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Latvijas Upiversitiles Zinatniskie Raksti, 606 (1997). Matematika

EXTREMAL PROBLEMS OF APPROXIMATION
THEORY OF FUZZY SETS

Svetlans V. Asmuss, Alexander P. Sostak

Absiract.The problem of approximation of s fussy mbeet of s tormed apace is considered in
the paper. We study the emor of approximation, which in this case is charsrterived by a fumy
number. In order to do this we define the mpremum of & fuxsy set of real aumbers as well aa the
supremum and the isfimum of crisp sets of fassy sumbers. The iatroduced concepts allow w o
investigate the best approximatios aad the optimal linear approzimaiing. The fussy ccanterparts
of duality theorems wre proved.

AMS SC 04AT2, 41A66

1 Introduction

Extremal problems of Approzimstica Theory is o field of mathematicn whee setting allown
oxe to wlve uch important problems as precise estimation of the etror of fized spproximetion
methods and determination of the best method of apprarimation.

The ceatral one in thin theory is the notion of the best wpprozimation introduced by P.L Cheby-
shev [11]. While ot the beginning researche's astention waa attracted to the investigation of the
best approximation to & single element £

E(:,H)-;ua;‘un-unx (1}

(here X ir « normed space, 5 € X aad i C X)), starting with thirties the emphasis moved to the
problem of apprazimation 1o the whole ddam ¥ C X

E(V,U) m aup E(z,l). (2
Y

The statement of the problem (2) ln cansed by the fact that estimation of the value E(V, 1) ia belng
searched Ia terma of some characteristics of the element 3, determising not the givan element bat o



certain set ¥ containing this element. The problem (2) can be interpreted lso na follows: we have
only a cerain incomplete information abont the element v to be wpproximated; this information
determines not naingle element bt & whels set ¥, and our task ia to get the best pomsible estimation
of the value E(v,U) based only on this information. It is clear thet the value E(V,U) obtzir
the reault of sach reasoning will be true for any element z of ¥, aithongh, generally, it will not be
exact for ench clement separately. Therefore the set ¥ must be sufficiently narrow in order that
the characteriatice which determine it could refiect the basic properties of the element v more fally.
o Under anch interpretation it seems natural to consider the set ¥ wa o fozzy, rather than as
8 cTisp one, ie. to realize it na & fanction ¥V ; X — [0,1], where the value V(r) describes the
"belongness degree” of the element z to the set V.

Example 1.1 The problem (2) can be interpreted also 84 the problem of approximation to &
fixed element on the basis of non-precise, or fuzzy information. For exumple, one can cousider
approximstion to & fanction f by velues v, in pointa ; € [0,8],: = 1,3,...,», which are kmown 4p
ta & certain error: 7, = f(t) + . H one Rknown the prindiple of distribution F of errors §;, thaz as
V: Clo, 8] — [0,1] oze can take

V(=) = 1 = (F(|Ir(z) - ll) - F(=[lr(s) = ri]))s
where #(z) = ({ti),...,2(t)),r = (ry,.0 ., 7a) wud ||... || s n norm in R®,

Exemple 1.3 Whey epproximating to & function in order to estimate the value E(v,i{) one
wially uses charscteristion of ita emoothnes. In many practically important cases the problem (2)
is solved for the clam V = [0, 8] of (r = 1} times abaclutely continuously differentiable faactions
whose r-th defivative i penmmable. Along with this one cun often waume that the fanction to
be approximated in infinitely many times differentable. Here s ¥ one can take

V(z) = o(m) for = € Lo, 4\ £} {a, 4,
where o ia & certain weight fenction of the aaturl variahle sueh that
sald)=0
o [imp oo a{m) =1

s o is strictly increasing.
2 Fuzzy sets. Upper and lower bounds in fuzzy setting

In this section we recollect some coacepts and restits concerning famy sets 1ad related notions
which wre neaded in the sequel. Most of tham are wall-known to those working with fuzsy sets;
some wre probably new,
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2.1 Fuzzy sets

The concept of a fuzzy set was introduced by L.A. Tadeh [8]. Following Zadeh, by  fussy set,

or more precisely, by o fuzsy subset of & 2¢t X we realize o mapping V: X — f:=[0,1], The value
Y(z) can be interpreted ua the "belongaess degree® of kn element z to a fuzzy set V. A fezzy eet
V: X — I will be called narmed if mup, Wz) = 1 (cf &g, [1]).
In cuse X is & metric space, & fuzzy set V in called bounded if for every £ > 0 the oet Vs, 1] ia
bounded. Further, let X be a vector space gver R aad let 3 ¢ L Then the product AV: X~ R
is defined by the equality 3 W(z) = V(§). (In case ¥ is u crinp sct this definition obviously reduces
to the classical one).The image of u given fuzay set ¥: X — J undera mapping p: X = ¥ it
defined oy & fuszy set

v(wm={ AR

2.2 Fuzzy real numbers. Fuzzy real line
Deftnition 3.2.1 (see [3), {t], <f alse [6],{7]). A fazzy real namber is & function 5: B — f such
that

» I i Ron-increasing;
eop, )=, inf,2(z)=0;
® £ i upper aemiconfinusur, e lim, - 2(z) = 2{a).
The aet of all fusty real numbers is called o fozzy renl line and it i1 denoted iy R(1).

Remark 2.2.3 (1) Those working in "foray mathernatio™ wenally consider these concepts in a
rore genernl setting, aamely the so called L-{ozzy real nambers and the L—fuzy real line R{L)
where [ is & bounded lattice satiafying certain conditions. However in our paper we deal only with
"clamic™ (mzzy sets, ie. with L—[ozzy seta for L = {, and therefore, nntorelly we shall cee joat
the (7-)fuzzy reel line R{{}.

(2} In the original papers on this aubject (3, [2] et.nl) fuzay real nambers were defined not
us functions themselves, but ma certain clasmes of equivalence of functions. In this paper we accept
the definition fmt ruggested by S.E. Rodabaagh (7] which is easentially equivalent to the original
one.

(3) The ordinary real line R can be identified with a subapace of B(I) by serigning to a real
nomber a € R the fuzzy real nomber z, defined by

1, if z<¢a
"(‘):{ 0, if r>a



2.2.3 Pussy topology on R{T) {d [2] erc}.
Given g, b € Rlet Xy, py: R{I) = I be defined by

A(s) =1 - b)), uad
als)=de?), wher oa) =mp )
Then the fumily {3, s : 8, b € R} geaarutes o fumzy topology r on B(7); on the real llne B viewed
u & subepace of B(I) this fuzzy topology induces the wanal {order} topology .
224 Addition of fussy numbers (smt f¥], [7]). Given £y,2; € R{I) let
(@ n)s)= n'p n()A nz-1).

The operation of fuxey wddition @ is u jointly continuous extension of nddition from the real Lse
B to the fuzay read line B(f).

3.3.5 Product of [ussy nurmbers ww deflned wnd thoroughly sindied by 5.E. Rodabaugh
(vee eg. [7]). The definition of product @ of fuxsy surabers is much more complicated if compared
with the definion of their rum. Fortunalely, for our parposes we need only multiplication of u fumy
zumber by u positive real sumber ¢ € B. o this case the general definition is equivalent to the oae
given by the following ximple formula:

(tO5)(z)=s (;)

The operation of product is in accordunce with addition and is jointly continnous.

2.3 Supremum of a fuzzy set of real numbers

Deflnition 2.3.1 By the supremum of o normed bounded fuzey set M R — 1 we coll the Jussy
real number  Sup{M): R - I  such that

{11) M < Sup({M) and
(2) ¥z e R, ¥e >0,y >z ¢ euchthat M(y) > Sup(M)(z)-c.

Notice that in case M is crinp, this definition teduces Lo the qaual deflaition of supremum.

In case M = (V) where ¥: X = Jand p: X — R (see 2.1} we shall zaually write
Sup, gye(3) or Sup{p(z): s€V) instend of Sup(p(W]).

Theorem 3.8.3 Let M R —~ I de o normed bounded fuazy set and let Sy B — 1 be « mapping.
Then the folloving are equivalent:



(1) Sue = Sup(M), i.0. Su is the snpremum of M;
(2) Su(s)=mpfo:mpM~'[0,1] 25} VseR;
(3) Su(s) mmpla: mp Mo, 1] 25} Vs € R;
() Su=mAf{s|s:R= 1,32 M, sisnon ~ increasing, sisvac }

Since the fuzxy wet Sy defined in (4) is obwioualy & fuszy number, this theorem, amoag other,
implles the existance of the supremum for every bonaded normed fazxy set of resl nxmber

Remark 2.9.3 Hwe omit the condition that Af in normed and bouaded, then one caa alao define &
mapping Sup(A) : R — J by the properties (1s) axd (24) in 2.3,1. However, in this case Sup(M)
may fail to be o fuzxy nember. Numely, Sup{M) is 20p-incressiag and vac bat genennlly dos
not satisly the second condition in the definition of & fusay real aumber, A statemest maslogous
to Theorem 2.3.2 remainn valid [n this case, too.

Proposition 3.5.4 M : B — I & o normad beunded fuszy set and t > 0, than Sup(M 0 1) =
10 Sup(M)

Remark 2.8.5 Patterned afler the gtaation ia clasic analyss one can define the infimum of &
wormed bounded fazsy set M : B — I w the fuxy aumber In (M) = —Sup{-M). Bowever, we
shall not despen into considerntion of this concept here, becunse it is 1ot needed for the purposes
of our work.

2.4 Infimum and supremnm of a crisp set of fosgy numbers

Let F ¢ R(J). Thea the infimam of thie set is defined by the equality

i.nIF-A{:hEF}.

Obwiowaly iaf F is a forsy real sumber. 1t In alas easy to see that inf P caa be characterised s
the largest oxe (>) in the family of fxmy numbens which are lems than or squal to aay one of femzy
namben £ & F. The supremum of the set F is defined by the equality

opF=isf(s] s i afamy umberaad s> ¥4 € F}

3 Extremal problems of approximation theory

In this section we generaline the well-inown potions of “camic® or "eriep® approximation
theory (sse, eg. [10], 4], [b] ) to the fuzsy case. We cozsider the problem of approximation of
fuzsy subeet V in & normad space X.



3.1 On the best approximation of a fuzzy set

Let I be x fixed non-empty eubeet of & space X. Speaking shout the best approximution of
u fozzy set W: X = J by the set U, the exact upper boznd in {2) munt be realized in the foesy
sense (see 13.1 ).

Definition 3.1.1 The best apprazimation of a fuzay set ¥ by o setld is defined o the fursy numier
E(Y.U) = Sup,py E(z,l)

The fussy value E(V,I{) can be interpreted as the deviation of the fuxxy set V from the crisp
st U,

Proposition 3.1.3 For cath a € J the value wap E(V, 1) ([0, 1]) gives the eal epprozimation
of the 32t ¥1[o,1] in the crisp rense.

3.2 On the error of the method of approximation of a fuszy set

Hevirg the precise estimatioa of approximation In the form E(V,U/) we uonally cannot con-
struct for & given element v € ¥ an ejement in the set i/ realizing sach an error. Inatead of the
Yest approxizzation operator P: X — I defined as ||r — Pzf|x = E{z, ) we should prefer o« cone
structively reglizabie methsd of appraximation. Any one of such methods is defined by a ¢ertain
operntor A: X - l.

Definition 3.2.1 The srror of spprosimation of & fuxsy st V by amethad A: X = U is given Iy
the value
dA,YU)m 5'!-:9“‘ - Axf|x. (’)

Proposition 3.3.3
E(VlU}= '-:‘ oA,V 1)

Definition 3.2.3 The opersior (method) Ay s called ihe optimal approximation oprrater (methed)
if
o A0, Y, li) = BV H).
The best spproximation operator P, whenever it exirts, is the optimal one, but it is 20t neces-
sarily the anique among possible ones. Tuking into acconnt that in fussy cuse the valte E{V, L) is

& fazsy real aumber, Le & mapping of R iato [, one conld hardly be able to construct the optimal
approximation method.
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Deflnition 3.3.4 The sperster (methed) A, U called the e-optiral approximation sperator {method)
Jor nor-neyative ¢ € R(I} if
oA, ¥,U) < EV ) Be.

If we ure inberested cnly in Enear methods, then for fixed ¥ and i (in this case we suppose
that I/ i & subepuce of X), it is aataral to search for those linesr operntom L € L{X,U), whose
upper bound (3) takes the minimal value

Deflnition 3.2.5 Ths best fineer appromimation of & fussy st V by & sxdapace U iy defined as o
Jursy number
Q= nf ALVL)

Definition 3.2.0 The finear operutor (method) Lo : X ~+ Ll is called the optimat linesr approxi-
mation opersior (method) if
(Lo, V,U) = £V, 1),

Definition 3.2.7 The Enear operator (methed) L, : X — U iy called the ¢ -optimal linear approz-
imaticn eperstar (method) for non-neystive & € R(J) §f

oL, VUL S EW W)@,
The inequelities
o E(V\U) < E(V,U) < oL, V,U) for ench Ginear mathod L,
* E{(V,l{) < o{ A, V, 1) for each operator A
expluin the practical importance Lo know the value E(V,1). This value provides an orieat which
sllown to judge ubout the dignity wnd shortage of u given concrete method.

3.3 Onp the widths of a fuzzy set

The istroduced concepts allow us to copsider in fuzmy case the notion of the width, connectad
with the search of the optimal xpparatus of approximation.

Definition 3.9.1 The fursy value

wv.X)=, Bl B

i called the Kolmogoroff N-width of « fuary set V.



