of achievable
accuracy if accounting the approximations used in the calculation model, e.g., the ax-
isymmetric approximation of the EM field of the slitted inductor, and if the calculation
is not tuned by empirical parameters. Hence in this case, both calculations show a

good agreement to the measured interface deflection, which was ca. 10 mm [88].
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6 3D Melt low and rotational striations

6.1 Introduction

The kind of axisymmetric modelling of floating zone growth like described in the
previous chapter yields, typically, a good approximation for the shape of the phase
boundaries that can be further used for the modelling of dopant incorporation or
defect distribution in the grown crystal. There are numerous works by other authors
(see Section 2.2) using the axisymmetric approximation for the dopant transport study
in the floating zone, while the question about the influence of the three-dimensional

effects even in an axisymmetric floating zone can be posed as well.

The needle-eye inductors for FZ processes are designed to stand strong electric currents
at high frequencies, which implies a high voltage between the current suppliers and a
danger of electrical breakdowns. Consequently, the needle-eye inductors are pancake-
shaped and have just one turn. The EM field created by such an inductor and the
corresponding distribution of the heat sources and forces at the silicon surface are
only roughly axisymmetric. The non-symmetry influences the melt flow and generates
micro-inhomogeneities of resistivity in the grown crystal rod, which are known as
the so-called rotational striations. The unwanted rotational striations arise due to
the rotation of the crystal relative to the inductor under the conditions of disturbed
symmetry and repeat periodically in the longitudinal direction of the crystal with the
wave length being determined by the growth rate and single crystal rotation speed.
Since the rotational striations are originated by 3D effects, they cannot be calculated

within limits of a 2D model.

There are two main objectives of the present chapter: 1) to see the effects of the
non-symmetry of the inductor on the structure of the three-dimensional melt flow and
2) to examine the rotational striations. The three-dimensionality of the flow is created
in our model by the non-symmetric shape of the inductor only: we make here an

approximation by assuming that the shape of the free melt surface stays axisymmetric.
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In what follows, a series of publications! where the 3D flow and the rotational striations
have been calculated numerically is included. The software used for these calculations
was the commercial computational fluid dynamics package FLUENT ({90, 91]). Unlike
the self-developed code FZONE, which calculates the flow in terms of the ¢y — w vari-
ables by the Finite Element Method (see Section 4.6), FLUENT is working with the
velocity—pressure variables on basis of the Control Volume Method (known also as
the Finite Volume Method), which is described e.g. in [92]. A comparison between the
two approaches for a 2D flow was mentioned in Section 4.6.9. The approach used in
the own-made code FZONE was more effective in 2D computations, the present study,
however, deals primarily with 3D phenomena. Due to practical reasons, the numerical
approach in the 3D calculations is coarser and fine effects like influence of the fluid

flow on the zone shape are neglected.

6.2 Included paper 1: Effect of EM and Marangoni forces

The first of the papers is mostly devoted to the analysis of the influence of the different
forces on the melt surface. Due to the high frequency of the EM field, the EM forces
act in a thin boundary layer of the melt and, as quasi-surface forces, counteract the
surface forces created by the gradient of the temperature-dependent surface tension,
i.e., the Marangoni forces. A schematic illustration of the action of forces in a cross-
section of the molten zone is shown in Fig. 3.1. The EM- and Marangoni forces have
also minor azimuthal components due to a non-axisymmetric distribution of the EM

power density and temperature along the free melt surface.

In order to distinctly see the individual impact by EM- and Marangoni forces on the
melt flow and rotational striations, studies have been carried out with neglecting either
EM forces or Marangoni forces (or both of them) while buoyancy forces stay always
accounted. Physically, the results with neglecting Marangoni force may be interpreted
as a model of a case with lower frequency of EM field of inductor (domination of EM
force) while the results with neglecting EM force, as a model with higher frequency of

the field (domination of Marangoni force).

The results of the studies have been published as included below in the article [63] in

the journal Magnetohydrodynamics.

L The author of thesis acknowledges gratefully the contribution of about 10% by the coauthors of
the included publications. The text of the publications has been written by the author of thesis.
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MATHUTHAA TUAPOIMHAMMEKA. — 1999. - T. 35, N¢ 3. — C. 278 - 293

G. Ratnieks!, A. Muiznieks'?, L. Buligins', G. Raming?® A. Miihlbauer’

!Department of Physics, University of Latvia, Zellu str. 8, LV-1002, Riga, Latvia
?Institute for Electroheat, University of Hanover,
Wilhelm-Busch-Str. 4, D-30167, Hanover, Germany

3D NUMERICAL ANALYSIS OF THE INFLUENCE OF EM
AND MARANGONI FORCES ON MELT HYDRODYNAMICS
AND MASS TRANSPORT DURING FZ SILICON CRYSTAL GROWTH

I". Pamnuexce, A. Mytixcnuerc, JI. Byavizutc, I'. Pamunz, A. Mioavbayap

3D YACJIEHHBIN AHAJIN3 BJUAHASA SJIEKTPOMATHUTHBIX CHJI
M CAJI MAPAHT'OHH HA THAPOAUHAMHRY PACIIJIABA 1 IIEPEHOC MACCBI
IIPHU BLIPAIITUBAHUHA KPUCTAJIJIOB KPEMHIA METOJIOM 30HHOM ILJIABKH

C moMoIIpI0 TPEXMEPHOr0 YHCJIEHHOI'O MOJEJIMPOBAHWS IIPOBEJEH AHAJIA3 BIIUSHUS
OM cun u cun MapaHroHu Ha rEAPOSUHAMUKY PACILIABA M IIPOIECC MAaccolepeHoca
IIp BbhIpalllUBaAHUUW KPHUCTAJLJIOB METOJ0M 30HHOW ILJIABKU C MeTOHI/IROﬁ HNUT'OJIBHOT'O
VIIKa, WCIOJIb3YyeMON B IIPOM3BOJCTBE BHICOKOKAUECTBEHHBIX KPUCTAJIOB KPEMHMUS
goswroro guamerpa (> 100 mm). IlocKobKYy ILIOCKMIT MHAYKTOP MMeeT TOJIBKO OJUH
BUTOK, paclpejesieHNus] SJIEKTPOMATHUTHOIO II0JI, MCTOUHWKOB TemaoThl u OM cun
SBJIAIOTCA 0CECIMMETPUYHBIME TOJIBKO NPUOIMKEHHO. JTa HECUMMETPHSA COBMECTHO C
BpAallleHuEM KPHCTAJIA OTPAKAETCS HA TMAPOAMHAMIYECKOM M TEPMUYECKOM IIOJISIX,
a Tak)Ke Ha I0Jle KOHIIEHTpAIlUM IIpUMecell B paCIJIaBJIeHHON 30He M BBHISHIBAET B
BHIPAINMBAEMOM KpuCTajule (QIIyKTyaluy yAEJIbHOIO 3JIEKTPUYECKOTO COIIPOTHBIIE-
HWSI, KOTOPbIE M3BECTHHI [0/ HA3BAHNEM POTALIMOHHEIX I0Jioc pocta. HecummeTpuu-
HoOe BhICOKouUacToTHOe DM moJie IJIOCKOTO MHIYKTOpPA BEIUMCIISETCA METOAOM IDaHMY-
HBIX 371eMeHTOoB. [losyueHHOEe HecMMMeTPUYHOE pacipe/iesieHye UCTOUHNKOB TeILIOTH
Ha cBOOOZHOI IOBEPXHOCTU paclljiaBa M COOTBETCTBYyIomme OM CHIIBI MCIOJIB3YIOTCS
JUJIS BBIUWCJIEHHUS] TPEXMEPHBIX I'MAPOANHAMUYECKAX ¥ TeMIIePATYPHBIX II0JIei B pac-
IIaBe HA KPUBOJIMHEIHON TPeXMEPHOI ceTKe KOMMePUEeCKUM IIPOrPaMMHEIM [TaKeTOM
(meTon KOHTpOIBHBIX 00BeMOB). PaccunreiBaercs: Takike TpeXMeEpHOe IOJle KOHIIEH-
Tpamuy IpuMeceii, 3aTeM KCII0JIb3yeMoe AJIs pacueTa (PIyKTyalluil COIPOTUBIICHUS B
MIPOAOJILHOM CeUeHUW BEIPAIMBAEMOIo KpHCTajia. PaccMaTpmBaeTrcss BIUAHUE He-
cummeTpuaHbIx DM, MapaHronu u cuil IuiaBydecTy Ha XapakTep TeYeHUs paciuiaBa
U Ha QPJIYKTYaIlMy COIPOTUBJIEHNUS B BRIPAIIINIBAEMOM KPUCTAJITIE KPEMHUS.

Introduction. Floating zone (FZ) crystal growth with the needle-eye
technique is used nowadays for the production of high quality silicon single
crystals with large diameters (>100mm) [1], Fig. 1. To enable melting and
growing of large-diameter silicon rods, the heater is a concentric pancake in-
duction coil with the inner radius smaller and outer radius larger than the
radii of feed rod and single crystal. The high-frequency electromagnetic (HF
EM) field of the coil induces electric currents on the surface of silicon mate-
rial. This results in: (1) Joulean heat sources, which are responsible for
melting, and (2) EM forces, being decisive factor in the formation of the free
surface shape of the molten zone. The heat sources and the EM forces, along
with the crystal rotation, applied during the growth process, significantly
change the fluid flow in the volume of the melt. For demands of applications,
boron, phosphorus, or other group III or group V dopants are added to silicon
crystal to adjust its electrical resistivity. It is very desirable to get the resis-
tivity in crystal as uniform as possible. The resistivity distribution in the
grown crystal is determined by the dopant concentration field in melt near
the crystallisation interface while the dopant concentration distribution is
strongly influenced by the fluid flow patterns in the molten zone. As it is
rather difficult to investigate and optimise the many-parameter FZ-process
experimentally, numerical simulations are necessary.
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Fig. 1. 3D view of the EM model for the FZ-growth system (only a half of the inductor is
shown), triangular boundary elements and calculated lines of HF electric current stream func-
tion.

The axisymmetric (2D) mathematical model and the calculation method
for the shape of the molten zone and hydrodynamics during FZ crystal growth
are described in [1]. In [2], the calculation of the averaged-in-time dopant
concentration fields and macroscopic resistivity distributions are given. The
transient axisymmetric numerical calculation of the hydrodynamic, tempera-
ture and dopant concentration fields is performed in [3] and microscopic in-
homogeneities are analysed. Some three-dimensional (3D) aspects of non-
industrial FZ-processes are considered in [4]. However, 3D analysis of the in-
dustrial FZ-process has not been carried out before.

Since the pancake inductor has only one turn (in order to avoid electrical
breakdown) and current suppliers (Fig. 1), the EM field and the distribution
of heat sources are only roughly axisymmetric. The non-symmetry generates
micro-inhomogeneities of resistivity in the grown crystal rod, which are
known as so-called rotational striations. The unwanted rotational striations
are caused by the rotation of single crystal in the non-symmetric EM field and
repeat periodically in the longitudinal direction of the crystal (the period be-
ing given by the growth rate and single crystal rotation speed). Since three-
dimensional effects originate the rotational striations, they cannot be calcu-
lated within limits of a two-dimensional model. In the present work, 3D nu-
merical modelling is undertaken to analyse the floating zone crystal growth
with one-turn HF inductor used for the production of high quality silicon sin-
gle crystals with large diameters. From the calculated 3D dopant concentra-
tion field in the melt, the longitudinal variations of resistivity are derived in
the grown crystal and the influence of the non-symmetric EM, Marangoni and
buoyancy forces is studied.

