

LATVIJAS UNIVERSITATES ZINĀTNISKIE RAKSTI

ACTA UNIVERSITATIS LATVENSIS

606

MATEMĀTIKA

MATHEMATICS

Matemātika: Zinåtniskie raksti / Zin. red. A. Sostaks. Riga: LU, 1997. . 76 tpp.
Krajumin publiceti zinatniskā darba rezultati, kas icgūti LU matematikas katedru un LIT Materahtikes un informàtikas institüta docētäju, dartinieku un doktorandu darbos. Krajumã ir iekjauti ari dału citu augstskolu speciālistu darbi, kas fegū̃ti cies̄ā sadarbibā ar LU matemàlịiem. Kräjumă publicētic rezultàti lieläkoties ir iegüti 1995. - 1996. gada.

The "Scientific Papers" contain the results of the investigations carried out mainly in the years $1995-1996$ by lecturers, rescarchers and post-graduate students of the Department of Mathematics and the Inslinute of Mathematics and Computer Sciences of the University of latvia. Some of the papers included reveal also the results of the researches carried out by specialists from some other universities collaborating with the mathernaticinns of the University of Latvia.

В сборник яклочены результаты яаучных иселедовании, прояепенвых сотрудникамв и доктораитами математических клфедр Латввяского университета,
 отдељввые работы солрудников друлих вузов. сотруднкчаюощих с математиками
 резулттатов попучевы в пернод 1995-1996 гг.

REDAKCWAS KOLĒGWA :

A. Sostaks (zinitniskais redaltors). S. Asmuss, J. Lapins. J. Vucäns
(C) Latvijas Universitāte, 1997

ISBN 9984-516-04-0

MATEMATIKA
Zinitrualic raksti 606. nejume
Zinitnisikeis redartori A. Sortaiks
Literiris redektorea L. Pargle, R. Pavlova

Reg. apl. Nr. 2-0206. Pmunt. Nr. \qquad
Metiens 100 chs.
lapieste tipcogrififa
$1-1623$

LATVIJAS UNIVERSITĀTE Matemāiskāas analizes katedra

MATEMATIKA
Zinātniskie raksui

606. sējums

UNIVERSITY OF LATVIA Department of Mathematical Analysis

MATHEMATICS

Scientific papers
Volume 606

Riga 1997

CONTENTS

S.Asmuss, A.Sostak. Extremal problems of approximation of fuzzy sets 9
N.Budkina. An approximation of noisy data by smoothing splines. 19
G.Engelis. Extremum problems for an affine function defined on a set of permutations. 29
D. Grundmane. Fixed points for non-invariant mappings. 37
V.Jevstigneyev. Construction of all equivariant realcompact exstensions by means of pets 45
S.Krivosheyev. Isogeometric interpolation by rational cubic splines 47
V.Ponomarev. On existence of a solution to the boundary va- lue problem for functional-differential equations. 57
A.Sondore. On kB-compact spaces. 61
A.Sostak. Impressions of the Council meeting of the European Mathematical Society 73

SATURA RȦDİTAJS

S.Asmuss, A. Sostaks. Fazi kopu aproksimäcijas ekstremălie uxdevumi 9
N.Budkina. Nogludinošo splainu lictosana neprecizo datu aproksimacija 19
G.Engelis. Ekstrema problëmas alinai funkcijai, kus definēta permutācijas kopā 29
D.Grundmane. Neinvariantu attēlojumu nekustigie punki. 37
V.Jevslignejevs. Visu ekvivariantu reāltompahtu paplasioājumu konstruēsana ar visparinatam virknem 45
S.Krivošejevs. Izoǧomelriska interpolacija ar racionāliem kubiskiem splaíniem 47
V. Ponomarevs. Funkcionāla diferencialvienādojama robeżproblēmas atrisinajuma cksistence 57
A. Sondore. Par kR-kompaktām telpám 61
A.Sostaks. lespaidi par Eiropas matemātikas biedribas padomes sēdi 73

СОДЕРЖАНИЕ

С.Асмусс. А.Постак. Экстремальные заиачи аппроксимацни нечётких множеств 9
Н. Будкина Аппроксимация заиумлённьх данньл сглаживаноцимн сплайнами 19
Энтелис. Экстремальнье задачи для аффинной функции, определснной на множестве перестановок 29
Д. Грундмане. Неподвижнье точки неинвариантных отображений 37
В. Евстигнесв. Построение всех эквивариантньд вещественно- комыахтнно расишрений мстодом направленностеА 45
С. Кривопееп. Изогсометрическая интерполяция рациональньмм кубическним сплайнами. 47
В. Пономарс̈в. Существованне реисния красвой задачи пля функционально-дифференциального уравнения 57
А.Сондоре. О кB-компактньх пространствах 61
А. Іостак. Впечатления о заседании Совета Европейского Математического общества 73

EXTREMAL PROBLEMS OF APPROXIMATION THEORY OF FUZZY SETS

Svethana V. Aemuso, Alerander P. Sostak

Abstract

Abetract. The problem of approcimation of a fravy rabeet of a sormed apace is coseidered in the paper. We atady the error of approximation, which in this ase in characterived by a furxy aumber. In onder to do thin we define the ropremum of a fury net of real number ou well ue the oupremam ad the iafimam of criop reta of fuay number. The introduced concepta allow in to invertigute the beat approximatios and the optimal linear appronimation. The fury cocerterparts of daality theoreme ure proved.

AM8 SC 04A72, 41 A65

1 Introduction

 one to solve ouch important problems a predec enimation of the error of fred approximetion methode and determination of the beat method of appraximation.

The central one in this theory is the notion of the beat approrimation introdeced by P.L.Chebyahev [11]. While at the begining recarche' atteation wa attreted to the invartigation of the beat approvimation to 2 single dement x

$$
\begin{equation*}
E(x, u)=\inf _{\Delta \in \mathbb{L}}\|x-u\|_{x} \tag{1}
\end{equation*}
$$

(lere X le a sormed apace, $x \in X$ and $U \subset X$), atartiag vith thirties the emphade moved to the problem of approrimation to the whale dnm $\boldsymbol{Y} \boldsymbol{C} \boldsymbol{X}$

$$
\begin{equation*}
E(Y, U)=\operatorname{anp}_{0 \in V} E(x, U) . \tag{2}
\end{equation*}
$$

The ratement of the problem (y) in aneed by the fact that ertruation of the wise $E(y, u)$ in bells

certain set y containing this element. The problern (2) can be interpreted also so fallowa: we have only a certain incomplete information abont the element v to be approximated; this information determines not a aingle element bat a whole set V, and our tuth is to get the beat poarible estimation of the value $E(v, u)$ based only on this information. It is clear that the velae $E(\nu, u)$ obtain as the realt of sach resaoaing will be trae for any element x of V, aithough, generally, it will not be exact for each element separately. Therefore the set ν mat be aufficiently narrow in orier that the chanacteristica which deternine it could refeet the busic properties of the element 0 more folly. - Under sach interpretation jt seeme natural to coneider the met V a a fazzy, rather than an a crisp one, i.e. to realize it so a fanction $\boldsymbol{V} ; \boldsymbol{X} \rightarrow[0,1]$, where the value $\mathcal{V}(x)$ describea the "belongness degree" of the element I to the set ν.

Example 1.1 The problem (2) can be interpreted aleo as the problerc of approximation to a fixed element on the baxis of non-precise, or fuzzy information. For exemple, one can consider approximation to a faction f by vaiuear $r_{\text {; }}$ in points $h_{i} \in[a, b],:=1,2, \ldots, \pi$, which are haowa ap to 2 certain error: $f,=f\left(t_{i}\right)+\&$. Wf one knowa the principle of diatribation F of errort ξ_{i}, than as $V: C[a, b] \rightarrow[0,1]$ one can tabe

$$
V(s)=1-(F(\|r(s)-\Gamma\|)-F(-\|r(s)-r\|)),
$$

Where $r(x)=\left(z\left(t_{1}\right), \ldots, x\left(t_{2}\right)\right), r=\left(r_{1}, \ldots, r_{4}\right)$ and $\|\ldots\|$ is a norm in \mathbf{R}^{2}.
Example 1.2 When approximating to a fonction in order to eatimute the vise $E(v, u)$ one unally wee cherseteriatia of ite amoothnem. In many practically iraportant casea the problem (2) is oolved for the clam $V=L_{p}^{\prime}[a, b]$ of $(r-1)$-ima aboolutely contirnouly diferentiable fanctione whowe r-th derivative in p-ammable. Along with thin one cte often vame that the fonction to be approximated in infnitely many tima diferentable. Here a V one an take

$$
V(x)=a(m) \text { for } x \in L_{p}^{n}[a, b] \backslash L_{p}^{m+1}\{a, b],
$$

where α is \mathbf{a} certain weight fonction of the antari nriable gech that

- $a(0)=0$
- $\lim _{m \rightarrow \infty} a(m)=1$
- α is atrictly increaing.

2 Fuzzy sets. Upper and lower bounds in fuazy setting

 which are aeeded in the eequel. Mort of them are will-kom to thom morting ofth tuay sets; wime wre probably new.

2.1 Puxzy sets

The concept of a fassy set we introdiced by L.A. Zadel [8]. Followisg Zadeh, by a fungy sth or more precisely, by a fury suliet of a set X we realize a mepping $V: X \rightarrow \boldsymbol{X}:=[0,1]$. The vaine $V(x)$ can be iaterpreted us the "belongnem degree" of an element x to a fuzzy net V. A fury set $\boldsymbol{V}: \boldsymbol{X} \rightarrow I$ will be called normed if nop, $\nu(x)=1$ ($(\mathbb{e}$ e.g. [i]).
In case X is a metric apace, a furzy aet V in called bounded if for every $c>0$ the set $y^{-1}[\varepsilon, 1]$ is boanded. Further, let \boldsymbol{X} be a vector space over \mathbf{R} and let $\lambda \in \mathbb{R}$. Then the product $\lambda \boldsymbol{V} ; \boldsymbol{X} \rightarrow \mathbf{R}$ is defined by the equality $\lambda \boldsymbol{Y}(x)=\boldsymbol{V}(f)$) (have \boldsymbol{V} in a crinp aet thin definition obvioanly reduces to the clasaical one). The image of a given fazzy eet $V: X \rightarrow I$ ander t mapping $\varphi: X \rightarrow Y$ is defined as a fazy ent

$$
\varphi(\nu)(y)=\left\{\begin{array}{lc}
\sup _{r(x)} \mathcal{P}(y) & \text { if } \varphi^{-1}(y) \neq 1 \\
0 & \text { othervise }
\end{array}\right.
$$

2.2 Puzzy real numbers. Fuzzy real line

 that

- z is non-increasing;
- $\operatorname{supp}_{s} z(x)=1, \quad \inf s(x)=0 ;$
- z is upper semicontinuous, i.e. $\lim _{\boldsymbol{m}^{-}} \boldsymbol{z}(x)=x(a)$.

The set of all furey real numbers is called a fonay real line and it in denoted by $\mathbf{R}(1)$.
Remark 2.2 .2 (1) Those working in "fazzy mathemation" nanally consider these concepta in a more general setting, aaraely the so called L-fazzy read nombera and the L-fazsy real line $\mathbf{R}(L)$ where L is a bounded lattice satifyying certain conditiona. However in our paper we deal only with "clasaic" fuzzy sets, i.e. with L-fazzy seta for $L=I$, and therefore, astorally we ahall ase juat the (I-) fazzy real line $\mathbf{R}(I)$.
(2) In the original papera on this sobject ([3], [2] et.al.) fuzny real nambers were defined not as functions therraelves, bat as certain classea of equivaleace of fanctions. In this paper we sccept the definition firat arggeated by S.E. Rodabaagh $[7$) which in easentially equivalent to the origina one.
(3) The ordinary real line \mathbf{R} cas be identified with a abopace of $\mathbf{R}(I)$ by amiguing to a real nomber $a \in R$ the forzy real a amber $z_{\text {a }}$ defined by

$$
s_{a}(x)=\left\{\begin{array}{lll}
1, & \text { if } x \leq a \\
0, & \text { if } x>a .
\end{array}\right.
$$

2.2.8 Puasy topology on $\mathbf{R}(\mathbf{I})$ ($d[2]$ etc).

Given $a, b \in \mathbb{R}$ let $\lambda_{4}, p_{4}: \mathbf{R}(I) \rightarrow I$ be defised by

$$
\begin{gathered}
\lambda_{t}(s)=1-s(b) \text {, and } \\
\rho_{0}(x)=s\left(s^{+}\right), \text {where } x\left(a^{+}\right)=\operatorname{sap}_{\Delta<a} s(x) .
\end{gathered}
$$

Then the fumily $\left\{\lambda_{b}, p_{a}: a, b \in \mathbf{R}\right\}$ generies a fary topology \boldsymbol{r} on $\mathbf{R}(I)$; on the red lize \mathbf{R} viewed u is subapace of $\mathrm{B}(\mathrm{I}$) this fazsy topology indroes the uaal (order) topology.
2.2.4 Addition of fungy number (an (ol, [7]). Given $s_{1}, z_{2} \in \mathbf{R}(1)$ let

$$
\left(s_{1} \oplus s_{s}\right)(z)=\operatorname{sip}_{1}(t) A s(z-i)
$$

The operation of fumy addition © in a jointly continuou extention of addition from the real line \mathbf{R} to the fazzy red line $\mathbf{R}(I)$.
2.2.5 Product of fuscy numbers wo defaed and thoroughly itadied by S.E. Rodabagh (wee eg. [7]). The defaition of prodact 0 of fany aumbera in much more complicated if compared with the definion of their ram. Fortunately, for our paposea we need only maltiplieation of a fumy number by a positive ral namber $t \in \mathbb{R}$ lo thin ase the genenal defivition in equivient to the one given by the following imple formala:

$$
(1 \odot s)(x)=s\left(\frac{x}{t}\right) .
$$

The operation of product is in uccordance with addition and in jointly continnora.

2.3 Supremum of a fuzzy set of real numbers

Definition 2.3.1 By the supremum of a normed lounded furry set $M \quad \mathbf{R} \rightarrow$! we call the fursy real numier $\operatorname{Sup}(M): \mathbf{R} \rightarrow I$ such that
(it) $M \leq \operatorname{Sup}(M)$ and
(20) $\forall x \in \mathcal{H}_{1} \forall z>0, \exists y \geq x-\varepsilon$ anch that $M(y) \geq \operatorname{Sup}(M)(x)-\varepsilon$.

Notice that in case M in crisp, thio definition redacea to the uanal defiaition of sapremam.
In case $M=\varphi(\nu)$ where $\boldsymbol{V}: X \rightarrow I$ and $\varphi: X \rightarrow \mathbf{R}$ (sce 2.1) we shall usadly write

Theorem 2.1.2 Let $M \quad \mathbf{R} \rightarrow I$ te a normed bounded furzy atet and let $S_{\mathbf{M}} \quad \mathbf{R} \rightarrow 1$ be a mapping. Then the following are equivalent:
(1) $S_{\mathbf{M}}=S_{u p}(M)$, i.e. $S_{\mathbf{L}}$ it the suprimum of M;
(2) $S_{Y}(x)=\operatorname{sap}\left\{a: \operatorname{mp} M^{-1}[a, 1] \geq x\right\} \quad \forall_{z} \in \mathbf{R}_{;}$
(s) $S_{M}(x)=\sup \left\{a: \operatorname{mp} M^{-1}(a, 1] \geq x\right\} \quad \forall x \in \mathbf{R}_{;}$

Siace the faray act S_{M} defined in (4) is obviouly a fasy number, thir theorem, among other, implien the erintence of the mpreming for every boasded normed furiy att of real aumber.

Remari 2.1.8 I we omit the condition that M in normed and bourded, then one an almo defies 2 mapping $\operatorname{Sup}(M): \mathbf{R} \rightarrow I$ by the properties (10) and (20) in 2.8.1. However, is this case $S_{u p}(M)$ may fail to be a farry nember. Numely, Sup(M) in non-increasiag and wace bat geaenilly doa not antify the meond condition in the definition of a fuasy real aumber. A tutement unagona to Theorem 2 s .2 remsim vald la thir ane, too.

Proponition 2.8.4 If $M: \mathbf{B} \rightarrow I$ i a normad bounded fury eat and $t>0$, then $S u p(M \in t)=$ $\bigcirc \sup _{(M)}$
Demark 2.8.5 Putteraed after the sitantion in deric andyie one ar defiec the infimum of a
 ohall sot deepen into consideration of thin concept hery beciave it is not needed for the pupamen of our mork.

2.4 Inflmum and supremum of a crisp set of faxy numbers

Let $\boldsymbol{F} \subset \mathbf{R}(\Omega)$. Thea the infmam of this at is defined by the equality

$$
\operatorname{in} P=\bigwedge\{\Delta \mid, \in F\}
$$

Obviowly iar P is a ferry real number. It in alo eng to ane that inf P an be characterised m the harget ase ($(\underline{)}$) in the fumily of fumy numben vinid are lem then or equel to ay one of fury nember $1 \in P$. The rapremam of the ent F in defiad by the equaity
$\operatorname{arp} F=$ inf $\left\{s \mid\right.$ in in fang number and $\left.s \geq f^{\prime} \quad \forall \in \in F\right\}$

3 Extremal problems of approximation theory

In thin extion me genentime the melthominotion of "dymic" or "edep" upproximation theory (me, eg. $[10],[4],[0]$) to the fray cace We condder the problem of approximation of a fuay nabeet V in a sormed spece \boldsymbol{X}.

3.1 On the best approximation of a fuszy set

Let U be a fixed non-empty anbeet of a mace X. Speaking abont the beot appronimation of a fazny net $V: \bar{X} \rightarrow I$ by the aet U, the exact apper boand in (2) mant be realized in the faray sense (\sec 1.3.1).

Definition 8.1.1 The deat apprasimation of a fuzzy set \mathcal{V} by a set U is defined a the furay number

$$
E(\nu, u)={S u p_{z} €} v E(x, u)
$$

The fany viaue $E(Y, U)$ can be interpreted as the deviation of the fany set V from the crisp cet U.

Proposition 3.1.2 For each $\alpha \in J$ the value anp $E(\nu, u)^{-1}([\alpha, 1])$ gives the theal afprasimation of the set $v^{-1}[a, 1]$ in the erisp eense.

3.2 On the error of the method of approximation of a fusty set

Having the precise eatimation of approximation in the form $\mathcal{P}(V, U)$ we noally canot conotract for a given element $v \in \boldsymbol{V}$ an element in the at \boldsymbol{U} reslining anch an ertor. Intead of the best approximation opentor $P: X \rightarrow U$ defined es $\|x-P x\|_{x}=E(x, U)$ we thond prefer a con. stractively realizabie method of approrimation. Any one of cueh methode is defined by a certain operator $\boldsymbol{A}: \boldsymbol{X} \rightarrow \boldsymbol{U}$.

Definition 3.2.1 The arrof of approsimation of a furis set V by $\&$ methed $A: X \rightarrow U$ is given if the value

$$
\begin{equation*}
\left(A_{1} Y, U\right)=S_{x} g_{a \in}\left\|_{x}-A x\right\|_{\mathrm{x}} \tag{3}
\end{equation*}
$$

Proposition 1.2.2

$$
E(V, U)=\inf _{A}(A, V, U)
$$

Deflnition 3.2 .3 The operter (melhad) A_{0} is called ile optimal approrimation operater (medod) if

$$
\left(A 0_{0}, V, U\right)=E(Y, U)
$$

The beat epproximation operstor P, whenever it exirit, in the optimat one, bat it is not necesmerily the mique among ponible ones. Thing isto comont thet in fary ace the velte $E(V, U)$ is a fasy real aumber, lee i mapping of R into I, one could handy be able to contrict the optinal approximation method.

Defloition 8.2.4 The operutor (methed) A_{0} is called the e-optimel approximation aperator (method) for non-negative e $\in \mathbf{R}(I)$ iv

$$
e\left(\Lambda_{1}, y, u\right) \leq E(\nu, u) \oplus e .
$$

If we are intereted only in linear methoda, then for fired V and u (in thin ane we anppore that U ia a rebapace of X), is in intard to mearch br thome linear operator $L \in U(X, U)$, ohowe apper bound (3) tatee the minimal value
 fuxy number

$$
\varepsilon(v, u)=\inf _{L \in L(x, y)} \propto\left(L_{1} v, u\right) .
$$

Deflaition 3.2.0 The anear operstor (method) $L_{0}: \bar{\Sigma} \rightarrow \boldsymbol{U}$ in called the optimin linear approximetion operator (melhod) if

$$
\alpha\left(L_{0}, \nu, u\right)=\varepsilon(\nu, u) .
$$

Definition 3.2.7 The Einear oporator (metiod) $L_{n}: X \rightarrow K$ is called the coptimal linear approzimetion aperator (method) for non-rejalive $z \in \mathbf{R}(I)$ if

$$
\varepsilon\left(L_{e}, v, u\right) \leq \varepsilon(v, u) \oplus \varepsilon .
$$

The isequalities

- $E(v, u) \leq \varepsilon(v, u) \leq \alpha\left(L_{1} v, u\right)$ for ench linear method L_{1}
- $E(V, u) \leq 0(A, V, u)$ for each operator A
explain the practical importance to know the value $E(v, u)$. Thio walue provides an arient which allown to jodge aboat the dignity and ahortage of a givea concrete method.