Definition 3.3.3 The fursy salue
(WX} = ucx:"-ugu £w.t)
i called the linear N-width of a fusey sat V.

By anslogy the counterparta of other widths (see e.g. [5]) caz be considered in the context of fazsy
seta

4 Approximation in L, -metric

The ot importeat normed fusctional space i the apace L(J). This space comists of ull
integrable fanctions defined cr [ for which the following norm Is faite

th
Ill = ( ] U(')l'i') 12g<00 (1)
I

When ¢ = oo, the right side of (4) is replaced by the amential sapremum of f.
We congider the best approximatioa to elements of n fuzay subeet V of the rpace Li(f) =
{r: Jile Ly(1)} by u finite dimensionnl snbapace W € L(7) in L, -metric

E(WU), =mp E(z,l),, E(z,U),=inf |z - u,.
at¥ gl
4.1 On the best approximation of functions

For the best approximation to & fanction f € Ly(F)in n enbapace i, including the clum Py of
ull polynomiala of degree m it holds

Theorem 4.1 ([3]). f f € Ly(I)\U , whers Pa C U C L(J), dimld < 00, 1 < p € o0,
r=0,1,---, then

sy =ep{ [ 10N geWgua) fr mamre,

E(f,U),zmp{ /r £ T g€ W Ypenig L P._,} for m2r

where
Welthm = {7 € Lp(1): 5y 1,67 LU, g0)0) = g0)(1) =0,0< k < m),
1g+4/q =1 and g LU means dhat [, g")(r)u(r)dr =0 Yu e li.
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One can see that the problem of estimation of B(V,1(), will be correct, if derivatives S} of ol
approximated functions fEV will be bounded in norm. Therefore we consider [V A W] fr

W; = {1 € L) 1Ol < 1)

4.2 On the best approximation of a ¢risp set

In "crisp” Approximetina theoty the mowt powerful methods of the solution of extremal problems
ure based oz the duality correlations. The obtained results are their femy analogien They wlow
to reduce the problem of estimaticn of the value E(V, 1), to o more visible extremal problem in
the conjugate space.

Theorem 4.3 La V: L)~ ] Pa CUC L (D) dimW <0 , 1 S pS o0, r L,

e EVU)y 2 Sup{lglly : #WAWL U}  former-,
E(V, 1)y 2 Sup {lolly : g€WAPWLU) sy L Py} form2r.

wire 1p+1fp =, 14 +1f¢=1, W: L(n=1,

The proof of this thecrem follows frem Theorem 4.1 by means of

Lemma 4.3 Lt V: LI} = LU C Ly(I),1fp+ 1} = 1< p, P <oc. Thms

wupup{ [ 10 tedir: 60,1l <1} 2 Sop Ul it A ),

Wi o (V1 [ 100k =l <1}
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C. Acwyee, Al IlocTax, IKCTPEMAILIC JA0ATA ADUPOKCWMAITEN e aTKNK

Assorammi. PaccMarpuzaeTo 2a0a%a anmpOKCHEMANEY BEUETKOMD MHOMECTRL B
HOPMHPOBARHOM BpocTpaucTee. Hecnemyeron DorpempocTs  OpuDEEHRY,
KOTOpas B JTOM CTYVae XapaKTepEIyCTCR BESeTKUM ducnoM. C  JTod Demio
OonpeleAETCA TORATEE CYUPENYMA HERETKOID YHCIOROIQ MECNECTRA, & TAOKE
BHPHEMYM B CYEPCMyM  MEOMSCTEA BCHCTKAN yHCeH. Bmcipssunic nomsran
DO3BWDLOT ECUENORATE RARTYYMee IpRlmaeiRe 1 NOrPenBOCTS DITRMATLAGIO
nmseivoro npeGUDEe SN, [Tokaay BeveTXHE ABANOT TeOpeM IpORCTEE BHOCTS.

Anoticljs Tick epskafita pormétas telpss [azi-apakfkopas sproksimicliss
probléma. Mis petam aproksimicijas kjidy, kas Zaji gadijuma ir raksturols ar fazi-
simitli. Ar Lo moliku mé deflotjam reilo skaitju fazi-kopss suprému un [&zi-
skaifju kopas suprému un mfimo. Jeviestis koocepcijas |auf pédt labako
wyindjumn un opthmils linekrs tuvindjuma kjade. Ir pieridites dualitiiu teonéam
fazi-versijas.
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AN APPROXIMATION OF NOISY DATA BY
SMOOTHING SPLINES

Natalia Budkina

Abstract, In this paper un xpproximation of elements of a Hilbert epace oz the basia of inexnct
tnformation is comidered wa the problem of conditionsl minimisation of & smoothing fanctional.
For thia problem we introdace an suxiliary problem of waconditionsl minimization. The conn=ction
equation of the purameters of the luitial problem and of the suxiliery problem i investigated.
AMS 3C 41A16, 85D10

1 Introduction

We consider the problem of approximation of elemants of k Hilbert space X by the information
gven by linear functionals k; : X = R,im 1,...,n. Wedenote Am(ky,..., &) and wssume that
the duta Ag sbout an approximated element § € X is noisy, L.e. the known information r € R* ia
inexnct:

kg-ril<a,iml,...,n, &20

As wpproximation of g we wre looking for the solution of the conditioral minimisation problem

of the functional

(=) =|| T |ly — mis M
H.‘(z)=|t--‘l—r.'l$li. iml..m, (2}

defined by ulinear aperator T: X — Y in Hilbert spaces,
In the apecinl case of approximation of & function f on the interval [a, 8] by the mensnrments

kf=&) o]
at the bnotaty, ...\t 6 €t €83 €. <ty €8 and when the aperntor T is the aperator of
the q times differsntintion

Tz =z} 1)

18



the problem (1}-(2) getw the form

[0, it - miR 1

[ () e e (19
|f(‘i)-"i|S¢?.|"1-----l. (f)

(W1[a,8] la the Sobolev space}. It is knowa that the solution of the problem (1°}-(2") s v natunal

apline.

We denate by §,,.; the space of netural splines, A matural spline s of degree (2g — 1) over
thegrid 4,...,4 isn function which satisfies conditions :

1, # is » polyrornia] of degroe (3¢ — 1) on each [ti, k4= L, m =1

2. 26 CHYg,B].

3 4W(t) =0, if t e s, 1] Ulta, B).
I > ¢ and no algebriac polynomial of degree (¢ ~ 1) satisfies the conditions (2}, then 2 aataral
spline of degree (2 — 1) gives the naique solution of the prablem (19-(2) (vee eg.[1]). Hw < g,
then the solation of the problem (1'}(3') b way polynominl P of degree (7 - 1) , which mtishies
the conditions P(L) = x,i=1,...,n.

In [3] for the conditional problem (1*)}-(2*) we introduce the auxilinry problem of wacozditional

inimization

Fif)e f (!"’(‘))’4”2,%(!(&)-'-')’ — {¢)

)
Jal feW;(._“'
with the smoothiag purameters &; » 0,5 = 1,...,8. The solution of the problem (5*) will be
obtained as the solution of & syst=m of Linear slgebraic equations.
The main resalt of the paper [3] connects the sclution of the problem (1'} - (2') with the
wlution of the problem (5). There ia proved that if the parameten a aad ¢ are connected with
the copnection squetion

wa) =, ®

then the spline 5., Le the salntion of the problem (54), gives the maiqne soletion of the problem
(112

In the present puper the main probiem, the anxilinry problem nnd conuection equation are
considered in genern] cuge

We amume that kerT + kerd s closed 0ad kerT(JkerA = {0} (kerA in the kernel of the
operator A}. It is imown that in this case the problem (1)-(2) has the uniqee sclution and this
solation is the spline from the space

ST A= (seX:Yrekerd «<TsTz»=10}

corresponding to the given operatorn T': X < ¥, 4: X —~ R (oee [1I] p.185, [2] p.0). In special
case (3)(4) the vet S(T, A) in the apace S5,y of natural splinea.

0



A spline » € S(T, A) is called an interpolating spline for a vector 5 = (11,..., 2, )if A2 = 5, Uader
stated wenmptions for every vector s there is a unique interpalating spline (see [1] p.188). S0
&im5(T, A) = 2.

2 The auxiliary problem and the connection equation
We formulate the auxifiary problem u follows
F{f} =\ Tx{ly + 1| As = # |l — miz (8)

&
where || £ [|o= EI'J'-:" s mormin A* defined by the coefficient o € R*.

i
It is kmown that the uaique soltion of the problem (5) exists and this soletion is the spline
from the space S(T, A). The nolution s € S(T, A) of the problem (5) may be uaiquely restored by
avectar ) € A°
T Tem A*)

where A* aad T" wre conjugate operators (see [2] p.0). It is known (sez (3] p.13), that the compo-
nents of the vector ) of the spline-sclution of {5} satlafy the conditions

A.--%{r.—-i.-t),i-l....,u. M

It is important for s that the imoothing purameters a and ¢ of the maln and aayilinry problems
are conpected with the equality

FOET ()

where
am(o;:iml,... n) em{d:iml,... 2}
(0) = R{aa) = (&)~ i = e a) m (i) 1, m)
(we demote by 4. the wlution of the problem (5)).

Theorem 2.1 [f the paremelers o and ¢ arv cannected witk the equation [{), U the spBne 2.
&4 the aslution of the problem (5) gives the uniqus selution of tha prellem (1)-(2).

Proof. Let / be the salation of (1}-(2). Note that the spline 4, miiwen the equation (8), Le.
Ri(s.)= &4 = 1,...,8. S0 s, autishes also the coadiglons (2). Let w cnmpare the valna J(f)
aad J(s, )

SIP:‘“H ) € Haa) Thn

PU)= )+ T SR S )+ Y e
) jm ¥ jmt 7

a



=)+ E (‘- () - r)*) = Flaa),

=1
Le. F{f} € F(s,,). We Imow that 4, ia the unique solution of the problem (§), therefore f = 4,
Thas for f # 14 it holds J{f) > J(ss,).
Theorem is proved.
3 Investigation of the connection equation

We iavertigate the connection equation (6) . Let us define the aperation L by the puir of operators
T and A ws Lz =(Tz, Az) and operate to the space E = Y x R* with the scalar product

<@ #' ) P semey oy +E— <58 >x

=l
The main rean)t of the present section is

Theorem 3.1 For the derinatives gl- we Aaos

""'(a) 20 < Lok L:—'>

8o the Jeceli matris 2 = ﬂﬂfﬁ of the vector-function o) can b written 02
2] <L Lt > 2o < L L >
203 <L Lt > 27 < Lt L >
It can be ensily proved that the operator L in [inear aad continuons. The following properties
of L and the conjugats operator L* will be ueed in the proof of Thearem 3.1,
Lemma 3.1 1.TAe conjugate eperaior 4° can o written &
A'l-Ef;l.‘, tu(f,.. n)€R.
ial

2.Tho conjugate operator L* can be wrilten as

.
L.C-r""zl.k‘.‘il “(l-‘)n'er reR.
Pl

n



3.The aperater L°L can I uritien &
= 1
L'le=mTTs+ )y —kKks, z€X.
s EGE,L: z

Proof. 1.8y definjticn of the coajugute operatsr

< Az, s>grm< s, A" 0>y
“h" L) L} [ ]
< Az,3 >a--):< kx5 >n=2 <,k >x=¢ :.Zk:s.- >x.
= i=l il
Therelore A*s = E s
2.Tukizg into wu:mnt that

»
< Lz, s >aw< (Ts, Az),(y,3) >=< T2,§ Dy +}: % <kz, 5 >am
=

had s
! 1
=<5 T2 +), —<n k5 >x=<t,Ty+) =Kz >x
i:la' -

by definition < Lx,e >g=< 1, L% > 5 we get

L3
LemTy+ E LE,‘J.
=t e

1To prove the equality we transform the scaler prodact  L*Let 22 >y
< L'l 2 >y=c L? LS >pmc (T AL, (TP, A%} >p=< T2 T2 5y +

+):—<g=' ke >p=< I°T2, 2 51 +E—<k.'k.s’ #oym

=1 o

= L _!_ g P |
< TTs +§ Lk Hor,
Terefore L*Lz = T"T'z + E‘: 1itkz
-t
Lemma 8.3 The spline 4,(1) is continuously differentisble with respect is a.

n



Proof. Let ug take np baain in the space S(T, A) the system sy,.. ., sa, where &; ir the interpolating
spline for & = (6,...,9,1,0,...,0)(where ] is on the i-th place). The apline 4, cun be written as
Mo = T Gt Where & = kisa, Note that »; dou't depend on a, so it in sefficient to establish
that the cocficents & of the spline are continuously differentiable. By T*T's = A*A we obtain

T'Tr e ) al'Ts =A%)
=t

We take scalar product by o

L3
< Ec.-T‘TJ.-,J,- >=<A') 4>

=l

S0 T, g <Ts,Ts>=< hAs >=¢ b2 >= ) and by (7) we obtain

zc‘ <T9,Tsj >= —(.l, - &)
=l
The oplines 1 wefixedandse < T5,T4;> oreficed. Denoting & =< T, T >
and obtain .
o ) abij o=y 8)
(5]
So the coeffidents ¢, i = 1,...,n of the apline o, cun be obtuined na the solation of & systern of
linear squations with non-zero determinant ( since the problem (5) has the nnique solution). This
system defines ¢ ea implicit fanctions depending on (2,,...,@a) By the theorem of implicit
function, coefficienws &4 = 1,...,n will be continnously differeatinble if the Jacobian (i.e. the
determinant of the system (8)) is distinct from zero. So the coefficenta of the upline £,(t) are
continoualy differentinble with reapect to o.
Lemma 3.2 is proved.