1. General scheme of solution. The general sequence of models, ap-
proximations and methods used for solving of the three-dimensional floating
zone silicon problem consists of several steps described below.
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1) Axisymmetric shape of the molten zone of silicon is obtained by solving
a two-dimensional thermal-electromagnetic problem numerically by assuming
that the inductor-coil is strictly axisymmetric. The mathematical model and
calculation procedure based on 2D finite element and 2D boundary element
methods are described in [1].

2) The 3D distribution of high-frequency electric currents induced in the
skin-layer of the molten silicon and the Joulean heat sources density are ob-
tained via 3D EM field calculations by using 3D boundary element method as
described in [5]. The previously calculated 2D geometry of the molten zone is
used to get an axisymmetric 3D geometry for the silicon molten zone and solid
parts. The deviations of the shape of the molten zone from axial symmetry
due to more or less non-symmetrically distributed EM forces are assumed to
be small and are neglected. For the inductor, the real non-symmetric 3D
shape is considered. This information about the FZ-system geometry is used
to generate the triangular boundary element grid on the surfaces of the sili-
con and the inductor (Fig. 1).

3) The 3D calculations of the coupled hydrodynamic, temperature, and
dopant concentration fields are carried out with the computational fluid dy-
namics program package FLUENT by using control volume method as de-
scribed in [6] and [7]. Power density of heat sources and EM forces, previ-
ously calculated on the triangular 3D boundary element mesh, are transferred
to the structured 3D grid on the free melt surface for hydrodynamic calcula-
tions. For heat sources and EM forces, the high-frequency approximation is
kept (replacing the detailed description of the exponential decay of power and
force density in the skin-layer depth by an integral ‘surface value’). The Ma-
rangoni forces are calculated simultaneously from the temperature distribu-
tion by means of a user-defined subroutine. A steady-state hydrodynamic—
thermal problem is considered.

4) The 3D dopant concentration field in the melt is calculated using
FLUENT with additionally compiled user-defined subroutines (including
treatment of the segregation condition on the crystallisation and melting in-
terfaces; see [2]). Finally, the normalised distribution of resistivity at the
crystallisation interface is derived by assuming that it is inversely propor-
tional to the dopant concentration. The resistivity variations in the grown
crystal (rotational striations) are calculated by accounting for the vertical
movement and rotation of the crystal and for the curvature of the crystallisa-
tion interface.

2. Characteristics of the chosen FZ-system. The presented results,
calculated for floating zone growth of 4" silicon crystals, are based on the
laboratory experiment at the Institute of Crystal Growth, Berlin [8]. The used
physical properties of silicon are given in [1] and [2]. The main growth proc-
ess parameters are as follows: EM field frequency f = 2.8 MHz, effective value
of the electric current in inductor I, = 1000 A, single crystal rotation rate
We, = 5 rpm (rounds per minute), feed rod rotation rate Wy = —20 rpm, crystal
growth rate Vi, = 3.4 mm/min, crystal radius R¢, = 52.5 mm, feed rod radius
R, = 48.6 mm, radius of the central hole (inner radius) of the inductor Ry =
17.5 mm, outer (maximum) radius of the inductor R; = 82.4 mm, radius of the
zone neck Ry = 10.9 mm, supply velocity of molten silicon from feed rod V; =
= 78.8 mm/min (this is an averaged value for the feed—melt interface). The
parameters Ry and V), are taken from 2D model [1] as results of axisymmetric
calculation of liquid phase's boundaries.

3. Results with EM and Marangoni forces. The calculation of the
coupled 3D hydrodynamic and thermal fields in the molten zone for the con-
sidered FZ-system is performed on a structured (hexahedral) cylindrical grid.
The grid is illustrated in Fig. 2, where the vertical cross-section and the
melting and crystallisation interfaces are shown. For the main calculation
variant, both the Marangoni and EM forces at the melt free surface as well as
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Fig. 2. 3D grid used for hydrodynamic-thermal and concentration calculations in the melt.

the buoyancy forces in the melt volume and rotation of single crystal and feed
rod are considered. From the 3D EM calculations (Fig. 1), distributions of
heat sources and electromagnetic surface forces that are caused by an induc-
tor with slit width 1 mm are used. In Fig. 2, and in other figures considering
the molten zone, the inductor slit comes from the left-hand side.

The 3D hydrodynamic-thermal calculations lead to the coupled velocity
and temperature fields in the molten zone. The calculated 3D temperature
distribution is illustrated in Fig. 3. In Fig. 3a, the temperature distribution on
the melt free surface with a distinct asymmetry of the thermal field is shown
from the top. The region of maximum temperature corresponds to the oppo-
site-to-slit side of the inductor but is shifted in the direction of single crystal
rotation because of the influence of convective heat transfer. Fig. 3b shows
the temperature distribution in the volume of the molten zone in the vertical
cross-section that corresponds to the plane of inductor slit. It can be seen that
the temperature distribution strongly deviates from the axial symmetry, espe-
cially near the free melt surface.

The calculated 3D velocity distribution is illustrated in Figs 4 and 5a, b.
In Fig. 4, the velocity vectors on the free melt surface can be seen. Fig. 5a
shows the velocities in the vertical cross-section in the plane of inductor slit
(only the radial and axial components of the velocity vectors are shown). The
maximum of velocity magnitude is reached at the free surface near the melt-
ing interface due to a steep temperature gradient and, consequently, a strong
Marangoni force at this location. Another but smaller maximum exists at the
peripheral part of the free surface, where EM force dominates over Marangoni
force. The following features of non-symmetry of the velocity field are ob-
served: 1) velocity maxima at the free surface are different comparing the slit
side and the opposite-to-slit side; characteristically the maxima at the oppo-
site-to-slit side are stronger (on the right-hand side in Fig. 5a); 2) structure of
vortices differs qualitatively (especially in the regions of high velocity) com-
paring the slit side and the opposite-to-slit side; 3) fluid flow is going through
the geometrical axis of symmetry of the molten zone; it takes place also at the
vicinity of the centre of the crystallisation front, where a non-zero horizontal
velocity component can be observed. These properties of fluid flow are caused
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1685 K

N

Fig. 3. Temperature field: a — temperature on the free melt surface (view from top), and b - in
the vertical cross-section corresponding to the plane of inductor slit.

by the asymmetry of EM and Marangoni forces, which mostly are acting in
mutually opposite directions. In Fig. 5b, we see the distribution of magnitude
of the azimuthal velocity component, which is also non-symmetric corre-
spondingly to the non-symmetric convective momentum transport in the ver-
tical cross-section of the molten zone.

As Figs 4, 5a, b show, the non-symmetry of EM, Marangoni and buoyancy
forces does not destroy fully the quasi-axial-symmetry of the velocity field. It
is due to the influence of crystal rotation on hydrodynamics in the molten
zone.

The fluid velocity distribution is used to calculate the dopant concentra-
tion field. Fig. 5¢ illustrates the normalised concentration distribution in the
vertical cross-section of the molten zone. A distinct concentration boundary
layer in the vicinity of the growth interface can be observed. The influence of
the main fluid flow vortices (see Fig. 5a) gives rise to the maximum of concen-
tration in the region where fluid flow is going away from the crystallisation
interface. In Fig. 6, the distribution of concentration in the melt near the
growth interface is shown. This distribution has significant asymmetry in the
central region. At the periphery, the deviations from axial symmetry are
rather small.

The dopant distribution along the crystallisation interface is the one re-
sponsible for the dopant incorporation in the growing crystal. Since the
steady-state solution, described above, concerns the laboratory reference sys-
tem (i.e. the reference system of inductor) while the crystal is rotating and
moving downwards, the deviations from axial symmetry (like in Fig. 6) cause
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Fig. 4. Velocity vectors on the free surface of the melt.

generation of resistivity inhomogeneities (rotational striations) in the crystal.
The resulting normalised resistivity distribution along 10 mm long part of the
longitudinal cut of the grown crystal rod is shown in Fig. 7a. The picture dis-
plays an alternating crest-trough pattern, which is the proper pattern of rota-
tional striations. At the crystal axis, the crests from one side meet troughs
from the opposite side (half wavelength phase shift). Besides the longitudinal
rotational striations, which are represented by the resistivity variations along
the axial direction of the crystal, also the radial rotational striations take
place. They are represented by the small-wavelength resistivity variations
along the radial direction. (Remark: the macroscopic variations along crystal
radius represent the ‘axisymmetric part’ of the influence of the steady-state
fluid flow.) The radial rotational striations are caused by the curved shape of
the crystallisation interface. The curvature of the interface reflects itself in
the herringbone-form of the crest-trough pattern.

The calculated resistivity distribution shows that the largest rotational
striations (reaching almost 30%, see Fig. 7b) are present near the central part
of the crystal. Small variations can be seen also near the outer rim of the rod.
Such radial distribution of the relative amplitudes of rotational striations
agrees qualitatively with experimental measurements [8]. Detailed compari-
son with experimental data is a subject of a separate paper.

Since the calculated are steady-state flows, the corresponding resistivity
variations do not include the oscillations caused by hydrodynamic instabili-
ties. It has been shown that the real-life flow in the considered FZ-system is
time-dependent and the steady-state solution is only an approximation, which
can be obtained due to the sufficiently high numerical viscosity of the finite
difference scheme (relatively coarse calculation grid, see Fig. 2).

4. Study of the influence of forces. In order to study the individual
influence of forces on melt hydrodynamics and mass transport in floating
zone, calculations with neglecting either EM forces or Marangoni forces (or
both of them) have been carried out. Buoyancy forces are always kept. The
results are illustrated in Figs. 8-13.

Neglecting both EM and Marangoni forces (when only the buoyancy and
rotation are driving the fluid motion) yields a comparatively simple flow
structure consisting of two toroidal vortices (Fig. 8a). The character of dopant
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Fig. 5. Velocity and concentration fields in the vertical cross-section in the plane of inductor
slit: @ — velocity vectors projected to the plane of the cross-section, b — azimuthal velocity
component, and ¢ — dopant concentration.
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Fig. 6. Dopant concentration in the melt near the crystal growth interface.

concentration distribution (Fig. 8¢) resembles qualitatively the case with all
forces accounted. It is explained by partial compensation of EM and Maran-
goni forces, which results in a similar position of the flow separation point at
crystallisation interface. Consequently, also the resistivity distribution in
Fig. 9 is similar to that in Fig. 7. The main obvious difference is in the ampli-
tude of rotational striations. It is small in the case of neglecting EM and Ma-
rangoni forces because of small asymmetry of the calculated hydrodynamic
and thermal fields and concentration distribution.

If one of both forces is applied neglecting the other one, high velocity
maxima arise near the free surface of the melt (see Figs 10a, 12a). We see that
Marangoni forces mostly intensify the buoyancy-driven vortices and do not
act against them while EM forces, on the contrary, do. This feature of EM
forces evokes appearing of a distinct stretched vortex near the free surface of
the melt and the flow becomes relatively unstable resulting in a slower con-
vergence to the steady state. In both the case of EM forces and the case of
Marangoni forces, also the distribution of the azimuthal velocity component
gets complicated (Figs 1056, 12b). The maximum of the azimuthal velocity is
reached somewhere in the melt volume and not more on the outer rim of the
crystallisation interface. The resulting concentration distributions, as shown
in Figs 10c and 12¢, differ strongly from the one in Fig. 5c. As a consequence,
also the resistivity distributions in Figs. 11 and 13 are very different from the
one in Fig. 7.