3.3 On the widths of a fuzzy set

The introduced concepta allow on to consider in famy case the notion of the vidth, connected with the search of the optirnal apparate of approximation.

Deflnition 3.s.1 The fuasy value

$$
d_{N}(V, X)=\inf _{u \subset x, d i m u \leq N} E(y, u)
$$

is called the Kolmogoroff N-width of a fery set y.

Definition 3.3.2 The fusey shate

$$
\lambda_{N}(V, X)=\inf _{u \subset \lambda, \dot{H} \| \leq N} E(V, U)
$$

is called the linear N-width of a fursy at V.
By apalogy the conterparta of other width (ree eg. [5]) car be considered in the contert of fasy ecte

4 Approximation in L_{q}-metric

The mont impartant nomed functiond apace id the apace $L_{r}(J)$. Thin apace convista of all integrable functions defined of I for whid the following nom is finite

$$
\begin{equation*}
\|f\|_{s}=\left(\int_{I}|f(\tau)|^{\bullet} d \tau\right)^{1 / 6} \quad 1 \leq q<\infty . \tag{1}
\end{equation*}
$$

When $q=\infty$, the right aide of (4) is repleced by the eneatial sapremum of f.
We conaider the bent approximation to elements of a faray subet V of the pace $L_{j}^{\prime}(J)=$ $\left\{f: f^{(t)} \in L_{p}(f)\right\}$ by a finite dimentiond rabapace $U \subset L_{p}^{\prime}(I)$ in L_{p}-metric

$$
E(v, u)_{\varphi}=\operatorname{mup}_{u \in V} E(x, U)_{q,} \quad E(x, U)_{4}=\inf _{v \in U}\|z-u\|_{c} .
$$

4.1 On the best approximation of functions

For the best approximation to a faction $f \in L_{y}^{\prime}(I)$ in a anhapace U, induding the clua P_{n} of all polynomiala of degree m it holde

Theorem 4.1 ((g]). $\| f \in L_{p}^{*}(I) \backslash U$, where $P_{\mathcal{A}} \subset U \subset L_{p}(J), \operatorname{dim} U<\infty, 1 \leq p \leq \infty$, $r=0,1, \cdots$, then

$$
\begin{gathered}
E(f, U)_{q}=\operatorname{axp}\left\{\int_{t} f^{(r)}(r) g(r) d r: \quad g \in W_{f}^{r}(u)_{m}\right\} \quad \text { for } m=r-1, \\
E(f, U)_{q}=\sup \left\{\int_{t} f^{(r)}(r) g(r) d r: \quad g \in W_{f}^{\prime}(u)_{r-1}, g \perp P_{m-r}\right\} \quad \text { for } m \geq r
\end{gathered}
$$

where
$\left.W_{r}^{(U)}\right)_{m}=\left\{\rho \in L_{f^{\prime}}^{\prime}(l):\left\|g^{(f)}\right\|_{r^{\prime}} \leq 1, g^{(r)} \perp U_{i} g^{(n)}(0)=g^{(b)}(1)=0,0 \leq k \leq m\right\}$,
$1 / q+1 / q^{\prime}=1$ and $g^{(\cdot)} \perp U$ meane that $\int_{I} g^{(r)}(r) u(r) d r=0 \forall u \in U$.

One can eee that the problem of eatimation of $E(V, u)$, will be cormet, if darivitiven $f^{(0)}$ of all
 $W_{F}=\left\{f \in L_{f}^{\prime}(1):\left\|f^{(\cdot)}\right\|_{p} \leq 1\right\}$.
4.2 On the best approximation of a crisp set

In "crisp" approximation theory the mart powafil methode of the solntion of ertremel probleme are based on the dality correlations. The obtrined realta are their faxy analogien They allow to reduce the problem of ertimation of the vilue $E(V, U)$, to a more vipible extremal problem in the conjugate apace.

Theorem 4.2 Let V: $L_{j}^{p}(J) \rightarrow I_{1} P_{\mathrm{E}} \subset U \subset L_{p}^{\prime}(J), d i m u<\infty, 1 \leq p \leq \infty, r=0,1, \cdots$, Thon
where $1 / p+1 / p^{\prime}=1,1 / q+1 / \ell^{\prime}=1, W: E_{f}^{\prime}(I) \rightarrow I$,

$$
W_{g}=\operatorname{map}_{r \in W_{p}(I)}\left\{y f: \int_{I} f^{(r)}(r) g(r) d r=\|g\| r\right\}
$$

The proof of the theorem follown from Theorm 4.1 by mease of
Lemme $4: \operatorname{lnt} V: L_{7}(I) \rightarrow I, U \subset L_{\gamma}(I), 1 / P+1 / \prime^{\prime}=1,1 \leq p, P^{\prime} \leq \infty$. Then
whan

$$
w_{f}=\operatorname{mep}_{r \in L_{C}(1)}\left\{V f: \int_{I} f(r) s(r) d r=\|\rho\|_{r},\|f\|_{r} \leq 1\right\}
$$

References
[1] P.Bhlad, W.Giljer, Baic sotion for fary topology, Part II, Pery Sat and Syat. 27 (1088), 171-106.
[2] T.R. Gantaer, RC. Steinlage, RLH. Whren, Compactien in faxy topotogial spaces, J. Math Aail Appl, 62 (1978) 547-862.
[\$1 B. Hutton, Normality li fury topologial apecen, J. Mati. Anel Appl, 00 (1073), 74-70
[4] H.Keisewetler. Vorlesumgen über lineare Approximation - Berlin, VEB: 1973.
[5] A.Pinkus. n-widths in approximation theory. - Berlin: Springer Veriag, 1985.
[6] S.E.Rodabaugh. Fuzzy addition and the fuzzy real lines. Fuzzy Sete and Syst, 8 (1982), 39-52.
[7] S.E.Rodabaugh. Complete fuzzy topological hyperfields and fuuzy multiplication in the fuzzy real Ines. Fwrzy Sets and Syst, 15 (1988), 285-310.
[8] L.A.Zadeh. Fuzzy sets. Inform and Control, 8 (1965), 338-365.
[9] Н.П.Кориейчук. Точные хонстанты в теорив пряблягевия. - Мосхвя. 1987. [IO] В.М.Тнхомвров. Некоторые вопросы теорин првблихсевие. - Москва, 1976 [I]] П.Л. Чебмшев. Избравные труды. - Москва, АН СССР, 1955, с. 462-578.

mowecti

Anotedje Tiek apstraitu normétes telpea fuj-apaklkopen aprokimicijas

 fazi-versiju.

Department of Mathernation
University of Latviz
Ramis blvd 19
Riga LV- 1586
LATVIA

AN APPROXIMATION OF NOISY DATA BY SMOOTHING SPLINES

Natalia Budlina

Abstract. In thin paper an approximation of elementy of a Helbert apace on the bagin of isexuct friformation in conidered a the problem of conditional minimisation of n amoothing fanctional. For this problem we introduce an euxiliary problem of uconditiond misimization. The conasetion equation of the purameten of the initial problem and of the suriliery problem in invertigated. ANS SC 41A15, 65 DIO

1 Introduction

We conider the problem of approximation of elemente of n Hilbert apace \boldsymbol{X} by the information given by linear furctionale $k_{i}: \boldsymbol{X} \rightarrow \boldsymbol{R}, i=1_{1} \ldots$, . We denote $A=\left(k_{1}, \ldots, k_{3}\right)$ and arme that the dats $A g$ aboat an approimsted element $g \in X$ in noiny, i.e. the known information $r \in \boldsymbol{R}^{\boldsymbol{e}}$: inexact:

$$
\left|k_{i} g-p_{i}\right| \leq c_{i}, i=1, \ldots, n_{i} \quad c_{i} \geq 0
$$

As approximation of g we are looting for the molation of the conditiosal minimination problem of the lonetional

$$
\begin{align*}
& J(x)=\|T x\| r \rightarrow \min _{\in \in X} \tag{1}\\
& \quad R_{i}(x)=\left|t_{i} x-r_{i}\right| \leq \varepsilon_{i}, \quad i=1, \ldots, a_{1}, \tag{2}
\end{align*}
$$

defined by a linear operator $\mathbf{T}: \bar{X} \rightarrow \boldsymbol{Y}$ in Filbert apacea.
In the apecial case of approximation of a fanction / on the interval $[a, b]$ by the menommeata

$$
\begin{equation*}
k_{i} f=f\left(t_{i}\right) \tag{3}
\end{equation*}
$$

at the knota $t_{1}, \ldots, t_{n} \quad a \leq t_{1}<t_{2}<\ldots<t_{n} \leq t \quad$ and when the opentor T is the operator of the q times differentiation

$$
\begin{equation*}
T x=x^{(4)} \tag{4}
\end{equation*}
$$

the problem (1)-(2) geta the form

$$
\begin{align*}
& \left.\int_{0}^{t} f^{(0)}(t)\right)^{2} d t \rightarrow \operatorname{mix}_{f \in[i, d]} \\
& \quad\left|f\left(t_{i}\right)-r_{i}\right| \leq d_{1}, i=1, \ldots, n, \tag{2}
\end{align*}
$$

($W_{2}^{4}[a$, b $]$ in the Sobolev spece). It in known that the solution of the problem $\left(1^{\prime}\right)$-(2^{\prime}) is a acturd aplise.

We deaote by $\bar{S}_{2 q-1,2}$ the upace of antind aplinea. A natural apline ef degree $(2 q-1)$ over the grid t_{1}, \ldots, t_{0} in a fuction which netinfier condition:

1. sin a polynomid of degree $(2 q-1)$ on each $\left[h, t_{i+1}\right], i=1, \ldots, n-1$;
2. $: \in C^{p-2}\left[a_{1}, b\right]$.
3. $\boldsymbol{A}^{(t)}(t)=0$, if $t \in\left[s, t_{t}\right] \cup\left[t_{2}, b\right]$.

If $n>q$ and so algebriac polynomin of degree $(q-1)$ actisfies the conditiona (7), then a antaral opline of degree $(2 q-1)$ given the inique solation of the problem (1^{\prime}) (2^{\prime}) (wee ag. $[1]$). U $n \leq q_{1}$ then the colation of the problem (1^{\prime})($\left(2^{\prime}\right.$) is any polynomid P of degree $(g-1)$, which entifiea the conditions $P(t i)=x, i=1, \ldots, n$.

In [3] for the conditional problem ($\left.1^{\prime}\right)\left(2^{\prime}\right)$ me introdace the anxiliny problem of zocoaditiond minimization

$$
\begin{equation*}
F(f)=\int_{a}^{t}(f(t)(t))^{2} d t+\sum_{j=1}^{n} \frac{1}{a_{j}}\left(f\left(h_{i}\right)-r_{i}\right)^{2} \rightarrow \underset{f \in \mathcal{W}_{;}(t, j) .}{\text { min }} \tag{4}
\end{equation*}
$$

with the moothing prametern $\alpha_{j}>0, j=1, \ldots, n$. The solation of the problem (5^{\prime}) will be obtrined es the adation of a ayutem of linerr agebric equatione.

The main realt of the paper (3) comecta the solation of the problem (1^{\prime}) - (2^{\prime}) with the nolation of the problern (5^{\prime}). There in proved that if the parameters a and ε are counected vith the consection equation

$$
\begin{equation*}
\varphi(a)=\varepsilon, \tag{d}
\end{equation*}
$$

then the opline s_{a}, Le the malution of the problem (s^{\prime}), give the anique wolation of the problem (1)-(2).

In the preast paper the main problem, the auxilivy problem and connection equation are concidered in general case

We asame that $\operatorname{ker} T+\operatorname{ker} A$ is cloed and ker $T \cap \operatorname{ker} A=\{0\}$ (ker A is the thened of the operator A). It in trown thet is this case the problem (1)-(2) hu the asique solation and thin solution in the splise from the apace

$$
S(T, A)=\left\{, \in X: \forall x \in \operatorname{ker} A \quad\left\langle T_{s}, T_{x}\right\rangle=0\right\}
$$

corresponding to the gives openton $T: X \rightarrow Y, A: X \rightarrow R^{4}$ (see [1] p.185, [2] p.9). In apecisl care (3)-(4) the ret $S(T, A)$ is the apace $\dot{S}_{11}-1,1$ of natural apline.

A rpline $s \in S(T, A)$ is called as interpolating opline for a vector $s=\left(s_{1}, \ldots, z\right)$ if $A s=2$. Under otated usomptiona for every vector $:$ there is a anique interpalatiag apline (ue [1] p.180). So $\operatorname{dim} S(T, A)=\mathrm{m}$.

2 The auxiliary problem and the connection equation

We formalate the curikery problem u follows

$$
\begin{equation*}
F(f)=\|T x\|_{r}+\|A x-r\|_{\infty} \rightarrow \min _{f \in X} \tag{5}
\end{equation*}
$$

where $\|x\|_{\infty}=\sum_{j=1}^{\infty} \frac{1}{\alpha_{j}} \Sigma_{i}^{2}$ is a norm is R^{e} defined by the conficient a $\in \boldsymbol{R}$.
It in hown that the rique solution of the problem (5) exiata and this solation is the apline from the apace $S(T, A)$. The nolation o $\in S(T, A)$ of the problem (b) may be aigedy rectored by a vector $\lambda \in R^{2}$

$$
T^{*} T_{t}=A^{*} \lambda
$$

where A^{*} add T^{7} are conjugate operatore (ree [2] $p .9$). It in known (cee (2] p.13), that the componente of the vector λ of the apline-molution of (5) eatufy the conditione

$$
\begin{equation*}
\lambda_{i}=\frac{1}{a_{i}}\left(r_{i}-k_{i} s\right)_{, i}=1, \ldots, m_{n} \tag{7}
\end{equation*}
$$

It is important for an that the moothing purmetere a and sof the maln and asiifiry problem are consected with the eqaality

$$
\begin{equation*}
M(a)=c \tag{0}
\end{equation*}
$$

where

$$
\begin{gathered}
a=\left(a_{i}: i=1, \ldots, n\right) ; \quad \in=\left(r_{i}^{2}: i=1, \ldots, n\right) ; \\
\varphi_{i}(a)=R_{i}\left(\mu_{a}\right)=\left(o_{n}\left(t_{i}\right)-r_{i}\right)^{2}, i=1, \ldots, i_{i} \quad \varphi(a)=\left(\varphi_{i}(a): i=1, \ldots, n\right),
\end{gathered}
$$

(we danote by as the colation of the problem (5)).
Theoran 2.1 If the paraneders a and a are conneted with the equation (4), then the optine se w the sobtcion of the proilion (s) gives the uaigue solution of tive proilem (1)-(8).

Proof. Lat / be the eolation of (1)-(2). Note that the sprine os miafiat the equation (8), be.
 and $J\left(a_{0}\right)$.

Suppoen $J(f) \leq J\left(a_{a}\right)$. Then

$$
F(f)=J(f)+\sum_{j=1}^{n} \frac{1}{a_{j}} R_{j}(f) \leq J\left(a_{n}\right)+\sum_{j=1}^{n} \frac{1}{a_{j}} c_{j}^{2}=
$$

$$
\left.=J\left(\partial_{0}\right)+\sum_{j=1}^{2} \frac{1}{a_{j}}\left(o_{0}\left(t_{j}\right)-r_{j}\right)^{2}\right)=F\left(\rho_{0}\right)
$$

i.e. $F(J) \leq F\left(s_{a}\right)$. We mow that s_{0} is the anique solation of the problem (\mathbf{s}, therefore f s s_{a}. Thas for $f \not \equiv s_{\infty}$ it holds $J(f)>J\left(s_{n},\right)$.

Theorem is proved.

3 Investigation of the connection equation

We invertigate the connection eqration (6). Let ua define the openation L by the pair of operator T and $A \operatorname{Lax}=(T x, A x)$ and operate to the apace $E=Y \times R^{4}$ with the ncalu prodnct

$$
\left\langle\left(y^{1}, z^{1}\right),\left(y^{2}, z^{2}\right)\right\rangle_{E}=\left\langle y^{2}, y^{2}\right\rangle_{Y}+\sum_{i=1}^{n} \frac{1}{a_{i}}\left\langle\frac{1}{i}, y_{i}^{2}\right\rangle_{R}
$$

The main readt of the prement rection is
Theorem 3.1 Por the deribatives $\frac{\partial_{1}}{\partial a_{j}}$ wa have

$$
\frac{\partial \varphi_{i}}{\partial a_{j}}(a)=2 a_{i}^{2}\left\langle L \frac{\partial s}{\partial a_{i}}, L \frac{\theta_{s}}{\partial a_{j}}\right\rangle .
$$

It an be eaily proved that the opentor L in linear and continook. The followizg propertia of L and the conjagate operator L^{4} will be aned in the proof of Thearem 3.1.

Lemma 8.1 1.The conjugate aporedor A° end heritten a

$$
A^{*} r=\sum_{i=1}^{n} k_{i}^{*}, \quad s=\left(h_{1}, \ldots, h_{2}\right) \in R^{0} .
$$

2. The conjugate opentar $L^{\prime \prime}$ can be written at

$$
L^{*} \in=T y+\sum_{i=1}^{n} \frac{1}{a_{i}} k^{*} s_{i}, \quad \in\left(x, z_{1}, y \in Y, \in K .\right.
$$

s.The operator $L^{\prime \prime} L$ ean le uritten as

$$
L^{*} L x=T^{*} T x+\sum_{i=1}^{n} \frac{1}{\alpha_{i}} k_{i}^{*} k_{i} x, \quad x \in X .
$$

Proot. 1.By definition of the conjugute operatir

$$
\left\langle A s_{1} s\right\rangle_{R^{n}}=\left\langle x, A^{*} s\right\rangle_{I}
$$

we have

$$
\langle A x, s\rangle_{R^{\circ}}=\sum_{i=1}^{n}\left\langle\mu_{i} x_{i} s_{i}\right\rangle a=\sum_{i=1}^{n}\left\langle x, k_{i}^{\beta} x_{i}\right\rangle x=\left\langle x_{i} \sum_{i=1}^{n} k_{i}^{*} x_{i}\right\rangle x .
$$

Therdore $A^{*}:=\sum_{i=1}^{\infty} k_{i} s_{i}$.
2.Thing into scoment that

$$
L^{\bullet} e=T y+\sum_{i=1}^{\infty} \frac{1}{a_{i}} k_{i}^{e}
$$

3.To prove the equality we tranform the acalar product $\left\langle L^{*} L x^{3}, x^{2}\right\rangle x$

$$
\begin{aligned}
& +\sum_{i=1}^{2} \frac{1}{a_{i}}\left\langle\hbar_{i} x^{1}, k_{i} z^{2}\right\rangle_{n}=\left\langle T T_{1}^{1}, x^{2}\right\rangle_{x}+\sum_{i=1}^{n} \frac{1}{a_{i}}\left\langle k_{i}^{*} k_{i} x^{2}, x^{2}\right\rangle_{1}= \\
& =\left\langle T^{2} T x^{1}+\sum_{i=1}^{n} \frac{1}{a_{i}} k_{i}^{e} k_{i} x_{1} x^{2}>x,\right.
\end{aligned}
$$

Therefore $L^{-} L x=T=T x+\sum_{i=1}^{\infty} \frac{1}{L_{i}} L_{i}^{e} k_{i} x$.
Lemma E.2 The spline so(t) in continuourly differentialle with reapet to a.

