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ILGA PAGODKINA

1997. gada 26. junija pec smagas slimibas paragr, savu radodo sp&ju
pilnbriedd, no mums 8kiras matematikas zinatgu doktore, docente Ilga Pagod-
kina.

Ilga Pagodkina (dzim. Zalkalne) dzimusi 1942. gada 6. janvari Talsu
rajona. Agra bernib3a, 1949. gada marta Ilga kop3 ar saviem vecakiem no
dzimtajim majam tika aizvesta uz Omskas apgabalu, no kurienes Latvija
atgriezas tikai péc 9 gadiem. Talaja un savai latviskajai mentalitdtei sveiaja
Sibirija vina pabeidza pamatskolu, péc atgriesands Latvija turpin@ja macibas
Ventspili, bet valak — Sabila. Péc Sabhiles vidusskolas absolvesanas 1961. gada
vina iestajas Latvijas Universitites Fizikas un matematikas fakultate, kuru
beidza 1966. gada un ieguva matematika kvalifikaciju.



Jau studiju laika 1964. gada I. Pagodkina, apvienojot macibas ar zinatmsko
darbu, saka stradat pusslodzé LU Astronomijas observatcoriji par laboranti.
1967. gada viga iestajas LU Astronomijas observatorijas aspirantiira, kuru
sekmigi beidza ar profesora Karla Steina vadiba uzrakstitu disertaciju *Nere-
gularie speki kométu kustiba” Ta tika sekmigi aizstavéta Pulkovas observa-
torija Lepingrada (tagad Sankt-Péterburga) 1971. gada. 1972. gada ligai
Pagodkinai tika pieskirts fizikas un matematikas zinatpu kandidata grads, kas
péc Latvijas neatkaribas atgid3anas 1992. gada tika pielidzinits (nostrificéts)
matematikas doktora gradam.

1971. gada Iga Pagodkina saka stradat LU Fizikas un matematikas fakulta-
tes Matematiskas analizes katedra, bet gadu v&lik iek|avas jaunizveidotaja
Lietitkds matematikas katedrd. 1973. gada vina tila ievéléta docenta amata
LU Fizikas un matematikas fakultates Diferencidlvienadojumu un tuvinato
metoZu katedra, bet 1978. gada ieguva minétds katedras docenta zinitnisko
nosaukumu. 5aja katedra Nga Pagodkina aktivi straddja Iidz pat sava miza
pédéjam dienam.

llga Pagodkina studentiem ir lasijusi vispdrigis astronomijas, elementiras
matematikas, programmésanas kursus, bet ipasi nozimigs LU tradiciju izveidei
ir vigas devums skaitlisko metozu pamatkursa un daudzos aktualos speckur-
sos. Docentes nolasitas lekcijas un vaditie laboratorijas darbi izcélas ar labu
sagatavotibu un kontaktu ar auditoriju. Sarakstitie 16 macibu un metodiskie
lidzek]i un vipas sastaditas 5 akadeémisko kursu programmas jevérojami ak-
tivizeja. macibu darbu fakultaté. Liele véribu Hga Pagodkina veltija savas
kvalifikacijas celsanai. Ta, pieméram, 1987. gadid vina beidza skaitliskas
matematikas un kibernétikas kvalifikicijas celsanas kursus M. Lomonosov:
Maskavas Valsts universitité. Ilga Pagodkina aktivi piedalijas fakultates un
katedras sabiedriskaja dzive: bija ilggadéja labaka studentu grupas kuratore,
bija atbildiga par studentu raZosanas praksi, darbojas fakultates metodiskaja
komisija, piedaltjas zonalajos skolénu profesionilas orientacijas seminaros.

Ngas Pagodkinas p&tniccisko darbibu noteica da2adiem matematiskas mo-
delésanas uzdevumiem veltitu t&mu izpilde gan LU Fizikas un matemaitikas
fakuliate, gan arl akadémiskajas zinatniskas pétniecibas iestadas — LU Skaitlo-
danas centra, kuru 1990. gada parveidoja par LU Matematikas un informati-
kas institdtu, bet 1991. gada viga iesaistijis jaunizveidota LZA un LU Mate-
matikas institiita darba. Ilgas Pagodkinas veiktd zinatniska darba tematika
sikuma bija saistita ar zvaigZgu un mazo planétu pétisanu, velak ar naftas
un aluminija ieguves matemitisko modelé3anu, bet pédeja laika ar siltuma
procesu pétianu plinds kartainas un slagainis vides. Par Ilgas Pagodkinas
zinitné paveikto liecina 20 zinitniskas publikicijas, kurim viga ir autore vai
lidzautore. Veiktos pétfjumus Nlga Pagodkina ciesi sasaistija ar macibu pro-
cesu, tie regulari atspogulojas vinas vadttajos kursa un diplomdarbos.

Nga Pagodkina bija LZA un LU Matemitikas institita zinatniska sckretare
no i institita dibindsanas briza. No 1994. gada janvara, kad tika izvei-
dota LU Matematikas zinatpgu nozares habilitacijas un promocijas padome,
Iiga Pagodkina pildija ari 3is padomes sekretdres pienikumus. Vinas vadiba



9

tika jeviestas matematikas doktora eksamenu programmas trijas matematikas
apaksnozares: 1) matematiskaja analizé un diferencialvienidojumes, 2) dis-
krétaja matematika, 3) matemitiskas fizikas vienadojumos un metodés, skait-
liskaja analizé.

Latvijas matematiku saime cietusi sipigu zaud&jumu, atvadoties no prasmi-
gas pedagoges, zinatnieces un organizatorcs, atsaucigas un sirsnigas koléges.
Ilga Pagodkina paliks vienmér gai3a piemina ne tikai vigas darba biedriem,
bet arl visiem tiem, kurus viga macija, kuri vigu kaut nedaudz pazina.

A. Buikis

J. Cepitis

H. Kalis

A. Lobanovica
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FOURIER-ASYMPTOTIC
APPROXIMATION

MIHAILS BELOVS! and JANIS SMOTROVS!

Institute of Mathematics

Latvian Academy of Sciences and University of Latvia
Akadémijas laukums 1, LV-152{ Riga, Laivia

e-mail: belovs@lanet.ly; smotrovs@ianet.lv

ABSTRACT

A new Fourier-asymptotic {F-A) method of functions approximation is presented. The
method is based on the Fourier series and on the methods of asymptotic expansions of
integrals. The main ment of the method is a multiple precision of approximation by rela-
tively small number of points of interpolation. It is especially important for the solution of
unstable problems. Numerical examples are presented that illustrate the effectiveness and
capability of the application of F-A approximation in the solution of differential equations.

In this work a new Fourier-asymptotic (F-A) method of functions approx-
mation is presented. The method is based on the Fourier sertes and on the
methods of asymptotic expansions of integrals. The main merit of the method
is a multiple precision of approximation by relatively small number of points of
interpolation. 1t is especially important for the solution of unstable problems.
Here are presented the numerical examples, that illustrates the effectiveness
and capability of the application of F-A approximation in the solution of
differential equations.

This work was partly supported by Latvian Council of Science under Grant 96. 0691
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12 M. Belovs and J. Smotrovs
1. BASIC STATEMENT
Let the function v:[a, b] -+ R is sufficiently smooth and his cosine Fourier-

series expansion is

= chu'k(x), T€[e, B), wug(z)=rcos I%(:r —a), I=b-a. (1.1)
k=0
b
If kK > n > 0, we replace the Fourier coefficients ¢y = % J v(z)up(z) dz with

a
their asymptotic approximations., We obtain these with the 2m + 1 - muitiple
integration by parts [1]. Then

v(z) = Y ciue(z) + Ao + Ro, (1.2)
k=0
=25 2 (yei-ngg, (220 _ ei-nggg,. (220
to=7) ¢ (v (25 - @ (230)),
(1.3)
. +oo n+1 2u
52’,(::)=(_1)#-—1 z ( T ) cos2nkxr, p=12 ... (1.4)
k=n+1
400 2u+1
n+1 .
Bausr(z) = (-1)#H? Z ( 3 ) sin27kz, p=0,1,... (1.5)
k=n+1
where ¢ lr(_n’+Tj' is a small parameter. The representation (1.2) will be

called the Fourier-asymptotic (F-A) approximation or more exactly the F-
A approximation of cosine Fourier—series. We have the following integral
representation for the approximations error Ry

’
2m+1 v -9 _
Ry = £ ] /"(2m+l)(f) [ﬂzmﬂ (%) + Bomsr (%)] dr.

a
(1.6)
For the derivatives v(2*)(z), v € N we construct the F-A approximation in
the form:

n

. i £\
U(2 )(I) = (—1) E 2 E (m) Ckug(z)+ A2y +R2vs (1'7)

k=1

y 2' % z E?j (v[2v+2j_l)(b)ﬂ2j (I' —'20.: + [) —1}‘2"*‘2"‘”(“)&)- (:2‘-! a)) '
J=—v+1
(1.8)
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b
Rw:_{ /v2u+2m+l)(r) I:ﬂ2m+l(x+fT) 52"“_1( - )] dr,

{1.9)
where 83(z) = } + 3 cos2rkz , but
k=1
n k 2p
B_zu(z) = (—1)“,2 (n—-l-l) cos2rkzr, p=12,... (1.10)
' k 2441
_ + i -

B_qu—1(z) =(—-1)" Z (n " 1) sin2xkz, p=0,1,... {1.11)
We obtain the F-A approximation of derivatives v/®*=(z),5 = 1,2,...,2v

from (1.7) by integration over z. For j = 2~ we obtain the F-A approximation
of function v = v(z) from (1.2) with the substitution of m + v for m.

The F-A approximation of functions system v®)(z), k.= 0,1,...,2v is
formed with n+1 leading Fourier coefficients of function v = v(z} ¢, €1,...,¢q
and with values of derivatives v(2*~V(z) byr =a,z =bands = 1,2,...,m+
v. The F-A approximation has an asymptotic character with respect to a

small parameter € = ;(n'—_’_l;

If we put the values z = z; = a + %j, j =0,1,...,n in the represen-
tation (1.2) and from the obtained system express the Fourier coefficients
€0,€1,---,Cn by means of functions values v; = v(z;), j = 0,1,...,n in

the points of uniform net, we get another variant of F-A approximation by
replacing the now obtained coefficients c; in (1.2}.

If we restrict the F-A approximation of functions system vi*)(z), k =
0,1, ...2v onto the points of net {z;}7 we get for k = 1,2,...,2v the
approximations formulae of the derivatives. In matrix form they are :

. . T
v Z e g, Ve = (u(‘)(:l:u), .. ,v"‘)(:r,,)) (1.12)

m+v

V(*’—E"‘(T“‘)P+ ZE-JP‘“G) V =(vo,-...vn)T, (1.13)

gim¥v)-k+1

)
R = — fv(2m+2"+l)(T)Qk(T) dr. (1.14)

where G; = (v2-1(p), -vm‘”(a))T W, Pm are known matrices and
Qi (7) is a known matrix function. These matrnce; depend on n only, i. e
they are independent of v and of the approximations interval [a,b]. It is
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obvious, that the obtained approximations have ap asymptotic character. If
the function » = v{r) is a polynomial of degree less than 2m + 2» + 1, the
error R, annuls and the equality V8 = V¥ holds.

2. NUMERICAL EXAMPLES

We consider some examples of approximation based on forroula (1.12). Let
v=1 K = [V - V', K = [V — V|| (norm is considered in R™*!,

e VI = 4] 4o d), T = S5 max om0 ).

In the table 1 we give the results for the function v(z) = exp(-z?). z € [0;2]
by n = 4. In the table 2 are given the results for v(z) = J5(z), z € [0; 10] by
n = 8. In the tables 3, 4 and 5 are given the results for v(z) = 7, z € [0;2]
by n = 4. n = § and n = 16 respectively. In the table 6 are given the results
for v(z) = 10exp(—0.252)({(z — 1)2 +9)~ 7 € [0.2] by n = 8_ In the tables
7 and 8 are given the results for v(z) = 94—92 ,re[0,2lbyn=4andn=8
respectively.

Table 1.
m Ky Kq I
-1 8-10-% 05
0 3 1w0? § 107? 0.25
2 B-10"% 4 10°* 7 10°2
4 9-10°7 3.10% 6-107¢
Table 2.
- K K2 i
-1 (B 82 -
0 3-w? (5-100 §.102
2 3w s-10°* &-w°
4 4-10°7  g-3877 BT

Table 3
m K, K» 1
-1 a2 e -
¢ 10! 41002 03
2 1" 4 107 oef
¢ W7 4107 a5
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Table 4.
m K\ K> I
-1 0.2 1.8 -

0 3-10-* 9.107? 02
2 6-100% 2.10°% 4-1077
4 6-107% 2.107* .10

Table 6.
m Ky Ka I
-1 0.2 36 -

0 104 5-10-9 0.1
2 3-10-* 3.107% 2.10~¢
4 5-107% 2.107% 3.107°

Table 8.
m Ky K2 I
1 0.1 1.2 -

0 10-4 4-10-2 4-1072
2 4-100* 20007 15.10-%
4 T-100%' 3.10°'%  5.10°°

Table T.
m Ky K2 I
1 0.4 214

0 31.-1072 6-1072 4.10°2
2 10-% 8-10-% 10-?
4 0% 6-10% 1072

These numerical results confirm the asymptotic behaviour of approximation
{1.12). The exactness of results increase with m considerably by constant n.
The two former functions are integer. The last three functions have singular
points, whose influences are not taken into account in the asymptotic approx-
imation of Fourier coefficients. It is necessary to increase n.

Further we consider the solution of the boundary problem:

v (z) + wlz)(z) = f(z), z€[a,d]
aro(a) + o (a) + nv(d) + 5,0 (b) = (2.1)
arv(a) + BavM(a) + 12u(b) + savil}(B) = g,
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Table .
m Ky Ka I
-1 04 42 -
0 10-3 3100 2.10°2
2 8-1007 5-100% 5.10°%
4 2.107° 10-° 7 10-7

where the functions w = w(z) and f = f(z) are sufficiently smooth. We
approximate the derivative v(?}(z) using the formula (1.12) for » = 1 and
k = 2. From the equation of problem (2.1) we find the values of derivatives,
which are necessary for the calculation of V,(z);

vt(z) = q(z)v(z) + pelz)V'(2) + 8 (2), k=0,1,..., (2.2)

where go = 1, pp = 0, 30 = 0 and qi41(z) = gi(z) — W{T)pe(2), prsa(z) =
P2} + 0(2), 3141(2) = 54(2) + pe(2) F(2), k=0, 1,..

As a result we get the matrix equation ZV'* = F + R, where V* = (v'(zq),
v{zg), v(z,), v'(x,))T Z and F are known matrices and the meth-

ods error is R = ‘,':“ }v‘z"”””('r)Q;(f) dr. Here Q3(1) = (0,Q2(7),0)7,
-}
v N(r) = guem+3(TI(T) + P2m+3(TWV(1) + s2m4a(r). From the solution
of equation ZV} = F we get the approximation V for VV* We give in the
table 9 the numerical results for w(zr) = —;2;, flz) = %, z € [1;2]. The
boundary conditions are v{(1) = 0; v(2) + 2v'(2) = 0 and m = 4. Moreover
K=|V-VV= (v(20),-.-,v(za))7, V, is a corresponding matrix of
approximate values, s = z:é\[im;] |5(z)| and 5(z) = 2¢'%s;,{z). The parameters

p and ¢ are defined similarly. We note, that ml:lng] (=) = 1.75.
zElL,

For the functions w(z) = ~£2, f(z) = 12 and the same boundary condi-
tions we give the results by m = 4 in the table 10. In this case m{ﬁ] lv{z)] =
zE|l,

0.3.

Table 0.
5 P q K
2.5 5-10"2 9.102 10-2

25-100* 45.10°' 9.107* 3-10-4
12-107% 25.10-% 4 107 1.5-10-%
35 107* 8-100" 1.4-107* 84-1077

—
e an|

It is obvious that the high exactness of pumerical results is achievable by
comparatively small n. I the last case (table 10) the exactness of numerical
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Table 10.
n s P q K
8 150 40 10% 1.7 107!
16 05 0.14 3 5.10™4

32 100 4.107* 8-107% 2.10°%

results are comparatively lower. It is caused by small parameter at the second
degree derivative in the equation of problem (2.1).
We consider one more problem:

u? + (@) =0, z€(0,1), ul=o=f(), (23)
(l)lz—o = u(nlz_ t“(J::')I::ﬂ = (3)|3—l =0.

Here the unknown function « = u(:: t) is dependent on two arguments.
From (2.3) we get the equalities ul? 1)I:—o 1=0for Vs =1,2,.... We solved
the problem (2.3) using the method of lines [2]. We appronmate the partia.l
derivatives ul (k) , £ =1,2,3 and 4 in the points of net x; = f;-, i=01,.

by means of the formula (1.12). Then U® = (u{(zo,1), .., uf )(x,..,t)) -

e *TWU + Ry, U = (u(zo, t),...,u{x,,2))T The error Ry satisfies the esti-
mates: Ry = o{e™), € & +0, VN € N. Thus, we approximate the problem
(2.3) by means of Cauchy problem for system of n + 1 equations:

d

U =FWU).,  Ulo=(fzo)..... f(za))T (24)
where F' = F(U) is a known function. We solve the problem (2.4) with the
help of the method of degenerate matrices [3].

The specific character of the nonlinear problem (2.3) is expressed in the
following. If the function f(z) is nonnegative, the solution of problem (2.3)
is stable with increasing ¢ and unstable with decreasing { (like in the inverse
heat conduction problem). The numerical examples show, that by small n
the F-A approximation work both by increasing t and by decreasing t. We
carry out the calculations for n = 5 and solve the Cauchy problem (2.4)
to within up 32 significant digits. I U)o = (0, 0.003, 0, 0, 0.003, 0)7,
we get Uli—on = (10-%2, 0.010374843... 0.019625156..., 0.019625156. ..,
0.010374843 ..., 1073%)7T By t = 0.1 the solution become stationary and we
get 8 stable algmﬁcant. digits. If we solve the inverse prohlem with the initial
value U},—q.1, we get U|;—g = (20733, 0.0‘29 .9...,1.009-10-2%, 1.083-10~25,

0.029...9...,10" T Similarly, if Ulp—p = (005 0,0, 0, 0, 0.05)7, we get

22
Uli=0.14s = (0.010947...,0.010299. ., 0.009226.. ., 0.009226.. , 0.010299. . .,
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0.010947...)T and for inverse soluticn we get Ulg—p = (0.049...9..., 1.04 -

10~!4,7.85-1071%, 7.85-107'5, 1.04 - 10~ 14, 0.049...9..)7.

S
11

3. CONCLUSION

The high exactness of results, by relatively small number of the points of inter-
polation, is the basic merit of the F-A approximation. By using the integral
representation of error, we can analyze a priori the exactness of results. These
effects are achieved by using in the F-A approximation an additional analytic
information about the investigated function, the structure of its asymptotic
expansion. It is possibly to construct the algorithms of F-A approximation
on the basis of other types of Fourier series.
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FURJE-ASIMPTOTISKA APROKSIMACILJA

MIHAILS BELOVS un JANIS SMOTROVS

Darba ir aplikota jauna Furjé-asimptotiskd (F-A) metode funkciju aprok-
simicijai. Metodé tiek izmantoti izvirzijumi Furjé rindas un integralu asimp-
totiskie attistjumi. So metodi raksturo augsta aproksimacijas precizitate
pie relativi maza interpolacijas punktu skaita. Seviski svariga 5 TpaSiba ir
nestabilu probléemn risindSani Ir doti skaitliskie pieméri, kas ilustré F-A
aproksimicijas efektivititi un iespéjas diferencialvienadojumu risinasana
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ABSTRACT

The task is to determine the temperature distribution in a windew of living room, con-
sisting of two glasses and air layer between them.

1. FORMULATION OF THE PROBLEM

We shall consider problem of mathematical physics for the steady-state heat
conduction equation without convection. In general, the way a problem is
posed in a 2-D domain D with the boundary § = 8D has the form:

div(k gradu) = —f in domain D
1
—-k% a(u —ua)  on boundary 85, W

where

k > 0, a > 0 are the coefficients of heat conductivity and heat transfer,

fi - the vector of the external normal to boundary S,

du . . Ou . C .
= 22 cos(i, oF) + 3 cos(iT, of) —the normal derivative,

u, — the temperature of external medium,

!'This work was partly supported by Latvian Council of Science under Grant 96. 0779
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f — the density function of the heat source,

u = u(z,y) - the distribution of temperature field in domain D.

du

If a boundary of domain D is isolated, then a = 0 and ol 0 (Neumann

boundary conditions), but in case such a boundary has a given temperature,
a = oc and u = u4 (Diriclet boundary conditions). There are no heat sources
i the domain - f = 0.

If a domain D consists of an N-layer medium (the layers being rectangular)
with different physical parameters k; = const, i = 1, N, ag = 0, that is,

Di={(z,y) |0<xz <L, a;_, <y <a},

and its edges are parallel to coordinate axes, on the surfaces S; where the
media have continuity (namely, on the edges of rectangles D;),

Si={{z,v)|0<z<L, yi=a;}

we have the following continuity conditions for temperature u; and heat flux

Ou;
k.‘ :
dy
ui|]=li = ui+l|y=n.-
a‘u" atl..' (2)
k| = ke S
3y |, By |,

Here u; = u;(z,y) is a temperature function in rectangle D;{(i = 1, N - 1),
but Eqgs. (1) have the k;Au; = f;, (A — Laplace operator when k; = const).
In this concrew case to compute the temperature in a windew of a living
house, we take z,y as directions of window edges (namely, the length and
the width). A distinguishing feature of such solution of the problem — the
window length is much greater than its width. Therefore we consider an
N = 3 layer medium with the temperature distribution in a restricted area
D={0<y<a;0<z<L}. Sowe havea medium of three layers:

1) two of them - window glasses (D and Dj3),
2) one layer of the air between the two (Dz).

The internal space presents a half of the plane y < 0, while external - y > a;.
We assume the coeflicients of heat conductivity in each layer to be k; =
ky = 0.74 W/ (m -deg) in D, and D3 and coefficient of air heat conductivity
ky = 0.0257 W/(m - deg) in D;.
We can write the 2-D case of Poisson equation for each layer {i = 1,3) as

follows:
Py, 6"1:.) _ . )
k,( + 57 ) =) (3)
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Functions u;(z,y), uz(z,y), us{z,y) describe the temperatures in internal
glass, air layer and external glass, respectively. Numbers ay, a3, a3 are coor-
dinates of the boundaries glasses-air-glasses, L — length of a part of window
is shown on this figure:

Figure 1.

On the external edges the following processes take place:
1) heat exchange with internal space (y = 0):

ky % = Qipe(41 — iar), (4)

2) heat cxchange with external space (y = a3):

ky % = a(us — ug), (5)

where a;y, o4 are the cocfficients of heat transfer with indoors and out-
doors, ujy, 4 - temperature of room and outside air,

3) heat exchange with wooden parts of the window:

(z=0) ki%ﬁ = ox{u; — ug;),
L) &k 33,- ). (it ®)
(z=1L) Efy‘ = ay (itg; - u),

where ég, ay are the coeflicients of heat transfer, fig;, ug; is the temperature
of the wooden edge.

We have conditions (2) on the continuous surfaces of the layers:

Sily =) up=uy, k1% = k?%r (N
ou
Siy=a): uwr=uy, k" = k,,%. (8)

oy 9y
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2. SOLUTION OF THE 1-D HOMOGENEOUS PROBLEM

We assume that f = 0 and the heat spreads only in the direction of y—axis.
Therefore Eqs. (3) are written s follows (N = 3):

Ay, R
kia—yz =0 z= l,N.