Comparing Figs 7b, 9b, 11b, and 13b shows that the amplitude of rota-
tional striations becomes relevant only in the case when both EM and Maran-
goni forces are accounted. Excluding only one of them leads to drastic changes
in the result. That demonstrates the effect of the mutual counteraction and
partial compensation of EM and Marangoni forces. Therefore, the concentra-
tion distribution is very sensitive to both of them and it is important to take
into account the involved EM and Marangoni forces as carefully as possible.
Further studies are necessary to check the accuracy of the used approxima-
tions for the forces near the free surface. Retaining the axisymmetric shape
for the floating zone (from 2D calculations) and introducing the non-
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Fig. 7. Resistivity distribution with rotational striations in the vertical cross-section of the
rotating crystal.

symmetry only through EM field constitute one of the possible sources of de-
viance of the present results (with all forces) from reality.

The studies of the influence of EM and Marangoni forces show the role of
both of them and give impression how the system will behave if one of the
forces becomes negligibly small in comparison with the other one. Such condi-
tions may form up with special choice of EM field frequency. If the frequency
is higher, the impact of EM force on the melt hydrodynamics becomes
smaller, if it is lower, EM force becomes stronger while Marangoni force keeps
about the same magnitude because the total Joulean power (adjusted by a
proper choice of inductor current) should be the same for maintaining the
melting rate of silicon rod. In this sense, the case of excluding Marangoni
force corresponds to low-frequency model while the case of excluding EM
force, to high-frequency model.
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Fig. 8. Neglecting both EM and Marangoni forces: Velocity and concentration fields in the
vertical cross-section in the plane of inductor slit: @ — velocity vectors, projected to the plane
of the cross-section, b — azimuthal velocity component, and ¢ — dopant concentration.
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Fig. 10. Influence of EM force (neglecting Marangoni force): Velocity and concentration fields
in the vertical cross-section in the plane of inductor slit: a — velocity vectors, projected to the
plane of the cross-section, b — azimuthal velocity component, and ¢ — dopant concentration.
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Fig. 12. Influence of Marangoni force (neglecting EM force): Velocity and concentration fields
in the vertical cross-section in the plane of inductor slit: a — velocity vectors, projected to the
plane of the cross-section, b — azimuthal velocity component, and ¢ — dopant concentration.
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Conclusions. (1) 3D numerical modelling is carried out to analyse the
influence of EM and Marangoni forces on melt hydrodynamics and mass
transport during the floating zone growth of large diameter crystals with the
needle-eye technique. A non-symmetric HF electromagnetic field of the pan-
cake inductor is calculated. The obtained non-symmetrical power distribution
on the free melt surface and the corresponding EM forces are used for the cal-
culation of the coupled 3D hydrodynamic and temperature fields in the mol-
ten zone. The buoyancy, Marangoni and EM forces are considered and a
steady-state non-symmetric flow structure is obtained.

(2) The 3D hydrodynamic field is used to calculate the corresponding non-
symmetric dopant concentration field in the melt. Accounting effect of the
non-symmetry and crystal rotation, the variations of resistivity in the grown
single crystal (rotational striations) are obtained. Longitudinal resistivity os-
cillations near crystal axis (almost 30%) are found to be considerably higher
than at the periphery.

(3) Studies of the individual influence of forces on melt hydrodynamics
and mass transport in floating zone and on the resulting resistivity variations
in crystal are performed. Neglecting both EM and Marangoni forces yields
rather even and symmetrical flow structure. Neglecting only one of them
leads to intense melt motion near the free surface. If Marangoni force is
turned off, EM force evokes high degree of asymmetry of fluid flow in the
major part of melt volume, however it does not create strong asymmetry near
the growth interface. If EM force is turned off and Marangoni force is acting,
the melt motion does not deviate very much from symmetric pattern even at
the free surface. As a result, the calculations with neglecting at least one of
the forces show comparatively small amplitude of rotational striations. The
distributions of dopant concentration and resistivity in crystal are very sensi-
tive to both EM and Marangoni forces, whose mutual counteraction and par-
tial compensation play an important role in amplifying the rotational stria-
tions. The results with neglecting Marangoni force may be interpreted as a
model of a case with lower frequency of EM field of inductor while the results
with neglecting EM force, as a model with higher frequency of EM field.

This paper presents results obtained within the frame of a cooperation
project between Institute for Electroheat (University of Hanover) and De-
partment of Physics (University of Latvia). The project has been sponsored by
VW foundation (Hanover, Germany), and it is gratefully acknowledged.
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6.3 Included paper 2: Steady-state 3D flow

The second included paper presents a study of rotational striations by means of steady-
state 3D flow calculations and Fourier analysis of the calculated resistivity variations
along the longitudinal cross-section of the crystal. Photo-scanning measurements from
the Institute of Crystal Growth (Berlin) are used for verification of the results. The
Fourier analysis of the measurement data shows a reasonable agreement with that of
the calculated data: the frequency of the rotation of crystal is seen clearly and the
radial distribution of the Fourier amplitudes is similar. The most important difference
is, as expected, the lack of the frequencies due to the flow instability in the Fourier
spectrum created from calculation results. Hence additional 2D time-dependent flow
calculations are done for a comparison, showing no rotational frequency but the spec-

trum due to the flow fluctuations.

The results of the studies have been published as included further in the article [64] in
Journal of Crystal Growth. The considered inductor has a slit width 1 mm. Figure 6.1
shows a supplemental illustration of the effect of slit width on the induced power dis-
tribution at the free melt surface: two power distributions are compared by displaying
only one half of each, taking into account the plane symmetry of the inductor. These
distributions imply the perturbations of the temperature field and EM force, which

are considered here as the only sources of deviation from the axial symmetry.

Slit width
1 mm

Current |
suppliers |/

\ Slit width
A\ — 1 2mm
190 kW/m? R 24

=

Figure 6.1: Isolines of the Joulean power density on the free melt surface created by

inductor with a 1 mm slit (upper half) and 2 mm slit (lower half).
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Abstract

Three-dimensional numerical modelling is carried out to analyse the floating zone crystal growth with the needle-eye
technique used for the production of high-quality silicon single crystals with large diameters ( > 100 mm). Since the
pancake inductor has only one turn, the EM field and the distribution of heat sources and EM forces are only roughly
axisymmetric. The non-symmetry together with crystal rotation reflects itself on the hydrodynamic, thermal and dopant
concentration fields in the molten zone and causes variations of resistivity in the grown single crystal, which are known as
the so-called rotational striations. The non-symmetric high-frequency electromagnetic field of the pancake inductor is
calculated by boundary element method. The obtained non-symmetric power distribution on the free melt surface and
the corresponding EM forces are used for the coupled calculation of the 3D steady-state hydrodynamic and temperature
fields in the molten zone on a body fitted structured 3D grid by a commercial program package with control volume
approach. The buoyancy, Marangoni and EM forces are considered. The afterwards calculated corresponding 3D
dopant concentration field is used to derive the variations of resistivity in a longitudinal cut of the grown crystal. The
results are compared with experimental measurements (photo-scanning method) and with results of 2D transient flow
calculations. Rotational striations are found in both 3D-calculated and experimental resistivity distributions and show
a qualitative agreement. A Fourier analysis for the resistivity variations is performed and the observed differences are
explained by modelling limitations. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

For the floating zone (FZ) growth of large-dia-
meter ( = 100 mm) silicon rods, the heater is a con-
centric pancake induction coil with the inner radius
smaller and outer radius larger than the radii of
feed rod and single crystal (the needle-eye tech-
nique). The high-frequency electromagnetic (HF
EM) field of the coil induces electric currents on the
surface of silicon material. This results in: (1)
Joulean heat sources, responsible for melting, and
(2) EM forces, decisive factor in the formation of the
free surface shape of the molten zone. The heat
sources and the EM forces, along with the crystal
rotation, applied during the growth process, deter-
mine the fluid flow in the volume of the melt. When
boron, phosphorus or other group III or group
V dopants are added to the melt, the resistivity
distribution in the grown crystal is determined by
the dopant concentration field in melt near the
crystallisation interface while the dopant concen-
tration distribution is strongly influenced by the
fluid flow patterns in the molten zone. It is rather
difficult to investigate and optimise the many-para-
meter FZ-process experimentally. Therefore nu-
merical simulations are necessary.

Various aspects of the axisymmetric (2D) math-
ematical modelling and the calculation methods for
the shape of the molten zone and hydrodynamics
during radio-frequency needle-eye FZ growth of
large crystals are described in Refs. [1-4]. The case
of small crystals (< 10mm) is considered, e.g. in
Ref. [5]. In Refs. [4-6], the calculation of the time-
averaged dopant concentration fields and macro-
scopic resistivity distributions are given. Liidge
et al. [7] compare the results for macroscopic resis-
tivity distributions calculated by the model in Ref.
[6] with spreading resistance and 4-point measure-
ments. Some transient axisymmetric numerical cal-
culations of the hydrodynamic and temperature
fields are described in Ref. [8], considering 100 mm
crystals, and in Ref. [9], where 10 mm crystals are
considered. Transient dopant concentration fields
are calculated in Ref [8] and microscopic in-
homogeneities are analysed.

Since the pancake inductor has only one turn
and current suppliers (Fig. 1), the EM field and the
distribution of heat sources are only roughly

axisymmetric. The non-symmetry generates micro-
inhomogeneities of resistivity in the grown crystal
rod, which are known as the so-called rotational
striations. They are caused by the rotation of single
crystal in the non-symmetric EM field and repeat
periodically in the longitudinal direction of the
crystal with the period being given by the growth
rate and single-crystal rotation speed. Since rota-
tional striations are always originated by three-
dimensional (3D) effects, they cannot be calculated
within limits of a two-dimensional model.
Some 3D aspects of non-industrial FZ-processes
(small crystal diameters) are considered in Ref.
[10]. 3D calculations of an industrial FZ-process
have been carried out only recently in Ref. [14],
where the influence of the three-dimensional
EM and Marangoni forces is studied numerically
but a more detailed analysis of rotational striations
and a comparison with experiment is still
lacking.

Therefore, the 3D numerical analysis of the in-
dustrial floating zone growth of large-diameter sili-
con single crystals is developed and presented
here. Steady-state melt flow is considered and
normalised resistivity distribution in the grown
crystal is calculated and analysed. Photo-scanning
measurements of resistivity are performed and the
experimental data is compared to the calculation
results. A comparison with axisymmetric transient
flow calculations is also done.

2. General scheme of solution

The general sequence of models, approximations
and methods used for solving the three-dimen-
sional floating zone silicon problem consists of sev-
eral steps described below.