Proof. Let of tabe na basin in the apace $S(T, A)$ the aytern A_{1}, \ldots, s_{n}, where a_{i} in the interpolating spline for $f_{i}=(0, \ldots, 0,1,0, \ldots, 0)$ (where 1 is on the i-th place). The apline s_{s} an be written as $t_{a}=\sum_{i=1}^{*} c_{i} s_{i}$, where $c_{i}=k_{i} s_{a}$, Note that n_{i} don't depend on $a, ~ w o$ it in asfifient to eatablioh that the coeficiento s; of the alpine are contincoraly difereatiable. By $T^{\circ} T_{t}=A^{\circ} \lambda$ we obtain

$$
T^{\mu} T s_{c}=\sum_{i=1}^{\infty} \operatorname{ci}_{i} T^{*} T r_{i}=A^{*} \lambda
$$

We take calar product by a_{j}

$$
\left\langle\sum_{i=1}^{\infty} c_{i} T T s_{i}, s_{j}\right\rangle=\left\langle A^{*} \lambda_{1} s_{j}\right\rangle
$$

So $\sum_{i=1}^{0} q_{i}\left\langle T f_{i}, T a_{j}\right\rangle=\left\langle\lambda_{1} A t_{j}\right\rangle=\left\langle\lambda_{1} z_{j}\right\rangle=\lambda_{j}$ and by (7) we obtain

$$
\sum_{i=1}^{n} c_{i}\left\langle T s_{i}, T s_{j}\right\rangle=\frac{1}{a_{j}}\left(z_{j}-c_{j}\right) .
$$

The oplinea s_{i} arefixed and so $\left\langle T s_{i}, T t_{j}\right\rangle$ are fixed. Denoting $b_{i j}=\left\langle T t_{i}, T s_{j}\right\rangle$ and obtain

$$
\begin{equation*}
a_{j} \sum_{i=1}^{n} c_{i} b_{i j}+c_{j}=x_{j} \tag{8}
\end{equation*}
$$

So the coefficients $c_{i}, i=1, \ldots, n$ of the apline s_{a} can be obtuined se the solation of a cyatern of linear equations with non-zero determinant (since the problem (b) hat the onique solation). This system definea ε_{i} an implicit fanctione depending on ($\alpha_{1}, \ldots, \alpha_{n}$) By the theorem of implicit fanction, coefficeals $c_{i}, i=1, \ldots, n$ will be continnously differentiable if the Jacooian (i.e. the determinant of the ayoter (8)) is diatinct from zero. So the coefficienta of the apline $s_{s}(t)$ are continoouly differatinble with reapect to a.

Lemme 3.2 is proved.
 sense

$$
\begin{aligned}
& \text { c). } \cdot \frac{\theta}{\theta a_{j}} k_{i}=k_{i} \frac{\theta_{s}}{\theta a_{j}}, \\
& \text { b). } \frac{\theta}{\partial a_{j}} T t=T \frac{\partial s}{\theta a_{j}}, \\
& \text { c). } \frac{\theta}{\partial a_{j}} L s=L \frac{\theta_{s}}{\partial a_{j}}, \\
& \text { d). } \frac{\theta}{\theta a_{j}} T T s=T T \frac{\theta_{s}}{\theta a_{j}}
\end{aligned}
$$

where $t \in S(T, A)$.

Proof.The opline $s_{0}=\left\{\left(a_{1}, \ldots, a_{n}\right)\right.$ can be written a

$$
\Delta\left(a_{1}, \ldots, a_{n}\right)=\sum_{i=1}^{i} c(a) a_{i}
$$

where $q_{i}(a) \in R_{1}$ and a_{1}, \ldots, s_{z} is o baner of $S\left(T_{1} A\right)$. Therefore the order of operationa with repect to \propto and elernente of \boldsymbol{X} is not important. So

$$
\frac{\theta}{\partial a_{j}} k_{i} \leq=h_{i} \frac{\partial_{s}}{\partial a_{j}} \text { and } \frac{\theta}{\partial a_{j}} T s=T \frac{\partial_{d}}{\partial a_{j}} .
$$

From 2) and b) it follown thet $\frac{\theta}{\delta_{j}} L_{0}=i_{2} \frac{\partial_{i}}{\alpha_{j}}$.
To prove d) we differentiate the equation $\left\langle T s, T x>0<T^{*} T a, x>\right.$ with reapect to a_{j}. We get

$$
\left\langle\frac{\partial}{\partial a_{j}} T s, T x\right\rangle+\left\langle T t_{1} \frac{\theta}{\partial a_{j}} T x\right\rangle=\left\langle\frac{\theta}{\theta a_{j}} T T_{t} x\right\rangle+\left\langle T^{\infty} T t_{1} \frac{\partial x}{\theta a_{j}}\right\rangle .
$$

Since

$$
\begin{aligned}
\left\langle\frac{\theta}{\partial a_{j}} T s, T s\right\rangle & +\left\langle T s_{i} \cdot \frac{g}{i a_{j}} T r\right\rangle-\left\langle T \frac{\theta_{g}}{\partial a_{j}}, T x\right\rangle+\left\langle T a, T \frac{\partial x}{\theta a_{j}}\right\rangle= \\
= & \left\langle T\left\{\frac{\theta_{s}}{\theta a_{j}}, x\right\rangle+\left\langle T T a, \frac{\sigma_{s}}{\partial a_{j}}\right\rangle,\right.
\end{aligned}
$$

we have $\frac{\theta_{1}}{\delta_{j}} T T_{t}=T T^{\frac{\theta_{1}}{\delta_{j}}}$.
Proof of theorem 3.1.

$$
\begin{aligned}
& \frac{\partial \varphi_{i}(a)}{\partial \alpha_{j}}=2\left(k_{i}-x_{i}\right) k_{i} \frac{\partial s(a)}{\partial a_{j}}=2<k_{i}-\varepsilon_{i} k_{i} \frac{\partial o(a)}{\partial a_{j}}>2= \\
& =2<k_{i}^{k}\left(k_{i j}-s_{i}\right), \frac{\theta_{r}(a)}{\theta a_{j}}>x .
\end{aligned}
$$

By $T^{T} T s=A^{-} \lambda$ and (7) we get

$$
T T s=A^{-} \lambda=\sum_{i=1}^{n} k_{i}^{c} \lambda_{i}=\sum_{i=1}^{n} k_{i}^{0} \frac{1}{a_{i}}(s i-k j) .
$$

So

$$
\begin{equation*}
T T_{t}+\sum_{j=1}^{n} \frac{1}{a_{j}} k_{j}^{\prime}\left(k_{j} t-z_{j}\right)=0 \tag{0}
\end{equation*}
$$

Acoording to Lemme 3.1

$$
L^{*} L_{t}-\sum_{j=1}^{\bullet} \frac{1}{a_{j}} k_{j}^{*} s_{j}=0,
$$

or

$$
\begin{equation*}
L^{\bullet} L_{s}=\sum_{j=1}^{n} \frac{1}{a_{j}} k_{j}^{6} z ; \tag{10}
\end{equation*}
$$

Differeatiating the equality (9) with reapect to a_{i} we obtain

$$
\begin{equation*}
T T \frac{\theta_{1}(\alpha)}{\theta a_{i}}+\sum_{j=1}^{2} \frac{1}{a_{j}} k_{j}^{0} k_{j} \frac{\theta_{j}(a)}{\theta a_{i}}-\frac{1}{\sigma_{i}^{2}} k_{i}^{*}\left(k_{i} \theta-k_{i}\right)=0 \tag{11}
\end{equation*}
$$

From (11) It follown

$$
L^{*} L \frac{\partial \theta(a)}{\partial a_{i}}=\frac{1}{a_{i}^{2}} k_{i}^{*}\left(k_{i},-s_{i}\right) .
$$

We get the final readt by mbatitnting thie equality lato (9)

$$
\left.\frac{\partial \varphi_{i}(a)}{\partial a_{j}}=2 a_{i}^{2}<L^{*} L \frac{\theta a(a)}{\partial a_{i}}, \frac{\theta a(a)}{\theta a_{j}}\right\rangle=2 a_{i}^{2}\left\langle L \frac{\theta s(a)}{\theta a_{i}}, L \frac{\theta a(a)}{\theta a_{j}}\right\rangle .
$$

Theorem is proved
It is better to comider the fonction $\psi(\beta)$ inatead of the fanction $\psi(a)$, where $\psi(\beta)=c-\psi\left(\frac{1}{\mu}\right)$. The connection eqration in thin are is

$$
\begin{equation*}
\psi(\beta)=0 \tag{12}
\end{equation*}
$$

The Jacobi matrix for tis aymmetric and or the operator is potential for a faction F_{1} i.e $\phi=g r a d F$.
 linearly independent
We wid prove this fact. The vecton $\frac{1}{D} L \frac{f}{f}, i=1, \ldots, n$, are lineenly independent if ${ }^{\circ}$

$$
\sum_{i=1}^{n} p_{i} \frac{1}{\beta_{i}} t \frac{\theta p}{\theta A_{i}}=0 \text { if and only if } p_{i}=0, i=1, \ldots, i n
$$

 space $S(T, A)$. So

$$
\sum_{i=1}^{n} p_{i} \frac{1}{\beta_{i}^{2}} \sum_{i=1}^{n} \frac{\theta a}{\theta \beta_{i}} L_{i}=0
$$

or

$$
\sum_{k=1}^{\Delta} L \alpha_{k} \sum_{i=1}^{n} \frac{p_{i}}{\beta_{i}^{2}} \frac{\theta_{k}}{\partial \beta_{i}}=0 .
$$

The clementa L ss are linearis independeat, ∞

$$
\sum_{i=1}^{n} \frac{p_{i}}{\beta_{i}^{2}} \frac{\theta c_{i}}{\theta \beta_{i}}=0, \quad k=l_{1} \ldots, n .
$$

The spline s in the salatlow of the problem (5), therefore it matinfen (8)

$$
\sum_{i=1}^{2} c i b_{j}+\beta_{j} c_{j}=\beta_{j} \varepsilon_{j 1} j=1, \ldots, n_{1}
$$

Le the opline s is the moothing opline for the vector $s=\left(n_{j}: j=1, \ldots, n\right)$. We difereatinte thin equality

$$
\begin{aligned}
& \sum_{i=1}^{n} \frac{\partial c_{a}}{\partial \beta_{m}} b_{i j}+\theta_{j} \frac{\partial c_{j}}{\partial \beta_{m}}=0, j=1, \ldots, n_{1} j \neq m_{m} \\
& \sum_{i=1}^{n} \frac{\theta c_{i}}{\theta \beta_{m}} b_{i=}+\beta_{m} \frac{\theta c_{m}}{\partial \beta_{m}}=m_{m}-c_{m} .
\end{aligned}
$$

It in eary to cee that $y\left(t_{k}\right)=0, k=1, \ldots, n, \infty j \equiv 0$. Therefore $j \equiv 0,10 p_{i}=0, i=1, \ldots, n$, and the Jacobl matrix for ψ in non-angiler .

References

[1] P.J. Laurent. Approximation en optimization. - Hermam, Paris, 1972.

[3] N. Budkina. On a method of solving a smoothing probletn. - Proc. Estonian Acad. Sci. Phys. Malh., p.183-191, 1995.
N. Budkina Nootudinoto splainy lietosana peprecizo daty aproksimacija. Anotäclja.Rakstā ir aphükots Hilberta tetpas elementu aproksinnacijes uzdevurns pëc informâcijas, kes ir uzdota ar zinìno noprecizitâll. Pêc bùtibas tas ir nogludinosa funkcionşàa nosacitus minimizäcijes uzdevums. Să uzdevume risimásana ir reducila ur beznosacijumu mbimizizcijes paligurdevume ris inảsanu. Ir pêtiss vienádojums, kurl sasaista pamaturdevuma un paliguzdevuma parametrus.
того пространства по ивформаири, известноџ с векоторой погрепиостьо. По
функциовала Вводотся вспомогательная задрча ва бсэусловный минимјм. Иселе-
YIIK 517.5

```
Department of Mathematics
University of Latvia
Rainis blvd. 19
LV 1586 Riga
LATVIA
```


EXTREMUM PROBLEMS FOR AN AFFINE FUNCTION DEFINED ON A SET OF PERMUTATIONS

G. Engelis

Sumonary. The composition of n given affine functions in $A t+B$, where B depends on the permatation of these functiona. Some necemary properties of the permatation conresponding to the minimal vilue of B are formalated and in come apecial casen a preave charateristic of the permatation in queation io given.

AM9 nebject devification 05D99

Let un consider n fized ufine furctions $\boldsymbol{R} \rightarrow \boldsymbol{R}$

$$
f_{i}(t)=a_{i} t+b_{i}
$$

$$
f_{1} \ldots i_{2}:=f_{0} \circ f_{1}, \ldots \circ f_{2} \circ f_{i_{1}}(t)=A t+B .
$$

It 6 dear that $A=\prod_{i=1}^{*} a_{i}$, bat B depende on the permatation $\left(i_{1}, i_{2}, \ldots, i_{i}\right)$ and an lave if difereat when. The extremal viluca mia $\{B\}$, mex $\{B\}$ an be found by compiting all these a! aumben, bat it meens quite atterally to march otiar mas of colving this problem, too. In the literatare we have foand so meationing of thin ateation. In the generl ane (withont farther retrictions for a_{i}, b_{i}) the problem eeme to be a compliated one The im of this paper in to develop anme methode efective in extrin spedis casen.

In ection 1 we give some inequalitee receany for the pernartation corraponding to min\{B\} (is the mepuel they will be callod optimal). Hive weinteretad in maxr $B\}$, we have olly to replace
 are eppecielly effoctive.

1.

Firther we often will nee aumbers

$$
a_{i}=\frac{b_{i}}{\alpha_{i}-1}, \quad \&=\frac{c_{i}-1}{b_{i}} .
$$

Both aumbers are not defined only when $a_{i}=I_{1} b_{i}=0$, bat in this case the function $f_{1}(t)=t$ comprotea with each $f_{j}\left(j_{i} \circ f_{j}=f_{j} \circ f_{i}\right)$ and the plese of f_{i} in the permatation does not change the corresponding B. Therefore we asoume that none of $f_{i}(t)$ equala $t 0 t$. Then it in eny to condude that f_{j} and f_{k} commate if $c_{j}=a_{a}$ (or $d_{j}=d_{i}$). If $e_{j 1}$ denotes tie correrponding number for $f_{j} \circ f_{1}$, then $e_{j l}=c_{j}=e_{1}$.

To aimplify the notation we asoume that

$$
\min \left\{B\left(i_{1}, \ldots, i_{n}\right)\right\}=B_{0}=B(1,2, \ldots, n)
$$

(what en be obtuined by reameration of the $\{f i\}$). It lo eny to compate that

$$
\begin{equation*}
B_{0}=\sum_{k=0}^{\Delta}\left(\prod_{i=1}^{i} a_{i}\right) b_{b-1}+b_{n} . \tag{1}
\end{equation*}
$$

We will compare the B_{0} with en me B_{1} correaponding to norae "done" permatation. For thin perpose we will tes $s-1$ permatatior: $(1,2, \ldots, k-2, k, k-1, k+1, \ldots$,) where $k \in\{2,3, \ldots, n\}$, (But in 2.4 it vill be neremary to ane mome other "dace" permatation too).
If we write $B_{1}=B(1, \ldots, k-2, k, k-1, k+1, \ldots, n)$ a a ram lite (1) and pat boch rams into the Inequality

$$
B_{0} \leq B_{0}
$$

we mee that in both parta the entimanda not contaiaing fucton b_{1} and b_{k-1} are equil and therefore

$$
\begin{equation*}
\prod_{i=i}^{n}\left(a_{i}\right) b_{1-1}+\left(\prod_{i=1+1}^{n} a_{i}\right) b_{1} \leq\left(\prod_{i=1+1}^{n} a_{i}\right) a_{j-1} b_{b}+\left(\prod_{i=1}^{n} a_{i}\right) b_{k-1} . \tag{1}
\end{equation*}
$$

Let $N(k)$ be the aumber of regativen in the ret $\left\{a_{k+1}, a_{k+1}, \ldots, a_{k}\right\}$. Dividing both parte of (2) by \prod_{n+1}^{a} ai we obtrin

$$
(-1)^{N(1)} a_{3} b_{l-1}+b_{3} \leq(-1)^{N(1)} a_{a_{1-1}} b_{3}+b_{1-1}
$$

or

$$
\begin{equation*}
(-1)^{N(b)}\left(a_{k}-1\right) b_{k-1} \leq(-1)^{N(A)}\left(a_{k-1}-1\right) b_{k} \tag{3}
\end{equation*}
$$

$\mathbf{H}\left(a_{\Delta-1}-1\right)\left(a_{\mu}-1\right) \neq 0$ and

$$
\operatorname{srn}\left(a_{x-1}-1\right)\left(a_{b}-1\right)=(-1)^{v(1)}, \quad N(k) \in\{0,1\}
$$

then from (3) it follows

$$
\begin{equation*}
(-1)^{N(k)+N(h)} c_{-1} \leq(-1)^{N(b)+N(b)} c_{0} . \tag{4}
\end{equation*}
$$

If $b_{k-1} b_{b} \neq 0$ and

$$
2 g n b_{L-1} b_{L}=(-1)^{O(b)}, O(k) \in\{0,1\}
$$

then from (3) it [ollows

$$
\begin{equation*}
(-1)^{N(h)+o(h)} d_{\lambda} \leq(-1)^{N(1)+O(k)} d_{1-1} . \tag{b}
\end{equation*}
$$

In care whes $a_{k}=1, b_{k-1}=0$ or $a_{k-1}=1, b_{k}=0$ we get

$$
\begin{equation*}
0 \leq(-1)^{N(1)}\left(a_{b-1}-1\right) b_{k} \tag{6}
\end{equation*}
$$

or

$$
\begin{equation*}
(-1)^{N(k)}\left(a_{k}-1\right) b_{k-1} \leq 0 . \tag{7}
\end{equation*}
$$

We have proved the atatement: if $B_{0} \pm B(1,2, \ldots, \pi)=\min \{B\}$, then for every $k \in\{2,3, \ldots, n\}$ at least one of the inequalitiea (4), (5), (6), (7) is ralid Thin statement allowe an wexclade a large met of a! permatation en being non optimal. However, in generd the cet of remaning permetasiona is atill a large one, too (erpecislly if theme meay $f i$ with $a_{i}<0$ and many $f ;$ with $a_{j}>0$). Further we investigate come cases when the inequalities (4)-(7) are effective.

2.