(On the edges £ = 0, £ = L we have Neumann boundary conditions}. The
temperature in every rectangle is described by a linear function dependent
only on y:

ui(y) = ciy +d;, (9)
where ¢, d; (i = 1, N) are unknown constants. To find them from conditions
(4), (3), (7), (8) we should obtain the exact solution of this problem. As a

result, we have a system of 2N equations enabling us to find 2NV unknown
constants:

c1 (k1 — aoao) — apds = —aoup
kici — kiiein =0 i=1LN-1
di + ¢ip1a (%ﬂ - l) —din 0 i=1,N-1
CN(k,, +a,;a~)+a~d~ aquy.

From these conditions we derive the svstem of algebraic equations

A5=10 (10}
where vectors are written as
[~ —apty
d; | 0
cN 0
dn aAu4

and A is the tridiagonal matrix. System (10) we can solve by the factorisation
‘method [4].

3. AN EXACT DIFFERENCE SCHEME

Consider an 1-D case of the given problem {the number of layers is N = 3).
We write Eqs. (3} in the form:

{(kiv)) = - fi. {11}
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Then choose nonuniform grid in every layer (D, D2, D)}

{yO =07yl:---'yLl = A YLI4y - YL2 = A2, YL2 40, -2 Y03 = Q3 }|

where L1, L2, L3 are the naiural numbers.

By using the finite volumes method [3] we derive difference equations on sur-
faces S, 52 (y = a,, ¥ = a2). The approximation in others points of the grid
is in its standard form, i. e., central-difference expressions of the 2nd order.
We shall consider approximation in the grid point y;. = yr, = a; (the same
holds for the grid point yry = az) and choose such points {yr 1.y, ¥+ }
with steps 9f = yL+1 — YL, 9 = Vi ~ YL-1-

We define now the heat flux W = (k;u;)’, which is continuous-in the interval
[y—, y+], where y_ = (yo + y—1)/2, ¥+ = (yr+1 +yc)/2, integrate Egs. (11)
from y_ to y; and get:

Wﬂ.—w.=—j:+fdy=-]:f_dy-f'"ndy. (12)

L

where

I-. ve(y-u)
Wi = Wys), =
£ =Wl 7 { for € (Lays).
This is an integral form of the conservation law for [y_,y4] To make the exact
difference scheme we integrate Eq. (11) from y_ to y where y € [yr—1,y1].
Then

Wy)-W_ = - [ fodt, W) = k'(y).

After dividing by k, and integrating from yr -, to y; we obtain:

- - _ g ;o i VL ¥
Uy — U = k, w. k v f—dtdy|

¥L-1

where 07 (y) = up(y). ug = v (yr). u _, =u (yr1) k- =ky.
Hence

A
W_=—(up —up_,})-B_,
9

1 L 'y
B_ = ‘——__[ [ f_ dt dy.
9L Sy

with

Similarly, by determining the heat flux W, of (12) in interval (yr.yr+1) one
obtains:

k,
W+ = F(ut+1 - “I) - B-l-:
L
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1 YL 41 ¥
B+=-—+/ / f4didy,
9L Jwn ¥+

v (y) S u(y), uf =ut(ye) =uw (ye) ut,, =utyenr), ke =k

where

To derive a 3—point difference equation associated with the central grid point
yr we should apply an equation of the form:

ki, 4 N S v v+
g—+(“L+1_"L)“g—_(“L —u; ,)=By—-B_- f-dy— frdy=—Fp,
L L - i

(13)

where

1 yL 1 PL 4L
Fo== [ w-n-ofdyt = [ o -0 d,
9L Jya 9L Jue

integrals B, B_ being modificd by partial integral formula. From (13) we
get the exact difterence scheme in case there are discontinuous coefficients
ky = k2, k. = k) and right sides f,, f_ of Eq. (11).

The exact difference equations we can obtain in grid points yg = 0,313 = a3
where we have boundary conditions (4), (5). First, we apply the integral form
of the conservation law to the interval [yo, y+]. with y+ = 31/2 = g /2. We

get:
¥+

W+"Wo=—'[ S dy,
¥

where fi = fi, Wi = W(y+), Wo = k1u}{0) = cine{u1{0) — uiye).

In the same manner as before we integrate Eq. (11) from y, to y where
y € [vo, 1], and [rom yy to y, we degive the following 2-point difference
equations:

gﬁ,‘;(ul(y,) 01 (0)) = tiae (s (0) = uiae) = —Fo, (14)
(1]

where

1 m
F= —.,_/ (n —)fs dy.
90

e

If yL3 = a3, we integrate Eq. (11) from y_ to yra, where

Y- =(yes —ye3-1)/2=91,5/2:

¥i3
Wi -W_=- f- dy,

with f_ = f3, Wi = kauj(a;) = as(ua — ualpe)).
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By integrating (11} from y_- to y € [y_,yra] and from yr3 to yr3_; we
determine W_ and obtain 2-point difference equation in the following form:

. k vea

aaslua —ualyra)) — g—_a("a(ym) —uz(yrz—1)) = —-B- —/ J-dy = —F),,

L3 -

(15)
where
1 YLa
Fra= T/ (v —yr3—1)f-dy.
913 Jyra

We can see now that difference equations (13), (14), (15) are exact approxi-
mations for solving 1-D problem (3-5), (7) depending only on y. We consider
these equations in a nonuniform grid with 4 points:

{(wd)li=0,....3 wo=0; n=a1; y2=az; pa=aas },

with steps g1 = a;, gz = a2 — a1, gs = @3 — az. By dencting v; = u(y;) one
obtains the system of 4 equations:

' k—i(’vl —vg) —ain{th —ui) = —-Fp (=0)
vy ~v) ~ ﬁ(vx — vp) = -FK (=1)

1 & : (16)
9—3(‘”3 —w)-=(m-un) = -FK (=2
aalua —vs) - ;z(va ~w) = -F (j=3)

where

Fy = f: (1 - y;_lvo) Sily) dy,

F, = " (1 - y.g_:y) fiy) dy + /:ﬂ (1 - 1;2—!") fa(v) dy,

¥

F =[” (1-221) f2(y)dy+]: (1-2) awa
F3=/:(1 oy )f(.v)dy

4. SOLVING OF EXACT DIFFERENCE SCHEME

System (16) we can solve by the factorisation method or more simply. For
this purpose, from the first equation we conclude that

(0~ i) + 2oy ~ ) = a7
1

Qi



26 A. Broka, H Kalis and I. Pagodkina

where
1 1

—_
aix  kifhy
We put (17) into the second equation of (16) and get

(@)~ =

k _ o=
h_z(v? - Ul) - 01(91 - Ui-t) = —01F1,
2
where £ = §+ o .
ay (4 177
Hence
k - -
'hi(va —vg) — d3fvz — i) = —GaF, (18)
- _ F F B _ 1 1 ) )
where F; = p— + & + i (@a)~ ! ﬂ.u — + Y™ + k2/hz is the inverse

value of the interaction coeﬂ'icnent of 3 layers in the same direction.
From the last equation (16) (§ = 3) we conclude that

aalua -v2) — (:—: + cu) (va-n)=-F. (19)

from which 1t follows

k
ajz(us —v9) - h—:(va —m) = —

1 1 .
where (a3) ' = — + —— ks/h is the inverse value of the interaction coefficient
a/hs

of two layers in opposme direction.
The last equation we put intc (18) and get vy as:

_ Gauiy +ajuas + FY

, 20
a + a3 (20)
- . a;
where Fz = OQFQ + a_F]
A
From (19) we derive vy, where v is expression (20):
k - k
03 = —3+a,| asuy + —301+F3 (21)
ha h:’.

We can also consider the oppaosite direction. At j = 3 and j = 2 from (16) it
follows:

- k L ]
o3(ua — va) - ﬁ{t‘z -u) = -Faj,
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. Fg F3 _ 1 1
where F; = o aA , (a3)™! ” —+ rayTe
Therefore
k - L] -
aj(ua —m) - H}(Ul —vw) = —Faj (22)

F, F F
where FY :—1+ 2 +—3,

a; o3 aa

1 1 1
ey—1 _ _*
(al) [ ks/hg + kz/hz‘

We put Eq. (17) into (22) and get

' . a
C!:(HA—‘UI)“'O](ui“—UI):_ Ta) — .l Fo.
It follows that
v = ajua + c'nu:',c + Fy 23)

ay +

- a
where Fy' = Flaj + a—lFo.
ind
From the first differential equation (16) we can write an expression where

v; is Eq. (23):

-1
vy == (:—l + aint\ (%l'v:. + Cigttiige + FO) (24)
1 1

By expressions (20), (21), (23), (24) we obtain the solutions of the given
problem for surfaces a;, i = 0,3. Assuming that the heat source function
J =0, we can write the temperature inside the window for every yo € [0, aa]:

a*uy + au;y

u(yo) = s
where
2)if o € for,02]: (@) = a—f_—+:— %)= ::#*,;W
3) ifyo € [@2,05):(@) "' = al +h' +:: 3’0; 2.(-‘:!.)—1 - a+ﬂsk—ayo.
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5. DISCRETE APPROXIMATION OF THE PROBLEM IN THE
2-D CASE

We consider 2 case with boundary condition (6} on the edge z = L and Neu-
mann boundary condition on the edge £ = 0 in domain D. Having chosen
a measured grid, we replace Eqs. (3) and all boundary conditions by differ-
ence expressions of the second order and then selve this difference scheme by
jiteration methods ([1] - methods of iterations).

6. THE FINITE VOLUMES METHOD IN 2-D CASE

We consider 2-D problem approximation applying the finite volumes method

to assume that in (11) f; = ki-ﬁ. We must approximate the right sides

of expressions (13), (14), (15) to get a difference scheme of the 2ud order.
This having done, we use the Tailor series for functions fy = fi{y) in point
¥y=yL:

f2) = felye) + 12 - vo) + (/D) (y — o) + o(g”)-

. .. 8w Bu 3 (3%
We know that function f(y) and derivatives Fws and 5%y — Oy -B—F)
are continuous in grid point ¥ = y. As a result, we get
—_ l _‘1‘_‘_‘_ 2 '] 3.
o= (34 250) O+ ole)
= (Lo+2a2)p 3.
Fis = (3g+ 6,(3;) . (a3) + ofg™); (25)
- ky + kg u 3
fo = "5 9%, *H

By dividing expressions (13), {14), (15), {25) by g we obtain difference scheme:

4 kl

Qigy
= (Bijr — v3j) = =

(Vij = Uise)

ki | ®ing) vid1j — 205 Hvioy; _
+ (? 7% i s =0
+
_z(”a'j+l - vij) - _;(vij - Uij_—l) + 12}]2 2 (vi+[j - 20.‘_-’; + vi—lj) =)
1 ki+ ks (26)

g—g'(vij+l - vij) - ;%(Uij = tij-1) + o (Ui — 20yt viog) =0
a
—A(“A - '-’ij) - '%(”ij - Uij-l)

ka  aag\ vip; — 2u +viey
\ +(2 * 6 72
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For equations (26):

1)j=0,y=0
ji=1lLy=ay
3j=2y=n0ay

3i=3y=a.

The coefficient matrix for system (26) is positive definite and we can solve
it by iteration methods.

7. AVERAGING PROBLEM

We consider 2-D case as in Chapt. 6. The way the problem is posed we
replace by that of averaging the temperature 4;(z) on a width 0 < y < @,
and the temperature @i3(x) on a width a; < y < as:

@)= o ]0 " iz, y)dy (27)
aa@ = [ wnds. (28)

Then temperature can be found for an contracted domain {(a; < y < a2) only.
First,we do modifications in layer D; (0 < y < a1). By integrating Eq. (3)
(i = 1) from 0 to e; we get:

k] owm
a; By

_Oum

y=a, 9y

_-o} +klaa% = _fl(x):
v-

where

- 1 [
i@ = [ ftands.
1 Jo
To use condition (7} we can write

by 2

du
o

—

T B 1C S

=0
where u = uq(z, y).

We consider approximation of function u,(z,y) in the direction of y—axis,
assuming that u)(z,y) is linear function:

w(zy) = %u(z.m + ;vl-u(z,o:)- (30)
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Similarly as in [2] we use condition (4), expressions {27), (30), (29) and
obtain the boundary cendition

k2
9| —a,

e & Ay Qi
-a1 fi(z) —arky E:'E (m“ut)

= k 4+ aiza (= wewt) = “'!“5}3 2(ky + u.-.;al)u

Kytjn i ( 2k + aium )
(31)

We find the boundary condition when y = a in case y = o; by assuming
u3(z,y) is linear function depending on y:

y—

a _
2 u(l',ﬂg) + L
a3 — a2

a3
a3 — az

u3(1v y) = ﬂ('.’l!,ﬂz].

Further, we obtain

] kiaa (44 — t)
2 3y y—az k + aslas — a2) A

o 2k| +CIA(03 - Gg) u)
9z2 \ 2(k, + a(as — a2))

asla; — az) B
2(k; +aalas — 62) 7 + (a3 — a2) fo(2)

+ki{aa — az) (32)

+ki(ay — ﬂz)w

where
1

a3 — Gz

a3
@)= —— [ Atz
a3
In this case we approximate Eq. (3) (i = 2) and condilions by difference ex-
pressions of the 2nd order. Similarly, we can consider averaging when u, (z,y),
uz(z,y) are quadratic functions [2].

8. ANALYSIS OF RESULTS

In the 1-D case (f = 0) the same solutions have been obtained with two
various methods. We consider case there is the heat source in layer D, (in
interior glass). We use the exact difference scheme to obtain results at f; = 10
(ua = 0°C,u; = 20°C,qip: = aq = 2,k = 0.74, k, = 0.0257):

u{0) = 19.7578; u(a; } = 19.7082; u{ay) = 0.5586; u{az) = 0.4921.

We conclude that the heat source has an influence not only in interior glass
bart in all domain D.

Dependence of heat transier coefficient @ = a;,; = aa. Values of function
t(y) can be seen in table 1:
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Table 1.

a=00 ao=0,1 a=1 a=12 a=25 a=10

u({0,6) 10.892 5.0517 0.9263 0.4856 0.2 0.101
u(0, 55) 10.8859 5.0858 0.9889 0.5512 0.2677  0.1693
u{0,5) 9.114 14.9141 19.011 19.4487 19.7323 19.83

u(0) 9.1078 14.9482 15.0736 19.5143 19.7999 19.898

The numerical experiments show: the smaller is coefficient a, the greater
is an isolation on boundaries y = 0, ¥ = a3, and when a — oo, temperature
u - u; on boundary y = 0 and u — ua on boundary y = a,.

Dependence of coefficients k;, k3. Values of function u(y) are in table 2
(ll.‘ = 2000!“.4 = oocla = 2)‘

Table 2.

k=74 k; =0,74 k; =0,0074 k3 =0,74 k1 =0,74
k2 =0,0257 k2 =0,0257 k;=0,0257 k3=2,57 k2 =0,00257

u(0,6) 0.48855 0.4856 0.2943 7.5205 0.0511

u(0, 55) 0.49515 0.551 4.272 8.5368 0.058

u{0, 5} 19.5048 19.448 15.727 11.463 19.9441
u(0) 19.5114 19.514 19.705 12.479 19.9489

The greater aie the coefficients k;, k2, the smaller changes of temperature
are in the glass and air layers.

Change of the thickness of air layer A = a; — a;. Values of function u(y)
are shown in table 3 (uq = 0°C,u; = 20°C, ky = 0.74, k; = 0.0257):

Table 3.

A=05 k=10 h=12

u(0,6) 0.485% 0249  0.209
u(0,55) 0.551 0283  0.237
u(0,5) 19.448 19716  19.762
u(0)  19.514 10,7502  19.7909

So the air layer is wider: 1) the temperature on boundaries y = 0, y = a3
is closer to indoor and outdoor temperatures; 2) influence of the outdoor
temperature on the indoor temperature decreases.

The results of the 2-D case have been obtained by 3 methods. Conclusion

the best of them are using the difference scheme {26). The corresponding
results {(ua = 0°C,u; = 20°C,u; = 20°C,0iy = @4 = 2,k = 0.74,k; =
0.0257, L = 1,0, = 0.05,a2 = 0.55,a3 = 0.6, steps g = 0.05,h = 0.1) are as
follows:
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0.49 0.49 04% 043 049 049 050 051 054 058 0.64
0.55 0.55 0.55 055 0.56 056 057 0.58 0.61 066 0.78
2.44 244 2.44 244 245 245 246 248 252 258 27
433 433 4133 434 434 435 4236 438 442 449 461
6.22 6.22 6.22 623 623 624 625 6.28 632 639 6.49
g.11 B.t1 8.11 8.12 B8.12 B8.13 814 B.IT7 & 8.27 837
1000 1000 10.00 10.00 10.01 10.02 1003 1005 1009 10.15 10.23
11.89 1189 1182 11.9¢ 11.90 1191 11.92 1194 1197 12.02 12.09
13.78 1378 13.78 13.78 13.79 13.99 13.80 1382 1384 1388 1393
15.67 1567 1567 15.67 15.68 1568 1569 1570 1572 1574 15.78
17.56 1756 1756 1756 17.56 17.57 1757 17.58 1759 1760 17.62
1945 1945 1945 1945 1945 1945 1945 1945 1946 1946 1946
19.51 1951 1951 19.51 19.52 1552 1952 1952 1952 19.52 19.53

Dependence of coefficient ay. The greater is coeflicient ay, the more influ-
ence temperature u; has over all domain.

The results for the averaging problem are the same as those obtained by
two other methods in the domain y € [ay,a;]
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TEM?ERATI_JRAS SADALIJUMA APREKINASANA EKAS
LOGA

ANDA BROKA, HARIJS KALIS un ILGA PAGODKINA

Darba apliko stacionaro silturna vadi§anas vienadojuma skaitlisko risinasa-
nu, nosakot temperatiras sadalijumu dzivojamas ékas loga, kas sastdv no
diviem stikliern un gaisa slana starp tiem.
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ABSTRACT

In this paper it is construcled an approximate analytical solution for steady state heat
exchange in a regular assembly with rectangular fins.

In this paper, a way is shown of finding an approximate analytical solution
for heat exchange in a regular assembly with longitudinal fins. The paper
is a continuation of the investigations initiated in [1, 2]. In [1] we started
with attempts to generalize the conservative averaging method for the L-type
domains. This method was primarily developed by A. Buikis in [3] for domnains
of a rectangular form. Here we are solving the problem in a way that differs
from [1, 2]. This way allows the conjugation conditions to be fulfilled on the
contact line between the wall and the fin.

'This work was partly supported by Latvian Council of Science under Grant 96. 0779
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1. PROBLEM STATEMENT

Consider a periodical system with a rectangular fin whose elements, in di-
mensionless arguments, are a wall {r € [-§,0],y € [0,1]} and a fin {z €
{0,1),y € [0,b]}. The symmetry axis (or periodicity conditions) goes through
the median of the fin, ¥ = 0, and the line y = 1.

The physical and mathematical content of the problem is practically identi-
cal to the formulations given in [1, 2]. The difference is that here a normalized
temperature is employed; that is, the temperature of surroundings to the left
of the wall (at z < —#&) is equal to the unity, and to the right of the wall (at
x > 0} it is equal to zero.

The stationary heat process in such a system is described as follows: in the
wall - by the differential equation

U, 8,

3+ B2 =0, -6<z<0,0<y<l (1)
and in the fin -

U U

_55:7+W=0' 0O<z<lO<y<h (2)

with the boundary conditions: on the left border of the wall

%-wgu—uo):o, r=-60<y<]1, (3)

and on the right border -

%'4-1'1\114\:0- r=20, b<y<lv (4)
Jgr

while for the side of the fin

ﬂ.yﬁ[]:ﬂ, O<z<l, y=5, {5)
dy

and for its end
ou
—+8U=0, z=1,0<y<kh (6)
Az

the periodicity (symmetry) conditions are as follows:

alh

8o| _ 9Us
=

—_-— =0, -0<z<0, N
=0 ay =1
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au
By

To complete the problem formulation, the conjugation conditions should be
mentioned. They can be written in the form:

=0, 0<z<l. (8)

dlo o U
Uslz=—0 = Ulz=40, 8 B e Bo 2 . O<y<h (9

Here we have employed the dimmensionless arguments:

z y

1=B+R'y=B+R'

and the dimensionless parameters:

A L B

TR BT R T ELR

where 2B is the fin thickness, 2R is the distance between two adjacent fins;
L stands for the fin length, and A denotes the wall thickness.
The parameters of boundary conditions (the Biot criteria) are as follows:

_ ho(B + R) _h(B+R) , h{(B+R)
38___5——_-'&— ko rﬁ_ k ]

where ky(k) is the heat conduction coefficient for the wall (relative to the fin);
ho(h) is Newton's coefficient of heat exchange with the surroundings on the
left (right) side.

2. SOLUTION FOR THE FIN
We will seck a solution to the problem for the fin in the form [1}:
U(z,y) = fo(z) + (e — 1) filz) + (1 — ™) fu(z), p=b7", (10)

where fi{z), i = 0.1,2 are unknown functions. To found them, we will require
that (10) fulfill the boundary conditions (5), (6) and (8) and basic equations
{2).

Fulfillment of boundary condition {8) leads to the relationship f>(r) =
—f1(z}), from which it follows that (10) can be presented in the form:

Ulz,y) = Jo(z) + 2cosh{py) - ) fi(z)- (1
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Now we will define the mean integral value of the function U(z,y) in the
y—directica:

b
u(z) = p/; U(z,y)dy. (12}
Having integrated (11), we obtain
_ u(z) — fo(z}
112 = sinh() - 1)

which gives for (11}, by excluding f, (z) from there, the following:

Ulz,y) = cosh{py) — lu(z) sinh(1) — cosh(py)

sinh(1) — 1 soh() =1 > (13)

Having required that boundary conditior (3) be fulfilled, we derive:
psinh(1)u(z) — psinh(1) fo(z)

+08(cosh(1) — Du(x) + A(sinh({1) — cosh(1)) fo(z) = 0,
which in a shorter form reads as
Jo(z) = Yu(z), (14)
where

_ sinh(1} + fb{cosh(1} — 1)
v= sinh(1) + Bb(cosh(1) — sinh(1))”

(15)

This means that representation (13) of the solution U (z,y) can be reduced
to the form:

U(z,y) = u{z)®(y). (16)
Here _
#(y) = (1-1v) cos:il(lig?l;-wlsmh(l) -1 (an)
m - L
¥y)=1+(1- xb}“h:ﬁ(;)“f’ll‘("”’
Using (15) we can convert this function into the y—free form:
3(p) = sintr(1¥ + Bb{cosh(1) — cosh(py)) (18)

sinh(1) + 3b(cosh(1) — sinh(1)} '
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from which one can see that ®(y) > 0 for all y € [0,}] and that it is a
descendent function.

