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Abstract

This dissertation covers the development, adaptation and validation of theoretical and

numerical models, that describe nonlinear magneto-optical rotation in atomic rubidium

as well as hyperfine level mixing and dynamic nuclear spin polarization in nitrogen–

vacancy centers in diamond. The models, developed as part of this work, are based

on the Liouville equation for quantum systems with added relaxation. The first part

of the dissertation is focused on nonlinear magneto-optical rotation for the rubidium

52S1/2 −→ 62P1/2 transition. This part describes the influence on rotation signals of

partially resolved hyperfine structure as well as repopulation of the ground state via

intermediate states. The model was validated using experimental data. The second part of

the dissertation encompasses the development of numerical models that describe optically

detected magnetic resonance signals and dynamic nuclear spin polarization of nitrogen–

vacancy centers. These models are used to analyze the influence of such parameters as the

angle between the nitrogen–vacancy axis and the magnetic field direction, crystal strain,

relaxation rates and optical pumping rate, which corresponds to laser power. The analysis

of the models mainly focuses on the magnetic field regions where magnetic sublevels cross.

Experimental data is used to test the developed models.

2



Contents

List of Abbreviations 6

List of Figures 7

List of Tables 13

1 Introduction 14

1.1 Aim and tasks of the dissertation . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Contents of the dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Publications and author’s contribution . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Publications covered in the thesis . . . . . . . . . . . . . . . . . . . 16

1.3.2 Publications not covered in this thesis . . . . . . . . . . . . . . . . 16

1.4 Conferences as a presenting author on the topics of the thesis . . . . . . . 18

I Nonlinear magneto-optical rotation in atomic rubidium

vapor 21

2 Theoretical background 24

2.1 Description of NMOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.1.1 Linear magneto-optical rotation . . . . . . . . . . . . . . . . . . . . 24

2.1.2 Nonlinear effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.3 The Liouville equation . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Nonlinear magneto-optical rotation with blue light 31

3.1 Modeling NMOR for higher level excitation . . . . . . . . . . . . . . . . . 31

3.1.1 Atomic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.2 Description of the theoretical model . . . . . . . . . . . . . . . . . . 32

Optical pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

Evolution of polarization in a magnetic field . . . . . . . . . . . . . 34

Probing the ground state polarization . . . . . . . . . . . . . . . . . 34

3.2 Experimental verification of the model . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Model adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3



CONTENTS

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 NMOR Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3.2 Dependence of the NMOR signals on the light intensity . . . . . . . 43

3.3.3 Influence of the beam diameter on the NMOR signals . . . . . . . . 44

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

II Magneto-optical effects in nitrogen–vacancy centers in

diamond 47

4 Introduction to Part II 48

5 Background 51

5.1 Physical structure of the NV center . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Energy structure of the NV center . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.1 Energy level structure of the NV center . . . . . . . . . . . . . . . . 54

5.2.2 Hyperfine structure of the NV center . . . . . . . . . . . . . . . . . 56

5.2.3 NV center interaction with a magnetic field . . . . . . . . . . . . . 57

5.2.4 NV center interaction with strain . . . . . . . . . . . . . . . . . . . 58

5.2.5 Optical polarization of the electron spin of the NV center . . . . . . 58

5.2.6 Nuclear spin polarization process . . . . . . . . . . . . . . . . . . . 59

5.3 A method to examine the energy-level structure in NV centers: ODMR . . 60

6 Modeling ODMR signals in the presence of an external magnetic field 61

6.1 NV centers in an external magnetic field . . . . . . . . . . . . . . . . . . . 62

6.1.1 Hyperfine-level mixing of the ground-state level anti-crossing . . . . 62

6.2 Modeling ODMR signals in NV centers with HFS . . . . . . . . . . . . . . 65

6.2.1 Modeled ODMR signal for |mS = 0〉 −→ |mS = +1〉 transition man-

ifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.2 Modeled ODMR signal for the |mS = 0〉 −→ |mS = −1〉 transition . 70

6.2.3 Modeling ODMR signals with proximal C13 nuclear spins . . . . . . 72

6.3 Comparison of the modeled signals with experimentally measured signals . 76

6.3.1 Data analysis and fitting procedure . . . . . . . . . . . . . . . . . . 76

6.3.2 ODMR signals for the |mS = 0〉 −→ |mS = +1〉 transition . . . . . 78

6.3.3 ODMR signals for the |mS = 0〉 −→ |mS = −1〉 transition . . . . . 79

6.3.4 Influence of the angle between the magnetic-field direction and the

principal axis of the nitrogen–vacancy (NV) center . . . . . . . . . 81

6.3.5 ODMR signals with C13 interaction . . . . . . . . . . . . . . . . . . 83

6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4



CONTENTS

7 Dynamic 14N nuclear spin polarization in nitrogen–vacancy centers in

diamond 87

7.1 Lindblad equation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.1.1 Dependence of nuclear-spin polarization on magnetic field angle . . 91

7.1.2 Dependence of nuclear-spin polarization on transition rates . . . . . 92

7.1.3 Dependence of nuclear-spin polarization on transverse strain . . . . 94

7.1.4 Dependence of the nuclear-spin polarization on pumping rate . . . . 95

7.2 Testing the model against experimental data . . . . . . . . . . . . . . . . . 95

7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Main results 100

Theses 102

Bibliography 112

Appendix 113

A The experimental setups 114

A.1 The experimental setup for the nonlinear magneto-optical rotation (NMOR)

experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.2 The experimental setup for the GSLAC experiment . . . . . . . . . . . . . 116

A.3 The experimental setup for the DNP experiment . . . . . . . . . . . . . . . 118

5



List of Abbreviations

CVD chemical vapor deposition 76, 116, 118

CW continuous-wave 60, 114

DFT density functional theory 73

DNP dynamic nuclear polarization 49, 50, 87, 88, 98, 102

ES excited state 59, 60

ESLAC excited-state level anti-crossing 8, 11, 49, 50, 59, 60, 87, 88, 91, 92,

95, 97, 98

GS ground state 59, 60

GSLAC ground-state level anti-crossing 8, 11, 48–50, 59–64, 66–68, 70, 71,

77, 78, 80–84, 86–88, 91, 92, 95–99, 101, 102

HFS hyperfine structure 4, 65–75

HPHT high-pressure, high-temperature 76, 116

IR infrared 7, 15, 41, 114, 115

LAC level anti-crossing 59

MW microwave 60, 65, 76

NMOR nonlinear magneto-optical rotation 2, 5, 14, 15, 18, 22, 24, 37, 38,

40–43, 45, 46, 100, 102, 114, 115

NMR nuclear magnetic resonance 48, 98

NV nitrogen–vacancy 2, 4, 8–15, 19, 48–58, 60–62, 68–74, 76, 80–84, 86–

91, 93–102, 116–118

ODMR optically detected magnetic resonance 2, 9–13, 15, 48, 49, 60, 61, 66,

68–71, 73, 75–84, 86, 96–98, 100, 102, 117

P1 substitutional nitrogen 81, 97

PM polarization moment 29, 35

PP KTP periodically poled potassium titanyl phosphate 114

Rb rubidium 7, 14, 15, 18, 31, 32

6



List of Figures

2.1 Magneto-optical rotation (Faraday effect). Light polarized linearly along

the y-axis enters a medium. A magnetic field is applied in the direction

of light propagation (z-axis). Left (σ+) and right (σ−) circularly polarized

light components acquire different phases while propagating through the

medium. As a result, the axis of light polarization is rotated by an angle ϕ. 25

2.2 Energy level scheme for the F = 1 −→ F ′ = 0 atomic transition. The

Zeeman sublevels are shifted by the magnetic field, which changing the

resonance frequencies for the right and left circularly polarized components. 26

2.3 (a) Dependence of refractive index on light frequency detuning in the ab-

sence (n) and presence (n±) of magnetic field. (b) The difference between

refractive indices leads to a dependence of the magneto-optical rotation on

the detuning of the light frequency. . . . . . . . . . . . . . . . . . . . . . . 27

3.1 (a) Excitation geometry. (b) Energy states and transitions of rubidium

(Rb) atoms excited by resonant radiation at 421.6 nm. (c) Simplified level

scheme depicting the two-level scheme used in the model. The solid line

indicates the excitation light, the dashed lines indicate channels of sponta-

neous emission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 Energy level diagram of the 52S1/2 −→ 62P1/2 transitions in 85Rb and 87Rb. 32

3.3 Simplified experimental scheme. Linearly polarized light passes through

a cell of atomic rubidium, which is inserted inside a magnetic shield with

coils that provide a bias magnetic field. The linearly polarized components

of the exiting light are detected with photodiodes and the rotation of the

polarization plane is determined. . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Schematic depiction of the laser-beam profile and the effect of the iris aper-

ture on the light-intensity profile. . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 (a) Rotation of linearly polarized infrared (IR) light tuned to the 85Rb

Fg = 3 −→ Fe transition of the 52S1/2 −→ 52P1/2 (D1) line. (b) Rotation

of linearly polarized blue light tuned to the 85Rb Fg = 3 −→ Fe transition

of the 52S1/2 −→ 62P1/2 line. The black dots are the experimental data

and solid curves show the theoretical calculations for (a) ΩR = 0.57 MHz

and (b) ΩR = 3.6 MHz. Note the differing vertical scales. . . . . . . . . . . 41

7



LIST OF FIGURES

3.6 Experimental rotation spectra (black dots) measured at constant light in-

tensity (0.1 mW/cm2) and theoretical rotation spectra (red curve) calcu-

lated at Rabi frequency ΩR = 0.19 MHz. The signals were obtained by

scanning the frequency through all transitions of 52S1/2 −→ 62P1/2 line. . . 42

3.7 (a) Experimental rotation spectra for different magnetic fields measured

at constant light intensity (0.1 mW/cm2). The signals were obtained by

scanning the frequency through all transitions of 52S1/2 −→ 62P1/2 line. (b)

Theoretical rotation spectra for different magnetic fields, Rabi frequency

ΩR = 0.19 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 Dependence of the (a) width and (b) amplitude of rotation signals on light

intensity for the transitions from the ground-state hyperfine level Fg = 3

(black points) and Fg = 2 (red triangles). The signals were measured at

85◦C temperature with 6 mm beam diameter. The solid lines describe the

theoretical calculations. The shaded areas mark the uncertainty of the

parameter kγ and kR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Dependence of the (a) width and (b) amplitude of rotation signals on the

light intensity for different iris aperture sizes: 1 mm (black points), 3 mm

(red triangles), 6 mm (green squares). The signals were measured for tran-

sitions from the ground-state hyperfine level Fg = 3 at 85◦C temperature.

The solid lines describe the theoretical calculations. The shaded areas mark

the uncertainty of the parameter kγ and kR. . . . . . . . . . . . . . . . . . 45

5.1 Diamond crystal with NV center . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Symmetry of an NV center. (a) Nitrogen-vacancy center (carbon: gray,

nitrogen: blue, vacancy: red). (b) Symmetry operations of the NV center. . 52

5.3 Molecular orbitals of the NV center. Gray circles represent electrons with

the arrows indicating spin up or spin down. The dashed white circles

represent holes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4 Nitrogen-Vacancy center energy-level structure . . . . . . . . . . . . . . . . 56

5.5 Nitrogen-Vacancy center energy level structure . . . . . . . . . . . . . . . . 57

5.6 (a) Nuclear-spin polarization process at the excited-state level anti-crossing

(ESLAC). (b) Nuclear-spin polarization process at the ground-state level

anti-crossing (GSLAC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Ground-state sublevels in a magnetic field BZ applied along the NV axis.

(a) Level crossing of electron-spin magnetic sublevels in the ground state.

(b) Hyperfine level (|mS,mI〉) anticrossing in the vicinity of the GSLAC.

The level of mixing near the GSLAC (denoted by the dashed ellipses) is

indicated by the relative admixture of the colors in each curve; the lines

corresponding to unmixed states do not change color. . . . . . . . . . . . . 62

8



LIST OF FIGURES

6.2 Hyperfine transitions of mixed states. The width of the arrows correspond

to the transition probability. The states are labeled according to (6.6). . . 67

6.3 Modeled dependence of the shape of optically detected magnetic resonance

(ODMR) signals for the high-frequency region on the transition width. Left

to right: γ = 0.5 MHz, γ = 1.0 MHz, γ = 1.5 MHz, γ = 2.5 MHz. The

nuclear spin polarization is P = 0% and the angle between the NV center’s

axis and the magnetic-field direction is θ = 0◦. . . . . . . . . . . . . . . . . 68

6.4 Dependence of the modeled ODMR signals for the high-frequency region

dependence on the the nuclear-spin polarization. Left to right: P = 0%,

P = 13%, P = 58%, P = 100%. The angle between the NV center’s

axis and the magnetic-field direction is θ = 0◦ and the profile width is

γ = 1.0 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.5 Dependence of the shape of modeled ODMR signals for the high-frequency

region on the angle between the NV center’s axis and the magnetic-field

direction. The angle θ is in degrees of arc. Left to right: θ = 0.00◦,

θ = 0.05◦, θ = 0.10◦, θ = 0.2◦. The nuclear-spin polarization is P = 100%,

and the profile width is γ = 1.0 MHz. . . . . . . . . . . . . . . . . . . . . . 69

6.6 Dependence of the modeled ODMR signals for the low-frequency region

on the transition width. Left to right: γ = 0.5 MHz, γ = 1.0 MHz,

γ = 1.5 MHz, γ = 2.0 MHz, γ = 2.5 MHz. The nuclear-spin polarization

is P = 0%, and the angle between the NV center axis and magnetic field

is θ = 0◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.7 Dependence of the modeled ODMR signals for the low-frequency region on

the nuclear spin polarization. Left to right: P = 0%, P = 13%, P = 58%,

P = 85% P = 100%. The angle between the NV-center axis and the

magnetic-field direction is θ = 0◦, and the profile width is γ = 1.0 MHz. . . 71

6.8 Dependence of the modeled ODMR signals for the low-frequency region

on angle the between the NV-center axis and the magnetic-field direction.

The angle θ is in arc degrees. Left to right: θ = 0.00◦, θ = 0.05◦, θ = 0.10◦,

θ = 0.15◦, θ = 0.2◦. The nuclear-spin polarization is P = 100%, and the

profile width is γ = 1.0 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.9 Lattice with C13 sites. (a) Side view. (b) Top view of the [111] direction. . 73

6.10 Probability distribution of the number of lattice sites with a 13C atom. . . 74

6.11 Probability of 13C by lattice site families. . . . . . . . . . . . . . . . . . . . 74

6.12 ODMR with C13 interaction for transitions in the (a) |ms = 0〉 −→ |ms = −1〉
manifold, (b) |ms = 0〉 −→ |ms = +1〉 manifold. The nuclear spins of both
14N and 13C are fully polarized in the calculation. . . . . . . . . . . . . . . 75

9



LIST OF FIGURES

6.13 Magnetic-field calibration for the |mS = 0〉 −→ |mS = +1〉 transition man-

ifold. The black dots are the magnetic field values determined from the

experimental peak positions (vertical axis) with regard to the initial cali-

bration of the electromagnet (horizontal axis). The blue line is the linear

approximation of the calibrated magnetic field values that does not deviate

from the line (red dots). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.14 ODMR signals at high microwave field frequencies. The top row (a)–(c)

shows transitions between the levels (6.6). The arrow width corresponds

to the transition probability. The middle row (d)–(f) shows signals for the

low-density sample, and the bottom row shows signals for the high-density

sample. The black curves are experimental data; the red curves show the

results of the theoretical calculations with the parameters from the fit-

ting procedure. The vertical bars in (d)–(i) correspond to the transitions

depicted by the arrows in (a)–(c) of the same color, and their length de-

termines the contribution to the overall lineshape of that transition, which

is proportional to the product of the level population and the transition

strength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.15 ODMR signals at low microwave-field frequencies. The top row (a)–(c)

shows transitions between the different levels (6.6). The width of the arrows

corresponds to the relative transition probabilities. The middle row (d)–

(f) shows signals for the low-density sample, and the bottom row shows

signals for the high-density sample. The black curves are experimental

data, the red curves show the results of the theoretical calculations with

the parameters from the fitting procedure. The vertical bars correspond

to the transitions depicted by the arrows in (a)–(c) of the same color, and

their length determines the contribution to the overall lineshape of that

transition, which is proportional to the product of the level population

and the transition strength. The dashed red lines in (e) and (h) show the

calculated signal for an angle between the NV axis and the magnetic-field

B direction of θ = 0.015◦. The vertical bars in (d)–(i) correspond to the

transitions depicted by the arrows in (a)–(c) of the same color for θ = 0◦. 80

6.16 Transition frequencies for the |mS = 0〉 −→ |mS = −1〉 transition manifold

for magnetic-field angle (a) θ = 0◦ and (b) θ = 0.1◦. (c) Transition frequen-

cies for the |mS = 0〉 −→ |mS = +1〉 transition manifold for magnetic-field

angle θ = 0◦. The black dots and red squares correspond to the experimen-

tal ODMR peak frequencies of the high-density and low-density samples,

respectively. The gray lines correspond to theoretically calculated transi-

tion frequencies for all of the hyperfine levels. The width of gray lines show

the transition strengths based on level mixing. . . . . . . . . . . . . . . . . 82

10



LIST OF FIGURES

6.17 Experimental signals (black) obtained from the low-density sample with theoretical cal-

culations (red) in the ground-state mS = 0 −→ mS = −1 microwave transition man-

ifold for different magnetic-field values and for an angle between the NV axis and the

magnetic-field B direction of (a) θ = 0◦ and (b) θ = 0.015◦ (transverse magnetic field

0.25 G). (c) Experimental signal with the calculated signal at θ = 0◦ in the ground-state

mS = 0 −→ mS = +1 microwave-transition manifold for different magnetic-field values. 83

6.18 Experimental signals from the high-density sample (black) with theoretical calculations

(red) in the ground-state mS = 0 −→ mS = −1 microwave-transition manifold for

different magnetic-field values and for an angle between the NV axis and the magnetic-

field B direction of (a) θ = 0◦ and (b) θ = 0.1◦ (transverse magnetic field of 1.85 G).

(c) Experimental signal with the calculated signal at θ = 0◦ in the ground-state mS =

0 −→ mS = +1 microwave transition manifold for different magnetic-field values. . . . 84

6.19 Experimental (black dots) and fitted (red curves) ODMR signals at the

GSLAC (1024 G) for different angles between the magnetic field and the

NV axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.20 (a) Experimental signals (black) for the low-density sample with theoretical

calculations that include the effects of 13C (red) (6.19) and without the

effects of 13C (blue) for the ground-state mS = 0 −→ mS = −1 microwave

transitions for different magnetic-field values. The gray line tracks the

position of the nominal |0, 1〉 −→ |0, 0〉 transition. (b) Experimental signals

(black) for the low-density sample with theoretical calculations that include

the effects of 13C (red) (6.19) and without the effects of 13C (blue) for the

ground-state mS = 0 −→ mS = +1 microwave transitions for different

magnetic-field values. The gray line tracks the position of the nominal

|0, 1〉 −→ |1, 0〉 transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.1 Level scheme of the NV center used in the density matrix model. Each

of the electron-spin magnetic sublevels is split into three hyperfine levels,

leading to 21 levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Calculation of nuclear-spin polarization for different magnetic-field angles.

Sweeping the magnetic-field angle over the range θ = 0◦ − −0.5◦ with

step size 0.1◦ causes rapid changes in nuclear-spin polarization at GSLAC.

Further increasing the angle from θ = 1◦ to θ = 5◦ with step size 1◦ causes

changes at the ESLAC, but more slowly. . . . . . . . . . . . . . . . . . . . 92

7.3 Visualization of the influence of transition rates on electron-spin polarization. 93

11



LIST OF FIGURES

7.4 Theoretical nuclear-spin polarization for different ratios of transition rates
γe±1

γe0
with the angle between the NV center’s axis and the magnetic-field

vector: (a) θ = 0.0◦, (b) θ = 0.2◦. The pumping rate for numerical calcu-

lations was Γp = 5 MHz. The transition rates from the singlet state to the

ground-state sublevel mS = 0 and from the singlet state to ground-state

sublevels mS = ±1 are γg0 = 1 MHz and γg± = 1 MHz. . . . . . . . . . . . . 93

7.5 Theoretical nuclear-spin polarization for different transverse strain values.

The pumping rate for the numerical calculations was Γp = 5 MHz. . . . . . 94

7.6 Theoretical nuclear-spin polarization for different pumping rates with the

angle between the NV center axis and magnetic field being (a) θ = 0.0◦

and (b) θ = 0.2◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.7 (a), (b), (d), (e): Experimental (black dots) and fitted (red curves) ODMR

signals at individual magnetic field values. (c): Experimental (blue dots)

and theoretical (orange curve) nuclear spin polarization. The pumping rate

used in the theoretical calculations was Γp = 5 MHz. The magnetic-field

angle θ = 0.2◦ was determined from the ODMR curve fit. . . . . . . . . . . 96

7.8 (a) Calculated and (b) experimentally determined nuclear spin polarization

for different magnetic field angles. Pumping rate for numerical calculations

was Γp = 5 MHz. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.1 The experimental setup. P is the polarizer, WP stands for the Wollastone

prism, λ/2 is the half-wave plate, L is the lens, DM stands for the dichroic

mirror, I is the iris, FC denotes the fiber coupler, PD is the photodiode,

and PM and MM denote polarization-maintaining and multimode fiber,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.2 Energy level diagram of the 52S1/2 −→ 62P1/2 transitions in 85Rb and 87Rb. 115

A.3 (a) The setup for the high-density sample experiment. The laser light is

guided to the dichroic mirror and to the sample through optical fibers.

The fluorescence was passed through the fiber to the dichroic mirror and

a long-pass filter and focused onto the photodiode with an amplifier. (b)

The setup for the low-density sample experiment. A lens was used to focus

the laser light onto the sample. The fluorescence was gathered from the

sample using a lens and was measured with a photodetector. . . . . . . . . 116

A.4 Experimental setup, top shows the overall experimental scheme, bottom

shows a zoomed in detailed scheme of the sample holder and the microwave

antenna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

12



List of Tables

3.1 Calculated and fitted parameters kγ and kR for different iris aperture values. 40

5.1 Symmetry operations of the orbital basis. Operations under which the

orbitals are not changed are marked as bold. The last row shows the

number of unchanged orbitals under a specific symmetry operation. . . . . 52

5.2 Structure of the ground (e2) and first excited (ae) state orbital configuration

of an NV color center [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1 Principal values of the hyperfine tensor [2] and the rotation angle [3] used

in the simulation of the ODMR signal. The positions of the 13C families

are shown in Figure 6.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.1 Transition and decoherence rates used in the calculation. . . . . . . . . . . 91

13



Chapter 1

Introduction

This dissertation is dedicated to magneto-optical effects in two types of media: atomic

vapor and nitrogen–vacancy (NV) centers in diamond.

Although these systems are quite different, their behavior exhibits some similarities.