In thin eection we inverigate the problem of the optimal permatation in cower, when the set of $\{/$,$\} in a "homogenecra" one. It means that all anmbers a_{i}$ belong to one of the ix setr $[1,+\infty\{\{1\}, \quad] 0,1[]-1,,0[1[-1\}, \quad]-\infty,-1[$.
2.1. If all $a_{i}>1$, then $N(k)=M(k)=0$ for all k and from (4) it follown that in the optimal permetation it halde:

$$
\begin{equation*}
\mathbf{c}_{\mathbf{k}-1} \leq c_{k} . \tag{8}
\end{equation*}
$$

To fad anch a permatation we have to compate all c and to order the given fanctiona in anch a way, that the sequence (c) is non dectrasing.
2.2. If all $a_{i}=1$, then from (1) it follown

$$
\begin{equation*}
B_{0}=\sum_{k=1}^{n} b_{k} \tag{9}
\end{equation*}
$$

and every permatation is optimel.
2.s. If !or all i $0<a_{i}<$!, then $N(k)=M(k)=0$ and we get (8) in this case, too. Nevertheless we can not unite (2.1) and (2.3) (a>0,aキ1) uince then in some cuser it will be $M(k)=1$, bat this easentially changes the sitaation.
2.4. If Cor all $i-1<a_{i}<0$, then $N(k)=m-k_{1} M(k)=0$ and from (4) it followi

$$
\begin{equation*}
c_{x} \geq c_{n-1} \leq c_{n-2} \geq c_{n-1} \leq \ldots \tag{10}
\end{equation*}
$$

 then the namber of aequencea is greater than (m ! $)^{2}$). Therefore we have to seareh farther criterit for the optimal permatation. We coaider here like in eection 1 some permatations "clowe" to the optimel one:

$$
B_{k}^{\prime}=B(1,2, \ldots, k-2, k+1, k, k-1, k+2, \ldots, z), \quad k \in\{2,3, \ldots, n-1\} .
$$

Here $N(k+1)=a-k-1$ and from $B_{0} \leq B_{s}^{d}$ it follows (like in section 1) that

$$
\begin{equation*}
(-1)^{2-1-1}\left(a_{k+1} a_{k} b_{5}-1+a_{b+1} b_{5}+b_{5+1}\right) \leq(-1)^{a-b-1}\left(a_{1-1} a_{s} b_{1+1}+a_{k-1} b_{1}+b_{k-1}\right) . \tag{11}
\end{equation*}
$$

It tenn out that (11) given wome inequatiea for the namben $c_{i j}$, jince if $f_{i j}=f_{j}$ 。 f_{i}, then $a_{i j}=a_{i} a_{j}, \quad b_{i j}=a_{j} b_{i}+b_{j}$ and

$$
\begin{equation*}
a_{i j}=\frac{a_{j} b_{i}+b_{j}}{a_{i} a_{j}-1} . \tag{12}
\end{equation*}
$$

Maltiplying by $a_{i}<0$ and adding to both parts $-b_{k}$ we obtain from (11):

$$
(-1)^{n-1}\left(a_{1} a_{k+1}-1\right)\left(a_{b} b_{b-1}+b_{b}\right) \leq(-1)^{a-b}\left(a_{k} a_{k-1}-1\right)\left(a_{b} b_{k+1}+b_{b}\right)
$$

and realling that $\left(a_{1} a_{k+1}-1\right)\left(a_{1} a_{k-1}-1\right)>0$ we get

$$
\begin{equation*}
(-1)^{4-\lambda} a_{-1,1} \leq(-1)^{2-k} c_{1+1, k} \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
c_{0,0-1} \leq c_{n-2,0-1}, \quad c_{n-3, k-2} \leq c_{n-1, n-2}, \quad c_{2-2,0-3} \leq c_{3-4,0-3}, \ldots \tag{14}
\end{equation*}
$$

Bat there exint another pomibility to uee (11). Adding to both parta $a_{b-1} a_{1} a_{b+i} b_{1}$ we get

$$
(-1)^{k-1-1}\left(a_{j} a_{k-1}-1\right)\left(a_{k-1} b_{j}+b_{k-1}\right) \leq(-1)^{2-1}\left(a_{k+1} a_{k}-1\right)\left(a_{k+1} b_{k}+b_{k+1}\right)
$$

or

$$
\begin{equation*}
(-1)^{a-k-1} c_{1}, k-1 \leq(-1)^{a-1-1} c_{1, k+1} . \tag{15}
\end{equation*}
$$

Nhing here $k=n-1, k=n-2, \ldots$ we get

$$
\begin{equation*}
c_{n-1, n-2} \leq c_{n-1, n}, \quad c_{n-2, n-1} \leq c_{2-2,0-3}, \quad c_{2-2, n-1} \leq c_{n-1,},-1, \ldots \tag{10}
\end{equation*}
$$

From (14) and (16) it followe

$$
\begin{equation*}
c_{2-1, n} \geq c_{n-1, n-2} \geq c_{n-3, n-2} \geq c_{n-3, n-4, \ldots} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
c_{n, n-1} \leq c_{2-2, e-1} \leq e_{n-2,--1} \leq e_{n-1, n-3,} \ldots \tag{18}
\end{equation*}
$$

But from (12) we obthin

$$
c_{i}-c_{i j}=\frac{\left(a_{j}-1\right)\left(a_{i}-1\right)\left(a_{i}-c_{j}\right)}{a_{i} a_{j}-1}
$$

and

$$
\begin{equation*}
\operatorname{sgn}\left(c_{j}-c_{i i}\right)=-\operatorname{sgn}\left(c_{i}-c_{j}\right) \tag{19}
\end{equation*}
$$

Comblning thin with (10) wet

$$
c_{0-1, n} \geq c_{n, 2-1}, c_{n-1, n-2} \geq c_{n-2, n-1}, \ldots
$$

Mad thin means that the lequalities (16) contain the greatert and (18) the malleat of the ambers $\varphi_{i, i+1}, \varphi_{i+1,0}$. Thia given an agorithm for the earch of the optinel permatation.

For this parpone wempate all numbers c_{j}, and reanmarte fanction f_{j} in anch a may that the seqtens (ϵ_{j}) is mosotoce. Now we comprite the greater cy, the whote number of which will

$$
\begin{equation*}
\epsilon_{j} \geq \sigma_{1} \geq a_{1} \geq a_{1} \geq \ldots \geq c_{p_{p}} \tag{70}
\end{equation*}
$$

Sech eequence alway exirts, bat it mast not be anige. If the eequence (20) in found then we uapect that the permatation

$$
\left(\ldots, a, l_{1} k_{1} i, j\right)
$$

atarting with p or q, deperding on the parity of n, an be the optional one If there is more than ore mequence (20), we have to compate all conreponding B_{2}^{\prime} and tate the leant one Or, we an compete the aet of min $\left(\epsilon_{y}, c_{i}\right)$, form the tequence corteponding to (20) and combite the replta of the botk mequences.

It is not ementinal that ve condder eequences "from the ead to the begisainge. Oly by constraction of the optimel permatation in the naters onder we mort dirtinginh the onea when n le even or odd.
2.E. Fill a; $=-1$, thes

$$
B=\sum_{i=1}^{i} b_{i}(-1)^{n-1}=\sum_{i=0}^{[t]} b_{n-2}-\sum_{i=n}^{[t]} b_{n-1-2 k} .
$$

 the legethe.
 $t 0$

$$
\operatorname{sg}\left(c_{j}-c_{j i}\right)=4 g^{2}\left(c_{i}-c_{j}\right)
$$

trom which it fallowe

$$
c_{0,1}-1 \geq c_{-1,1,} \quad c_{=-2,0-1} \geq c_{=-1,0-2}, \ldots
$$

It mean that in this eitation (10) containg the ornallent and (18) the lagert of the (a_{i+1}, a_{i+1}). Further we as proced on an in (24).

3

Here we will ahow the we of the realts of metion 1 in mome anhomogeacour caen.
2.1. It is ponible to combine 21 and 2.2 and arame chat for all i

$$
1 \leq a_{i}<+\infty .
$$

Prom (4), (8), (7) we obtris thas the optimen permatation otarte with f that have $a_{i}=1$ and $b_{i}<0$ (here we an defize $q=-\infty$) forther come f_{i} with $a_{i}>1$ and $a_{-1} \leq a$ and the permetation eade with f_{i} who have $a_{i}=1$ and $d_{i}=0$ (here $\left.a_{i}=+\infty\right)$. The order of f_{i} with $a_{i}=1$ at the beginuing and the and of the permatation is not ementisl
8.2. In an andogue mearer we an combise 2.2 and 2.5 and mame that

$$
0<\alpha_{i} \leq 1 .
$$

Thea the optimel permatation begine rith $f_{i}(t)=t+\delta_{i}, h_{i}>0$ and ande vith $f_{i}(t)=t+h_{i}, h_{x}<0$.
28. It in pomible to combine $21,2.2$ and 2.3 if for all i, j is halde

$$
k_{i} b_{j}>0 .
$$

$$
d_{t} \geq d_{2} \geq d_{0} \geq \ldots \geq d_{0}
$$

8.4. The ame what for in i it holde $\mathrm{a}_{i}=\mathrm{a}$ is invertigited in mection 2 , but it an be rolved in quite a differat maj. Prom (1) we get

$$
E_{0}=\sum_{1=0}^{\infty} a^{a-1+1} b_{b-1}+b_{n}
$$

 permatation of f cat chage oaly the mecond vetor, and it in rell hown that the soder product b minima if the coortinglen of ase wetor farm e manincraving and the coordinates of the other rector form a sondecreving eiprace Por eximpla, if

$$
-1<\varepsilon<0, \quad \in=2 m
$$

$$
b_{1} \geq b_{1} \geq b_{3} \geq \ldots \geq b_{2=-1} \geq b_{1} \geq \ldots \geq b_{3} \geq b_{20} .
$$

$$
a_{i}>0, d_{i}=b .
$$

Thee from (1) it follow

$$
B_{0}=4 \sum_{i=0}^{n}\left(\prod_{i=1}^{n} a_{i}\right)+1
$$

I $b>0$ then B_{7} hen the leart vilue wiea

$$
a_{4} \leq a_{n-1} \leq a_{n-2} \leq \ldots \leq e_{0} \leq a_{2} .
$$

 that fuctions with equal a commate and therefore a optimal permatation begin sitil some commeting fuction with the composition

$$
F_{1}(t)=A_{1} t+\left(A_{1}-1\right) c_{1}
$$

 fanctions with the comporition

$$
R_{2}(t)=A_{3} t+\left(A_{2}-1\right) c
$$

(Bat we mut remember, that it an be $F_{1}(t)=1$ or $P(t)=1$.) it in engy to compate $A:=A_{1} A_{2}$ too and ter have

$$
F_{2} \circ d \cdot F_{1}=A_{1} A_{2} \circ t+B_{1}
$$

viere

$$
B=A a c-\varepsilon+A_{2}(a-1)(7-c) .
$$

Here only A_{2} depende on the permatation. The aga of $a-1$ and $\gamma-c$ are fired and we an only tale λ_{2} te the mavimal or the minimal one of all pomible prodecta of the numbers ain (for commating fanctionu), indadiag the amber 1 (if $A_{1}=A$).
3.7. We an get mome further ralla by applying ore methode in caser when a -1 fanctions belong to one of the seta invertigated in 21-2.3, but one function belong to 4 set from 2.4-2.6. Only in these crea the formalation of the realta bocomes too compliated to be of asy interest for concrete problems.
G.E.pgelin. Ekntrema problētoas nfinai funkcilaL kers definäte pemiotiedin kopi. Anotàcija. \boldsymbol{n} dotu afinu fumkciju kompizicija ir funkcija At+B. Iur B ir atkerigs no So funkciju permutäcijas. Darba ì formuletas dejes pepieciesemma iposibes pernutâcijai, kas dod minimālo B vērtibu, um paràdits, ka zināmos specialgadijumoe tas aṭauj viennozimigi noteikt to permutaciju.

міодегте перест

 функпвей $A t+B$, где B зависет от іерестаноиия фуикции. В работе указаны пеко-

 лиют эту перестадовку.

Deppartment of Mastbonatice
Univerity of Latvin
Reinis bivd. 19
LV-1586 Riga
LAIVIA

Fixed points for non-invariant mappings

Daiga Grundmane

Abstract

Abatract In this paper we prove generalitations of Barach and Edelstein fixed point theorerns for non-lnvariant meppinge (i.e. mappinge with, possibly, different domain and range), by introducisg and using two different generalized notions of contractive mappinga and a notion of reflector, introduced in [5].

AMS aubject clasaification 54H25.

Introduction

In this paper we further explore the notion of reficetor, introduced in [5]. The largest part of known fixed point theorems worka for functiona $f X \rightarrow X$, i.e. for functions with equal domain and range. The notion oi reflector have turned to be useful to prove the existence of fixed points for mappings f in case, when domain and range of f do not necesearily coincide.

In [5] we succeeded to prove the following result
Theorem 1 (Grundmane, Liepigi) Let Y be a complete metric space with distance $d, \boldsymbol{\theta} \neq X \subseteq Y$, let X be a closed space, and let $f X \rightarrow Y$ be contractive mapping, auch that there exists a refiector $O \subseteq X$. Then there ezists e unique fired point of $f . \circ$

A similar generalized theorem for nonexpansive mappings was obtained in the M.Sc. thesis of the author.

Theorem 2 (Grundmane) Let Y be a metric space with distance d, \neq $X \subseteq Y$, let X be a compact space, and let $f \quad X \rightarrow Y$ be strongly nonerpansive mapping, such thab there exists a refiector $O \subseteq X$. Then there existo a unique fixed point of $f .0$

While it seems that the notion of reflector is a quite adequate tool for extending these two classical resulto to the case of non-invariant mappings, a queation may arise, whether the requirements that mapping f must be contractive or strongly nonexpansive are not too strong. Here we propose two different ways how these requiremento could be relaxed.

First, we further explore the idea of A. Liepins that the requiremente of contractiveness or strong nonexpansiveness can be substituted by the requirement of existence of mappings $A \quad Y \rightarrow P Y$ and $p \quad P Y \rightarrow \mathbf{R}$ which satisfy some natural properties. It turns out that auch generalized notions really are sufficient to obtain generalized versions of Theorems 1/ and 2 , if we place some additional natural requirements on reflectors.

At the same time, it appears that the proposed existence of mappinga $A \quad Y \rightarrow P Y$ and $\varphi \quad P Y \rightarrow \mathbf{R}$ more likely can be considered nol as a direct generalization of contractivenesa (or strong nonexpansiveness), but as a generalization of requirements in the form $d(x, f(x)) \leq q d(f(x) . f(f(x)))$ (or $d(x, f(x))<d(f(x), f(f(x)))$). For this reason it also turns out to be insufficient to guarantee the uniquenesa of fixed points.

We propose a similar approach that more likely can be considered as a generalization of requirements that mapping must be contrictive (airongly nonexpansive). Namely, we consider mappings A: $Y^{\mathbf{2}} \rightarrow P Y$ and $\varphi \quad P Y \rightarrow \mathbf{R}$ and place some natural restrictions on function φ. Such approach also allows to obtain generalizations of Theorems 1 and 2, besides it allows somewhat relaxed requirements on reflectors (we actually substitute the original reflector property with somewhat similar, but forriulated in terms of mapping φ). While such approach also does not guarantee the uniqueneas of fixed points, it remains an open problem, whether uniqueness can be achieved by placing some stronger conditions on reflectors.

Main definitions and notation

In general we follow the standard definitions and notation used in mathematical analysis, it can be found, for example, in [3]. Here we only include
the definition of refiector, originally given in [5].
Definition 1 Let Y be a metric apace with distance $d, \neq X \subseteq Y$, and let $f \quad X \rightarrow Y \quad$ We call subset O of a metric apace X a reflector if the following two conditions are aatisfied:

1. $f(O) \subseteq X$, and
2. $\forall x \in X$, if $f(x) \& X$, then there exists $\forall \in O$ such that $d(x, f(x))=$ $d(x, y)+d(y, f(x))$.

Main results

Our first two theorems are generalizations of Theorems 1 and 2, obtained by using a generalized requirement of contractiveness (strong nonexpansiveness) proposed by A. Liepigd.

Theorem 3 Let Y be complete metric space with distance $d, \neq X \subseteq Y$, let X be a closed space, and let $f X \rightarrow Y$ be a mapping, such that there exists a reflector $O \subseteq X$ and mappings $A: Y \rightarrow P Y, \vartheta: P Y \rightarrow R$ which for some $q \in] 0,1[$ for all $x \in X$ satisfy the following properties:

1. $\varphi(A(f(x))) \leq q \varphi(A(x))$,
2. $d\left(x, \int(x)\right) \leq \varphi(A(x))$,
3. if $f(x) \notin X$, then exists $y \in O$ with $d(x, f(x))=d(x, y)+d(y, f(x))$ and $\varphi(A(y)) \leq \varphi(A(f(x)))$.

Then there exists $x^{*} \in X$, such that $f\left(x^{*}\right)=x^{*}, 0$
Proof. Let $x \in X$. We recursively construct a sequence $x_{0}, x_{1}, x_{2}, \ldots, x_{k}, \ldots$ as follows. We take $x_{0}=x$. Then, consecutively for all $i=0,1,2, \ldots$, we take $x_{i+1}=f\left(x_{i}\right)$, if $f\left(x_{i}\right) \in X$, and we take $x_{i+1}=y_{1}$, if $f\left(x_{i}\right) \notin X$. Here $y_{i} \in O$ and is such that $d\left(x_{i}, f\left(x_{i}\right)\right)=d\left(x_{i}, y_{i}\right)+d\left(y_{i}, f\left(x_{i}\right)\right)$ and $\varphi\left(A\left(y_{i}\right)\right) \leq \varphi\left(A\left(f\left(x_{i}\right)\right)\right)$ (auch y_{i} exists due to the thearem conditions, if there are several different choices for y_{i}, we arbitrarily choose one of them).

Now, we will prove that for all $; \in \mathbf{N}$, we have inequality

$$
d\left(x_{i+1}, x_{i+2}\right) \leq \mu p\left(A\left(x_{i}\right)\right)
$$

We have to consider four different casea, depending on whether $f\left(x_{i}\right) \in X$ and whether $f\left(x_{i+1}\right) \in X$.

Case $\mathcal{L} f\left(x_{i}\right) \in X$ and $f\left(x_{i+1}\right) \in X$.
In this case we have

$$
d\left(x_{i+1}, x_{i+1}\right)=d\left(x_{i+1}, f\left(x_{i+1}\right)\right) \leq \varphi\left(A\left(x_{i+1}\right)\right)=\varphi\left(A\left(f\left(x_{i}\right)\right)\right) \leq q \varphi\left(A\left(x_{i}\right)\right) .
$$

Hence, $d\left(x_{i+1}, x_{i+1}\right) \leq q \varphi\left(A\left(x_{i}\right)\right)$,
Case \& $f\left(x_{i}\right) \in X$ and $f\left(x_{i+1}\right) \notin X$.
In this case $d\left(x_{i+2}, f\left(x_{i+1}\right)\right)=d\left(x_{i+1}, x_{i+2}\right)+d\left(x_{i+2}, f\left(x_{i+1}\right)\right)$. Thus, $d\left(x_{i+1}, x_{i+2}\right) \leq d\left(x_{i+1}, f\left(x_{i+1}\right)\right)$, and, similerly as in Case 1 we have

$$
d\left(x_{i+1}, f\left(x_{i+1}\right)\right) \leq \varphi\left(A\left(x_{i+1}\right)\right)=\varphi\left(A\left(f\left(x_{i}\right)\right)\right) \leq \varphi \varphi\left(A\left(x_{i}\right)\right),
$$

therefore $d\left(x_{i+1}, x_{i+2}\right) \leq \boldsymbol{q \varphi}\left(A\left(x_{i}\right)\right)$.
Caec \& $f\left(x_{i}\right) \notin X$ and $f\left(x_{i+1}\right) \notin X$.
If $f\left(x_{i}\right) \& X$, then, by definition, $x_{i+1} \in O$, thue $f\left(x_{i+1}\right) \in X$. Therefore, Case 3 ie not posaible - there can not be two consecutive x_{i}, x_{1+1} with $f\left(x_{i}\right) \notin X$ and $f\left(x_{i+1}\right) \notin X$.

Case $1 . f\left(x_{i}\right) \notin X$ and $f\left(x_{i+1}\right) \in X$.
In this cave we have

$$
d\left(x_{i+1}, x_{i+2}\right) \leq \varphi\left(A\left(x_{i+1}\right)\right) \leq \varphi\left(A\left(f\left(x_{i}\right)\right)\right) \leq q \nu\left(A\left(x_{1}\right)\right) .
$$

Hence, $d\left(x_{i+1}, x_{i+2}\right) \leq \boldsymbol{q \varphi}\left(A\left(x_{i}\right)\right)$.
Thus, in all case we have $d\left(x_{i+1}, x_{i+2}\right) \leq q \varphi\left(A\left(x_{i}\right)\right)$. By induction we can show that for all $i \in N$ we have $\varphi\left(A\left(x_{i}\right)\right) \leq \boldsymbol{q}^{i} \subset\left(A\left(x_{0}\right)\right)$, i.e. that $\left\{x_{i}\right\}_{i \in N}$ is a Cauchy sequence. Since Y is complete and Y is cloeed, the sequence $\left\{x_{i}\right\}_{i \in N}$ convergen to $x^{*} \in X$. From bere it easily fallowe that $f\left(x^{*}\right)=x^{*} . \delta$

Theorem 4 Let Y be a metric space with distance $d, \forall \neq X \subseteq Y$, let X be a compact space, and let $f \quad X \rightarrow Y$ be a mapping, such that there erists a reflector $O \subseteq X$ and mappings $A \quad Y \rightarrow P Y, \varphi \quad P Y \rightarrow \mathbf{R}$ which for all $x \in X$ satisfy the following properties:
f. $\varphi(A(j(x)))<\varphi(A(x))$,
2. $d(x, f(x)) \leq \boldsymbol{p}(A(x))$,
S. if $f(x) \notin X$, then exists $y \in O$ with $d(x, f(x))=d(x, y)+d(y, f(x))$ and $\varphi(\Lambda(y)) \leq \varphi(\Lambda(f(x)))$,

1. $\forall \varepsilon \in \mathbf{R}_{+} \exists \delta \in \mathbf{R}_{+} \quad \forall y \in X d(x, y)<\delta \Longrightarrow|\varphi(A(x))-\nu(A(y))|<\varepsilon$

Then there exists $x^{*} \in X$, such that $f\left(x^{*}\right)=x^{*} . \diamond$
Proof. Since mapping φ is continuous (requirement 4) and X is compact there exists $x^{*} \in X$, such that for all $y \in X$ we have $\varphi\left(\lambda\left(x^{*}\right)\right) \leq$ $\varphi(A(y))$. We will show that necessarily $f\left(x^{*}\right)=x^{*}$
let assume that $f\left(r^{*}\right)=z \neq x^{*}$ lf $z \in X$, then, due to the requirement 1. $f^{(}(A(z))<\varphi\left(A\left(x^{*}\right)\right)$, which contradicts the choice of x°. If $z \notin X$, then there exists $y \in O$ with $d\left(r^{*}, z\right)=d\left(x^{*}, y\right)+d(y, z)$ and $p(A(y)) \leq \varphi(A(z))$. Hence, $\varphi(\Lambda(y)) \leq \varphi(A(z))<\varphi\left(A\left(x^{*}\right)\right)$, which again contradicts the choice of x^{*}. Therefore $f\left(x^{*}\right)=x^{*} . \diamond$

There are examplea that show that the requirements 3 in both theorems are esiential simply the existence of reflector $O \subseteq X$ is nut sufficient to guarantee the existence of fixed point, we must place some conditions that relates the values of ψ for $f(x) \notin X$ with the valuess of p for corresponding points from reflector. At the same time, probably it is possible to substitute our requircment 3 with some modified version of it.