The expression for solution (16) shows that there has remained only one
unknown function - u(z). It can be deduced if we have required fulfillment of
the integrated basic equation (2):

au

fu(._ﬂ:) E(BU _ou
b y=t dy =0

dr? By

):0, 0<z <l

The derivatives of function U(z,y) at the points y = 0 and y = b can be
expressed via boundary conditions (5) and (8) as

d?u(z)

e lu(z) =0, O0<z<l, (19)

where

ut = %@(b). (20)

The latter expression can be rewritten, with the help of (18), as

W= 52(coth(1) —11 T By (21)
Integrating boundary condition (6) in the y—direction, we get:
u'(l) + Bu(l) = 0.
This allows the solution of equation (19) to be written as
u(z) = Cy(p.e"* + e™#%), (22)
where
= :: +g ~3ul
Then from (16) it follows:
Ulz,y) = Ci(p1e** + e #%)B(y). (23)

Later, we shall define the free constant C;, when setting up a correspondence
between the solution for the fin and that for the wall.
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3. THE MAIN RELATIONSHIPS FOR THE WALL

We will express the exponential approximation for the wall in the z—direction:
Us(z, ) = go(p) + (7% = Ngaly) + (1 - e¥)gu(y), d =47, (24)

where the unknown function ¢;(y), # = 0,1,2 will be songht in a similar

way: by demanding that the boundary conditions and the basic equation be

fulfilled.
First, we will define the integral mean in the z—-direction:

u(z)=d /q Ua(z,y) dz. (25}
—&

Integrating representation (24) of function Us{z, y) we obtain the relationship:

uo(y) = gy} + (e — D (¥) + e o (y). (26)

We should require fulGllment of boundary condition (3). We obtain then,
that

(e + B36(e — 1))gs{y) + (¢! + 855(1 - e " Naa(y) = 561 - u(¥)). (27)

Excluding unknown function g2(y) from equations (26) and (27) we get:

Kin(y) = A1go(y) — Bruo(y) + Dy, (28)
where
Ky =e Y2+ Bad(e - 1)(2-e)), (29¢)
Ay = e (1 + Bb(e - 2)), (29,)
By =e7'(i + bl - 1), (292)
D, = e”'308. (293)

In its turn. elimination of function ¢;(y) from equations (26) and (27) gives
the relationship:

Kig:(y) = - A190() + Bauely) - Da. (30)

Az = e+ 8, (31,)

By = e+ Fbie - 1), (312)
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Dg = ﬁ36(8—2) (313)

Expressions (28) and (30) are more convenient to write in the form:

a1 (y) = a1 90(y) — biuo(y) + di, (32,)
92(y) = —azg0(y) + byuo(y) — da. (322)
Here 4 B D
ai = le, bt—}?:) di K'_'lr =1|2

In the earlier publications [1] we made an attempt to write an equation for
the temperature on the right border of the wall - go(y). Here we will obtain
am cquation for the mean integral temperature ug(y).

First, we exclude g, (¥} and g:{y) froin expression (24) with (32;),i=1,2.
We then get:

Up(z,y) = (1 + (e — Day — (1 - e)az)go(y)
+{(1— e®)by — (™% = Db)uo(y) + (e ~ 1)dy - (1 —e™)dy.  (33)
Further transformations are associated with conditions on the border z =
0. These conditions are different for the interval y € [0,5], where the wall
conjugates with the fin, and for the interval y € [b,1], where the former

contacts with surroundings. Therefore further calculations for the wall will
be diflerent in these intervals.

4. SOLUTION FOR THE UPPER PART OF THE WALL

We will make use of boundary condition (4). Let us demand that the expres-
sion for Up(x, y) meet this condition. This gives:

(@2 — a1)go(y) + (by — b2)uo(y) + d2 — di + Fodgo(y) = 0.

This relationship can be rewritten in the form similar to (32;):

9o{y) = boua(y) — do, (34)
where
_Bo ,_Do
b"_Kn' d°_Ko' (350)
while
Ko=A; - A+ BodK, =e-e ' +2858e™" + BodK,, (35)

Bo = Bg - B[ = e“’(ez -1+ ﬂg&(ﬂ - 1)2), (352)
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Do = Dz - Dl = Hgﬁ(e - e_' - 2) (353)

The expression (34) allows representation (33) of Ug(r, y} to be rewritten in
a form depending on one unknown function only-on the integral mean ug(y):

Uo(z,¥) = (bp + (a1bo — by)(e™% — 1) + (b — aabo)(1 — ™ ))ue(y) — dp
+(dy — ardo)(e™" — 1) + (azdp — da){1 — ™). (36)

Next, we integrate the differential equation (1) in the z-direction:

Puoly) 1 80|
dy? § 9z | __,

T=

=0, (37)

find the derivative of function Ug(x, y} and substitute it into this integrated
equation. The result reads:

% —xlup=—-0,, b<y<l, (371)

where:
k2 =672((by - arba)(e ~ 1) + (b2 — azbo}(1 —'e7")), (38)
0; = 67%((d) —a1do)(e — 1) + (d2 — axdp)(1 — 7). (382)

By means of (29;), (31;), and (32;), the expression for k2 can be rewritten
as

k2 =2672K;" ((Bo + 83)8sinh(1) + 265 836%(cosh(1) - 1)), (39)

which clearly shows that k% > 0.
Integrating boundary condition (7) in the z-direction at y = 1, we obtain:

ug(l) = 0.

With the help of this boundary condition, the gencral solution of equation
(37,) is found in the form:

ug(y} = C2 cosh(x(l — y)) + 82, (40)
where o
2
02 = F
that is,

g, — (DyKo — Ay Do)(e — 1) +(D2Ko — 42 D0)(1 —e7") (40,)
* T (B1Ko - A1Bo)(e = 1) 4+ {B2 Ko — A2Bg)(1 —e71) !

Similariy to the fin case, the remaining free constant C, will be defined
later.
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5. SOLUTION FOR THE LOWER PART OF THE WALL

Counsider, first, representation (33) for the wall part y € [0, b].
Let us require that there be fulfilled the conjugation condition (9,). Using
(23), we get
go(y) = Ci{1 + i }B(y). (41)

Consider, next, the derivatives of function Up(z,y) from the integrated
equation (37) at the points z = 0 and z = —4. We will demand that the
conjugation condition (9:) be fulfilled, using (23) once more. This gives

Boir

19U,
0 Clﬁ(l - 1) P (y).

13U, _ BpalU
4 Oz

=0 B EE =0

In its turn, from (33), with due regard for {11}, we derive:

13U,

1
6 ax ﬁ(ble - bZE_l)uD(y)

r=-8

1+]—I1

—C) ——(a1e —aze N®(y) — 57 (dle —dye™t).

Then

E%I"D ___B.e—Bge_'lll W) + Dye — Dae™!

30z |,y 7K, oY 5K,
1+ Are — Aqe”

+C (( #l)(azl;'l 2 ) ﬁg‘;-l (1 #l)) ‘I’(y).

Let us substitute this expression into equation (37), having divided prelim-
inarily the function ®{y) from (18) into two parts:

®(y) = ¥o — ¥, cosh(py),

where

&, = ((3b)~" sinh(1) + cosh(1) — sinh(1))~",
= ((8b)~" sinh(1) + cosh(1))%,.

Then equation {37) can be written in the short form

ﬂaﬂo

dy2 z\z‘uo =-D;-C, 93 o+ 63 1 cosh(py) (42)

Here
Bie - Bee™'  Bpb(e - 1)?

AT = =
2K, ed’K; '
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Da = Dle'—DQE_I _ 2%’6
3T TR, T ed?K,’

e3.i = 93(’.-, i= 0! 11

where

0. = (die ~ Ae™ )1+ 1)  Bor
5 = _ Pon

52K| ﬂa (1_”1)
_ BRile~et -2) Bop
== 7K, (1+#1)-ﬁ(1—ﬂ1)-

From (7) we derive the following boundary condition
u(0) =0
for equation (42). Thus the general solution of this equation appears to be
ug{y) = C3 cosh(Ay) t’C. 03 + C18, cosh(py) + da. (43)

Here
_ B30 89, 1 Dy
& = YR 34—p2——_A2: (P—E)l d3=F-

The expression (43) is valid if A # d~! = p. In case A = p, instead of (43)
we have:

ysinh{\y) +dy.

uo(y) =0, cosh()ny) + O3 + 0193,1 22

(43')
In analysis that follows only the general case (i.c. solution (43)) is consid-
ered in detail.

6. CONJUGATION OF THE PARTIAL SOLUTIONS

Now in our solutions we have at hand 3 free constants: in formula (23) (so-
lution for the fin), in formulas (36), (40), (for the wall upper part}, and in
formulas (33), (41), and (43) {for the wall lower part).

The first requirement to be set is that at the point z = 0, y = b of the
contact between the wall upper part and the fin the temperatures coincide.
Then from (23), (34}, and (40) we obtain:

Cr(1 + p;)®(b) = Cabgcosh(k(1 — b)) + 62bg — dp. (44)
The next two demands will be associated with the contact line between

the upper and the lower parts of the wall. \We will require that the mean
temperatures and the mean fluxes coincide.



Approzimate Analyticel Two-Dimensional Solution 43

From (410) and (43) it follows:
Cscosh(k(l — b)) +8:=C3 Cosh(z\b_) + C, (8, cosh{1} + 83) + dy. {45)

In its turn, the coincidence of the fluxes (i.e. that of the derivatives) gives
the equation

—Csusinh(k(1 — b)) = C3Asinh(Ab) + C18,d™" sinh(1). (46)

It is easy to eliminate Cy from this equation system.
From (46) we have:

_ C185 + Caxsich{x(1 - 1)
Asinh(Ab)

Cy = ' (47)

where
95 = 04d" Sil‘lh(l).

Substituting thus obtained expression for C; into equation (45) we derive Cs:

C = C1(03 — 0;3cosh(1) — 827" coth(Ab)) + dy — 82
> 7 “cosh(x(l - b)) + kA~ sinh(k(1 — b)) coth{Ad)

(48)

Now it remains to substitute the expression C; into equation (44) so that
C, is found. It is readily seen that the denominators in equations (47) and
(48) are not zeros. It is possible also, at the last step to act otherwise: namely,
to derive €', from equation (44) and substitute it into equations (48). Thus
all the free constants can be obtained and the approximate analytical solution
to the problem found uniquely.
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TUVINATS DIVDIMENSIJU ANALITISKS ATRISINAJUMS
GARENISKAI TAISNSTURA RIBAI

MARGARITA BUIKE un ANDRIS BUIKIS

$aja raksta ir iegits tuvinats analitisks atrisinijums stacionarai siltuma
apmainas problémai regularai sistémai ar garenisku taisnstara ribu.
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ABSTRACT

The certain technological process derermining by chemical reactions on the surface of
the yniformly moving glass fibre material taking into account the effect of gravitation is
considered. There is carried out the mathematical model of this process, which under
some assumptions is reduced to boundary value problem for self-similar system of ordinary
differential equations.

INTRODUCTION

The mathematical model of chemical reactions which are taking place on the
surface of the uniformly moving vertically imbedded glass fibre material, if it
is pulled through bathes filled with acid solution, was constructed and partly
numerically investigated in the article [1].

The urgency of this investigation was caused by necessity to minimize sub-
stance of alkaline metal oxides in the glass fibre material and thus magnify
its thermal strength. The simplest scheme of the mentioned surface reactions
in the acid solution is the reaction between some alkaline metal oxide, which
is situated on the surface of glass fibre material, and acid. As a result of this
reaction is the forming of the alkaline metal salt in the solution.

The generalization of this mathematical model, which was reduced to the

1This work was partly supported by Latvian Council of Science under Grant 96. 0692


mailto:cepitis@lanet.lv

46 J. Cepitis

boundary value problem for self-similar system of second order ordinary dif-
ferential equations with boundary conditions at the endpoints of the positive
semiaxis, was considered in the paper [2]. There was investigated the bound-
ary value problem

Fi(0) = A; L1{O)(Ax+1 £5(0) + Aj)s
fi(o0) =mj,

where j=1,...,k 0, f;, A; > 0 a5, Aey < 0 A € R,

k
mj € [0,1], Zm; <1
=1

In particular, the sufficient conditions for solvability of this boundary value
problem was formulated in the paper [2].

The circumstance that the effect of gravitation was not taken into account,
when this mathematical model was constructed, is causing certain objections.
We offer in this paper perfection of the mentioned mathematical model taking
into account the effect of gravitation in the situation which is implied by
vertically imbedded uniformly moving glass fibre material.

THE MATHEMATICAL MODEL

Let z,, r; respectively are the spatial coordinates in the lengthwise and the
normal directions of the glass fibre material;

u;, uy are the velocity components of the acid solution flow in the directions
corresponding to axes ,, T3

pi, m;. D; respectively are the density, the mass concentration and the
diffusion coefficient of acid (i = 1) and alkaline metal salt (i = 2) in the
solution flow, pg is the density of water,

— — b 1
p=(ﬂo lel+Po sz2+_)
Pof Pop2 Po

is the density of the solution,
» is the coefficient of viscosity,
¢ is the acceleration of gravity and introduce the function
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where p* is the initial density of the acid solution (z, = 0).

Granting this and retaining simplifying assumptions as it was done in [5],
the equations of hydrodynamics (the equations of flow continuity and mo-
mentum conservation} for the boundary layer we can write in the following
form

ou , dus _
311 322.— !
&ul at.lz _ 62u|
"'a_x. +ﬂ2£ =v oz + gy,

but the differential equations of substances transport appear like this

Om,- 3171_,' _ ] i ?_m;_, ad ij . _
P(“'ax. +"2azz)—l’1(az. Pon ) Tom\o5, ) ) IV E

With respect to the boundary conditions we must say that

uy(21,0) = vo, u2(z;,0) = 0,

u{Z1,00) = ua(z;,00) =0,
@(xy,00) =0,
m1(0, z2) = mi,my(0,z2) = 0,

where vy is the velocity of the glass Alre material and m} is the initial mass
concentration of the acid.

The boundary conditions which are determined by the surface chemical
reactions are discussed in the [1, 2] and have the following form

6‘m,- (I] N 0)

= ‘4jml(zll 0)('\3"13'(3]! 0) + AJ)r j =12,
6‘12

where physically evaluated coefficients 4;, A2 > 0, Ay, A3 < 0.

THE SELF-SIMILAR PROBLEMS
Introducing the flow function & by the equalities

g3 o

U= —, Up=-—
dz,' ar,’

choosing new variables as it was done in [4]

3
(s N @
= (4&'21]) 2. h= (431)igiyi‘
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using designations f; = m _,-(r;),-j = 1,2 and assuming inequalities

8%m; Fm;

o € ITLR

now we obtain the following system of ordinary differential equations

_ v 0= P po — pz ) _

A" + 3R — 2(R')? = .

As far as vp # 0 similarly succeding [1] we can also to use the new variables

Yo

;
7=z (—) b = $(wozs) L.

vr)

Then the obtained system of ordinary differential equations has the following
view

¥ 4 2
e gl =o(1e L) (B B2y =2,
2
hlﬂ+ 2hh"— ppp

The boundary conditions in both cases are reducing to the following form
£;0) = 41(0) (2[00 +3;), =12,
h(0) =0,1'(0) = /i
Hioa) =my, f2(o0) = 0,

A'(co) = 0.

Of course, the positive factor A ; is different in these cases, and note that
i =1 in the second case.

As well as in both cases we are obtaining for any fixed 1, € (0, +¢) self-
sitntlar system, which does not satisfics the classical Bernstein Nagumo Qpial
conditions providing an a priori estimate for the derivative of the bounded so-
lution the solvability of these boundary value problems causes a mathematical
interest.
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GENERALIZATION

The boundary value problem which generalizes the mathematical model of
the surface chemical reactions taking into account the effect of gravitation
can be written analogously as it is done in the paper [2]. Similarly we derive
the boundary value problem

k
} 4 Bihf = pln; +12m°) Y aifif;,

=1
U + ahh" - b(h:)z — R(P),
£300) = A [ (0} Arr £5(0) + Aj),
A(0) =0, (0) = g,

fi{o0) = mj, A'(0}) =0,
where A5, 8;, T4, 125, B0,a> 0,620, p, A € Ry aj, M1 <07 =1,...,k;

k
m; €[0,1],)_ m; < 1; R e C([0, +0)),

j=!

p= (Xk: aifi + Bu)

=1

We note that for solvability proving of this boundary value problem is not
possible to employ a straightiorward application of the method of a priori
estimates as it was done in the paper [3] because the boundary value problem

f" =a,

f(0) = f(o0) =0

has not a solution for any a € R, a #£0.

If we are able to show that the component of solution h has a sublinear
growth, the proof of the existence theorem becomnes possible using the proce-
dures from the paper [2].
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PAR KADU VIRSMAS KIMISKO REAKCLJU MATEMATISKO
MODELI, IEVEROJOT GRAVITACIJAS IETEKMI

JANIS CEPITIS

Apliikots kida tehnologiska procesa, kuru nosaka virsinas khniskis reak-
cijas uz vertikali iegremdeta un ar vienmdrigu atrumn vilkta stikla skiedras
auduma, matemaitiskais modelis gravitacijas ictekme.

Pic zinamiem nosacijumiemn iegiita robezproblenia automodeln parasro di-
ferencialvienadojumu sistemai.
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ABSTRACT
The solvability problem for the systemns of the type
(osfur, u2)ul)’ + Bifur,u2) = fi, (1)

uila;) = A, 1,i=1,2, {2)

is considered. Unboundedness of the lowest coefficienis 0; has been shown to create generally
speaking the non-existence of the solution deterinined in the so-called mushy region by one
and the same unknown function.

Keywords. Elliptic systems, discontinuous nonlinearities, solvability.

AMS subject classification. 35J45

Discontinuous nonlinearities (DN} appcar in modelling physical processes with
phase transitions. A typical example of such processes is that of crystalliza-
tion. In a case of a single equation one can determine all DN in the same
fashion, i.e. by one and the same unknown function in the so called mushy
region [1]. It has not been understood well enough yet what the right way to
define the solution for systems with DN is.

Let @} = (@1,a2), fi € L), 9 € C(R), Qo ={(t, )V ER xR 7 =9g(1)].
Q = (Rx R)\Qp and let the coefficients a: Q - R, where a; = £, oy = 3,

YThis work was partly supported by Latvian Council of Science under grant 96. 0248
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be continuous functions in @ with finite limits

af(t,7) = ._lgr:lFoa,,(t,s), E=1,....4.

By analogy with a single equation (see, for example, [1]) we use the following
definition of the solution.

DEFINITION. The pair u = (uy,u3) € H'(N) x H'() is said to be the
solution of (1}—(2) if the boundary condition (2) holds and if a such function
@ € L2(f2), with values from [0,1], exists that

Jlatwonint - atalwpini + finldz =0 we B, i=12 @
Q

where
a(m,@)=af(uwpe+o (1-9), k=1,.. .4 4

REMARK 1. The values of function ¢ are essential only in the mushy region
Qo:={z€N uz(r) = g(u1(z)) }, because a} = af = a; = a; outside .

REMARK 2. The solvability of (1}-(2) in a case 8; = 32 = 0 under some
additional assumptions on a; (i = 1,2) by appropriate smoothing technique
of DN has been stated in [2].

To construct the desirable counterexample when one of 3, is not zero we
choose
N=(0,1), An=An=0 Az=An=1 /=0,
Hi=h=0, gt}=t, w=ur—u,

1 fw<?,
a(w) = oy (u) = az(u) = { ) Hw<d

-1 ifw>0,
A(w) = By(u) = { 2w -1 ifw<l
Then (2), (3) can be rewritten as follows
[erwoninidz=0 vm e g %)
0
f (a* (w, )y — Bw)m) dz =0 Vi € H] (6)
]

wi(0) =0, w(l)=1, i=12 (7)
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LEMMA 1. Suppose that (uy,ua) is the solution of the system (5)-(7). Then
w=uz —m < 0infl

Proof LetQ,={z€cQ w(r)>0}. lfw(z) >0 for somez, € I then
meas {24 > 0 because of continuity of w € Hy.
Difference of the equalities (5) and (6) with gy =72 = 7 yields

/ (" (w, )W’ ~ B*(w,@)m) dz =0 Yy & Hy. (8)
Q

Let us choose 7 = max (0, w). Such 7 is of class H} and ' = »’ in 24 and
n = 0 outside §1,, see [3]. As a® = 2 and §° = -1 in 2, the equality (8)
implies

f(zw" +w)dr =0

1

what contradicts to assumption w(z,) > 0.
This completes the proof.

THEOREM 1. The system (5)-(7) has no solution (u,,u2).

Proof LetQ_ ={zeQ:w(r)<0}andp={z€N w(z)=0} As
A* = -1 in Qy then taking intp account Lemma 1 and the well-known fact
that w' = 0 almost everywhere in §p, see, for example [3], from the equality
{8) we obtain

/(w’n’ — (r?w - 1)n)dz + fndr

Q_ L

f(w'q' — wlun)dzr + /r)dz =0 Vne H,. (9)
Q Q

Let 5 be the function sinrz. Then the former integral in (9) is zero but
the latter is positive, a contradiction.
This completes the proof.

REMARK 3. This counterexample, see also [4], is rather a specific one be-

cause of unboundedness of coefficient J» and therefore a lack of a priori esti-
mate ||u]| 4, < const.

Is there a counterexample for analogous system with bounded coefficient
B22?

Below we shall show some systems for which a counterexample does not
exist or in other words we shall formulate requirements on coefficient § which
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guarantee the solvability of the following system

/a]’(u',gp)u'n; dr =0 ¥n € H} (10)
11
[ @stw st - " woim) dr =0 v € A} (11)
[v]
w(0) = (0) =0, u(1)=v(l)=1. (12)

As above let ait, a3 and 3% be the right and left limits of the coefficients
ay, a; and J respectively when w = v — u = 0.

LEMMA 2. Let O be the point of the segment with endpoints 3* Then the
system (10)-(12) has a solution.

Proof. Proof consists of the direct verification that functions u(z) = v(z)
= z with {z) = g = 3~ /(3= — %) satisfy relationships (10)-(12). Observ-
ing that the function ¥(¢) = 8% + (1 — ¢) is monotone and (0) = 47,
¥(1) = 8%, 7(po) = 0 we see easily that yp € [0,1] as it is required by
Definition.

REMARK 4. Notice that boundedness of the cocfficient 3 is not required in
previous Lemma.

LemMa 3. Jf B(w) is bounded when w > 0 and 3 > 0 then the system
{10}-(12} possesses a solution.

Proof. Let us consider the system

/alg(w)u’q; dr=0 ¥Yq € H; (13)
)
[(agg(w)v'nQ - B(wmp)dz=0 ¥mpe€ H) (14)
o

where ayo(w), a22(w) and 3 (w) are equal with oy (w), ax{w) and 3{w) when
w > 0 and af, aj and 3* when w < 0 respectively. Due to continuity
and boundedness of the coefficients the system (12)-(14) bas a solution, for
example, by Schauder’s principle.
Now our aim is to-state that w > 0. Note that this implies Lemma 3.
Really if w(z;) < 0 for some z, € € then due to continuity of w there is
interval Q, = (z2, x3) where w < 0 and ur{z;) = w(z;) = 0.
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Let us choose functions 7y, 2 as follows: m = afw, = afw in O
and 7, = 1» = 0 outside this interval. Then the difference of the equalities
(13)-(14) yields

/(a;afw'z -afftuw)dz =0
01

with a positive integrand.
This contradiction completes the proof.

LEsmMA 4. If B(w) is bounded when w < 0 and 3~ < 0 then the system
{10)--(12) possesses e solution.

Proof. Proof is analogous to the one as for Lemma 3.
From Lemmas 2--4 it follows:

TUEOREM 2. The system (10)-(12) is solvable for any bounded and contin-
uous function wrr J(w), if w #0.
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DAZAS PIEZIMES PAR SISTEMU AR PARTRAUKTAM
NELINEARITATEM ATRISINAMIBU

ANDREJS CIBULIS

Pieradits, ka jaunako koeficientu neiercbezotiba, visparigi runajot, izraisa
atrisinajuma neeksistenci, ja to definé ar vienas un tas pasas nezinamas funkei-
jas palidzibu ta saucamaji divfizu zona.
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ABSTRACT

In this note we give some new results concerning the unsolved problem of
determining all rectangles packable with congruent pentominoes.