(1) The axisymmetric shape of the molten zone of
silicon is obtained by solving a two-dimen-
sional thermal-electromagnetic problem nu-
merically by assuming that the inductor-coil is
strictly axisymmetric. The mathematical model
and calculation procedure based on 2D finite
element and 2D boundary element methods
are described in Ref. [2]. Three-dimensional
effects in this step are neglected and phase
boundaries are calculated disregarding the part
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Feed rod

Current
supplier

Inductor slit

Single crystal

Fig. 1. 3D view of the EM model for the FZ-growth system with only a half of the inductor shown, triangular boundary elements and
calculated lines of HF electric current stream function.

of the heat transfer caused by convection in the
liquid zone.

)

The 3D distribution of high-frequency electric
currents induced in the skin-layer of the molten
silicon and the Joulean heat sources density are
obtained via 3D EM field calculations by using
3D boundary element method as described in
Ref. [11]. The previously calculated 2D ge-
ometry of the molten zone is used to get an
axisymmetric 3D geometry for the silicon mol-
ten zone and solid parts. The deviation of the
shape of the molten zone from axial symmetry
due to more or less non-symmetrically distrib-
uted EM forces is assumed to be small and is
neglected. For the inductor, the real non-sym-
metric 3D shape is considered. This informa-
tion about the FZ-system geometry is used to
generate the triangular boundary element grid
on the surfaces of the silicon and the inductor.
The steady-state 3D calculations of the
coupled hydrodynamic, temperature, and
dopant concentration fields are carried out
with the computational fluid dynamics pro-

)

gram package FLUENT, version 4.32, by us-
ing control volume method as described in
Refs. [12,13]. Power density of heat sources
and EM forces, previously calculated on the
triangular 3D boundary element mesh, are
transferred to the structured 3D grid on the
free melt surface for hydrodynamic calcu-
lations. For heat sources and EM forces, the
high-frequency approximation is kept, which
means replacing the detailed description of the
exponential decay of power and force density
in the skin-layer depth by an integral “surface
value”. The Marangoni forces are considered
by means of a user-defined subroutine.

The 3D dopant concentration field in the melt
is calculated using FLUENT with additionally
compiled user-defined subroutines including
treatment of the segregation conditions at the
crystallisation and melting interfaces. Finally,
the normalised distribution of resistivity at the
crystallisation interface is derived by assuming
that it is inversely proportional to the dopant
concentration. The resistivity variations in the
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grown crystal (rotational striations) are cal-
culated by accounting for the vertical move-
ment and rotation of the crystal and for the
curvature of the crystallisation interface.

3. 3D modelling and calculation of EM field

The high-frequency electromagnetic field in the
FZ-system is essentially three-dimensional because
of the non-symmetric HF inductor, even in the case
of the axisymmetric approximation of the shape of
silicon parts (feed rod, single crystal, and molten
zone, whose vertical cross-section can be seen, e.g.
in Fig. 3b). Due to the small penetration depth
0 = 1//muqfx of the 3D HF EM field (f ~ 3 MHz)
in the copper inductor and in the silicon (k being
the conductivity of silicon or copper, respectively),
the current distribution in the system can be de-
scribed by a surface current density i. When ne-
glecting displacement currents, a scalar function
defined on the surfaces and called electric stream
function, Y, can be introduced:

oy oy
@91 —Eez,

where &, and &, are local orthogonal coordinates
along the surface of the silicon or inductor with
coordinate &5 directed into the material and nor-
mal to the surface. e, e, and e are the correspond-
ing unity vectors. The Bio-Savart law and the
condition that in case of very high frequency the
magnetic flux density normal to the surface is zero
are used for the calculation of . The surfaces of the
conducting bodies are discretised using triangular
boundary elements (Fig. 1). The values of the stream
function are calculated in all nodes of the grid.

An example of the calculated distribution of the
function y is shown in Fig. 1 as isolines with a con-
stant step. The density of lines is related to the value
of surface current density and the direction of lines
corresponds to the direction of the current. From
the value of i, the respective surface power density
qem on the free melt surface can be derived:

(1)

2

lef
=t 2
dem Sk (2

where iy denotes the effective value of i.

Current
suppliers

Fig. 2. Joulean power density ggy on the free surface of the melt.

The calculated non-symmetric distribution
of ggy on the free surface of the molten zone
(see an example in Fig. 2) is used as a boundary
condition for the temperature calculation in the
melt (Section 4).

Because of the non-symmetric distribution of the
current density on the free melt surface, the electro-
magnetic force is also non-symmetric and should
be taken into account in hydrodynamic calcu-
lations. From the expression for the force volume
density f,

f=jxB 3)
and the Maxwell’s equation for the specific case,
Uoj = rotB, 4)

it follows that
1 ) 1
f= —=—grad(B*) + —(BV)B. ®)
2o Ho

The gradient part in Eq. (5) does not influence
the velocity field directly because it is a potential
force and can be compensated by pressure gradient
in the melt. The second part of Eq. (5), in the case of
distinct skin-effect, can be analysed under the as-
sumption that the magnetic field B and the current
volume densityj in the skin-layer are parallel to the
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surface (the local coordinates &;, &,, and &5 are
used again), i.e.

B=e,B; +e;B,, B; =0, (6)
j=eiji texjs j3=0. (7)

From the second part of Eq. (5) by using Egs. (6), (7)
and (4), we get the tangential force volume density
in the skin-layer as a function of &;:

1 < 0B? 0B?

= +e
F=2m\15z, t %%,

)= e ®

Ho
In the considered case of a small penetration depth
of electric current, the force volume density may be
integrated over the skin-layer to get the tangential
force surface density and the influence of f on melt
hydrodynamics may be replaced by influence of the
corresponding surface force. For hydrodynamics,
only the time-averaged surface force value Fgy is of
interest:

Fgy = f fdfs = grad1 2|:de2 df3:|a )

where a line above the variable means averaging in
time.

Because of the distinct skin-effect, it can be as-
sumed that

B? = ugiz exp( — 2¢3/9). (10)
It follows from Egs. (9) and (10) that

1 .
Fgm 21,1105 grad1,2(l§f)~ (11)

This surface force is used as a part of the boundary
condition on the free melt surface in the
hydrodynamic calculation (see below).

4. 3D modelling of HD, thermal, concentration
fields and crystal resistivity

The 3D calculations of the coupled hy-
drodynamic, thermal, and dopant concentration
fields are carried out with FLUENT [13] on
a structured hexahedral 3D mesh over the axisym-
metrical melt volume. The grid size is: 34 cells in
radial direction, 44 cells in axial direction, and 24

cells in azimuthal direction. The non-symmetric
distributions of heat sources (Fig. 2) and EM forces,
calculated on the triangular 3D boundary element
mesh, are transferred to the structured 3D grid. The
hydrodynamic-thermal problem is assumed to be
steady state. The investigation of hydrodynamic
instabilities (i.e. transient calculation) with the 3D
model needs a finer grid and more computer power
and is not considered in this paper.

The melt flow is calculated as an incompressible
laminar flow. The buoyancy force is considered
with Boussinesq approximation. The correspond-
ing 3D hydrodynamic equations are written as
follows:

bo(V)o = — grad p + nAv — bogB(T — To),  (12)
Vo =0, (13)

where v, p, and T are the velocity, pressure, and
temperature fields, respectively, #n, the viscosity,
g, the gravity, by, the density at melting point,
and f, the linear thermal expansion coefficient. For
the velocity vector v, the cylindrical components
v(r, 0, 2), 0,(r, 0, 2), v.(1, &, z) are used in calculations.

The boundary conditions for the velocity field
consider the rotation of the feed rod and melting
process at the melting interface:

v, =0, v.=—Vy, v,=2ntWer, (14)

where V) is the supply velocity of molten silicon
from feed rod and W, the rotation rate of feed rod.
It is assumed that V' is constant over the melting
interface. On the growth interface, the crystallisa-
tion process and the rotation of the crystal are
considered:

Uy = 07 v, = — VCra Uy = 2n WCrra (15)

where V¢, is the growth rate of the single crystal
and W,, its rotation rate.

The free melt surface is considered as a friction-
less boundary, and the momentum sources due to
the surface force F are involved near the surface.
For the total value of F, both the electromagnetic
force (11) and Marangoni force are accounted:

0
F = FEM + %gradl'z T. (16)
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The steady-state temperature field T(r,,z) is cal-
culated simultaneously with velocity field as fol-
lows:

boc, (V)T = JAT, 17)

where A is the thermal conductivity and c,, the
specific heat. As boundary condition on the melting
and crystallisation interfaces, the melting temper-
ature is used. On the free melt surface, the heat flux
corresponding to the electromagnetic power sur-
face density (2) is applied.

The steady-state concentration field C(r,q, z) is
obtained from the calculated velocity field by using
the 3D equation of diffusion:

(vV)C = DAC, (18)

where D is the binary diffusion coefficient of the
dopant in silicon and v(r,«, z), the calculated velo-
city field. The following boundary condition at the
growth interface describing the segregation effect is
used:

DZ—i = V(1 — ko)C cos(0), (19)
where n refers to the inner normal direction of the
molten zone, 0 denotes the local angle between the
growth interface and radial direction, and k is the
equilibrium segregation coefficient. At the melting
interface, the boundary condition is again coupled
with the value of concentration C on this boundary:
Daa—i = — Vu(Cg — C)cos(0), (20)
where Cp is the dopant concentration in the feed
rod (concentration values are normalised by setting
Cr = 1). In practice, because of the relatively high
value of Vy, it is a sufficiently good approximation
to take a simpler boundary condition for the
melting interface:

C = C. 1)

To obtain the rotational striations (i.e. the resis-
tivity oscillations along the axis of the grown crys-
tal), it is necessary to switch from the fixed
coordinates, (r,a, z), to the reference system of the
rotating and downwards moving single crystal,
(r,o/,z"). If the shape of the curved axisymmetric

crystallisation interface is given by z = z¢,(r) and
the concentration at this interface is described by
the function Cc,(r, ) = C(r, «, z¢(r)), then the cor-
responding normalised resistivity distribution
p(r,o/,z') in the grown crystal equals

p(r,o,2) = [ko Cer(r,0c,)] ! (22)
with

' — ZCr(r)

oce(r, o, z') = o Wee + 0. (23)

Cr
Formulas (22) and (23) are used to calculate the
resistivity distribution in the grown crystal from
a given steady-state distribution of dopant concen-
tration at crystallisation interface in the laboratory
reference system (r, «, z), in which the position of the
inductor is fixed.

5. Characteristics of the chosen FZ-system

The results below, calculated for floating zone
growth of 4” silicon crystals, are based on the la-
boratory experiment at the Institute of Crystal
Growth, Berlin. The used physical properties of
silicon and main growth parameters are given in
Table 1. The shape of the modelled HF inductor
can be seen in Fig. 1. The slit width of 1 mm is used
in calculations.

6. Results of 3D calculations

The surface currents and the corresponding sur-
face density of heat sources from 3D EM calcu-
lations are shown in Figs. 1 and 2, for the specific
FZ-system (Section 5, Table 1). In Fig. 2 and in the
following figures considering the molten zone, the
inductor slit is on the left side.