The requirement 4 in Theorem 4 guarantecs that mapping φ is continuous, it is also cirar that some form of such requirement is necessary for the result to hold.

The next two results are similar generalizations of Theurems I and 2. However, here we use another generalized version of requirement of contraclivencss (atrong nonexpansiveness), which, by our opinion, more preciscly deycribes the situation. In this case we can also relax the requirements on reflector (at least for Theorem 5), and more conveniently to formulate them in terms of mapping φ.

Theorem 5 Let Y be a complete metric space with dislance $d, \neq X \subseteq Y$, let X be a closed space, and let $f \quad X \rightarrow Y$ be a mapping, such that there exists a set $O \subseteq X$, writh $f(O) \subseteq X$ and mappingo $A \quad Y^{2} \rightarrow P Y$, $\varphi: P Y \rightarrow \mathbf{R}$ which for some $q \in|0.1|$ for all $x, y \in X$ satisfy the following properties:

1. $\varphi(A(f(x), f(y))) \leq g \varphi(A(x, y))$,
2. $d(x, y) \leq \varphi(A(x, y))$,
3. if $f(x) \notin X$, then exists $z \in O$ with $d(z, f(x))+\varphi(A(x, z)) \leq$ $\varphi(A(x, f(x)))$.

Then there exists $x^{*} \in X$, such that $f\left(x^{*}\right)=x^{*} .0$
Proof. Let $x \in X$. Similarly as in prool of Theorem 3 we construct a sequence $\left\{x_{i}\right\}_{i \in N}$ and prove that for all $i \in \mathbf{N}$ we have inequality

$$
d\left(x_{i+1}, x_{i+2}\right) \leq \varphi \varphi\left(A\left(x_{i}, x_{i+1}\right)\right) .
$$

We have to consider four different cases, depending on whether $f\left(x_{i}\right) \in X$ and whether $f\left(x_{i+1}\right) \in X$.

Case $L f\left(x_{1}\right) \in X$ and $f\left(x_{1+1}\right) \in X$.
In this case we have

$$
d\left(x_{i+1}, x_{i+2}\right) \leq \varphi\left(A\left(x_{i+1}, x_{i+2}\right)\right)=\varphi\left(A\left(f\left(x_{i}\right), f\left(x_{i+1}\right)\right)\right) \leq \varphi \varphi\left(A\left(x_{i,} x_{i+1}\right)\right) .
$$

Hence, $d\left(x_{i+1}, x_{i+2}\right) \leq g \varphi\left(A\left(x_{i}, x_{i+1}\right)\right)$.
Case 2. $f\left(x_{i}\right) \in X$ and $f\left(x_{i+1}\right) \notin X$.
In this case $\varphi\left(A\left(x_{i+1}, x_{i+2}\right)\right)+d\left(x_{i+2}, \int\left(x_{i+1}\right)\right) \leq \varphi\left(A\left(x_{i+1}, f\left(x_{i+1}\right)\right)\right)$.
Hence, $d\left(x_{i+1}, x_{i+2}\right) \leq \varphi\left(\Lambda\left(x_{i+1}, x_{i+2}\right)\right) \leq \varphi\left(A\left(x_{i+1}, f\left(x_{i+1}\right)\right)\right) \leq$ $q\rangle\left(A\left(x_{i}, x_{i+1}\right)\right)$.
Case $\mathcal{P} f\left(x_{i}\right) \notin X$ and $f\left(x_{i+1}\right) \notin X$.
Similariy, as in proof of Theorern 3 we conclude that such case is not possible.
Case \&. $f\left(x_{i}\right) \notin X$ and $f\left(x_{i+1}\right) \in X$.
From the existence of reflector we have that

$$
\begin{aligned}
& d\left(x_{i+1}, x_{i+2}\right) \leq d\left(x_{i+1}, f\left(x_{i}\right)\right)+d\left(f\left(x_{i}\right), x_{i+2}\right) \leq d\left(x_{i+1}, f\left(x_{i}\right)\right)+ \\
& \varphi\left(A\left(f\left(x_{i}\right), f\left(x_{i+1}\right)\right)\right) \leq d\left(x_{i+1}, f\left(x_{i}\right)\right)+\varphi \varphi\left(A\left(x_{i}, x_{i+1}\right)\right) \leq \varphi\left(A\left(x_{i}, x_{i+1}\right)\right) . \\
& \text { Hence, } d\left(x_{i+1}, x_{i+2}\right) \leq q \varphi\left(A\left(x_{i}, x_{i+1}\right)\right) .
\end{aligned}
$$

Thus, in all cases we have $d\left(x_{i+1}, x_{i+2}\right) \leq q \nu\left(A\left(x_{i}\right)\right)$. Again, by induction we can show that for all $i \in N$ we have $\varphi\left(A\left(x_{i}\right)\right) \leq q^{i} \varphi\left(A\left(x_{0}\right)\right)$, i.e. that $\left\{x_{i}\right\}_{i \in N}$ is a Cauchy sequence. Since Y is complete and X is closed, the equence $\left(x_{i}\right)_{i \in N}$ converges to $x^{*} \in X$, from where $f\left(x^{*}\right)=x^{*} .0$

Theorem 6 Let Y be a metric apace with distance $d, \mathbb{X} \neq X \subseteq Y$, let X be - compact apace, and let $f: X \rightarrow Y$ be a mapping, such that therr existo a set $O \subseteq X$ with $f(O) \subseteq X$ and mappings $A \quad Y^{2} \rightarrow P Y, p \quad P Y \rightarrow \mathbf{R}$ which for all $x, y \in X$ satisfy the following properties:
d. $\varphi(A(f(x), f(y)))<\varphi(A(x, y))$,
2. $d(x, y) \leq \varphi(A(x, y))$,
9. if $f(x) \notin X$, then cxists $z \in O$ with $d(z, f(x))+\varphi(A(x, z)) \leq$ $\varphi(A(x, f(x)))$ and $\varphi(A(z, f(z)))<\varphi(A(x, z))$,
4. $\forall c \in \mathbf{R}_{+} \exists \delta \in \mathbf{R}_{+} \quad \forall v, w \in X d(x, v) \& d(y, w)<\delta \Longrightarrow \mid \varphi(A(x, y))-$ $\varphi(A(v, w)) \mid<\varepsilon$

Then there exists $x^{*} \in X$, such that $f\left(x^{*}\right)=x^{*} .0$
Proof. Let us define a function $g \quad X \rightarrow X$ by equalitiea $g(x)=f(x)$, if $f(x) \in X$ and $g(x)=z$, if $f(x) \notin X$ (where $z \in O$ is a point, which exists due to the requirement 3).

Similarly, as in proof of Theorem 4, we conclude that there exists $x^{*}, \in \boldsymbol{X}$, euch that for all $y \in X$ we have $\varphi\left(A\left(x^{*}, g\left(x^{*}\right)\right)\right) \leq \varphi(A(y, g(y)))$. We will show that necesearily $f\left(x^{*}\right)=x^{*}$.

Let assume that $f\left(x^{*}\right)=z \neq x^{*}$. If $z \in X$, then $\varphi(A(z, g(z)))=$ $\varphi\left(A(z, f(z))<\varphi\left(A\left(x^{*}, f\left(x^{*}\right)\right)\right)=\varphi\left(A\left(x^{*}, g\left(x^{*}\right)\right)\right)\right.$, which contradicta the choice of x^{*}. If $z \notin X$, then $g\left(x^{*}\right)=z^{\prime} \in X$, auch that $\varphi\left(A\left(x^{\prime}, g\left(z^{\prime}\right)\right)\right)=$ $\varphi\left(A\left(z^{\prime}, f\left(z^{\prime}\right)\right)\right)<\varphi\left(A\left(x^{*}, z^{\prime}\right)\right)=\varphi\left(A\left(x^{*}, g\left(x^{*}\right)\right)\right)$, which again contradicts the choice of x. Therefore $f\left(x^{*}\right)=x^{*}$. 0

References

[1] W.A. Kirk. An abstract fixed point theorem for nonexpansive niappinge. Proctedings of American Mathematical Society, 82:640 642, 1981.
[2] W.A Kirk. Fixed point theory for nonexpansive mappings. Lecture Notes in Mathematics, 886:484-505, 1981.
[3] A. Kolmogorov and S. Fomin. Elements of the theory of functions and functional anolysis. Nauke, 1980.
[1] A. Liepigá. A cradle-song for a little tiger on fixed points. Topological spares and their mappings, pages 61-69, 1983.
[5] D. Zabarovska and A. Liepinṡ. Mirrors and existence of fixed points for non-invariant mappings. Topological spaces and their mappings, pages 88. 92, 1989.

Daiga Grundmane. Neinvariantu attelojumu nekustigie punkti

Anotācija

Dotajā darbâ liek definēti divi jauni ampiedējattêlajumu vispãrinājumi. Sàdiem vispärinätiem saspiedējat tèlojumiem, izmantojot darbā [3] ieviesto apogula jêdzienu, tiek pierādïti Êdelsteina un Banalia teorēmu viapàrinäjumi neinvariantiem attêlojumiem (t.i., attēlojumiem, kuriem definicijas un vèrtību kopas var būt dajādas).

[^0]
CONSTRUCTION OF ALL EQUIVARIANT REALCOMPACT EXTENSIONS BY MEANS OF NETS

V.G. Jevatigneyev

Abstract

All equinrinat realcompact exteanion of a Tychonoff G-apace are constructed by meass of gets. AMS Sabject Clusification: 54D60

In [1] we developed a method allowing to conatrect all cormpact exteasiona of a Tychonoff apere by menn of neto. In [2] a aimilar method wha applied to conatract all realcompact extensions. Further, in [$\mathbf{y}]$ neto were used for conatraction el equivariant compactifications. Therefore, it aeema natural to conader the pomibilty to ase neto for conatrection of equivariant realeompart extensions of a Tychonoff opuce X on which a groap G cartingously acts.

Consider a elagr of fonetions $\not \neq S^{\circ} C C^{*}$ where C^{*} is the fanily of all real-valaed fuctione on a Tychonoff apaca X. A aet $\left\{x_{a}\right\} \subset X$ will be called an S°-met iff for every $f \in S^{*}$ there exiata $\lim f\left(x_{a}\right)$. In [2] it is proved that a Tychonof apare ir realeompart if every C^{*}-net in it converges. It follows from here that a apace in realcompset if every S°-net in it contain a convergent aubuet.

Given a topological groap G, a apace X is called a G-opece if G is continnoualy acting on X, i.e if there exista a continooas mapping $\varphi: G \times X \rightarrow X$ sach that $\varphi(e, x)=x, \varphi(h, \varphi(g, x))=$ $=\varphi(h \cdot g, x)$, where $x \in X, h, g \in G$ and θ is the anity of the groap G. We shall say that Y is an equivariat realcompact extersios, (or an equiveriant realcompactification) of a space X, if Y in a reaicompact apace contening X an a dense atheret and the given mapping $\varphi: G \times X \rightarrow X$ an be continuoualy extended to a mapping $\dot{\varphi}: G \times Y \rightarrow Y$ with the above mentioned propertien.

Theorem 1 Every equivarians realcompact entension Y of a G-apace X can be construsted δ_{y} means of nets.

Proof Consider a apace $Y_{S^{*}}$, whove pointa are S^{*}-neta in the apace X where $S^{*}=\{/ \mid X$ $\left.f \in C^{-}(Y)\right\}$. Two $S^{*} N$-netu $\left\{x_{o}\right\}$ and $\left\{x_{\rho}\right\}$ will be identified, if for every $f \in S^{*}$ it holde lim $f\left(x_{a}\right)=\lim f\left(x_{s}\right)$. Let Y_{s}. be endowed with a topalogy anch that a net $\left\{y_{0}\right\} \subset Y_{s^{-}}$converga
 $\lim _{7} f\left(x_{y}\right)$ where $y_{p}=\left\{x_{a},\right\}, y=\left\{x_{y}\right\}$ we $S^{*}-$ neta. We thall show that the equality $Y=Y_{s}$ hold.

If $y=\left\{x_{\alpha}\right\}$ is en S^{*}-net, then for every $f \in C^{*}(Y)$ there exiata lim $f\left(x_{a}\right)$ end, according to the characteristic property of real compact apaces, $\left\{x_{a}\right\}$ convergea in Y to a point y. The mapping $\left\{x_{\alpha}\right\} \Rightarrow y$ is a horneomorphinm from Y_{s} onto Y, which is identical on pointe of X.

We define an action of a groop G on 2 apace Y_{5}. by et!ting $g \cdot y=\left\{g\left(x_{s}\right)\right\}$ for a point $y=\left\{x_{a}\right\} \in$ Y_{5}. Since Y is equivariant, it follown that \& mappiag $y \rightarrow g y, \quad y \in Y$, is continvone for shy fixed $g \in G$. Hence, $g x_{\mathrm{a}}$ converges to $g \cdot y$ in Y and for any $f \in S^{\bullet}$ there exiata limo $f \cdot g\left(x_{*}\right)=f \cdot g y$. Therefort, $\left\{\rho x_{a}\right\}$ in an S^{*}-net. If $\left\{x_{a}\right\}$ and $\left\{x_{\beta}\right\}$ ere equivelent S^{*}-netn, then for every $f \in S^{*}$ the compoaition f ag belongs to S^{*}. Hence, limo $f\left(g\left(x_{\omega}\right)\right)=\lim f\left(g\left(x_{g}\right)\right)$ and the aetd ($g x_{a}$ \} and $\{g x p\}$ are aiso S^{*} - equivalest. Thir completes the proof of the theorem.

References

 (1970) 5160.
2. А.П. Шостак, Е-компантныс расширения топотонческвх просгранств,

3. В.Г. Евстнгнеев, квнвариантные бнкомпактнье расщирения и фунхцнональние
 Para. 1989. 62.65.
V. Jevṣtignejevs: Visu elvivariantu reâlkompaktu paplaşinājumu konstruč̌ana ar vispărinātăm virkiém.
Anotāclja. Tiek izstrādā̀ta metode, kas jauj konsıruêt dotajai G-tclpai X^{\prime} visus ekvivariantus paplasiniajumus ar vispárināatã: virknc̄m.
В.Г. Евстигнеев: Постросние всех эквивариантных вещественнокомпактньх распирений методом направленностей
Апнотадия.. Предлагәетея метод построекия воех вещестении хомпактных расширекий данного пространства с помопыо напраиенниостеа.

Chair of Mathematics
State Academy of Management (S. Ordzhenikidze GAU)
Ryazanski Prospekt 99
Moscow 109542
RUSSLA

ISOGEOMETRIC INTERPOLATION BY RATIONAL CUBIC SPLINES

Sergey Krivosheyev

Summary. The problem of interpolation by cubic rational splines with preserving of such geometrical properties as monotonieity and convexity is considered in this paper. We obtain sufficient conditions on parametrs of spline to provide the isogeometric interpolation. The recaived results are tested on examples.

AMS Subject Classification: 65007

0. Introduction.

In many practical situations it is necessery to approximate a function f with give,? values
$f_{1}=f\left(x_{1}\right)$
at interpulating points $x_{\text {, }}$ of a grid $\Delta: a=x_{0}<x_{1}<\ldots<x_{0}=b$ by splines with a similar gsometric stucture (see e. g. [2], [4], [5], [8], [9], [11], [12], [13], [14]). We dencie by
$\Delta_{1}=\frac{f_{1,1}-f_{1}}{h_{1}}, i=\overline{0, n-1}$
$\delta_{1}=\frac{\Delta_{1}-\Delta_{t-1}}{h_{t-1}+h_{1}} \quad i=\overline{1 n-1}$
the first and second divided differences (here $h_{1}=x_{i+1}-x_{i}, i=\overline{0, n-1}$). The Initial data are called increasing, if $\Delta_{1}>0$, and decreasing, if $\Delta_{1}>0$ for
$i=\overline{0, n-1}$. Increasing or decreasing data are called monotone. The initial data (1) are called convex, if $\delta_{1}<0$. and concave, if $\delta,>0$, for $i=\overline{1, n-1}$.

The problem of isogeometric interpolation consists of construation of an interpolational spline, which preserves monotonicity and convexity of initial deta. It is known (see [6], [7], [10]), that rational splines offer good possibilities for the solution of this problem. The present work is devoted to the study of geometrical properties of rational cubic splines, defined in [1]. The authors of [1] have introduced into a structure of a cubic spline parameters to operate the qualitativa behaviour of the received curve. The purpose of the present paper is to obtain sufficient conditions on parameters of rational cubic aplines from [1] to provide the isogeometric interpolation.

1. About rational cubic splines

By a rational cubic spline is called a function $s \in C^{2}[a, b]$, which on each interyal $\left[x_{1}, x_{1-1}\right]$ has a representation
$s(t)=A_{1} t+B_{1}(1-t)+\frac{C_{1} t^{3}}{1+p_{1}(1-t)}+\frac{D_{1}(1-t)^{3}}{1+p_{1} t}$
where $t=\frac{x-x_{1}}{h_{1}}$ and $-1<p_{1}, t=\overline{L n}$, are given numbers.
The rational cubic spline is an interpolation for a function $f:[a, b] \rightarrow R$. if $s\left(x_{1}\right)=f_{1}, i=\overline{0, n}$, where $\sqrt{f}=f\left(x_{1}\right)$.

To define an interpolation rational cubic spline uniquely we consider the following boundary condition:

$$
\begin{equation*}
s^{\prime}\left(x_{t}\right)=f ; \quad k=0, n . \tag{4}
\end{equation*}
$$

From the interpolation conditions (3) it follows, that $B_{1}+D_{1}=f_{1}$, $A_{1}+C_{i}=f_{t+1}$. Then
$s(t)=f_{i}(t-t)+f_{t+1} t+C_{1}\left(\frac{t^{\prime}}{1+p_{1}(1-t)}-t\right)+D_{1}\left(\frac{(1-t)^{\prime}}{1+p_{1} t}-(1-t)\right.$.
In [1] the construction of a rationsel cubic spline is rectuced to calculation of the values of the first order derivative at points x_{1}. Let us design $m_{1}=s^{\prime}\left(x_{1}\right)$, then
$C_{1}=\frac{-\left(3+p_{i}\right)\left(f_{i+1}-f_{i}\right)+h_{i} m_{1}+\left(2+p_{i}\right) h m_{i+1}}{\left(2+p_{i}\right)^{-1}-1}$.
$D_{1}=\frac{\left(3+p_{1}\right)\left(f_{t+1}-f_{1}\right)-h m_{2+1}-\left(2+p_{1}\right) h m_{i}}{\left(2+p_{1}\right)^{2}-1}$
For the calculation of m_{1} in [1] the system:

$$
\left\{\begin{array}{c}
m_{0}=f_{0}^{\prime} \tag{6}\\
\lambda_{1} P_{t-1} m_{1-1}+\left(\lambda_{1} P_{1-1}\left(2+p_{i-1}\right)+\mu_{1} P_{1}\left(2+p_{1}\right)\right) m_{1}+\mu_{1} P_{1} m_{11}=\quad i=\overline{1, n-1} \\
=\lambda_{1} P_{t-1}\left(3+p_{t-1}\right) \Delta_{t-1}+\mu_{1} P_{1}\left(3+p_{1}\right) \Delta_{1} \\
m_{N}=f_{N}^{\prime}
\end{array}\right.
$$

is given where $\lambda_{1}=h_{1}\left(h_{-1}+h_{1}\right)^{-1} \quad \mu_{1}=1-\lambda_{1} \quad P_{1}=\frac{3+3 p_{1}+p_{1}^{1}}{\left(2+p_{1}\right)^{2}-1}$
By'analogy, using $M_{1}=s^{\prime \prime}\left(x_{1}\right)$, we find

$$
\begin{aligned}
D_{i} & =\frac{M_{1} h_{1}^{2}}{2\left(p_{1}^{2}+3 p_{t}+3\right)}, \\
C_{t} & =\frac{M_{i-} h_{1}^{2}}{2\left(p_{1}^{2}+3 p_{t}+3\right)}
\end{aligned}
$$

For the calculation of M, we get the aystem

$$
\left\{\begin{array}{c}
\left(2+p_{0}\right) Q_{0} M_{0}+Q_{0} M_{1}=2 \frac{\Delta_{0}-f_{0}^{\prime}}{h_{4}} \tag{B}\\
\mu_{1} Q_{i-1} M_{t-1}+\left(\lambda, Q,\left(2+p_{0}\right)+\mu_{1} Q_{i-1}\left(2+p_{i-1}\right)\right) M_{1}+\lambda_{1} Q, M_{i+1}=2 \delta_{1}, \quad i=\overline{1, n-1}, \\
Q_{N-1} M_{N-1}+\left(2+p_{N-1}\right) Q_{N-Y} M_{N}=2 \frac{f_{N}^{\prime}-\Delta_{N-1}}{h_{N-1}}
\end{array}\right.
$$

where $Q_{1}=\frac{1}{p_{1}^{2}+3 p_{1}+3}$.
Existence and uniqueness of the solutions of the systems (6) and (8). are provided by the dominant main diagonal of the matrixes of those sysiems.