Introduction. Solomon W. Golomb introduced the word polyemine in his
1954 paper [1]. He defined a polyomino (a generalized domino) to be a fi-
nite set of rook-wise connected cells in an infinite chessboard. In a case
when a polyomino consists exactly of n cells (unit squares} it is called a
n-omino. Players of the computer game TETRIS™ are familiar with tetro-
minoes. There are 5 tetrominoes there. Three next ones in sequence are 12
pentominoes, sce Figure 1, where they are conventionally named after letlers
of the alphabet. It is this wealth of pentomino puzzles that has attracted the
laymen and the professional mathematicians, alike to polyominoes.

P B, B P e Al B o H

F 1 .. NP T U V¥V W X Y 12

LL

Figure 1. 12 pentominoes.

We are interested in the problem of packing a rectangle with copies of a
given pentomino. The works [2, 3, 4] are the classic references in this context.
Our results have been obtained jointly by map and computer. A com-
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puter program written for the Pentium 200 succeeded in finding soine new P-
rectangles (1. e. a rectangles packable with congruent copies of pentominoes
P). The main idea of out algorithm has been tied with computer analysis of
the shapes of the boundaries which arise when first & columns (k =1,2,3,..))
are covered by pentominoes.

P-rectangle is said to be prime (rectangle) if it cannot be divided into
smaller P-rectangles. A box-packing theorem which asserls thal prime sets
are always finite with an important implication for polyomino and polycube
enthusiasts was proved in [4]. However, the problemn of characterizing the
rectangles (or boxes) that can be packed with polyominoes (or respectively)
polycubes is difficult and solved only in a very few cases.

Pentominoes which cannot tile rectongles. There is not much to tell about
these pentominoes. By simple checking one can state that copies of pentomi-
noes F, N, T, U, V, W, X and Z respectively cannol tile any rectangle.

1-rectangles. For [-pentominoes the necessary condition that at least one
side length, of P-rectangles is divided by 3 is also sufficient. Therefore all
J-rectangles are as follows: 5k x m, where k and m are arbitrary positive
integers.

P-rectangles. There are only two prime P-rectangles: 5x 2 and 15 x 7. All
the other P-rectangles one can obtain from rectangles of these two types and
represent them as fallows: 5 x 2n and 5k x m where n> 1, k> 2and m> 6
orm=24.

L-rectangles. There are also only two prime L-rectangles 5 x 2 and 15 x 7.
The P-rectangle 15 x 7 and L-rectangle 15 x 9 are mentioned in [2] but
rectangle 15 x 7 shown in Figure 2 we did not succeed in finding in literature.
L-rectangles are only those ones: 5 x 2n and 5k x m where n > 1, k > 2 and
m>6orm=724.

il

Figure 2. L-rectangle 15 x 7.

Y -rectangles. In 1970 C. J. Bouwkamp and D. A. Klarner [3] wrote that
the problem of delermning all prime rectangles for the Y is far from solved.
...Unless small rectangles that can be packed with Y 's have been overlooked
the following rectangles are primes for the Y:

(5x 10}, (10x 16}, (10x24), (15x 16), (15x22), (15 24), (20x22) and (22x25),
{+)
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and pointed out that the most impertant open problem in this area is to de-
terminc whether the Y packs some rectangle with an odd area.

In a comparatively short time after this problem was posed J. Haselgrove
stated that 15 x 15 is in fact Y-rectangle. He wrote [5]: The computer runs
showed that il is nol possible to fill rectangles of area less that 225, or of
dimensions 9 x 25, but that the 15 x 15 square can be filled as figure shows... |
do not know whether the 15 x 15 solution (see Figure 3) is unique apart from
the obvious H -symmetries.

Now we know that the solution is not unique. Moreover, in 1996 the problem
of packing the square 15 x 15 with Y-pentominoes was posed as a contest
problem in the supplement Kronis Visam of Latvia newspaper Neatkariga
Rita Avize (September 21). Two of contestants M. Opmanis and A. Litvinovs
found the solutions of this difficult problem. The solution of M. Opmanis has
been published in the above-mentioned newspaper (December 14) and shown

in Figure 4:
J_ J— 1]
[ L] 1 L {
L L] :H:
Figure 3. Solution of J. Haselgrove. Figure 4. Solution of M. Opmanis.

In 1974 J. Bitner [6] by means of computer analysed the Y-rectangles with
dimension 5n x 12. By exhaustive searching he stated that no solutions exist
for » < 10. Hence n = 10 yields the smallest such region. Moreover, he
succeeds in finding such a 50 x 12 solution which one can easily extend to
solutions for 5n x 12, n > 11, periodically repeating the darkened region as
in Figure 5. S0 12 x b is Y-rectangle only when é = 5n, n > 10.

Y c S hch

Precaution of C. J. Bouwkamp and D. A. Klarner [3] is not superfluous.
After ten years K. Scherer [7] stated thai some of Y-rectangles, see (*), are

Figure 5. Y-rectangle 55 x 12.
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not primes and presented the new revised list (5 x 10), (10 x 14}, (10 x 16),
(15 x 14), (15 x 15), (15 x 16), (15 x 22}, (20 x 9}, (20 x 11}, {25 % 22), (25 x 27),
{30 x 9), (35x27) and (57 x 12),n = 10,. ., 19.

By computer analysis and some theoretical arguments we found the fol-
lowing (and as il seems) new Y primes {at least in [1-10] these Y-rectangles
cannot be found):

_&5%51—”‘”411 | i ¥ e
r—L L
!

Figure 6. Y-rectangle 55 x 9.

e
it

Figure 7. Y-rectangles 23 x 10 and 27 x 10,

]

Figure 8. Y-rectangles 30 x 11 and 45 x 11.

Remark. The rectangle 35 x 27, see [7), is not prime. It can be composed of
the three smaller Y-rectangles: 35 x 11, 20 x 16 and 15 x 16.
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Figure 9. Y-rectangle 30 x 13 and 45 x 13
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TAISNSTURU PARKLASANA AR PENTAMINO

ANDREJS CIBULIS un ILVARS MIZNIKS

Apliokota Iidz 5im neatrisindta probléma par visu taisnstiru atrasanu, kuri
parklajami ar vienadiem pentamino. Ir atrasti vairaki jauni pirmtaisnstin.
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ABSTRACT

A vanant of straight line method for numerical solving of nonlinear problems of partial
differential cquations with initial and boundary conditions is considered in this paper. The
corresponding system of ordinary differential equatinns has been solveill by means of the de-
generate matrix method which is simply programmable and provides high precision even for
stiff cquations. Also problems with conditions of the periodicity instead of boundarv ¢on-
ditious are considered. The solution is approximated by global nonsaturated imerpolations
with nodes as zeroes of Chebyshev's pulynomials.

1. INTRODUCTION

For solving nonlinear probiems of partial differential equations by means of
the straight line method one of the difficulties is to solve a corresponding sys-
tem of ordinary differential equations. Often it is a stiff one and needs very
laborious calculations by means of traditional methods. We recommend new
method for the numerical solving of an initial value’s problem of nonlinear
systems of differential equations [1] which in further we will call the DM-
method (degenerate matrix method). This method is based on the global
nonsaturated approximations of unknown functions and uses the special de-
generate matrices together with the iteration process for solving equations
received after 2 discretization of the problem. The calculation’s algonithm for
the DM-method can be represented in the matrix form, simply programmed

!This work was partly supported by Latvian Council of Science under Grant 96. 069)
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on computers for a system of any degree, and gives very high precision even
for stiff equations. Therefore, the DM-method extends possibilities of the
straight line method for partial differential equations. The paper is organized
as follows. In the Sect. 2 we introduce formally the mathematical basis of
the DM-method. In the Sect. 3 we give two algorithms for solving partial
differential equation u} + (uu_!,?,)' = 0 with the initial and boundary value's
conditions for the solution using a nonsaturated interpolation with respect to
the coordinate variable z in the matrix form. There are given some numerical
results of the calculation. In the Sect. 4 we consider similar problems if the
solution complies with a condition of the periodicity in z.

2. DM-METHOD FOR SOLVING NONLINEAR SYSTEMS OF
DIFFERENTIAL EQUATIONS

To obtain a numerical solution of the system

d
% = ft(t.llhllzs----ﬂm)n yk(ﬂ) = ap, k= 1’2"' Hm (2'1)

in the interval t € [a,b] we will apply the degenerate matrix method (DM-
method) which has the following mathematical basis. Let us chosen nodes

a=‘0l‘lvn"'|t~+l=b (2-2)

and gy 4+2(t) be a polynomial which has these nodes as zeroes. Contracting
system (2.1) on nodes (2.2) and replacing the vector of derivatives

rﬁ+2 = {f'(to)vf’(tl)i'"vf'(tN-i—l)}T (2-3)

by approximately equal to
fvi2 = Ansafnga, (2.4)

where fv 42 = (f{te), f(t1),--. ,f(tNH))T, we can convert {2.1) into following
matrix form

An+2Y[N+2,m]=F[N +2,m)]. (2.5)

Here Apn,z is the (N + 2) x (¥ + 2) interpolation’s matrix for derivatives
which has elements [3]

In+2(ti)
(6 — te)qny2(te)

'I;:Hz(‘i)
2y 4a(ts)’

S = if ik, O = G, k=0,1,... N+1).

(2.6)
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Y[N + 2,m] is the (N + 2) x m matrix which has elements
vis =), i=0,1,2,... ., N+1, k=1,2,...,m, 2.7

as approximate values of the unknown functions.
F[N + 2,m] is the (N + 2) x m matrix also with the elements

fix = illti, i (t), y2(ti), - - -, ym(ti))- {(2.8)

Always the interpolation’s matrix for derivatives Ay, 5 is degenerate and the
rank Anys+2 = N+ 1. As the matrix A2 has not an inverse, we define the
following pseudoinverse matrix.

DeFINITION 2.1. Matrix By, is called a pseudoinverse matrix for Ay 2
if the equality
ByizAnyr =Eni2 —Ing (2.9)

holds, where E . is the identity matrix and all elements of the matrix Iy,
are zeroes except the elements of the first column consisting of the digit one.

The matrix Ax,z has not the unique pseudoinverse matrix By,2. Ele-
ments b;; of By, have the general representation

bie = b + cif gl pa(ta);

i
Y — iy Gr=01,.. N+1), (210
Onsz(te) Jyy t— 1 ‘

where c; are arbitrary constants depended only on i. The norms

N+l
1B 42|l := max LY
=0
are always satisfying the inequality
[IBas2ll > tnir — to. (2.11)

Further we choose the nodes ¢; and the corresponding pseudoinverse matrix
By 42 to produce the two properties:

1) the approximation of function is nonsaturated;

2) IBn42]l = tn41 — to, i.e., the norm is minimally possible.

These two properties hold true if we choose

ir

N +1

t:=a+0.5(b—a)(l +z;), 2; = —cos (2.12)
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and elements b, for the pseudoinverse matrix By 42 in the form b = (b -
@)g:;. where

_ 1 = P.\'+2(1‘) ’ _ e
TN /_. z -z, S pveln =0-0l(). (213

U~ (x) is the Chebyshev's polynomial of the second kind. The clements g,
do not depend on the interval [a. 6] and

N+1

iGxall = | max 2_; lowc| = 1. (2.14)

for any N. Multiplying the equation (2.5) from the left side by the matrix
Bx.: = hGuyz, it = b — a, we obtain this equation into matrix form

Y[V +2,m] = hGnoF|IN + 2,m] + A[N + 2.m], (2.15)

where h = b —a and A[N + 2,m] is the (N + 2) x m matrix; its elements
vir = yalti)i fix = fultiogn(ti), - . ym(ti))saix = ya(to) = o, (2.16)
(f=01,... . N+, k=1.2,. .,m),1e, they are the initial values of unknown
functions ¥ (1}). By means of (2.13) the elements g,; of the degencrate matrix

G .2 can be represented in the following exact and explicit form [3] which
is very suitable for calculations on computers.

_ 1 { N+ 4N + ] (=) (N+ Dz, 1 }

O AN I DNV A DN+ D) N(N+2) N+1
(2.17)

(= [N + Dz, 1

TN T AN T ) {_-\'(.\’ ey OV [.\'(J\' T2 TN+ 1]}
(2.18)
l N

O = N+ Donts rE;)(—l) sli,n]sin(n+ 8. {k=1.2,.. ,N), (2.19)

where 2, = — cos(in /(N + 1)).0, = mkf(N +1).

2
f1-m{n+1)n+3)

sfi.nl =,(-1)" [

_cos(n + 1)8; cos(n—1)8; + cos(n + 3)8,
2(n+1) 4n-1) 4n+3)

(2.20)
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fn>2 i=01,2,...,N+1,
s[i,0] = (1 + 2;)° (2 ~ 2:)/3; si, 1] = =(1 - £2)*/2.

1t follows that g;x can be calculated with any desired precision. f h=b—a
is small enough, the equation {2.13) can be solved iteratively. Due to the
equality ||[G 42|l = 1, the sufficient condition for convergence of the iteration
process is

D(fllf?y---rfm)
D(yllyzr"-vyfﬂ)

1
| < (2.21)

a<t<h

where H is the Jacobi matrix, and y; = y;(t). This condition {2.21}

guarantces that the nonlinear operator G2 F[N + 2,m] in (2.15) is a eon-
tracting operator mapping the set of matrices (N + 2) x m into it. For the
large interval [a,b] it is necessary to divide it into small parts @ = ho <
h < < h, = b, and to solve the system (2.1) in each subinterval
{he,hipa], & = 0,1,...,n ~ 1, separately. In addition, the solution at the
points ¢ = hy4 must be chosen as an initial value for the solution in the
next interval [t;41,%14+2]. Matrix Gy, does not change, but the new nodes
tr, k=0,1,...,N + 1 may be calculated by (2.12) with a = h;,b = hyy, and
h = hyy1 — hy. Thus, the global solution for system (2.1} can be found by
using the aforementioned multistep procedure involving iterative loops.

3. NUMERICAL SOLVING OF PARTIAL DIFFERENTIAL
EQUATION WITH INITIAL AND BOUNDARY
CONDITIONS

We consider the solving of the equation

uy + (u"ug,:;.]‘.,)'r =0 (3.1)

with n = 1 as an example of an application of the DM-method.
Let us be given the problem

u) + (uu)), = 0,u(0,2) = f(z).7 € [0,1], (3-2)
w,=u® =0atzr=0and z=1. (3.3)

We choose the nodes

nm

N+1

T =0.5(1+ Ty), Tm = —c0s {3.4)

and approximate derivatives in variable z by means of the interpolation’s ma-
trix A x4 with elements (2.6). This is a global nonsaturated approximation
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on the interval [0, 1]. Further we will use for simplicity the notations
u(z) = u(t, z);uy = (u{r;),u{xs2), ..., U(IN))T {3.3)
Similary we denote
T
uf.:) = (u“" (z,), u®(za),... ,u“‘)(zN))

The derivatives have an approximation

N+l
u,(Im) = Z émku(sz (3'6)
k=0
where
G Vi o tm
form,k=1,2,....,N and
4 _l)k+1 4(—-1 N+k+t )
So = —4bpp = (l-l"—ﬁ-; b = —4de N = % (3.8)

1 .
bnaro = —donsr = (-8 N = —Boo = 5(2.’\'2 +4N + 3).

If we add to system (3.6) the equalities u'(xg) = u'(zx41) having arisen from
(3.3), then we have for the vector uy the following representation in the
matrix form:

uy = Syun. (3.9)

The elements of Sy are

(-D)™ax  (-1)N*mg,

$mk = Jmk + (3.10)

1471 1-7,
where
o = 6(—1)k+} N? 42N  3n
FTNN VYN ) | 1+n 1-72
6(—1)t+N N*+2N  3n,
O = - - =|l.km=12,... N.
TNV ENI+ 2N+ ) | T - +1-r,f ™ 2

(3.11)
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Analogously we obtain that

s ufy = s{Vsyuy, (3.12)

1V_

“) = §mi since u'(zo) = v'(zn4+1) = 0, and

where clements of Sﬂv are s,
uy) = SySiSnuy. (3.13)

Finally we have for the vector uy the system of ordinary nonlinear differential
equations

duy | gt (uN . (SNS(\{,S,\'HN)) =0, (3.14)
dt !
uy fe=o= (f(1), f(z2), . flznw))T (3.15)
u axis
£t =0
0.4
o I
=0.0009
0.2 =0.005
=¢.03
01
0:2 Ojd 016 D.B 1

Figure 3.1. The graphs of the solution of the problem (3.2)-(3.3) for several moments of
the time obtained by the method (3.14)-(3.15)

where * denotes the operation for the direct product of matrices. This system
can be solved by means of DM-method developed in Sect. 2.

ReManrK. Instead of (3.12) we can use the system

du;..

e +(5Nuﬂ)*(stg)shuN)+uN*((s' ’swu,v) 0 (3.16)
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Table 3.1.
Numerical solution of the problein {3.2)-(3.3) using the method (3.14)-(3.15)

tiz 0.017 0.067 0.146 0.250 0.370 0.5

0.000 04168 0.3728 02274 00468 00200 00200
0.00093 0.2748 0.2641 0.2236 0.1417 00461 0.0017
0.005 0.2007 0.1962 0.1787 0.1423 0.0972 00750
0.030 0.1404  0.1404 0.1403 0.1402 0.1400 0.1399

which also follows from the identity

(Y = wu® 4 u'u¥

u axis

£=0
9.4+
0.3 r

=G.0012
9.2 =0.005

— 2 =0.03

0.1

Figure 3.2. The graphs of the solution of the problem (3.2)-(3.3} for several moments of
the time obtained by the method (3.16)

As an example of efficiency of the above described algorithms, here we
present some results for numerical solution of the problem (3.2)-(3.3) with
the initial condition u{0,z) = f(z), where

J(z) = 0.2(1 + cos(drz f20), -if 0 < z < 3/10; f(z) = 0.2, if 0.3 <z <O.7;

1(z) = 0.2(1 + cos(Trz/10), if 0.7 <z <1. (3.17)

All calculations were carried out by the computer system "Mathematica”
version 2.2 using 16-digit precision arithmetic with N = 11 nodes for z and
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Table 3.2,
Numerical solution of the problem (3.2)-(3.3) using the method (3.16)

t/r 0.017 0.067 0.146 0.250 0.370 0.5

G000 04168 03728 02274 00468 00200 0.0200
0.0012 0.2539 0.2435 2117 0.2372 0.0445 0.0039
0.005 0.2147 0.2092 0.1879 0.1435 0.0872 0.0579
0.030 0.1408 0.1408 0.1407 0.1405 0.1402 0.1401

for t in each step of size s = 0.00001. Obtained numerical values of the solution
u(t, r) for several values of time ¢ are shown in Tables 3.1 and 3.2, but the
corresponding graphs are illustrated in Fig.3.1 and 3.2. Computed results
show that in both cases at the beginning of the process the solution tends to
zero in the middle of the interval [0, 1], but later it tends to the constant equal
with 0.14, i.e., to the direct value of integral of u(0,z) on [0,1].

4, PROBLEMS WITH CONDITIONS OF PERIODICITY
The problem (3.2)-(3.3) considered in the Sect. 3 can be formulated as follows.

It is necessary to find the solution of equation and initial condition (3.2) and
following conditions instead of {3.3):

u(t,~z) = ult, z);u{t.z + 2) = u(t, ), (4.1)

i.e., the evenness and the periodicity in z of the solution. Substituting z = 7z
and 7 = n't leads to the problem

v, + (wull), =0, (4.2)
ulrmo= f() = g(2), (43
u(r,—z) = u(r,z); nlr,z+27) = u(r, 2). (4.4)

If we scek the solution of (4.2)-(4.4) in the form

u(r,z) = icn(r) cosnz, (4.5)

n=0

then ¢, (1) decrease rapidly for a smooth solution as n tends to infinity. After
the substitution # = cosz we get instead (4.5) the Fourier series with Cheby-
shev's polynomials of the first kind in the variable 8. Using results of the
article [2] we conclude that the contracting of the problem (4.2)-(4.4) at the
nodes

(2k - 1)

o = —
E cos 5N

, k=1,2,...,N (4.6)
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gives a nonsaturated approximation. Therefore, we can apply the following
algorithm for numerical solving the problem (4.2)-{4.4):

1) the substituting # = cos z in the equation (4.2);

2) the contracting equation after this substitution at nodes #,,k =1,2,.
on interval {—1,1), and replacing of derivatives by means of mterpolntlon s
matrices for corresponding derivatives;

3) the solving of the system of ordinary differential equations by means of
DM-method.

After the mentioned substitution § = cosz in (1.2) we get

u, + uf(1 - 6%)%ul - 60(1 - 07)ul® + (767 - D)u”) ~ Guf]+

+(1 - 6 )u[—uf - 36?4+ (1 - M) = 0. (4.7
For derivatives in this case we have the interpolation’s matrix Qx with ele-
ments [3]
1 i+m /1 82
Tim = ( ) t # (48)
@; - 8)/1 - 9'
9m (2 - D
mm 9 - T an ' 5 =5 ,---..IN' .
o 2(1_ 7" 0os — im=1,2 {4.9)

After these manipulations we obtain the system of differential equations in
the following matrix form

dup

? +uy * (Ayuy) + diag{l - }[(QNuN) * (BNI.IN)] =0, (4.10)

where

A = diag{(1 - €2,7)Q — 6diag{On(l - 62)}Q}%+
+diag{(765, — 4)}Q} + diag{6.}Qn, (4.11)
By = diag{1 — 82,}Q% - 3diag{8,,}Q% —Qn, 7= 7't, s = cosmz. (4.12)

Analogously it is possible to find the algorithun for numerical solution of
the problem

ub + )+ u® 4 0300)2 =0, (4.13)
u le=o= f(z), uvit.—z) = u(t, z);u{t,z + T) = u(t, ). (4.14)
Substituting 7 = pz,t = pir, u = T/(27) leads to

uh +ull, + 2 +0.5p% () = 0, (4.13)

ur=0=93) = f(uz); u(r,—2) Su(r,z);u(r,z+2x) = u(r,z). (4.16)
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u axis
[} 4|' t =0
Q.3
£=0.114

0.2 t=0.5

d £=3
0.1

0.2 0.4 0.6 Q9.8 1

Figure 4.3, The graphs of the solution of the problem (3.2)-(3.3) for several moments of
the time using (4.9)-(4.10)

Table 4.3.
Numerical solution of the problem (3.2)-(3.3) using the method (1.9)-(4.10)

r/r 0045 0136 0227 03318 0409 05

0.000 0.3978 0.2485 0.0753 0.0200 0.0200 0.0200
0.114 0.2640 0.2274 0.1631 0.0880 0.0269 0.0043
0.500 0.1991 0.1820 0.1513 0.1156 0.0856 0.0744
3.000 0.405 01404 0.1403 0.1402 0.1401  0.1400

Substituting # = cosz and contracting (+4.14) at nodes (4.6) we have for the
unknown vector uy = the system

dune
ﬁ;: + Cyup + 0547 diag{1 — 62} [(Qnun) * (Qrun)] =0,  (4.i7)

Cw = diag{(1 - 63)°}Q} - diag{68,a(1 - 67,)} Q%+
+diag {767, — 4+ p*(1 - 62)}Q% — diag{(1 + #*)8m}Qn.  (4.18)

Numerical calculations by this method showed the following results for the
problem (3.2}-(3.3) with the initial fuuction {3.17). Also here all calculations
were carried out by the computer system "Mathematica” version 2.2 using
16-digit precision arithmetic with N = 11 nodes for r and for 7 in cach
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step of size s = 0.002. Obtained numerical values of the solution u{r,z) at
the points = = (2 — 1)/22, i = 1,2,...,6 for several values of time 7 are
shown in Table 4.1 but the corresponding graphs are illustrated in Figure 4.1.
Computed results show also that the beginning of the process the solution
tends to zero in the middle of the interval [0,1], but later it tends at the all
set of points  to the constant equal 0.1401 — the mean value of the solution
which does not depend on r and is equal to the arca under the each curve
v =u(r,z),0 <z <1, = const.
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DM-METODES LIETOJUMI NELINEARU PARCIALO
DIFERENC{IELVIENRDOJUMU SKAITLISKAJAI
ATRISINASANAI

TEODORS CIRULIS un QJARS LIETUVIETIS

Tiek aplikotas nelineiru parcialo diferencialvienadojumu problémas ar sa-
kuma un robeznosacijumiem, lietojot taiSnu metodi. Parasto diferencidlviena-
dojumu atrisinasanai lieto degencréto matricu metodi, kas ir vienkarsi pro-
gramméjama un dod angstu precizitati pat stingram sistémam. Atsevidki tiek
aplikotas problémas ar periodiskiern robeznosacijumiem, lietojot nepiesatina-
tas interpolacijas ar Cebigeva polinomu nullém ki mezglu punktiem.
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ADSTRACT

The exact finite-difference scheme for solving the boundary-value problem of a differen-
tial equations of the second order with constant piece-wise coefficients is developed.