The NV center is often called an atom-like defect, which comes from the fact that the

NV center’s level structure is similar to what we see in an atomic level structure. This

allows us to describe the NV centers using methods developed for atoms, although the

solid-state characteristics of NV centers, such as phonon relaxations, must be taken into

account properly. In addition, the magnetic sublevels of NV centers are separated in

the absence of an external field. In alkali atoms the spontaneous relaxation transitions

are observed as fluorescence. In NV centers, we also observe fluorescence, but unlike in

atoms, there are also nonradiative relaxation pathways, in which the energy is transferred

via phonon interaction. Such a pathway is called an intersystem crossing, as the relaxation

occurs between triplet and singlet states. It is an essential process for electron and nuclear

spin polarization of the NV center.

1.1 Aim and tasks of the dissertation

The goal of the dissertation is to study magneto-optical effects in two different systems,

adapt and validate the theoretical model of nonlinear magneto-optical rotation (NMOR)

in atomic Rb and explore the hyperfine interaction of nitrogen-vacancy centers in diamond

by modeling the processes of hyperfine interaction in the presence of an external magnetic

field, which among other effects leads also to nuclear spin polarization of nitrogen.

The tasks of the dissertation are:

1. Adapt the model for describing NMOR to fit the experimental conditions of blue

light excitation, which lead to cascade transitions in spontaneous relaxation.

2. Examine the hyperfine-structure interaction in NV centers in the magnetic field

range that corresponds to ground-state level-crossing region and analyze the influ-
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ence on the optically detected magnetic resonance (ODMR) signals of the different

factors, such as imperfections in the alignment of the axis of the NV centers with

respect to an applied magnetic field and nuclear spin polarization.

3. Perform numerical calculations of the nuclear spin polarization in NV centers and

analyze the influence of such parameters as the angle between the magnetic field and

the NV center axis, relaxation transition rates, pumping rate and strain on nuclear

spin polarization.

1.2 Contents of the dissertation

The dissertation is divided into two parts. Part I is dedicated to magneto-optical effects in

atoms, specifically nonlinear magneto-optical rotation (NMOR) in rubidium. The NMOR

signals in Rb vapor are typically measured for the D1 and D2 lines, which are excited by

infrared (IR) light. If the atom is excited with higher frequency radiation, corresponding to

blue light, the repopulation of the ground state can occur via several intermediate states.

The aim of this study is to validate the theoretical model for a system with intermediate

states as well as unresolved hyperfine structure in the excited state. Chapter 2 gives some

general background on nonlinear magneto-optical rotation. Chapter 3 is devoted to the

study of nonlinear magneto-optical rotation, for the case of excitation to higher energy

levels.

Part II of the dissertation treats magneto-optical effects in nitrogen–vacancy (NV)

centers. The aim of this part is to examine the electron- and nuclear-spin interaction

that leads to hyperfine structure and mixing of the levels in external magnetic fields.

Chapter 5 gives insight into the structure of NV centers. Chapter 6 describes a model

that takes into account magnetic-sublevel hyperfine nonlinear splitting and mixing of the

levels of NV centers in the vicinity of level crossing and anticrossing to model optically

detected magnetic resonance signals. Chapter 7 is devoted to the analysis of the results

of numerical simulations of the nuclear spin polarization of NV centers over a wide range

of magnetic field values.

The dissertation is based on theoretical calculations that were done in active collab-

oration with experiments carried out at the University of California at Berkeley, the Laser

Centre of the University of Latvia and the Johannes Gutenberg-University in Mainz. The

collaboration was mutually enriching because the theoretical model helped to plan, ana-

lyze and interpret the experiments, while the experimental results helped to validate the

experimental model. The execution of the experiments is not part of the dissertation, but

the data analysis and development of fitting procedures are included in the dissertation.
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Nonlinear magneto-optical rotation

in atomic rubidium vapor
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Introduction to Part I

Most of the studies of nonlinear magneto-optical rotation (NMOR) are done in alkali

vapors on the strong D1 and D2 lines, which correspond to the fine structure transitions

52S1/2 −→ 52P1/2 and 52S1/2 −→ 52P3/2. To a large extent these studies are motivated by

the fact that NMOR of the D1 and D2 lines of alkali atoms are used to develop extremely

sensitive magnetometers for many practical applications [4]. These studies show good

agreement between experimental observations and theoretical predictions [5, 6].

A different physical system was explored in the study that is a part of this dis-

sertation. Here, a higher-state excitation (52S1/2 −→ 62P1/2) of the rubidium atom was

analyzed. This study was motivated by the fact that these transitions are excited by

visible light with a wavelength that is less absorbed by water, and therefore would allow

underwater magnetometry of distant objects. In such a system the repopulation of the

ground-state sublevels is more complex as it can occur via intermediate states (62S1/2,

42D3/2, 52P1/2, 52P3/2, see Figure 3.1a). As a result, it was necessary to analyze the role

of different relaxation channels in NMOR. Another difference from the D-line excitation

is the hyperfine splitting of the excited state. The splitting of the hyperfine levels of the

62P1/2 state is much smaller than the splitting of the 52P1/2 and 52P3/2 states. Thus,

this study offers the possibility of investigating the nontrivial influence of excited-state

hyperfine splitting on the generation and probing of ground-state coherences [7, 8], one

consequence of which is the impossibility of creating higher-rank coherences in the ground

state.

In this research a model based on [7] was applied to the atomic system of rubidium

vapor excited at the 52S1/2 −→ 62P1/2 absorption line. The results of the calculations

were compared to the experimental results obtained by exciting and probing the atomic

vapor with 421-nm light. The aim was to verify that the real system, which includes

different relaxation channels, can be described using a single relaxation parameter for

ground-state repopulation.

The observation of NMOR at the 52S1/2 −→ 62P1/2 line suggests the possibility of

another application. As the 52S1/2 −→ 62P1/2 has a low transition strength, the excitation

only weakly perturbs the atomic medium. As a result, a nondestructive probe based on

blue NMOR may be used to probe laser-cooled and trapped atoms. Although one may

argue that this same function could be achieved with stronger transitions such as the D1 or
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D2 lines using weakly detuned light, the blue-light excitation provides another advantage.

Cooling and trapping is performed using near infrared beams, so using the blue light

for measurements would increase the precision of the state detection by separating the

cooling and trapping beams.
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Chapter 2

Theoretical background

Nonlinear magneto-optical rotation (NMOR) is a light-intensity-dependent effect in which

the plane of light polarization is rotated during the light’s propagation through a medium

in the presence of an external magnetic field. This effect has been studied extensively over

the years, both experimentally and theoretically [9]. These studies were carried out to

increase the understanding of the physical processes of the rotation of light polarization,

leading to fundamental insights and practical applications. A detailed understanding of

such effects as the creation, evolution, and detection of quantum states in atoms led to

development of techniques of quantum-state engineering [5, 10–12] and quantum nonde-

molition measurements (nondestructive measurement of quantum states) [13, 14]. NMOR

has been used in studies of the relaxation of ground-state coherences in atomic vapor [15–

18], leading to the development of techniques that enable the generation of long-lived

(60 s) ground-state coherences. NMOR has also more practical applications such as in

atomic clocks [19], narrow-band optical filters [20], optical magnetometers [4], and laser-

frequency locking systems [21]. Fundamental research on the interactions of laser radiation

with atoms is an interesting area in which to apply NMOR. The effect has been used in

the search for nonmagnetic spin couplings [22–26]. Its use also has been proposed for

experiments that focus on the detection of the constituents of dark matter [27].

2.1 Description of NMOR

2.1.1 Linear magneto-optical rotation

Magneto-optical rotation is an effect that causes the rotation of the polarization plane

of linearly polarized light that passes through a medium in the presence of a magnetic

field. If the magnetic field is applied along the light-propagation direction, it is called

theFaraday effect (Figure 2.1), discovered by Michael Faraday in 1845. Linearly polarized

light is a combination of left (σ+) and right (σ−) circularly polarized components. The

difference between the propagation speeds of differently circularly polarized waves results

24



2.1. DESCRIPTION OF NMOR

in a phase shift between the circular components, and so the polarization plane of linearly

polarized light is rotated.

Figure 2.1: Magneto-optical rotation (Faraday effect). Light polarized linearly along the

y-axis enters a medium. A magnetic field is applied in the direction of light propagation

(z-axis). Left (σ+) and right (σ−) circularly polarized light components acquire different

phases while propagating through the medium. As a result, the axis of light polarization

is rotated by an angle ϕ.

To describe circularly polarized light it is useful to use the spherical basis defined

by [7]

ε̂+ = − 1√
2

(ε̂x + iε̂y) ,

ε̂0 = ε̂z,

ε̂− =
1√
2

(ε̂x − iε̂y) ,

(2.1)

If the electrical field is expressed in Cartesian components, we need to express the

basis-unit vectors in Cartesian coordinates in the terms of their spherical components [15]

ε̂x =
1√
2

(ε̂− − ε̂−) ,

ε̂z = ε̂0,

ε̂y =
i√
2

(ε̂+ + ε̂−) ,

(2.2)

where ε̂x and ε̂y are the basis-unit vectors polarized along the x and y directions, and ε̂+

and ε̂− are the vectors representing right and left circularly polarized light, respectively.

The electric field of light linearly polarized along the x-axis can be described by

~E = E0 ε̂x cos(kz − ωt) =

=
E0

2

[
ε̂−√

2
ei(k−z−ωt) − ε̂+√

2
ei(k+z−ωt)

]
+
E0

2

[
ε̂−√

2
e−i(k−z−ωt) − ε̂+√

2
e−i(k+z−ωt)

]
,

(2.3)
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where E0 is the amplitude of the optical electric field, and ω is the frequency of the light.

The magnitude of the wavevectors k± are given as

k± =
2π

λ
=
η±ω

c
, (2.4)

where λ is the wavelength of light, and η± is the complex refractive index

η± = n± + iκ±. (2.5)

The imaginary part of the complex refractive index is the absorption coefficient κ±, and

the real part is the refractive index n±, which characterizes the dispersion of the medium.

If the refractive indices (n− and n+ ) of the circular components of the light po-

larization are different, each propagates in medium with different velocity, leading to a

phase difference:

ϕ =
ω`

c
(n+ − n−), (2.6)

where ` is the path length in the active medium. The phase difference leads to a rotation

of the polarization plane by an angle φ:

φ =
ϕ

2
. (2.7)

A difference in absorption coefficients leads to elliptical light polarization.

At the end of the 18th century Domenico Macaluso and Orso Corbino discovered

a strong dependence of the magneto-optical rotation on light frequency: the Faraday

effect was shown to have a resonant character in the vicinity of the resonance absorption

lines. The Macaluso-Corbino effect can be explained in an F = 1 −→ F ′ = 0 atomic

transition, where F and F ′ are the total angular momenta of the ground and excited

states (Figure 2.2).

Figure 2.2: Energy level scheme for the F = 1 −→ F ′ = 0 atomic transition. The Zeeman

sublevels are shifted by the magnetic field, which changing the resonance frequencies for

the right and left circularly polarized components.

Light that is linearly polarized perpendicularly to magnetic field direction (quanti-

zation axis) can be considered as being composed of two counter-rotating circular com-

ponents (σ+ and σ−). The right circularly polarized (σ−) component of the linearly
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polarized light interacts with the atom, generating a transition between the Zeeman sub-

levels mF = +1 of ground state and mF ′ = 0 of excited state. In the same way, the left

circularly polarized (σ+) component of the linearly polarized light generated transition

between mF = −1 and mF ′ = 0.

In the case of narrow-band light that interacts with a low-density atomic vapor

described by a two-level transition, the complex refractive index can be expanded as

η ≈ 1 + 2πχ0
1

(ω − ω0) + iΓ/2
, (2.8)

where ω is the frequency of the light, ω0 is the transition frequency, Γ is the relaxation rate

of excited state, and χ0 is the atomic linear susceptibility. If the light field is weak enough,

it can be assumed that the atom can be excited by each of the polarization eigenmodes

independently. If a magnetic field is not applied, the Zeeman sublevels are degenerate

and the resonance frequencies for both absorption components are the same. The real

part of the refractive index n as a function of light detuning is shown in Figure 2.3a as

a blue solid dispersion curve. The refractive index for both of the circular components is

the same, and no rotation of the polarization plane of the light is observed.
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Figure 2.3: (a) Dependence of refractive index on light frequency detuning in the absence

(n) and presence (n±) of magnetic field. (b) The difference between refractive indices leads

to a dependence of the magneto-optical rotation on the detuning of the light frequency.

When a magnetic field is applied along light propagation direction, the Zeeman

sublevels are shifted by an amount that corresponds to the Larmor frequency ΩL (Figure

2.2):

ΩL = mFgFµBB, (2.9)
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where gF is Landé factor and µB is the Bohr magneton. Due to the resonance frequency

shift, the refractive index [Eq. (2.8)] is modified for each of the circular components:

η± ≈ 1 + 2πχ0
1

(∆ω ∓ ΩL) + iΓ/2
, (2.10)

where ∆ω = ω − ω0 is the light-frequency detuning from resonance in the absence of

magnetic field.

The difference in the real parts of refractive indices of circular components leads to

rotation of the polarization plane. The angle of rotation can be calculated as a function

of magnetic field and light frequency detuning by combining Eqs. (2.6), (2.7) and (2.10):

φ ≈ 4πχ0ω`

c

ΩL (∆ω2 − Ω2
L − Γ2/4)

(∆ω2 − Ω2
L − Γ2/4)

2
+ (Γ ·∆ω)2

(2.11)

2.1.2 Nonlinear effects

The optical properties of the medium depend on the intensity of the applied light. Non-

linear light–atom interactions can be described as a three-stage process:

• pumping: modifying the properties of the medium by light;

• evolution: the medium and its properties evolve by interacting with other fields,

such as a magnetic field;

• probing of the properties of the medium

All of these processes occur simultaneously, but it is useful to look at these processes

individually, as though separated in time, when explaining the principles and building

models.

Light-induced polarization of atoms characterizes the properties of the medium

P = Tr[ρ(E0)d] (2.12)

where d is the electric dipole moment, and E0 is the amplitude of the electric field of the

light. The quantum state is described by the density operator ρ

ρ =
1

N

N∑
i=1

|ψi〉 〈ψi| , (2.13)

which is averaged over an ensemble. |ψi〉 is a state vector.

2.1.3 The Liouville equation

The interaction of atoms in a vapor cell with external optical and magnetic fields can be

described by the density-matrix formalism. The time evolution of the density matrix ρ

can be described by the Liouville equation (~ = 1, c = 1) [7]:

ρ̇ = −i
[
Ĥ, ρ

]
− 1

2

{
Γ̂, ρ
}

+ Λ̂ + Tr
(
F̂ρ
)
, (2.14)
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where Ĥ = Ĥ0 + V̂ is time-independent Hamiltonian, which consists of the unperturbed

system Hamiltonian Ĥ0 and the interaction Hamiltonian V̂ . Γ̂ is the relaxation operator,

which accounts for such processes as transit relaxation due to the thermal velocity of atoms

and the relaxation of the excited state due to spontaneous emission, Λ is repopulation

operator that describes repopulation processes that are independent of the density matrix,

such as processes induced by wall collisions or transit relaxation, and F̂ is the density-

matrix-dependent repopulation operator, which describes processes such as repopulation

of the ground states due to spontaneous emission from the excited states. The spontaneous

emission operator (~ = 1, c = 1) is defined as [28]

F srmn =
4

3
ω3
rmdmr · dsn, (2.15)

which connects the excited-state levels |s〉, |r〉 with the ground-state levels |m〉, |n〉. The

trace in (2.14) is calculated over the excited state levels.

The quantum operators in (2.14) can be written in an irreducible tensor basis. A

quantum operator Â can be written as:

Â =
∑
κq

AκqFF ′T
(κ)
q;FF ′ , (2.16)

where T
(κ)
q;FF ′ is the q-th component of the irreducible tensor with rank κ (κ = 0, . . . , 2F

and q = −κ, . . . , κ). AκqFF ′ are the components of the polarization moments (PMs) or

multipoles. F and F ′ indicate the set of quantum numbers of total angular momentum

for the states on which the operator is acting.

The polarization moments AκqFF ′ of the operator Â are related to the matrix elements

AFm,F ′m′ of operator Â in the |Fm〉 basis, where m and m′ are the magnetic quantum

numbers in terms of the Clebsch-Gordan coefficients [8]:

AκqFF ′ = Tr

[
A
(
T

(κ)
q;FF ′

)†]
=
∑
mm′

(−1)F
′−m′ 〈FmF ′ −m′|κq〉AFm,F ′m′ . (2.17)

To write the polarization moments in the form of (2.17), we should consider the orthog-

onality condition

Tr

[
T

(κ)
q;F1F2

(
T

(κ′)
q′;F ′1F

′
2

)†]
= δκκ′δqq′δF1F ′1

δF2F ′2
(2.18)

and the phase convention [
T

(κ)
q;FF ′

]†
= T

(κq)
FF ′ , (2.19)

where T
(κ)
q;FF ′ is the covariant tensor and T

(κq)
FF ′ is the contravariant tensor.

These relations can be used to expand the density operators as well as other op-

erators in (2.14). The Liouville equation in the irreducible tensor basis can be written
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as [7]

ρ̇
(κq)
FgF ′g

= i(−1)Fg+F ′g+κ+1
∑

κ′,κ′′,q′,q′′,F ′′

√
(2κ′ + 1)(2κ′′ + 1) 〈κ′q′κ′′q′′|κq〉

{
κ′ κ′′ κ

F ′g Fg F ′′

}
×

×
[(
H

(κ′q′)
FgF ′′

− i

2
Γ

(κ′q′)
FgF ′′

)
ρ

(κ′′q′′)
F ′′F ′g

− ρ(κ′q′)
FgF ′′

(
H

(κ′′q′′)
F ′′F ′g

+
i

2
Γ

(κ′′q′′)
F ′′F ′g

)]
+

+ Λ
(κq)
FgF ′g

+
4

3
ω3

0

∑
Fe,F ′e>Fg ,F

′
g

〈Fg‖d‖Fe〉 ρ(κq)
FeF ′e

〈
F ′e‖d‖F ′g

〉
(−1)Fe+F

′
e+κ+1

{
κ F ′g Fg

1 Fe F ′e

}
.

(2.20)

To be able to compare different hyperfine transitions, we express the reduced dipole

matrix element for hyperfine transitions 〈Fg‖d‖Fe〉 through the dipole matrix element for

fine-structure transitions 〈Jg‖d‖Je〉 as [8]

〈Fg‖d‖Fe〉 = (−1)Je+I+Fg+1
√

(2Fg + 1)(2Fe + 1

{
Je Fe I

Fg Jg 1

}
〈Jg‖d‖Je〉 , (2.21)

where I is nuclear spin and J is electron angular momentum. The reduced dipole matrix

element 〈Jg‖d‖Je〉 can be calculated from [7]

Rγe =
4

3

ω3
0

2Je + 1
| 〈Jg‖d‖Je〉 |2, (2.22)

where R is the branching ratio for the transition Je −→ Jg, γe is the excited-state relax-

ation rate and ω0 is the transition frequency between the ground and excited states.

The first two terms of equation (2.14) are combined in equation (2.20) by the expres-

sion under the sum. The second term in (2.20) describes the density-matrix-independent

repopulation, and the last term describes the density-matrix-dependent repopulation

caused by spontaneous relaxation.
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Chapter 3

Nonlinear magneto-optical rotation

with blue light

In this chapter we apply a model that was developed in [7] for an atomic system with

unresolved hyperfine structure in the excited state due to Doppler broadening. The model

describes the rotation of the polarization plane of light as it traverses vapor of atomic

rubidium. This model was adapted to the excitation of the 52S1/2 −→ 62P1/2 transition

in the scope of the thesis. To compare the results of the model with the experimental

results, the model needs to be adapted to the experimental conditions. We have to take

into account the difference of laser beam profiles in the model and in the experiment, which

leads to requires an adjustment of the Rabi frequency and the ground-state relaxation rate.

The model is then tested by comparing its results to experimental data that were obtained

at the University of California at Berkeley by Dr. Szymon Pustelny. The experimental

measurement process is not part of the dissertation. The results described in this chapter

are published in [29].

3.1 Modeling NMOR for higher level excitation

3.1.1 Atomic system

The atomic system used in the model calculations is Rb vapor with atoms moving at

a thermal velocity that corresponds to a temperature of 85◦C. Atoms are excited on

the 52S1/2 −→ 62P1/2 transition. The excitation beam and magnetic field are directed

along the quantization axis (x-axis), so that the electric field vector is perpendicular to

the quantization axis and is parallel to the z-axis. The excitation geometry is show in

Figure 3.1a. The repopulation of the ground state can happen through direct spontaneous

transitions back to the initial 52S1/2 state as well as through spontaneous transitions via

intermediate states (62S1/2, 42D3/2, 52P1/2, 52P3/2) (Figure 3.1b).

The model describes a simplified system in which repopulation of the ground state
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3.1. MODELING NMOR FOR HIGHER LEVEL EXCITATION

due to spontaneous decay is characterized by a single parameter based on the branching

ratio R (Figure 3.1c). According to this approach, the cascade transitions (Figure 3.1b)

are substituted by a single relaxation rate from the excited state to the ground state.

In each of the cascade transitions the atomic polarization decreases [30], so the direct

transitions play a more significant role in polarization transfer compared to transitions

via intermediate states.

(a)

52S1/2

62S1/2

62P3/262P1/2

52P3/2

42D5/2

42D3/2

ΓR

52P1/2

42
1.

6 
nm

(b)

52S1/2

62P1/2

ΓR

(c)

Figure 3.1: (a) Excitation geometry. (b) Energy states and transitions of Rb atoms

excited by resonant radiation at 421.6 nm. (c) Simplified level scheme depicting the two-

level scheme used in the model. The solid line indicates the excitation light, the dashed

lines indicate channels of spontaneous emission.

Figure 3.2 shows hyperfine transitions of 85Rb and 87Rb. The Doppler width at the

temperatures of the vapor cell in the experiment (85◦C) is around 600 MHz, so the excited

state hyperfine levels are unresolved under the Doppler profile.

62P1/2
F e = 3

52S1/2

= 2

117 MHz

3035 MHz

F e

6835 MHz

265 MHz

85Rb 87Rb

62P1/2

52S1/2

F g = 3

F g = 2

F e = 2

F e = 1

F g = 2

F g = 1

Figure 3.2: Energy level diagram of the 52S1/2 −→ 62P1/2 transitions in 85Rb and 87Rb.

3.1.2 Description of the theoretical model

Magneto-optical rotation can be analyzed as a three-stage process. It consists of opti-

cal pumping, evolution and probing of the atomic state. In the first stage, the applied
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3.1. MODELING NMOR FOR HIGHER LEVEL EXCITATION

light pumps atoms, modifying their optical properties and introducing anisotropy to the

medium. Light polarization defines the axis of the generated anisotropy. During the

second stage, the angular momentum anisotropy created in ground and excited states

evolves. The evolution of the atomic state is caused by an external magnetic field, result-

ing in precession of the anisotropy of angular momentum distribution around the magnetic

field vector. In addition to precession, the system undergoes relaxation processes leading

to relaxation of atomic polarization and optical anisotropy of the medium. In the final

stage we can observe the modified properties of the medium as it affects the propagation

of light, leading to rotation of light polarization. In an experiment all of these stages occur

simultaneously, but for theoretical model purposes, they can be considered independently.