The 3D hydrodynamic-thermal calculations
with the finite difference grid described in Section
4 lead to the coupled temperature and velocity
fields in the molten zone. In Fig. 3a, the temper-
ature distribution on the free melt surface with
a distinct asymmetry of the thermal field is shown
from the top. The region of maximum temperature
corresponds to the opposite-to-slit side of the
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Table 1
Physical properties of silicon and process parameters

Melting temperature, T 1685 K

Melt density at melting point, b, 2530 kg/m?
Linear thermal expansion coefficient, 8 14x1074K ™!
Viscosity, 1 8.6 x 10 *kg/ms
Specific heat, ¢, 1000J/kg K
Thermal conductivity of the melt, 1y 67W/mK

Thermal conductivity of solid silicon, Ag ¢(T) (4.495-7.222 (T/To) + 3.728 (T/To)*) x 22 W/m K

Emissivity of the melt, gy 0.27

Emissivity of solid silicon, &r c(7T) 0.46 x {1.39, if T/T < 0.593;1.96-0.96 (T/T,), if T/T¢ > 0.593}
Latent heat of fusion, g, 1.8x 10°J/kg

Electrical conductivity of the melt, xy 1.2x10°1/Qm

Electrical conductivity of solid silicon, kg ¢, 50x10*1/Qm

Surface tension at melting point, y 0.74N/m
Thermal gradient of surface tension, dy/dT —1.0x107*N/mK
Diffusion coefficient of phosphorous, D 34 x10"8m?/s
Equilibrium segregation coefficient of phosphorous, k, 0.35

EM field frequency, [ 2.8 MHz
Electric current in inductor (effective value), I, 1000 A
Single-crystal rotation rate, W, Srpm

Feed rod rotation rate, W —20rpm
Growth rate (i.e. single crystal pull rate), V¢, 3.4 mm/min
Single-crystal radius, R¢, 52.5mm

Feed rod radius, Ry 48.6 mm
Central hole (inner) radius of the inductor, Ry 17.5mm
Maximum (outer) radius of the inductor, Ry 82.4mm
Melt-feed-gas triple point radial coordinate, Ry 10.9mm

Melt supply velocity from feed rod, Vy
(averaged along the feed-melt interface)

78.8 mm/min

inductor but is shifted in the direction of single
crystal rotation because of the influence of convec-
tive heat transfer. Fig. 3b shows the temperature
distribution in the volume of the molten zone in the
vertical cross-section that corresponds to the plane
of the inductor slit. It can be seen that the temper-
ature distribution strongly deviates from the axial
symmetry, especially near the free melt surface.
The calculated 3D velocity distribution is illus-
trated in Figs. 4, 5a and b. In Fig. 4, the velocity
vectors on the free melt surface can be seen. Fig. 5a
shows the velocity in the vertical cross-section in
the plane of the inductor slit with only the radial
and axial components of the velocity vectors
shown. The maximum of the velocity magnitude is
reached at the free surface near the melting inter-
face due to a steep temperature gradient and, con-
sequently, a strong Marangoni force at this
location. Another but smaller maximum exists at
the peripheral part of the free surface, where EM

force dominates over Marangoni force. Due to
asymmetry of EM and Marangoni forces, which
mostly are acting in opposite directions, the follow-
ing features of non-symmetry of the velocity field
are observed: (1) the velocity maxima at the free
surface are different comparing the slit side and the
opposite-to-slit side; characteristically the maxima
at the opposite-to-slit side are stronger, as it can be
seen on the right-hand side in Fig. 5a; (2) the struc-
ture of vortices differs qualitatively, especially in the
regions of high velocity, comparing the slit side and
the opposite-to-slit side; (3) fluid flow is going
through the geometrical symmetry-axis of the mol-
ten zone; this takes place also in the vicinity of the
centre of the crystallisation front, where a non-zero
horizontal velocity component can be observed.
In Fig. 5b, we see the distribution of the magni-
tude of the azimuthal velocity component, which is
also non-symmetric due to the non-symmetric
convective momentum transport in the vertical
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Fig. 3. Temperature field: (a) temperature on the free melt sur-
face (view from top) and (b) in the vertical cross-section corre-
sponding to the plane of inductor slit.

Fig. 4. Velocity vectors on the free surface of the melt.

cross-section of the molten zone. As Figs. 4, 5a and
b show, the non-symmetry of EM, Marangoni and
buoyancy forces does not fully destroy the quasi-
axial-symmetry of the velocity field. The crystal
rotation makes the hydrodynamics in the molten
zone remaining roughly axisymmetric.

The fluid velocity distribution is used to calculate
the dopant concentration field. Fig. Sc illustrates

\k\% 9cm/s

Current i \ 4 cm/s
suppliers ¢

—23cmfs — +2.4 cm/s
e N A S —
e - T ™ i 2
~/ \\“’ // ] ) ///’/ \5;;/
il © - /, =

\\ . _ //

Fig. 5. Velocity and concentration fields in the vertical cross-
section in the plane of inductor slit: (a) velocity vectors projected
to the plane of the cross-section, (b) azimuthal velocity compon-
ent and (c) dopant concentration.

the normalised concentration distribution in the
vertical cross-section of the molten zone. A distinct
concentration boundary layer in the vicinity of the
growth interface can be observed. The influence of
the main fluid flow vortices (see Fig. 5a) gives rise to
the maximum of concentration in the region where
fluid flow is going away from the crystallisation
interface. In Fig. 6, the distribution of concentra-
tion in the melt at the growth interface, Cc,(r, o), is
shown. This distribution has significant asymmetry
in the central region. At the periphery, the devi-
ations from axial symmetry are rather small.

The dopant distribution along the crystallisation
interface is responsible for the dopant incorpora-
tion in the growing crystal. Since the solution, de-
scribed above, concerns the laboratory reference
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Fig. 6. Dopant concentration Cc(r,«) in the melt at the crystal
growth interface.

system, where the crystal is rotating and moving
downwards, the deviation from axial symmetry of
the distribution of Cc,(r, o) causes generation of
resistivity inhomogeneities (rotational striations) in
the crystal (see Eqs. (22) and (23)). The resulting
normalised resistivity distribution, p(r, o/, z'), along
a 10mm long part of a longitudinal cut (¢’ = const)

~
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of the grown crystal rod is shown in Fig. 7, where
rotational striations with the typical alternating
crest-trough pattern can be seen. At the crystal axis,
the crests from one side meet troughs from the
opposite side (half wavelength phase shift). Besides
the longitudinal resistivity variations, also the
small-wavelength variations along the radial di-
rection of the crystal are observed. These radial
variations are caused by the curvature of the crys-
tallisation interface, which reflects itself in the her-
ringbone-form of the crest-trough pattern. The
calculated resistivity distribution shows that the
largest rotational striations (reaching almost 30%)
are present near the central part of the crystal.
Small variations can be seen also near the outer rim
of the rod. The overall distribution of resistivity
contains also large-scale resistivity variations along
the crystal radius. These macroscopic variations
represent the axisymmetric part of the concentra-
tion distribution at the growth interface.

For comparison with photo-scanning measure-
ments (see Section 8), the distribution of the axial
derivative of the resistivity, 0p/0z’, is calculated. To
analyse the longitudinal variations of resistivity in
the grown crystal, a Fourier analysis of 0p/0z" in
axial direction is done. Instead of wave-numbers,

Normalised
resistivity

Fig. 7. From 3D steady-state calculations: distribution of resistivity p(r,o’, z') in the vertical cross-section (¢’ = const) of the rotating

crystal.
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3D steady-state calculations: Fourier analysis of 0p/0z’ in axial direction.

Fig. 8. From

is essentially discrete and has the lowest frequency,
i.e. “first harmonic”, equal to that of crystal rota-

we consider henceforth the frequencies of the local

temporal variations of dopant incorporation at the

Srpm ~ 0.083 Hz). The wavelength of

the first harmonic of the longitudinal striations is

tion (W ¢,

rotating crystal’s growth interface, which are dir-

ectly related to the wave-numbers through the crys-
tal growth velocity. The obtained distribution of

Fourier amplitudes along the diameter of the crys-

0.68mm in crystal’s axial direction at the used
growth parameters (Table 1). Two symmetric re-

gions of high Fourier amplitudes near the central

tal rod is shown in Fig. 8. The 3D calculations are
steady-state, therefore, the corresponding spectrum

part of the crystal can be observed (Fig. 8a).
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Normalised
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Fig. 9. From 2D transient calculations: axisymmetric distribution of resistivity p,p(r,z’) in the vertical cross-section of the crystal.

Although the crystal rotation frequency dominates
in the resistivity oscillations, the attenuation of
amplitudes of higher harmonics is rather slow as
shown in the sideview in Fig. 8b. Regarding Fig. 6,
it is obvious that the first harmonic in the central
part of crystal arises due to the shifting of the
concentration minimum from the centre of the
growth interface. The mechanism for the second
harmonic is most easy imagined as originating
from elliptical shape of the concentration min-
imum.

Since the calculated 3D flow is steady-state, the
corresponding resistivity variations do not include
the oscillations caused by hydrodynamic instabili-
ties. It has been shown that the real-life flow in the
considered FZ-system is time-dependent and the
steady-state solution is an approximation to a cer-
tain degree of accuracy.

7. 2D transient calculations

The size of the 3D control volume grid makes it
difficult to investigate the unstable fluid flow modes
via transient calculations, and normally, only
steady-state flow is calculated; it can be done due to
sufficiently high numerical viscosity of the finite

difference scheme in 3D calculations on a compar-
atively coarse grid. Therefore, the contribution in
resistivity variations of the hydrodynamic insta-
bilities is analysed on the basis of 2D transient
calculations. The axisymmetric coupled hy-
drodynamic-thermal calculations for the system
described in Table 1 are performed on a very fine
2D finite element grid. The corresponding numer-
ical viscosity is low and therefore a time-dependent
fluid flow can be obtained. The oscillating hy-
drodynamic fields are stored for the total time
period of 800s and used for the calculation of the
transient concentration field C,p(r, z, t).

The time-dependent distribution of concentra-
tion at the growth interface, C,p (1, ), is used to
derive the axisymmetric resistivity distribution
p2p(r,Z'). For a 10mm long part of a longitudinal
cut of the crystal, it is shown in Fig. 9 and displays
more distinct resistivity oscillations in the central
part than at the periphery. It can be seen that the
crest-trough pattern is symmetric: at the axis,
a crest from one side meets an equal crest from the
opposite side, and not a trough, as in the case of 3D
calculations. The Fourier analysis of 0p,p/0z" in
axial direction is illustrated in Fig. 10. The spec-
trum is discrete because a finite time period or,
equivalently, a finite crystal length is analysed. For
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Fig. 10. From 2D transient calculations: Fourier analysis of 0p,p,/0z’ in axial direction.

a 40mm long crystal part, the spectral resolution
threshold is about 0.0014 Hz, at the used growth
parameters. In general, spectrum may depend on
the sample length, which determines the values of
the allowed discrete frequencies. Analysis of 40, 30,
20 and 10mm long samples has been performed.
The spectra have been compared after taking sums
over the squares of some neighbouring Fourier

amplitudes to impose a common artificially low
spectral resolution of 0.0112 Hz (in order to enable
comparison of the different spectra). A good agree-
ment has been found between the cases of 40, 30
and 20mm, which means that the spectrum, for
these lengths, is not essentially dependent on
the length of the chosen sample. The amplitudes
distribution in Fig. 10a is based on the imposed
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Normalised
resistivity
derivative

Fig. 11. Experimental data: Distribution of the axial derivative of resistivity, 0p.,,/0z'(r, &, Z'), in the vertical cross-section (o' = const) of

the crystal.

resolution of 0.0112 Hz, while the sideview in Fig.
10b illustrates the spectrum of a 40 mm long sample
with the threshold resolution of 0.0014 Hz.