We shall consider differential equations of the second order in the following
form

Lyu = 3(Au/dx)/8z — adufdx = f, (1)
Lyu = 3(A0u/8z)/8z — Pu =1, {2)
Liu = 3(A9u/8x) 8z + b*u = f, (3)

where € (0,1), A > 0. Let the coeficients A, g, b, f be picce-wise continuous
in the interval {0,!) and a nonuniforin grid contains the discontinuity points
of cocflicients. The function u and the flux-function Adu/dz are continuous.
We assume that the boundary conditions can be written as

Uuz\lall/al — gl = —ﬂo¢o, T = 0, (4)

IThis work was partly supported by Latvian Council of Science under Grant 96. 0779
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AN/ +aa=a ¥y, z=I, (5)

where ag > 0, oy > 0, or ap = a; = o - in accordance with Dirichlet
boundary condition.

Equations {1,2,3) are the steady-state forms of corresponding heat trans-
fer equations. In case of the problem with time dependence, the right-side
function f can be considered in the form f = du/fat.

1. The approximation of differential boundary-value problem {1,4.5) is
based on the conservation law approach of the method of finite volumes [1].
To derive a difference equation associated with the j-th grid point r; we
integrate the self-adjoint form of differential equation (1)

A(X* du/dz)dr = G(z) (6)

in the intervals (z;_0.5,Zj30.5):

X

- Z5+0.5
Wiios —Wj_os = / G;dz +/ Gj1dz, {7)
x I

j-0.3 i

where

“'110.5 = w‘z::,io_s-. Tj+n5 = (IJ + J"j:l:l)/2| hJ =I; —Tj-1,

W(z) = A"0u/dz, A" =Jr G=JI, J(r)=exp (—/ A"ad’t)

This is the integral form of the conservation law on the interval {z;_gs,
T;+05)- In classical formulation of the finite volumes method, jt is assumned
that the flux terms Wjig.s in (7) are approximate with the difference ex-
pressions. Then the corresponding diflerence scheme is not exact for given
functions G; in case of piece—wise constant functions of A, a, I. Here we have
the possibility 1o make the exact difference scheme [2]. Therefore, we inte-
grate equation (6} from ;_o5 to z € (z;_1, x;), divide this expression by A°
and integrate from x,_, to r,. We obtain W;_o; = 47 (u; —u;_1) - 4B,
where (d4;)7! f:j"_l()«‘)" dr, B, = f:;"_l(z\')kl dI-[::—o.b G; df, and uj,
u;_, represents the value of function u at z;, z;_,. Similarly,

— +
Wites = A7 (uje - uy) - 47, By,
where (.4;'“ y = f:_’“ (A*)~tdz. To derive a 3- point exact difference equa-
3
tion associated with the central grid point z; we want to apply equation (7)

in the form

RyA, = A4S (i —u) 24 (-, ) =Ry +Rf, j=TN-1(8)
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where h; = 0.5(h;+h;41), and Ry = [ (1 -A7 [7(A)'dE)G,dz, R} =

f"“(l - AJ_H f (A‘ )71dE)G 4 dz.

If the values of parameters A, ¢ of equation (1) in intervals (z;_1,7;),
(z;,x;41) are equal to M\_gs,8j_05 and Aji0.5.8j40.5, respectiveh, then
A7 = Xosg(=8))/h; > 0, AT, = Ajros(Bj40)/hiv > 0, Ry = [ [1-
exp(~ 85 (1~ (z;—2)/ A D)/ [1—exp(~B) () dz, R} = [+ [L-exp(B 1.1 (1~
(z—x;}/ lj 1))/ (1 - exp(Bj41)] f () alz, where g(s) = s(exp{s)—1)"! is a real
positive function with ﬂ_f = (z\j_()j)—laj-o_shj, Bjn = ()«j+o,5)“aj+o‘5h,-+;,
g{s) = 1 — 8/2 + Os?).

If the values of the parameter f in intervals (x;_,x;), (x;, T;51) are equal
to f;_¢.s and ;105 then RJ-_ = h;r(—8;)f;_o5 and R}" = h;1r(3;41) 405,
respectively, where r(s) = s71(1 - g(s)) is a real positive function with the
expression 7(s) = 0.5 — 5/12 + O(s?).

For the approximation of the boundary condition (4) we apply the integral
form of the conservation law to the half interval (0,zp5). Due to boundary
condition at £ = 0 the value Wy is known and we can easily derive the
following 2-point exact difference equation associated with grid point zg =0

hiAup = AT (u; — vp) — aolug ~ $0) = RY, (9

where A} = Aos(h)g(81) > 0. B = Agiaosh, R = mr(B1) fos.

Similarly in advance for the approximation of the boundary condition (5)
we obtain 2-point exact difference equation associated with grid point zy =1
in the following forin

AnvAjuy = —al(u,v - ‘1’1) — A;r(uN - l.IN_l) = R.'_Va (10)

where 4; = ,\N_ojh‘;,lg(—ﬁﬁ) > 0, fn '\;-vl_o_sﬂN—o.shN and RJ_
hnr(—8nYMN_os-

We sec that the difference equations (8,9,10) are exact approximations for
solving boundary-value problem (1,4,5).

In case of uniform grid (h; = hj;, = h) and constant coefficients A, a, f we
have the II'yn difference equations [3] in the form

Alujz'n(ﬁ)ti?u,-—aéuj:f, 1=1,N-1, (11)

where du; = (w41 — uj_1)/(2R), u; = (ujp — 2u; + u;_;)/h* denote
the central difference expressions for the derivatives du/8zr, 8°u/dz’ at the
point z; = jh of uniform grid with step h; v;(s) = 0.5scoth{0.5s) is the
I'yn perturbation coefficient for the monotone difference scheme with v;(s) =
1+57/12+0(s*). Inthis case §; = f;41 = 3, 9{x3;) = 1 (B)—-+13;/2,7(3j) +
r(-6;) =L

Difference equations (9,10) on the boundary have the forms

hAjug = Ag(B)(uy — uo)/h — ao({uo — ®o) = M(1 ~ g(8))/a, (12)
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-hAjuy = Ag(-—ﬂ)(u;v - LlN.ﬁl)/h +0|(u,\r - 'I"l) = /\f(l — g(—ﬂ))/a. (13}

2. The exact approximation of the differential boundary-value problemn
(2,4,3) with piece-wise constant cocfficients A, b is based on the analytic so-
lutions u!(z), u?(z) of differential equation (2) in corresponding intervals
(zj—1,%;)} and (z;,Z;41) in following form

u'(z) = C] cosh(w;z} + C; sinh(w;z) — w,-A_,T_'”RJ-‘,

TE (Ijﬁlrxj)r
HE(I) = C!+ COSh(wj+1I) +Cg sinh(uij) +wj+1/\;loA5R;', ITE (IJ;,IH.]),

. L —1 . -1
where w; = b;_05A; g 5. wit1 = 01054 155,

R; = [ * sinh(w; (z — £)1(€) dt,

R} = [ sinbh(uiin(z - O)F(E)de.

F

The functions u', »? and the Rux-functions Aj_g 50u'/0z, Ajio:0u”/Ox
must be continuous in the point ;, and with u!(z;_1) = u;_,, v*(z;41) =
u,1, u'(x;) = v?*(z;) = u; we have the following I-point exact difference
equation

fLJ.\guJ = Adju;_y — lelj +Bjuj+l = RJ- +R}-1 i=LN-1 (11)

where .-lj = ,\_,--o;,'.uj/sinll(:.:_,-hj) >0, B_,' = AJ'+0_5Lu'J+;/Sillh(.»‘j+1hJ+1) >0,
Cj = Aj COSh(LJJ'hJ‘) + BJ' COSh(u‘j+1hj+[),

R; = [ " sinh(u(€ - 2;-1))/ sinh(w;h;)F(€) dE,

=1

R = [ 7 sinhyra(apen = ) sinh(wsarhye )6

3

For the exact approximation of the boundary condition (4) we have the
following solution u{z) of differential equation (2) in the interval (0,0 ):

u(z) = Cy cosh{w) ) + Casinh(wyz) 4wy Ay s RY,

where Ry = [ sinh(wy(z - £))f(£) dE.
From the conditions (4) and u(0} = vy, u{z,) = u, it follows that

hiAowg = Bpuy — (BoCOSh(wlh|) + ag)ug + agde = R.;- (15)
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Siilarly, for the approximation of the boundary condition (5) we obtain 2-
puint exact difference equation

hadsuy = dyvay_y — (.‘-1,\( COSh(thN) + OI)UN +a,d, = R‘; (16)

In case of uniform grid with mesh step h and constant coeflicients A, b, f we
have the Bahvalov difference equations [4] in the form

Ase; = yp(s)Aé%u; - bPu; =f, j=1,N-1, {17)

where vg(s) = (s/sinh(s))?, (s = wh/2 = bhA™"%/2) is the Bahvalov per-
turbation coefficient for the monotone difference scheme with vy(s) = (1 +
5216+ O(s*)) !

Difference eqguations (15,16) on the boundaries have the forms

hAzuy = Boh(uy —up)/h — ap(up — $p) — A tanh(wh/2)ug

= tanh(wh/2)f/w, (18)
—hAyuxy = Avh(uy —un_()/h+ ar{uy — &) + dwtanh(wh/2)uy
= — tanh{wh/2)fw. (19)

3. The cxact difference scheme for the differential boundary-value problem
(3,4,3) is in the same forms (14,15,16) or {17,18,19), where the functions b, .,
cosh(iz), sinh(iz), tanh(iz) are replaced with functions b, iw, cos(z), i sin{z).
itan(z): 1 = (—1)%3, 12 == —1. Therefore, the exact difference scheme can be
obtained replacing the hyperbolical functions by the trigonometrical functions
ones.

4. For the differential equation
Lqu = 0(Adu/dz)/0z — bu =T, (20)

the finite—difference scheme is in the same form, where the function b is re-
placed with |6]°>, (b > 0) or ¢[]*3, (b < 0).
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AGSTRACT

The nuinerical method for the liquid transport in feece is based on the explicit difference
scheme.

The mathematical modelling of the liquid transfer in the wet-absorbing and
wet-giving porous media material with nonlinear characteristics, for example,
in fleece causes additional difficulties. The nonlinear time-dependent one
dimnenstonal in z-coordinate-space mass transfer equation is of the following
form [1]:

8s/8t = B(kdp/8x)/Br, (1)

where s = s(z, t} is the content of water in the material (0 < s < 1,5=1-for
the satured flow), k = k(s) is the hydraulic conductivity (the permeability),
p = p(s) is the capillary pressure, € (0,L), ¢t > 0. \We assume that the
capillary pressure p(s) is not depended on the history of the transfer process,
active hysteresis betyveen wetting and drying processes and gravity can be
neglected.

The function k is defined as power function on s:

k=k(s) =Es®, (k=const>00001, 0 =const>3). (2)

IThis work was partly supported by Latvian Council of Science under Grant 96. 0779
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The function p is defined as a polynomial function on s in a segment [0. 5] and
as a power function on a segment [#, 1] by the following setting:

pls) = —P(s), s€l0.3; ps)=-po(1-5%), s[5l (3

where pog = p/(1 — 5°). p = const = —p(§) € [0.01.0.1], @ = const > 10,
3 = const € [0.1.0.9]. If the function p(s) € C'[0.1], then the second order
polinomial P{s) = P»(s) has the form

Pi(s) = a1 - 3/3)* + au(l - 3/3) + b. ey

where naa = pr — p— a4 ayf = peoad®, p = const € [0.1,0.6]. Pafs) is a
quadratic polinomial under the following assuinptions: P3(0) = py, Pa(5) = p,
PI(5) = —p'(3).

If the function p(s) € C?[0,1], then the third order polinomial £(s) = Pa(s)
has the form

Py(s) = a35(1 — 5/3)% + a3,{1 — 5/5)" + a1 (1l — s/5) + p, {3)

where a3, = pr—p—aj, —ayy, a3, = —a; {a—1)/2. P;(s}is a cubic polinomial
under the following assumptions: Py(0) = pr, F(s) = p. Pj(8) = —p'(5).
ris) = —p'(3).

We can define the "diffusion” coefficient v(s) = k(s)p'(s) and the integral
variable o = fos v{€}JE. then the corresponding models of equation (1) are in
the following form

ds{0t = Nvds}dz)]dx, (6)
Bs)ot = 3 ¢)0x* (7}

The Functions ¥ and ¢ are defined by the following expressions:
1) For p(s) € C'[0,1] -

[ ks35 Yayy + 2a03(1 — 5/5)), s € (0,5
v(s),= { kapgs3+e!, s € [§,1], (8)
o(s) = k3~ aays® [by ~ 209057 " 5P fbo], s € [0,3] ()
T k§3[033/b1 - ‘2(13-)_/6'3] + kﬂpuo[.?ba - _b:’]/bg, 5C [-5_‘, 1],
where
a3 =G, +202, b =3+1, L=3+2, bh=3+a
2) For p(s) € C*[0.1]
[ ks Vayy + 2a3,(1 - 5/3) + 3a3;3(1 - 5/5)%), s €[0,3]
vls) = { kapgosite!, s € [5,1], (10)
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#(s) = { %5‘1[034351/61 —al; 57 sb My +~3a§3l§_2s°/b], s€0,3]
| k5%(a3e/by — ads /b2 + 3035/8) + kapoa[s** - 3]/, s€(3,1],
(11)

where
a3y = a3y +2a3; + Ja3,, @i = 203, + 603y, b=03+3.

The values of parameters k3,3, P, pi, a are different in every layer of
fleece. We will consider the following boundary conditions:
1} homogeneous boundary conditions of the first order

3'::0 = 3|:=L =0, ('12)
2) boundary conditions of the second order

kOp/0zls—0 = v03/dz|;=0 = 84/02Z|s=0 = - Qn, (13)
k8p/Oz|.—1 = vDs[B2|;—1 = 8¢/Bz|.—1 = 0,
where the flux function (the intensity of the liquid source) Qo # 0 on the
finite interval of time (0,tp). If ¢ > ¢35, then Qg = 0: on the surface z = 0
liquid is poured for a duration of #y sec. with the intensity (g, then there is
a break.

The initial condition is in the form s|s=o = %(z), z € (0, L), where s°(z) is
a given function.

The nonlinear mathematical model is the degenerate case (k(0) = v(0) = 0)
of the porous medium type equations [2].

1. The numerical solution will be found on the discrete set of the points
z; = jh, j=0,N, Nh= L at the time ¢t =t, =nr,n>0.

The approximation of differential equation (6) is based on the conserva-
tion law approach of the method of finite volumes [3]. We shall refer to
the endpoints of the interval about the point ; as ;305 = (z; + T;4,)/2.
This interval (z;_p.s,T;40.5) is referred to as the control volume associated
with the grid point z;. To derive a difference equation associated with the
j-th grid point z; we integrate the differential equation (6) on the intervals

(zj—05,Tjv05):
Ti40.8

Wiios — Wjoos = / fdr, (14)
Zi-0.8
where
Wisos = Whzz;30,, W(z) =v0s/0z, f=208s/0t

This is the integral form of the conservation law to the interval (z;_0.5,Zj40.5)-
In the classical formulation for the finite volumes method [3] it is assumed that
the flux terms W ;1o 5 in (14) are approximated by the difference expressions.
Then the corresponding difference scheme is not exact for the given functions



84 H. Kalis and J. Rudzitis

f in the case of piece-wise constant function . Here we have the possibility
to make the difference scheme exact.
Therefore we integrate equation (6) from z;_gs5 to z € (r;_;,z;}. We get

z

W-W,-_o,5=[ fde.

Tj-0.6

After dividing this expression by v and integrating from r;_, to x; we obtain
u; —m;_) = (A,—)"W,-_o_s + BJ',

where

W= [ e B= [ e [ s

i=1 Tj-1 Z;-058

and u;, u;_) represcent the value of function s at z;, x;..,, respectively.
Hence

w_,‘_u_g. = AJ'(I.I_" bl 'I.lj..l) el AjBJ'.

Similarly determining the flux term Wj,o5 by integrating equation () on
the intervals (z;405,7), T € (z;,Z;41) and on (zj, ;1) one obtains

Witos = A —uj) — 4;51B541,

where u,,. is the value of function s at z;4;.

To derive a 3-point exact difference equation in the case of piece-wise con-
stant function ¢ associated with the central grid point r; we want to apply
equation (14) in the form

h;\Uj = .4,‘+1(I.Ij+1 - I.lj) - Aj(llj - tl,'_l) = Rj J =1,N-1, (15)

where
25408
RJ = AJ'+IBJ‘+| - AJBJ + fd:r.
Eji-058
If the values of paramcters v, f on the intervals (z;_y, z;), (z;,z;41) are equal
o v;_o0s, rj_o_s and Vj.poj,f_,.;o,s respectively, then

A; = v;_0s/h, Ajy1 = Visos/h, (16)
R; = h(fj+05 +fj-05)/2.

For the boundary conditions of the seconduorder (13) we apply the integral
form of the conservation law to the half interval (zg,z¢ 5) in the form

Z0.5
Wos — Wy = / fdz,

xo
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where Wy = W|==1=o = —Qo, Wos = w|=r=-ro.5'

Like above, we integrate this equation from zo5 to £ € (zo, ;) and from
Zo to T1. Now we can easily derive the following 2-point exact difference
equation associated with grid point zo =0

hf2Aug = Ay (u; ~ ug) + Qo = Ry, (17)

where 4, = vps/h, Ro = hj2fy 5, and uy, u; represent the value of function
s at Tg, Iy, respectively.

Similarly in advance, we integrate the equation (6} from zy_gs to zn in
order to approximate the boundary condition (13) at z = L. We obtain
2—-point exact difference equation associated with grid point zy = L in the
following form

k/2Auy = —Ay(uy —uy-1) = Ry, {18)

where Ay = vn_os5/h, Ry = hf2fn_a 5 and uy_;y, uny represent the values
of function s at zx_), T, respectively.

Therefore, the difference scheme (15,17,18) is monotone (4; > 0, 4;4, > 0)
and has a unique solution. The finite-difference equations can be solved by
factorisation method for tri-diagonal matrix (Thomas algorithm [3]).

For the differential equation (1} the finite-dfiference equations (15,17,18)
are in the same form, where u; = p;, ¥ == k. For the differential equation (7)
these equations are also in the same form, where u; = ¢é;, v = 1.

The nonlinear differential equations (1,6}, where the functions v, k are
depending on s, can be approximated in the form (13), where v;i0.5, kj+o.5
denote the discrete approximation of v, k on the corresponding intervals,
(xj-1,%;), (j, Zj+1), for example v;,05 = (v(s;) + ¥(s;41))/2.

The discretization (truncation) error of the difference cquations is locally
of the second order in space.

By integrating differential equations (1,6,7) in the interval (0, L) we get

%Q(t) =Wy - Wo, (19)

where (t) = fOL s(x,t) dz is the common water contents in the materials.
In the case of Wy = Wy = 0 we have 02(¢) = const. Therefore, from the
boundary conditions (13) it follows that

1) Q{t) = Qot for t < to and ) = tg) = Qoto = const for t > ¢y if
s°(x) =0,

2} Q(t) = N0) = 0.5 if s°(2) = (1 - cos(272))/2,Qp = 0.

2. Let us consider the nonlinear time-depending equations (1,6,7) f = &s/dt

and supposec the parameters v, k to be the functions depending on z, ¢, s.
The corresponding discretized version for difference scheme is [4]

(77 = 87)/r = oAu}t + (1 - 0)Au], (20)



86 H. Kalis and J. Rud:zitis

where uf, s} denotes the discrete approximation of u, s at the grid poini r;
and at the time moment t = ¢, = nr, n =0,1,...,.0 € (0,1) is the weight
parameter of the schemes, Au; are the differeuce expressions of (15), u is equal
to p, s, ¢ respectively for equations (1,6) and (7), j = O,N. if ¢ £ 0.5 then
truncation error for (20} is locally of the first order in time. In case of ¢ = 0.5
it is of the second order. Investigating the stability of difference scheme, we
apply the maximum principle [4], requiring the corresponding cocfficients of
difference equations {(20) to be positive, that is in the form:

T < A({1 - 0)K), (21)

where K = max(A,- + A_,'.H), j=1N -1
The stability condition (21) has the following form in the case of constant
coeflicients

vkl -o0) <1, (22)

where ko = 2r/h%. The stability conditions (21,22) has the form kg € 1/Vmq:
or 7 < h?/(20ma;) in the case of o = O (the explicit scheme), where Ymaz =
¥(1) = kapoo-

The system of nonlinear algebraic equations (20) can be solved by Newton
or Gauss-Seidel iterations methods in every tirne level. It is easier to realize
explicit schemes with ¢ = 0 than the implicit obes.

3. The results of numerical experiments were obtained for equations (1,6,7),
where L =1,5=05k=00017,p=01,py=06,a=10,3=35 N =20,
r = 01,1 = 10;100, s%(z). = sin(rz), s%(z) = 0, s%(x) = (1 - cos(2rz))/2,
z € [0, 1]. @y = 0.001; 0.00005; 0.

The values of functions k, Py, Py, 17,14, ¢, ¢ are shown in the [ollowing
table:

s kM pa P w M M s M elM

0.1 00537 04202 03557 00860 01030 0.0020 0.0025
0.2 0.6080 02802 02077 -0.7300 06560 0.0364 0.0370
03 2510 04802 01319 2010 1200 0.1770 0.1340
04 6880 €122 01040 2760 08210 04230 0.2450
05 1500 0.1000 0.1060 002949 0029 0609 2530
06 2840 00995 0.0995 02870 0.2870 0.6210 2510
0.7 48.80 00973 0.0973 1.970 1.97¢  0.7100 2630
08 77.90 00893 G.0893 10.50 10.50 1.230 3145
09 1180 '0.0652 0.0652 4560 1568 _ 3.650 5.560
1.0 170.0 0.0 0.0 1700 170.0 1020 15.10

where

M=10"% m; & p=u; & plr=n,, 1; & p="¥; ¢, plr=n,.
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The numerical experiment shows, that the explicit scheme is more stable for
equation (6) than for equations (1,7). The numerical results for equations
(1,6) are a little smaller dependent of the form polymomial P{z).