To describe the evolution of the quantum system, we use the density matrix for-

malism. Light interaction with atoms is described semi-classically by the electric-dipole-

interaction Hamiltonian. Optical excitation occurs together with spontaneous emission,

which is described in the Liouville equation (2.14) by the spontaneous emission operator Γ̂,

and repopulation due to spontaneous emission F̂ . Both optical excitation and spontaneous

emission are responsible for optically pumping the medium and generating polarization

in the medium. In a real system, when exciting the transition 52S1/2 −→ 62P1/2, the state

relaxes through several intermediate states (Figure 3.1b). In this model, we use a single

excited-state relaxation rate, because the polarization transfer from the excited state to

the ground state via intermediate states is weaker than that caused through direct tran-

sitions. This results of our study show that reducing the cascade system to a two-state

system is an acceptable approximation for low light intensity and weak magnetic field

conditions [29].

Optical pumping

To describe optical pumping, it is useful to employ the irreducible tensor expansion of

the density matrix. This makes it easier to simplify the theoretical description. In a low-

light-intensity excitation regime, when an unpolarized atom absorbs a photon, it may only

create the three lowest polarization moments: population, orientation, and alignment.

Equation (2.20) is used to calculate the evolution of the density matrix during the

first stage, optical pumping, during which atomic polarization is generated. The full

Hamiltonian can be written as Ĥ = Ĥ0 + V̂ , where Ĥ0 is the system Hamiltonian (atom

in absence of excitation) and V̂ is the time-independent perturbation operator. At this

stage the magnetic field is neglected. The interaction operator of the first stage can be

written as a light-atom electronic dipole interaction:

V̂pump = −d · E, (3.1)

where d is the electric dipole moment and E = E0 Re(êei(k·r−ωt)) is the electric field of

the light in the x-axis direction (ê = x̂ and k̂ = ẑ) with E0 being the optical electric
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field amplitude. In the rotating wave approximation, the electric-dipole Hamiltonian is

written as

V̂ ′pump = −1

2
dzE0, (3.2)

where the prime refers to the rotating frame.

Evolution of polarization in a magnetic field

In the second stage, when the polarization evolves under the influence of the magnetic field,

the interaction operator is replaced by an external-magnetic-field (Zeeman) interaction

operator

V̂evol = −µ ·B, (3.3)

where B is the magnetic field vector in the x-axis direction, and µ is the magnetic dipole

moment.

Probing the ground state polarization

In the third stage the ground state polarization is probed. To calculate the rotation of

light polarization we use the macroscopic polarization of the medium, using

∂2E

∂`2
− ∂2E

∂t2
= 4π

∂2P

∂t2
, (3.4)

where ` is the distance along the direction of light propagation. The relation of the

medium’s dipole polarization P and the density matrix ρ is given by P = Nat Tr{(ρd)},
where Nat is the atomic density. To relate the polarization P to the density matrix ρ̃ in

the rotating frame, we can write it as

P = Nat

∑
FgmgFeme

2Re(ρ̃Fgmg ,FemedFgmg ,Feme)e
i(k·r−ωt), (3.5)

where dFgmg ,Feme is the electronic-dipole matrix element between the ground state |Fgmg〉
and the excited state |Feme〉, ρ̃Fgmg ,Feme is the corresponding density-matrix element in

the rotating frame, and ω is the light frequency. This allows us to calculate electric suscep-

tibility of the medium as well as refractive indices of two orthogonal circular polarization

components of light responsible for the rotation of the light’s polarization.

Following this approach, the polarization rotation of light can be expressed as

dϕ

d`
= −4πωNat

ε0

∑
FgmgFeme

Im
[
ρ′Fgmg ,FemedFgmg ,Feme ·

(
k̂× ê

)]
, (3.6)

where k̂ is the unit vector of the wave vector k, and ê is the light-polarization unit vector.

To obtain the optical rotation for weak probe light in terms of the ground-state

density matrix, we can use first-order perturbation theory for optical coherences and
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neglect coherences between nondegenerate ground states [8]:

dϕ

d`
= −2πωNatIm

[
ê · β̄ ·

(
k̂× ê

)]
, (3.7)

where the tensor β̄ is presented in the irreducible tensor basis as

β̄ =
∑

FgFeκq′q′′

(−1)Fg+Fe+κ

ω̃FeFg
ε̂−q′ ε̂−q′′〈1q′1q′′|κ q′ + q′′〉

{
1 1 κ

Fg Fg Fe

}
| 〈Fg‖d‖Fe〉 |2ρ(κ q′+q′′)

FgFg
,

(3.8)

where ε̂q (2.1) is a spherical-basis unit vector.

In this model the multi-photon effects are not taken into account. A single photon

is a spin-1 particle, so it can support PMs up to κ = 2. In the optical-pumping stage, the

magnetic field is neglected, and therefore the ground-state atomic polarization produced

in this stage is parallel to the direction of the linear polarization of the light; thus, it has a

q = 0 polarization component. And as there is no preferred direction, but only a preferred

axis, only the PM ρ(20) can be generated as a result of the light-atom interaction, while

simultaneously modifying the polarization moment ρ(00) in the interaction.

The rotation of light polarization can only be caused by the PMs with rank κ = 1 or

κ = 2. In fact, the only PM affecting the rotation of the polarization plane is ρ2 ±1
FgFg

(this

follows from analysis of Equation (3.8)). Taking this into account, the rotation of the

plane of polarization of z-polarized light passing trough an atomic vapor that consists of

a single velocity group with completely resolved hyperfine structure (ωFgF ′g , ωFeF ′e � γe)

is given by [7]

`0
dϕ

d`
=

3

4
κs
∑
FgFe

(−1)2Fg (2Fe + 1)3 (2Fg + 1)3

(2I + 1)

{
1 1 2

Fg Fg Fe

}{
Je Fe I

Fg Jg 1

}4

× xFg
[
L
(
ω′FeFg

)]2
(

(−1)2I+2Jg

(2Fe + 1) (2Fg + 1)

{
1 1 2

Fg Fg Fe

}

+R (−1)Fg−Fe (2Je + 1)

{
1 1 2

Fe Fe Fg

}{
Fg Fg 2

Fe Fe 1

}{
Je Fe I

Fg Jg 1

}2
 ,

(3.9)

where `0 = −
(

1

I
dI
d`

)−1

is the unsaturated absorption length, and

κs =
〈Jg||d||Je〉2E2

0

γgγe
=

Ω2
R

γgγe
(3.10)

is the reduced saturation parameter. The Lorentz profile L
(
ω′FeFg

)
is given by

L
(
ω′FeFg

)
=

(γe/2)2

(γe/2)2 + (ω′FeFg)
2
, (3.11)
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where ω′FeFg = −∆ωFeFg + k · v is the Doppler-shifted transition frequency of a pair of

hyperfine states with ∆ωFeFg being the detuning of light from the optical transition and

v being the velocity of atoms. The magnetic-lineshape parameter xFg is given by

xFg =
(γg/2)ΩFg

(γg/2)2 + (ΩFg)
2
, (3.12)

where γg is the ground-state relaxation rate and ΩFg = gFgµBB is the Larmor frequency

of the ground-state hyperfine level Fg with gFg being the Landé factor of the ground state

Fg, and µB being the Bohr magneton.

In Equation (3.9) the Doppler shift characterizes the motion of the atoms from a

single velocity group. To describe properly the atomic ensemble, the velocity distribution

of the atoms in the sample must be introduced. The polarization of the optically pumped

atoms disappears when the atoms collide with the cell wall, so the summation can be

done over the signals of each velocity group calculated independently with weights given

by the Maxwell distribution. The polarization rotation of an averaged ensemble can be

calculated as [7, 8, 29]〈
`0
dϕ

d`

〉
v

=
3

8
κs
∑
FgFe

(−1)2Fg (2Fe + 1)3 (2Fg + 1)3

(2I + 1)

{
1 1 2

Fg Fg Fe

}{
Je Fe I

Fg Jg 1

}4

× e−(∆FeFg/ΓD)2xFg

(
(−1)2I+2Jg

(2Fe + 1) (2Fg + 1)

{
1 1 2

Fg Fg Fe

}

+R (−1)Fg−Fe (2Je + 1)

{
1 1 2

Fe Fe Fg

}{
Fg Fg 2

Fe Fe 1

}{
Je Fe I

Fg Jg 1

}2
 ,

(3.13)

where ΓD is the Doppler width. If the excited-state splitting is much smaller than the

Doppler width (ωFeF ′e � ΓD) and the ground-state hyperfine splitting is much larger than
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the natural width (ωFgF ′g � γe), the rotation of the polarization can be expressed as〈
`0
dϕ

d`

〉
v

=
3

8
κs

∑
FgFeF ′′e

(−1)2Fg+F ′′e −Fe (2Fe + 1)(2F ′′e + 1)(2Fg + 1)

(2I + 1)

×
{

1 1 2

Fg Fg F ′′e

}{
Je Fe I

Fg Jg 1

}2{
Je F ′′e I

Fg Jg 1

}2

xFg

×
(

(−1)2I+2Jg

(2Fe + 1)(2Fg + 1)

{
1 1 2

Fg Fg Fe

}
+R

∑
F ′e

(−1)Fg−F
′
e(2Je + 1)(2Fg + 1)(2F ′e + 1)

×
{

1 1 2

Fe F ′e Fg

}{
Fg Fg 2

Fe F ′e 1

}{
Je F ′e I

Fg Jg 1

}2

×
2γ4

e + (2γ2
e + ω2

FeF ′e
)ωFeF ′′e ωF ′eF ′′e

2(γ2
e + ω2

FeF ′e
)(γ2

e + ω2
F ′eF

′′
e

)

)
e−(∆FeFg/ΓD)2γ2

e

γ2
e + ω2

FeF ′′e

.

(3.14)

Equation (3.14) was used to simulate Doppler-broadened blue NMOR signals in this

study.

3.2 Experimental verification of the model

The experiment was done at the University of California, Berkeley by Dr. Szymon Pustelny.

The detailed description of the experiment is presented in Appendix A.1. In the exper-

iment the frequency doubled laser light from a titan-sapphire laser is directed through

a rubidium-vapor cell, which is placed inside a four-layer cylindrical µ-metal, magnetic

shield (Figure 3.3). A set of additional coils inside the shield were used to apply a

bias magnetic field, so that the magnetic field direction coincides with the direction of

light-beam propagation. The light entering the vapor cell was linearly polarized. The

beam diameter was controlled with an iris. After the cell the polarization of the light

was detected with two photodiodes, which detected two orthogonally linearly polarized

components I1 and I2. The small rotation angle was then calculated [31] as

ϕ =
I1 − I2

2(I1 + I2)
. (3.15)

The experimental measurement process is not part of the dissertation. Nevertheless,

the author of the dissertation carried out part of the data analysis and matched the fitting

parameters to the experimental measurements.

3.2.1 Model adaptation

To investigate the validity of the model, the simulated, blue NMOR signals were compared

with the experimental results.
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Figure 3.3: Simplified experimental scheme. Linearly polarized light passes through a cell

of atomic rubidium, which is inserted inside a magnetic shield with coils that provide a

bias magnetic field. The linearly polarized components of the exiting light are detected

with photodiodes and the rotation of the polarization plane is determined.

To describe the problem correctly, several experimental parameters had to be deter-

mined. There are two types of parameters: those that are assumed to be known precisely,

such as the Larmor frequency ΩFg (3.12) and the Doppler width ΓD (3.14), which can be

determined based on the temperature of the vapor, the strength of the magnetic field and

the excitation scheme, and those that can only be estimated and have to be adjusted to fit

experimental conditions, such as the Rabi frequency ΩR [used to calculate the saturation

parameter (3.10)] and the ground-state relaxation rate γg [used to calculate the satura-

tion parameter (3.10) and magnetic-lineshape parameter (3.12)]. The latter is adjusted

by using fitting parameters kR and kγ.

The ground-state relaxation rate depends primarily on the time of flight of the

atoms across the beam, as atom-atom collisions are rare in the case under consideration.

A simple approach is to assume that the rate is equal to the mean transverse velocity of

atoms divided by the mean path length across the light beam. However, the effect of the

transit rate of atoms of different velocity groups across the beam is more complex [32].

The atoms with smaller transverse velocities spend more time in the light beam and

thereby contribute more to the NMOR signal, narrowing the signal [32]. To take this

effect into account, we introduced a parameter kγ that modified the transit-relaxation

rate

γg = kγ
vtr

r
, (3.16)

where vtr =
√
kBT/m is the mean transverse velocity, with m being the mass of the

atom, T denoting the temperature, kB being Boltzmann constant, and r being the beam

radius, which in the cylindrical geometry of the experiment is the same as the average

path across the beam. The parameter kγ was determined by fitting the dispersion curve

to the experimental data (Figure 3.5). The values of kγ were different for different iris

apertures but were kept constant for all light detunings and light intensities. When the

beam diameter changes, it modifies the weight of the contribution of the atoms from

different velocity groups, so it changes the width of the NMOR signal [32]. Table 3.1

shows the fitted values of kγ for different iris apertures.
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3.2. EXPERIMENTAL VERIFICATION OF THE MODEL

Rabi frequency is another parameter that needs to be determined to match the

theoretical calculations with experimental signals. Although the Rabi frequency can be

determined from the light intensity, the model needs to account for the fact that the light

beam profile does not conform to a uniform, top-hat shape, and atoms traversing the

beam experience different Rabi frequencies across the beam. This effect can be accounted

for with a parameter kR, which approximates the real beam profile as a top-hat profile,

so that the Rabi frequency can be expressed as

ΩR = kR
dE0

~
, (3.17)

where d = 〈Jg||d||Je〉 is electric dipole matrix element, ~ is reduced Planck’s constant

(which was set to ~ = 1 in the derivation of the model) and E0 is the amplitude of the

electric field of the light, which can be extracted from expression for the light intensity

I =
ε0ncE

2
0

2

[
mW

cm2

]
, (3.18)

where ε0 is the electric constant, n is the refractive index and c is the speed of light.
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Figure 3.4: Schematic depiction of the laser-beam profile and the effect of the iris aperture

on the light-intensity profile.

To estimate the parameter kR we need to consider a light beam with a Gaussian

profile

I(r′) = I0e
− 2r′2

σ2 , (3.19)

where I0 is the maximum intensity at the center of the beam and σ is the radius of the

beam before the iris, where the intensity drops by 1/e2. When the beam reaches the iris,

the iris cuts the wings of the beam off, modifying the profile (Figure 3.4). The model does

not include the effects of diffraction cause by the iris. The total light power then can be
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expressed as

P = 2πI0

∫ Ra

0

r′e
2r′2
σ2 dr′ = 2πI0

σ2

8

(
e

4R2
a

σ2 − 1

)
, (3.20)

where Ra is the radius of iris aperture. The top-hat beam intensity profile can be expressed

as

P = I1πR
2
a, (3.21)

where I1 is the normalized light intensity. To use the top-hat intensity profile (3.21)

instead of the real intensity distribution (3.20), we need to introduce a parameter kR:

kR =

√
I0

I1

=

√√√√√ 4R2
a

σ2

(
e

4R2
a

σ2 − 1

) (3.22)

The parameter depends only on the iris diameter. It does not depend on laser power,

so it is the same for all light intensities for given iris aperture radius. The beam radius

before the iris was measured to be σ = 2 mm.

d (mm) kγ kcalc
R kexp

R

1 0.17(1) 1.02 1.04(1)

3 0.23(2) 1.15 1.30(2)

6 0.42(7) 1.60 1.62(7)

Table 3.1: Calculated and fitted parameters kγ and kR for different iris aperture values.

Table 3.1 shows the calculated parameter kcalc
R (calculated numerically based on the

beam profile and iris aperture) and fitted parameter kexp
R (from the fitting of the dispersion

curve to the experimental data) for different iris apertures. It can be seen that the values

of the parameters depend on the beam diameter, which is determined by the iris opening,

because the aperture size determines the profile of the beam. A maximally open aperture

(6 mm) allows the atoms to interact with a beam that closely approximates a Gaussian

profile, while an aperture of 1 mm changes the beam profile to something much closer

to a top-hat profile. In the former case, when the actual beam profile strongly deviates

from the uniform beam profile, the value of kR is significantly larger than one, but in the

latter case, when the beam profile is more closely approximated by a uniform intensity

distribution, the value of kR is nearly unity.

3.3 Results

The theoretical NMOR curves were calculated using the parameters kγ and kR (Table 3.1).

Figure 3.5 compares the experimental data with the results of theoretical calculations.
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Comparing the NMOR signal for the D1 line (Figure 3.5a) and the NMOR signal measured

with blue light (Figure 3.5b), it can be seen that both signals are centered around zero

magnetic field and reveal a dispersive shape. The amplitude of rotation signal is defined

as the maximum rotation. The width is defined as the magnetic-field difference between

the maximum and minimum of the signal. The amplitude of the blue NMOR is 4 mrad

and the width is 80 mG. The amplitude of the NMOR signal of the D1 line is roughly five

times larger, although the blue-light NMOR signal was measured at roughly 85◦C, but

the D1-line signal was measured at room temperature (23◦C), so that the vapor density

was three orders of magnitude lower for the D1-line measurement [29]. In both cases the

laser intensity was the same (1.9 mW/cm2 with an iris aperture of 1 mm) and the lasers

were tuned to the same ground-state hyperfine level Fg = 3. The theoretical calculations

were performed using parameters that correspond to the experimental temperature, the

laser intensity and the iris aperture. The Rabi frequency for blue-light NMOR was ΩR =

0.57 MHz and for D1-line NMOR was ΩR = 3.6 MHz. Although the intensity was the

same for both transitions, the Rabi frequency was determined to be much smaller for

blue-light excitation compared to D1-line excitation. The reason for the different Rabi

frequencies was the difference in the electric dipole moments d = 〈Jg||d||Je〉 (3.17) of

blue-light and D1 the transitions. The difference in the degree of magnetic-field-induced

anisotropy could make blue NMOR useful as a weakly perturbing probe.
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Figure 3.5: (a) Rotation of linearly polarized IR light tuned to the 85Rb Fg = 3 −→ Fe

transition of the 52S1/2 −→ 52P1/2 (D1) line. (b) Rotation of linearly polarized blue light

tuned to the 85Rb Fg = 3 −→ Fe transition of the 52S1/2 −→ 62P1/2 line. The black

dots are the experimental data and solid curves show the theoretical calculations for (a)

ΩR = 0.57 MHz and (b) ΩR = 3.6 MHz. Note the differing vertical scales.

The advantages of the blue NMOR as a weakly perturbing probe can be manifested

fully when we compare the widths of the resonances observed at the two transitions. The

NMOR signal observed at the 52S1/2 −→ 52P1/2 transition (D1 line) is nearly two times
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broader than the one observed at the 52S1/2 −→ 62P1/2 transition. This difference is

caused by power broadening, which dominates the resonance width at the D1-line. A

narrower signal leads to a more precise measurement.

3.3.1 NMOR Spectrum

Figure 3.6 depicts the dependence of blue-light rotation on the magnitude of the detuning

from the resonance, illustrating a typical NMOR spectrum. The black dots represent the

measured data at a magnetic field of 8 mG, where the signal is close to the maximum

rotation, and at a light intensity of ∼0.1mW/cm2. The red solid curve is the calculated

spectrum. The atoms from different velocity groups do not interact; therefore, the atoms

from each of the velocity groups make an independent contribution to the signal. As a

result, it is possible to calculate the theoretical signal by simply summing the contributions

from atoms of different velocity groups (3.14). This approach was applied to calculating

the NMOR spectra presented in Figure 3.6. As shown, the agreement of calculated spectra

with the experimental data is good.
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Figure 3.6: Experimental rotation spectra (black dots) measured at constant light in-

tensity (0.1 mW/cm2) and theoretical rotation spectra (red curve) calculated at Rabi

frequency ΩR = 0.19 MHz. The signals were obtained by scanning the frequency through

all transitions of 52S1/2 −→ 62P1/2 line.

The strongest polarization rotation was observed for the Fg = 3 −→ Fe of 85Rb

transition. The rotation for this transition was almost two times larger than the rotation

amplitude of the second largest peak at the Fg = 2 −→ Fe transition of 87Rb. The

ratio of rotation amplitudes at these two transitions is roughly the same as the ratio of

absorption strengths at the same transitions, although the difference of Landé factors

of 87Rb and 85Rb is 2
3
. The peaks in the spectrum correspond to different points in

the NMOR signal. This means that the rotation amplitude of 87Rb is already beyond
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its maximum while the rotation of 85Rb still increases with the magnetic field. Other

transitions (the Fg = 2 −→ Fe transition of 85Rb and the Fg = 1 −→ Fe of 87Rb) produce

much weaker signals. In this case, however, the difference in NMOR-signal amplitudes is

much larger than the difference in the value of the absorption at the transitions. Moreover,

due to the opposite signs of the Landé factors of the ground-state hyperfine levels, the

direction of rotation at these transitions are reversed with respect to the stronger rotations

of Fg = 3 −→ Fe transition of 85Rb and Fg = 2 −→ Fe transition of 87Rb.

(a) (b)

Figure 3.7: (a) Experimental rotation spectra for different magnetic fields measured at

constant light intensity (0.1 mW/cm2). The signals were obtained by scanning the fre-

quency through all transitions of 52S1/2 −→ 62P1/2 line. (b) Theoretical rotation spectra

for different magnetic fields, Rabi frequency ΩR = 0.19 MHz.

Figure 3.7 shows both experimental (Figure 3.7a) and theoretical (Figure 3.7b) 3D

plots of spectral and magnetic-field dependence of the rotation. The experimental data

and theoretical calculations confirm the analysis of Figure 3.6. It can be clearly seen that

Fg = 2 −→ Fe transition of 87Rb reach the maximum of the rotation for lower magnetic

field values than Fg = 3 −→ Fe transition of 85Rb.

3.3.2 Dependence of the NMOR signals on the light intensity

As an additional check on the theoretical model’s ability to predict accurately the NMOR

signals, as well as to test the understanding of the NMOR process, the dependence of the

NMOR signals on the light intensity was studied. Figure 3.8a shows that the width of

the blue NMOR signal does not depend on the light intensity. The data show that the

width is also independent of hyperfine transition.

At the same time, the nonlinear character of NMOR implies that there should be a

dependence of the amplitude of the signal on the light intensity. Figure 3.8b shows the

amplitude of the blue NMOR signal versus the averaged light intensity for two transitions

of 85Rb: Fg = 3 −→ Fe and Fg = 2 −→ Fe (Figure 3.2). The amplitude dependence on

the light intensity is different for these transitions because of the different dipole matrix
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Figure 3.8: Dependence of the (a) width and (b) amplitude of rotation signals on light

intensity for the transitions from the ground-state hyperfine level Fg = 3 (black points)

and Fg = 2 (red triangles). The signals were measured at 85◦C temperature with 6 mm

beam diameter. The solid lines describe the theoretical calculations. The shaded areas

mark the uncertainty of the parameter kγ and kR.

elements of the transitions. These differences are reproduced well by the model with the

coefficient of determination R2 > 0.9.