Lernma 3.8 The operators T,T°T ond & are commuting with the operaior ,f: in We following
senae

Ba
) g da; k" B k‘ﬁ a;
8 ds
b =7
)3 —Ts= TBaJ
8 de
:).Eu—j-Ll LE

8 -1}
5 TTr=T T30

where £ € S(T, A).

il



Proof. The apline so = #{ary,..., @, ) can be written m

Hay,...,o04) = E‘:q(a)o.-

sl

where ¢;{0) € R, wad ot,...,4, 15 o badin of S{T, A). Therefore the order of operations with
reapect to o and elements of X is not important. So

] Os
ot el - T""Taa,

From 1) and b) it follows that g&-Le = L2,
To prove d) we differentiate the equtw: < T:, Tz >2< T*Ta, 3 > with respect to o; . We get

LN Py . T:>-< S etz e e 22>
oy oy Ba; 8a;

0
Since 9 85
Tc,Tz>+<Tc. T:>-<r—',rx>+<r.,r—>-
8 a; 8oy fa;
"”a ,:>+<rr.,a,
we have ,{—Thz!‘?ﬁ-
Prnofol'thenrun!l

Differentinting y;(a) m< ks — &, ks - 5 > (k2 ~ 57 with respect 15 a; we obtain

AU TP ORRTE.C T PIVIRS.LL P
aj bay Bay

-zmm--.).;'(—l >x.

By T"Tam A™) aad (7) we get

T"TimA"Am ):jm.- .iuz&(.; - ko).
il imt .

T*Te+ )i l_k;(k,-. —3)=0 ®
jat



Accnrding to Lemma 3.1
L'Le- E-—k 5 mi,

=1
or

Lla= Z —k':, (10)

=1
Differentinting the equality (9) with respect to o we abtain

TT—u+E—k'k, - :l,k,-'(g.-..-)-o (1)
From (11) It fellows
. b i -
LL%::)-G—?-E.-(E.-:—:;].
We get the final result by substitating this equality lato (3)

V_I[“l j°’<L' al(ﬂ')__(__> h’(LﬂlL&l

Theorem s pmved.
It i better to consider the fanction ¥(f) instead of the fanction p{ar), where ${#) = £ — {1}
The contection equation in this cuse in
¥(@)ma (13

The Jacohi matrix ﬂ‘ = M of the vector-fanction $(F) can be written us
e <Lff Lff > b <LigLaf >
z,zlﬂq:t.;','_-.Lﬁ.-) 2}5<L,?,.'_-,Lﬁ_->

The Jacobi matriz for ¢ is symmetric a3d o the operutor ¢ is potential for & fanction F, ie
¢ = gradF.

The Jacobi matrix for ¢ b s Gram matriz and non-dnguler , m#bﬂ-n-l o ATe
linearly independeat
We will prove this fact. The vectors J,L;t,i- 1,-.. 8, are linearly independent if -

Ep.m semlifndolyfpmbiml,..

»



Theupllae scan be written aa ¢ 0, casy , where sy, k= 1,...,8 are the base of the
space 5(T, A). S0

The dements Lsy wre Daearly Independest, so
; ﬁs—qnﬂ kml B
Eﬂ”ﬂi
The spline s ia the solution of the problem (6), therefore It satisflen (8)
quij+ﬂj=i-ﬂj'j|j-l|---l"|
i=1
Le. the spline s s the smoothing spline for the vector s (a;: jm 1,...,n). We differentinte this
equality
i’—qh'i-ﬁ-ﬁ-g"-l njg
..,9-8- ) ’Bﬂ- } yeey W) A,
L Y
Be; Ben
—bim +fao T2y —Cm,
20,&. TR
So the epine ¥ = 1 #3244 I the amoothing spine for the vectar (0, ...,0, 55%,0,...,0)
ixh !
Themplinei= T & 3 204y i thing for the vector § = (Bdg7sl | nlfersly
¢ spline i E’-}El,tnnlmoohug or the ri ('-\-(-h—‘ll '-‘-L,!—"l)

[T
It ia ensy to see that ) =0,k=1,...,n ,00 i =0. Therefore i =0, 00y =0,i=1,...,1,
and the Jarnb! matrix for ¢ is non-gnguiar .

7
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EXTREMUM PROBLEMS FOR AN AFFINE FUNCTION
DEFINED ON A SET OF PERMUTATIONS

G. Engelis

Summary. The composition of » given affine fanctions s A2 + B, where B depends on the
permutation of these functions. Some necesary properties of the permutatica corresponding to
the mirimal valee of B are formulated and in some special cases  precise characteristic of the
permutation in question ia given

AM3 subject dussification 08D99

Let w consider » fixed affine functions R = R
ki) =eoit+k
(where &; € R (0},5 € R,i € {1,3,...,n}) aad the a! compenitions of these faactions
firi.mliiofio0f,afi(t)mAt+ B

Tt b clear that A = [T, a;, but B dependr on the permutation (i, s, ..., &) sad can have «
different vlues The extremal veloes min{ B}, maz{H} can be fourd by computing nll Lhese »!
pumbers, hat it scerns quite axturally to ssarch other ways of solviag this problem, too. In the
literatare ‘we have found a0 mentioning of this efuation. In the general case (withont farther
restrictions for oy, &) the problem seems 16 be a complicated one. The aim of this paper is to
develop soma methods effective in certain special cases.

In eection ! we give pome inequalitles neceyonry for the pennntation cornmpoadiag to min{ B}
(i the seqeel they will be callad optimal). i we wre interested in maz{B}, we huve oaly to replace
" <" with" > ", In eections 1 nad 2 these lnequalition are wsed in some spacial cases, where they
are especiclly effective,



|

Further we often will use 2umbers

] & -1
&= &= B
Both nembers wre not defined only when a; m 1, }; = 0, but in this case the fanction fi(1) = ¢
comrmutes with each f;(f;o f; = fj 0 f;) nxd the plece of f; in the permatation does not change the
corresponding B. Therefore we sssume that none of f;(t) equala to ¢t. Then it is enay to condude
that f; and fi commate if ¢; = 3 (or d; = ). I ¢ju deactes the correspoading number for
fiohthevgu=¢; =@,
To simplify the notation we ssanme that

mén{B{i1,..., b )} = Bo = B(1,3,...,n)

(what cun be obtuined by renameration of the {f;}). It ls ensy to compute that

By= i(f[c.']h-l +d. (1

kad imh

We will compare the By with ¢~ me B, correapording to soroe *close™ parmutation. For this purpose
we will se 5 - | permutatiors (1,2,..., k-2, k=1,k+1,...,0) where k £ {2,3,...,8].
(But in 2.4 it will be nersmary to use some other "close® parmatations too).

I we write By = B(1,...,k- 2, k,k=1,k+1,...,%) us a sum like (1) and put both rams into the

inequality

By < By
we see that in both parts the e:mmands not containing factor by aad bi—) are squal aad therefore
[T@dss + CT] @t S CJ] wdasmshs +¢ [T adhac. ()
i =k imh 41 imk4t

Let N(k) be the number of zegatives in the set {agy1, 8a43,...,8a}. Dividing both parts of (2)
by i1 o we oblain

(-0 hagby s 4 b (=100, by 4+ by

or

(=1 as = ooy € (11" OHago - Db @
H (83— ~1)(oa = 1) # D 2ad
an(e. = 1a = 1 (1)M®), (k) € (0,1}

X



then from (3] it follows

(_1)"(”""(”13.-1 < (_l)N(.I]-H((L]q' ()
Hbiaaby #0and
agnbiibe = (-1)°0), OF) € {0,1}
then from (3) it follows
(=1pERroMg, ¢ (MRl . (8)
In case when gy = 1, by mOora;_ =18 =0weget
0 (-1)" ey - 1)hs ®)
or
(-I)N(l)(m - by <0 M

We have proved the statement: if By = B(1,2,.,.,8) = min{B}, then for every k € {2,3,...,n}
at Jexwt one of the inequalities (4), (5), (8), (7) b valid ‘This statement wllows us 1o ezclude a Jarge
set of n! permutations aa being non optimal. However, in general the set of remaining permutsiions
in otil] & Jarge one, too (eapecially if thers are many f; with a; < 0 and many f; with a; > 0).
Further we investigate some cases when the inequalities (4)-(T) sre effective.

2.

In this section we investigate the problem of the optimal permutation it cuses, when the aet
of {£} U » "homogenecns™ one. It means that all numbers o; belong o one of the six metr
Lt {1} 0L ]-10, {-1} |-oe,-I[

2.1, K all & > 1, thea N(k) = M(k) = 0 for all & and from (4) it follows that in the optimal
permutation it halda:

0oy S (8)

To find snch » permutation we have to compate all ¢ and to order the given functions in much &
way, that the sequence (&) i» non decreaning.
2.2. Hull o; =1, then from (1) it follews

B=Y b (9)

end every permutation is optimal.

13, Hioralli 0 < o <!, then N(k) = M(k) = 0 and we get (8) in this cnse, too.
Nevertheless we can not unite (3.1) and (2.3} (a > 0,¢ # 1) since then in some cuses it will be
M(k) =1, but this ementially changes the situation.

3l



T4 . HBloralli =1<a; <0, then N(£)=n—k M(k) =10 asd from (4} it fallows

218t 320 3% .. (10)
But for a given set {¢;} the set of sequences satisfying property (10) is & large one (if & = 3m,
then the number of ssquences is greater thax (m!)"). Therefore we huve tn search farther criterin
for the optimal permutation. We consider here like in eection 1 some permutations “close® to the
optimal one:
BeB(L2.. k-Lk+t kk-1k+2...,8), ke{23..,n-1}
Here N(k+1)ma — k-] and from By < B} it fallown (like in section 1) that
(=1 auprtabics + sapbs + ) € (~1)" " asoranbiss + oparbs +8021). (11)
It terns out that (11) gives pome inequalities for the nembem ¢;, dnce if fij = f; o f;, then
&jj = G0, 5.‘,: -ﬂjbi +5,‘ and b
. ]
&5 act; 1 (12]
Multiplying by a5 < 0 and adding to both parts —b; we obtain from (11}
(=11 aaoa41 = 1)(abams + b)) € (=1)*"H(0uiur = 1Babisr + 1)
axd recalling that (gpazy) — 1)(2a85-1 — 1) > O we get

(-1t (-0 ams (13)

or
Capat Louazumly facdaaa S Gunta-d G-da-s € Gty (14)

Bat there exisz waother pamsibility to we (11). Adding to both parts ag-j0104¢1h) we get

(=1 asgaes = W@sards + bms) € (=1)" 7 Harpras = Daasabs +bipn)
or
(=1 e pmr (=1 e st {15)
Taking here k=n— 1, k=n-13,... we get

Gacin-3 ol Ca-2a-] Sa-2a-3 Ca-dmd S Ca-gu—ds--- (19)

From (14) and (1€] it (allowse
Ca-la 2 Ca-13-2 2 Ea-2a-2 2 Ea-dm—r- - a7

a2



aad

Conn1 S Camgam) S a2y S Bpmgacyye o (18]
But from (12) we obtain
o !ll'- luq—l!!q -5!
G =i prvy)
and
agnls; —cx) = —apn(s - ¢5) (19)
Comblaing this with (10) we get

Cutn 2 oy Cacbamd 2 Cacdg-tyr-

aad this means that the Inequalities (16) contain the greatest and (18) the ymallest of the numbery
G4l G2, This glves an algarithm for the search of the optimal permutation.

For this parpose we compate all aumbers 2, 13d reaumerute function f; in auch o way that
the sequence (¢;) s monotone. Now we compuie the greater ¢, the wholg namber of whick will
be 5‘—:‘-51 After thia we search for L stquence contaiting » - 1 anmbere ¢,y such that

G2 2aFb 2 Doy (20)

Such pequence wlwuyn erists, but it must not be wniqee. H the sequence (20} in fouad thea we
vaspect that the permatation
('"1"‘|k||.nn

starting with p or ¢, depending on the parity of », can be the optimal one. I there s more thaa
one sequeace (20), we bave to compute wlb corresponding B nad takr the least one. O, we cua
compute the set of min{gy, ¢ ), form the sequence correxpoading to {20) wad combine the remilta
of the both sequences. '

It s not essentinl that we coasider sequences "from the end to the beginming®. Ouly by
construction of the optimal permutation |n the aateral order we must distinguish the cases whea
n is even or odd.

35 Halla;m =1, thes

[ [t il
By k(-1 =Y bhn-Y hosoa.
[t 3 [T ] hmid

axd s permatation ls optimal B the sumbers n - 1,8 ~3, 5 = 5,... wre glwes to the fanetions with
the lurgent ).
24, Il & < ~1, we can wsa all resscaings of 2.4, wp to (18). Bat (19) In this cate chazges
")
agn(cy - cji) = agn{a ~ )



from which it fallows
Cap-) 2 Corins Camin=l 2 Sacla—dy s

It meana that ia this siteation {16) contains the smallent aad (18) the largent of the (541, cits)
Further we caz proceed oz s in (L4).