3.1. The numerical values of functions s for (12}, s%(z) = sin(xr) can be
seen in the following tables (in the first table ¢ = 10, while in the second one
¢t = 100):

z ty P2 @2 v3 Py ¢a

.03 0.1629 01651 01631 0.1600 0.1625 0.1612
0.10 03132 03158 03157 0.3086 0.3083 0D.3281
0.15 04485 04415 0.4430 0.4511 0.4475 0.5002
0.20 05905 05887 05907 0.5952 0.5925 0.5232
0.25 07443 07392 07400 0.7444 0.7392 0.7338
.30 028499 08536 08531 08499 0.8536 0.8530
0.35 09010 09033 09030 (9010 0.9033 0.9030
¢G40 09277 0.9291 09289 09277 0.9291 0.9289
0.45 09412 09122 05421 0.9412 0.9422 0.9421
0.50 0.9454 0.9462 09461 09454 0.9462 0.9461

I 2 P2 ¢ v3 P b3

¢.05 02140 02199 02224 0.1857 0.1920 0.2799
0.10 03381 03352 03348 03075 03073 0.4999
0.15 04697 04307 04205 04938 04291 0.4997
0.20 06995 06914 07235 0.7279 0.7454 0.5004
0.25 0.7888 0.7992 08002 0.7961 0.8048 0.7539
0.30 0.8247 0.8318 98314 08277 0.8334 08153
0.35 0.8445 0.8497 08491 0.8460 08503 0.8406
0.40 0.8560 0.83602 08596 0.8560 0.8605 0.8542
045 08623 0.8659 08654 0.8629 0.8660 0.8613
0.50 0.8642 0.8677 O.8672 0.8648 0.8678 0.8635

Here va, pa, ¢2 and vs, pa, ¢3 denates the calculations of functions », p, ¢
corresponding to P{s) = Py(s) (3,4,8,9) and P{s) = P;(s) (3,5,10,11).

The results are symmetrical with respect to the point £ = 0.5, therefore, it
is sufficicnit 1o analyse the left side of the interval (0,0.5) only. The results of
s are too diferent in the interval {0.1,0.3}, what is in a correspondence with
values of functions P and P; in the interval (0.3,0.4).

3.2. As the test of the linear differential equation (6) with » = const > 0
we consider the solutions in the following form:

1) s(x,t) = exp(—x?vt) sin(rz) for (12) and s%(x) = sin(rz),

2) s(z, ) = (1 — cos(2mx) exp(—4n>rt)) /2 for (13), R(t) = 0.5, Qo = 0 and
s%(x) = (1 ~ cos(2nx))/2.

The corresponding solutions of the discrete equations (15,20) with ¢ = 0
also can be written in the following analytic form:

1) s7 = (1 — 7vA()" sin(wz;),
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2) s7 = (1 — (1 — 7vX3)" cos(27z5)) /2,
where A, = 4h~2sin?(wh/2), Xp = 4h~2sin’(nh), n = t, /7, z; = jh.

By simulating the solutions of the test-problem at the moment of time
t = 100(N = 20,k = 0.05,n = 1000, 7 = 0.1,» = 1073%) the following results
bave been obtained:

(12) (13)

i z s(z) s s(z) L

1 005 0.13490 0.15490 0.04273 0.04288
3 015 D.44954  0.44953 021739 0.21748
5 025 0.70018 0.70016 0.50000  0.5G000
7 035 0.88227 088226 0.78261 0.78252
9 045 0.97801 0.97799 0.95727 0.95712
10 050 0.99020 0.99018 0.98080 0.98065

3.3. The numerical values of functions s for (6,13), °(z) = w,
o = 0 can be seen in the following table:

Pa(s) P3(s)

T t=100 =500 =1000 t=100 t=500 = 1000
0.05 0.0264 0.1364 0.2256 0.0304 0.1545 0.1640
0.10 0.1256 0.2695 0.3048 0.1373 0.2460 0.2554
0.15 0.2598 03471 0.3590 0.2304 0.3150 0.3276
0.20 0.3671 0.4141 0.4081 0.2551 0.3943 0.1282
0.25 0.5934 0.5377 0.4738 0.5981 0.5667 0.6085
0.30 0.7541 0.6873 0.6110 0.7548 0.6931 0.6786
0.35 0.8008 0.7271 0.6819 0.8010 0.7295 0.7046
0.40 0.8222 0.7450 0.7048 0.8223 0.7465 0.7179
0.45 0.8326 0.7537 0.7147 0.8327 0.7548 0.7216
0.50 D.B358 0.7564 0.7176 0.8358 0.7574 0.7267

The integrals 2(100}), 2(500), (2(1000) calculated with-a help of the Simpson
rule have the following values:

1) 0.5009; 0.4999; 0.4365 for Py(s),

2) 0.5006; 0.4999; 0.5001 for Py(s).

In the case of Dirichlet boundary condition (12) there integrals are also
constamt with the following values for P3(x): 0.4989; 0.5067; 0.4999.

3.4. The numerical values of functions s for {6,13), s%(z) = %2”—’1,
Qo = 0.001;0.0005, P = P; can be seen in the following table.

The values of the function s are equal zero if 5 > 0.5. The integrals 0(¢p),
1(1000) have the following values:

1) 0.1388; 0.1380 for Q¢ = 0.001,

2) 0.2429; 0.2397 for Qp = 0.0005.
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Qo = 0.001 Qo= 0.10005
z to =138 ¢ =1000 t=480 = 1000
0.00 0.9850 0.6560 0.9850 0.7623
0.05 0.9400 0.6398 0.9652 0.7603
0.10 0.8447 0.5211 0.9393 0.7521
Q.15 0.4626 0.3938 0.9015 0.7354
0.20 0.0202 0.3287 0.8320 0.6997
0.25 0.0000 0.2700 ‘0.6198 0.5749
0.30 0.00G0 0.2008 0.0486 0.3854
0.35 0.0000 0.0772 0.0005 0.2890
Q.40 0.0000 0.0007 0.0000 0.1881
0.45 0.0C00 0.0000 0.0000 0.0327
0.50 0.0000 0.0000 0.0000 0.0000
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ABSTRACT

Drift — diffusion approximation for GaAs semiconductor is proposed. Transient charac-
teristics, potential energy distributions in a vertical buried-gate GaAs field—eflect photo-
transistor have been calculated.

1, INTRODUCTION

Numerical simulation of steady-state processes in vertical silicon field-effect
transistors was undertaken by a number of authors [1, 2. Transient photopro-
cesses were usually investigated in teris of asymptotic models [3], neglecting
nonlincar cffects and a two-dimensional character of carrier and field distri-
butions in the structure. Both of these factors can be conveniently accounted
for in terms of a drift-diflusion approach. In a two-dimensional case, effective
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numerical methods of solving non—steady-state problems have been developed
using this approach. In particular, methods involving semi-implicit differen-
tial schemes proved very efficient when applied to bipolar and unipolar silicon
structures [4-6)].

Applicability of the diffusion—drift approximation to GaAs structures has
been demonstrated in [7] where experimental values of the mobility of elec-
trons and holes, bandgap narrowing and effective free carriers lifetimes were
used to describe carrier transport. Recombination was accounted for in terms
of Shockley—Hall-Read and Auger models. Steady-state characteristics of
bipolar GaAs structures were obtained and it was found that, for the transis-
tors considered, experimental and calculated values of the gain coeflicient were
fairly close. Therefore, in the calculitions below we assume, that Shockley-
Hall-Reed recombination is dominant, except in heavily doped regions, where
Auger recombination prevails. That is, radiative recombination will be ne-
glected.

In the present paper, we describe results of numerical simulation of the
photocarrier transport in vertical GaAs field--effect transistors with the source
and the gate biased.

2. IDENTIFICATION OF THE PROBLEM

Calculations of the non-steady--state photocarrier transport are carried out
in a diffusion-drift approximation using a system of equations comprising
continuity equations for electrons and holes and Poisson’s equation:

divj:,=q(R—G+gt—n), (1
davz,=_q(a_c+g—f). )
V(kVy) = —xio(p—nm' ~N.), (3

where n and p are electron and hole concentrations, mspectively; ¢ is the
electrostatic potential; x is the dielectric constant of a semiconductor; Ny and
N, are concentrations of ionized donor and acceptor impurities, respectively.
Othier symbols are either commonly used or will be defined later.

The clectron, J,, and hole, j:,, current densities will be expressed [6, 8] as

Jn = qua (—n (Ve + 9el) + %Vn) . (4)

- ksT
Jp = —qpup (—p(Vy: + Vw;‘) + BTVp) , {5)
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where pin, pp are electron and hole mobilities, respectively; 5, qp;‘ are the
potentials of bandgap narrowing due to doping with donors and acceptors,
respectively; T is the absolute temperature.

The net current density, including the displacernent current j:g, is:

= a
Jd = —KKp avvl (6)

T=Jo+Jp+Ja. ™

The mobilities s, and g, are assumed field—dependent:
Hn(p) = f-‘?;[p)Fn(p)(E): (8)

where 4§ and u are the mobilities in a weak electrostatic field E, and Fy,() (E)
is a field—dependent term.

In formula (8) and elsewhere below, indices n and p refer to electrons and
holes, respectively. The mobilities in a weak electrostatic field u and uf,
are calculated in terms of the momentum relaxation time using Boltzmann’s
distribution function:

4q had
0 - , 3/2 -
=3 \,,—rm;(p)fo oty (€062 expl—e) de, (©)

where 7,, 7, are momentum relaxation times for electrons and holes, respec-
tively; my,, my are effective masses of electrons and holes, respectively.
The momentum relaxation time r,(, is defined as a sum of reciprocal mo-

mentum relaxation times for individual scattering mechanisms involved:

1 _1

Talp) (E) E' (p)( ) n(p)( ) p) (E) (10)

where r‘( } are momentum relaxation times for scattering on phonons and

ionized impurities and "'u( p) are respective collision frequencies. Summation
in formula {10} is to be performed over all types i of scattering mechanisms
involved. In the present instance these include scattering by the deformation
potential, nonpolar and polar optical phonons, piezoelectric scattering, and
scattering on ionized impurities. Correspending expressions for collision fre-
quencies are well known [9-11] and have been calculated taking into account
the correlation effects in scattering on the doping atom centers [12].

The collision fréquences are written taking into account electron - electron
and hole - hole scattering with the correction coefficients . These coefficients
are derived in the form [13, 14] and are taken equal to: ¥¥ = 4™° = vP* = (.88,
AP0 =1, vY =0.632, 4, = 0.295.
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Values of the effective masses of electrons and holes used are m?, = 0.067mo,
my = 0.45mp, where my is the frec electron mass.

Some detaiis of the mobility calculation are to be mentioned. An expression
for the screening length A was taken from [15]:

2 r —-1/2
! q Nys+ N,
A= —2—
(mcokBT ("“’* T.JT )) (1)

The last term in (11), which is a ratio of the impurity concentration to the
normalized ion screening temperature T}, gives finite values of the scréening
length even for small values of n and p encountered in compensated semicon-
ductors. Hence, formula (9) can be used in maobility calculations for the com-
pensated regions of a semiconductor structure as well. In the present work,
the same as in [15], the considered range of T; values is 7000K < T; < 9000K.
After substituting formula (10) into (9), the electron and hole mobiiities can
be calculated using the method of Gauss, with integration intervals being cho-
sen such as to ensurc smoothncss of the integrand function. In a wide range
of dopant concentrations from 10"%cm =2 to 10cin 3, the calculated mobility
values did not differ by more that 25% from experlmeutal data [7, 16).

Calculations of the mobility in semiconductor structures will be performed
in the following way. In the temperature range from 30 to 400K and the range
of dopant and free carrier concentrations accessible with the state-of-the-art
technology, the mobilities 12 and ,ug are calculated with formula (9). These
data are presented in the form of tables. In calculations of factors for density
values of conduction currents at specified values of impurity and free earrier
concentrations and temperature, mobility walues in a weak clectrostatic field
are obtained by interpolation of 42 and 49 values from the tables.

Final mobility values, i.e. with account taken of the ficld dependence, are
calculated with formula (8). The field--dependence function Fo;)(E), taken
from [17], is rewritten in the form

4
1+ “-(p) (EV)

1+ (%)4

where the saturated velocity Vs = 8 10°cm/s and the critical field Exy =
4-10*V /cm are assumed.

Potentials ¢ and tp;' for the bandgap narrowing due to high doping levels
are written in the form proposed in [18]:

Fn(p.)(E) = (12)

¢€(h) =C (ll‘l(l\' (a)/NO) + ((ln(l\’d(a)/hr ))2 1/2)1/2): (13)

where Ng = 107e¢m™3, C; = 9 1073V. This expression, though derived
for silicon, gives valucs in fair agreement with experimental data (e.g., sce a
compilation in [19]).
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The recombination term in formulae (1) and (2) is written in the form

1
Tno (P + /ToPo} + Tpo (0 + /Ropo)

where np and py are equilibrium concentrations of electrons and holes. For-
mula (14) is taking into account the recombination via impurity centres ac-
cording to Shockley-Hall-Reed statistics and band-to-band Auger recombi-
nation. Values of the cfective lifetime of charge carriers, 1,, = 4-10~7s and
Tpy = 6 107 7s, are taken from [20] and Auger recombination coefficients,
Cn=210""cm® ! and C, = 10"**cm®s~!, from [21].

It is further assumed in the calculations that the structure is illuminated
with monoclwomatic light from the source side. In this case, the generation
term may be written in the form

R = (np — nopo) ( +Can + C,,p) , (14)

G = Fyaexp(—az}, (15)

where Fp is the incident light intensity, « is the absorption coeflicient, taken
equal to 3-10%cm™!, and £ is a spatial coordinate.

6.5

7.0
x{(gant)

“DRAIN

Figure 1. Schematic drawing of the structure.

The boundary conditions are defined in a’ way usual for the case of ohmic
contacts and the absence of leakage cuirents. Accordingly, equilibrium values
of the chemical potential fy and the free carrier concentration are assumed.
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The expressions for the potential and the electron and hole concentrations
are: @x = Vi + (fode, me = (node, pr = (po)x, where V) is the voltage drop
between a k-th contact and the drain contact. Conditions at the free surfaces
are: (V&) =0, (Jn, ) =0, (J:,,E') = 0, where # is a unit vector of the
external normal.

The system of nonlincar differential equations {1)-{3) is solved using an
absolutely stable, monotonic and conservative differential scheme proposed
in [6]. The computation time of one non-steady-state characteristic for a
spatial network consisting of 47 x 27 points is from 60 to 300 min (IBM
PC/AT 386/387, clock rate 20 MHz).

3. CALCULATION RESULTS

The structure considered is schematized in Fig.l, indicating overall dimen-
sions, gate depth and dimensions of the conract regions.

The gate region is located in the depth of the structure, at a distance of
2um from both the source and the drain contacts. The channel and the
gate have the same width of 2um. The concentration of the donor impuri-
tics at n* was given Ny = 1.01 10'®%cm—3, the concentration of acceptor -
N, = 10"%m~? The concentrations of the donor and acceptor inpurities
at n? - layer were given Ny = 1.05 - 101¥%m—3, N, = 10%:m~? and at p*
layer - N4 = 10'%c¢cm3, N, = 1.01 10'®*cm~?. Regarding layer thicknesses,
length and width of the channel and impurity concentration, the structure
in Fig.1 corresponds to vertical field - effect transistors whose fabrication and
electrophysical properties have been reported in [22,23].

The photoprocesses in the structure under consideration were caleulated in
a range of light intensities and gate voltages with the source voltage fixed at
Vps =4V The gate voltage Vpe is fixed at 3.4V.

It is assumed that prior to an initial moment of time ¢t = 0 the voltage
Vps = 4V has been applicd between the drain and the source and that in
the currents through the structure corresponding te this voltage and the bias
voltage s have reached their steady-state values.

Calculations of the non-steady- state processes were carried out for a case
where a light source of intensity Fo was turned on at the moment of time
t = 0, the structure being illuminated from the source side. Calenlations were
performed with intensity value Fy = 10%¥cm™2s7!

Consider now in more detail the evolution of the photocarrier transport in
the structure for the case of high intensity of the light source #5 = 10*?cm =251
and value of the gate voltage V¢ = 3.4V, corresponding high potential bar-
riers for clectrons in the gate region.

The calculations for in the case of a high potential barvier for clectrons in
the gate region have revealed the following features of the charge transport in
the structure. In the momenmts immediately following the turn- on of illumi-
nation, excess electrons and holes will be accumulating in the upper part of
the structure. Then, under the effect of the high clectrostatic field directed
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Figure 2. Distribution in-the structure of the poteatial energy profile in the dark conduc-
tion.

along the source region of the structure, separation of the electrons and holes
takes place. The holes are stored in regions of high potential energy in the
above-gate part of the structure, the electrons in the upper part of the channel
where the potential energy is lower.

High concentration of the photogenerated holes in the upper part of the
gate causcs changes in the spacc—charge density and lowering of the potential
energy in this region which causes a low of holes away from this region and
lowering of the hole concentrations in the upper part of the gate.

It the channel, the excess electrous are driven by the clectrostatic field into
the drain region. The excess electrons accumnulated in the lower portion of
the channel significantly aflect the space charge density, causing a considerable
increase of the potential energy in this region, see figs.2 and 3, which favours
accumulation of photogenerated holes in the region of the channel adjacent
the gate. Asindicated by the calculations, the hole coutribution to the current
density in the left portion of the channel is twice that in the above-gate part
of the structure, t.c., the holes entering the gate region come predominantly
from the channel side. The high potential energy in the lower portion of the
channel is responsible for yet another effect, namely, an emergence in the gate
of an clectrostatic field gradient and associated enhancement of the hole drift,
leading to large gate currents, comparable to the source current.

Higher potential energy in the lower portion of the channel also causes a
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Figure 3. Distribution in the structure of excess values of the potential energy under
illumination.

reduction in the concentration of excess carriers in the channel and so lowers
the source current. Reduced drain current means lower current through the
structure and adversely affects the gain of a transistor.

To conclude, we note the following characteristic features of the carrier
transport in the vertical field-effect phototransistor with biased gate. Through-
out the range of voltages and light intensities investigated the structure shows
response (ime of the order of a few nanoseconrls which is consensus with exper-
imentally observed featurés [22]. The diffusion-drift approximation in combi-
nation with a semi-implicit differential scheme proposed in [6] were used for
nuroerical simulation of the transport of photogenerated carriers in the struc-
tures investigated in [22]. Calculated values of the photocurrent rise-time
and the gain of the structures are fairly closc to those measured in [22]. Such
agreement of calculated and experitnental data warrants a suggestion that
the diffusion -drift approximation can be applied for describing photocarrier
transport in the type of structure studied in [22], which is characterised with
rather extensive active regions, of about ! ym, in the channel and the gate.
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DIFUZIJAS DREIFA TUVINAJUMS LADINU PARNESES
FOTO-KINETISKO PROCESU SKAITLISKAI MODELESANAI
2.D VERTIKALA GaAs LAUKA TRANZISTORA

VLADIMIRS KOROLKOVS, REINHARDS MAHNKE, JANIS RIMSANS,
JURIJS SKRILS un TIMURS TABAROVS

Izstradata uzdevuma nostadne ladinu fotokinétikas aprakstam GaAs pus-
vaditaju struktiras. Veikti fotokinétisko raksturliclumu potencialas energi-
jas, koncentraciju un fotostravu skaitliski aprékini vertikala lauka tranzistora.
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ABSTRACT

The paper describes a family of lincar elliptic operators for which the largest family of
analogical operators, which preserve the weak closure of the set of feasible states for every
fixed right hand side, cvincides with the G-closure of the original family of operators.

Keywords. Elliptic systems, optimal control problems, extensions.

AMS subject classification. 49J)20.

1. INTRODUCTION

The paper considers the question of maximal extensions of optimal control
problems for clliptic systems. The formal setting of the problem is as follows.
Given a family of elliptic operators

L [HH)™ - [HH()™, NCR*, n>2,
Lu:=divA(-)VH, A€ A4,

where A is a given set of measurable uniformly positive definite and uniformly
bounded syminetric (n x n)(m x m}-matrices. And we seek for the largest
sct A of matrices of the same kind such that for every weakly continuous
functional Z: [H} ()™ = R and for every fixed f € [H~1(f2)]™ there is
inf { Z(@) | 7 € [HA(M)]™, divAVE =7 inQ for some 4 € A}
inf {Z(7@) | g € [H} (D)™, divAVE = fin Q for some A € A}.
()

1This work was partly supported by Latvian Council of Science under grant’96. 0248


mailto:raitums@cclu.lv

102 U. Raitums

It is clear that the passage from A to the G-closure G A (see, for instance,
Zhikov et al. [2]) of the set A is an admissible extension of A. It is known (sce
for instance, Raitums [1]) that for the case of a single equation, i. e. m =1,
there exist larger than G A sets A for which the relationship (1) holds.

In this paper, we give a simple example for m = n = 2 which shows that
for the case of systems with m = n the set GA is, in general, the maximal
set, i. e. if for a set A the relationship (1) holds then 4 C GA.

This result shows that for the optimal material layout problems described
by systems of elliptic equations one can not expect suitable extensions larger
than the extension via G-closure.

2. PRELIMINARIES AND THE STATEMENT OF THE PROB-
LEM

Let n = 2 and (¥ C R?_be a bounded domain with a uniforinly Lipschitz
boundary 81). For the given positive constants 0 < v < g denote by K(v, )
the set of all (2 x 2)(2 x 2)-matrices A € [L2(§)]**2*2) such that

(i) A=(af)),iJ,p.g= 12
(u)a""—a)i,l]pq—l 2;
(111)|a (z)‘(pae:éﬂt)p,t}—l?

) ¥ aN@EE>v Y GEVEER ip=12a 0260
i.npg=1 i.p=1

{v) ({(a}f - a,-J)d.r =0,i#j.

Matrices 4 € K(r, ) we shall consider as block matrices

An g o B o
"l — (r‘2l ‘422) [ —'1') - (a‘; ) pq= 1,2, 1,1 = 1'2,

and, by definition, for & = (uy, u3)

— .411VU| + 412Vus
AV = (AMVHI + AnVug) !

div AVT = (di" (A Vu + .-'llgVu-g))

div (.‘12|th; + Az VUQ)

The unit matrix we shall denote by £, i. e.

(1) (50)
(6 0) (1)
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Denote
H:=[H)®Q), H" =[H Q)]

Define the sct 4y of matrices,

Ao:={Ae Xy, p) | Az) = ()b E + - +8n(z)kNE,
B € Ly(fY), Bi(r) =0orla e zef), i=1,...,N, (2)
Gi(z)+- -+On(z)=1a.e. €0},

where 0 < aa = k) < k2 € < kpn = 3 are given positive constants such that
v<a<i<u

In the context of the optimal material layout problems matrices & E cor-
respond to physical properties of given N materials, but the Functions 4; are
characteristic functions of sets occupied by ith material respectively.

For the set .4p its G-closure is well known and

GAg={AeK{yu)| A= (g 2) , 6 € [L(M)]?*?, a symmetric,

3
A(a)(x) € M(a)(a), ®
Ai(a)(z)rz(a)(z) — Mla}(z)a+ B)+af <0a.e.z€0}.

Here and what follows for a symmetric matrix a by A; (a)(z} and Az(a)(z) we
denote the eigenvalues of the matrix a(r) arranged in the order of increasing.

Let us denote, for the given set .4 € K(v, u) and the given f € H*, by
Z(A,F) the set Z(A,F) = {w € H|divaVE = fin Qforsome 4 € A}, i
e. Z{A, f} is the set of all feasible states for the equations

divAVa=finQl, ueH,
with A € A.

ProrPoSITION 1. Let the set Ay is defined by (1). Then for every set A C
K/ 1Y with 0 < v’ < v < p < such that

inl { Z(

T)|u€ H, divaAVa = f in § for some 4 € A}
inf{Z(a}|w

€ H, div AVE = f in 0 for some 4 € Ao } )

Jor cvery fited f € H* and every fized weakly continuous functional I: H —+ R
there is A C G Ap.