3.3.3 Influence of the beam diameter on the NMOR signals

The dependence of the rotation signal on beam diameter (Figure 3.9) was studied next

with the goal of testing the reliability of the method and our theoretical model. The data

of Figure 3.9 show the width and amplitude of the measured signal versus the average

light intensity for different iris aperture sizes. The corresponding Rabi frequency ranges

for the theoretical calculations were 0.48−1.19 MHz for 1 mm, 0.15−0.43 MHz for 3 mm

and 0.12 − 0.31 MHz for 6 mm beam diameter. The dependence of the amplitude on

the average light intensity (Figure 3.9b) shows different slopes for the three iris apertures

(3.7 ± 0.1 mrad(cm2/mW) for 1 mm, 12.5 ± 0.4 mrad(cm2/mW) for 3 mm and 22 ± 2

mrad(cm2/mW) 6 mm openings). The different slopes arise from the fact that the ground-

state relaxation rate is different in the three cases, and so the level of saturation of the

transition also differs. Another factor that needs to be taken into account reproduce

adequately the dependencies is that the different apertures result in different beam profiles

(Figure 3.4), which we accounted for with the parameter kR (Table 3.1). Combining these

two contributions allows us to theoretically reproduce the experimental data with the

coefficient of determination R2 > 0.9.

The width of the rotation signal is independent on light intensity, but the width

depends on the beam diameter (Figure 3.9a). Furthermore, the relation of the width to the
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Figure 3.9: Dependence of the (a) width and (b) amplitude of rotation signals on the

light intensity for different iris aperture sizes: 1 mm (black points), 3 mm (red triangles),

6 mm (green squares). The signals were measured for transitions from the ground-state

hyperfine level Fg = 3 at 85◦C temperature. The solid lines describe the theoretical

calculations. The shaded areas mark the uncertainty of the parameter kγ and kR.

diameter of the iris opening is not straightforward. The experimentally determined widths

for 3 mm and 6 mm iris openings are almost the same within the error bars (31± 1 mG

for 3 mm and 27± 4 mG for 6 mm), but the width for the 1 mm iris opening is roughly

two time larger (68 ± 5 mG). This effect is not related to the power broadening as the

NMOR signal created by blue light is not power broadened, so this effect is related to the

different dynamics of the optical pumping connected to the different beam diameters [32]

and the different beam profiles (Figure 3.4). As the beam diameter is 4 mm, the iris

apertures of 3 mm and 6 mm do not affect the light-intensity profile as much. The iris

aperture of 6 mm lets through almost all of the beam and 3 mm cuts of just a little piece.

There is a good agreement between experimental data and theoretical calculations after

incorporation of these the effects.

3.4 Conclusions

The results of this chapter describe the nonlinear magneto-optical rotation at the 52S1/2 −→
62P1/2 line. The dynamics of the excitation cycle for this transition differ from the D1

or D2 lines due to the decay of the excited atoms via several intermediate states. Nev-

ertheless, a theoretical model was applied to this excitation transition that substituted

the cascade relaxation transitions by one relaxation parameter, which characterized the

direct transition to the ground state.

The theoretical model was adapted to the blue-light transition, taking into account
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the experimental conditions and adjusting the parameters of the model accordingly. Due

to the use of the iris to control the beam diameter in the experiment, the Rabi frequency

ΩR and ground state relaxation rate γg were estimated and adjusted using fitting param-

eters kR and kγ.

The theoretical model describes the experimental data, reproducing such character-

istics as rotation amplitude, width and rotation spectrum for atoms in thermal motion in

a vapor cell. These results are not obvious as in the atomic system only 15% of the atoms

return to the ground state directly, while 85% return to the ground state through several

intermediate states and thermalization on the walls of the cell.

The results provide not only fundamental understanding of NMOR induced by light

that couples ground states with higher excited states but also indicate the possibility

to use such an excitation scheme in magnetometry applications. For example, the weak

absorption of the blue light in water could allow an application to remote underwater

magnetometry [33].
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Part II

Magneto-optical effects in

nitrogen–vacancy centers in diamond
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Chapter 4

Introduction to Part II

Nitrogen–vacancy (NV) centers in diamonds are point defects that consist of a substi-

tutional nitrogen atom adjacent to a lattice vacancy. NV centers in diamond have been

found to be versatile quantum sensors. The triplet ground state of the NV center can be

optically polarized by exciting the NV center with green radiation for a short time [34–39].

The intensity of the subsequent, laser-induced red fluorescence depends on the polarization

of the ground state. Moreover, the sublevel components with spin projection mS = ±1

in an external magnetic field undergo Zeeman splitting, which makes the system inher-

ently sensitive to magnetic field [40]. For a solid-state system, the ground-state magnetic

sublevel manifold has a relatively long coherence time [41] that permits observations over

experimentally interesting time scales, especially when enhanced by dynamic pulse tech-

niques adapted from the field of nuclear magnetic resonance (NMR) [42, 43]. Being part

of a crystal lattice, the NV center offers a scaleable system, from a single NV, to achieve

maximum spatial resolution, to a macroscopic ensemble to enhance magnetic field sensi-

tivity. Magnetic field sensitivities on the order of picoteslas have been achieved [44, 45].

NV centers have been used to image magnetic field distributions of microscopic magnetic

structures [46–48], including in living cells [49]. Progress is being made to use NV cen-

ters to perform NMR experiments on picoliter volumes of analytes [43]. Other sensing

modalities of NV centers include temperature and pressure [50].

Most of the applications of NV centers require knowledge of the detailed energy-

level structure of the NV center, including the hyperfine structure, which arises from the

interaction of the electron spin with the nuclear spin of the 14N atom that is a part of the

NV center. In Chapter 6 we analyze the hyperfine-level interaction at the magnetic field

value that corresponds to the ground-state level anti-crossing (GSLAC), which leads to

strong hyperfine level mixing and altering of the transition probabilities between magnetic

sublevels of electron spin.

In this study optically detected magnetic resonance (ODMR) [51] signals were mod-

eled to investigate the ground-state mS = 0 −→ mS = +1 and mS = 0 −→ mS = −1
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electron spin transitions in the vicinity of the GSLAC. The model takes into account the

mixing of the electron-spin state hyperfine levels to calculate the level structure and the

transition strength between individual hyperfine levels. We also analyzed the influence

of the slight misalignment between an external magnetic field and the axis of the NV

center on the degree of spin polarization of the 14N nucleus and the ODMR signal shape.

The model also applied a Monte Carlo method to study the NV center’s interaction with

nearby 13C nuclei, showing the influence of 13C on ODMR signals. To test the model, we

used a parameter-optimization procedure to fit the experimentally measured curves with

the results of theoretical calculations.

The sensitivity of NV centers used as a probe could be dramatically enhanced if

the surrounding nuclear spins could be polarized [52], a process referred to as hyper-

polarization or dynamic nuclear polarization (DNP). The sensitivity could be enhanced

even more if the spins on the surface of the diamond crystal or an adjacent substance

could be polarized [53]. Success in achieving dynamic polarization of nuclei has been

achieved near the excited-state level anti-crossing (ESLAC) around 512 G for single 15N

spins [54, 55], single 14N and 15N spins, and ensembles of 14N and 13C spins [56, 57]. The

hyperfine interaction creates additional states which are strongly coupled near the level

anticrossing. Previously the experimental signals in studies that measured nuclear spin

polarization have been described successfully with models based on the master equation

for the density matrix [55–57], combined with the Lindblad operator [58] or even simpler

rate equations [54]. Nuclear polarization is very sensitive to any angular deviations of the

magnetic field from the NV axis [54], which is important to take into account in any prac-

tical applications and useful as a signal for aligning the diamond crystal in the external

magnetic field.

The nuclear spin polarization in the GSLAC magnetic field region has been studied

much less in regard of nuclear spin polarization. Models have predicted that in the case

of 15N the polarization should fall as the magnetic field is increased from the ESLAC to

the GSLAC, with a narrower peak at the GSLAC [55].

Chapter 7 analyzes the DNP for 14N nuclear spin using numerical simulations based

on the Lindblad equation over a wide range of magnetic field values, including both the

ESLAC and GSLAC magnetic field regions. The results of the calculations show that the

nuclear spin polarization decreases significantly if a transverse magnetic field or transverse

strain field [59–63] are present. We also investigated the influence of pumping rate and

relaxation rates on the nuclear spin polarization.

The model developed in Chapter 7 was tested using experimental ODMR signals,

which were fitted using the model developed in Chapter 6 to determine the nuclear spin

polarization. The experimentally determined DNP was compared with the results of

the numerical calculations. The results show that nuclear spin polarization is especially

sensitive to transverse magnetic field at the GSLAC, although a small dip in polarization
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can also be observed at the ESLAC. The reason for observing a smaller signal at the

ESLAC is that the ground-state hyperfine interaction is much weaker than the excited-

state hyperfine interaction. The DNP enhancement at the GSLAC can be completely

destroyed by the angle between the magnetic field direction and the axis of the NV center

as small as 0.1◦.
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Chapter 5

Background

5.1 Physical structure of the NV center

A nitrogen-vacancy center is formed by substituting a nitrogen atom for a carbon atom

in a diamond lattice next to a vacant position (Figure 5.1). The neutral NV0 center

is characterized by 5 valance electrons—three coming from dangling bonds of the three

carbon atoms nearest to vacancy and two from the nitrogen dangling bonds. With one

unpaired electron, the NV0 center is a spin 1
2

crystal-lattice defect. A more common form

of NV center is the NV− center, which contains two uncoupled electrons—an additional

electron acquired from other nitrogen defects in the diamond lattice. The NV− center has

an electronic spin S = 1. In this work only the NV− center will be analyzed. For further

convenience, it will be referred as an NV center, without mentioning the charge state.

N

V C

C C

Figure 5.1: Diamond crystal with NV center

5.2 Energy structure of the NV center

NV centers have C3v symmetry, which is equivalent to a symmetry under rotations by

120◦ around the axis running through the nitrogen and vacancy (Figure 5.2b). The C3v

symmetry axis of the NV center is also Z axis of the principal axes of the center. The
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5.2. ENERGY STRUCTURE OF THE NV CENTER

X and Y axis can then be chosen arbitrarily. The Z axis is also often chosen as the

quantization axis, which will be the case in this work.

We can define six symmetry operations with respect to the quantization axis that

connects the nitrogen atom and the vacancy (Figure 5.2b), forming a C3v symmetry group:

• the identity operation (Ê);

• two proper rotations by 2π
3

and 4π
3

(Ĉ3 and Ĉ−1
3 );

• three reflections in the plane defined by the nitrogen atom, the vacancy, and one of

the three carbon atoms (σ̂i).

(a) (b)
N

C C

C

V

Ĉ3

Ĉ−1
3

σ̂1

σ̂2
σ̂3

Figure 5.2: Symmetry of an NV center. (a) Nitrogen-vacancy center (carbon: gray,

nitrogen: blue, vacancy: red). (b) Symmetry operations of the NV center.

The vacancy is assumed to have four dangling bonds that originate at any one of the

carbon atoms or the nitrogen atom. These bonds can be labeled as |c1〉, |c2〉, |c3〉, |n〉 and

can be considered as atomic orbitals localized near the nuclear coordinates of the carbon

and nitrogen atoms involved in the NV center. The transformation properties under the

group symmetry operations are shown in table 5.1.

R̂n Ê Ĉ3 Ĉ−1
3 σ1 σ2 σ3

c1 c1 c2 c3 c1 c3 c2

c2 c2 c3 c1 c3 c2 c1

c3 c3 c1 c2 c2 c1 c3

n n n n n n n

χn 4 1 1 2 2 2

Table 5.1: Symmetry operations of the orbital basis. Operations under which the orbitals

are not changed are marked as bold. The last row shows the number of unchanged orbitals

under a specific symmetry operation.
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The NV center,formed by nitrogen and an adjacent vacancy in the diamond lattice,

resembles a diatomic molecule. In order to find the corresponding molecular orbitals,

we consider the irreducible representation of the C3v symmetric group: the totally sym-

metric representation A1, the anti-symmetric representation A2 and the two-dimensional

representation E. Using the projection operator and the characters of the C3v symmetry

operations, one can construct two orthogonal molecular orbitals that are totally sym-

metrical and transform as an irreducible representation A1 and two that are mutually

orthogonal and transform into each other as irreducible representation E:

|a1〉 = |n〉, (5.1a)

|a2〉 =
1√
3

(|c1〉+ |c2〉+ |c3〉) , (5.1b)

|ex〉 =
1

2
(2|c1〉 − |c2〉 − |c3〉) , (5.1c)

|ey〉 =
1√
2

(|c2〉 − |c3〉) . (5.1d)

The orbitals |a1,2〉 are aligned along the quantization axis, while |ex,y〉 are in the

plane normal to the quantization axis (labels x and y are chosen arbitrarily). To draw

an analogy to the familiar atomic orbitals of the hydrogen atom, we may say that |a1〉
is an analogue of an s orbital, |a2〉, of pz, and |ex,y〉, of px,y orbitals. These orbitals are

occupied by the six electrons of the NV center—one from each carbon atom, two from the

nitrogen atom and one from the diamond lattice, given by a donor such as an additional

nitrogen atom [1, 64, 65]. For the ground-state configuration, four electrons occupy the

two symmetric orbitals, while the remaining two reside in the |ex,y〉 orbitals (Figure 5.3).

To simplify the description we may consider that two holes (which would be positively

charged spin-1/2 particles) are distributed in the molecular orbitals. Thus, we may refer

to the ground state of the NV center as e2. For the excited state, one electron in |a2〉
is promoted to the |ex,y〉 levels, so that one hole is left in |a2〉 and one in |e〉. Such a

configuration can be denoted as ae.

In order to find spin states, we must construct the direct product of the basis states

occupied by the two holes. From two states, we can construct three symmetrical and one

anti-symmetrical direct-product, orbital-basis state. For the ground state we can express

these states as:

|ex〉 ⊗ |ey〉 =



|exex + eyey〉
|exex − eyey〉
|exey + eyex〉
|exey − eyex〉

. (5.2)

In the case of the first excited state, we will look at the product between |a2〉 and
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|ex〉 |ey〉

|a2〉

|a1〉

Ground state e2

|ex〉 |ey〉

|a2〉

|a1〉

Excited state ae

Figure 5.3: Molecular orbitals of the NV center. Gray circles represent electrons with the

arrows indicating spin up or spin down. The dashed white circles represent holes.

|ex〉 or |ey〉

|a2〉 ⊗ |ey〉 =

|aey + eya〉
|aey − eya〉

(5.3a)

|a2〉 ⊗ |ex〉 =

|aex + exa〉
|aex − exa〉

(5.3b)

As there are two holes with two possible spin orientations, we may obtain similar

direct product bases for the spin states:

| ↑〉 ⊗ | ↓〉 =



| ↑↑〉
| ↓↓〉
| ↑↓ + ↓↑〉
| ↑↓ − ↓↑〉

. (5.4)

The first three basis states in (5.2) and (5.4) are symmetrical basis states and the last is

anti-symmetrical.

Electrons (or holes) obey Fermi-Dirac statistics, so the total wavefunctions (and

their basis states) must be anti-symmetrical. The resulting states are summarized in

Table 5.2 [1].

5.2.1 Energy level structure of the NV center

The energy structure of an NV center’s triplet state can be described by the total Hamil-

tonian

ĤNV = ĤS + ĤN + ĤB + Ĥstrain, (5.5)

where ĤS is the fine-structure spin Hamiltonian, ĤN describes the hyperfine interaction

between the electron spin of the NV center and the nuclear spin of the nitrogen atom
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Configuration
State

Notation
Orbital Spin

e2 (T) |exey − eyex〉 ⊗


| ↓↓〉
| ↑↓ + ↓↑〉
| ↑↑〉

3A2− (E1)

3A20 (A1)

3A2+ (E2)

e2 (S)

|exex − eyey〉
|exey + eyex〉
|exex + eyey〉

⊗ | ↑↓ − ↓↑〉
1E1 (E1)

1E2 (E2)

1A1 (A1)

ae (T)
|aex − exa〉
|aey − eya〉

}
⊗


| ↓↓〉
| ↑↓ + ↓↑〉
| ↑↑〉

3E

ae (S)
|aex + exa〉
|aey + eya〉

}
⊗ | ↑↓ − ↓↑〉 1E

Table 5.2: Structure of the ground (e2) and first excited (ae) state orbital configuration

of an NV color center [1].

associated with the NV center. ĤB is the magnetic interaction Hamiltonian and Ĥstrain

describes the NV center’s interaction with strain and the electric field.

The electronic energy-level structure of the NV center consists of a ground-state spin-

1 triplet 3A2, six excited state levels that form a two-fold triplet 3E at room temperature,

and two singlet states: 1E and 1A1 (Figure 5.4). As the current work is focused on

NV centers at room temperature, we will not describe low-temperature effects of the NV

center’s excited-state levels [66].

The ground-state triplet is split by the spin-spin interaction between the two un-

paired electrons. It causes the sublevels mS = 0 and mS = ±1 of the ground-state triplet

to split by Dg = 2.87 GHz at zero magnetic field. The excited-state triplet sublevels are

similarly split by De = 1.41 GHz. The excited state is separated from the ground state

by 1.95 eV.

The fine-structure spin Hamiltonian of the NV center triplet ground state and ex-

cited state at room temperature can be written as [34, 67]

ĤS = ŜD̂Ŝ = D
[
Ŝ2
z − S (S + 1)/3

]
. (5.6)

Operators Ŝx, Ŝy and Ŝz are the Cartesian components of the electron spin S = 1 operator

Ŝz =
1√
2

0 1 0

1 0 1

0 1 0

, Ŝy =
i√
2

0 −1 0

1 0 −1

0 1 0

, Ŝz =

1 0 0

0 0 0

0 0 −1

. (5.7)
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Figure 5.4: Nitrogen-Vacancy center energy-level structure

The parameter D = Dg = 2.87 GHz [59] characterizes the zero-field splitting between

sublevels in the ground state and D = De = 1.41 GHz [59] in the excited state.

5.2.2 Hyperfine structure of the NV center

In order to describe fully the level structure of nitrogen-vacancy centers, their interactions

with nearby nuclear spins must be considered. In all cases, the nucleus of the nitrogen

atom associated with the NV center interacts with the NV electron spin. The vast majority

(99.6%) of these nitrogen nuclei are 14N whose nuclear spin is I = 1. The Hamiltonian of

the 14N nuclear-spin interaction with the electron spin can be written as

ĤN = QÎ2
z + Ŝ · Ā · Î

= QÎ2
z + A‖Ŝz Îz + A⊥

(
ŜxÎx + Ŝy Îy

)
,

(5.8)

where Q = −4.96 MHz [42] is the nuclear-spin quadrupole interaction parameter and Ā

is the hyperfine interaction tensor

Ā =

 A⊥ 0 0

0 A⊥ 0

0 0 A‖

 , (5.9)

where A‖ and A⊥ are axial and non-axial hyperfine interaction parameters. In the ground

state the values of the parameters are Ag‖ = −2.14 MHz and Ag⊥ = −2.70 MHz [42].

In the excited state the hyperfine interaction is stronger with the hyperfine interaction

parameters being Ae‖ = −40 MHz and Ae⊥ = −23 MHz [57]. The hyperfine interaction

splits each of the electron Zeeman sublevels into 3 levels, so that the ground-state and

excited-state triplet systems can be characterized as a 9-state system (Figure 5.5)
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Figure 5.5: Nitrogen-Vacancy center energy level structure

5.2.3 NV center interaction with a magnetic field

The work presented in this thesis exploits the fact that the NV center in diamond exhibit

magnetically sensitive energy levels. The ground-state levels are shifted in the magnetic

field due to Zeeman interaction. The Hamiltonian of the NV-center interaction with a

magnetic field pointed in an arbitrary direction with respect to the NV-center axis can

be expressed as [63]

ĤB = geµBB · Ŝ− gIµNB · Î
= geµB (BxSx +BySy +BzSz)− gIµN (BxIx +ByIy +BzIz) ,

(5.10)

where the magnetic field is expressed in Cartesian coordinates in the NV center’s principal

axis B = (Bx, By, Bz), ge = −2.0023 and gI = 0.4037 are Landé g-factors of an electron

and nucleus of 14N and µB = 1.4 MHz/G and µN = 0.76 kHz/G are the Bohr and the

nuclear magnetons. The magnetic field’s Cartesian components can be expressed using

the angles between the magnetic field’s direction and the NV center’s principal axis:

Bx = B · sin θ · cosϕ (5.11a)

By = B · sin θ · sinϕ (5.11b)

Bz = B · cos θ. (5.11c)

Due to C3v symmetry the ϕ can be chosen arbitrarily, e.g., ϕ = 0. Leaving one parameter

for the magnetic field direction with respect to the NV center’s axis B = (B sin θ, 0, B cos θ).

The Hamiltonian for the interaction between the magnetic field and the electronic spin

can be expressed explicitly as

geµBB · Ŝ = geµB


B cos θ

B sin θ√
2

0

B sin θ√
2

0
B sin θ√

2

0
B sin θ√

2
−B cos θ

 . (5.12)
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The interaction between the magnetic field and the nuclear spin gIµNB·Î can be expressed

explicitly in the same way.

5.2.4 NV center interaction with strain

The NV center’s electron spin also interacts with crystal stress which is associated with

strain and with electric field [63]. As the the strain and electric field terms take the same

form, we do not explicitly express the electric field interaction with the electron spin.

Consequently, further we consider parameters that do not distinguish between electric

field and strain interaction. Assuming that the electric field interaction is small, we refer

to the strain and electric field interaction with the electron spin as a strain interaction.

The strain Hamiltonian can be expressed as

Ĥstrain = MzS
2
z +Mx

(
Ŝ2
x − Ŝ2

y

)
+My

(
ŜxŜy + ŜyŜx

)
+Nx

(
ŜxŜz + ŜzŜx

)
+Ny

(
ŜyŜz + ŜzŜy

)
,

(5.13)

where Mz,Mx,My, Nx, Ny are coupling constants [60–62], showing how strain couples

different electron spin states. At low magnetic fields < 10 G, terms Mx and My couple

states mS = +1 and mS = −1, causing a splitting between these states. For larger

magnetic field values, these terms are negligible, as the Zeeman effect causes level spitting

significantly larger than the coupling rates. If the applied magnetic field reaches the level

crossing points, the components Nx and Ny coupling the magnetic sublevels mS = 0 and

mS = −1 start to influence the interaction of the states. The strain induced interaction

strength between electron spin states in the ground state is on the order of few megahertz

and in the excited-state is a few tenths of a megahertz [59, 68].

5.2.5 Optical polarization of the electron spin of the NV center

Optical excitation can be used both to prepare the spin state and to read out the polariza-

tion state of an NV center. Electric dipole transitions with subsequent phonon relaxation

are spin conserving ∆mS = 0 (Figure 5.4). It means that both laser excitation transitions

(green arrows in Figure 5.4) and fluorescence transitions (red arrows in Figure 5.4) do not

change the spin projection state. The NV center is excited with a green-light laser that

excites the phonon band of the 3E state, followed by fast phonon relaxation.