It can be seen that higher and lower frequencies
than the crystal rotation frequency W, exist in the
resistivity oscillations. That is a significant differ-
ence from 3D case, where frequencies lower than
W, cannot be obtained in principle. Thus, the low
frequencies in Fig. 10 are originated exclusively due
to the transient character of the flow.

Comparison of Figs. 9 and 7 show also some
differences in the macroscopic variations of resistiv-
ity along the radius of the crystal. Namely, the
axisymmetric flow gives rise to a local concentra-
tion maximum and resistivity minimum at the
centre of the crystallisation interface because the
axial symmetry induces a flow separation point at
this location. The 3D calculations do not show
such effect because the flow is passing the geometri-
cal symmetry-axis.

8. Experimental measurements

For comparison of the calculation results with
experiment, the FZ-grown silicon crystal is cut ver-
tically and the resistivity derivative 0pey,/0z" in the

longitudinal cross-section of the crystal is measured
by the photo-scanning method. The measured dis-
tribution, 0pe,/0z(r,o',z') with o = const, is
shown in Fig. 11. The corresponding Fourier analy-
sis in axial direction is illustrated in Fig. 12. Sim-
ilarly as it was in Fig. 10 for 2D case (see above),
Fig. 12b shows a spectrum with the threshold res-
olution of 0.0014Hz, which is obtained from
analysing the data of a 40mm long crystal part,
while the distribution in Fig. 12a is based on the
low resolution of 0.0112 Hz obtained after taking
sums over the neighbouring Fourier amplitudes.

In general, there is a qualitative agreement be-
tween the experimental and calculated 3D results:
similar alternating crest-trough patterns with the
same wavelength can be observed (compare Fig. 11
with Fig. 7). The crests from one side meet the
troughs from the opposite side, although it cannot
be seen very distinctly in Fig. 11 because of some-
what smoothened distribution. The spectra are also
similar in the sense that both 3D calculation and
experiment give the two characteristic regions
of maximum Fourier amplitude near the central
part of crystal and smaller amplitude maximums
near the outer rim, as comparison of Fig. 12a with
Fig. 8a shows.
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There are some differences between the experi-
mental and the 3D calculation results. The first
difference is obvious: the presence of oscillation
frequencies lower than the rotational one in the
distribution of experimental Fourier amplitudes
and its absence in the three-dimensionally cal-

culated spectrum. As shown by 2D transient calcu-
lations, the low frequencies can arise due to hy-
drodynamic instabilities.

Another difference is that the experiment exhibits
a very distinct peak of Fourier amplitudes at the
rotation frequency and the amplitudes diminish
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fast with increasing frequencies, while we see
a rather long tail of relatively high frequencies in
the results of 3D and 2D calculations. It has been
estimated that the resolution of the photo-scanning
measurements is good enough to allow to measure
frequencies up to about the seventh harmonic of
the rotational frequency. Although a clear answer
can be given only after additional studies, the fol-
lowing reason of the mentioned difference is as-
sumed at this stage: the presented 3D calculations
do not include all of the sources of non-symmetry,
because the shape of the free melt surface has been
kept axisymmetric. It could be expected that, with
accounting for the real-life non-symmetry of the
melt free surface, the 3D calculations would give
a more asymmetric result and, consequently, rela-
tively higher normalised Fourier amplitude for the
rotational frequency.

9. Conclusions

(1) Three-dimensional numerical modelling is car-
ried out to analyse the floating zone crystal
growth with the needle-eye technique used for
the production of high-quality silicon crystals
with large diameters. The shape of the molten
zone is taken from 2D calculations and kept
axisymmetric. A non-symmetric HF electro-
magnetic field of the pancake inductor is cal-
culated. The obtained non-symmetrical power
distribution on the free melt surface and the
corresponding EM forces are used for the cal-
culation of the coupled 3D hydrodynamic and
temperature fields in the molten zone. The
buoyancy, Marangoni and EM forces are con-
sidered and a steady-state non-symmetric flow
structure is obtained.

(2) The 3D hydrodynamic field is used to calculate
the corresponding non-symmetric dopant con-
centration field in the melt. Accounting for the
effect of non-symmetry and crystal rotation,
the variations of resistivity (rotational stri-
ations) in the grown single crystal are obtained.
Longitudinal resistivity oscillations near the
crystal axis of almost 30% are found to be
considerably higher than at the periphery.

(3) The results of 3D calculations are compared
with experimental data of photo-scanning
measurements of the resistivity variations in
the longitudinal cut of the crystal and with
results of unsteady 2D calculations. A Fourier
analysis of the resistivity variations is done.
The 2D results show the influence of hy-
drodynamic instability on the crystal resistivity
like low-frequency resistivity variations due to
flow unsteadiness. In the experimental resistiv-
ity distribution, both the influence of rotation
(rotational striations) and of hydrodynamic in-
stability are observed. The rotation frequency
dominates over other frequencies of resistivity
variations. The 3D calculation results show
certain qualitative agreement with experiment.
The major difference is in the relative weight of
the amplitude of rotational frequency among
the other frequencies. It is explained by the
suppressed asymmetry of the system, i.e. the
approximation of axisymmetric molten zone
shape.

(4) A further increase of accuracy of the 3D calcu-
lations could be achieved by accounting for the
asymmetry of the shape of the molten zone and
considering the time-dependence of the three-
dimensional flow.
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6.4 Included paper 3: Unsteadiness and parametric study

The third paper complements the previous study of rotational striations in two ways.
First the numerical model of the 3D flow is revisited and the numerical approach
is refined in order to resolve the unsteadiness of the flow. Indeed, the flow shows
considerable time-dependence and the spectrum of resistivity fluctuations in the crystal
gets filled by the frequencies of the hydrodynamic oscillations. The effect of the flow
unsteadiness on the rotational striations is, however, not large, which justifies the
steady-state approach. The second key aspect of the paper is the dependence of the
rotational striations on a couple of parameters: the crystal rotation rate and width of

the inductor slit.

The results of the studies have been published as included below in the article [66] in
Journal of Crystal Growth. Additionally, some results are summarized in a graphical

form in Fig. 6.2.
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position of the dopant concentration maximum; (b,d) the characteristic temperature
difference at the free surface; and (c¢) the maximum Fourier amplitude of rotational

striations.
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Abstract

Three-dimensional modelling of the floating zone (needle-eye) crystal growth process is carried out to analyse
numerically the stability of the melt flow and the influence of the crystal rotation rate and inductor slit width on the 3D
flow field and on the grown crystal resistivity. The unsteadiness of the melt is simulated and it is found that for the
considered growth parameters a steady-state flow can be a reasonable approximation to the unsteady melt motion. The
parametric studies have shown that increasing the rotation rate essentially changes the flow pattern and weakens the
rotational striations, while the inductor slit width has a more local influence on these characteristics. © 2001 Elsevier
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1. Introduction

For the floating zone (FZ) growth of large-
diameter (=100mm) silicon rods, the needle-eye
technique and a high frequency electromagnetic
field (3 MHz) are used. Two-dimensional (i.e.
axisymmetric) models and the calculation methods
of the processes during FZ growth have been
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nieks).

considered in numerous studies, e.g. Refs. [1-8]. In
fact, the pancake inductor has only one turn and
current suppliers with a slit between them (see
the sketch of one half of the system in Fig. 1),
therefore the EM field and the distribution of heat
sources are only roughly axisymmetric even if the
rest of the system arrangement can be assumed
as axisymmetric. The non-symmetry together with
crystal rotation generates the small-scale inhomo-
geneities of resistivity in the grown crystal rod that
are called rotational striations. Some three-dimen-
sional (3D) aspects of non-industrial FZ processes
with small crystal diameters have been considered
in Ref. [9]. Also 3D calculations of an industrial
FZ process have been carried out [10-12]. In
Ref. [11], the influence of the 3D electromagnetic,
Marangoni and buoyancy forces is studied, while
in Ref. [12] the rotational striations are analysed



156 CHAPTER 6. 3D MELT FLOW AND ROTATIONAL STRIATIONS

G. Ratnieks et al. | Journal of Crystal Growth 230 (2001) 48-56 49

]

)

S 5//%%%////
.
7 f/%/ L

Free surface
of the melt

Fig. 1. 3D view of the FZ-growth system (half cut).

and compared with experiment. However, a 3D
study of dependence of the process on the various
growth parameters has been still lacking.

In the present paper, the 3D studies are con-
tinued in order to analyse the influence of the
crystal rotation rate and the width of inductor slit
on the 3D flow field and on the grown crystal
resistivity as well as to check the validity of the
steady-state laminar flow model, which is done by
performing the transient flow analysis.

2. Modelling methods

Since a more complete information about the
used modelling methods can be found in Ref. [12],
only a short summary is given here. An axisym-
metric shape of the molten zone is obtained by
solving 2D thermal-electromagnetic problem and
assuming axial symmetry of the inductor (2D finite
element and boundary element methods). The dis-
tribution of the high-frequency electric current in
the skin-layer of the melt is obtained via 3D EM
field calculations (3D boundary element method).
The previous axisymmetric geometry of silicon
parts is retained and the three-dimensionality of
EM forces and heat sources follows from the
asymmetry of the inductor. The 3D calculations
of the coupled hydrodynamic, temperature, and
dopant concentration fields in the molten zone are
carried out with the finite volume method using
the commercial CFD-code FLUENT [13] (version

4.48, with user-defined subroutines). The non-
symmetric distributions of heat sources and EM
forces as well as the buoyancy and Marangoni
forces are considered. The resistivity variations in
the grown crystal, i.e., rotational striations are
calculated from the (transient) dopant concentra-
tion at the crystallisation interface.

3. Unsteadiness

For the considered FZ-Si process (2.8 MHz EM
field, Srpm rotation of crystal, ¢J100mm; see
Ref. [12] for a complete list of parameters), the
characteristic Reynolds number reaches a rela-
tively high value (=& 4000), which may lead to
unstable flow conditions.

If using a computational grid in the molten zone
of about 40,000 cells, i.e., control volumes (the
number of cells in radial, axial and azimuthal
directions being 34, 44 and 24, respectively), then
normally a converged result for the steady-state
flow is obtained. However, when refining the grid
two times in each direction, which leads to ca.
300,000 cells (with the respective number of cells in
radial, axial and azimuthal directions being 66,
92 and 48, respectively) it is observed that no
steady-state convergence may be obtained more.
This is interpreted so that, with refining mesh, the
numerical viscosity of the discretisation scheme
has been lowered enough to resolve the physical
unsteadiness of the flow. Therefore, the fine grid
calculations have been performed in the time-
dependent manner with a time step of 2.5 ms. Cal-
culations have been done for about 77s starting
from a partly converged result of a steady-state
calculation.