3. PROOF OF PROPOSITION 1

Since the set Z (GAO,?) is clused in the weak topulogy of H then it sufficies
to prove that from

Z¥A,f) € Z(G Ao, f) for every f € H* (3)
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it follows that 4 C G Ap.

Let the sct A satisfies the relationship (5) and let B € A. Then [or every
7 € H exists a matrix A(%) € G.Ag such that

div BV = div A(@)Va in 0. (6)

In the first step we shall show that the matrix B must be of the type

B, BIZ)
B= , Bia = By, = 0.
(Bza Bys 12 21

Indeed, from (6) and the representation (2) for G A, it follows (considering
¥ = (0,v), = (v,0)) that

divB; Vv =0in 0, divByVu=0inQ Yve H(Q).

_ {0 v _f0
Blz_ (_,y 0) ' B?l - (_6 0)

with some constants ¥ and § and from assumption (v) in the definition of
K{v,u) we have that y =46 = 0.

In the second step we shall establish that By, = Bss. Indeed, {rom the
representation (2) for G4y and from (6) we obtain that

It gives that

div B11 Vv =div BV in 1 Ve € H&(Q).

But, by virtue of the assumption (ii), matrices By, and B,; are symmetric,
hence B“ = Bgz.
Denote, for simplicity, By, = & = (b;;}, 1,7 = 1, 2. It remains to show that

M) z)Aa(b)z) — A (B)(z)(a+ ) +ad<Da e zell

Let o € 02 be a Lebesgue point for the matrix b and its ecigenvalues Ay ()
and A:(b}). Without loosing generality we'can assume that at the point z,

_(Mb)z) 0
"‘“’*( 0 f\z(b)(Io))

{the description (2) of the sct G Ap is invariant with respect to rotations of
the systetn of coordinates).
Let v = () be a function such that
. i —2s, 2s <t <254+ 1, _
vlt) = {'Zs+?—t, srl<t<2s42 S=OFLFL--
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Define
I, 1
Uk(I) = ‘D’(I);v(kzl)' Uk(I) = ‘F(I)E'f’(kzz)v TE Q'r k= 112r -

where ¢ is a smooth function with suppy C ©? and ¢(z) = I in some neigh-
bourhood Qg of the point xg.

Denote by e, matrices which correspond to Aj; (dx = (ux,vx)) according
to the relationship (6). Now, from relationships

div bV, diva,Vug in Q,
div bV, divag Ve, in Q,
k=1,2,...,

it follows that

f Colbyy — ag,,) dz =€}, ‘__{Cga(bzg —a)dr=¢g", k=12,...,
{1

, ; (7)
£, =0, £ = oo,

for every ¢ € C'(f), supp{ C 9 (elements ¢}, and e;” depend on  but not

on ().

Since the set GAg is closed and convex then we can pass to the limit as
k — oo in relationship (7) what gives the existing of a matrix A, € GAy,
A,11 = a, such that

-/C(bu - au)d’:l: = 0, /C(bzg —022) dr =0 VC € Cm, supp( C Qo.
{1 44

Arbitrarily of ¢ gives that
bii(z) = a1 (z), b22{) = a22(z) a. e. x € .
From here and relationships

an(z) > A (a)(z)
ai(r)az(z) = Ai(a)(z)A2(u)(z),

which are valid for every symmetric positive matrix, it follows that

AL () A2 (B)(x) = A (B)(z)(a + ) + BB

b1y (z)b22(2) - bra(z)(c + B) + a8 + [b1a{z) — A (b)(x)i(a + 3)
ayi(r)azz(z) — en(z){a + ) + af + [by(x) — A (D) {(x)(a + )
A{a)(@)A(a)(z) — M(e)(z)(a + B) + aB + [bu(z) — M (D)(z))(a + B)
[bri{z) — Mb)(z)j(a + B) a. e. T € Q.

IAIA
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But this inequality means that at the point zo (here A (b)(z) = b1 (z))
A1(b)(£) A2 (B)(x) — My (b} (z)(a + B} + B < 0,

what is enough for the inclusion B € G Ay.
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DAZU EKSTREMALU PROBLEMU MAKSIMALIE
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Raksta aprakstita viena eliptisku operatoru tada saime, ka jebkurs tas mak-
simalais paplagindjums, kurs saglaba sakotnéjds saimes sasuindzamo atrisina-
jumu kopas slegumu vajaja topologija, sakrit ar sikotnéjas saimes G -sléagumn.
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ABSTRACT

A reduction theorem for system of impulsive differential equations in a Banach space is
proven. It is asumed that given system admits an invariant set.
Keywords. Impulsive diflerential equations in a Banach space, dynamical equivalence

in the large.
AMS subject classification. 32A37, 34C20.

1. INTRODUCTION

Impulsive differential eqnations provide an adequate mathematical model of
evolutionary processes that suddenly change their state at certain moments.
V Lakshmikantham, D. D. Bainov and P. S. Simeonov [4] as well as A. M.
Samoilenko and N. A. Perestyuk [11] have published monographs dedicated
to this subject.

The equivalence problem in the theory of ordinary differential equations
were explored by many mathematicians 2, 3]. A. Reinfelds [5-11] and L. Ser-
mone [5 6, 13-14] and D. D. Bainov, S. I. Kostadinov and Nguyen Van Minh
[1] began to discuss the cquivalence problem of impulsive differential equa-
tions. In the present paper a partial decoupling theorem for systems of im-
pulsive differential equations in a Banach space is proven assuming that the
system splits into two parts, has invariant manifold and has not additional
restrictions on the right hand side as in the [11].

1'This work was partly supported by Latvian Council of Science under Grant 96. 0692
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2. STATEMENT OF THE THEOREMS

Let U be a Banach space. Consider two systems of impulsive differential
equations

du/dt = P(t,u), Au|‘=ri= Si(u(m; -0} (1)

and
dufdt = i, u}, A"l::«;,-: Ti(u{r; - 0) (2)

that satisfy the conditions of the existence and uniquenesses theorem. We
assume that maximum interval of the existence of the solutions is R. Let
o(-.s5,ug): R = Uand (-, 5, up): B = U be the solutions of the above systems,
respectively. Suppose that there is a function e: U — 2 such that

max {|P{t, u) - Q(t, ), sup 1S:(w) - Ti(w]} < e(w)

DEFINITIQN. Two systemns of impulsive differential equations (1) and (2)
are dynarnically equivalent in the large if there exists a map H: R xU - U
and a positive constant ¢ such that:

(i) H(t,-): U — U is a homeomorphisin;
(i) H(t, 8{t.s. ug)) = v(t,s, H(s,up)) for all t € R,
(iti) max {|H (t,u) — u|, [# (¢, u) — u|} < ce(u).

Let U=XxY £{X)and £{Y) be the Banach spaces of lincar bounded
operators. Consider the following system of impulsive differential eguations

dx/dt Az + f(t,z.y),

dyfdt B(t)y + g(t, r,y),

_\II‘:Ti z(ri +0) —z(r, - 0) 3
Cux(rs — 0) + pa((r; — 0),y(r, — D)), @

Ayl,_., y(ri +0) — y(7i - 0)

Dy(r; — 0} + qi(z(ri — 0}, u(7i — 0)),

where:
(1) the maps A:R = £(X) and B:R — L{Y) are locally integrable in the
Bochner sense:

(i) the maps frExXxY =2 Xand ¢ Bx X xY = Y are locally integrable
in the Bochner sense with respect to 1 for fixed x and g, and, in addition,
they satisfv the estimiates

Ifit. ey} = flt, 2"y ) <ellx - [+ |y - ¢I}.
lg{t. z.y) —g(t, 2", y")| < ellz — Z'| + |y - |k



FPartial Decoupling of Impulsive Differential Equations 109

(i)i1eZ,  Cie L(X),D;e L{Y), themaps p;: X xY 3 X, ;. XxY 2 Y
satisfy the cstimates

Ipi(z,y) — pe(z,0)| L el = ='| + |y - ¥']),
lgi(z,y) — qi(=z', ') < elz —='| + |y — ¥'|);

(iv) the maps (r,y) = (z + Ciz + pi(z.¥), ¥y + Div + q:(z,9)), = r + Cix
are homeomorphisms;

{¥) the moments 7; of impulse effect form a strictly increasing sequence
CT KT 1 <Th <1 <Ta <

where the limit points may be only +co.

Let U(t, 7) and V(1,7) be the Cauchy evolutionary operators of the linear
inpulsive systems

dz/dt A(t)x,
A‘T‘It:r, C,‘I(T,’ - 0),

and

dy/dt B(t)y,
Ay, Diy(ri - 0)

respectively. Let the operators satisfy the estimates

t
¥ = max Supf Ve, |U(r, t)| dr + sup E [V(e, )1V (r: - 0,2)],
t oo t

- <t

4+
sup/ IV (r, ONU(t, 7)| d7 + sup Z [V (7 — 0,t}||U(t,T,)|} < 00,
1 T t

1<T;

+o0
[t = sup {/ [U(t, ) dr + Z LAt T:')I} < +oc.
i t

t<r;

Let ®(-,5,x,y) = (z(-,s,7,y),9(-,5,7,y)): R = X x Y be the solution of
system (3), where #(s + (4, s, z,y) = (z,y). At the break points 7; the values
for all solutions are taken at 7; + 0 unless otherwise are specified. For short,
we shall use the notation ®{t) = (z(t), y(£)).

Let us give a sufficient conditions for the existence of amap :RxY - X,
whose graph is an invariant set.
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THEOREM 1. (8]. Let dew < 1, 2ep < 14 1 —dew, sup, , [£{8.0,¥)] <
+oc and sup; , |pi{0,¥)] < +oc Then there exists a piecewise continuous map
v:R x Y - X with the following properties:

() vt ylt. s, v(s,9). ) = (¢, s,v(s,9),p) for ol t € R,

(@) |v(t, ) — vt y')] < Yy - ¢'l;

mn[fwummmaam—meanwwr
+ 3 V(s m)llr(n — 0.5, 7,y) ~ v(7i = 0,y{r; — 0,5,2,))|

T, <t
<u(l - (1 4+ 0v) e - (s, p)l,

where | = (2:v)" 11 — 26w — /1 - dev).

THEOREM 2. [10]. Let 4=v < 1, f{¢,0,0) = 0, ¢(¢,0,0) = 0, p,(0,0) = 0
and q;(0,0) = 0. Then there exists a piecewise continuous map 5:ExY —+ X
unth the following properties:

() vt y(t, s, v(s, ) ¥)) = z(t, 8, v(s,),y) for allit € R,

(ii) [v(t.¥) - v(t, ¥ <y - ¥k

mn[ Vs, Ollz(t, 5,2, ) ~ v(t, y(t, 5.2, y))| dt

+ Z IV(s, )le(ri — 0,8, 2,¥) — v(7, — 0, y(r; — 0,5,z,¥))|

i<l
< v(l —e(1 + )"z — (s, )l

where | = (2c0/) 711 = 2ev — /1 = 4cv).
Now we formulate the main result of the paper.

THEOREM 3. Let dev < 1 and let there exists a map : R x X xY —
Y satisfying (i)-(iii). Then there is @ map :R x X x Y —= Y, which is
Lipschitzian with respect to the second variable, such that systems (3) and

de jdt Alt)r + f(r.2,8(t, 2, 9)),

dy/dt Bit)y + g(t, v(t,y). ¥}, ‘
Acf,_, Gz~ 0) + pilx(ri — 0).0(5 — 0,z(r; - 0), y(r; —0))), (D)
Ay, Diy(ri — 0) + qi{e{ri — 0,y(7; — 0)), y(5i — 0))

are dynamically equivalent in the large.

The systemn (4) splits into two parts. The second part of them does not
contain the variable . This result allows one to replace the given system by
a much simpler one.

Let ¥(-.s.7.y) = (zo{.5.7,y).vo(",5.2)): B = X x Y be a solution of
svstem (4}, where ¥(s+0,s,x. ) = (z.y). For short, we shall use the notation
¥(1) = (1o(t). yolt))-
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3. PROOF OF THE MAIN RESULT
Step by step we shall prove the theorem. Let PC(R x X x Y, X) be a set of
maps that are continuous for {¢,z,y) € [r, 7i41) ¥ X x Y and have disconti-

nuities of the first kind for ¢t = 7;.

Proof. Step 1. The space

Nt 2, 9)] }
£ =<¢AcPC(RxX xY,Y sup ———————— < 400
: { ( V| 5P e wte, )

equipped with the norm

[A(t, z,¥)]
I = sup ———
= S2p 1 —ote, w1

is a Banach space. The set
L) ={xe Ly | Mt ) - Mt 7' y)| < Ulz - 2]}

is a closed subset of the Banach space £;. In £;(l), there exists a unique
solution of the functional equation

6(s, z, w) =/_' Vs, T)g(r, n(r), () + 8(7, 7(7), y(7)})

_g(frv(fv U(T))a y(T))) dr

+ ) V(s ) (g:(nlri — 0), y(ri = O} + 8(ri = 0,n(ri — 0),y(r: — 0)})

[ X

—~gi(v(ri = 0,y{ri — 0)),y(ri — 0})),

£
n(t) = Ut s)w + [ U, 7)f(r,0(r),4(r) + 0(r, n(r), y(r))) dr

+ 37 Ut mpilnir — 0), y(r — 0) + 8(ri — 0,n(r; — 0),3(r: — O))).

T <t

Let H(s,z,y) = (z,y + 0(s,z,y)). We get for all t € R that
H(tf T(tl 3' I! y)) = @(t’ ’T H(s) I’ y))'
Step 2. In £, there exists a unique solution of the functional equation

M(s,z,y)
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[ Vs, 7)(g(r, v(r, y(r) + M (7, &(7)}), (7)) + A {7, B(7))) — g{7, ¥(7))) d7

+ 3 Vis, m)(giw(r — 0,y(r — 0) + Ay(r = 0,%(r: — 0))), y(7: - 0)

<s
+A1(ri ~ 0, ¥(r; = 0))) - ¢:(®¥(ri - 0))).

Let H (s, x,y) = (z,hi(s,z,9)) = (z,y + Mi(5,1,y)). Wegetforallt € R
that

h] (tv Q(t, 8, r, y)) = yo(t, 8, Hl (3: I, y))

Step 3. In £, there exists a unique trivial solution of the functional equation

Aofs,z,9) = [ Vs, 7)(g(r, vlr,y(r) + ha(r, ¥(r))), y()

+A2(1, ¥(7))) = g(r, v(7,y(7)), y(7))) dr

+ ) Vs, m)gile(r - 0,y(ri - 0) + do(ri — 0, ¥(ri - 0))), y(r: — 0)

T.“_:l

+A2(ri — 0, %(7i - 0))) — i(v(7i — 0, y(7i - 0)),y(r: - 0})).

We notice that the mapa: R x X x Y = Y, where
als,z,y) =8(s,z,y) + Mi(s,z,y + 8(s,z,y))
also satisfies the functional equation and a € £,. It follows that the identity
Hy(s, H(s, z,¥)) = (z.y)

holds true.
Step 4. The space

Ly = {A EPC(RxX xY xX,Y)| sup At z, y w)|

< +oc
t.x . max(|z - v{t,y)|, |z - wl) }

equipped with the norm

Alt, Ty, w
]l = sup | )
tz,yw ma.x[l:l: - v(t'l y)ll II - wl)

is a Banach space. The set

Loy ={de Lo || Mtz pw) — AL, z,y,w')] < l|lw - w'|}
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is a closed subset of L. In £2(!) there exists a unique solution of the functional
equatjons

!
7(t) = UL, s)yw + [ Ut 7)o(r,n(r), y(r) + Mo, &(), n(r))) dr

+ Y Uit rain(n - 0),y(r —0) + Ao — 0, 8(r; ~ 0), n(r; — O))),

T <L
Xa(s,2,y,w) = [ V(s, 7)(g(r, 1(r), ¥(r) + As (7, B(r), (7)) — (7, B(r))) dr

+ Z V (s, :)(q:(n(ri—0), y(ri —0)+ A3(r; -0, B(7; —0), 5(7: —0))) —q:($(7: - 0))).

i<

We notice that the map a: R x X x Y x X = Y, where
a(s,z,y,w) = \(s,z,y) + 8(s,w,hy(s,z,y))

also satisfies the functional equation, @ € £z(I) and a(s,z,y,7) = 0. It follows
that the identity

H(sr Hl (31 , y)) = (Ir y)

holds true.

We get that H(s,-) is homeomorphism establishing dynamical equivalence
of systems {3) and (4) in the large. It is easy to verify that if the system (3)
of differential equations is autonomous and without impulse effect, then the
maps v, H and H; are independent of s € R Let us note that in our case
e(z,y) = a + £|z|, where a is some positive constant. Thus the proof of the
theorem is complete.
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IMPULSIVA DIFERENCIALVIENADOJUMA DALEJA
SADALISANA

ANDREIJS REINFELDS

Pieradita redukcijas tipa teoréma impulsivo diferenciilvieniddojumu sisté-
mai Banaha telpa, ja dotai sistémai eksisté invarianta kopa.
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ABSTRACT

In this paper we present an example of a decomposable family A of operators correspond-
ing to the systems of elliptic equations for which there docs not exist a family ‘B consisting
of the same type operators such that the graph associated with B coincides with Lhe strong
closurc of the graph associated with A when the number of unknown functions is greater
than or equal o the number of independent variables provided that the latter is greater
than one. The operators of the family A correspond to isotropic systems when ore and the
same procesd is observed with different external forces.

Keywords. Strong closure, E (e, 12)-extension, elliptic operator.

AMS subject classification. Primary 19J45, secondary 49420.

1. INTRODUCTION

The purposc of the present paper is to show that for an arbitrary decom-
posable family of the second order elliptic operators of divergent type which
correspond to elliptic systems there can not exist a family consisting of the
same type operators which preserves the strong closure of the set of feasible
states for cvery fixed right-hand side (sec definition below and Section 3) when
the number m of unkuown functions is greater than or equal to the number
n of independent variables (n > 2). This stateent is proved by constnicting
a concrete family. It must be noted that for m = = = 2 such an example was
constructed in [10], but it did not include the so-called rotations (see Section
3) and was adapted to the case which corresponds to the problems of optimal
layout of two materials. Let us also note that the technique of this paper is
essentially different from the used one in [10] and can not be applied for that
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case, and vice versa.

Now let us introduce basic notations and definitions which are encountered
in the paper. We shall consider a family @ = {4,}, ., of operators from the
Cartesian product [H} (?)]™ of Sobolev spaces into the Cartesian product

[H~! (Q)]m of their dual spaces where { is a bounded open subset of R"
with Lipschitz boundary and

’
Ay =div 3 xp A,V
p=1

,.
A={xlx=0a1 - x}s Z1XP: 1, xp is measurable,
P-_—

xp({z)=0or lae z €N}

Ap, p=1,...,rare fixed mn xmn-matrices which belong to the set E {1, 1),
»,v2 > 0 consisting of all mn x mn-matrices A satisfying the conditions

n&iji < A (2) &l < vadi;&i;
Aijrr (z) = Airs; (2) ae. z €, forall £ € R™*"
1<i,k<m;l<jl<n.

For an mn x mn-matrix A and an m x n-matrix { we define (Af),; =
Aijur€xr. Here and further on, summation over repeated indices is assumed.

The natural number r is called ¢ number of materials. It is due to the
fact that A, () usually describes property of p-th material at a point z € 02,
and the sum }° xpAp describes medium divided into r regions occupicd by

p=1

different materials. Throughout the'sequel we assume that r > 2.

Put V = [H3 ()] and V* = [H-} (2)]"

For a family € = {A} of operators A from V into }'* we set

graph (€) = {(u, Au) |u e V, A € €}

and
F(Cu)={Au| A€ €}, uelV.

It is clear that graph (€) € V x V™ The space V' x V'~ will be considered with
the strong topology.
Now we give the main definition of the paper which will be used henceforth.
A family B = {div A, V], is said to be an E (v, v;)-eztension of A if

ACB, (A}, cx CE(n,1)

and the closure of graph (2) coincides with graph (‘B).
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Let K € £ (V,V*) where £ (V,V*) is the space of continuous linear map-
pings of V7 into V" For an arbitrary family € C K we admit the following
definition. A family D is said to be a K -extension of € if

CCD,DCK

and the closure of graph (€) coincides with graph (D).

A family € = {divA,V} .y where A, € E(n,®), v € T is called de-
composable if for any measurable characteristic function p from inclusions
div 41V € € and div A,V € ¢ it follows that div(pA, + (1 —p) A2)V € €.
It is evident that the family A is decomposable. This fcature is of great sig-
nificance in our futurc considerations because even if rn = n = 1 there is an
example of a family € = {div A, V},  with A, € E(v1,12),7 € T lor which
does not exist an E (v, 1)-extension [11]. On the other hand, if m=n =1,
as E (v, 1»)-extension of the family A may be chosen the A itself since for
this casc graph (%) is closed.

A significance of our examnple may be explained from the viewpoint of op-
timal control problems in the following way. Consider the optimal control
problem

J (u) - min (1)
veV,AeR Adu=f

with the cost functional J'which is not weakly continuous. For instance, the
functional defined as

J(u)= [ (Vu-Vv)idz
/

where v € V is given it is not weakly continuous (such functionals where
considered in [7] for m = 1).

If an extension of (1) (we refer to [4, 2] concerning the notion of the extension
of an optimal control problem) is searched in the analogous form

J (u) = min (2)
ueV,BeB, Bu=f

with a larger than 2 family B3 of opcrators of the same kind, then the family
B must preserve the strong closure of the set of feasible states for every fixed
right-hand side f The result obtained in this paper shows that for optimal
control problems governed by elliptic systems when m > n > 2 and with non
weakly continuous cost functionals the extensions of the form (2) may not
exist.

To underline the distinction between the families of operators which corre-
spond to a single equation and the families corresponding to the systems of
equations when m > n > 2, for m = 1, n > 2 we mention the following result
which directly follows from [6] (cf. [7]).
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THEOREM 1. Let A be as defined above. Let m = 1,n > 2. Then an
E (11, v9)-extension of the family A is TG where TO stands for the closed
conver hull of a set in the space £ (V,V~).

*REMARK 2. In the recent paper [5] the more general result than this theo-
rem was proved (see also [4]). From this result it follows that 0 is extension
of the family Aifm <n - 1.

In the case of a family € of arbitrary linear continuous operators from V
into V'* we present the following theorems showing the cases of existence of
K -extensions.

THEOREM 3. Let K be a closed set in the strong operator topology of
L(V,V") and let € C K. If the strong closure of the set F (€ u) is com-
pact for every u € V, then the sequential closure of the set € in the strong
operator topology of £ (V, V") is the K -extension of €.

THEOREM 4. Let K be a closed set in the weak operator topology of
L(V,V*) and let € C K. Assume that K is bounded in the space L (V, V"),
If the week closure of the set F (€, u) coincides with the strong closure of this
set for any u € V, then the sequential closure of the set € in the weak operator
topology of £ (V,V*°) is the K -extension of €.

REMARK 3. Here the ‘terms of strong and weak operator topology of
£{V,V*) mean the same as i1 [1].

REMARK 6. The theorems 3 and 4 are consequences of more general results
of [11].

2. AUXILIARY RESULTS

To construct the example, we nced the following auxiliary results.
THeOREM 7. (Vainikko and Kunisch [9]) Suppose thatn > 2. Let @ function

a € L=(Q) and a function v € Cg° (1) satisfy the equation diveVu = 0 in

H™'(Q). Theno =0on {z € Q| Vv (z) #0}.

THEOREM 8. (Necas [3], cf. [8]) Let 2 be an open set in R" with Lipschitz
boundary. Then there exists ¢ = ¢ () > 0 such that for every g € L? ()

"9”1,2(9)/11 < cflgrad Qll[n-l(n]]"

where L? (1) /R is the foctor space.
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3. MAIN RESULT
The main result of the paper is the following.