2. About the values of the derivatives of spline at the points of interpolation.

The study of the signs of the first and second order derivatives of an interpolation spline is reduced to the analysis of the sings of the derivatives at the interpolating points. This analysis is based on the following result [10].

Lemma 1. Let the coefficients of a system of linear algebraic equations
$\left\{\begin{array}{c}a_{0} z_{0}+b_{0} z_{1}=d_{0} \\ c_{1} z_{1-1}+a_{1} z_{1}+b_{1} z_{11}=d_{1}, \quad i=\overline{1, n-1} \\ c_{n} z_{n-1}+d_{n} z_{n}=d_{n}\end{array}\right.$
satisty the conditions
$a_{1}>0 . j=\overline{0, n} ; \quad c_{1} \geq 0, b_{1} \geq 0, a_{1}>b_{1}+c_{1}, \quad i=\overline{l_{1} n-1}$,
$b_{0}<\frac{a_{0} a_{1}}{c_{1}+b_{1}}, c_{n}<\frac{a_{n-1} a_{n}}{c_{n-1}+b_{n-1}}$
If $d_{1}-\frac{b_{1} d_{1,1}}{a_{1.1}}-\frac{c_{1} d_{11}}{a_{1,1}} \geq 0, \quad i=\overline{0, n}$,
(here $c_{0}=b_{n}=d_{-1}=d_{n-1}=0 ; a_{-1}=a_{n-1}=1$), then the system (9) is solvable and $z_{1} \geq 0, \quad i=\overline{0, n}$.

Similarly, if $d_{1}-\frac{b_{1} d_{1+1}}{a_{r+1}}-\frac{c, d_{1-1}}{a_{1-1}} \leq 0, \quad i=\overline{0, n}$ then the system (9) is solveble and $2, \leq 0$, for all $i=\overline{0, n}$

The following theorems contain the conditions on parameter p_{1} sufficient to preserve a sign of the derivatives of an interpolation spline at points.

Theorem 1. Let a rational cubic spline s (2), interpolates growing (decreasing) data and satisfy the boundary conditions (4) with $f_{i}^{\prime}, f_{n}^{\prime}>0$ ($f_{0}^{\prime}, f_{0}^{\prime}<0$). If
$p_{1} \geq \max \left\{\frac{\Delta_{t, 1}}{\Delta_{1}}-1, \frac{\Delta_{t-1}}{\Delta_{1}}-1\right\}, i=\overline{L, n-2}, \quad p_{0} \geq \frac{f_{i}^{\prime}}{\Delta_{t}}-3, \quad p_{z-1} \geq \frac{f_{n}^{\prime}}{\Delta_{0-1}}-3$
then $m_{1} \geq 0,\left(m_{i} \leq 0\right), i=\overline{\mathrm{Ln}-1}$.
Proof. For the proof we consider the case of growing data. By Lemma 1 the solution $m_{1}, i=\overline{0, n}$, of the system (6) is nonnegative, if for coefticients of this system the inequality (10) is true, that is

$$
\lambda_{1} P_{i-1}\left(3+p_{t-1}\right) \Delta_{i-1}+\mu_{1} P_{1}\left(3+p_{i}\right) \Delta_{i}-\frac{\mu_{1} P_{i}\left(\lambda_{i 1} P_{i}\left(3+p_{i}\right) \Delta_{t}+\mu_{t+1} P_{i-1}\left(3+p_{i+1}\right) \Delta_{t+1}\right)}{\lambda_{i+1} P_{1}\left(2+p_{i}\right)+\mu_{1+1} P_{1+1}\left(2+p_{i-1}\right)}-
$$

$$
-\frac{\lambda_{1} P_{t-1}\left(\lambda_{1,}, P_{t-1}\left(3+p_{t-1}\right) \Delta_{t-1}+\mu_{t-1} P_{i-1}\left(3+p_{t-1}\right) \Delta_{t-1}\right)}{\lambda_{t-1} P_{t-2}\left(2+P_{t-2}\right)+\mu_{i-1} P_{t-1}\left(2+p_{t-1}\right)} \geq 0
$$

We transform the last inequality as follows:
$\mu_{1} P_{1}\left(\left(3+p_{i}\right) \Delta_{1}-\frac{\lambda_{t+1} P_{i}\left(3+p_{1}\right) \Delta_{i}}{\lambda_{i-1} P_{i}\left(2+p_{i}\right)+\mu_{t+1} P_{n+1}\left(2+p_{i+1}\right)}-\frac{\mu_{i+1} P_{i+1}\left(3+p_{i+1}\right) \Delta_{i+1}}{\lambda_{i+1} P_{1}\left(2+P_{1}\right)+\mu_{i+1} P_{i+1}\left(2+p_{t+1}\right)}\right)+$
$+\lambda_{t} P_{t-1}\left(\left(3+p_{t-1}\right) \Delta_{t-1}-\frac{\lambda_{i-1} P_{i-1}\left(3+P_{t-2}\right) \Delta_{t-2}}{\lambda_{i-1} P_{t-2}\left(2+P_{t-2}\right)+\mu_{t-1} P_{t-1}\left(2+p_{t-1}\right)}-\frac{\left.\mu_{t-1} P_{t-1}\left(3+P_{i, 1}\right) \Delta_{t-1}\right)}{\lambda_{t-1} P_{1-2}\left(2+P_{t-1}\right)+\mu_{t-1} P_{t-1}\left(2+p_{t-1}\right)}\right) \geq 0$

Because of
$P_{1}>0$ and $\frac{\lambda_{i+1} P_{i}\left(3+p_{i}\right) \Delta_{i}}{\lambda_{i+1} P_{i}\left(2+p_{i}\right)+\mu_{i+1} P_{i-1}\left(2+p_{t+1}\right)} \leqslant \frac{3+p_{i}}{2+p_{1}} \Delta_{1}$.
it is enough to require

$$
\left\{\begin{aligned}
\left(3+p_{i}\right) \Delta_{i} & \geq \frac{3+p_{1}}{2+p_{1}} \Delta_{1}+\frac{3+p_{1-1}}{2+p_{1+1}} \Delta_{t+1} \\
\left(3+p_{1-1}\right) \Delta_{1-1} & \geq \frac{3+p_{1-2}}{2+p_{1-2}} \Delta_{1-2}+\frac{3+p_{1-1}}{2+p_{1-1}} \Delta_{1,1}
\end{aligned}\right.
$$

Taking into account, that $\frac{3+p_{1}}{2+p_{1}} \leq 2$ for $p_{1}>-1$, these inequalities will be valid if
$\left\{\begin{array}{cl}\left(3+p_{i}\right) \Delta_{,} & \geq 2\left(\Delta_{i}+\Delta_{t-1}\right) \\ \left(3+p_{t-1}\right) \Delta_{t-1} & \geq 2\left(\Delta_{i-2}+\Delta_{t-1}\right)\end{array}\right.$
or (in equivalent form)
$\left\{\begin{array}{l}p_{1} \geq \frac{\Delta_{t-1}}{\Delta_{1}}-1 \\ p_{1} \geq \frac{\Delta_{t-2}}{\Delta_{t-1}}-1\end{array}\right.$
Thus, by the conditions
$p_{1} \geq \max \left\{\frac{\Delta_{1+1}}{\Delta_{1}}-1, \frac{\Delta_{t-1}}{\Delta_{1}}-1\right\}, i=\overline{1, n-2}, \quad p_{0} \geq \frac{f_{0}^{\prime}}{\Delta_{1}}-3, \quad p_{n-1} \geq \frac{f_{1}^{\prime}}{\Delta_{-1}}-3$
we guarantee that $m_{1} \geq 0$, for all $i=\overline{0, n}$.
Theorem 2. Let a rational cubic spline s (2) interpolates convex downwards (upwards) deta (3) and satistys the boundary conditions (4). If
$p_{1} \geq \max \left\{\frac{\delta_{i+1}}{\mu_{m 1} \delta_{i}}-2, \frac{\delta_{1}}{\lambda, \delta_{i+1}}-2\right\}, i=\overline{1, n-2}$
$p_{0} \geq \frac{4\left(\Delta_{0}-f_{0}^{\prime}\right)}{h_{0} \delta_{1}}-2, p_{n-1} \geq \frac{4\left(f_{n}^{\prime}-\Delta_{n-1}\right)}{h_{n-1} \delta_{n-1}}-2$.
then $M_{1} \geq 0\left(M_{1} \leq 0\right)$, for all $i=\overline{0, n}$
Proof. In the proof we consider convex downwards deta. By Lemma 1 the solution $M_{1}, i=\overline{0, n}$ of the system (8) is nonnegative, if the coefficients of this system satisty the condition (10), that is

$$
2 \delta_{1}-\frac{2 \lambda_{0} Q_{i} \delta_{i+1}}{\lambda_{-1}\left(2+p_{i+1}\right) Q_{i+1}+\mu_{-1}\left(2+p_{i}\right) Q_{1}}-\frac{2 \mu_{\Omega} Q_{i-1} \delta_{t-1}}{\lambda_{-1}\left(2+p_{t-1}\right) Q_{t-1}+\mu_{-1}\left(2+p_{i-2}\right) Q_{t-1}} \geq 0 .
$$

Taking into account, that $\lambda_{1}+\mu_{1}=1$, we transform the last inequality

$$
\lambda_{0}\left(\delta_{1}-\frac{Q_{1} \delta_{i+1}}{\lambda_{-1}\left(2+p_{i+1}\right) Q_{i+1}+\mu_{m-1}\left(2+p_{i}\right) Q_{t}}\right)+\mu_{0}\left(\delta_{t}-\frac{Q_{r-1} \delta_{i-1}}{\lambda_{-1}\left(2+p_{r-1}\right) Q_{t-1}+\mu_{r-1}\left(2+p_{r-2}\right) Q_{i-1}}\right) \geq 0
$$

Because of
$Q_{1}>0$ and

$$
\frac{Q_{1} \delta_{l+1}}{\lambda_{a+1}\left(2+p_{i+1}\right) Q_{t+1}+\mu_{a+1}\left(2+p_{i}\right) Q_{1}} \leq \frac{2 \delta_{i+1}}{2+p_{1}} .
$$

it is enough to require
$\left\{\begin{array}{l}\delta_{i} \geq \frac{\delta_{1+1}}{\mu_{-1}\left(2+p_{1}\right)} \\ \delta_{1} \geq \frac{\delta_{t-1}}{\lambda_{-1}\left(2+p_{t-1}\right)}\end{array}\right.$
Those inequalities will be executed, if
$p_{1} \geq \max \left\{\frac{\delta_{i+1}}{\mu_{m-1} \delta_{1}}-2 \cdot \frac{\delta_{1}}{\lambda_{0} \delta_{n-1}}-2\right\}, i=\overline{1, n-2}$
$p_{0} \geq \frac{4\left(\Delta_{0}-f_{0}^{\prime}\right)}{h_{0} \delta_{1}}-2, p_{m-1} \geq \frac{4\left(f_{0}^{\prime}-\Delta_{n-1}\right)}{h_{m-1} \delta_{m-1}}-2$

3. Monotony and convexity of Interpolational rational splines.

Thooram 3. For a rational spline s (2)-(3)-(4) we have:

1) if $m, \geq 0$ and $M_{1} \geq 0$, the spline s is increasing and concave;
2) if $m_{1} \leq 0$ and $M_{1} \geq 0$, the spline s is decreasing and concave;
3) if $m, \geq 0$ and $M, \leq 0$, the spline s is increasing and convex;
4) if $m_{1} \leq 0$ and $M, \leq 0$, the spline s is decreasing and convex:

Proof. We prove only the first statement. If $M, \geq 0$, then $C, \geq 0$ and $D, \geq 0$ by virtue of (7). Taking into account, that for $t \in[0,1]$
$2 p_{t}^{2} t^{2}-6 p_{i}\left(1+p_{1}\right) t+6\left(1+p_{2}\right)^{2} \geq 0$,
$2 p_{1}^{2}(1-t)^{2}-6 p_{i}\left(1+p_{1}\right)(1-t)+6\left(1+p_{i}\right)^{2} \geq 0$
we receive $s^{\prime \prime} \geq 0$. It means, that the derivative s^{\prime} increases. Taking into account also that $m_{1} \geq 0$ we conctude that the spline s is increasing and concave.

The following final result (Theorem 4) is a corollary of the proven Thoorerns 1-3.

Theorem 4: Let a rational spline s (2)-(3)-(4) interpolates the increasing (decreasing) and convex (concave) date. If the paramefers p, satisty the conditions (11) and (12), then the spline s is increesing (decreasing) and convex (concere), too.

4. Examples.

We consider two test exemples:

1) $f_{1}(x)=1-\frac{e^{30 x}-e^{-x}}{e^{50}-e^{-\infty}}$.
2) $f_{1}(x)=1-\sqrt{x(2-x)}$

The interpolation cubic spline δ_{1} and the cubic rational spline. s_{4} for the function $f_{1}, k=1,2$ are constucted. The graphs of them you can see at the figures 1 and 2 comrespondingly.
a) the graph of the function f_{1} :
b) the oreph of the cubic spline δ_{1};
c) the graph of the rational cubic spline $s_{\mathbf{1}}$.
a)

b)

c)

Fig. $1 \quad f_{1}(x)=1-\frac{e^{50 x}-e^{-50 x}}{e^{50}-e^{-50}} \quad[a, b]=[0.4 ; 1], n=8$.
a)

b)

c)

Fig. 2. $f_{2}(x)=1-\sqrt{x(2-x)},[a, b]=[0.005 ; 1], n=7$.

Acknowfedgement The euthor would like to thank his advisor Dr. Math. S. Asmuss for her interest and guidance.

References.

1) Завьялов Ю. С..Квасов Б. И., Мирошниченко В. Л. Методы сплайн-фунцции-М., 1980.
2)Мирошниченко В. Л. Интерполяция функций с больциими градиентами //Методы аппроксимации и интерполяции. Новосибирск, 1980. -C.98-107.
2) Beatson R. K. Monotone and convex approximation by splines. error estimates and a curve fitting algorithm // SIAM J. Numer. Anal.-1982. -V.19, *W. -P.1278-1285.
3) Pagallo G., Pereya V. Smooth monotone spline interpolation // Numer. Anal.-1982.-V.909.-P 142-147
4) Schumaker L. On shape preserving quadratic spline interpolation "/ SLAM J. Numer. Anal.-1983 - V. 20-P 854-864.
5) Квасов Б.И. Интерполяция рациональными параболическими сплаймами// Численные методы механики сплоиной срады. Новосибирск, 1984. - Т. 15, №4. - С.60-70.
6) Квасов Б. И., Яценко С. А. Изогеометринескея иктерполяция рациональными сплайнами// Аппроксимация сплайнами-1987. - С. 1135.
7) Schmidt J., Hess W. Positive interpolation with rational quadratic splines // Computing.-1987.-V.38-P.261-267.
8) Schmidt J., Hess W. Positivity of cubic polynomials on intervals and positive spline interpolation // BIT.-1988.-V.28-P.340-352.
9) Назаренко H. A. Об изогеометрической имтөрпопяции обобщенными сппайнами/I Некоторые проблемы анализа и дифференциальной топологии. - Киев, 1988. - С. 64-69.
10) Morandi R., Costantini P. Piecewise monotone quadratic histosplines // SIAM J. Sci. Statist. Comput. -1989. -V10, \#2. -P.397-406.
11) Верлан И. И. Синтез положттельных приеых обобщенными пубмнесямми сплайнами// Мат. исслед - 1990. - Ne114. - С. 27-32.
12) Lahtinen A. Spape preserving interpolation by quadratic splines // J. Comput. end Appl. Math. -1990. -V.29, \#1. -C.15-24.
13) Lahtinen A. Positive Hermite interpolation by quadratic splines // SIAM J. Math. Anal.-1993, V.24-P.223-233.
С. Кривочеев, Изогеомнтриеская иттерполяиия ваииональными мбическими сплайнами.

Аннотация. 8 работе рассматриваетея задаиа интерполяции рационапьными кубшескими сплайнами с сохранением гөонетрических свойств исходных данных. Обоснован выбор параметров, обеспечивающий решение рессматриваемой задачи изогеометрической интерполяции. Предломенный алгоритм раализован на тестовых примерах.

УДK 517.
 splainiem.

Anotáciaa Darbā ir apskante uzdevums par izejas datu interpolēsanu ar monotonitătes un izliekuma ipastiou saglabasanu. Lai to atrisinatu,tika izmantoti racionallie kubiskie splaini. DarbA ir pamatota aplaina parametru izvele, kas nodrosina izogeometrisko interpoléciju. Pieda̋vatais algoritme ir realizäta un izmêginăts testa uzdevumos.

Department of Mathematica
University of Latvia
Rainis bivd., 19
Riga LV-1586
LATVA

Latvijas Universitātes Zinātniskic Raksti, 606 (1997). Matemãtika

On existence of a solution to the boundary value problem for functional-differential equation

V.PonomareV

Summary. Condition for the existence of a solution to a houndary value problem for functional-differential equation are given.

MSC 34 K 10

Consider boundary value problems

$$
\begin{array}{r}
x^{\prime}=F x+F_{0} x, \\
L \varepsilon=r_{1} \tag{2}
\end{array}
$$

$$
\begin{array}{r}
x^{\prime}=F x, \\
L x=0, \tag{1}
\end{array}
$$

whace $F, F_{0} \quad A C\left(I, R^{n}\right) \rightarrow \mathcal{L}\left(I, R^{n}\right), L \quad A C\left(I, R^{m}\right) \rightarrow \boldsymbol{R}^{m}, r \in R^{n}, n \in$ $\{1,2, \ldots\}, I=\left[a, b \mid,-\infty<a<b<\infty, A C\left(I, H^{2}\right)\right.$ the space of absolutely continuous functions $x \quad \boldsymbol{I} \rightarrow \boldsymbol{K}^{n}$ with a norm

$$
\|x\|=|x(a)|+\int_{a}^{b}\left|x^{\prime}(s)\right| d s,
$$

$L(I, R)$ the space of Lebesque-integrable functions $y \quad I \rightarrow R^{\text {n }}$ with a norm

$$
\|y\|=\int_{a}^{b}|y(s)| d s,
$$

where $|x|=\operatorname{mar}\{|x|:, i \in\{1,2, \ldots, n\}\} \quad$ the norm in K^{n}.
I. We suppose in the sequil that the 8 VP has a unique solution, the trivial une.