The 3E excited state then can spontaneously decay back to the 3A2 ground state,

emitting fluorescent light. In this channel all of the magnetic sublevels mS = 0,±1 decay

with equal probabilities. The other relaxation path of the 3E state is through nonradiative

intersystem crossing to a singlet state 1A1 (dashed lines in Figure 5.4). In this channel

the transitions from mS = ±1 sublevels are more probable, leading a transition rate

around 5 times faster than from the mS = 0 sublevel. The singlet state 1A1 is short lived
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5.2. ENERGY STRUCTURE OF THE NV CENTER

(∼ 1ns [69]), decaying to the 1E singlet state via a nonradiative transition or infrared

fluorescence. The nonradiative transitions of the intersystem crossing from the 1E singlet

state to the 3A2 triplet ground state have similar transition rates for the mS = 0 and

mS = ±1 sublevels, with a slightly higher possibility of transitions to the mS = 0 sublevel

(γg0 ≈ 1 MHz and γg±1 ≈ 0.7 MHz [69]). After a few optical cycles the difference of

intersystem crossing rates between the 3E sublevels mS = 0 and mS = ±1 leads to

ground-state electronic spin polarization of the mS = 0 level.

5.2.6 Nuclear spin polarization process

Usually the nuclear spin is difficult to polarize at room temperature because of the small

splitting of the hyperfine levels. The methods of achieving high nuclear-spin polarization

include low temperatures or using a selective microwave excitation in combination with

controlled Larmor precession of the nuclear-spin state [70]. Electron-spin polarization can

be also transferred to nuclear spin using a level anti-crossing (LAC) in the ground state

(GSLAC) or excited state (ESLAC) [54, 56].

At the magnetic field value that corresponds to a level anticrossing (≈510 G in the

excited state (ES) and ≈1025 G in the ground state (GS)), the energy difference between

magnetic sublevels mS = −1 and mS = 0 is reduced, and the hyperfine interaction mixes

the |mS = 0,mI = −1〉 state with |mS = −1,mI = 0〉 and the |mS = 0,mI = 0〉 state with

|mS = −1,mI = +1〉.

|0,+1 |0,0 |0, 1
| 1,+1 | 1,0 | 1, 1

|0,+1 |0,0 |0, 1 | 1,+1 | 1,0 | 1, 1

3E

3A2

Energy

BzGSLAC

|0,+1 |0,0 |0, 1 | 1,+1 | 1,0 | 1, 1

|0,+1 |0,0 |0, 1
| 1,+1 | 1,0 | 1, 1

3E

3A2

Energy

Bz

ESLAC

2.87
GHz

1.41
GHz

2.87
GHz

1.41
GHz

(a) (b)

Figure 5.6: (a) Nuclear-spin polarization process at the ESLAC. (b) Nuclear-spin polar-

ization process at the GSLAC.

Figure 5.6 shows a nuclear-spin polarization scheme. The solid arrows describe

the direct transitions between the ground and excited states, the dashed arrows show

the nonradiative intersystem crossing transitions, and the wide, gray arrows describe the

mixing between hyperfine levels. After several cycles of continous optical excitation and
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nonradiative decay, the population is accumulated in the state |mS = 0,mI = 1〉, which

stays unmixed at all times.

Assuming that the electron spin has been already polarized by the interaction with

laser radiation (all of the population is accumulated in the ms = 0 magnetic sublevel, see

Section 5.2.5), the nuclear-spin polarization can be described using the following analysis:

1. Emptying the |0,−1〉 ground state sublevel:

GS |0,−1〉 laser excitation−−−−−−−−→ ES |0,−1〉 mixing−−−→ ES |−1, 0〉 spontaneous decay−−−−−−−−−−→ GS |0, 0〉

2. Emptying the |0, 0〉 ground state sublevel:

GS |0, 0〉 laser excitation−−−−−−−−→ ES |0, 0〉 mixing−−−→ ES |−1, 1〉 spontaneous decay−−−−−−−−−−→ GS |0, 1〉

3. Leaving population in the |0, 1〉 ground state sublevel (no mixing):

GS |0, 1〉 laser excitation−−−−−−−−→ ES |0, 1〉 spontaneous decay−−−−−−−−−−→ GS |0, 1〉

The polarization process is similar for excited- and ground-state level mixing. External in-

fluences, such as a transverse magnetic field Bx (5.10) or transverse strain Nx (5.13) cause

additional level mixing so that the |mS = 0,mI = 1〉 sublevel is also mixed, and nuclear-

spin polarization decreases. The ground-state hyperfine interaction is much weaker than

the excited-state hyperfine interaction (5.9), so that these external processes have a

stronger influence on nuclear spin polarization at the GSLAC compared to the ESLAC.

5.3 A method to examine the energy-level structure

in NV centers: ODMR

Applying a microwave (MW) field that is in resonance with the ground-state mS = 0 −→
mS = −1 or mS = 0 −→ mS = 1 transition, the population can be transferred from

mS = 0 to mS = −1 or mS = 1 sublevels. To prepare states or read them out more

precisely, different pulse sequences can be used. Nevertheless, in some cases the best

approach is to apply continuous-wave (CW) field [71]. The experimental results used

to test the models in the following chapters have been obtained with CW microwave

radiation (see A.2).

Fluorescence can be used to read the ground-state spin polarization of the NV

center. If the population is transferred to the ground state magnetic sublevels mS = ±1,

the fluorescence intensity drops because the nonradiative transition of the mS = ±1

excited-state sublevel is more probable than for the mS = 0 sublevel.

By scanning MW frequency, we can observe a decrease in fluorescence intensity, when

the MW frequency is on resonance with a magnetic dipole transition between ground state

magnetic sublevels. The achieved signals are called optically detected magnetic resonance

(ODMR).
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Chapter 6

Modeling ODMR signals in the

presence of an external magnetic

field

Most applications of NV centers require knowledge of the detailed energy-level structure

of the NV center, including hyperfine structure, caused by the interaction of the electron

spin with the nuclear spin.

This chapter is dedicated to analyzing the hyperfine structure and level mixing at

magnetic field values near the GSLAC. Due to the level mixing in the vicinity of the

GSLAC, the transition probabilities between electronic and hyperfine levels are altered.

In order to support experimental studies of the hyperfine level structure and transition

probabilities at the GSLAC, the ODMR signals were modeled to investigate the ground

state ms = 0 −→ ms = +1 and ms = 0 −→ ms = −1 electron-spin transition manifolds.

The modeling was done by calculating the frequencies and the probabilities of

microwave-field-induced transitions between electron-spin states. We investigated the

influence of the magnetic field misalignment on the ODMR signals at the GSLAC as well.

The impact of the transverse magnetic field is apparent especially for the low-frequency

microwave-field range (ms = 0 −→ ms = −1 transition manifold). We also analyzed the

dependence of the ODMR signal shape on nuclear-spin polarization and the width of the

signal. To model the ODMR signals of an ensemble of NV centers, we added the inter-

action of the 13C atoms in the diamond lattice with the NV center, with the interaction

strength dependent on its position in the lattice. The experimental signals were used

to test the calculations. The experiment was done by Reinis Lazda, Andris Berzins and

Huijie Zheng and is not a part of the dissertation. The experimental setup is described

in Appendix A.2. However, the data analysis and fitting procedure was developed as

a part of the dissertation. To fit the experimental data with the results of theoretical

calculation, we used a parameter-optimization procedure. The fitting procedure allowed
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6.1. NV CENTERS IN AN EXTERNAL MAGNETIC FIELD

us to determine the nuclear-spin polarization as well as the average angle between the

magnetic field direction and NV center’s axis.

The results described in this chapter are published in [71] and [72].

6.1 NV centers in an external magnetic field

If the magnetic field is applied along the NV axis (Bz in (5.10)), the energy change of

magnetic sublevels can be described by the linear Zeeman effect:

EmS = γemSBz. (6.1)

Thus, the energy of the mS = 0 sublevel does not change, the energy of the mS = +1

sublevel increases, and the energy of the mS = −1 sublevel decreases in the magnetic field

Bz with a constant of proportionality γe = geµB.
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Figure 6.1: Ground-state sublevels in a magnetic field BZ applied along the NV axis.

(a) Level crossing of electron-spin magnetic sublevels in the ground state. (b) Hyperfine

level (|mS,mI〉) anticrossing in the vicinity of the GSLAC. The level of mixing near the

GSLAC (denoted by the dashed ellipses) is indicated by the relative admixture of the

colors in each curve; the lines corresponding to unmixed states do not change color.

6.1.1 Hyperfine-level mixing of the ground-state level anti-crossing

A crossing between magnetic sublevels mS = 0 and mS = −1 of the ground electronic state

occurs when the Zeeman splitting at a magnetic field value of Bz = Dg/geµB = 1024 G

compensates the zero-field splitting (Figure 6.1a). Owing to the hyperfine interaction,

some of the hyperfine energy levels exhibit avoided crossings (Figure 6.1b). This effect is

called the ground-state level anti-crossing (GSLAC). If the nuclear-spin interaction with

magnetic field is ignored, the ground-state Hamiltonian (5.5) can be written as

Ĥg = DŜ2
z + γeBzŜz + A‖Ŝz Îz + A⊥

(
ŜxÎx + Ŝy Îy

)
+QÎ2

z , (6.2)
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and in matrix form it can be written as

Ĥg =



η+ +A‖ + β 0 0 0 0 0 0 0 0

0 D + β 0 A⊥ 0 0 0 0 0

0 0 η+ −A‖ + β 0 A⊥ 0 0 0 0

0 A⊥ 0 Q 0 0 0 0 0

0 0 A⊥ 0 0 0 A⊥ 0 0

0 0 0 0 0 Q 0 A⊥ 0

0 0 0 0 A⊥ 0 η+ −A‖ − β 0 0

0 0 0 0 0 A⊥ 0 D − β 0

0 0 0 0 0 0 0 0 η+ +A‖ − β


, (6.3)

where η+ = D + Q, η− = D − Q and β = γeBZ . The operator Ĥg (6.3) is written in

the uncoupled basis |mS mI〉 with elements in the order |1 1〉, |1 0〉, |1 −1〉, |0 1〉, |0 0〉,
|0 −1〉, |−1 1〉, |−1 0〉, |−1 −1〉.

At the GSLAC, the mixing of the mS = 0 and mS = −1 ground-state sublevels is

caused by the non-axial term A⊥ of the hyperfine tensor Ā. As the mS = +1 sublevel at

the GSLAC is separated by an energy corresponding to 5740 MHz from the mS = 0 and

m = −1 sublevels, the interaction between the mS = 0 and mS = +1 basis states can be

ignored as the interaction strength is much smaller than the splitting between mS = 0 and

mS = +1. The respective terms (circled) in the Hamiltonian 6.3 are set to zero, leading

to a matrix that effectively consists of two independent parts: the upper left block, which

describes the hyperfine levels of the mS = +1 sublevel and the middle-to-lower right

block, which describes the hyperfine levels of the mS = 0 and mS = −1 sublevels.

Ĥg(GSLAC) =



η+ +A‖ + β 0 0 0 0 0 0 0 0

0 D + β 0 0 0 0 0 0 0

0 0 η+ −A‖ + β 0 0 0 0 0 0

0 0 0 Q 0 0 0 0 0

0 0 0 0 0 0 A⊥ 0 0

0 0 0 0 0 Q 0 A⊥ 0

0 0 0 0 A⊥ 0 η+ −A‖ − β 0 0

0 0 0 0 0 A⊥ 0 D − β 0

0 0 0 0 0 0 0 0 η+ +A‖ − β


,

(6.4)

Using a modified Hamiltonian for magnetic field values corresponding to the GSLAC (6.4),

approximate eigenvalues and eigenvectors of the hyperfine states can be calculated ana-
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lytically. The energies Ei of these states are

E1 = Q, (6.5a)

E2 = η+ + A‖ − β, (6.5b)

E3 =
1

2

(
η+ − A‖ − β −

√
(2A⊥)2 + (η+ − A‖ − β)2

)
, (6.5c)

E4 =
1

2

(
η+ − A‖ − β +

√
(2A⊥)2 + (η+ − A‖ − β)2

)
, (6.5d)

E5 =
1

2

(
η+ − β −

√
(2A⊥)2 + (η+ − β)2

)
, (6.5e)

E6 =
1

2

(
η+ − β +

√
(2A⊥)2 + (η+ − β)2

)
, (6.5f)

E7 = η+ + A‖ + β, (6.5g)

E8 = η+ − A‖ + β, (6.5h)

E9 = D + β. (6.5i)

The respective wave functions can be written in the uncoupled basis |mS,mI〉 as follows:

|ψ1〉 = |0, 1〉 , (6.6a)

|ψ2〉 = |−1,−1〉 , (6.6b)

|ψ3〉 =
1

|α+
1 |
|−1, 1〉 − 1

|α+
1 |

(
κ1 +

√
κ2

1 + 1

)
|0, 0〉 , (6.6c)

|ψ4〉 =
1

|α−1 |
|−1, 1〉 − 1

|α−1 |

(
κ1 −

√
κ2

1 + 1

)
|0, 0〉 , (6.6d)

|ψ5〉 =
1

|α+
2 |
|−1, 0〉 − 1

|α+
2 |

(
κ2 +

√
κ2

2 + 1

)
|0,−1〉 , (6.6e)

|ψ6〉 =
1

|α−2 |
|−1, 0〉 − 1

|α−2 |

(
κ2 −

√
κ2

2 + 1

)
|0,−1〉 , (6.6f)

|ψ7〉 = |1, 1〉 , (6.6g)

|ψ8〉 = |1,−1〉 , (6.6h)

|ψ9〉 = |1, 0〉 , (6.6i)

where

κ1 =
η+ − A‖ − γeB

2A⊥
, (6.7a)

κ2 =
η− − γeB

2A⊥
(6.7b)

and

|α±1,2| =
√(

κ1,2 ±
√
κ2

1,2 + 1
)2

+ 1 . (6.8)

It can be seen that only basis states with equal mS + mI are mixed at GSLAC.

Anticrossing occurs between two pairs of states. One pair consists of states |ψ3〉 and |ψ4〉,
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the other of states |ψ5〉 and |ψ6〉. The states |ψ1〉 = |0, 1〉 and |ψ2〉 = |−1,−1〉 do not mix

at the GSLAC.

From the wave functions (6.6), we can determine the exact magnetic field value at

which the strongest mixing happens. For levels |ψ3〉 and |ψ4〉 anticrossing appears when

κ1 = 0, which implies a magnetic field value B = 1
γe

(
Dg +Q− A‖

)
= 1023.08 G. At this

point the wave functions of these states are

|ψ3〉 =
1√
2
|−1, 1〉 − 1√

2
|0, 0〉 (6.9a)

|ψ4〉 =
1√
2
|−1, 1〉+

1√
2
|0, 0〉 . (6.9b)

The second anticrossing is between states |ψ5〉 and |ψ6〉. Similarly, we can determine

the exact magnetic field at which the strongest mixing happens. In this case it is κ2 = 0,

which leads to a magnetic field value of B = 1
γe

(Dg −Q) = 1025.86 G. And the wave

functions of these states at the anticrossing are

|ψ5〉 =
1√
2
|−1, 0〉 − 1√

2
|0,−1〉 (6.10a)

|ψ6〉 =
1√
2
|−1, 0〉+

1√
2
|0,−1〉 . (6.10b)

The information about the state mixing will be important when analyzing which transi-

tions are allowed and what are the transition probabilities when the magnetic field value

is close to 1024 G.

6.2 Modeling ODMR signals in NV centers with HFS

Magnetic dipole transitions between the microwave (MW) field. The selection rules of

these transitions are ∆mS = ±1 and ∆mI = 0 [73–75]. The MW transitions between

levels mS = 0 and mS = ±1 can be described with raising and lowering operators:

Ŝ± = Ŝx ± iŜy, (6.11)

where SX and SY are spin operators for the S = 1 state (5.7). However there are a total

of nine wave functions: three electron spin states, each coupled to a nuclear spin of I = 1

from the 14N nucleus. To construct the allowed transitions for this manifold, we must

take an outer product with the three-dimensional identity matrix 1(3) and fold in the

9 × 9 matrix of wave functions Ψ, whose columns are the ground-state eigenvectors |ψi〉
from (6.6)

Ŝ ′± = Ψ†
[
Ŝ± ⊗ 1(3)

]
Ψ . (6.12)

Then the interaction term with the microwave field can be written as

Ĥ
(m)
INT =

ΩMW

2

(
Ŝ ′+ + Ŝ ′−

)
=

 µ′00 µ′0−1 µ′01

µ′−10 µ′−1−1 µ′−11

µ′10 µ′1−1 µ′11

⊗ 1(3) , (6.13)
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where ΩMW is the Rabi frequency of the microwave radiation. The matrix elements µ′ij

are the terms proportional to magnetic-dipole transition matrix elements and describe

the transition probabilities p′ij between levels i and j:

p′ij = |µ′ij|2 . (6.14)

While scanning the microwave frequency, the intensity of the microwave field is assumed

to be constant. Furthermore, the microwave intensity is also assumed to be independent of

the microwave field polarization, based on the specifics of the microwave antenna used in

the experiment, described in Section 6.3. Therefore, as both calculated and experimental

signals are normalized, the microwave field intensity is not a parameter in the calculations.

The rate of the transitions depends not only on the transition probabilities, but also

on the population of the hyperfine substates. The nuclear-spin polarization of 14N means

that the hyperfine basis states are not populated equally. To account for nuclear-spin

polarization we introduce a fitting parameter that corresponds to relative populations of

the hyperfine basis states. The resonance transition rate tij can be expressed as a product

of the transition probabilities p′ij and the relative populations Ni(mI) of basis states mI :

tij = p′ij ·Ni(mI) (6.15)

The populations of hyperfine-basis states are normalized with the respect to mI = 1, so

that N(+1) = 1, which leaves two fitting parameters 0 ≤ N(0), N(−1) ≤ 1 for nuclear

spin polarization in the model.

The nuclear spin polarization then can be calculated as

Pexp =

∑
imINi(mI)

I
∑

iNi(mI)
, (6.16)

where mI is the nuclear spin projection of the basis states, and I is the nuclear spin. The

summation is performed over all of the fitted resonances of the experimental ODMR.

The calculated transition frequencies and resonance transition rates were used to

simulate the ODMR spectrum as a sum of Lorentzian curves for each hyperfine transition:

f(ω) =
∑
i,j
j>i

tij · γ2

(ω − ωij)2 + γ2
, (6.17)

where γ is the Lorentzian width, ωij is a transition frequency, and tij is a resonance

transition rate.

The change of the transition rates due to level mixing is illustrated in Figure 6.2,

where first row shows all of the possible transitions in the |mS = 0〉 −→ |mS = +1〉
manifold, and the second row shows all of the transition in the |mS = 0〉 −→ |mS = −1〉
manifold. At magnetic field values below and above the GSLAC, where the hyperfine

levels are not mixed, there are three equally strong hyperfine transitions caused by the
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Figure 6.2: Hyperfine transitions of mixed states. The width of the arrows correspond to

the transition probability. The states are labeled according to (6.6).

microwave field at frequencies corresponding to both, the |mS = 0〉 −→ |mS = +1〉 (high

frequency) and |mS = 0〉 −→ |mS = −1〉 (low frequency) transitions. At the magnetic

field value corresponding to the GSLAC, the hyperfine levels are mixed, and additional

transitions appear. For the high frequency microwave regime, there is a total of five

transitions (Figure 6.2b):

1. |ψ1〉 −→ |ψ7〉 (mI = +1)

2. |ψ3〉 −→ |ψ9〉 (mI = 0)

3. |ψ4〉 −→ |ψ9〉 (mI = 0)

4. |ψ5〉 −→ |ψ8〉 (mI = −1)

5. |ψ6〉 −→ |ψ8〉 (mI = −1)

The probabilities of these transitions depend on the strength of the magnetic field. At

lower frequencies a total of eight transitions, the strength of which depends on the mag-

netic field, can be observed:

1. |ψ1〉 −→ |ψ4〉 (mI = +1)

2. |ψ1〉 −→ |ψ3〉 (mI = +1)

3. |ψ2〉 −→ |ψ5〉 (mI = −1)

4. |ψ2〉 −→ |ψ6〉 (mI = −1)

5. |ψ3〉 −→ |ψ5〉 (mI = 0)

67



6.2. MODELING ODMR SIGNALS IN NV CENTERS WITH HFS

6. |ψ3〉 −→ |ψ6〉 (mI = 0)

7. |ψ4〉 −→ |ψ5〉 (mI = 0)

8. |ψ4〉 −→ |ψ6〉 (mI = 0)

The difference between these cases is determined by the fact that in the first case, only

one level of the transition is mixed by the magnetic field, but in the second case, the

transition occurs between two levels that are both mixed by the magnetic field.

6.2.1 Modeled ODMR signal for |mS = 0〉 −→ |mS = +1〉 transi-

tion manifold

The ODMR signals were modeled for different parameters: the transition width, the angle

between the magnetic field and the NV center axis, and the nuclear-spin polarization. In

this section we analyze the ODMR signals near the GSLAC for the microwave frequen-

cies that correspond to the NV center ground-state |mS = 0〉 −→ |mS = +1〉 transition

manifold.
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Figure 6.3: Modeled dependence of the shape of ODMR signals for the high-frequency

region on the transition width. Left to right: γ = 0.5 MHz, γ = 1.0 MHz, γ = 1.5 MHz,

γ = 2.5 MHz. The nuclear spin polarization is P = 0% and the angle between the NV

center’s axis and the magnetic-field direction is θ = 0◦.

Figure 6.3 shows the dependence of the shape of ODMR signals on the widths of

the Lorentzians (left to right) for the |mS = 0〉 −→ |mS = +1〉 transition manifold. The

width of the signal corresponds to the excited-state coherence time T ∗2 , which can be very

different depending on the characteristics of the diamond. In this case it was assumed

that there is no nuclear spin polarization P = 0% and the NV axis is parallel to the

magnetic field (θ = 0◦).
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Figure 6.4: Dependence of the modeled ODMR signals for the high-frequency region

dependence on the the nuclear-spin polarization. Left to right: P = 0%, P = 13%,

P = 58%, P = 100%. The angle between the NV center’s axis and the magnetic-field

direction is θ = 0◦ and the profile width is γ = 1.0 MHz.