The results of the transient flow and dopant field
calculations are illustrated in Fig. 2. The frames,
arranged in columns, show the fields at three
sequential time instants with increment of 2.5s.
In the cross-section of the melt, the characteristic
vortex shedding at the left part (underneath the
inductor slit) is observed. Although the flow field
behaviour is rather complicated and lacks a strong
periodicity, the flow tends to change with time
periodically with a characteristic period of 7-8s.
The main stages of the vortex shedding can be seen
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Fig. 2. Transient flow field: velocity in the vertical cross-section (on the left), and dopant concentration in the melt at the crystal

growth interface (on the right).

in the three frames: (1) at the first step, one large
vortex is dominating in the central region on the
left side; (2) then a secondary vortex is arising
below the main one and near the growth interface;
and (3) finally, the secondary vortex moves up
towards the free surface of the molten zone and
the main vortex tends to occupy again the central
region on the left. After that all gets repeated from

the beginning. It is interesting to note that the flow
at the right side (opposite to the inductor slit) stays
practically unchanged with time.

The region with the largest amplitudes of tem-
perature and velocity oscillations is found near the
centre of the molten zone and directly below the
inductor slit, as indicated in Fig.2. Velocity
oscillations have an amplitude of nearly 1cm/s,
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and the axial and azimuthal velocity components
are changing their directions periodically. The
radial velocity component is behaving most irre-
gularly. The temperature is changing with time in
the limits of about 1 K.

The instantaneous flow and dopant fields in
Fig. 2 are to be compared to the respective steady-
state calculation results obtained on a coarser grid
(see Fig. 4 below). The main differences between
the steady-state and the transient results occur
in the central region of the molten zone on the
left side from the axis, where the issue of the
discrepancies is, of course, the transient character
of the flow, which could not be resolved on the
coarser grid. Nevertheless, the general flow pat-
terns keep close similarity. For the dopant
concentration along the growth interface, there is
also analogy between the transient and steady-
state results except the central region, where for
the transient case the concentration isolines have
a much more complicated shape because of the
high sensitivity of the dopant distribution to the
changes in the fluid flow near the growth interface.

Similar to Ref. [12], resistivity distribution in
the grown crystal is obtained by switching from
the fixed cylindrical coordinates, (r,a,z), to the
reference system of the rotating and downward
moving single crystal, (r,o/,z’). The shape of the
curved axisymmetric crystallisation interface is
given by z = z¢(r) and the concentration at this
interface is described by the time-dependent func-
tion Cey(r, o, 1) = C(r, o, zc(r), 1), where C(r, o, z, t)
is the calculated distribution of dopant concentra-
tion in the melt volume. The corresponding
normalised resistivity distribution p(r,o/,z") in the
grown crystal then equals

p(r,ol,2) = [ko Cer(r, o, ter)] ™! (1)

with k¢ being the equilibrium segregation coeffi-
cient. The functions o, and t¢; describe the proper
angular coordinate and the time instant at which
the crystallisation of the solid point in crystal has
occurred

" — z¢e(r)

ace(r, ol 2 = 2m = P W+, ®)

Z - ZCr(”)
tee(r,2) = ——,
' VCr

3)

where V¢, is the growth rate of the single crystal
and W, its rotation rate (compare (1), (2) and (3)
to the respective formulas in Ref. [12]).

The calculated resistivity distribution for one
longitudinal cross-section of the grown crystal rod
(at angle o/ = 0°) is shown in Fig. 3a. Similar to
the corresponding figure in Ref. [12], where a
steady-state flow was considered, an alternating
crest-trough pattern with the typical herringbone
form is observed. However, in the present case, the
pattern has lost the exact harmonic periodicity and
is more complex because of the overlaying effect of
unsteadiness. Meantime, the general shape of the
resistivity distribution, i.e., the large-scale varia-
tions along the crystal radius are equal in both
cases.

Just as described in Ref. [12], the Fourier
analysis of 0p/0Z in the axial direction is done
and the obtained distribution of Fourier ampli-

normalised
resistivity

2 ((\/ >
(oéf\'\")é » 52.5

(@
Fourier

amplitude

rotational 0 1 >
frequency 0.2

® % 4

Fig. 3. From 3D transient calculations: (a) distribution of
resistivity p(r,o/,z’) in the vertical cross-section o’ = const. of
the rotating crystal, and (b) Fourier analysis of 0p/0z’ in axial
direction.
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tudes along the diameter of the crystal rod is
shown in Fig. 3b for the same angle o' = 0°. The
principal difference between the present spectrum
and the spectrum in Ref. [12] is that the spectrum
describing the transient results is, in general, con-
tinuous while the spectrum for steady-state results
was essentially discrete and had the lowest
frequency equal to that of crystal rotation. Now,
the not-exactly-periodic transient behaviour of the
flow and concentration field is described during
a finite time interval (365 is chosen in the specific
case) corresponding to a finite grown crystal
length, 2.04 mm, which determines the resolution
threshold of the continuous spectrum. Therefore in
this case, the smallest frequency is 3 times lower
than the rotation frequency of the crystal, which
corresponds to a wavelength of 0.68 mm. How-
ever, it can be seen that the rotation frequency and
its higher harmonics still prevail over the inter-
mediate frequencies of unsteadiness. This is seen
clearly at the rim of the crystal, where like in the
steady-state case in Fig. 4 distinct rotational stria-
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tions appear due to the non-symmetric action of
EM forces in the periphery.

It should be noted that the case of unsteady melt
flow yields, in principle, the resistivity distribution
changing with the angle o' not only by a phase
shift. The dependence of the present results on the
angle can be observed in Fig. 3b as the lack of
exact symmetry between the Fourier amplitude
distributions in the positive and negative directions
along the radius axis. This effect, however, is small
and an approximate symmetry is retained.

It is concluded that a steady-state flow can be
considered as a reasonable approximation to the
unsteady melt motion, therefore we have used the
steady-state model with the coarser grid for the 3D
parametric studies below.

4. Parametric studies: crystal rotation rate

The crystal rotation rate is one of the main
process parameters because the rotation is essen-
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Fig. 4. Results for crystal rotation rate 5rpm and inductor slit 1 mm: (a) temperature at the free surface, (b) velocity in the vertical
cross-section, (c) dopant concentration in melt at the growth interface, and (d) Fourier analysis of 0p/0z’ in axial direction (see

footnote 1 and footnote 2).



160 CHAPTER 6. 3D MELT FLOW AND ROTATIONAL STRIATIONS

G. Ratnieks et al. | Journal of Crystal Growth 230 (2001) 48-56 53

tial for the growth process and any changes in
the rotation rate influence directly the melt
hydrodynamics and as a consequence the resistiv-
ity distribution in the crystal. The previous results
(those above and in Refs. [11,12]) have been
obtained for a crystal rotation rate of 5rpm. In
the present study, also rates of 0, 2.5, 10, 15 and
20rpm are considered. The other growth para-
meters are kept unchanged.

In Figs. 4 and 5, the results for the temperature,
velocity, dopant concentration fields and the
Fourier analysis' for two different rotation rates
(5 and 15rpm) can be compared?.

It is observed from the flow patterns in the
cross-section of the molten zone and from the
dopant distributions at the growth interface that
higher rotation rates make the velocity and
concentration fields more axisymmetric and also
suppress the fluid motion in the radial and axial
directions. For example, in the case of the 15 rpm
rotation in Fig. 5b, larger areas of small velocity
in the vertical cross-section can be seen (compare
with the Srpm case in Fig. 4b), particularly it
concerns the lower part of the molten zone, which
is the most directly influenced by the crystal rota-
tion. The higher the rotation rate, the more the
fluid rotation resembles rotation of a solid body.

The flow and dopant field calculation with zero
rotation rate has shown that in the limit of a very
slow rotation there is not only the most expressed
deviation from axial symmetry but also a very
different dopant distribution with a maximum
near the centre of the growth interface, while in
the case of higher rotation there is always a ring of

'The amplitude is depicted as a function of the frequency and
the radial coordinate of the crystal. It should be considered that
the spectrum is strictly discrete (as shown in Fig. 3b) and, along
the frequency axis, the amplitudes are joined for convenience
only. The smallest non-zero frequency corresponds to the
rotational frequency of the crystal.

2Note that for different crystal rotation rates frequency scales
differ because the smallest frequency is different. Also, for
comparison purposes, the Fourier amplitudes of the axial
derivative of resistivity have been divided by the rotation
frequency, which means that the displayed amplitudes for
different rotation rates allow to compare the variations in the
resistivity itself, not in the derivative. The Fourier analysis is
still done for derivatives to make the amplitudes for higher
frequencies seen better.

concentration maximum around the centre and
a minimum takes place in the centre itself. The
higher the rotation rate, the bigger the radius of
the ring of maximum concentration (cf. Figs. 4c,
5¢). The location of the maximum near the centre
for the Orpm case is explained by a distinct flow
structure, where the flow separation takes place at
the centre of the growth interface and the flow is
directed towards the central axis all along the
interface. The higher the rotation rate, the farther
from the centre the flow separation point is located
(cf. Figs. 4b, 5b). The concentration minimum and
maximum values are approximately equal for all
of the rotation rates except the Orpm case, in
which the maximum value is about two times
higher.

With non-zero rotation of crystal, the tempera-
ture maximum at the free melt surface is shifted in
the counter-clockwise direction, which is the
direction of crystal rotation (see Figs. 4a, 5a). To
characterize the non-symmetry of the temperature
distribution at the free surface, one can consider
the difference between the maximum temperature
at the free surface and minimum temperature at
another point located at the free surface at the
same distance from rotation axis as the first
point. This characteristic temperature difference
for different rotation rates is found as follows:
15K for Orpm, 16 K for 2.5-5rpm, 9K for 10 rpm,
6K for 15rpm, and 5K for 20rpm, i.e., for faster
rotation the temperature distribution becomes
noticeably more even and symmetric.

Comparison of the rotational striations (i.e., of
the respective Fourier amplitudes for resistivity
variations) in crystal grown with different rotation
rates shows that they diminish with increasing
rotation rate. Considering the maximum Fourier
amplitude for the rotation frequency of the
resistivity variations the following relative values
normalised to the amplitude for the case of Srpm
are found: 1.2 for 2.5rpm, 0.5 for 10rpm, 0.4 for
15rpm, and 0.2 for 20 rpm.

5. Parametric studies: inductor slit width

Another parametric study includes changing the
slit width of the inductor while keeping the 5rpm
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Fig. 5. Results for crystal rotation rate 15 rpm: (a) temperature at the free surface, (b) velocity in the vertical cross-section, (c) dopant
concentration in melt at the growth interface, and (d) Fourier analysis of 0p/0z’ in axial direction (see footnote 1 and footnote 2).

rotation rate and the other parameters unchanged.
The slit width is an important parameter of the
inductor. A too small width may lead to electrical
breakdown, whereas a wider slit produces a more
non-symmetric EM field. In our case when
regarding the steady-state flow model, the slit is
of special importance because it is the only reason
for the system to deviate from the axial symmetry.

Normally, in this article and in Refs. [11,12], a
slit of 1mm has been assumed. In the present
study, calculations have been done also with slits
of width 0.5 and 2mm. This leads to different
distributions of EM forces and heat sources along
the free melt surface. The temperature, velocity
and concentration fields, as well as the Fourier
analysis of the resulting resistivity distribution for
the 2 mm slit are illus-trated in Fig. 6, which is to
be compared to the 1 mm case shown before in
Fig. 4.

Comparing the flow patterns in the cross-section
of the molten zone and the dopant distributions at
the growth interface (Figs. 6 and 4), it is observed

that although the flow and dopant distributions
are not fully equal, they are very similar. The main
influence of the change in EM force and power
distribution is observed in the vicinity of the free
surface of the melt, including the peripheral region
underneath the slit, which is the closest to the
growth interface. The rest volume of the flow and,
consequently, the dopant distribution in the cen-
tral region are less influenced.