Solutions of the problem (1), (2); (3), (4) are identical with solutions of the equations

$$
x(l)=\int_{a}^{1}\left(F_{x}\right)(s) d s+\int_{a}^{1}\left(F_{0} x\right)(s) d s+L_{x}+x(a)-r_{0}
$$

$$
x(t)=\int_{a}^{t}(F x)(s) d s+L x+x(a)
$$

respectively.
Define the operators $B, B_{0} \quad A C\left(I, R^{m}\right) \rightarrow A C\left(I, R^{m}\right), A \quad[0,1] \times$ $A C\left(I, R^{n}\right) \rightarrow A C\left(I, R^{n}\right)$ as follows:

$$
\begin{gathered}
(B x)(t)=\int_{0}^{t}(F x)(s) d s+L x+x(a), \\
\left(B_{0} x\right)(t)=\int_{0}^{1}(F x)(s) d s-r \\
A(\lambda, x)=B x+\lambda B_{0} x .
\end{gathered}
$$

The problem (3), (4) can be writtell as

$$
x=B x,
$$

and the problem $(1,2)$ as

$$
x=B x+B_{0} x
$$

Frat we show that there existy $\mu \in(1, \infty)$ such that for any solution v of the equation

$$
\begin{equation*}
x=A(\lambda, x), \quad 0 \leq \lambda \leq 1 \tag{5}
\end{equation*}
$$

an estimate

$$
\begin{equation*}
\|v\|_{A C} \leq \mu \lambda\left\|B_{a} v\right\|_{A C} \tag{6}
\end{equation*}
$$

is valid.
Suppose the contrary is true. Then one can find a sequence $v_{n}, n=1,2, \ldots$ of nontrivial solution of the equation (5), and $\lambda_{n}, n=1,2, \ldots$ surh that

$$
\left\|v_{n}\right\|_{A C}>n \lambda_{n}\left\|B_{0} v_{n}\right\|_{A C} .
$$

or

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lambda_{n}\left\|B_{0} v_{n}\right\|_{A C}}{\left\|v_{n}\right\|_{A L}} \leq \lim _{n \rightarrow \infty} \frac{1}{n}=0 . \tag{7}
\end{equation*}
$$

II. Suppose that the operators B and B_{0} are completely continuous, and B is also homogeneous.

The equation (5) implies

$$
\frac{v_{n}}{\left\|v_{n}\right\|_{A C}}=\frac{B v_{n}}{\left\|\dot{o}_{n}\right\|_{A C}}+\frac{\lambda_{n} B_{0} v_{n}}{\left\|v_{n}\right\|_{A C}},
$$

and, letting $v_{n}^{-}=\frac{v_{0}}{v_{0} \|_{A c}}, n=1,2, \ldots$, one obtains

$$
\begin{equation*}
v_{n}^{-}=B v_{n}^{-}+\frac{\lambda_{n} B_{0} v_{n}}{\left\|v_{n}\right\|_{A C}} . \tag{8}
\end{equation*}
$$

Since B is completely continuous, it mapa the bounded eet

$$
\left\{v_{n}^{-}: v_{n}^{-}=\frac{v_{n}}{\left\|v_{n}\right\|_{A C}}, n=\{1,2, \ldots\}\right\}
$$

into compact. Hence one can choose a subeequence $v_{n,}^{*}, k=1,2, \ldots$. from the sequence $v_{n}^{-}, n=1,2, \ldots$, which converges to $v_{0} \in A C\left(J, R^{n}\right)$, and $\left\|v_{0}\right\|_{A C}=1$.

Passing to the limit in (8), we have $v_{0}=B v_{0}$, in view of (7), which contradicts the uniqueness of a solution to the problem (3), (4).

We prove now an a priori estimate.
III. Suppose that the inequality

$$
\left\|B_{0} x\right\|_{A C} \leq f_{0}+k\|x\|_{A C},
$$

is true, where $f_{0}, k \in[0, \infty)$.
Then we get from (6) that

$$
\|v\|_{A C} \leq \mu \lambda\left\|B_{0} v\right\| \leq \mu \lambda f_{0}+\mu \lambda k\|v\|_{A C} \leq \mu \lambda f_{0}+\mu \lambda(k+1)\|v\|_{A C} .
$$

Hence

$$
\|v\|_{A C} \leq \frac{\mu \lambda \lambda_{0}}{(1-\mu \lambda)(k+1)} .
$$

IV. Let for some $k_{0} \in(0, \infty)$ such that.

$$
k_{0}>\frac{\mu \lambda f_{0}}{(1-\mu \lambda)(k+1)}
$$

the condition

$$
\|B x\|_{A C} \leq k_{0}, \quad\|x\|_{A C}=k_{0}
$$

be fulfilled.
We get now the existence of a solution to the problem, by application of the method of Leray-Schauder (cfr. [1], v.5.37.6, p.298).

Thun, a theorem is proved.
Theorem. 1 Let conditions I-IV hold. Then there existe a solution to the problem (1), (2).

Remart. This note sharpens the reaulta in [2] and generalizes the results ia [3].

Список литературы

[1] Красногельский М.А. Забргя̆ко П.П. Геометрические методи нелинейного аналица. М.: Наука, 1975.
[2] Пономарея В.Д. Существование решетий хрмевой задачи дтв фуикииопально-дифференциаาьного уравнения первого пордака // Latv.Univ.Zinàtn.Raksti. Matemātika. Diferenciávienādojumi, - 1994. V.593. 50.-53.lpp.
[3] Krakowiak A. On the existence of solution of homogeneous boundary value problem for ordinary differential equation // Zezs.nauk.U.J.Acta math. 1987. N 26 . P.179-181.

Institute of Mathematics
and Computer Science, Latvian University
Rainis blvd. 29
LV-1459, Riga

ІІономарев В.Д. Суцествование решения єряевой зядачи для фуикционилилодифференцнального уравненвп.

Даютея условвя существованвя решения для мраевої задачи для функиионально-дифференциального уравнсвмп.

УДК 517.985
V.Ponornareva. Funkcionála diferenciālvienādojuma robě̂problénas atriainajuma eksistence.

AnotEicija. Tiek doti atrisinäjuma eksistencea noancijumi funkcionāla diferenciälvienādojuma robềproblēmai.

Latvijas Universitātes Zinātoiskic Raksti, 606 (1997). Matemātika

ON \times - -COMPACT SPACES

A. Sinadiore

SETIIURY Iy a $\cdot \mathbf{B - c o m p a c t ~ s p a c e ~ w e ~ c a l l ~ a ~ i m p o l o g i c a l ~ s p a c e ~ c a c h ~ c o w e r ~ o f ~}$ which try open sets with houndaries. whose carchnalities are less than or cyual to some
 properties of aH-compaci spaces and some relations of these spaces to other classes of topological spkes.

Kl:Y WORDS: compaciness, x13-compactness. Hib-compactness. clpcompactness. I lausdorliness. к 13 - 1 lausdortliness, FB - l lausdorthess. 1991 MSC 54D30. 54D20. S4へ25

This work is one in a series of papers where we study compactness tepe topological properties which are delined by special open covers. Namely, here we are interested in thrise spaces cach cover of which. consisting of open sels with bubadiaries whose cardinalities do oot eveed :

 space isee the article $|+|$. We stody also spaces each apen cover of which
 such spaces will be called limtelenudan compact or Pls-compact for short.

We cumsider also the concept of the so cialled κ R 3 -llausdarffiness which in the context of klj-compact spaces plays a role similar to the role of T_{2} : yates in the dassic thens of compact spaces. Bestedes ae mention here
 compactacs.

I . BASIC PROPERTIES OF кB-COMPACT SPACES

Giren a set A in a topological space X. let $\gamma_{: i}(A)$ or just $X(1)$ denote the corresponding boundary:
(1.1) Definition. A topological space X is called k b-compact if esery its cover $\left\{U_{i}: 1 \in I\right.$, . all elements of which are open sets such that ${ }^{\prime} \gamma_{i}\left(l_{i}, X \leq\right.$ K. contains a finite subcover. A topological space K is called FB-compact if every its open cover consisting of sets with finite boundanes contains a finite subcover.

In a natural way concepts of kB-countably compact, FB-countably compact. kB -lindelöt. FH-L indelal. cte. can be introduced.

The following assertion shows some obvious relations of the introduced notions to other classes of topological spaces.
(1.2) Assertion. Vivery conpact space is Fil3-compact and k l3-cumpact
 Even k B-compact space for any cardinal x is FB-compact and every Fl3compact space is clp-ccimpact.

No uppositc implication holds:
(1.3) Example. If x c. then the plane R^{2} is a non-compact FBcompact space but fails to be N, B-compact. On the other hand the real line R is not even $F B$-compact. Furthermore. given two cardinals x_{1} and x_{2} such that $x_{1}{ }^{-} k_{2}$ one can construct a $x_{1} B$-compact space which tails to be $k_{2} R$ compact.

From the definition one can imagine that there exists a certain analogy in the behaviour of compactness, $\dot{F} B$-cumpactness and kH -compactness in different siluations. We shall say more atout this in the sequel. We start with one condtion when kl3-compacincss and compaciness become equisalent.
(1.4) Assertion. If every point x of a space X has a base $\psi-\left\{U_{i}: t \in I\right\}$. all elements of which are open sets such that $y_{i}\left(U_{i}\right) \leq \boldsymbol{k}$ $\left(\mid \gamma_{x}(U)<,\kappa_{0}\right)$, then the space X is $\times B$-compact (resp. FB-compact) iff it is compact.
(1.5) Example. The metric hadgehog $\mathrm{J}_{\sigma} . \sigma<\mathfrak{N}_{\text {o }}$ is a compact space. If $\sigma \geq \mathrm{K}_{v}$ then the hedgehog J_{σ} is not compact and is not kB -compact for $\kappa<\mathrm{N}_{\infty}$ but it renains an FB-compact space. Observe that for any σ for every point of hedgehog J_{σ} there exists a base of open subsets with boundaries whose cardinalitics do not exceed σ.
(1.6) Example. For evere σ the quotient hedgelog J_{O} is a FB-compact space, but if $\sigma \geq \mathcal{K}_{0}$. . this space is not kB -compact for $\mathrm{k} \geq \mathrm{K}_{\text {c. }}$.

Generalising this example we conce to a more general construction allowing to get new KB -compact and FB -compact spaces from old ones.
(1.7) Construction Let $x_{a} . \alpha \in d$ (where A is a Ginite set) be kB compact spaces and assume that in each space X_{a} there exists a point $x_{a}^{o} \in X_{\alpha}$ having a neighbourloud U_{α} such that $\left.\left.\right|_{X_{s}}{ }_{a} U_{a}\right)^{\prime} \leq x$. Let $Z=\oplus x_{a}$ ' denote the quotient space under equivalence relation $x_{\alpha}^{o} \sim x_{\beta}^{O}$ for each α, β e. 4 . The space Z is also $\times 1 B$-compact. In case of FB -compact spaces the same construction leads to an FB-compact space for any index set A.
(1.8) Pruposition. A lopological space X is countably compact iff it is countably $\mathrm{N}_{\mathrm{J}} \mathrm{B}$-compact.

Proot. Assume. on the contrary, that X is countably $N_{0} B$-compact but fails to be countably compact. Then there exists a countable closed discrele set $A=\left\{u_{i} i=1,2 \ldots\right\}$. Iet ins construct new sets $U_{i}=X \backslash\left\{a_{i j} j=1 \geq i\right\}$ for $i=1.2 \ldots$. It is clear, that these new sets are open with countable boundaries and mate a countable cover of X which has no linite subcovers.

On the other hand a countably compact space is countably $\mathbb{N}_{0} \mathrm{~B}$ compact.

It is natural to call a subset . of a space.$l \mathrm{kll}$-compact if each cover il $i \in l$; of M.all elements of which are open sets in the space X with $\mid \gamma_{\mathrm{s}^{(}}\left(C, \|_{i} \mid \leq \mathrm{x}\right.$. has a finite subcover in a similar way one can deline FBcompact subsets.
(1.9) Proposition. For any cardinal $\mathrm{\kappa}$ if a topological space X is kB compact (FB-compact) and $1 /$ is its closed subset such that ($1 / y \leq x$ (resp.

Prong can be easily done pallenied after its classical analogue.
(1.10) Proposition. If I/ is a $\times B$-compact (FB-compact) subspace of X then 11 is also a $k \cdot 3$-compact (resp. FB-compact) subset of X.

Prowf follows from the aext easily veriliable lemma.
(1.11) Iemma. If H is the subspace of I and $A \subset Y$ then $\prime(i)$
$\prime$$(A \cap f)$
(1.12) Proposition. 1 linite union of $\times \mathrm{B}$-compact (PB -compact) subsets of a given space λ^{λ} is a x ${ }^{\text {b }}$-compact (rexp. FB -compact) subset.

Recall that a system dicie $\left\{^{i}: i \in I\right.$ is said to have a finite intersection property if even finite iatersection of sets from is mentempr: i. e

(1.13) Proposition. A topological space is $\times \mathrm{H}$-compact iresp. FB(compact) if and only if every sustem $1=\{\{; i \in l\}$. all eiements of which are closed sets such that $\left|, r\left(l_{i}\right)\right| \leq K$ (resp. $\left.\left|r\left(i_{i}^{\prime}\right)\right|-N_{,}\right)$, which has the tinite intersection property has the non-empty intersection.

Proof. Since the boundary of a set E ' in the space I coincides with the boundary of its compicmemt $\tilde{I}^{\top} U$ this propnsition can be proved similarly as the classical characterisation of compactness by systems of closed sets with finite intersection property.

Since the boundary of the intersection of two sets is contained in the union, of boundaries of these sets one can easily get the following modification of the previous proposition:
(1.14) Proposition. Λ topological space is kB -compact (resp. FBconpact) iff every system $-\{[i, i \in I\}$ oi its non-emply closed subsets having $y(l,) \leq \kappa$ (resp. $\gamma\left(l, \alpha_{0}\right)$ which is invariant under linite intersections. has non-empty intersection.
(1.15) Proposition. Let γ be a continuous image of a κ-compact (FB-compact) space I under a mapping f such thut $f^{\prime}(9)$ in (resp. $!f^{-1}(y) \mathcal{N}_{0}$) for each point $y \in Y$, then Y is κB-compact (resp. $F B-c o m p a c t$). too.

Proof. Notice firstly that $f^{\prime}\left(b^{\prime}\right) f^{\prime}\left(r^{\prime}\right) \in f^{\prime}\left(\sigma^{\prime} \cdot{ }^{\prime}\right)$ hir even subset V^{\prime} ol Y Therefore. under assumption of the pruphesition the preimage of any subsel I
 cardinality de not exceed x.

Now the prome of the propxsition can tre eusily done patterned after the proofor its classical pentety pe.
(1.16) Proposition. If a tupokgical space 1 is kl3-compact (FBcompact) and f is a mappong trom a space f imb f with the following propertics:
(1) f is cloeed and open;
(2) for every point $y \in Y$ the praimage $f^{-1}(y)$ is a $k B$-compact (resp. FB-compact) subsel of X_{i}
then the apace X is $k B$-compact (reap. $F B$-compact), too.
Prool. Notice fintly that ance f in a closed and open mapping it hoide

$$
\overline{f(U)} \backslash I n t f(U)=f(0) \backslash I n t f(U) \subset f(0 \backslash I n t U)
$$

for every aubect \bar{O} of X. Let $U=\left\{U_{i} \quad i \in I\right\}$ be a aysiem of nonempty closed subecte of X such that $\left|\gamma_{x}\left(U_{i}\right)\right| \leq k \neq 0$.

Let $f(U)=\left\{f\left(U_{i}\right) \cdot U_{i} \in i\right\}$. Then obviously $f(U)$ is a system of closed subsets of Y such that also $\left|\gamma_{Y} f\left(U_{i}\right)\right| \leq \mathrm{x}$, and $\mathrm{f}(1)$ has the finite intersection property. Therefore $\cap \mathcal{R}) \neq \boldsymbol{\varnothing}$.

Then there exists a point $y_{0} \in \cap l(i)$. Heace for each $i \in l$: $f^{-1}\left(y_{0}\right) \cap U_{i} \neq \varnothing$. Taking in account hal $i z$ is invariant under finite
 there exists also a point $x \in \cap\left\{f^{-1}(y, i) \cap U, i \in J\right\} \subset \cap$.

The case of FB-compact situation can be proved in a similar way.
As we can see in the paper [4] the property of cip-compactucss is not multiplicative. We obtained some positive results about products of кB-compact spaces in special situations (see Propositions (1.18) and (1.19)). We start with the following lemma:
(1.17) Lemma. If X is locally connected, $A \subset X \times Y$ is a closed subset with compact boundary and p is the projection $p: X^{\prime} \times Y \cdots, \lambda$, then $p\left(\gamma_{x \times r}(A)\right) \supset \gamma_{x}(p(A))$.

Proof. Let $a \in \gamma_{Y}(p(A)), a \notin p\left(\gamma_{x, Y}(A)\right)$ and take n connected neighbourhood U_{a} of a in X. Further, let ${ }^{\prime} \quad=U_{0} \times Y$ and $Y_{s}=\{a\} \times Y$ Since $a \neq p\left(\gamma_{x \times Y}(A)\right)$ it follows that $Y_{.} \cap A=\varnothing$ Since $a \in \gamma_{X}(p(A))$ it follows that $U_{:}^{\prime} \cap A \neq \varnothing$. Choose a point $\left(x_{0}, y_{0}\right) \in U_{0}^{\prime} \cap-1$. Moreover, since $\gamma_{X, Y}(A)$ is compact this point can be chosen in such a way that $y_{0} \notin p_{\gamma}\left(\gamma_{x, y}(A)\right)$

Now let $Z=\left(X \times\left\{y_{0}\right\}\right)$ V $]_{0}^{\prime}$ and W A \dot{U}. From the construction it is clear, that Z is connected, W is a clopen set in Z (since $\left.\gamma_{z}(A \cap L)=\varnothing\right)$, $\left(a ; y_{0}\right) \notin W$ and $\left(x_{n} ; y_{0}\right) \in W$ The oblained contradiction completics the proof.
(1.18) Proposition. If X is a locally connected FB-compact T_{1} space, Y is a FB-compact T_{1}-space then the product $X_{\lambda} Y$ is $I B$-compact.

Proof. I et $-\left\{\|_{1}: i \in I\right\}$ be a system of non-emply closed subsets of $X_{\star} Y$ with tinite boundaries which is invariant under finite intersections.

Let $f=\left\{\overline{p\left(U_{i}\right)}, U_{1} \in U\right\}$ where p is the projection $p: X \times Y \rightarrow X$. From Lemms 1.17 follows that $\overline{p\left(\gamma_{x \times \gamma}\left(U_{i}\right)\right)} \supset \gamma_{x}\left(\rho\left(U_{i}\right)\right)$ and taking into account that obviously $\gamma_{x}(A) \subset \gamma_{x}(A)$ for every set A and that $\gamma_{X \times Y}\left(p\left(U_{i}\right)\right)$ is finitc, it
 closed sets with finite boundaries in \boldsymbol{X} satisfying the finite intersection property. Since X is FB-compact $\cap \overline{p\left(V_{t}\right)} \neq \varnothing$. i. c. there exists a point $x_{0} \in \subseteq \overline{D\left(U_{0}\right)}$; let $Y_{0}=\left\{x_{0}\right\} \times Y$

Further, let $\vartheta=\left\{U_{i} \cap Y_{0}: U_{i} \in U\right\}$. It is easy to note that y is a system of non-empty closed sets in Y_{0} with finite boundaries and which is invarisnt under finite intersections. Since Y_{s} is homeomorphic to Y, it is FB-compact and bence $\cap \hat{V} \neq \varnothing$. Let $y_{0} \in \cap\left\{V_{i}, V_{i} \in V\right\}$. It is clear that the point $\left(x_{0} ; y_{0}\right) \in \cap\left(U_{i}: U_{1} \in U\right) \neq \varnothing$ and bence by Proposition 1.14. $X \times Y$ is FB-compact.

The proof of this proposition can not be extended to the case of kB compactness for $\kappa \geq \aleph_{0}$ bccause we can not maintain that sets of the system Q have finite boundaries.
(1.19) Proposition. The product of compact and a xB -compact (FBcompact) space is kB -compact for every x (resp. FB-compact).

Proof. Assume that X is a compact space and Y is a $\times B$-compact space for some cardinal k. Then the projection $p_{y}: X X Y \rightarrow Y$ being a projection along a compact space is a closed mapping. Besides, all preimages of points under it arc bomeomorphic to the compact space \boldsymbol{X}. Now the conclusion follows directly from Proposition 1.16.

2. xB-SF,PARATION PROPERTIES

In this section we examine the modified separation properties: $\mathbf{x B}$ $\mathrm{T}_{1}, \mathrm{kB}-\mathrm{T}_{2}, \times \mathrm{B}$-regular and xB -normal spaces.
(2.1) Definition. A topological space is called $\kappa B-T_{1}$ if for any two different points x and y there exist open neighbourhoods $A_{x}\left(y \in A_{x}\right)$ or B_{y} ($\mathrm{x} \in B_{y}$) of these points with conditions that $\left|\gamma_{x}\left(A_{x}\right)\right| \leq x$ and $\left|\gamma_{x}\left(B_{y}\right)\right| \leq k$.

One can cusily see that kl3-T, and T_{1} ate equal concepts. Nevertheless we imtrobluced this concept for the sake of completeness of our scheme. In particular in I'roposition 1.18 we could use kB- T_{1} instead of T_{1}
(2.2) Definition. A topological space X is called $\times 13$-llatisolorit (FB Hansdorf) if for any two different points x and y there exist disjoint open neighbourhords A_{1} and B, of these peints with conditions that $\gamma_{x}\left(A_{A}\right) \leq k$

It is clear that enery kl3-1lansdorfl space is Itausdorff. A llausdorff space is not alwa's kB 3 -llausdortt (for example. a plane is not NB - T lausdorff if $\mathrm{x} \cdot \mathrm{c}$). Obviously. kl3-Hausidortiness is hereditan: but fails to be multiplicative (a plane is a proslact of a real line which is an Nob-Hansdortf space, and eren (B-Hausdurn?).
(2.3) Example. We can remark that both hedgehngs I_{σ} (see (1.5) and

(2.4) Proposition. A κ B-compact (resp. I'3-compact) subset of a κ BHausdorll (resp. IB-I lausdortl) space is closed.