THEOREM 9. Let m > n > 2. Let A be the family as in Introduction for
which A, = a,Z, p = 1,...,r where T is the identical mn x mn-matriz,
0 <y < < a, are positive constants. Then there does not erist an
E (1, v2)-extension of the family Q.

Proaf. Let us prove this theorem for m = n > 2 since the case m >
n > 2 can be obviously reduced to the case m = n > 2. To do this, let
us suppose that our assertion is not true. Then there will exist a family
B = {div A, V} .y which is an E(»),»;)-extension of A. Hence

F(B,u)=clF(A,u) forallueV (3)
where cl denotes the strong closure in V* Since
cl F(@,u) C F ({div A V},ep,u)

where
T=(0]0=8,...,6,), 5 0, = 1,8, is measurable,
0<8(z)<lae. zc er
Ao =Y 6,4,
p=1

then for every v € T and cvery u € V there exists # = #(u, ¥} such that
div 4,Vu = div.4;Vu. Placing successively u!' = (v,0,...,0),.. ,u"
(0,0,...,v) in this cquation, from arbitrariness of v € Hy (1) we see that it
can be assumed that the tensor 8 = A, has the form (Bu) = b, if j =1
(indices j,! are fixed) for somen x n-matrix b, and (B;jx) is a zero-matrix if
j #1. Now set

u = (flsr)(i:'l"')"ﬂ = (Envr)‘r’

where ¢ € C§°(R),42{x) = 1 in somc open ball U CC @ and the vectors

£1....,E,n € R® are lincarly independent. Put w® = (u,,...,u,) and u* =
{uy,...,u1). According to Theorem 1, we have
L F (2,0} = F ({div As¥) peprv7) - (4)

Further on we shall prove that

cl F(A.4°) C {divAsVu® |8 €T, Vpb,(z) € {0;1} on U}. (5)
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From the assumptions of the theorem it follows that there exists #*
{6;,....07) € I such that

o) < Za,,@;, <azon M (6)
p=1

where M is a subset of U with meas Af > 0. To establish this, choose ¢ > 1
such that ga; < az. Let 0 < € < (02 — ) f(gar — ay) and let 8; be a
function which satisfies

O0<l—ge<fi(z) <l —cae. z€EM.
Let us define the function #} on 2\ M and other functions #3,...,8; on ¥ in

such a way that 8" = (8;,...,8;) € I". Then it remains to prove (6). Since
ap — ga; > 0, we have

o <aytefaz—qa) = (l-ge)ay +eay
- u - 4 « ON M.
< ot} +ag EZ()P < 21 agfy
p= p=

Since € < (az — a1) f(ga, — a;), we find that

r r
g; < 1-8)4+a, Y8 < (1- + gea,
Pzz:l b Sell-eta y§2 b < (-dartgea on A

= m+e(ga,—ay) <a

We thus obtain (6). From (3), (4) it follows that there exists B € ‘B such
that Bu" = div Ag-Vu~ Using (3), (5), we have Bu® = div. Ay Vu® where

6 = (... ) €T, S a,8(z) € {ar,...,a,} on U. Hence
p=1

div b, Vu, = dive, Vu,

: -1
dive. Vi, = diva,Vuy, T H )

r r
where weset o) = 3} a,8;,02 = 3 apﬂg. Subtracting two last equations, we
p:l p:]

obtain div (gy - 02) Vu; = 0. Thus we infer from Theorem 7 that o, (z) =
a2 (r) € {a;,...,a,} on Af. But this is impossible since the function o,
satisfies {G).

It remains to prove (3). For this, let us assumc that there exist # € I, 8 =
(6,... .6,)and p € {1,...,r} such that

0<a,_,+¢ 520,0, oy —con M CU
r=1
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with meas My >0,0<c <{ay —a,_,)/2(a,_, =0ifp =1) and
div Ay Vi’ € ol F (%,4°)

Then there is a sequence {x*} such that div.A,«Vu® = div 4V in V*
Without lack of generality we can suppose that x* = @ in [L™ (02)]" Hence
r r

we have div(w; —w;) Vuy = 0 where we put wy; = Y apfp,wz = Y apb,.
=1 p=1

Using Theorem 7, we obtain that w;, = ws on U. Setting py = )_ ap xf,, we
p=1

have

Vul grad (pr —w1) + (px —wn)divVu® 5 0in V* (N
Since pr — ws in L™ (1), then p — wy in L™ (U). This implies that g, =
in L= (U). Using compactness of the embedding L? () <+ H~! (I}, we infer
from (7) that

Vulgrad (p —w1) = 0in [H~1(U)]"

Taking into account the form of Vu® on U, we have
grad (px —wy) = 0in [H-1()]"

By virtue of Theorem 8, it follows that

Pk —wh — |U|_l[(pk —U]) dr — 0in Lz(U)
v
Therefore, pp — wy in L2 (U). This gives that wy (z) € {ai,...,ar} ac.
z € M;. This is a contradiction with
ay_,+e<w Say —gon M, meas M; > 0.

REMARK 10. The result that we have just proved includes the so-called
rotations of initial materials in the following sense (im > n > 2). For an
n X n-matrix @ with entries ¢;; from L™ () satisfying

Qx)Q'(z)=Tae z€Q (8)
where ¢ is the symbol of transposition, let us define an operator

Q [Lm (Q)]mnxmn . [Lc,g (Q)]mnxmn

by the rule
(QA).-J-. s = 955 W Aiju .
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Itis clear that QT = 7. Hence if we consider a family D consisting of operators

div ): XpQpApV for arbitrary x € A and for all matrices Qp, p = 1,.
sausf\ ing (8), we see that D = Q.

The next result immediately follows [rom Theorem 9.

CoroLLaRY 11. Let A be the same family as in Theorem 9 and f € V*©
Define a set & (2, f) of feasible states as follows

Z@, f)y={u] Ayu= f,x € A}.

Then there does not exist a family B = {div A, V}, .y such that
AC B, {A}, v C E(11,10)

and the closure of the set Z (9, f) coincides with the set Z (B, f) for every
fixed f e V"

The importance of this corollary for optimal control problems was explained
in Introduction.
Now for the fixed ¢ > 0 let us consider a family A4, = {A.} of all operators

.
of the form A, =div }° x,Q (Ap + €5,) V for arhitrary x € A and matrices
p=1

Qp. p=1,...,r satisfying (8) where A,, p = 1,....r are the isotrapic matri-
ces (for instance, as in Theorem 9) and S,, p = 1,...,r are matrices which
make the matrices A, + Sy, p=1,...,r anisotropic. Let us recall that A is

a family of all operators of the form 4 =div ¥ x,.4,V for arbitrary x € A.
p=1

It is clear that forevery p=1,...,r Ap+eS, € £ (u;,u.;) for some suitable

v,.vy > 0 and for small ¢.
We have

PrROPOSITION 12. If for some u € V' the strong closure of the set F (2, u)
is no! convez, then there exists h > 0 such that for every £ € (0, k) the strong
closure of F (A.,u) is not conves.

Proof Assume the contrary. Then for every h > 0 there exists ¢ € (0,h)
such that the set ¢l F (A, «) is convex. Hence we can extract a sequence {e}
of such £’s such that ¢ - 0 and

clF(Q,.u) = F(w2,,4). (9)

Let us prove that cl F (A.uv) = F(CoA.u). Indeed, if f € F (0, u), then
there is an opetator B € 0% for which Bu = f. It is evident that there is
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a sequence {B.} such that B, € @4, for all € € {¢} ahd B.u - Bu. By
(9), we see that there exists a sequence {A4%} C 9, such that Afu =2 B.u.

One can also show that 4%z — 4*u for some A* € A. Hence, after extracting

3
subsequences from the sequences {B,u}, {4}, {A*}, we have A*u — Bu =
f (the subsequence is not relabelled). This completes the proof.

This proposition shows that in case of anisotropic matrices A, + €8, p =
l,...,ras F (u;,v;)ﬂaxtension of the family A, can not be chasen &2,
provided that ¢ is sufficiently small and A,, p = 1,...,r are the same as in
Theorem 9. But there still remains open the question: Is there an E (u;,v.',)—

extension of the family A7
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PAR ELIPTISKU OPERATORU SAIMJU GRAFIKU STIPRO
SLEGUMU

OLEGS ZAICEVS

Saja raksta més konstrudjam dekompozéjamu operatorsaimi 9, kuras oper-
atori atbilst eliptiskam sistémam ar nezinamo [unkciju skaitu, ne maziku par
neatkarigo mainigo skaitu (neatkarigo mainigo skaits ir lieliks par vieninieku),
kurai necksist@ analogiska saime B tada, ka saimes B grafiks sakrit ar saimes
% grafika stipro slégumu. Saimes 9 operatori atbilst izotropam sistemam, kur
viens un tads pats process tiek apskatits dazadu aréjo spéku iespaida.
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ABSTRACT

In several practical problems it is important to sirnulate the liguid transport in the layered
nonwoven. We analyze a situation, when the liquid is transported by capillacy pressure. We
assume that the capillary propertics between layers can be very diflerent. In this situation
it is important to spend a special attention to the model and to the coupling conditions.

1. THE MATHEMATICAL MODEL

Our aim is to simulate the liquid flow in the multi-lavered nonwoven. We
can consider the following experiment. Three rectangular nonwoven-layers
lay upon cach other. The layers are numbered from above. The liquid is
poured on the first layer. We want to describe the spread of the liquid in this
structure. We assume that the process is symmetrical, therefore we just need
to analyze one guarter of the domain.

The base of the model is the Darcy’s law [1]

§= —K(w)grad (p(w)) 1)

It means that the liguid transport in the given porous material can be
described, when the functions K(w) and p(w) are known. These functions
have to fit the experimental data or have to be obtained from the literature.
In our numerical experiments we have used for the layer { the permeability
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function K;({w) defined by

Ki(w) = k"™, (2)
where k; represents the hydraulic couductivity at full saturation and ny is a
parameter.
We use the following notation:

fi(w) = —por(1 — w™"), (3)

where 0 < w < 1 is the saturation, py is the capillary fringe and ny is a
parameter. In the reality, there exists a minimal value of saturation wy,;, > 0,
but we assume that wy,in = 0 and p{wgia) is finite.

In our case the capillary pressure pi(w) can be defined as follows [3]:

| fitw) LW 2> Wor
pl(w) = —hoy ¥ h"‘t,,.h(wm’w(zwtl —w)+ !'S::")w(w —wo) W < wor
o
(4)

The parameters hms, Por, Wor, Ry, ki and ngy are estimated from appropriate
experiments.

By using of (1} and the balance of mass can be obtained the following
mathematical problem {(the problem is written for L layers);

O, .
mt Ve (K) V(@) inl=1,.. L (5)
Ki(w)V®(w) = 0 on d0\80, (6)
o, t g tD:
Kvaw [ % (S mon, ™
pir{un) prr(wrgy) on Ty = 0 [ O, (8)
biy %
Kt(wl)a—; = Kinfwin) a::l on [. (9)
Here
1= U:L=: &y is the whole domain,
on is the outer boundary of the domain {2,
Iy is the part-of the upper surface, where the liquid is
poured,
&, (w) = pi{w) + z is the piesometric head for the layer [,
my is the porosity,
90 is the intensity of the liquid-source.

The liquid source works only during somne given time-interval. Similarly
the problem can be written in the 2-D case and in other coordinate systems.

The mathematical model is nonlinear with a nonlinear degeneracy. It leads
to a finite speed of propagation of disturbances fram the rest [4].
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2. THE NUMERICAL METHOD

2.1. The numerical approrimation

The problem for nonlinear parabolic equation {€) can be solved analvtically
only in some special cases [3]. Therefore we use a finite difference method.
Similar problem is solved in 2, 3]. There are allowed full saturated zones
and it leads to an clliptic -parabolic problem. We assume here that - < 1
and thercfore we have a parabolic probletn. The main ditficulty in our case is
connected with condition (8), which can not be alwavs fulfilled.

The numerical solution will be found on the set of the discrete points. We
approximate the domain {1 with the grid:

On = {(i hej hpk B i=0,...,n.5=0,....nk=0,....n.},

where
h;. h,, h. are steps of a grid;

Ny, fty. 1. means the number of grid points in the corresponding di-
rection.
Similarly the grid can be defined for the tine variable:

@r={tg:tg=&-7,6=0,...,n7},

T is the time step,
nyr means the number of the time-steps.

A grid function f(zi,y;, 2. 1.) will be farther denoted as f[,. For the
approximation of the differential equation we use the Richtmayer-Morton full
implicit three layer difference scheme [6] and we do not give here formulas for
the interior points and the points on the outer boundary.

where

2.2 The coupling conditions

When a porous structure consists of different lavers, theyg the coupling condi-
tions are needed to be approximated on the interior boundary (the boundary
between two layers). Formally the fux and the capillary pressure on the in-
terior boundary must be continuous (conditions (8) (9)). Because the sers of
values for capillary pressure in ifferent nonwovens can be significantly dif-
ferent, then the condition (8) is not always fulfilled in our model (we assume
that the capillary pressure can take only finite values). Therefore, we have to
analyze two variants.

The Aux is zero

When the flux between two layers is not possible (for example in the case,
when the suction of the moist material is greater than the suction of the
dry material). then we have to approximare two separate conditions. We
assume that ¢ = iy corresponds to the highest point on the laver { and ip + 1
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corresponds to the lowest point on the layer I + 1. Then we can write:

n+l _ o.n n  _ ,n-l nt+l _ gn+l
Wiajk ~ Wigjk 0.5m, Wik ~ Wik + 2K+ it~ P 1jk
T

1.5my -4k h?

n+t  Endl n+l _ Fn+l
n+1 Qio_f"’l* @HIJ-E +1 Qioji QI'uj—ll:
-K 4 R dedk iyl
ioj+}k hZ ioj- 4k h2

n+l +1 1 +1
Plirer ~ Tk K+t Q?n;k '_w'"oi*"l =0 10)
iojk+ 3} h’;’ + tojikb— - {

b}

- " e T |
o+1jk ~ Yigt1jk —0 _+lwio+ljt Wio+1jk
.91,

T

n+1 — antl 1 - 3
Y Pt ~ ¥ L i — ¥orlie

io+14 45k h2 ie+lit 53

a4l a1 1 a1
ntl ’io+lji - "i.+1j—u +1 i +1jk4+1 q‘i.,+1ji

ia+1j— h% ig-+1jk+§ h?

a1 ’II-H
+Kﬂ+l "0""1‘ - in+1ji—1 = 0‘ (11)

o+ 1k} A2

The flux is nonzero

If the flux between two layers is possible, then hoth conditions (8) and (9)
have to be fulfilled. We can obtain the approdmation of (9), when we add
equations (10) and (11). Let Ly(ia, 5, k,m + 1) and L;{(ip + 1,5, k,n + 1) be
the left hand sides of the terms (10) and (11), then the approximation of (3)
can be written as:

Lyt 5. k,n+1) + La(ie + 1,5, k,n +1) = 0. (12)

The equation (8) means that the capillary pressure has to be continuous on
the coupling boundary. Because this equality cannot be performed always in
our model, we propose instead of using the equality (8) the minimization of
the functional:

R(w::gl ’ w::;:.ll 'j,g-) = 05(pg(w:;:*') — P11 (w.":,tll,_,‘,t))z (13)
under condition (9). Here we have an optimization problem with constraints

so it can be solved by Lagrange method [7]. Besides of the restriction (8) we
use now additional conditions:

wit 20, (14)
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with e > 0. (15)

Corresponding to the Lagrange method, we can minimize instead of (13)
the functional

F(wl';-;—il'w:::-‘]" l-) = R(w::;-;! '0+l.1 k) + A(L!(to,],k n+ 1)

+La(io +1,5,k,n + 1)) - eqwlty —aswl¥) ., (16)

without restrictions. Here A, a), and a» are additional parameters.
We can see that L; does not depend on w*! . and Lo does not depend

do+1,7,
on w";*]': The most favourable conditions are as follows:
Lyi(io, j, kyn + 1) + La(ig + 1,7, k,n + 1) =0, (17}
aR oLy

+A —az =90, (18)

n+1 +1

a‘"-o.ilr 8'”::.11:

OR oL,

+A -a =0, (19)

&”:tllﬂ Bw:'f"_lut
mwitin =0, (20)
agw3ty =0. (21)

These conditions can be abbreviated:

Li(io, j, kyn + 1} + Lalio + 1,5, k,n + 1) = 0, (22)
it ______BL, - pi{w "+;:
1
i waﬁ; ™ Wig
ntl alL,y nt1 n+1 ntl =0 (23)
FWiktikn it Sut] P!+1(w.,,+1_,;.)) (Pl(w.”),) Pl+l(“’.o+|,k)) =4
iojk

Here we have the modified coupling conditions. These equations must be
solved at every point on the coupling boundary.

3. THE TREATMENT OF THE COUPLING CONDITIONS

We can linearize the conditions (22) and (23) by Newton method. but in
this case the functions p{w} and K{w) have to be two times continuously
differentiable. In our case only the first derivative of the function p(w) is
continuous.

We can give another interpretation of the conditions {22) and {23). From
the equation (22) it follows, that two cases have to be analyzed. Either

P!(‘";;:) =P+l (w:-:-ll jk)a (24)
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or

o+l JdL;

" n+1 n+l aLl

[l SN S ol ¥ n+l _ -
igik 7 el prlw, )+ W T P ("-ua+:_;k) =0 (23)
) wrtrk au‘:g_jl‘

The formula (24) can he used only when both capillary pressure. -an be
equal. For us it is easicr to estimate. when the equality (8) is not possible.
Further we assume the suction of the (! + 1)-laver is greater than the suction
of the I-laver {the opposite case can be handled similarly). In the framework
of our model it means that

Pi+1(0) < pi(0). (26)
The cquation (8) and (24) cannot be applied, when
pia(wltl ) < pi(0)
and the {-layer on the coupling boundary is dry:

u::,',: =0. 27)

Now we can analyvze this case more closely. Il the capillary pressure in the
{f + 1) laxer is sinaller than the mininal pressure in the I-layer, then the liguid
must be sucked from the I layver. Howcever this is impessible. Therefore. in
this case the condition {23) has to be applied. From (235) and (27) it follows:

dL, .
w:‘::f—lljk ann+: =0, (28)
1oy

because
Pi1 (w:,tluk) #0.
Then u':,tll j& can be estimated from the equation (25) where waﬂzu is
fixed.
In the case. when the equation {8) can be applied, the equation (22} and
the condition {24) can be handled together. For ”-';:,tll ;& and w’l_ then we
have two separate equations:

iwjk=0

] - " - *
Cr & }l.,;l’ +‘Cl|,+ljk }l.;+ljl'+sm)k }lo-ljl‘+oio}* ‘IOJ+I*+"'|-OJ-‘-' 150]‘“’

+Uu,, Yl,.)l'-‘-l +dn,)k ra.:,;k—l"’"m-{»l;l lio+l.)i +Om.+ljl- }no+l_|+ll-

+1'|..-|;l' }‘l._|"'lj—1*+ulo+ljt Ym+1jl‘+l+dlg+1)k )|G+l_)l:—~l
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+L1(i0,j,k,ﬂ+l)+L2(i0+1,j,k,ﬂ+ I)=O (29)
and
p;(w-;':;l:)'yioik _p:+l(w::,-r|-11jk)'yin+lj* = _(PI(‘-”;:;;:)-P!+1(wz,ﬁ.luk))- (30)

Here is Yj;;p = w{}t' — wi; and Cije, Sijk, Oijk, Vijk, Yijk, Miji, dijx are
coeflicients of the linearized equation (22).

These are the formulas for the interior points of the coupling boundary.
Algorithmically these formulas can be realized in the following way. On every

Newton iteration on the coupling boundary the condition

P (wihl ) < m(0) (31)
must be tested. When it is true, then we put

@ity =0, Yioje =0
and Y, 111 have to be estimated from the equation (29).

In the other case the equations (23) and (30) must be solved. In such a way
we can get the linearized system of equations. The matrix of the system is
not symmetrical. The linear system was solved with the BiCGSTAB method.
The lincarization must be done at every time step. The calculations show
that the restriction for the time step is connected with the nonlinearity of the
system.

Another iteration -method can be constructed by using of the symmetrical
part of the Jacobi matrix. In this case the linear system can be solved by
cg-methods, but this procedure leads to a reduction of the time-step.

4. NUMERICAL EXAMPLE

We solve the problemn (6)—(9) in the case of three layers. Every material is
described with 6 parameters. The first Jayer has the best permeability and
the worst suction properties. The third layer has exactly opposite properties.
The parameters of the middle layer lay between the parameters of the first
and the third layer. We choose the parameters in such a way that p, (0), p2(0)
and p3(0) are different. Then it follows that the coupling condition (8) can
not be rcalized exactly and here the functional (13} must be minimized.

In the example the liquid source on the top layer works two times: at
0 <T < 15and 50 < T < 70. The calculation is done until the 200-th
second.

In Fig. 1 is shown the distribution of the humidity on the vertical section
y = 0 by T = 15,47.5, 70 and 200 seconds. We can see the liquid transport in
all chree layers. Until T = 15 the liquid was poured on the top surface and
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Figure 1. The humidity distribution in the vertical section y = 0 (the first layer is on the
froot)

there can be observed a nonzero saturation at every layer. At T = 17.5 the
liquid source does not work and the saturation of the first layer goes down.
Because of the small capillary suction in the first layer the wet part is localized
here. At T = 70 the liquid source was working the second time and the first
laver is wet again. After 200 seconds the most liquid is in the third layer and
the first layer is relatively dry.

5. CONCLUSIONS

A modification of the coupling condition for the capillary pressure is devel-
oped, which allows to simulate unsaturated flows in porous materials with
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significantly different suction properties. The condition is implemented in the
3D code for simulations of the liquid transport in multilayered nonwoven—
layers.

REFERENCES

[1] J. Bear and A. Verruijt, Modelling Groundwater Flow and Pollution, D. Reidel, Dor-
drecht, Holland, 1987.

[2] A. Zemftis and H. Kalis, About the mathematical simulation of the welling-drying pro-
cess, Latv. J. Phys. Tech. Sd. (1995), no. 6, 37-44.

[3] R. Ciegis and A. Zemitis, The mathemalical simulation of the liquid transport in a
multilayered nonwoven, Bericht 184, AGT'M University of Kaiserslautern, 1997.

4] A. A Sama.rskii, V. A Galaktionov, S P Kurdyumcw and A. P. Mikhailov. B‘OW—‘HP mn
Qunsﬂinmr Perabolic Equatiam, Walter de Gruyter & Cﬂ., Berlin, 1995.

[5] P. Broadbridge and C. Rogers, Ezact solut.ons for vertical drinage and redistribution
in seils, J. Engrg. Math. 24 {1990), 25~43.

[6] R. D. Richtmyer and K. W. Morton, Difference Methods for Initial-value Problems,
Wiley, New York, 1967.

[7} P. Kosmol, Methoden :ur Numerischen Behandiung Nichtfinearen Gleichungen und
Optimierun;snufgaben, Teubner, Stuttgart, 1993.

SAISTIBAS NOSACIJUMU REALIZACIJA DAUDZSLANU
TEKSTILMATERIALAM

AIVARS ZEMITIS

Daudzas praktiskas problémas ir saistitas ar Skidruma transportu daudzsla-
nu tekstilmateridlos. Tiek analizeta situacija, kad Skidruma transports notiek
uz kapilira spicdiena pamata. Aplikotaja gadijuma bitiska uzmaniba jivelta
modelim un saistibas nosacijumiem.