Similar as in Section 4, to characterize the non-
symmetry of the temperature distribution at the
free melt surface, one can consider the character-
istic temperature difference defined in Section 4.
This temperature difference is found to be 11K
for 0.5mm, 16K for 1.0mm, and 18 K for 2.0 mm
slit. It can be seen that the 0.5 mm slit results in
considerably reduced temperature field asymmetry
compared with the case of 1mm. Meanwhile,
although for the broad slit (2 mm) the temperature
difference reaches a maximum value, it is not much
higher than that for the 1 mm slit. The explanation
is that with the 2 mm slit there is not only a deeper
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Fig. 6. Results for inductor slit 2mm: (a) temperature at the free surface, (b) velocity in the vertical cross-section, (c) dopant
concentration in melt at the growth interface, and (d) Fourier analysis of 0p/0z’ in axial direction (see footnote 1).

minimum of power density at about middle radius
of the free melt surface underneath the slit, but
also a distinct local maximum near the crystal rim
underneath the slit.

Near the rim of the grown crystal, the case with
2mm slit shows higher Fourier amplitudes than in
case of a smaller slit width (cf. Figs. 6d and 4d).
Apparently, this fact is caused by the influence of
the higher non-symmetry of EM forces. The effect
of EM forces is indicated by the altered velocity
field in the periphery at the side of the inductor slit
(see Figs. 6b and 4b). Due to the large slit size, the
EM forces have made a stronger flow velocity
towards the periphery along the free surface of
the melt and the small counter-vortex has dis-
appeared. This has led to a more non-symmetric
dopant transport in the periphery of the molten
zone and, consequently, the dopant concentration
isolines have deviated more from the concentric
shape at the rim of the crystallisation interface
(Fig. 6c).

It must be emphasized that the used one-way
analysis does not consider the influence of the non-
symmetric power distribution on the shape of
interfaces. Therefore, the crystallisation front
remains axisymmetric and e.g. the remelting under
the inductor slit is not analysed. On the other
hand, the remelting acts only locally in the vicinity
of the crystal rim and should not disturb the flow
structure in the whole zone.

6. Conclusions

Numerical three-dimensional modelling of the
floating zone (needle-eye) crystal growth process
has been carried out to analyse the influence of
the crystal rotation rate and of the width of the
inductor slit on the 3D flow field and on the grown
crystal resistivity. Comparison of the transient
results, obtained on a relatively fine computational
grid, with steady-state results on a coarser grid,
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not resolving the unsteadiness, shows that local
differences appear in the most unsteady flow
region near the centre of the molten zone while a
good agreement is found in the rest of the melt
volume. The parametric studies have shown that
increasing the rotation rate essentially changes the
flow pattern and weakens the rotational striations,
while the inductor slit width has a more local
influence on these characteristics.
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7 Summary and conclusions

Axisymmetric phase boundaries

For the first time, a closed system of mathematical models for steady-state FZ crystal
growth has been proposed: the shape of the inductor, the process parameters and
material properties determine the location and shape of the phase boundaries. A
computation code FZONE that solves the phase boundaries in a partly transient way and
implements many important updates to the models published earlier has been made
and found applicable for calculation of floating zones with large crystal diameters (e.g.,
about 8 inch). The following main improvements in comparison to the most advanced
one of the previous models (i.e., the model by Virbulis and Miihlbauer et al. [45, 46],

where the authors were focusing on 4 inch floating zone) have been introduced:

A model of the open melting front structure has been proposed in order to
take into account the tangential change in the average melt quantity (i.e., the
thickness of the “fluid film”) and to calculate the corresponding Joulean heat
flux due to the penetrating magnetic field. The resulting open melting front

form agrees now better to the reality.

e A special calculation method for the position of the inner triple point has been
developed in order to ensure an automated procedure, which was absent in the

previous model.

e The free surface calculation algorithm with fitting of the angle at the crystal
rim has been strongly improved in order to function well when applied to large

floating zones.

e The view factors model has been implemented for the radiation heat transfer
calculation, whose better performance over the T*-boundary conditions is of
particular importance for large floating zones because of larger temperature dif-

ferences at the radiating surfaces.
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e A better method of accounting for the approximate influence of the inductor
slits has been implemented. It allows calculation of effectively axisymmetric EM
fields created by multiple-slit inductors (as typical for large crystal growth) and

accounts also for the main slit, which was neglected in the previous model.

e Axisymmetric time-dependent flow calculation with SUPG-stabilized Finite El-
ement Method has been implemented in order to take into account the melt flow
effect onto the temperature field and shape of the floating zone. The stabilization
approach was essential to successfully deal with both: 1) the strong convection
inside the floating zone and 2) the deformation of the finite element grid near
the inner triple point as the zone boundaries move during the calculation proce-
dure. The implemented model includes also the direct effect of the melt flow on
the shape of the free melt surface (in sense of Section 3.6), which has not been

studied for floating zone before.

e The used partly transient modelling approach with finding the positions of the
crystallization and melting fronts by imitating their movements in time has al-
lowed to study the time dependent interaction of the interface form and melt
flow. Beside that, it also facilitated a further development of the model toward a
fully transient description of the growth process, which is not considered in the

present work.

By using the new code FZONE, for the first time parametric studies of phase boundaries
for an 8 inch floating zone have been performed, by neglecting the melt flow. The

following conclusions are drawn from the numerical calculations:

e The calculations affirmed that the FZ process is very sensitive to changes in
the inductor current: for the considered 8 inch process the zone height changed
linearly with dHz/dI = 0.0623 mm/A. With a chosen realistic zone height
of 37 mm and inductor current of 1510 A, the change limits of inductor current
allowing the existence of a steady-state floating zone constitute only +7%, which
corresponds to zone height change by +17%. The lower limit is determined by
the reducing distance between the inductor and the melt, the upper limit, by
the electromagnetic cutting of the zone neck. Also the experimentally observed
sharp edge building at the inner triple point in case of a too large inductor current

(and zone height) could be demonstrated. Because the inductor current in an
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FZ process is never precisely known, the following studies were made by fixing

the zone height.

e The usage of a reflector in 8 inch FZ process, especially in the proximity of the
exterior triple point, has a significant influence: on the one hand, it reduces
considerably the current that is needed to keep the prescribed zone height and
hence also the danger of arcing and, on the other hand, it reduces the temperature

gradients in the crystal and the danger of crystal cracking.

e With a given inductor shape and prescribed zone height, there exist limitations
on the possible crystal pull rates. The lower limit at ca. 0.7 mm/min is de-
termined by the surface tension: the zone neck collapses after the free melt
surface exceeds a critical height above 18.5 mm. The upper limit is reached at
ca. 2 mm/min because the crystallization front gets unrealistic steep. Between
these limits, the inductor current stays constant but the vertical placement of

the whole zone is shifted relative to inductor.

e A too small feed rod diameter causes formation of a solid bridge between the feed
rod and the grown crystal whereas the upper feed rod size limit is determined

by the ability of inductor to ensure a sloped open melting front.

e Geometry of the inductor is an influential means of FZ process design. The
lower and upper limits of the inductor hole size are determined by cutting of the
zone neck by a too small hole and solid bridge formation as the melting interface
goes down if the hole is too large, which illustrates the necessity for a needle-eye
inductor. To additionally have a sufficient slope of the open melting front, the

additional slits are indispensable too.

e Comparing the 8 inch floating zone to smaller floating zones (6 and 4 inches)
shows that the typical deflection of the crystallization interface grows rapidly
with crystal size. This can be explained by a slower increase in the area of
(and radiation from) the crystal’s cylindrical surface than in the crystal’s cross-
sectional area (and heat supplied from the inductor onto the free melt surface)

with crystal diameter.

Further calculations of the phase boundaries for 8 inch, 4 inch and 2 inch floating zones
have been performed with account for the melt flow. The results have been compared

to those of calculations neglecting melt flow and the following conclusions are drawn:
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e For the 8 inch floating zone, the effect of melt convection reduced the overheating
of the melt from AT = 58 K by 13 K and reduced the crystallization interface
deflection by 6 mm. This reduced deflection agrees well with experimental mea-

surements.

e For the 4 inch floating zone, the effect of melt convection reduced the overheating
of the melt from AT = 31 K by only 4 K and did not change the crystallization
interface deflection significantly. This deflection agrees well with experimental

measurements.

e For the 2 inch floating zone, the effect of melt convection reduced the overheating
of the melt from AT = 53 K by 22 K and increased the crystallization interface
deflection by 5 mm. This increased deflection agrees well with experimental
measurements. The large effect of convection despite the small melt volume is
explained by the strong EM forces due to the proximity of the inductor to the

free melt surface.

e The direct influence of the melt flow on the free surface shape (in sense of Sec-
tion 3.6) was negligible for 8 and 4 inch floating zones. For the 2 inch floating
zone, due to the temporary strong melt flow, a considerable effect on the free
surface fluctuations was found (the distance between the free melt surface and
the inductor changed sometimes due to the flow effect by more than 20%). De-
spite that, the time-average effect on the crystallization interface deflection was

insignificant.

To summarize: Calculations neglecting the melt motion yield a first approximation of
the phase boundaries. For more precise predictions, the convective heat transfer has
to be accounted. The direct influence of the melt flow on the free melt surface shape

is normally irrelevant.

3D aspects and rotational striations

Another part of the work has been devoted to the effect of the three-dimensionality of
the inductor on the melt flow in the floating zone and on the resistivity distribution
in the grown crystal, the latter being derived from the dopant distribution in the
vicinity of the crystallization interface. The shape of the 4 inch molten zone is taken

from axisymmetric phase boundary calculations and the three-dimensional flow and
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dopant distribution in the melt is calculated by the commercial CFD program package
FLUENT. For the first time, the phenomenon of rotational striations in FZ crystals has

been examined numerically.

Due to the non-axisymmetric Joulean power distribution on the free melt surface, the
temperature distribution in the melt and all acting forces under consideration (buoy-
ancy, EM- and Marangoni forces) show a non-symmetric distribution as well. Studies
of the individual influence of these forces have shown that the distribution of dopant
concentration and resistivity in crystal are very sensitive to both EM- and Marangoni
forces, whose mutual counteraction and partial compensation play an important role

in amplifying the rotational striations.

The rotational striations, i.e., the resistivity variations created by the non-symmetry
and crystal rotation during the growth, have been obtained numerically and subjected

to Fourier analysis. The following conclusions are drawn:

e Parametric studies of the rotational striations show that increasing the rotation
rate essentially changes the flow pattern and weakens the striations, whereas the

inductor slit width has a more local influence on these characteristics.

e The amplitude of rotational striations near the central axis of crystal is found
to be considerably higher than at the periphery, which agrees very well to mea-

surement data and is explained by the flow structure.

e A difference from measurements has been found in the relative weight of the
Fourier amplitude of rotational frequency among other frequencies, which could
be explained by suppressed asymmetry of the system due to the approximation

of axisymmetric floating zone shape.

Although it was possible to obtain the rotational striations by accounting only the
non-axisymmetric shape of the inductor, in reality other sources of non-symmetry
(like non-axisymmetric shape of the free melt surface) join and can possibly make the

non-symmetry of melt flow and the striations stronger.
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