Proof. We consider the case of $\mathrm{k} / 3$-situation. het .t be a xl3-compact subset of a $\times B$-llausdorf space I and let $x \in 1$. By kB -I lausiorlfiness of X in this space for cach point y e.f there exists an open neighbourhond l, such that $\left|\gamma_{x}\left(l_{y}\right)\right| \leq x$ and an upen neighlourhond $i ;$ for a point x such that $\left|y_{x}\left(I_{i}^{r}\right)\right| \leq \kappa$ with $\operatorname{li}_{y} \cap r_{i}^{\prime}=\varnothing$
 subset A and all elements of this cover have boundances of restricted cardinality in A. Therefore one can chexse a linte subsover $\left\{j_{n_{s}}, i=1 \ldots, n\right\}$

Let I be the intersection of corresponding system $\left\{I_{i}^{\prime \prime}, i=1, . ., n\right\}$ Clear, that I_{0}^{\prime} is an open neighbourhood if x and this set does not intersect with the union of the system $\left\{l^{\prime}, \cdot i=1, \ldots, n\right\}$ and moreoner with the sel A. As a result for each x e. 1 there exists an open set t : whech contains x but does not intersect A. i. e. A is a closed set of.l.
(2.5) Definition. A topulogical space is called k B-regular if for esery point x and a closed set $1 /$ such that $: ~ \%(1 / y \leq k$ and $r \in 1 /$ there exist disjoint

As lor cip-situation (see [5]) we cin extend the notion of a nomality to kB -sittation. (10).
(2.6) Definition. A topological spate is called xil-normal if every pair of disjoint closed sets A and B such that $y(A) \leq \kappa$ and $y(B) \leq \kappa$ can he scparated by disjoint open neighbourhoms l_{μ} and U_{s} such that $y\left(U_{A}\right) \leq \kappa$ and $\gamma\left(L_{i}, j \leq k\right.$.

Just in the same way FB-regularity and FB -normalit! are delined.
 propositions simitar to the classucal cance.
(2.7) Pruposition. I.et Y^{\prime} be an apen aubsel ot a кll-regular (resp. IB3-
 there exists an upen neighbourhond $1:$ in I such that ISk (resp.

 x. Then Y^{Y} is, elosed set and in a wild-regular space we can separate and If with apen neightmonhouds 1 and I with mumdaties ol reviricted

the waters proposition alow is iedit. Buanse the boundars of the clasure of a cot 1 comtaned an the houndary of the set

Proof. Let M and N be disjoint closed sets in a x H-compact space X such that $\left|\gamma_{x}(M)\right| \leq \kappa$ and $\left|\gamma_{x}(N)\right| \leq \kappa$. From Proposition 1.9 it follows that M and N are кB-compact subsets. Then from the proof of Proposition 2.4 we can conclude that for each point $y \in N$ there exists an upen set $U_{\text {, }}$ containing the set M with $\mid \gamma_{x}\left(U_{y}\right)_{1}^{\prime} \leq \mathrm{x}$ and an open acighbourhood V_{y} of the point y such that $\left|\gamma_{x}(V),\right| \leq \kappa$, that $U_{y} \cap V_{y}=\varnothing$.

Obviously the system $\left\{V_{y}: y \in N\right\}$ is an open cover of the set N wbose elements are open sets such that $\mid \gamma_{X}\left(V_{y}\right) \leq x$ in the space X. Thercfore we can choose the finite subcover $\left\{V_{y_{i}}: i=1, \ldots, n\right\}$ of N.

Now, let $V=\cup\left\{V_{y_{i}}: i=1, \ldots, n\right\}$ and $U=\cap\left\{U_{n}: i=1, \ldots, n\right\}$. The sets V and U are open disjoint neighbourhoods of the given sets M and N with boundarics of restricted cardinality and therefore X is a kB -nornal space.

The case of IFB-compact concept can be proved in a similar way.
As a kB-Hausdorff space is also a $\mathrm{kB}-\mathrm{T}_{\text {, }}$ space then from the previous proposition follows imnediately the aext:
(2.9) Proposition. A $\mathbf{x [3 - H a n s d o r f f} \times[3$-compact space is $\mathbf{k I} 3$-regular.

And as usually, a similar statement bolds for FB-situation.

3. IOCALLY xB-COMPACTNESS

(3.1) Definitlon. A topological space X is called locally $k B$-compact if for each $x \in X$ there exists an open neighbourhood U_{x} such that $\mid \gamma_{x}\left(U_{x}\right)_{1} \leq$ x and $\overline{U_{x}}$ is a kB -compact subset of X.

This concept is a known analogue of local compactness. In the next theorem a kind of Alexandroff's $\times B$-compactification is constructed for locally kB -compact space.
(3.2) Theorem. If a kB -Hausdorff space X is locally kB -compact but is not xB -compact then there exists a xB -Hausdorff xB -compact space $X^{\nu}=X \cup\{\psi\}$ containing X as a dense subspace.

Proof. Let the open sets in the space $X^{* *}$ will be those which are open in the space X and also sets $A \cup\{\psi\}$ where $X \backslash$ is a closed kB compact subset with $\left|\gamma_{X}(X \backslash A)\right| \leq \mathrm{x}$ in X.

Firstly we show kB -compactness of X^{ν} Let $\psi-\left(U_{i} i \in \ell\right)$ be a cover of $X^{\prime \prime}$ with open sets in the space $X^{\text { }}$ such that $\left|\gamma_{\boldsymbol{x}^{v}}\left(U_{l}\right)\right| \leq \mathrm{x}$. Then there exists $i_{0} \in I$ that $\psi \in U_{4} . \wedge_{5} U_{6}$ is an open set of X^{v}, then $U_{6}=A \cup\{\psi\}$, where $X \backslash 1$ is a \times B-compact subsel in X sucb that $\left|\gamma_{x}(X \backslash X)\right| \leq x$. Besides, ℓ is also cover of the set $X \lambda A$ with open sets such that $\left|\gamma_{\boldsymbol{x}}\left(U_{0}\right)\right| \leq x$ in the space X (sce L.emma 1.11). Hence there exists a finite subcover $\left\{U_{i}, \ldots, U_{i}\right.$) of the кB-compact subset $X \mathrm{M}$. Then the system $\left\{U_{1}, U_{4}, \ldots, U_{4}\right\}$ is a finite subcover of z of the space $X{ }^{\text {² }}$ Thus $X^{* *}=\lambda \cup\{\psi\}$ is a $\times B$-compact space.

If we assume that X is a closed subset of $X^{\text {h }}$, then $X^{\prime \prime} \backslash X=\{\psi\}$ is an open subset of X^{ν}, but this contradicts the given assumption that X is not a xB-coupact subsct. Therefore the closure of X is X^{*}.

Fibally, we show $\times \mathrm{B}$-Hausdorffaess of $X^{\prime \prime}$ if $\quad x, y \in X$ then these points enn be separated in X by neighbourhonds with desired properties. It is ensy to note that with the same sets we can separate these points in $X^{\prime \prime}$ We need to show the siluation when $x \in X$ but $y=\left\{\begin{array}{l} \\ j\end{array}\right.$. From the local kB compactacss of X there exisis an open ncigtbourtood U_{s} of the point x such that \bar{U}_{x}^{-}(closure in X) is a $\times \mathbb{R}$-compact subset of X and $\mid \gamma_{x}\left(U_{n}\right) \leq x$. It is elear, that $\mid \gamma_{x},\left(\bar{U}_{2}\right) \leq \leq \mathrm{x}$. Then the set $V^{\prime}\left(X X \backslash \overline{U_{1}}\right)(\psi)$ is an open
 xB-llausdorff space.

The opposite to the statement of Theorem 3.2 also holds:
(33) Remark. If X is a \times B-Hausdorf kB -compact apace then for each $x \in X$ the space $X_{0}=\lambda \mid\{x\}$ is locally x. -compact.

This follows inmodiately from the next proposition.
(3.4) Proposition. If X is a κB-Hausdorff κB-compact space and Y is its open subset sucb that ${ }_{i} Y_{J}(Y) \mid \leq x$ then Y is a locally κB-compact suhset.

Proof. Let x be an arbitrary point of Y. From Proposition $2.11 X$ is a xB-regular space. i. e. therc exists an open oeighbourhood V_{x} of the point x such that $\mid \gamma_{x}\left(U_{,}\right) \leq x$ and $\overline{U_{i}} \subset Y$ At last, $\overline{U_{1}}$ is a kB -coupljact subset (sce Proposition 1.9).

Results similar to the ones included in this section can be proved also for lil3-case.

REIERENCl:S

1. К.Куратовскнй, Тополоиия, Том I, Москна, 1969.
2. K.Куратовский, Топония, Том II, Москва, 1969.
3. R. Engelking, General topology, Warszawa, PWN, 1977.
4. A. Sondore, A. Sostak. On clp-compact and countably clpcompact spaces, Acta Univ. Latv., 1994, vol. 595, p. 123-143.
5. A. Sondorc, On clp-Lindelof and clp-paracompact spaces, Acta Univ. L.atv.. 1994, vol. 595, p. 143-156.

A. Coндоре. O квкомпаттних просеранстаз.

 топологн песках иространст.

A. Sondore. Par kB-kompaktām telpām

Anotidije. Par kB-kourpalta telpu tiek amikte tide topologiake telpa, kurs

Departuent of Mathematics
Daugavpils Pedagogical University Daugavpils LV-5401 LATVIA

Impressions of the Council Mecting of the European Mathematical Society.

Alexander Šostak

On July 22-27. 1996 the second Furopean Congress of Mathemulics was held in Budapest. (The previous, first libropean Congress of Mathematics took place in Paris, in 1992.) Just before the Congress, on July 20-21 in the Institute of Maibematics of the Ilungarian Acalemy of Sciences. the mecting of the Comecil of the European Mathematical Society was teid. This metting was of especial significance for the Mathematical conumunity of Latvia because at this neeting the lalvian Mothematical Society (1,MS) was accepted as a corporate member of the European Mathernatical Sociely (EMS). I had an honour to represent our suciery al this necting by a request of the chaiman of LMS, Piofessor Ithis Raitums. Therefore, I should tike to share here my impresisions and fecolltestions of this imporman eveth.
The tolal number of delegates al the meeting was 62, some of whom represented national societien or institulional socictics as componate members, white olhers were individual members. Although the official opening of the meeting was on Saturday, July 20, the Coumeil actually started its activitios on firiday evening. when all present delegates were invited t a a get-logether party in a small restaurant located in the basement of a house just opposite the building of the Institute of Matheminics. There. in a cozy atinosphere, refreshing with wine and forifying hy light snack, the detegates had good opportunity to inake them acquaintance and to discuss different subjects - mathematics. mathematical education, politics. sinndards of life, salaries, flowers, birts, food, etc., etc...
As I already uentioned. the official opening of the meeting was on Salurday morning. At the beginniug the president of the EMS, professor Jean-Piste Bourguignon from France, welcomed the delegales and adtressed on them with not too king, but very salurated specech. In this address the president, in particular, noted the main ochievements of the aclivity of the 1:MS during the last 2 years (after the previous meting of the Council in August 18×4 in \%urich) as well as touched most urgent, in his opinion, problems the Society will be having in the mear future and the perspectives of its developnent.
The second item of the nefendin was the ekection of new entporate, full (national or regional) and insitutional members. In adclition to I.alvian there were three more socicticscandiciates: The limal Mnihematical Sociery. Ihe Institute of Mathematics of the Academy of Sciences of Moldova and the Inslitute Nom-I. ineare de Nice (the last two pretended to be accepted as institutional members). The elections were orpanized in the following way: after a shon presentation of the representative of a society-candidate, questions were asked himi by the delegates. (These questions mainly concerned such subjects as the number of nembers in the society, how fully does it represent the mathematical
commumity of the country, basic trends of matherantics being developed in the country or a region, publicalions etc.). Then the voting was theld: its results were favourable for all 4 candidntes: all socicties-candidates were accepted into EMS. In particular, the Latvian Mathematical Society was accepted anonymously. When results of the voling were announced, the participants of the meeting warmly congratulated the new accepled sociclies and their representalives by loud applause and invited them to participate in the further work of the meeting.
The next point of agenda was the efection to the vacancies of the Execulive Commitice for the period 1997-2000 (In eccordance to the EMS statutes, there was one vacancy for a vice-president and 4 seads for ordinary members). This procedure turned out to be much more storny if compared with the previous ones, since not infrequently the opinions of diflerent members essentially diverged. Therefore the president suggesied to postpone the election till Sunday, and in the meanwhile to ask to study this question by the Nominating Committee with Prof. F. Hirzebruch as the chair. The Council agreed with this suggestion. In the result, the procedire of elections continued on the next day when the delegates, taking into account the well-grounded proposal of the Nominating Commitice, by voling elected A. Pelezar (Poland) as a vice-president and B. Branner (1)enmarl), M. Sank-Sole (Spain), R. Jettsch (Germany) and A. Vershil (Russis, St. Petersburg) as members.

Arnong hems discussed by the Comeil were the accounts and auditor's reporss. budget, membership fees for the next two years and some other financial type questions. These questions, 山though of extreme significance for the $l: M S$, and its Council in particular, likely will not be of a large intercst for our readers. Therefore, I shall better linger here on the next quite vacuous item of the agenda: namely the reports of the Committices. There are more than a dozen Committees al the Council, having special arcas of activitics. Here I shall tell briefly about the activities of some of these committees.

- Education of Mathematics. The Council noted a very large diversity in the level and quality of etucalion in different countries, regions and schools, and as a consequence of this, a tremendous diversity in mathematical knowledge and in experience of chibdren and students. To remedy, to some extent this drawhack, the Council suggested to the Committee of Education to define the minimal knowledge in mathematics for children and youmg people at different age. Another suggestion of the Council was to work on some approaches allowing to present mathematics at school in a more altractive and lively way.
- Bublicity of the EMS and Contacts with firopeon Institutions. Cenain work was done towards establishing relations of the EMS with various furopean Itstitutions (Luropean Parliament, Ministries of Iuropean Aflairs, etc.) It was pointed out that contacts have to be extablished at the political level in all European countrics.
- Support of East-European Mathematicians. In the last two years the activities of the committee were mainly dirceted to the following two goals: 1) to find finance which would allow to cover travel expenses to the European Congress of Mathematics and to its Salellite Conferunces for mothematicians from East-Luropean countrics (local expenses in mosi cases were covered by the organizers) and 2) to support satellite conferences to European Congress of Mathematics. As the result 16 satellite conferences wert supponted with a budget of ECV I I 000 . A new programme accepted at the meeting. in addition to sponsoring travel expenses for organizers of conferences
includes also the so called "new library scheme" which foresees to find hetp for libraries in East-European universities for subscribing joumala, to get them at the price of production costs.
- Europocan Mathematical Information Senvice. The EMS server (EMIS) contains the so called Flectronic Library (ElibEMS), genenal information on the EMS and information on mathematical activities and institutions, lists of conferences, etc. The ELibESM provides free access to a collection of electrualc joumals and electronic versions of printed journals. Before being included in ELibEMS, the quality of these periodicals and coliections has 10 be approved by the Electroaic Publishing Commitiee of the EMS. Server EMIS can be reached by
hitp: //www.emis.de, or by anonywous fip: Itp.emis.de/diroctory/pub/EMIS.
- Exropean Database. Zentralblott für Mathemativ, from German is becoming a Europesid enterpise. Now the reviewing process is being organized in different countries what allows to make it essentially faster and more qualitative. A new idea stated al the meeting is to organize "current awareness programme" on the basis of the Zentralblatt. In particular, the publishers of mathematical joumals will be asked to send the contents of the joumal and the abstracts of the papers electronically to the office of the 7entrafblatt where this material will be made ready for being included in both the date basc MATH and the current awareness service of EMIS.
- Dideror Mathematical Forumi. A cycle of conferences, called "Diderot Mathematical Fonm" consists of rwo conferences a year taking place simulameously in three Europeas cities. In the process of the confcrence the participants in different cities exchange information by telecommunication. The subject cotsidered at conferences covers three different asperts: fundamental mathematics, applications of mathematics and their relation to society (e.g. ethical and epistemological dimensions).
- Publications. The Society conimues pubtications of the so cailed Newstetters - 1 certain amalogue of the much beller lavewn iotices puitished by the American Mathematical Society. Newsithers contain infymule abeut the Socicty, annoumcennents of conferences. book reviews, a probket sapaer amit artictes of !!encral interest. A new programme of itse Council is wifcund ande sw:stomutical journal of a general nature and a very ligh scientific grality. The Couksi layws to make it in a shor time, a leading journal covering all aspecis ot mathoantion: Prod. I. Jost was appointed as the Editor-in Chief of the journal.
- Summer schools. In order to promote tho materatyo of young mathematicians, two series of summer schools, one each yeor in mathematics and one in applicutions of inathematics will be organized. They will bring logetecs pbous a bundred gradunce students to attend advanced courses and to exchagge their nasearch experiences.

One of principal atms of the European Methernatical Society is to unify European matheranticians - both on the level of Mathernatical Societies and on the individual level. But at the same time the EMS atrives for establishing relations and developing fruilful collabiontion with other, non-Furopesm profensional societies of mathematicians. As a certain evidence of this was the represenutives of the three very influential mathematical societies arrived at the meeting in order to welcome the delegates, to share information about their sociecies and to discuss perspectives of collaboration. These high guesta were:

Professor K.C. Chang, the President of the Chinese Mathematical Society. (It is worth mentioning here that (hina has made a bid for the organization of the International Congress of Mathematicians in 2002 in Beijing.)
2. Professor A. Kerkour (Morocco), the President of the African Mathematical Union
3. Professor J. Ewing. The lixecutive Director of the American Mathematical Society.

Shorly before the closing of the Council meeting on Sunday's evening, another spectacular event took place: namely, the selection of the site for the Europenn Congress of Mathematirs (FC.M) in 2000. (It is worth reminding here, that the Congress in 2000 is of special significance since year 2000 is announced as the Intermational Year of Mathemaics!)
To start from the beginning. I must say that at the previous Coulucil meeting in 1994 four cities were accepted as candidates for this honourable role. They were: Copenhagen (proposed by the Danish Math. Society). Torino (proposed by the falian Math. Union), Barrelona (proposed by the Catalonian Math. Suciety) and Brighton (proposed by the I.ondon Math. Society). A special Cormmittee of the Council, after preliminary investigation of the situation, has acknowiedged that all four candidates were able to provide adequate facilities for the organization of the Congress. However, short before the meeting. Torino decided to withdraw its application in favour of Barcelona. Between the rest three candidntes a serious competition took place al the meeting. The representatives of the corresponding societies informed how the opening and closing ceremonics will be organized the preliminary programmes of sessions and round tables. the perspectives for publishing Proceedings, availability of good libraries in the area, technical equipment, etc. They informed akso about the financial situation in particular, sketched the approximate budget of the Congress, described perspectives of finding sponsors, the perspectives of support from the Governments and local authorities.. They also showed films and slides about their cilies and universities, and described their advantages. Then representatives were asked different specifying questions. Further, the voting procerlure was held. The resula of voliag where extremely favoumble for the capital of Catalonia and the capital of 99 th Olympic games: namely, 36 voices were given for Barcelona, while only 13 for Brighton and 7 for Copenhagen. After the results were announced, stormy applause started, and the delegates warmly congratulated professor Sebastia Xambo, the presidens of the Catalonian Mathematical Society, and professor Manuel Casteliet, the director of the Mathematical Center in Barcelona.

The election of the site for the 3 rd ECM in year 2000 was the last item on the agende of the Coumcil moting. After this the meeling was ofllicilly closed However the delegetes did not hurry to leave Budepeat most of them remained in the siry and joined the ranks of a much more numerown and imprestive mactmblage consisting of perticipents and guests of the 2nd Mmbematical Congress which was opened on Monday, July 22. However, the in mother story. Here I shall mantion only, that at the Congress, besides the author of these notcs, there ware two other Lativin perticipenis: Andreja Reinfelds and Felinas Sadyrhajevs.

[^0]: Faculty of Physics and Mathematics
 The University of Latvia
 Rainis boulevard 19
 Riga, LV 1586
 Lalvia
 email: gdaiga0lanat.Iv