3

Rere we will show the we of the resulta of section | in some wahomogeneous casen.
3.1, It is possible to combine 21 and 2.2 and sarume that for ol 4

1< 0 <400,
Prom (4), (6}, (7) we obtaiz thas the optimal permatation starta with f; that havee; m 1nad & < 0
(here we can defize G w —oo), further come J; with o > 1 and G-y € & aad the pommetation
eads with f; who have o, @ 1 and & = D (heve ¢; = +00). The order of f; with a; = 1 at the

beginning and the end of the permutation is 2ot cmential
3.2. [n s sanlogue manner we can combine 2.3 and 2.3 and wovume that

o< <l

Then the optimal permutation begins with f,(1) = t45;, b > 0 und enda with fi(f) mt+h, K <O
8.3, It is possibile to combine 21, .3 and 2.3 if for ol i, j it holde

kb >0
Thea N(}) w 0,0(k) = 0 aad from (B) it jollows that the optimal permutation js charwcierived by
4262432, 24.
34 The case when for ol i it kalds &; = & is Investigitad in section 3, but it can be mived Ia
quite & differeat may. From (1) we get
LD Wi WENN
=

aad Lere By is the salar product of the vertar (6=~,6*%,..., 0, 1) and (b, b, h) A
permutation of f; can chaxge oaly the second vector, and It ls well Imown that the scadar product
Is minimal if the coordinates of oae vector form & saxincreasing sad the coordinates of the other
vector form & sondecrensing sequence. For example, if

=1<a<l, amim,
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thmecatcat ... ca®™ 1 ¢a™ ¢ g™ ... <a? < ] aad the permutation is optimal, if
h2h2h2.. 2baa2bu2. 2h2ba.
3.8 In ua s2alogical thaxzer we investigate the cuse whan for all { it holde
&>0,k=h
Thea from (1) it fllows C .
By = {3 ([Tw) +1}

bed imd

K> 0thea By bas the least value whea
By €81 S O3 S S 2 X

I} <0, then ™ < in replaced with ™ > *. Analogically when a; < 0 forall i

3.0, Let n — I functions f; kave c; = ¢, bat for aa index j the zamber c; = y g & Wa lnow
that fuactions with aqual ;; commute aad therefore an optimal permutation begins with some
commnting fanctions with the composition

Fi(ty= A2+ (A =~ 1),

then follows o furction $(1) = at+{a—1}7, sad finally the permatation ends with some commating
fanctions with the composition

Rty = At +(4s - U)o
(Bat we must remember, that it cun be Fi(t) = 1 or Ryft) = 1.) It in eany to compute A= A4,
too wnd we have

Fooge F= Ajdsot + B,

where
B=Agc-c4 Mhfa=1)71-12)

Here only A; dependa on the permutation. The sign of @ — 1 and 7y — ¢ are fized and we 2
oaly take A; as the maximal or the minimal one of all powsible producta of the sumbers o; (for
commating fanctions), including the namber 1 (if A, = 4).

3.7. We cun get some further ravtlts by spplying onr methods in casens when » — 1 fancticas
belong o one of the seta investigated ia 21-13, but one fanction belongs to n set from 2.4-2.8.
Ouly in these cusen the formulation of the results becomes oo complicated to be of any mterest
for concrete problems



clin. Exnirema proble

Anotacija. x dotu sfinn fumkcijn kompozicija ir funkcijs A#+ B, fur B ir stka-
fgs no Lo funkciju permuticijas. Darba ir formulétas daZas pepiccieamas ipalibm
permutacijai, kas dod mmimale B vértibu, un parddits, ka zinAmos specidlgadijumos
s atjauj viennozimigi nofeiki Lo permutaciju,

LOsreme, Sxcrpruamakio saisus i sdrdmanod dymome, oupenciemod na

Amnoramma. KomnosanEs # fasybix apRERLX PyanEf sameTes apduruof
GyvumEed Aet B, rie B aagwceT ot scpecTauouxd Ppyacnuld. B paGome yxaraun geKc-
TOpHE HEOSXOMEMEIE CROACTRE 1€ PECTAROIKE, GAOMeR MAWAMALHOS 3HaeERe B B
OOKAARY, 97O B BEXOTOPLD CNENEATLY X CIYNATX ITH CeofcTea OQUO3HAYHO onpens-
JOUOT JTY B¢ peCTAROBKY.
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Fixed points for non-invariant
mappings

Daiga Grundmane

Abstract

To this paper we prove generalivations of Banach and Edelstein
fixed point theorerns for non-lnvariant mappings (i.e. mappings with,
possibly, different domain and range), by introdncing and using two
different generalized notions of contractive mappiogs and a sotion of
reflector, introduced in [5].

AMS subject classification 54 H25.

IntroduCZion

In this paper we further explore the notion of reflector, introduced in [5]. The
largest part of known fixed point theorems works for functions f X — X,
i.e. for funciions with equal domain and range. The notion aof reflector bave
turned to be useful to prove the existence of fixed points for meppings f in

case, when domain and range of f do not necessarily coincide.
In [5] we succeeded to prove iLhe following result

Theorem 1 (Grundmane, Liepigd) LetY be a camplete metric space with
distance d, 8 # X C Y, let X be a closed space, and let f X — Y be con-
tractive mapping, such that there exisis a reflecior O € X. Then there exists

a unique fired point of [.O

A similar generalized theorem for noncxpansive mappings was obtained

in the M.Sc. thesis of the author.



Theorem 2 (Grundmane) Let Y be a meiric space with distance d, § #
X CY,let X bc a compact space, and let f X — Y be strongly nonezpan-
sive mapping, such thab there exisis a refliector O C X. Then there existe &
unigue fized point of f.O

While it seemns that the notion of reflecior is & quite adequate tool for
extending these two classical results Lo the case of non-invariant mappings,
& queation may arise, whether the requirements that mapping f must be
contractive or strongly nonexpansive are not too strong. Here we propose
two different ways how these requirements could be relaxed.

First, we further explore the idea of A. Liepigi Lhat the requirementa
of contractiveness or strong nonexpansiveness can be substituted by the re-
quiremnent of existence of mappings A Y — PY and ¢ PY — R which
satis{ly some natural properties. It turns out that such generalized notions
really are sufficient to obtain generalized versions of Thearems 1'and 2, il we
place some additional natural requirements on teflectors.

At the same time, il appears that the proposed existence of mappinga
A Y — PY and ¢y PY — R more likely can be considered nol as a
direct generalization of coniractiveness (or strong nonexpansiveness}, but as
a generalization of requirements in the form d(z, f(z)) < qd(f(z). f{ f(2)))
{or d{x, f(z)) < d(f(z), f(f(z)})). For this reason it also turns out to be
insufficient to guarantee the uniquenesa of fixed points.

We propose a similar approach that mare likely can be considered as a gen-
eralization of requirements that mapping must be contrictive (strongly non-
expansive). Namely, we consider mappings A: Y7 = PYandy PY ~R
and place some natural restrictions on function . Such approach also allows
to obtain generalizations of Theorems | and 2, besides it allows somewhat
relaxed requirements on reflectors (we actually substitute the original reflec-
tor property with somewhat similar, but farriulated in terms of mapping ).
While such approach alsc does not guarantee the uniqueness of fixed points,
it remains an open problem, whether uniqueness can be achieved by placing
some atronger conditions on reflectors.

Main definitions and notation

In general we follow the standard definitions and notation used in mathe-
matical analysis, it can be found, for example, in [3). Here we only include

k|



the definition of reflector, originally given in [3).

Definition 1 Let ¥ be a metric space with distance d, @ # X C Y, and let
f X =Y We call subset O of a melric space X a reflecior if the following
two conditions arc satisfied:

1. f(0)C X, and

2 Vz e X, if f(z) € X, then there crista p € O such that d(z, f(2)) =
d(z,y) + d{y, f(z)}.

Main results

Qur first Lwo theorems are generalizations of Theorems 1 and 2, obiained by
using a generalized requirement of contracliveness (strong nonexpansivenesa)
proposed by A. Liepigd.

Theorem 3 Let Y be 0 complete melric space with distance d, 8 # X C Y,
let X be o closed space, ond let f X — Y bc o mapping, such thal there
ezists a reflector O C X and mappings A: Y — PY, ¢ : PY ~ R which
for some ¢ €]0,1[ for all 2 € X salisfy the following properiics:

1. p(A(f(z))) € qp{A(2)),
2. d(z, f(2)) < p(A(x)),

8. o f{z) € X, then exists y € O with d(z, f(z)) = d{z,y) + d(y, f(z))
and p(A(y)} < w(A(f(2))).

Then there exists x* € X, such that f(z*) = z".O

Proof. Let z €& X. We recursively consiruct a msequence
Zo, 2y, T3,..., %k, ... a8 follows. We Lake x5 = 2. Then, consecutively lor all
i =0,1,2,..., we take 3y, = [z}, il f(2:) € X, and we take 2.y, = ., if
f(z.) @ X. Here y; € O and is such that d(x;, f(2,)} = d{z;, %) + d{y;, f{z.)}
and p(A(w)) € ¢(A(f(2,))) (such y,; exista due to the theorem conditions, if
there are several different choices (or y;, we arbitrarily choose one of them).

Now, we will prove that for all 3 € N, we have inequality



d{zi41, Tiva) £ g0 A(2.)).

We have to consider lour different cases, depending on whether f{z;) € X
and whether f(z.a) € X.

Casc L j(z:) € X and f(zi1a) € X.

In this case we have
A xinr, Ziva) = HZigr, f(2500)) € w(A(20400)) = p(A(f(2:))) < q(A(2))).

Hence, d(2:41, Zisa) < g0(A(2.}).

Casc £, f(x;) € X and !(L‘-n) ﬁ X.
In this case d(zis, f(zin)) = d(zisn,Ziea) + d(ziga, f(zie)):  Thus,
d(Zi41,2:i42) S d(zi01, f{Zi4)), and, similasly as in Case 1 we have

d(zigs, f(Zia1)) < w(A(zi21)) = w{A(f(2:))) < g0(A(z))),

therefore d{F.41, #i42) < g A(£.)).

Casc 3, f(=.) € X and f(zi11) € X.
1f f(z.)) € X, then, by definition, 2,4y € O, thus f(z,4,) € X. There
fore, Cape J is not posaible - there can not be two conseeutive z,, z,,, with

JHz) € X and fixi) & X.
Cose . f(2) € X and f(z,1) € X.

In this case we have
d{zi1, Zisa) € W{A(Zi1)) € Pl A(f(2:))) < go(A(2)))
Hence, d(z;41, 2i42) € e{A(x.)).

Thus, in all cases we have d(z.4),4:42) € ¢p(A(2;)). By induction we
can show that for all i € N we have ¢{A(z,)) € ¢"~(A(zp)), 1.e. that {z;}ien
is & Cauchy sequence. Since Y in complete and X is closed, the sequence
{z.}ien converges Lo z* € X. From bere it easily ‘allow< that f(z*) = z=.0



Theorem 4 Let ¥ be a metmc space with distance d, 8 # X C V¥, et X be
a compact space, and let [ X — Y be a mapping, such that there erists a
reflector O C X and mappings A Y — PY, ¢ PY — R which for il
x € X satisfy the following properties:

1 @(A(f(2)) < w(A(z)),
£ d{z, f(z)) < w(A(z)),

3. i J(x) € X, then exists y € O with d(z, f(2)) = d(7,y) + d{y. [(3))
and p{A(y}) € p(AS(2))),

{-¥eeR, e R, Yye Xdz,y) <d=|p(A(z)) -~ p(Alv)) <€
Then there exists z* € X, such that f{(z*) =20

Proof.  Since mapping y is continuous {requirement 4) and X is com-
pacl there exisis r* € X, such that for all y € X we have p(A(z")) <
Pl A{Y)). We will show thal necessarily f(z*) = r*

Let assume that f{r") =z # z* If z € X, then, due to the requirement
Loyw{A(2)) < »(A(r")), which contradicts the choice of z*. 1{ z ¢ X, then
there exists y € O with d{r”, 2} = d{r*,y) + d(y, z) and 2{A(y)) < p{A(2)).
Hence, ¢(A{y)) € w(A(2)) < p(A(2")), which again contradicls the chaice
of z*. Therefore f(z*) =z".¢

There are examples that show that Lhe requirements 3 in both theoremms
are cssential  simply the existence of reflector @ € X is nut sufficient to
guarantee the existence of fixed point, we must place some conditions that
relates the values of » for f(z) & X with the values of ¢ for corresponding
points from rellector. At the same time, probably it is possible Lo substitute
our requitement 3 with some modified version of it.

The requirement 4 in Theorem 4 guarantees thal mapping ¢ is continuous,
it is also elear that some form of such requirement is necessary for the resull
Lo hold.

The next two results are similar generalizations of Thevrems | and 2.
However, here we use another gencralized version of requirement of contrac-
tiveness (strong noncxpansiveness), which, by our opinion, more preciscly
deseribes the situation. In this case we can also relax the requirements on
reflectar (atl least for Theorem §), and more conveniently to formulate them
in terme of mapping .
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Theorem 5 Let Y be a complete metric spece with distance &, # # X C Y,
let X be a closed space, and Iet f X — ¥ be o mepping, such that
there ezists 0 3¢t O C X, with f{Q) € X and mappings A Y? — PY,
w: PY — R which for some g €[0,1] for all 2,y € X satisfy the follounng
propertiea:

1. @(A(f(z). J(¥})) < gelAlz,9)),
2 d(z,y) < p(Alz, 1)),

3 f flz) ¢ X, then exisis z € O with d{z, f(z)) + ¥{A{x,2)) <
w(A(z, f())).