Another parameter that influences the shape of the ODMR signal is nuclear-spin

polarization. Figure 6.4 shows theh dependence of the shape of ODMR signals on the

nuclear-spin polarization. If the nuclear-spin polarization is at 100%, the level anticrossing

is not observed. It was assumed that the NV axis is parallel to the magnetic field (θ = 0◦),

and the width was chosen to be γ = 1.0 MHz.
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Figure 6.5: Dependence of the shape of modeled ODMR signals for the high-frequency

region on the angle between the NV center’s axis and the magnetic-field direction. The

angle θ is in degrees of arc. Left to right: θ = 0.00◦, θ = 0.05◦, θ = 0.10◦, θ = 0.2◦. The

nuclear-spin polarization is P = 100%, and the profile width is γ = 1.0 MHz.
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Figure 6.5 shows the dependence of the shape of ODMR signals on the angle θ

between the magnetic-field direction and the NV center’s principal axis (5.11). It can

be seen that even a small magnetic-field angle can lead to a noticeable divergence of

the ODMR signal near the GSLAC. This happens because the |mS = 0〉 and |mS = −1〉
states undergo extra mixing due to the transverse component of the magnetic field; thus,

even more transitions can be observed. In this case it was assumed that the nuclear-spin

polarization is P = 100% and the width was chosen to be γ = 1.0 MHz.

6.2.2 Modeled ODMR signal for the |mS = 0〉 −→ |mS = −1〉 tran-

sition

When analyzing the modeled ODMR signals for a microwave-field range that corresponds

to the ground-state |mS = 0〉 −→ |mS = −1〉 transition manifold, it is evident that there

are more transitions possible at the GSLAC than for high-frequency transitions. This is

because the hyperfine levels of the two states between which the transitions are observed,

|mS = 0〉 and |mS = −1〉, are involved in the anticrossing (Figure 6.2).
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Figure 6.6: Dependence of the modeled ODMR signals for the low-frequency region on the

transition width. Left to right: γ = 0.5 MHz, γ = 1.0 MHz, γ = 1.5 MHz, γ = 2.0 MHz,

γ = 2.5 MHz. The nuclear-spin polarization is P = 0%, and the angle between the NV

center axis and magnetic field is θ = 0◦.

Figure 6.6 shows how the ODMR signal dependens on the width of the Lorentzian

(left to right) for the |mS = 0〉 −→ |mS = −1〉 transition manifold. If the width is in-

creased, the hyperfine structure becomes unresolved.

Figure 6.7 shows the dependence of the ODMR signal on nuclear-spin polarization.

The GSLAC can be still observed in the ODMR signals even for 100% nuclear-spin po-

larization, which is not the case for the the high-frequency region (Figure 6.4, where the

anticrossing could not be observed when P = 100%. The reason is that the population
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Figure 6.7: Dependence of the modeled ODMR signals for the low-frequency region on

the nuclear spin polarization. Left to right: P = 0%, P = 13%, P = 58%, P = 85%

P = 100%. The angle between the NV-center axis and the magnetic-field direction is

θ = 0◦, and the profile width is γ = 1.0 MHz.

accumulates in the level |ψ1〉 = |mS = 0,mI = +1〉, and in the low-frequency region we

can observe transitions from this level to both |ψ3〉 and |ψ4〉 with a transition strength

depending on magnetic field intensity.
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Figure 6.8: Dependence of the modeled ODMR signals for the low-frequency region on

angle the between the NV-center axis and the magnetic-field direction. The angle θ is in

arc degrees. Left to right: θ = 0.00◦, θ = 0.05◦, θ = 0.10◦, θ = 0.15◦, θ = 0.2◦. The

nuclear-spin polarization is P = 100%, and the profile width is γ = 1.0 MHz.

Figure 6.8 shows the dependence of ODMR signals on the angle θ between the

magnetic-field direction and the NV center’s principal axis. Even a small magnetic-

field angle influences the ODMR signals at the GSLAC. When the angle between the

magnetic field and NV center’s principal axis is increased, the minimal transition frequency

increases, meaning that the interaction of the transverse magnetic field also causes the
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mixing of levels that were not previously involved into the anticrossings. All of the levels

are mixed at this point, and there are no real crossings, so the transition frequencies cannot

approach 0 MHz. As the transverse magnetic field is increased, the interaction between

the levels increases and the transition frequencies move away from the zero frequency.

6.2.3 Modeling ODMR signals with proximal C13 nuclear spins

Diamond crystals consist mostly of the 12C carbon isotope. As the nucleus of 12C has

spin I = 0, 12C nuclei from the crystal lattice do not interact with NV centers. However,

1.1% of carbon atoms in the diamond lattice are belong to the 13C isotope. The nuclear

spin of 13C is I = 1
2
. To analyze the influence of 13C atoms on nuclear-spin polarization,

the interaction between NV centers and 13C nuclei must be considered [67] in addition to

the regular NV-center Hamiltonian (5.5):

HNV+13C = Σj

(
Ŝ · Â′13C,j · Î13C,j + Ĥ13C,j

)
, (6.18)

where Î13C,j labels the nuclear spin of the j-th 13C nucleus and Ĥ13C,j = γ13CB · Î13C,j is

the Hamiltonian that corresponds to the j-th 13C nucleus. Ignoring the strain interaction,

the total Hamiltonian of the NV center (5.5) and the 13C nuclear spin (6.18) is:

Ĥg = ĤS + ĤN + ĤB +HNV+13C. (6.19)

The hyperfine-interaction tensor Â13C,j in the basis of the principal axes has the

same form as the 14N hyperfine-interaction tensor (5.8). For the nearest 13C nucleus to

the vacancy (three equivalent positions), the values of Â13C,j=1 are A⊥ = Axx = Ayy =

121.1 MHz and A‖ = Azz = 199.21 MHz [76]. As the tensor is given in the basis of the

principal axes of the carbon nucleus, it has to be rotated to the coordinate system of the

NV center with the Z-axis parallel to the [111] crystal direction. The rotated tensor is

Â′ = ÛÂÛT , (6.20)

where Û is the rotation matrix about x-axis that rotates the z-axis in the frame of the

carbon nucleus by an angle αzZ into the frame of the [111] crystal direction [67]:

Û =

 1 0 0

0 cosαzZ − sinαzZ

0 sinαzZ cosαzZ

 . (6.21)

To describe the 13C nuclear-spin interaction one needs to take into account the

influence of the 13C atoms in other lattice positions as well. The lattice positions can be

classified into families that have the same tensor values [77]. The tensor values and the

value of the angle between the vector pointing from the NV center to the 13C atom and
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Figure 6.9: Lattice with C13 sites. (a) Side view. (b) Top view of the [111] direction.

the NV center’s principal axis αzZ were taken from the results of density functional theory

(DFT) calculations [2, 3]. In the simulation of the ODMR signal, we used the nearest

neighbor (O) as well as families from A through H (Table 6.1), which correspond to 39

lattice sites. Other lattice sites provide an insignificant contribution.

Family NC Axx Ayy Azz | cos(αzZ)|
O 3 121.1 121.1 199.21 0.274

A 6 13.5 14.2 19.4 0.288

B 3 12.8 12.8 18 0.412

C 3 -7.4 -7.3 -5.8 0.907

D 6 -4.8 -3.7 -1.5 0.296

E 6 2.8 3.3 4.6 0.848

F 3 3.4 4.7 4.9 0.829

G 6 2.6 2.7 3.8 0.247

H 3 1.5 1.5 2.2 0.956

Table 6.1: Principal values of the hyperfine tensor [2] and the rotation angle [3] used

in the simulation of the ODMR signal. The positions of the 13C families are shown in

Figure 6.9.

Next, the Monte Carlo method was used to average over the different lattice sites

where 13C atoms could be located. The program iterated through the 39 lattice sites, each

of which had a 1.1% probability of hosting a 13C atom. The lattice sites that contained

a 13C atom were added to the Hamiltonian in (6.18) with the hyperfine tensor values

based on the lattice site (Table 6.1). With each 13C added to the equation, the number

of energy levels of the system triples as Nlevels = 3× 3× 2NC13 . Using the eigenvalues and

eigenvectors of the total system Hamiltonian (6.19), the ODMR spectra were simulated
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as described in Section 6.2. The spectrum depends on the locations of the 13C atoms as

well as the number of 13C atoms in the lattice, resulting in a different spectrum for each

iteration. Taking into account all statistically relevant configurations of 13C nuclei in the

vicinity of the NV center required averaging over several hundreds of iterations.
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Figure 6.10: Probability distribution of the number of lattice sites with a 13C atom.

Figure 6.10 shows the calculated probability of the number of 13C sites in the volume

of the lattice considered by the simulation (Fig. 6.9). Most of the time (∼ 65 %) these

lattice sites do not contain any 13C atom. Around 28 % of the time there is one 13C in

the lattice and 6 % of the time, there are two 13C. Only occasionally three or more 13C

are found in the lattice at the same time (less than 1 %).
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Figure 6.11: Probability of 13C by lattice site families.

74



6.2. MODELING ODMR SIGNALS IN NV CENTERS WITH HFS

To analyze the structure of the signal, we calculate the impact of each of the 13C

families, simplifying the system by limiting the number of 13C atoms to one 13C atom in

the lattice. Figure 6.11 shows the probability of finding the 13C atoms in the lattice site

of each family. The distribution among the lattice sites of 13C families can be described

by P (13C family) = 1− (1− 0.011)NC , where NC is the number of equivalent 13C lattice

sites and 0.011 is the probability of the atom in the lattice site being 13C.
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Figure 6.12: ODMR with C13 interaction for transitions in the (a) |ms = 0〉 −→
|ms = −1〉 manifold, (b) |ms = 0〉 −→ |ms = +1〉 manifold. The nuclear spins of both
14N and 13C are fully polarized in the calculation.

Figure 6.12 shows calculated ODMR signals for the |ms = 0〉 −→ |ms = −1〉 (Fig-

ure 6.12a) and |ms = 0〉 −→ |ms = +1〉 (Figure 6.12b) transition manifolds, taking into

account the interaction with 13C nuclear spins. Each curve in Figure 6.12 was calculated

using the hyperfine tensor of each 13C family by the method described in Section 6.2.

The height of each curve was divided by P (13C family) to account for the probability of

finding a 13C in a particular lattice site. To have a better distinction between the curves

of different lattice-site families, the nuclear spin polarization of both 14N and 13C was

set to be 100% in the calculations. The influence of 13C nuclear spin interaction can be

seen clearly for the |ms = 0〉 −→ |ms = +1〉 transition manifold as a feature to the right

of the main peak. This feature corresponds to the nuclear spins of 13C that occupy lat-

tice site families “A” and “B” (see Figure 6.9 and Table 6.1). The hyperfine-interaction

strength of these 13C nuclear spins are 13.5 MHz and 12.8 MHz, respectively. The 13C

nuclear spins with hyperfine interaction less than 10 MHz are unresolved in the calculated

signals. Although the nuclear spin at the nearest site “O” is resolved, the feature is too

small to be visible in the signal.
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6.3 Comparison of the modeled signals with experi-

mentally measured signals

The results of the following section have been published in [71] and [72]. The experimen-

tal measurements were mostly done by Reinis Lazda, Andris Berzins and Huijie Zheng.

The experimental setup is described in the appendix and is not part of the dissertation

(see A.2). At the same time the analysis of the experimental data was crucial to developing

a model that could be used for fitting the experimental signals. Therefore, a description

of the data analysis and fitting procedures is included as a part of the dissertation.

The majority of the experimental data analyzed in this section were obtained by

measuring the ODMR signals from ensembles of NV centers in two samples with differ-

ent nitrogen concentrations. Thus, it was possible to apply the model calculation using

different parameters, such as the width of the signal, which characterizes the coherence

relaxation time T ∗2 , the nuclear spin polarization and the angle between the magnetic

field and the NV center’s axis. One sample was produced by chemical vapor deposition

(CVD) with a nitrogen concentration of around 1 ppm (low-density sample). The other

sample was a dense, high-pressure, high-temperature (HPHT) crystal with a relatively

high concentration of nitrogen of around 200 ppm (high-density sample). The measure-

ments with the low-density sample were performed at the Johannes Gutenberg-University

in Mainz, whereas the measurements with the high-density sample were performed at the

Laser Centre of the University of Latvia in Riga. The NV centers were irradiated with

green 532 nm light and optically polarized to the mS = 0 state while the red fluorescence

from the 3E state was monitored (see the transition diagram in Figure 5.4). Following the

ODMR method (Section 5.3), a microwave field was applied to induce transitions between

the ground-state sublevels. The NV centers’ electrons were continuously pumped to the

mS = 0 state. When a MW field is on resonance with a transition from an mS = 0

hyperfine component to an mS = ±1 hyperfine component, the fluorescence intensity

decreases.

Another set of measurements, analyzed in this section, was performed using a di-

amond crystal obtained through CVD with a nitrogen 14N concentration of about 5–

20 ppm. The experimental results shown in Figure 6.19 describe the ODMR signal de-

pendence on the angle between the magnetic-field direction and the NV center’s axis. The

setup for this experiment is described in A.3.

6.3.1 Data analysis and fitting procedure

Before applying the theoretical model to the experimental results, the raw data had to

be processed. The magnetic field in the experiment was applied using an electromagnet

whose magnetic field was proportional to the applied electric current. To ensure the
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precision of the applied magnetic field, the magnetic field had to be calibrated first. The

initial calibration of the electromagnet with a Hall probe did not provide the required

precision, so we used the peak positions of the measured ODMR signals.

The precise value of the magnetic field for calibration was determined from the peak

position of the ODMR signal for the |mS = 0〉 −→ |mS = +1〉 transition manifold as

B =
ωpeak−D−A‖

γe
and for the |mS = 0〉 −→ |mS = −1〉 transitions as B =

D−A‖−ωpeak
γe

at

magnetic fields values below the level-anticrossing point and B =
D−A‖+ωpeak

γe
at magnetic

field values above the anticrossing point.
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Figure 6.13: Magnetic-field calibration for the |mS = 0〉 −→ |mS = +1〉 transition man-

ifold. The black dots are the magnetic field values determined from the experimental

peak positions (vertical axis) with regard to the initial calibration of the electromagnet

(horizontal axis). The blue line is the linear approximation of the calibrated magnetic

field values that does not deviate from the line (red dots).

At the GSLAC the magnetic field cannot be determined by these equation due

to the level mixing, so it is important to take into account the linear relation between

calibrated and initial magnetic field (Figure 6.13). The black dots are the calculated

magnetic field values as described above. It can be seen that close to the GSLAC, these

values deviate from the straight line. The x-axis is the initial assessment of magnetic field,

which is proportional to the current set to the electromagnet. To determine the linear

connection between the initial assessment of magnetic field and calibrated magnetic field,

we only used the points that lie on the straight line (red dots in Figure 6.13) for linear

approximation. The calibrated magnetic field values at the GSLAC were then calculated

using this linear function.

Experimental data were fitted using the model described in Section 6.2 using the

method Model of the python library lmfit [78]. While fitting an experimental ODMR
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signal, the magnetic field value is allowed to vary a little bit, because nuclear spin polar-

ization can shift the peak position for signals with only partially resolved and unresolved

hyperfine structure. The fitting parameters are Lorentzian width (6.17), nuclear spin

polarization (6.16), magnetic field value and magnetic field angle (5.10). To determine

all of these parameters from the data, the fitting was done iteratively using a parameter

optimization procedure based on the χ2 test. The χ2 is defined as

χ2 =
1

N

∑
i

(
fi − di
σi

)2

, (6.22)

where N is the degree of freedom, the di are the measured data points, the fi are the

results of the model, and the σi are the mean square errors on the data points, which

were set to unity here.

6.3.2 ODMR signals for the |mS = 0〉 −→ |mS = +1〉 transition

Figure 6.14 shows ODMR signals in the frequency range 5.6−5.9 GHz, in which transitions

occur between a hyperfine-level manifold of mixed mS = 0 and mS = −1 levels and the

hyperfine-level manifold of mS = +1.

Figures 6.14a–6.14c depict magnetic sublevels at a given magnetic field. The arrows

indicate the allowed microwave transitions, based on the selection rules and mixed wave

functions (6.6). The width of each arrow indicates the transition strength.

In the rest of the figures experimental signals are depicted together with the fitted

curves that have been obtained from the fitting procedure as explained above. The middle

row (Figures 6.14d–6.14f) shows signals for the low-density sample (1 ppm), and the

bottom row (Figures 6.14g–6.14i) shows signals for high-density sample (200 ppm).

In Figures 6.14d and 6.14g signals were recorded at a magnetic field value that is

below the GSLAC. In this case the mixing of levels is small, and only three transitions

contribute to the signal: |0, 1〉 −→ |1, 1〉 (blue), |0,−1〉 −→ |1,−1〉 (purple), and |0, 0〉 −→
|1, 0〉 (green). The transition strengths for there transitions were equal, which is shown

in 6.14a. Nevertheless, the relative transition rates of each transition may differ due

to differences in the populations of the three ground states involved, |0,+1〉, |0, 0〉, and

|0,−1〉, which correspond to the nuclear-spin polarization of 14N. The color bars in

6.14d and 6.14g are transition rates obtained from model fitting. The color of each bar

corresponds to the color of the arrow that represents the corresponding transition in

Fig. 6.14a. Near the GSLAC (Figures 6.14e and 6.14h) there are more transitions that

need to be considered due to level mixing (6.6). The possible transition are show in (Figure

6.14b). At magnetic field values above the GSLAC position, mixing of states decreases

again, which can be seen in Figures 6.14f and 6.14i where three transitions contribute to

the overall signal.
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Figure 6.14: ODMR signals at high microwave field frequencies. The top row (a)–(c)

shows transitions between the levels (6.6). The arrow width corresponds to the transition

probability. The middle row (d)–(f) shows signals for the low-density sample, and the

bottom row shows signals for the high-density sample. The black curves are experimental

data; the red curves show the results of the theoretical calculations with the parameters

from the fitting procedure. The vertical bars in (d)–(i) correspond to the transitions

depicted by the arrows in (a)–(c) of the same color, and their length determines the con-

tribution to the overall lineshape of that transition, which is proportional to the product

of the level population and the transition strength.

6.3.3 ODMR signals for the |mS = 0〉 −→ |mS = −1〉 transition

The same analysis can be carried out for the |mS = 0〉 −→ |mS = −1〉 transition, which

corresponds to microwave frequencies below 40 MHz. The results of measured and calcu-

lated ODMR signals are plotted in Figure 6.15. The top row (Figures 6.15a–6.15c) shows

the magnetic sublevel structure for a particular magnetic field. The arrows indicate the

allowed transitions, and the arrow widths indicate the relative transition strengths.

The middle row (Figures 6.15d–6.15f) shows signals for the low-density sample, and

the bottom row (Figures 6.15g–6.15i) shows signals for high-density sample.

Similar to the high-frequency signals (Figure 6.14), for magnetic-field values ∼ 10 G
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Figure 6.15: ODMR signals at low microwave-field frequencies. The top row (a)–(c) shows

transitions between the different levels (6.6). The width of the arrows corresponds to the

relative transition probabilities. The middle row (d)–(f) shows signals for the low-density

sample, and the bottom row shows signals for the high-density sample. The black curves

are experimental data, the red curves show the results of the theoretical calculations

with the parameters from the fitting procedure. The vertical bars correspond to the

transitions depicted by the arrows in (a)–(c) of the same color, and their length determines

the contribution to the overall lineshape of that transition, which is proportional to the

product of the level population and the transition strength. The dashed red lines in (e)

and (h) show the calculated signal for an angle between the NV axis and the magnetic-

field B direction of θ = 0.015◦. The vertical bars in (d)–(i) correspond to the transitions

depicted by the arrows in (a)–(c) of the same color for θ = 0◦.

away from the GSLAC position, the signals consist of three components (Figures 6.15d

and 6.15g for magnetic-field values less than the GSLAC position, and Figures 6.15e and

6.15h for magnetic-field values larger than the GSLAC position).

As can be seen in Figure 6.15b, there are more allowed transitions than in the case of

high-frequency transitions. This happens because the initial and final levels connected by

microwave transitions are from the same mixed-level manifold (mS = 0 and mS = −1).

As a result, the ODMR signal is more complicated. For the low-density sample, the
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model qualitatively describes the experimental ODMR signal (Fig. 6.15e). The solid red

line is the modeled signal for the ideal case when the magnetic field is parallel to the NV

axis (θ = 0◦). The red dashed line is modeled assuming a small deviation between the

magnetic-field direction and the NV center’s axis (θ = 0.015◦). Introduction of a small

angle shifts the peak away from zero frequency, bringing it closer to experimental peak.

The same was done for the high-density sample (Figure 6.15h). The solid red line in

this case does not describe the experimental signal at all. Introducing an angle between

magnetic field direction and NV axis (θ = 0.1◦) only partially improves the agreement.

There is a larger peak at ∼ 10 MHz that cannot be explained by the model. Possible

reasons for the discrepancies might be interaction with other nearby spins in the crystal,

such as substitutional nitrogen (P1) centers or 13C nuclei. There might also be some

inhomogeneities in microwave power or in the diamond crystal lattice, or in the magnetic

field.

6.3.4 Influence of the angle between the magnetic-field direction

and the principal axis of the NV center

We observed that even small misalignment of the magnetic-field direction and the NV

center’s axis can noticeably influence signals near the GSLAC. Figure 6.16 shows the

transition frequencies for the |mS = 0〉 −→ |mS = −1〉 transition for magnetic-field

angle θ = 0◦ (Fig. 6.16a) and θ = 0.1◦ (Fig. 6.16b), as well as transition frequencies for

the |mS = 0〉 −→ |mS = +1〉 transitions. The black dots and red squares correspond

to experimental ODMR peak frequencies of the high-density and low-density samples,

respectively. The gray lines correspond to theoretically calculated transition frequencies

for all hyperfine levels. The widths of the gray lines show the transition strengths based

on level mixing (6.14).

Figures 6.17 (low NV-density sample) and 6.18 (high NV-density sample) show

experimentally measured and modeled ODMR signals near the GSLAC in more detail.

For better readability, signals are arranged in order of descending magnetic field, and

each curve is normalized separately with its relative intensity depicted at the right side

of the graph. The gray lines show how the energy and the intensity of the transitions

change in the magnetic field. Comparing Figures 6.17a, where θ = 0◦, and 6.17b with

θ = 0.015◦, one sees that agreement between the model and the experiment improves

noticeably when a small angle is introduced into the model. The improvement is even

more evident in Figures 6.18a and 6.18b for the high-density sample. From these signals,

we have estimated that the angle between the magnetic-field direction and the NV axis

for this sample was around θ = 0.1◦, which corresponds to a transverse magnetic field

at the GSLAC of Bx = 1.85 G, which on the order of of magnitude of the Earth’s

magnetic field, which was not compensated in the experiment. Low-frequency transitions
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Figure 6.16: Transition frequencies for the |mS = 0〉 −→ |mS = −1〉 transition manifold

for magnetic-field angle (a) θ = 0◦ and (b) θ = 0.1◦. (c) Transition frequencies for the

|mS = 0〉 −→ |mS = +1〉 transition manifold for magnetic-field angle θ = 0◦. The black

dots and red squares correspond to the experimental ODMR peak frequencies of the high-

density and low-density samples, respectively. The gray lines correspond to theoretically

calculated transition frequencies for all of the hyperfine levels. The width of gray lines

show the transition strengths based on level mixing.

between |mS = 0〉 and |mS = −1〉 are more sensitive to level mixing and magnetic-field

angle because both of the levels that are involved in the transitions are mixed states.

For high-frequency transitions (Figures 6.17c and 6.18c), the calculated signals with or

without transverse magnetic field did not show a noticeable difference.

Another set of measurements were made to evaluate how the shape of an ODMR

signal changes with respect to the angle between the magnetic-field vector and the prin-

cipal axis of the NV center. For this experiment a sample with a nitrogen concentration

of 5–20 ppm was used. In the experiments the angle between the magnetic field and the

crystal was changed by adjusting the orientation of the sample holder with respect to

magnetic field. The angle between the magnetic-field vector and the NV axis was deter-

mined by fitting the ODMR signal as described in Section 6.3.1. Figure 6.19 shows the

dependence of the ODMR signal on the experimentally measured magnetic-field angle

at the GSLAC in the ground-state mS = 0 and mS = −1 microwave transition mani-

fold. Our fitting procedure allowed us to determine the angle of the magnetic field with

a precision of 0.02◦. Figure 6.19a shows the ODMR signal for the best experimentally

achieved alignment with respect to the external magnetic field direction, which was deter-
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Figure 6.17: Experimental signals (black) obtained from the low-density sample with theoretical cal-

culations (red) in the ground-state mS = 0 −→ mS = −1 microwave transition manifold for different

magnetic-field values and for an angle between the NV axis and the magnetic-field B direction of (a)

θ = 0◦ and (b) θ = 0.015◦ (transverse magnetic field 0.25 G). (c) Experimental signal with the calculated

signal at θ = 0◦ in the ground-state mS = 0 −→ mS = +1 microwave-transition manifold for different

magnetic-field values.

mined by the fitting procedure to be 0.11◦. Increasing the angle between the NV axis and

the external magnetic-field direction causes the ODMR structure to transform into two

groups of peaks. This structure is explained by the mixing of the |mS = 0〉 and |mS = −1〉
hyperfine levels (Figure 6.1b), which are energetically close at the GSLAC point. At an-

gles from 0.21◦ to 0.46◦ two distinct groups of peaks can be seen in the ODMR signals

(Figure 6.19b–d).

6.3.5 ODMR signals with C13 interaction

The calculated ODMR signals obtained from the model with 13C are shown in Fig. 6.20a

for the mS = 0 −→ mS = −1 transition and in Fig. 6.20b for the mS = 0 −→ mS = +1

transition. The blue curves show the calculation without the 13C interaction, and the

red curves show the calculation taking into account interaction with the spins of nearby
13C nuclei. The black line shows the experimental measurements [71]. Inclusion of the
13C interaction improves the agreement with the calculations, but some discrepancies

for magnetic-field values close to the GSLAC still remain. Including the 13C hyperfine

interaction (6.19) allows some new transitions to appear in the simulated signals. The

new transitions are most apparent in Figure 6.20b to the right of the main peak for

magnetic field values that range from 1017.4 G to 1020.2 G and from 1028.6 G to 1030.0 G.
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Figure 6.18: Experimental signals from the high-density sample (black) with theoretical calculations

(red) in the ground-state mS = 0 −→ mS = −1 microwave-transition manifold for different magnetic-

field values and for an angle between the NV axis and the magnetic-field B direction of (a) θ = 0◦

and (b) θ = 0.1◦ (transverse magnetic field of 1.85 G). (c) Experimental signal with the calculated

signal at θ = 0◦ in the ground-state mS = 0 −→ mS = +1 microwave transition manifold for different

magnetic-field values.
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Figure 6.19: Experimental (black dots) and fitted (red curves) ODMR signals at the

GSLAC (1024 G) for different angles between the magnetic field and the NV axis.

Without the 13C interaction these features could not be described. A similar effect can

be observed in Figure 6.20a), but the improvement is not as impressive. The interaction
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6.3. COMPARISON OF THE MODELED SIGNALS WITH EXPERIMENTALLY
MEASURED SIGNALS
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Figure 6.20: (a) Experimental signals (black) for the low-density sample with theoretical

calculations that include the effects of 13C (red) (6.19) and without the effects of 13C

(blue) for the ground-state mS = 0 −→ mS = −1 microwave transitions for different

magnetic-field values. The gray line tracks the position of the nominal |0, 1〉 −→ |0, 0〉
transition. (b) Experimental signals (black) for the low-density sample with theoretical

calculations that include the effects of 13C (red) (6.19) and without the effects of 13C

(blue) for the ground-state mS = 0 −→ mS = +1 microwave transitions for different

magnetic-field values. The gray line tracks the position of the nominal |0, 1〉 −→ |1, 0〉
transition.

of 13C nuclear spin not only creates more energy levels for the system, but also allows

otherwise forbidden transitions because of level mixing. Level mixing effectively changes

the angular-momentum selection rules [79].
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The gray curve across all graphs in Figure 6.20a tracks the nominal |0, 1〉 −→ |0, 0〉
transition. This transition is clearly visible in the experimental signal. This peak also

appears in the simulation, but it is so weak, that it cannot be distinguished in Figure 6.20a.

The gray curve in Figure 6.20b tracks the |0, 1〉 −→ |1, 0〉 transition, which appears in

the experimentally measured signals but was not reproduced by any of the theoretical

models.

The inclusion of 13C nuclei into the model influences the strengths of the transitions

that can take place and reveals important aspects of the underlying physics. As the

samples used in the experiment are not chemically pure, there could be other defects and

interactions that are not included in the model.

6.4 Conclusions

In this chapter we studied microwave-induced transitions between the hyperfine com-

ponents of the 3A2 ground-state electron-spin magnetic sublevels of the NV center in

diamond by modeling the ODMR signals. The model describes the ODMR signals for

magnetic field values in the vicinity of the GSLAC, where the hyperfine levels are mixed,

as well as away from it. We analyzed the ODMR signal dependence on nuclear spin po-

larization, the width of the transitions and the angle between the magnetic field direction

and NV center axis. The effects of the nearby 13C nuclei were also included in the model.

The fitting of the experimentally measured data with the calculated signals was done

for three diamond samples with a nitrogen concentration of 1 ppm, 200 ppm and 5–20 ppm,

allowing us to determine such parameters as nuclear-spin polarization and magnetic-field

angle. Moreover, the addition of the 13C interaction into the model significantly improves

the agreement between the experimentally measured signals and the calculations.

Within 5 G of the GSLAC, the experimentally measured ODMR spectrum becomes

rather complicated with some features that we have not been able to describe fully, but the

general features are reproduced at least in the case of the low-density sample. The analysis

of the hyperfine-level mixing allows us to track the |0, 1〉 −→ |1, 0〉 and |0, 1〉 −→ |0, 0〉
transitions, although they are not reproduced by the model, which is based on selection

rules ∆mS = ±1 and ∆mI = 0.

Possible reasons for the discrepancies in the high-density sample (Figure 6.18) might

be inhomogeneity in the microwave power, in the diamond crystal lattice or in the mag-

netic field. Interactions with nearby spins and unknown defects might be one more reason

for the failure of the model at the GSLAC for the high-density sample.

The method for determining nuclear-spin polarization in the case of the mixed states

is used in the Chapter 7 to extract the nuclear-spin polarization from the experimental

data.
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Chapter 7

Dynamic 14N nuclear spin

polarization in nitrogen–vacancy

centers in diamond

The sensitivity of NV centers used as a probe could be dramatically enhanced if the

surrounding nuclear spins could be polarized [52], a process referred to as hyperpolariza-

tion or dynamic nuclear polarization (DNP). Success in achieving dynamic polarization

of nuclei has been achieved near the excited-state level anti-crossing (ESLAC) around

512 G for single 15N spins [54, 55], single 14N and 15N spins, and ensembles of 14N and
13C spins [56, 57]. The hyperfine interaction creates additional states that are strongly

coupled near the level anticrossing. Previously, when nuclear-spin polarization was mea-

sured, the experimental signals have been described successfully with models based on

the master equation for the density matrix [55–57], combined with the Lindblad opera-

tor [58] or even simpler rate equations [54]. Nuclear polarization is very sensitive to any

angular deviations of the magnetic field from the NV axis [54], which is important to take

into account in any practical applications and useful as a signal for aligning the diamond

crystal in the external magnetic field. The possibilities of achieving nuclear-spin polariza-

tion at magnetic field values near the ground-state level anti-crossing (GSLAC) magnetic

field region has been studied much less than, for example, the ESLAC region. Models

have predicted that in the case of 15N the polarization should fall as the magnetic field is

increased from the ESLAC to the GSLAC, with a narrower peak at the GSLAC [55].

As was shown in Section 5.2.5, the electron spin of the NV center can be polarized

through optical pumping, and the electron spin can remain polarized for a long time [41].

The polarization can be transferred from the electron spin to the nuclear spin via DNP

(see Section 5.2.6). The relaxation time of the nuclear spin is even longer, which can be

useful for many applications.

In this chapter we describe a model based on the Liouville equation with a Lindblad
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7.1. LINDBLAD EQUATION MODEL

operator, which we developed in order to calculate the nuclear-spin polarization over a

wide range of magnetic-field values, including both the ESLAC and GSLAC magnetic-field

regions. We calculated the dependence of nuclear-spin polarization on such parameters

as the angle between the applied magnetic-field vector and the NV center’s axis, the

absorption rate, the transverse strain, and the relaxation rate of the intersystem-crossing.

The results of the calculations were then compared with experimental results obtained at

the Laser Centre of University of Latvia. The experiments were done by Reinis Lazda

and Andris Berzins and are not a part of the dissertation. Nevertheless, the fitting of the

experimental data was done using the procedure described in Section 6.2, and is a part

of the dissertation.

The results show that nuclear-spin polarization is sensitive to transverse strain and

magnetic-field angle at the level-crossing points. Because the hyperfine interaction is

weaker in the ground state than in the excited state [57, 80, 81], the DNP is especially

sensitive to these parameters at the GSLAC. The results of this chapter have been pub-

lished in [72].

7.1 Lindblad equation model

The numerical model takes into account both the 3A2 ground state and the 3E excited

state with nuclear spin I = 1 from the NV center’s 14N nucleus. The system is described

using a density operator ρ in the form of a density matrix of dimension 21, which consists

of nine levels in the ground states, nine in excited state, and in three the singlet state

(Figure 7.1). The nine levels that compose the the ground and excited states consist of

three magnetic sublevels, each of which splits into three hyperfine levels, and the singlet

level consists of three hyperfine levels.

ms = 0

ms = ± 1

ms = 0

ms = ± 1

p 0

e
0

e
±1

g
±1

g
0

Dg = 2.87 GHz

De = 1.41 GHz

mI = 0mI = −1 mI = 1

Figure 7.1: Level scheme of the NV center used in the density matrix model. Each of the

electron-spin magnetic sublevels is split into three hyperfine levels, leading to 21 levels.
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7.1. LINDBLAD EQUATION MODEL

The density matrix is calculated from a steady-state solution of the Liouville equa-

tion (2.14) with the relaxation described by the Lindblad operator [58]:

∂ρ

∂t
= − i

~

[
Ĥ, ρ

]
+ L̂ρ = 0, (7.1)

where Ĥ is the Hamiltonian of the excited and ground states. (5.5). The Lindblad super-

operator L̂ [82] describes depopulation and decoherence processes of the electron spin of

the NV center and the nuclear spin of the 14N nucleus:

L̂ρ =
∑
k

Γk

(
L̂kρL̂

†
k −

1

2

{
L̂†kL̂k, ρ

})
, (7.2)

where the indices k describe each of the relaxation processes and are denoted as k ∈
{(gmS→ emS), (emS→ gmS), (emS→ s), (s→ gmS), (gmS→ gm′S), (emS→ em′S),

(gmI → gm′I ), (emI → em′I ), (gmS , z±10), (emS , z±10), (gmI , z±10), (emI , z±10)},
where g, e and s stand for the ground, excited and singlet states, respectively. The

indices mS, m
′
S, mI , m

′
I = +1, 0,−1 denote the projection of the electron and nuclear

spins, respectively. And z±10 denotes the Pauli-z operator in the (mS(I) = ±1,m′S(I) = 0)

subspace, which corresponds to dephasing of these states. Γk are the rates of the relaxation

processes and the operators L̂k describe the depopulation and dephasing of the states. The

quantum jump operator L̂k = |i〉〈j| describes the transitions between the states |i〉 and |j〉
that account for depopulation (the operator annihilates a particle in level j and creates a

particle in level i). This operator describes such processes as transitions between triplet

excited and ground states (fluorescence with rate Γ0 and pumping with rate Γp), non-

radiative transitions (intersystem crossing between triplet and singlet states) with rates

γe0 and γe±1 from the excited triplet state to the singlet state and rates γg0 and γg±1 from

singlet state to ground triplet state. This operator describes also the processes related

to relaxation time T1 (population transfer between magnetic sublevels in the excited and

ground states for electron and nuclear spins). These operators can be written explicitly

as

L̂gmS→emS = |e,mS,mI〉〈g,mS,mI |
L̂emS→gmS = |g,mS,mI〉〈e,mS,mI |
L̂emS→s = |s,mI〉〈e,mS,mI |
L̂s→gmS = |g,mS,mI〉〈s,mI |

L̂gmS→gm′S
= |g,mS,mI〉〈g,m′S,mI |

L̂emS→em′S
= |e,mS,mI〉〈e,m′S,mI |

L̂gmI→gm′I
= |g,mS,mI〉〈g,mS,m

′
I |

L̂emI→em′I
= |e,mS,mI〉〈e,mS,m

′
I | .

(7.3)

89



7.1. LINDBLAD EQUATION MODEL

For example, we can look at the transitions between the ground-state electron-spin

magnetic sublevels mS = 0 and ms = +1, which in this case governed by the ground-state

relaxation time T1 of the NV center’s electron spin (Table 7.1). In this example, we look at

a seven-level system without hyperfine structure. The state of the whole systems is written

as a generalized vector with elements (in order) |g,mS = +1〉, |g,mS = 0〉, |g,mS = −1〉,
|e,mS = +1〉, |e,mS = 0〉, |e,mS = −1〉, |s〉. The first three elements correspond to the

ground state, the next three to the excited state, and the last one to the singlet state. In

the model all of these levels were split into three hyperfine levels. The state |g,mS = 0〉
can be written in generalized vector form as (0, 1, 0, 0, 0, 0, 0)T , and the state |g,mS = +1〉
as (1, 0, 0, 0, 0, 0, 0)T . The jump operator then can be written in matrix form as

L̂′gmS=0→gmS=+1
= |g,mS = 0〉〈g,mS = +1| =



0

1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(7.4)

To include the hyperfine levels, we use the Kronecker product

L̂gmS=0→gmS=+1 = L̂′gmS=0→gmS=+1
⊗ 1̂(3),

where 1̂(3) is a three-dimensional identity matrix, which adds hyperfine levels and provides

the selection rule for the relaxation: ∆mI = 0.

The operator L̂k = |i〉〈i|− |j〉〈j| describes the T2-related processes in the ground and

excited states for electronic and nuclear spin, which corresponds to dephasing of the |i〉
and |j〉 states. The dephasing operators are

L̂gmS ,z±10 = |g,±1,mI〉〈g,±1,mI | − |g, 0,mI〉〈g, 0,mI |
L̂emS ,z±10 = |e,±1,mI〉〈e,±1,mI | − |e, 0,mI〉〈e, 0,mI |
L̂gmI ,z±10 = |g,mS,±1〉〈g,mS,±1| − |g,mS, 0〉〈g,mS, 0|
L̂emI ,z±10 = |e,mS,±1〉〈e,mS,±1| − |e,mS, 0〉〈e,mS, 0| .

(7.5)

To take a similar example, we can look at a dephasing between ground-state electron-spin

levels mS = 0 and mS = +1. In matrix form it can be written as

L̂′gmS ,z±10
= |g,mS = +1〉〈g,mS = +1| − |g,mS = 0〉〈g,mS = 0| =



1 0

0 −1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(7.6)
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7.1. LINDBLAD EQUATION MODEL

Similarly as before, we can use the Kronecker product to include hyperfine levels L̂gmS ,z±10 =

L̂′gmS ,z±10
⊗ 1̂(3).

Table 7.1 shows the values of the transition rates [69, 83] and the time constants T1

and T2 [84, 85] used in the calculations. The relaxation rates associated with T1 and T2

processes are 1/T1 and 1/T2.

Process Operator L̂k Rate Γk (Time)

Spin conserving transitions Γ0 |g,mS ,mI〉〈e,mS ,mI | 66 MHz [69]

Excited state to singlet γe±1 |s,mI〉〈e,±1,mI | 53 MHz [69]

Excited state to singlet γe0 |s,mI〉〈e, 0,mI | 7.9 MHz [69]

Singlet to ground state γg0 |g, 0,mI〉〈s,mI | 1.0 MHz [69]

Singlet to ground state γg±1 |g,±1,mI〉〈s,mI | 0.7 MHz [69]

Ground state NV electron spin depopulation (T1)
∣∣g,mS ,mI〉〈g,m′S ,mI ∣∣ 0.1 kHz (10 ms) [84]

Ground state NV electron spin dephasing (T2) |g, 0,mI〉〈g, 0,mI | − |g,±1,mI〉〈g,±1,mI | 10 kHz (100 µs) [84]

Ground state 14N nuclear spin depopulation (T1)
∣∣g,mS ,mI〉〈g,mS ,m′I ∣∣ 0.1 Hz (10 s) [84]

Ground state 14N nuclear spin dephasing (T2) |g,mS , 0〉〈g,mS , 0| − |g,mS ,±1〉〈g,mS ,±1| 0.1 kHz (10 ms) [84]

Excited state NV electron spin depopulation (T1)
∣∣e,mS ,mI〉〈e,m′S ,mI ∣∣ 1 kHz (1 ms) [85]

Excited state NV electron spin dephasing (T2) |e, 0,mI〉〈e, 0,mI | − |e,±1,mI〉〈e,±1,mI | 92 MHz (11.9 ns) [86]

Excited state 14N nuclear spin depopulation (T1)
∣∣e,mS ,mI〉〈e,mS ,m′I ∣∣ 10 Hz (100 ms) [85]

Excited state 14N nuclear spin dephasing (T2) |e,mS , 0〉〈e,mS , 0| − |e,mS ,±1〉〈e,mS ,±1| 1kHz (1 ms) [85]

Table 7.1: Transition and decoherence rates used in the calculation.

The nuclear-spin polarization of the mS = 0 electron state is calculated from the

steady-state solution of the density matrix as

Pth =
ρ01 − ρ0−1

ρ01 + ρ00 + ρ0−1

, (7.7)

where ρmSmI = 〈g,mS,mI |ρSS|g,mS,mI〉 is the population of the ground-state basis state

|g,mS,mI〉. The calculations of the Lindblad equation model let us explore the influence

of different system parameters on nuclear-spin polarization.

The system of linear equations was solved using the Python library QuTip [87].

7.1.1 Dependence of nuclear-spin polarization on magnetic field

angle

One of the parameters that was explored through the calculations was the angle between

the magnetic-field direction and the NV center’s principal axis.

If the NV center axis is aligned along the magnetic field, high nuclear-spin polariza-

tion can be achieved. However, a precise alignment is not always easy to achieve because

of difficult-to-control factors such a magnetic-field inhomogeneities. Thus, it is important

to examine the influence of the angle between the magnetic-field direction and the NV

center’s principal axis.

As can be seen in Figure 7.2, the magnetic-field angle influences the nuclear-spin

polarization both at the ESLAC and the GSLAC. The transverse magnetic field introduces
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Figure 7.2: Calculation of nuclear-spin polarization for different magnetic-field angles.

Sweeping the magnetic-field angle over the range θ = 0◦−−0.5◦ with step size 0.1◦ causes

rapid changes in nuclear-spin polarization at GSLAC. Further increasing the angle from

θ = 1◦ to θ = 5◦ with step size 1◦ causes changes at the ESLAC, but more slowly.

additional interaction between the hyperfine levels, leading to more hyperfine levels being

mixed, which strongly modifies the polarization process.

If we look more closely at the GSLAC region, it can be seen that polarization at

the GSLAC is ∼ 85% for a magnetic-field angle of θ = 0◦. The polarization decreases

significantly at θ = 0.1◦ and approaches almost 0% for θ = 0.2◦. The excited state

has much a stronger hyperfine interaction [57], so the ESLAC region is not as sensitive

to such small angles. A noticeable dip at the ESLAC can be seen for a magnetic-field

angle of θ = 1◦. When the magnetic-field angle is increased even more, the nuclear spin

polarization decreases, and the maximum is shifted to lower magnetic field values.

7.1.2 Dependence of nuclear-spin polarization on transition rates

The electron-spin polarization depends on the intersystem transition rates γe0, γe±, γg0 ,

and γg±. These rates determine the transfer of population between the mS = 0 and

mS = ±1 sublevels. This process can be explained by looking at the transition rates shown

in Figure 7.3b. The electron-spin polarization is determined by the rate of transitions

between ground-state magnetic sublevels mS = ±1→ mS = 0 and mS = 0→ mS = ±1,

which are indicated by γ±1→0 and γ0→±1, respectively. These rates can be expressed
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Figure 7.3: Visualization of the influence of transition rates on electron-spin polarization.

(Figure 7.3a) as

γ±1→0 = Γp · γe±1 · γg0
γ0→±1 = Γp · γe0 · γg±1

(7.8)
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Figure 7.4: Theoretical nuclear-spin polarization for different ratios of transition rates
γe±1

γe0
with the angle between the NV center’s axis and the magnetic-field vector: (a) θ = 0.0◦,

(b) θ = 0.2◦. The pumping rate for numerical calculations was Γp = 5 MHz. The

transition rates from the singlet state to the ground-state sublevel mS = 0 and from the

singlet state to ground-state sublevels mS = ±1 are γg0 = 1 MHz and γg± = 1 MHz.

As the transition rates γe0, γe±, γg0 and γg± are not precisely known and can differ

between diamond samples, it is important to investigate the influence of the ratio of the

rates from the ground-state magnetic sublevels mS = ±1 to the ground-state magnetic

sublevel mS = 0 versus ground-state magnetic sublevel mS = 0 to ground-state magnetic

sublevel mS = ±1. The ratio between these transition rates can be expressed as

γ±1→0

γ0→±1

=
Γp · γe±1 · γg0
Γp · γe0 · γg±1

=
γe±1 · γg0
γe0 · γg±1

. (7.9)

As the transition rates from singlet state to ground-state sublevels mS = 0 and from

the singlet state to ground-state sublevels mS = ±1 are typically on the order of 1 MHz
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and their ratio
γg0
γg±

is typically in the range 1.1−2.0 [57, 69], both of these transitions rates

were set to γg0 = 1 MHz and γg± = 1 MHz in the calculations for Figure 7.4. Then, the

calculations were performed for different ratios of transition rates from the excited state

to the singlet state
γe±1

γe0
, which is equivalent to the ratio

γ±1→0

γ0→±1

(7.9). Figure 7.4 shows

the influence of the ratio of transition rates from the excited state to the singlet state
γe±1

γe0
on the nuclear-spin polarization. As the ratio increases, so the electron-spin polarization

increases (Figure 7.3b), and, in turn, the nuclear-spin polarization also increases. The ra-

tio of transition rates influences the nuclear spin polarization proportionally for the whole

range of magnetic-field values. Figure 7.4 shows the theoretical nuclear-spin polarization

for different transition-rate ratios
γe±1

γe0
with the angle between the NV center axis and

magnetic field vector being θ = 0.0◦ (Figure 7.4a) and θ = 0.2◦ (Figure 7.4b).