Then there exists z* € X, such that f(z*) = 20

Proof. Let z € X. Similarly a8 in prool of Theorem 3 we construct a
sequence {z;},eN and prove that for all i € N we have inequality

d(z41.7ira) < g2 A(Z, Ti41))-
We have o consider four different cases, depending on whether f{z,}) € X
and whether f(z.,,} € X.

Lase [, f(z,) € X and f(z.n) € X.

In this case we have

A(xipr, Tipa) € P{A(Zin1, Zisa)) = @(A(f(Z), f(Zi31))) € ap{A(Z., 2:01)).
Hence, d{2,41,2i42) € go( Az, 2,41)).

Case £ f(z;) € X and f(zi0a) € X.

In this case p(A(zZi41, Ziva)) + d(zisa, f(z1)) € P A(Z0r1, F(2ina 1))
Hence, d(zi;1,%i42) € @(AlZin,Tii2)) € @Az f(24)) <

ep(A(zi zin))-

Case 8, f{z;)¢ X and f(z,,,) € X.

Similarly, as in proof of Theorem 3 we conclude that such case is not possible.

Case §. f(z)¢ X and f(z.n) € X.

From the existence of reflector we have that
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A2y, 2ipz) S dziy, f(2)) + d(f(x)ziia) € d{zisa, f2)) +
w(A(f(2), f(2ia1))) € d{zign, f(2)) + ep{ Alzi, 2:0)) £ w(A(zi zina ).
Hence, (2,41, 2:42) < qp(AlZi\ 2i01))-

Thus, in all cases we have d(z.41, Zis3) € gw{ A(z,)). Again, by induction
we can show that for all i € N we have p{A(z:)) < ¢“p(A(z0)), ie. that
{2:}ien is a Cauchy sequence. Since V is complete and X is closed, the
sequence {2 },¢N couverges to z* € X, from where f(z*) = z*.0

‘Theorem 8 Let ¥ be a metnic space with distance d, 8§ # X C Y, let X be
& compacl space, and let f: X — Y bc a mapping, such that therr erists
aset OC X with f(O) € X and mappingg A Y* 2 PY,» PY —~R
which for all z,y € X satisfy the following properiies:

L w(A(f(z), f(¥))) < e(Alz,¥)),

2 d(z,y) < p(Alz,¥)),

3. if flz) €& X, them crmists z € O with d(z, f(x)) + p(A(z,2)) £
w{A(z, f(x))) and p(A(z, f(2))) < v(A(z,2)),

{ Vee R, AR, ¥Wv,we X d(z.v) & dly,w) < § =| {A(z,9)) -
wlAlv,w)) < £

Then there exists z* € X, such that f(z*) = z".0

Proof. Let us define a function ¢ X — X by equalities g(z) = f(z),
if f(z)€ X and g{x) = z,if f(z) § X {where z € O is & point, which exists
due to the requirement 3).

Similarly, as in proof of Theorem 4, we conclude that there exists 2~ € X,
such that for all y € X we have p(A(z* 9(z"))) < {A(y.g(y)})- We will
show that necessarily f(z*) = z".

Let assume that f(z*) = z # z*. If 2 € X, then {A(2,9(2))) =
HlA(z, [(2)) < @lA(z*, f(z"))) = p(A(z",9(z")}), which contradicta the
choice of z°. If 2 @ X, then g(z") = 2’ € X, such that (A, g(7))) =
PIAG, J(£))) < #(A(" 7)) = plA(z".g(z))), which again cantradicts
the choice of 2. Therefore f(z*) = z~.0
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Daiga Grundmane. Neinvariantu att&lojumu nekustigie
punkti

Anoticija

Dotaja darba tiek definéti divi jauni saspiedéjattélajumu visparindjumi.
Sidiem visparinitiem saspiedéjatielojumiem, izmantojot darba [5] ieviesto
spogula jédzienu, tiek pieraditi Edeliteina un Banaha Leorému viaparinajumi
neinvariantiem atlélojumiem (t.i., attélojumiem, kuriem definicijas un vértibu
kopas var bit dadadas).
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CONSTRUCTION OF ALL EQUIVARIANT
REALCOMPACT EXTENSIONS BY MEANS OF NETS

V.G. Jevatigneyev

Abstract Al equivarinat realcompact extersions of 1 Tychonoff G-space are constructed by
means of aets.
AMS3 Subject Clamification: 54D60

In [1) we developed & method ellowing to constract all compact extensions of o Tychonofl apece
by merns of nets. In [2] u similer method was applied to constroct ali realcompact extensions.
Further, in [3] aets were wsed for construction ¢f equivariant compactifications. Therefore, it seema
atural to corsider the possibility to use nets for constraction of equivariant realcompart extensions
of & Tychonoff epace X ox which & group G centinnanaly acts,

Consider a clasw of functions § # $* C C” where C* ls the family of all resl-veloéd functions on
& Tychouoff space X. A net {z,} C X will be called an 5* —net iff for every / € 5  there exista
lim f(z4). In [3] it is proved that a Tychonoff apare in realenmpnrt iff every C*-net in it convergen.
It follows from here that u space is realeompact iff every §%-net in it containg x convergent subnet.

Given a topalogical gronp G, » apace X ia called o G-spaze if G I continnoualy acting on X,
ie if there exiats & continnons mapping w: G u X — X such that p(e,z) =2, {hw{s. z))=
=p(h gz}, wherez € X, g€ G and o inthe anity of the gronp G. We nhall any that
Y is 11 equiverinat realeompact extetsion, (or an aquivanant reslcompactification) of & space X,
Y is a realcompact epace containing X ea n dense schact and the given mapping ¢ : Gu X = X
cun be continvonaly extended to & mapping ¢: G x Y = ¥ with the above mentioned properties.

Theorem 1 Every equivariani resleompact extennion Y of ¢ G-apace X can be constructed fy
means of nels.

Proof Counsider s space Ys-, Whose points are §”-nets in the space X where 5° = {f | X
] € C7(Y)}. Two §"N-nets {2,] and {zj} will be identified, if for every f € §* it holds
lim }{z4) = lim f{z). Let Yo be endowed with u topalogy such that & net {y,} C Ys- converges
to s point y € Ys« if atd only if there exista lim, ligy f(z, 2) aad if moreover lim,, limy f(£,9) =
lim, f{=,) where yp = {£. 4}, ¥ = {£,) wre 5™ —nets. We ahall show that the eqeality ¥ = Yo
holds.
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If y = {£,)} is an 5*—net, then for every [ € C*(Y) there exista lim f(z,) end, according
to the charncteristic pruperty of real compact spaces, {z,} coaverges in ¥ to a point y. The
mapping {z,} ~ ¥ it 3 homeomorphism from ¥s- onto Y, which is identical on pointa of X.

We define an action of  gronp G on 2 space Yo by actting g-y = {g(z,)} forupoint y = {za} €
¥s-. Since ¥ in equivariant, it follows that & mapping ¥y — gy, v €Y, is continnous for any fixed
§ € G. Hence, gz, convergesto g-yin ¥ and for any f € 5* there exists lim, f - g{z.) = f - gv.
Therefore, {pzr.} it aa 5°=net. If {5.} nad {23} wre equivelent 5*—net, thea for every f € 5°
the composition f o g belonge to §°. Hence, lim, f(g(z.)) = limy f(2(zy)) and the nets (gz.}
and {pzp} ere niso §°- equivaleat. This completes the proof of the theorem.
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V. Jevstignejevs: Visu ckvivariantu reilkompakiu papladinajumu

konstruciana ar visparindtam virkoem.
Apotacija. Tiek izstradala metode, kas Jauj konsiruét dotajai G-iclpai ¥ visus
ekvivarianfus paplsSindjumus ar vispirinatix: virkném.
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ISOGEOMETRIC INTERPOLATION
BY RATIONAL CUBIC SPLINES

Sergey Krivosheyev

Summary. The problem of interpolation by cubic rational splines with
preserving of such geometrical properlias as monotonicity and convexity is
considered in this paper. Wa obtain sufficisnt conditions on parametrs of spline
to provide the isogeometric interpolation. The received results are tested on
examples.

AMS Subject Clausification: 65007

0. Introduction.

In many practical situations it is necessary to approximate a function f
with give 1 values
fo=Fx)
at interpolating points », of a grid Aa==x, <x, <.<x, =) by splines with a
similar gnometric structure (see e, g. [2], [4], [5] [8], [9), [11], [12], [13] [14]).
We dencie by

A|=-"£L,i=0n—l

'=A.‘A..| i=Ta-l

h.,+h
the first and second divided differences (hare A =rx,, -x, i=0,n-1) The
initial data are called increasing, f A, >0, and decreasing, if A >0 for
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i =0,n-1. Increasing or decreasing data are called monotone. The initial data
(1) are called convex, if § <0, and concave, if § >0, for i=1n-1.

The problem of iscgeometric interpolation consists of construction of an
interpolational spline, which preserves maonotonicity and convexity of initial
data. It is known (see (6], [7]. (10]). that rational splines offer good possibilitias
for the solution of this problem. The present work is devoted to the study of
geometrical properties of rational cubic splines, defined in [1]. The authors of
[1] have introduced in a structure of a cubic¢ spline parameters to operate tha
qualitativa behaviour of the received curve. The purpose of the present paper
is to oblain sufficient conditions on parameters of rational cubic splines from [1]
to provide the isogeometric interpolation.

1. About rational cubic splines

By a rational cubic spline is called a funclion 5 ¢ C*[a.b], which on each
intervai [x,,x, ] has a representation
¢t boa-»
1+g(1-0 1+ p#

and -1<p,, i=1n, are given numbers.

S(f):AJ‘#&(l‘l)i- (2)

X—x
where [ = :

The rational cubic apline is an interpolation for a function S (a,8] > R. if
s(x)=/1 .i=0n where f = f(x). 3
To define an interpolation rational cubic spline uniquely we consider the
following boundary condition:
s'(x )= f,  k=0n. (4)
From the interpolation conditions (3) it follows, that B +D. = f,
A+C =f.,. Then
sN=f0-0+f t+C (—L—rpD(“_"), -(1-1).
' TNy e (-8 T+ po
In [1] the construction of a rationsl cubic spline is reduced to calculstion
of the vaiues of the first order derivative at pointa r,. Let us design m, = s'(x,),
then
C = "(3"’19, )(fm _.!|)+I§M. +(2+ PJ)",MM
' 2+p)y-1 )
p o BroNf-f)-hm, -2+ pIhm,
' @2+p)-1
For the calkculation of m, in [1] the system:

(5)




=f
AP m  +(AF,(2+p, )+PP(2+P. W, + p Pom,,, =

- TaT
=25.0+p.)4,, + 1A+ p)4, f=hn-t. (6)
m, = f,
is given where i, = h(h_, +h)" =1-2 _3+ip gl
g P b | T H, (] i (1+p.)1-|
Byanalogy, using M, = s™(x,), wa find
Mp
" Api+3p+3
2(pM px )y’ o
‘T 2Api+3p, +3)
For the calculation of Af, we gel the aystam
@+ PYOM, + O M, = z%
#OM +(A0.@+ p)+ p,Q, 2+ p DM, + L,OM,, =26, i=\a-], ®
‘- A
Qv My, + Q2+ py 0. My =2L'T”—-l‘
N -1
1
me = —-—
e C. pl+ip +)

Existence and uniquoness of the solutions of the systems (6) and (8),
are provided by the dominant main diagonal of the matrixes of those sysiems.

2. About the values of the derivatives of spline at the

points of interpolation.

The study of the signs of the first and second order derivatives of an
interpolation spline is reduced to the analysis of the sings of the derivatives at
the interpolating points. This analysis is based on the following result [10].

Lemma 1. Lot the coefficients of a system of finear algebraic equations

aﬂ' l’l _d
cz,,+a,-,+b,z_,,-d,, t=lLn-1 @
€z, +a,z, =d,
satisfy the Endiﬁons
a >0, i=0n, ¢ 20,520,a0>h+¢, i=ln-1,
bn < anal , €. < a:r |a.
¢, +b c +h,,
b, cd —
If d-—=t_-22lop 420
‘""a, a r=0a. (10)
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(here c, =b =d ,=d, ,=0,a,=a,=1) then the system (9) is solvable and
2,20, i’=0_.r-l.

Similarty, # d,-2%_Sfn o0 ;-7 then the system (%) is

el @,
solveble and z, <0, forall i=0n
The following theorama contain the conditions on parameler p, sufficient

o preserve a sign of the derivatives of an interpolation spline at points.

Theorem 1. Let a rational cubic spline s (2), inferpolates growing
(decreasing) dala and salisfy the boundary conditions (4) with f, . f. >0
(fo.1.<0). if

A, A T g £

p,zmax{z"l-l,A—ll—l}, i=Ln-2, p.zf:-—],pﬂz—&——-:i )
then m, 20,(m <0),i=Ln-1.

Proof. For the proof we consider the case of growing data. By Lemmma 1
the solution m,, i =0,n, of the system (§) is nonnegative, if for coefficients of
this system the inequality (10} is true, that is

BEA PB+p)A +p F.B+2.048,,)
AL G+p )AL +uF Q3+ p)A, - 2 PP 4Pt P
‘1 P_,(l, y --:(3+P.-;)A.-: +u P 3+ p)A. |)
Fa+p ) +u B2+ p,.,)

-1

Woe transform the last inequality as follows:

AL+ p)A 2P O+ )A,,
ALP(3+p)a, - Pl X _ . DA,
P, l.v|P(2+P1)+ﬂ..|  @+p.) ALPQvp)tu., m(z*‘P.,,)
+4,F ({A+p. )b, - AP0+ p,)A,, _ L PL3ep DALY )
A PLCp Y+ u PZ+p) AP (Z+p )+ P2+ p,)
Bacause of
P >0 and AL+ p)A, 3+p A

AGFQ+p)+p Fa2+p.,) 2+p
it is enough to require

G+p)b 22t Ba o3 Py
2+p, 2+ p,
3+p,_ 3+p

3+p A 2o B g 2Py

( pl-') (N} 2+p._1 |-I 2+p.

Taking into account, that ; P<7 for 2, > -1, these inequalities will be
+ P

valid if
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B+p)A 22(A +4,)
G+p A, 22(A , +A )
or (in equivalent form)

i 1
P2 a,
A,
2—=-1
P 2.
Thus, by the conditions 7
A A, R — j'
> o L N e Y | =Ln-2, -3, z——--]
P, mu{ a A },. Ln Pz a. Pus A

we guarantee that m, 20, forall i=0n. 0

Theorem 2. Lot a rational cubic spiine s (2) interpolates convex
downwards (upwards) data (3) and salisfys the boundary conditions (4). If

Pz max[#‘f:"sl . 1,?5',,, } , i=ln-1
“(Au'fo') 4(f:'A--|)_2
by, hn—l‘sn-l ’
then M, 20 (M, <0), forall i=0,n
Proof. In the proof we consider convex downwards dats. By Lemma 1
tha solution M,, i=0,r of the system (8) is nonnegative, if the coafficients of
this system satisfy the condition (10), that is
a5 24,08., _ 2405, s0.
YA p 0 e (240 A2+ p )0 24P,
Taking into account, that A, + g, =1, we transform the last inequality
03, 2.5
A6 L2+ p I+ 4., (2+ )2, Yeu8, - Ap2+p W+ p.,2+p )0, )20
Becauss of

@ >0 and

(12}

P2 -2,p,2

Q.rﬁl'_l < 2A"*l .
A2+ P )G+ B2+ )0, 24D,
it is enough to require
3.
ﬂ.122+ p)
82—
2&1(2 + pr-l)
Those inequalities will be executed, if
. 3, 8, —
L Emaxg—2 -2 —L 2., i=la-2
P {#.16 J'-6|-I }

44A, -1 H/f,-4)
2_!_' 2 o2 “wll_3 0
Py A3, + Pan h_ 3.,
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3. Monotony and convexity of Interpolational rational
splines.

Theoaram 3. For a rational spiine s (2)-(3)-{4) we have:
1)if m >0 and M >0, the spiine s is increasing and concave;
2) ¥ m <0 and M, =0, the spline s is decreasing and concave;
J}if m =0 and M <0, the spline s is increasing and convex;
4)if m <0 and M <0, the spline s is decreasing and convex ;
Proof. We prove only the first statement. If A, =0, then C 20 and
D), 2 0 by virtue of (7). Taking into account, that for 1 ¢[0,1]
2970 —6p(1+pu+6{1+p) 20,
2p11-0 - 6p i+ pXI-1)+&1+p) 20
we receive s” > 0. It means, that the derivativa s’ increases. Taking into
account also that m 20 wa conciude that the spline s is increasing and

concave.
The following fina! result (Theorem 4) is a corollary of the proven

Theorems 1-3.

Theorem 4: Let & ralional spiine s (2)-{3)-(4) interpolates the increasing
(dezreasing) and convex (concave) data. If the parameters p, salisfy the
conditions {11} and (12}, then the spine s is increasing (decreasing) and
convex (concave), (00.

4. Examples.

We consider two test examples:

0 '—SII

N A=

[ 4

2) £y =1-Vr2-1)

The interpolation cubic spline &, end the cubic rational spline s, for the
function f,. * =12 are constructed. The graphs of them you can see at the
figures 1 and 2 comespondingly:

a) the graph of the function 1,
b} the graph of the cubic spline J,;
<) the graph of the rational cubic spline s, .
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Fig 1 ;,(;):1-% (a, bJ=[0.4; 1], n=8.
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Fig. 2. f,(x)=1-Jx2—r) . [a, b)=[0.005; 1], n=7.
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KyQUHEC MY CRNAKHAMM.

Anrotauwn. B paGoTe paccMaTPMBAOTCA ARLA4A  WHTEPNONAUMM
PALHOHANBHEIMK KYGUYECKAMM CINAAHAMH & COXPANEHWUEM TOCMETPHYSCKUAX
CROACTR MCXOAHLIX  AaHHB, ObocHOBAH Bbbop NApaMeTpos,
O5ECNeYABAOILMA POLISHWE PACCMATPVEIOMON 3A[NAYM HMIOTBOMETDHYOCKOM
MHTEPNONAUMK.  [Tpegnomenntid  SNFOPUTM  pPBANWIORAH KA  TECTOBLIX
NPpUMePaX.
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Krivodejevs

splainiem.

Anctaciia, Darbdl ir apskafils uzdevums par izejas detu interpol&Sanu ar
monotonitates un izliekuma Tpasibu saglab@sanu. Lai to atrisindtu,tika izmantoti
raciondlie kubiskie splaini. Darbd ir pamatota splaina parametru izv8le, kas
nodrodina izogeometrisko interpoificiju. Piedivalais algoritma ir realizdts un
izméginats testa uzdevumos.
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On existence of a solution

to the boundary value problem
for functional-differential equation

V.Poaoinarev
Summary. Condition for the existence of a solution ta a boundary value
problem for functional-differential cqnation are given.

MSC 34K10

Cousider boundary value probilema

7’ = Fz + For, {1
Le=r, {2}

' = Fr, 1)
Lr =0, {4}

where F, Fy AC(LRY = L), L AC(LR) - B, re R". n¢€
(L2, F=lob, —co <a<b<ao, AC(], ')  the space of absolutely
continuous functions ¢ J — H™ with a norm

Iell =t (@) [+ [ 1+'ts) 1 s,

LI, R) the space of Lebesque-integrable functions 3} — A" with a norm

1
ol = {1yt | ds,

where | o |= maz{|z,|:¢ € £1,2,..,n}} the norm in K™
[. We suppose in the sequel that the BVP has a unigue solulion, Lhe
trivial une.

Solutions of the problem (1), {2); (3}, {4) are identical with solutions of
the rquations

2= [ (Fo)alds + [ (Foa)(s)ds + Lr + 2(a) = 1,
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=(t) = [ (Fe)(s)do + Lo + x{a),

respectively.
Define the operators B, B, AC(I,.R*) — AC(J,R™), A {0,1] x
AC{T Ry — AC(], B*) s follows:

(Bx)(t) = [ (Fa)(s)ds + Lz + 2(a),

(Boz)t) = 1.(15‘:)(5)&.1 -r
A(A,x) = Bz + AByx.
m Pl‘Ob'cm (3)r (4) can be written as

z = Az,

and the problem {1,2) as
r = Bz + By,
First we show that there exisls 4 € (1,00} such that for any solution
v of the equation
z=A(\z), 0<A<] (%)
an estimate
llvllac < uMl|Bavllac (6)
is valid.

Suppose the contrary is true. Then one can find a sequence v, n = 1,2, ...
of nontrivial solution of Lthe equation (5}, and As, n = 1,2, ... surh that

[lvallac > mAall Bovall ac

o Ml B |
n Dy, " .
MnllBovnllac o piy L g, {1
L | LN YE "N
IT. Suppose that the operators & and By are completely continuous, and
& iz also homogeneous.

The equation (3) implies
Un B, An Byv,

leallac — Noullac  lvaliac’



file:////v/U

and, letting v, = ﬂfﬁﬁ’ n=1,2,..., ooe oblains
Aa By,
leallac”

Since B is completely continuous, it mapa the bounded set
vy,

vy = Bl + ®)

{v;:v; = 7——,n={1,2,..}}
lvallac
into compact. Hence one can choose a subsequence v , k = 1,2,..., from the

sequence v’ n = 1,2, which converges to vg € AC(J, R*), and ||vy|ac = 1.
Passing to the limit in (8), we have vy = Bug, in view of (7), which
contradicts the uniqueness of a solution to the problem (3), (4).
We brnve now an & priori estimate.
111, Suppese that the inequality

[|Bozllac € fo + kllz|ac,
is true, where fo, k € [0, 00).
Then we get from (6) that
llellac € wAllBovll € pAfo + uAkllvllac £ prfo + pA(k + 1lv]lac-

Hence \
(R p— —
{1-pd){k+1)

IV. Let for some kg € (0, 00) such’ that,
HAfo
> —_—
o> T e
the condition
IBzllac < ko, |izllac = ko
be [ulfilled.
We get now the existence of a solution to the problem, by application of
the method of Leray-Schauder (cfe. [1], v.5.37.6, p.298),
Thua, a theorem is proved.
Theorem. 1 Let conditions I-IV hold. Then there exists a solulion to the
problem (1), (2).
Remark. This note sharpens the results in [2] and generalizes the results
in [4].
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ON «B-COMPACT SPACES

A, Sondore

SUADARY Iy a «B-compact space we call a topolomcal space cach cover of
which by open sets with boundanicy. whose cardmabtics are less thant or cyual 1o some
Gixed cardinal number . contains a fimie subcover. In this paper are siudied basic
propertics of xH-compact spaces and some relations ot these spaces 1o other classes of
topological spaces.

KLY WORDS: compaciness, xB-compaciness, FR-compactness. clp-
compactness. | lausdorliness, kB-Hausdortlness, FB-ilausdorttness.
1991 MSC 54D30_ 34120, S1A25

This work is oae i a serics of papers where we study compactness
tvpe topologtcal properties which are delined by special open covers,
Namely, herc we are interested in those spaces cach cover of which.
consistimg of open sels sath boundaries whose cardinadities do not exceed :
gien cardinal ko has o linle subcover The,  spaces will be relerred o as
kD-compacl. [n particular, mocase ® 0 we come 1o the notion of clp-campact
space (see the article [4]) We study also spaces each npen cover of which
consishng ol sets with fimie bonndanes has a fine subcover In the sequel
steh spaces will be called fimte-boundars conpact or Fli-compact for short.

We cousider  8lso the concept of the o called wB-1lausdaritiness
which m the context of x3-compact spaces plavs a role similar to the role of
Ts spaces 1 the classie theors of compact spaces, Besides we mention here
the related properies ol kB-1T,. kB-regularity. x B-normahiy and Tocally xB3-
COMPAcines:.
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I . BASIC PROPERTIES OF xB-COMPACT SPACES

Given a set 4 in a topolopical space X, let y.(4) or just A1) denote
the corresponding boundary.

(1.1) Definition. A topological space X is called xB-compact if cvery
its cover  {{/,;1 €/}, all elements of which are open scts such that 'y, (L7 )¥<
%. contans a finite subcover. A topological space U is called FB-compact if
every its open cover consisting ol sets with finite boundaries contains a finite
subcover,

In a natural way concepts of xB-countably contpact, Fl3-countably
compact. kB-Lindelof. FB-Lindclol. ete. can be introduced.

The [ollowig assertion shows sone obvious relations of the
introduced notions to other classes of topological spaces.

(1.2) Assertion. Lvery compact space is Fl3compact and xB-compact
for any cardinal x. Il %~ x2 then a x.B-compact space is also x,B-compact.
Every xB-compact space for any cardinal x is FB-compact and every I'13-
compact space is clp-compact.

No opposite implication holds:

(1.3) Example. !l x ¢ then the plane R° is a noncompact FB-
compacl space but fails 10 be W B-compaci. On the other hand the real line
R is not even FB-compact. Furthermore, given two cardinals «, and x; such
that x,"" x, one can construct 2 x,B-cotnpact space which tails to be x-B-
compact.

From the definition one can imagine that there exists a certain analogy
in the behaviour of compactness. FR-compactness and xH-compactness in
ditferent stiuations. We shall say more about thrs in The sequel. We start
with one condifion  when  xB3compactness and  compaciness  become
equitalent,
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(1.4) Assertion. Il every point x of a space X has a base
u-{U:# e}, all elements of which are open sets such that iy, (U, j<x
Iy U IR, ). then the space .Y is xB-compact (resp. FB-compact ) iff it is
compact.

(1.5) Example. The metric hedgehog Jg . 6<N 15 & compact space, If
o2¥, then the hedgehog Jg is not compact and is not xB-compact for 2N,
but it remains an FB-compact space. Observe that for any o for every point
ol hedgehog Jg there exists a base of open subsets with boundaries whose
cardinalitics do nol exceed o.

(1.6) Example. For every o the quotient hedgehog Jg is a FB-compact
space. but if 32N, . this space is not kxB-compact for k2N,

Generalising this cxample we come o a more general construction
alfowing to get new kB-compact and FB-compact spaces trom old ones.

(1.7} Construction. Lot X, .oxed {(where A 1s a Gmte set) be xB-
compact spaces and ussume that in each space X, there exists a point
x) eX , having a neighbourhood £, such that i Yy ( Un):SK. Let =@y, /
denote the quotient space under equivalence relation x?,«-xf, for each a.fed.

The space Z is also xB-compact. In casec of FB-compact spaces the same
construction leads to an FB-compact space for any index set 4.

(1.8) Proposition, A topological space X is countably compact it} it is
countably ¥ ,B-compact.

Proof. Assume. on the contrary, that Y is countably ¥ B-compact but
{ails to be countably compact. Then there exists a countable closed discrete
sel A={a:i=1.2,.}. et ns construct new seis U =X \{ag Jj=121i} for
i=1.2..... It is clear, that these new sets are open with countable boundaries
and make a countable cover of A" which has no finite subcovers.

On the other hand o countably compact space is  countably WB-
compact.



It is natural to call a subset A of a space ¥ k[3-compact if each cover
W i el} ol \all elements of which areopen sets in the space V with
|Jf_\-({",'i_:<.x. has a finite subcover In a sinilar wav one can deline FB-
cuompact subscts,

(1.9 Proposition. For anv cardinal x it a topological space X is xB-
compact (FB-compact) and 1/is its closed subset such that (A y<x (resp.
‘v (AT)1eN,). then M is xB-compact (resp. FR-compact) subset of V.

Prool can be casiiy done patterned after its classical analogue.

(1.10) Proposition. I[ M is a xB-compact (FB-compact) subspace of
X then A/ is alse a k13-compuct (resp. F3—compact) subset of .Y,

Pruof ullows from the next easily veriliable lemma.

(1.11) lemma. If } is the subspace of Y and AcY then
yoA)opAdnlt)

(1.12) Proposition. A linile union of xB-compact (FB-compact)
subseis of a given space Y8 a -compact (resp. Fi3-compact) subset.

Recall that a sastern 4 {7 7 €1) is said to have a finite inlersection
property it every linite uitersection of sets from 4 15 non-empty. 1. ¢
A, mond #9 for every finite tamaly L Fof 4

(1.13) Proposition. A 1opological space 18 xH-compact tresp. FB-
vompact) il and onlv if’ every svstem v={{" ./ €7} _ all elements of which are
closed sets such that (&7 )<k (resp. |¥({,)]~%.). which has the
finite mitersecnion property has the non-empty intersecrion

Prouf. Since the boundary of a set U in the space Y coincides with the
boundary of its complement X U7 this propusilion can be proved similarly as
the classical characterisation of compactness by svstems of closed sets with
finite intersection property,



Since the boundany of the intersection of two sets is contained in the
union, of boundarics of these scts one can easily get the following
modification of the previous proposition:

(1.14) Proposition. A topological space is xB-compact (resp. [FB-
compact) ilf every system -{l/,; i €} of its non-empty closed subsets
having | (L,)<x  (resp. f;y(l;,jv::ﬁo) which is mvanant under  Gimile

intersections, has non-empty inlersection,

(L.15) Propasition. Let ¥ be a continuous image of a xB-compact
(FB-compact) space .\' under a mapping [ such that ' f "N Ex (resp.
Lt (), ~ W, for each point vl then ¥ is kB-compact {resp. FB-compact),
100,

Proof.Notice firstly that s '(3") 7 '(1)c £ (1" 1"} bor evers subset ol Y
Therefore, under assumpnion ol the praposition the preimage of any subsel |
af ¥ such that |70 <k, has also o boundary in the space X whose
cardinality do not exceed x.

Now the pronl of the propositon cam be cosily done patterned alter
the proot of its classical prototy pe.

(1.16) Proposition. 11 » topological space ¥ s ll-compact (FB-
compact) and {15 a mappieg  trom a space Vo Fowith the following
propertics:

(1) f is closed and open;

{2) for every point y € Y the preimage f~i(y) is & kB-compact
(resp. FB-compact) subeet of X;

then tke space X is kB.compaci (resp. FB-compact), too.
Prool. Notice finty ihat since f i a closed and open mapping
it holds
SOV It f(0) = {(0) \ Int f(U) € (O \ nt V)

for every mubeet T of X, Let U ={U; i€ Ir be a system of
nonemply closed aubseta of X such that | yx(U:) [S k# 0.
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Let j(ﬂ)f{f(U‘.):Ul. elY}. Then obviously fi) is a system of closed
subsets of Y such that also |y, AU,)|<x, and f{U) has 1he finite intersection
property. Therefore A U)=E.

Then there exists a point y enl(-i). lleace for each iel
S v )U, #@. Taking in account thal % is invariant under finite
intersections and S '(3,) is a xB-compact subset of X we conclude that
there exists also a point x en{f (v )i e Y il

The case of FB-compact situation can be proved in a similar way.

As we can see in the paper (4] the property of clp-compacincss is
not muitiplicative. We oblained some positive resulis about products of
kB-compact spaces in special situations ( sce Propositions (1.18) and
(1.19)). We sigrt with the following lemma:

(1.17) Leanma. If X is locally connected, Ac X xY is a closed
subsct with compact boundary and p is the projeclion p:X'x¥--»X, then
P(7.1'xr(A))371(P(A))-

Proof. et aey {p(Ad)), aep(y, (A} and ke u conneceted
neighbourhood U/ of a in X, Further, let U, =U, x Y and ¥, ={a}x ¥
Since a £ p(¥ y.r(A4) it lollows thal ¥, A= Since @ €y, (plA)} i1
follows that U! mA=@. Choose a point (x,,y,) €] n.A4 Moreover,

since }’x‘,(ff) is compact this point cen be chosen in such a way that
Yo € Pp (¥ x.p (A

Now let Z =(X x{y,} ¥/, and B A~Z From the construction it is
clear, that Z is connected, W is a clopen sct in Z (since ¥ (AN £y=E),

(@.y,)#W and (x:y )eW The obtained contradiction completes the
proof.

(1.18) Propesition. 1 X is 8 locally vonnected FB-compact T,-
space, Y is 2 F-compact T,-space then the product XxY is I'B-compact.

Praot Tet  -{{/: €1} be A system of non-emply closed subsets ol

AxY with tinite houndaries which is invariant under {inile intersections.
4]



Let 8= {p(U}U, et} where p is the projection p: Xx¥—X From Lemmas
1.17 follows that p(Fyg(U ) 74(2(U,)) and taking into account that
obviously y,(A)c 7,(4) for every set A and that Yra@(U,)) s finite, it

follows that y (KU pr (UM = oy (U)). Thus 2is a sysiem of
closed sets with finite boundaries in X satisfying the finite intersection
property. Since X is FB-compact np(I7)=@, i. ¢. there exists a poiot
x, enpU);let ¥, ={x }xY

Funther, let ={U/ ~Y .U, et}. It is easy to note that /” is a system
of non-empty closed sets in ¥, with finite boundaries and which is
invariant under finite intersections. Since Y, is homeomorpbic to Y, it s
FB-compact and bence ~t=@. Let y, e{V:F, €V}, It is clear that the
point (x,;y,)en{U.:U, el)* @ and hence by Proposition 1.14. XxY is
FB-compact.

The proof of this proposition can not be extended to the case of xB-
compactness for k2, bccause we can not maintain that sets of the system
# have finite boundanies.

(1.19) Proposition. The produci of campact and a xB-compact (FB-
compacl) space is xB-compact for every x (resp. FB-compact).

Proof Assume that X is a compact space and Y is a xB-compact
space for some cardinal x. Then the projection py Xx¥—Y being a
projeclion along a compact space is a closed mapping. Besides, all
preimages of points under it arc homeomorphic to the compact space X
Now the conclusion follows directly from Proposition 1.16.

2. xB-SEPARATION PROPERTIES

In this section we examine the modificd scparation properties: xB-
T, «B-T» , xB-regular and xB-normal spaces.
(2.1) Definition. A topological space is called xB-T, if for any two
different points x and y there exist open neighbourhoods A4, (ye 4, ) or B,
(x¢ B, ) of these points with conditions that |74, )5k and |r;(B,)|Sx .
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One can casily see that ® D=1, and Ty are equal coneepts. Nevertheless
we ittnduced this concept for the suke of completeness of our scheme, In
particular in Proposition 1.18 we could use xB-T, instead of T,

(2.2) Definition. A topological space .\ 15 called xB-Tlausdoril (FB-
Hausdor[1) if for any two difterent points x and 3 there exist Jisjuint open
neighbourhoods .1, and B, of these points with conditions that | y,(1, J<x

and y(B ¥ox aesp. y o (LYS R, and :Y;-UI_, ):S W)

Tt is clear that eseny kB-Hausdortl space is HausdorfT. A ausdorfF
space is not alway's xB-Hausdortt (for example. a plane is not kB-] lausdor[T
if x-c) Obviouslv, xHB-Hausdoriiness s hereditany,  but fails 10 be
multipheative (o plune 15 v product ot a real hoe which s an NoB-HausdorfY
space, and even [B-Hausdord?).

(2.3) Example. We can remark that both hedgehogs Jg (see (1.5) and
(1.6)) are FB-lausdortY and hence wl3-Hansdor! U tor anv cardinal x.

(2.4) Proposition. A kB-compact (resp. I'Bcompact) subset of a xB3-
Hausdor(l ¢resp. FB-[lausdortl) space 18 closed.

Prool, We consider the case of xB-situation. Let 4 be a x13-compact
subsct of a k-1 lausdortY space X' and le1 yed. By xB-Havsdoritness of Y
in this space for cach point v 4 there exasts an open neighbourhond ¢ such

that |}’_\—([-’,i£x and an upen neighbourhood 177 for a point x such that

if U )I <x with !/, ~ =

Thus the system {{,  ye.l) is an open cover of the xR<ompact
subset 4 and all elements of this cover have boundancs of restncted
cardinalie: in . Therefore one  can chovse a  bhnile  subvover
{L .J = ]....,ﬂ.—

et 17 be the intersection of corresponding system =1 ,n)
Clear, that I’ is an open neighbourhood of x and this set dnc not intersect
with the union of the system {{/ o 1= Lo and inoreover with the set 4.
As a result for cach xe.1 there eXists un open set ¢ wineh contains x but
does not inlersect A. 3. &, .4 is a closed set of '



(2.5} Definition. A topuological space is called xB-regular if for every
point x and a closed sct Af such that 'y (A\f¥<x and reAf there exist disjuint

apen neighbourhoods L, and 7y such that .y o i<k and y ((,';,)‘_sx.

As Lor clp-situation (see [3]) we can extend the notion ol a normality
Lo k B-sitvarton, oo,

(2.6) Definition. A topological space is called x13-narmal if every pair
ol distoint ¢losed sets A4 and B such that ¥ (4 )<x and -y (#)<x can he
separated by disjoint open neighbourhonds 17 and /g such thal f?’(U,jSK

and y (U e
Just in the same way FB-regularity and F13-normahty are defined.

It is clear, every a xI3-normal kD=1, space ts x1-regular. Now, some
propositions sinnlar to the classical case.

(2.7) Propusition. Let ¥ be an open aubsel of @ kB-regular (resp. FB-
regulary space Y such that » (Fysx (resp. (13N Yand let xel Then
there exasts an open neighbourhood £7 m X such that 15K (Tesp.

W) and (<) Iiora pontand cach apen set Yt that xe ¥
there ¢ an open neighbenrbood 17 of vin Vsuch the )%k (resp.

W, and (_‘ <} othen Vs o aB-cegular (resp. B-regular) space.

Proot. [ ¢t ve} and fet FooVbe an arbitrany apen subset with (P ye
k. Then Y. closed set and ina wD-regular space we can separate and
\ Vo ownh open neighbonrhoods ¢ and T owirth boundaries ol restricted
wdmabtes 10 is elear that . )

The ceiverse proposition alue s rielit. because the boundars ol the
closare of 4 set e contined i the boundan: ot the sel

Fhe proal foe | B=<itiation s sidar

(2.8) Propoecition. A v P-TLosdarll e 3-compact space 15 xB-normal.
ATE Herasderh E R-compaet space s Fli-uormal,

&%



Proof. Let M and N be disjoint closed sets in a xB-compact space X
such that |y (MY<x and |y (N)<x. From Proposition 1.9 it follows that M
and N arc xB-cowpact subscts. Then (rom the proof of Proposition 2.4 we
cen conclude that for each poirt yeN there cxists an open set U,
containing the set M with l;',(U,):Sx and an open ncighbourhood ¥, of the
point y such that !r,r(",)lsm tkat U V-3

Obviously the system {¥, :ye N} is an open cover of the set N whose
elements are open sets such that |y ( V,){Sx in the space X. Thercfore we
can choose the finite subcover [V, 1/ =1....n} of N,

Now, let P=ul¥, :i=1,....n} and U=n{U, :i=1...,n}. The sets ¥
and U arec open disjoint ncighbourhoods of the given sets M and N with

boundarics of restricted cardinality and therefore X is a xB-nornial space.
The case of ['B-compact concept can be proved in a similar way.

As 3 xB-HausdorfT space is also a xB-T, space then frow the
previous proposition follows imniediately the next:

(2.9) Propesitlon. A xB-HausdorfT x13-compact space is xB-regular.

And as usually, a similar statement bolds for FB-sitvation.
3. LOCALLY xB-COMPACTNESS

(3.1) Definltlon. A (opological space X is called locally kB-compact
if for each x X there exists an open neighbourhood U, such that irx(UJ,S
xand U, isa kB-compact subset of X.

This concept is a known analogue of local compactness. In the next
theorem a kind of Alexandrofls xB-compactification is constructed for
locally k¥B-compact space.



(3.2) Theorem. If a xB-Hausdor!Y space X' is locally xB-compact but
is not xB-compact then there ¢xists a xB-Hausdorff xB-compact spacc
X* = X u{y) containing X as a densc subspace.

Proof. Let the open sets in the space X'™ will be those which arc
open in the space X and also sets AU{y} where X\A4 is a closcd xB-
compact subsel with \y,,(X\A )!Sn: in X

Firstly we show xB-compaciness of X% Let 4-(I/: el) be a cover of
X7 with open sets in the space X such that lrx,(U,)[Qc. Then there
exists i, €/ that wel/, As U is an open set of X", then U =Au{y},
where X\uI is a xB-compact subsel in A such that |r,(X\A Vsx. Besidcs, #
is also cover of the set XAA4 with opea scts such that |y, (U)<x in the space
X (sce Lemma 1.11). Hence there exists a finite subcover {U, ,...,U, } of the
xB-compact subset X\I. Thee the system (U, U,,..U,} is a finite
subcover of &of the space X' Thus X" = X' u{y} is a xB-compact space.

Il we assume. that X is a closed subsct of X" then X"\ X ={y} is an
open subsct of X', but tbis contradicts (bc given assumption that X is not
a xB-compact subsct. Therefore the closure of Xis X¥.

Fibally, we show xB-Hausdorffoess of X" If xyeX then these
poinits can be sepacated in X by neighbourhoods with desired properties. It
is easy to note that with the same sets we can separate these poiots in X"
We peed to show the situation when xeX but y={y}. From the local xB-
compaciness of X there exists an open ncighbourhood U of the point x
such that U, (closure in X) is 4 xB-compact subset of X and |r»(U,)sx.

It is eclear, ll:lal |r W, 151( Then the set ¥ =(X\U_}{y) is an opcn
subsctof  X” and |r“..(V‘s: Obviously U ) U, nV=@. Heace X” is 8
«B-llausdorfl space.

The opposite 1o the statement of Theorem 3.2 also holds:

(33) Remark I X is a xB-Hausdorff xB-compact space thea for
each xe X the space X,=A\(r} is locally xB-compact.

This follows immediately from the next proposition.
n



(3.4) Proposition. If X is a xB-Hausdorff xB-compact space and Y is
its open subset such that [y, (Y)<x then ¥ is a locally xB-compact subsct.

Prool. I.et x be an arbitrary point of Y. From Proposition 2.11 Xis a
xB-regular space. t. e. there exists an open peighbourhood (, of the point
x such that |y (U sk and 7, c ¥ At lasi, I, is a kB-compact subset (sce

Proposition 1.9).

Resulis similar to the ones included in this section can be proved
also for I'3-case.
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Impressions of the Council Mceting of the
European Mathematical Socicty.

Alexander Sostak

On July 2227, 1996 the second Furopean Congress of Mathemulics was held
Budapest. (The previous, first Luropean Congress of Mathematics took place in Paris, in
1992y Just before the Congress, on July 20-21 in the Institute of Mahematics of the
Hunparian Academy of Sciences, the mecting of the Commcil of the European
Mathemastical Soctiety was held. ‘This ineeting was of especial significance for the
Mathemutical community of Latvia, because st this niceting the |atvian Mathematical
Society (1.MS) was accepted as a corporate merber of the Furopean Mathemnatical Sociely
(EMS). 1 had an honour to represent our society & this mecting by & request of the
chaimman of LMS, Pmfessor 1Tldis Raitums. Therefore, | should like to share here my
impressions and recollictions of this imporant evendt.

The ioal number of delepates al the meeting was 62, some of whom represenied national
socictics or institulional socictics as corporsie members, while  others were individual
members. Althonph the official opening of The meciing wes on Saturday, July 20, the
Council actusily started its activilics on Friday cvening. when all present delepates were
invited 16 A pet-1ogether party in 8 sinabl restavrant lscated i the bascment of a house  just
opposite  the building of the Instilvte of Malhemalics, ‘There, in 8 cozy atmesphere,
refreshing with wine and fortifying by light snack, the delegates had good opportunity to
inake them acquaintance and o discuss  different subjects - mathematlics. mathematical
education, politics. siandards of life, salaries, flowers, birds, food, eic., cic...

As T already wwentioned. the official opening of the mecling was on Salurdsy morning.
Al the beginning the president of the EMS, professor Jean-Picrre Bourguignon from
France, welcomed the delepales and adilressed on them with nol (oo long, but very
salurated speech. [n this address the president, in particular, noted the main schievements
of the activily of the I'MS during the last 2 years (afier the previous meeling of the
Conncil in Awgust 1994 in Zurich) as well as  touched most urgent, in his opinion,
problems  the Socicty will be having iu the near future and the perspeclives of iis
development,

The sccond ilem of the apends was the eheclion of new corporate, ull ( national or
regional) and institmional members. 1n addition to Laivian there were three more socictics-
candiclates: The Uml Mathematical Society, the Institute of Mathematics of the Academy
of Sciences of Moldova and the Institute Non-Iineare de Nice (the last two pretended (o
he accepted as institutional members), ‘The elections were orpanized in the following way:
affer a shon presentation of the representative of a society-candidate,  questions were
asked him by the delepates. (These questions mainly concerned such subjects as the
number of members in the socicty, how fully does it represent the mathematical
3



communily of the country, basic trends of mathernatics being developed in the country of
a region, publications cic.). Then the voting was hehl: its resulls were favourable for all 4
candidates: all socicties-candidates were accepled into EMS. In panicular, the Latvian
Matbematical Society was accepted anonymously. When resulis of the voling were
announced, the participanis of the meeting warmly congratulated the new accepled
socicties and their representatives by loud applause and invited them 1o participate in the
further work of the meeting.

The next poin of agenda was the etection 1o the vacancies of the Execulive Committee for
the period 1997-2000 (In accordance 1o the EMS siatutes, there was oric vacancy for &
vice-president and 4 seats for ordmary members). This procedure tumned out to be much
more stormy if compared with the previous ones, since not infrequently the opinions of
differeni members essentially diverged. Therefore the president suggesied 1o postpone the
election till Sunday, and in the meanwhile lo ask to study this question by the Nominating
Committee  with Prof. F. Hirzebruch as the chair. The Coimcit agreed with this
sugaestion. In the result, the procecdure of clections continued on the next day when the
delegates, taking into account the well-grounded proposal of the Nominating Committee,
by voling elected A. Peiczar (Poland) as a vice-president and B. Branner (Denmark), M.
Sanz-Sole (Spain), R. Jelisch (Germany) and A. Vershik (Russia, St. Petersburg) as
members.

Among ems discussed by the Council were the accounts and auditer’s reports. budpet,
membership fees for the next 1wo years and somie other financial type questions. These
questions, ulthough of extremne significance for the 1'MS, and its Council i panticular,
likely will not be of & large intercst for our readers. Therefore, [ shal! better linper here on
the next quite vacuous item of the apenda: namely the reports of the Commitices. There
are more than a dozen Commifiees at the Council, having special arcas of activities. Here |
shall tell briefly about the activities of some of these comunifiecs.,

o Educotion of Matkemuatics. The Council noted a very larpe diversity in the level and
quality of education in different countries, regions end schools, and as a consequcnce
of this, a tremendous diversity in mathematical knowledge and in experience of
chiidren and students. To remedy, (o some exicnt, this drawback, the Council suggested
to the Comminee of Education to define the minimal knowledpe in mathematics for
children and youmg people at difierent ape. Anather suppesiion of the Council was to
work on some approaches allowing fo present mathematics st school i a more
aftractive and lively way.

o Publicity of the EMS and Contacts s with Fropean Institutions. Ceniain work was done
towards establishing relations of the EMS with various Furopean ustitutions ¢[:uropean
Parliament, Mmistries of Furopean Aflnirs, etc.) It was pointed oul that contacts have to
be established at the political level m al! kuropean countrics.

» Support of East-European Mathematicians. In the Iast two years the activities of the
committee were mainly dirccted to the following two geals: 1) 1o find finance which
would allow (0 cover travel expenses to the Furopean Congress of Mathematics and to
its Satellitc Conferences for msthematicians from Last-Luropesn countries (locat
expensEs in most cases were  covered by the orpanizers)  and 2) to support satellite
conferences 1o Furopean Congress of Mathemalics. As the resull 16 satellite
conferences were yupported with a budget of ECL 11000, A new programme accepted
at the mecting. in addition to sponsering ravel expenses for orgenizers of conferences
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mcludes alkso the s0 called “new library scheme” which foresees to find help for
libraries in East-European umiversities for subscribing journals, to get them at the price
of production costs.

faropean Mathematieal Information Service. The EMS server (EMIS) contains the so
called Electronic Library (ELibEMS), general information on the EMS and information
on mathematical activitics and institutions, lists of conferences, etc. The ELbESM
provides fiee access (o a collection of electronic journals and clectronic versions of
printed jourpals. Before being included in ELibEMS, the quality of these periodicals
and collections has 1o be approved by the Electronic Publishing Comminee of the EMS.
Server EMIS can be reached by

hitp: /Awww.emis.de , or by anonymous flp: ftp.emis. de/directory/pub/EMIS.
European_Database. Zenmalblatt fir Mathematik, from German is becomng a
European enterprise. Now the reviewing process is being organized in different
countries what aliows to make it essentially faster and more qualitative. A new idea
staled afl the meeting is (o organize “‘current awareness programme’ on the basis of the
Zentralblaw. In particular, the publishers of mathemalical journals will be asked to send
the contents of the journal and the abstracts of the papers electromically to the office of
the Zentrafblatt where this material will be made feady for being included in both the
date base MATH and the current awareness service of EMIS.

Diderot Mathematical Forum. A cycle of conferences, calted “Diderot Mathematical
Forum” consists of rwo conlerences a ycar tsking place simultameously in three
European cities. In the process of the conference the participants in diffcrent cities
exchange infermation by telecommunication. The subject cosidered at conferences
covers three different aspects: Tundamenwl mathewmatics, applications of mathematics
and their relation (o spcicty (v.g. ethical and cpistemological dimensions).

Publications. The Socigly continues publications of the so cailed Newsletters - & cerlain
malggue of the much better kupwn Natices published by the American Mathematical
Sociery. Newsleters copisin  infpimdtisd  abert the  Socicty, announcenents  of
conferences. book reviews, a problegy gamer anid sitickes of gencral interest. A new
programme of the Coongil s w [oud o gew sy:tienaficgl jowrnal of a general nature
and a very high scientific qualily, The Couscit Jxqwes w0 make it in a shon time, a8
leading journal covering all aspects of ngathemavics. Prad. §. Jost was appointed as the
Editor-in Chief of the jouwrnal.

Summer schools. In order w promote the iiceactieq of Young mathemalicians, two
series of summer schools, one each yesr i mathcmaMes and one in applications of
inmhematics will be organized. They will bring togetaey ghoud a bundred graduate
students to attend advanced courses and 10 exchamge their research experiences.

Onc of principal alms of the European Mathematical Society is to unify Furopean

mathematicians - both on the level of Mathemnatical Societies and on the individual level.

But at the same time the EMS sirives for establishing relations and developing fruitful
collaboration with ather, non-Furopesn, profeasional societies of mathematicians. As. a
certain evidence of this was that representatives of the three very influential mathematical
societies arrived at the meeting in order 1o wekcome the delegates, to share information
sboun their societies and to discuss perspectives of collaboration. These high guesta were:
(]
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Professor K.C. Chang, the President of the Chinese Mathematical Society. (It is
worth mentioning herc that China has made & bid for the organizalion of the
International Congress of Mathernaticians in 2002 in Reijing.)
2. Professor A. Kerkour (Morocco), the President of the African Mathematical Union.
3. Professor I. Ewing, The Lnecutive Director of the American Mathematical Society.

Shortly belore the closing of the Council meeling on Sunday's evening, another
speciacular event took place: namcly, the scleclion of the site for the European
Congress of Mathematics (ECM) in 2000. (It is worth reminding here , that the
Congress in 2000 is of special significance since year 2000 is announced as the
[nternational Year of Mathemaiics!)

To start from the beginning, 1 must say thal af the previous Council meeting in 1994
foir cities were accepled as  candidates for this honourable role. They were:
Copenhagen (proposed by the Danish Math. Society), Torino (proposed by the Halian
Math. Union), Barcelona {(proposed by the Catalonian Math. Society) and Brighton
(proposed by the T.ondon Math, Society). A special Commitiee of the Council, after
preliminary investigation of the situation, has acknowledged that all four candidates
were able 1o provide adequate facilities for the organization of the Congress.
However, short before the meeting. Tormo decided fo withdraw its applicstion in
favour of Barcelona. Between the resi three candidates a serious competition took
plice a1 the mecling. The representalives of the comesponding socicties informed how
the opening and closing ceremonics will be organized, the preliminary programmes of
sessions and round tables. the perspectives for publishing Procecdings, availability of
good librarics in the area, technical ¢quipment, etc. They informed ako about the
financial sitation. in particular, sketched the approximate budget of the Congress,
described perspectives of finding sponsors, the pecspectives of supporl from the
Governments and loce) suthorilies.. They also showed films and slides about their
cities and universities, and described their advantages. Then representatives were
asked different specifying questions. Further, the voting proceture was held. The
results of volg where extremely favourable for the capital of Catalonia and the
capital of 9th Olympic games: namely, 36 voices were given for Barcelona, while
only 13 for Brighton snd 7 for Copenhagen. Aftcr the results were announced,
stormy applause sfarted, and the delegates warmly congratulated professor Sebastis
Xamba, the president of the Caralonian Mathematical Sociely, and professor Manuel
Casteliet, the director of the Mathermatical Center in Barcelona,

The clection of the site for the Ird ECM i year 2000 was the lat item on the agenda
of the Council mecting. Afier this the meeting was officially closed However the
delegates did not huny (o0 leave Budspest most of them remained in the city and
joied the ranks of a much more mumerous and impressive mscmblage consisting of
parlicipants and puests of e 2nd Mathematical Congress which was opened on
Monday, July 22. However, this i snother story. Here I shall mention only, that at
the Congress, besides the muthor of Usse noics, there wane two other Latvian
participants: Andrej Reinfelds and Felilns Sadyrhajeva.
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