7.1.3 Dependence of nuclear-spin polarization on transverse strain
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Figure 7.5: Theoretical nuclear-spin polarization for different transverse strain values.

The pumping rate for the numerical calculations was Γp = 5 MHz.

The spin-strain interaction [59–63] can cause a similar effect as the transverse mag-

netic field. A transverse spin-strain coupling constants Nx and Ny (5.13) couples magnetic

sublevels ms = 0 and ms = ±1. Due to the C3v symmetry of the NV center, we can choose

the coordinate system such that only the term Nx is non-zero. At the level-crossing points,

where the energy difference between levels ms = 0 and ms = −1 is small, the spin-strain
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interaction component Nx leads to level mixing similar to what is produced by a transverse

magnetic field. The strain induced interaction component Nx influences the nuclear-spin

polarization at both the ESLAC and the GSLAC as can be seen in Figure 7.5. The strain

induced interaction strength between electron spin states in the ground state is typically

in the range of a few megahertz, whereas in the excited-state it is on the order of a few

tens of megahertz [68, 88]. To calculate the influence of strain on nuclear-spin polariza-

tion at the level crossing points, the excited-state spin-strain coupling constant was set to

be N e
x = 10N g

x , which corresponds to the different order of magnitude of strain coupling

constants in the ground and excited states. Even small transverse strain can significantly

decrease the nuclear-spin polarization at GSLAC and ESLAC regions.

7.1.4 Dependence of the nuclear-spin polarization on pumping

rate
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Figure 7.6: Theoretical nuclear-spin polarization for different pumping rates with the

angle between the NV center axis and magnetic field being (a) θ = 0.0◦ and (b) θ = 0.2◦.

For an ideal NV center whose principal axis is aligned along the magnetic field

direction, the nuclear-spin polarization is not strongly influenced by the pumping rate

Γp, which characterizes the power of the pumping laser (Figure 7.6a). However, if the

magnetic field is only slightly misaligned, the nuclear-spin polarization at the GSLAC

is sensitive to the pumping rate. The calculated nuclear spin polarization for different

pumping rates with an angle between the magnetic-field vector and the NV-center axis

of θ = 0.2◦ can be seen in Figure 7.6b.

7.2 Testing the model against experimental data

The experiment was carried out by Reinis Lazda and Andris Berzins at the Laser Centre

of the University of Latvia. The experimental setup is described in Appendix A.3.
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Figure 7.7: (a), (b), (d), (e): Experimental (black dots) and fitted (red curves) ODMR

signals at individual magnetic field values. (c): Experimental (blue dots) and theoretical

(orange curve) nuclear spin polarization. The pumping rate used in the theoretical cal-

culations was Γp = 5 MHz. The magnetic-field angle θ = 0.2◦ was determined from the

ODMR curve fit.

The nuclear-spin polarization was determined from the ODMR signals of the |ms =

0〉 −→ |ms = +1〉 transition (Figure 7.7a,b,d,e) by fitting the experimental signals (black

dots) with a modeled ODMR curve (red curve). The model of the ODMR signals is

described in detail in Section 6.2. The modeled curve is a sum of Lorentzian curves

each of whose central frequencies are the corresponding hyperfine transition frequencies

ωi (6.17). The resonance amplitudes ti (6.15) are expressed as a product of the transition

probabilities pi and the relative populations Ni(mI) of hyperfine basis states.

The hyperfine-level transition probabilities pi and transition frequencies ωi were

calculated from the eigenfunctions and eigenvalues of the ground-state Hamiltonian (5.5),

while taking into account the selection rules for the electron- and nuclear-spin magnetic

dipole transitions ∆mS = ±1 and ∆mI = 0 (see Section 6.2).

The experimental signals were fitted as described in Section 6.3.1, whiche made it

possible to determine the relative populations of the basis states, to calculate the exper-

imental nuclear-spin polarization (6.16), and to determine the angle θ between magnetic

field vector and the NV center’s axis (5.11).

Far from the GSLAC, we can observe three hyperfine transitions in each ODMR

signal, so that each of the basis states mI is involved in a single transition. When the

ground state’s magnetic sublevels |mS = 0〉 and |ms = −1〉 are mixed at the GSLAC,

more than three components are observed (Figure 7.7e), so it is crucial to take the mixing

into account when fitting the experimental signals. Extracting the relative populations

of the basis states from the experimental signals allowed us to directly compare the ex-

96



7.2. TESTING THE MODEL AGAINST EXPERIMENTAL DATA

800 850 900 950 1000 1050 1100
Magnetic field (G)

0.0

0.2

0.4

0.6

0.8

Po
la

riz
at

io
n

= 0.00
= 0.11
= 0.21
= 0.33
= 0.46

(a)

800 850 900 950 1000 1050 1100
Magnetic field (G)

0.0

0.2

0.4

0.6

0.8

Po
la

riz
at

io
n

= 0.11
= 0.21
= 0.33
= 0.46

(b)

Figure 7.8: (a) Calculated and (b) experimentally determined nuclear spin polarization for

different magnetic field angles. Pumping rate for numerical calculations was Γp = 5 MHz.

perimentally determined nuclear-spin polarization (6.16) with the theoretically calculated

nuclear-spin polarization (7.7).

As can be seen in Figure 7.7b, at low magnetic field values (around 20 G), the ampli-

tudes of the three hyperfine-transition amplitudes are almost equal, which indicates that

the 14N nuclei are largely unpolarized. At magnetic-field values near the ESLAC (Fig-

ure 7.7a) there is one dominant transition, and the ODMR signal contrast has increased

by a factor of around three. The large, single peak can be explained by population ac-

cumulation in the mI = +1 state, which leads to a high 14N nuclear-spin polarization

of 96 ± 2%. The ODMR signal at the GSLAC (Figure 7.7e) was used to determine the

experimental magnetic field angle, which was found to be θ = 0.2◦.

As the diamond crystal used in the experiment had a natural abundance of carbon,

1.1% of carbon atoms were 13C isotopes (Section 6.2.3). The influence of 13C can be seen

in the ODMR signal as an extra feature next to the main peak (Figure 7.7a).

The experiment was performed in the magnetic field range from 0 to 1100 G, includ-

ing both the ESLAC and GSLAC regions. Each of the blue dots in Figure 7.7c correspond

to a measurement of the ODMR signal, which was then fitted using the model described

in Section 6.2 to calculate the experimental nuclear-spin polarization. At 512 G a drop

in polarization can be observed, which is due to the NV center interaction with substitu-

tional nitrogen (P1 center) in the crystal lattice and cross-relaxation between the NV and

P1 centers [51, 89, 90]. At around 590 G a drop in polarization occurs due to the ground-

state energy matching of NV centers with principal axis along the B direction and the NV

centers that point along the other three possible directions in the diamond crystal [91].

The decrease in polarization around 200 G is thought to be due to cross-relaxation with

other unknown paramagnetic defect centers in the crystal [91–93].

To calculate the orange curve of Figure 7.7c, the T1, and T2 times, as well as tran-

sition rate Γ0 were taken from the Table 7.1, but the intersystem transition rates were
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fitted to match the typical electronic spin polarization observed in experiments [94]. As

explained in Section 7.1.2, the ratio of singlet to triplet ground states was set to
γg0
γg±

= 1,

and the ratio of transitions of the excited state to the singlet state
γe±1

γe0
was adjusted.

To achieve the best fit with the experimental data, it was set to be
γe±1

γe0
= 20 in the

calculation. It is close to the value used in [56], but deviates from the transition rates

in [69]. The pumping rate for the numerical calculations was determined from the fit to

be Γp = 5 MHz. The magnetic-field angle used to calculate the theoretical curve was

θ = 0.2◦.

The dependence of nuclear-spin polarization on magnetic-field angle was measured

in the vicinity of the GSLAC. The experimental data exhibit the same tendency as the

theoretically predicted curves, showing that even a small magnetic-field angle strongly

influences the nuclear spin polarization at the GSLAC (Figure 7.8).

7.3 Conclusions

Aside from the intrinsic interest in dynamic nuclear-spin polarization as an effect that

takes place in NV centers, it has the potential to be used in important applications.

For example, nuclear-spin polarization strongly increases the sensitivity of NMR meth-

ods could be of use in quantum technologies [95]. Thus, the motivation to investigate

the DNP in detail was twofold. In order to understand better this effect and be able to

simulate potential applications, we developed a model based on the Liouville equations

with a Lindblad operator that describes DNP over a wide range of magnetic-field values,

including the hyperfine interaction of both the ground and excited states. We investigated

the influence on the nuclear-spin polarization of the angle between the magnetic-field di-

rection and the NV center’s principal axis, transverse strain, internal transition rates and

pumping rate. The level mixing in the ground state due to the hyperfine interaction is

weaker than in the excited state, which leads to higher sensitivity to the external param-

eters at the GSLAC compared to the ESLAC. The calculation as well as experimental

data show that even a small magnetic-field angle of ∼0.1◦ almost completely destroys the

nuclear-spin polarization at the GSLAC, while a ∼1◦ angle causes only a small dip in the

nuclear polarization curve at the ESLAC (Figure 7.2). The transverse strain can cause an

effect that is similar to magnetic-field misalignment as it mixes the same hyperfine levels

as the transverse component of magnetic field.

The results of the calculations were compared with experimental results obtained

from ODMR signals using the fitting procedure described in Section 6.3.1. In this way we

could validate again the model for microwave transitions over a wide range of magnetic-

field values, and determine the nuclear-spin polarization from experimental signals. The

98



7.3. CONCLUSIONS

results of this research shed light on nuclear-spin polarization, particularly near the less

studied GSLAC. The results contribute to understanding nuclear-spin polarization pro-

cesses. They also underlined the influence of magnetic field and strain on the achievable

polarization; these effects must be taken into account in order to improve the efficiency

of NV-center applications.
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Main results

The main results of this thesis are:

1. It was shown that the theoretical model of nonlinear magneto-optical rotation, based

on the analysis of the resolved and unresolved hyperfine structure and accounting

for Doppler broadening, can be adapted to describe the experimental measurements

of blue-light NMOR in rubidium vapor in the presence of an external magnetic field.

• It was established that the repopulation of the ground state through spon-

taneous processes can be characterized by a single parameter, replacing the

cascade transition rates through intermediate states with a single parameter

that corresponds to a direct transition. This simplification is possible, because

in each subsequent transition involved in the cascade, atomic angular momen-

tum polarization significantly decreases.

• The analysis of experimental parameters showed that after adapting the model

by taking into account the beam profile, the model described experimental

results well.

2. The analysis of the ODMR signals of NV centers in the vicinity of ground-state

hyperfine-level anticrossing provided an understanding of the hyperfine-level mix-

ing due to joint action of internal interactions in the NV centers and the external

magnetic field.

• The probabilities of microwave-field induced transition between electron level

hyperfine components were significantly altered due to the level mixing leading

to more complex ODMR signals, which can be modeled by taking into account

the level mixing.

• The analysis of the modeled signals showed that the shape of the ODMR signals

is affected by nitrogen nuclear-spin polarization, the characterizing relaxation

time T ∗2 , and magnetic-field misalignment with respect to the NV center’s

principal axis.

3. Employing the numerical model based on the Liouville equation with a Lindblad

operator, it was shown that strong 14N nuclear-spin polarization can be observed
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over a wide range of magnetic-field values, including both excited- and ground-state

level anticrossing magnetic-field regions.

• Nevertheless, even a small misalignment of the magnetic field with respect

to the NV center’s principal axis destroys almost completely the nuclear-spin

polarization in the vicinity of the GSLAC.

• Transverse strain can also cause an effect similar to that of magnetic-field

misalignment.
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Theses

1. It is necessary to take into account the beam-profile distribution in order to provide

a more precise theoretical description of nonlinear magneto-optical rotation, based

on the analysis of the resolved and unresolved hyperfine structure that describes

the experimental measurements of blue light nonlinear magneto-optical rotation in

rubidium vapor in the presence of an external magnetic field.

2. The mixing of hyperfine levels is responsible for the peak structure of optically

detected magnetic resonance signals in the vicinity of the ground-state level anti-

crossing, and these signals can be used to estimate the 14N nuclear-spin polarization,

relaxation time T ∗2 (signal width) and magnetic-field misalignment with nitrogen–

vacancy center’s principal axis.

3. A numerical model based on the Lindblad equation, applicable over wide range of

magnetic-field-strength values, shows that a high degree of 14N dynamic nuclear-

spin polarization in the vicinity of the ground-state level anti-crossing is possible

in principle, but a tiny misalignment of the magnetic field with nitrogen–vacancy

center principal axis or transverse strain almost completely destroys the dynamic

nuclear polarization.
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[21] L. Krzemień, K. Brzozowski, A. Noga, M. Witkowski, J. Zachorowski, M. Zawada,

and W. Gawlik, “Laser frequency stabilization by magnetically assisted rotation spec-

troscopy,” Optics Communications, vol. 284, pp. 1247–1253, 3 2011.

[22] L. R. HUNTER, “Tests of Time-Reversal Invariance in Atoms, Molecules, and the

Neutron,” Science, vol. 252, no. 5002, pp. 73–79, 1991.
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Appendix A

The experimental setups

A.1 The experimental setup for the NMOR experi-

ment

The experimental results of Section 3.3 were achieved by Szymon Pustelny at the Univer-

sity of California, Berkeley [29].

Figure A.1: The experimental setup. P is the polarizer, WP stands for the Wollastone

prism, λ/2 is the half-wave plate, L is the lens, DM stands for the dichroic mirror, I is

the iris, FC denotes the fiber coupler, PD is the photodiode, and PM and MM denote

polarization-maintaining and multimode fiber, respectively.

A schematic of experimental setup is shown in Figure A.1. Argon (Ar+) laser,

emitting 10 W continuous-wave (CW) radiation with wavelength 514 nm, was used to

pump the titanium-sapphire laser. The titanium-sapphire laser emits 550 mW near IR

radiation (842 nm), which was guided to the site of the main experiment through a

single-mode optical fiber. The light coming from the fiber was focused on a periodically

poled potassium titanyl phosphate (PP KTP) crystal. The nonlinear properties of the
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crystal enable the frequency doubling, converting the IR light (200 mW) into a 0.2 mW

blue light (421 nm) beam. The frequency of the blue light was controlled by tuning the

frequency of the titanium-sapphire laser. This allowed tuning the blue light in resonance

of transition 52S1/2 −→ 62P1/2 for both rubidium isotopes (85Rb and 87Rb) (Figure A.2).

For the measurements of NMOR dependence on laser power, the frequency of the blue

62P1/2
F e = 3

52S1/2

= 2

117 MHz

3035 MHz

F e

6835 MHz

265 MHz

85Rb 87Rb

62P1/2

52S1/2

F g = 3

F g = 2

F e = 2

F e = 1

F g = 2

F g = 1

Figure A.2: Energy level diagram of the 52S1/2 −→ 62P1/2 transitions in 85Rb and 87Rb.

light was stabilized by referencing the titanium-sapphire laser to an optical cavity and

using a wavemeter for monitoring. For additional reference an absorption-spectroscopy

setup with an independent reference, cell containing rubidium vapor heated to 70◦C, was

used.

Rubidium vapor was contained in a cylindrical glass cell (diameter 50 mm, length

100 mm), placed inside a four-layer cylindrical magnetic shield made of µ-metal. The

shield provided a passive attenuation of external magnetic fields of 106 [96]. A set of

additional coils inside the shield were used to compensate the residual magnetic field as

well as to provide the bias magnetic field in the direction of light propagation. The gen-

eration process of the bias magnetic field provided the magnetic field up to 1-G field [29].

The layers of the shield were thermally isolated and the inner layer along with the cell

was heated to about 90◦C, reaching the atomic vapor density of 2.4× 1012 cm−3 and the

Doppler with of 600 MHz.

In front of the shield, the blue light was spectrally filtered and linearly polarized

using a high-quality crystal polarizer. The diameter of the laser beam was controlled

with an iris, which not only changed the diameter but also the profile of the beam (3.22).

On the other side of the cell, the polarization of light was detected, using a polarimeter

which consisted of Wollaston polarizer and two photodiodes. The angle of nonlinear

magneto-optical rotation was calculated by dividing the differential photocurrent of the

photodiodes by twice the sum of the photocurrents:

φ =
I1 − I2

2(I1 + I2)
, (A.1)

if the angle of the rotation is considered to be small enough (φ � 1). The signals were

stored and the magnetic field was controlled using a computer.
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A.2. THE EXPERIMENTAL SETUP FOR THE GSLAC EXPERIMENT

A.2 The experimental setup for the GSLAC experi-

ment

Two different samples were used in the experiments to achieve the results described in

Section 6.3. The low density sample with nitrogen concentration of 1 ppm was produced

by CVD. The high density sample with nitrogen concentration of around 200 ppm was

a HPHT crystal. The experiments with the low density sample were performed at the

Johannes Gutenberg-University in Mainz by Reinis Lazda, Andris Berzins and Huijie

Zheng, and the measurements with the high-density sample were obtained at the Laser

Centre of the University of Latvia in Riga by Reinis Lazda and Andris Berzins. A Nd:YAG

laser (Coherent Verdi), producing green 532 nm light, was used to irradiate and optically

polarize the NV centers (Section 5.3). The luminescence emitted from the 3E state of the

NV center was them monitored. The microwave field was applied to prompt the transition

between the ground-state magnetic sublevels.

Laser 

Lens

Diamond

Electromagnet

Dichroic 

mirror

Detector

Lens
MW wire

LensAOM + PID

X

Y

Z

Laser 

Sample holder that 

provides rotation in 

three axis*

Electromagnet

*Inside of the sample holder

MW wire

Diamond 

Sample

Fiber core (400 μm) 

under the diamond 

Detector

Cage system

Laser radiation

Dichroic mirror

Luminescence

Optical fiber

MW cable

MW generator 

and amplifier

(a)

(b)

Figure A.3: (a) The setup for the high-density sample experiment. The laser light is

guided to the dichroic mirror and to the sample through optical fibers. The fluorescence

was passed through the fiber to the dichroic mirror and a long-pass filter and focused onto

the photodiode with an amplifier. (b) The setup for the low-density sample experiment.

A lens was used to focus the laser light onto the sample. The fluorescence was gathered

from the sample using a lens and was measured with a photodetector.

Figure A.3(a) shows the experimental setup used for the experiments with the high-
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density sample in Riga. A custom-built electromagnet, initially designed for electron

paramagnetic resonance (EPR) experiments, was used to produce the magnetic field.

The magnet contains two iron poles 19 cm in diameter and 13 cm in length each that are

separated by a 5.5 cm air gap. The inhomogeneity of the magnetic field was estimated

using a simulation software COMSOL to be 0.0002 mT over the sensing volume. The

diamond sample was inserted into a nonmagnetic sample holder, which was custom-made

by STANDA. The holder provided three axes of rotation so that the NV axis could be

aligned with the bias magnetic field. The laser (Coherent Verdi Nd:YAG) produced the

light with a wavelength of 532 nm, that was passed through an optical fiber with a core

diameter of 400 micrometers (numerical aperture of 0:39). The red fluorescence was col-

lected with the same fiber. To separate the residual green light from the fluorescence,

a dichroic mirror and a long-pass filter (Thorlabs DMLP567R and FEL0600) were used.

The fluorescence was then focused onto an amplified photodiode (Thorlabs PDA36A-EC).

A digital oscilloscope (Agilent DSO5014A or Yokogawa DL6154) and a DAQ card (Mea-

surement Computing USB-1408FS) were used to record and average the ODMR signals.

The microwave field was generated and amplified in two regimes, requiring different de-

vices: for the low frequencies a TTi TG5011 generator (0.001 mHz to 50 MHz) was used

and for the high frequencies a function generator (SRS SG386) with a power amplifier

(Minicircuits ZVE-3W-83+) which provided up to +30dBm.

Figure A.3(b) shows the setup used for the experiments with the low-density sample

in Mainz. A custom-made electromagnet consisting of 200 turns wound on a water-cooler

copper mount. The electromagnet was able to achieve a magnetic field up to 1035 G by

producing a field of 2.9 mT/A. The diamond holder provided the rotation of the diamond

around the z-axis (NV axis). The translation and rotation of the electromagnet was pro-

vided by a computer-controlled 3D translation stage (Thorlabs PT3-Z8) and a rotation

stage (Thorlabs NR360S, y-axis). This provided all degrees of freedom for centering and

aligning the diamond with respect to the magnetic field. The laser intensity stabilization

was implemented in combination with an acousto-optic modulator (AOM), a photodi-

ode and a proportional-integral-derivative (PID) controller. A function generator (SRS

SG386) was used to generate the microwave field over the entire range combined with

power amplifiers: an RFLU PA0706GDRF amplifier (Lambda) at high frequencies and

(Minicircuits ZHL-32A+) amplifier at low frequencies.
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A.3 The experimental setup for the DNP experiment

The experiments were executed by Reinis Lazda and Andris Berzins at the Laser Centre

of the University of Latvia.

The sample used in the experiments to achieve the results described in Section 7.2

and in Section 6.3.4 (Figure 6.19) was a CVD diamond crystal with a (100) surface cut.

The nitrogen concentration of the crystal was 5–20 ppm. The crystal was irradiated with

1017 cm−2 e− irradiation dosage at 2 MeV e− irradiation energy. The sample was then

annealed: first at 800 ◦C and then 1100 ◦C. In the annealing process NV centers were

created in the bulk of the diamond.

Figure A.4: Experimental setup, top shows the overall experimental scheme, bottom

shows a zoomed in detailed scheme of the sample holder and the microwave antenna.

Figure A.4 shows the experimental setup used to perform the measurements. A non-

magnetic sample holder with three degrees of freedom is attached to an aluminum rail.

Two aspheric condenser lenses, used for delivering and collecting the light to and from the

sample, are also attached to the rail, which is inserted into an electromagnet. It consists

of two iron poles with a length of 13 cm and diameter of 19 cm and an air gap of 5.5 cm

between the poles. The inhomogeneity of the magnetic field created by the electromagnet

was determined by numerical calculation to be about 0.2 µT in the sensing volume of

2 × 2 × 0.1 mm3. An “omega” shaped microwave antenna, about 1 mm in diameter, is

etched on a microscope slide glass with the diamond sample glued to the antenna. The

slide glass is then attached to the non-magnetic sample holder on the aluminum rail. A

Nd:YAG laser was used to generate green (532 nm) light, which is delivered to the sample

by a single mode optical fiber. The red fluorescence is filtered using a red longpass filter

and then focused onto an amplified photodiode. A digital Yokogawa oscilloscope is used
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for recording and averaging of the signals. The microwave field was generated with a

combination of a function generator (SRS SG386) and a power amplifier (Minicir-cuits

ZVE-3W-83+). Finally, the recorded signals were stored on a computer.

119


	Contents
	List of Abbreviations
	List of Figures
	List of Tables
	1. Introduction
	1.1. Aim and tasks of the dissertation
	1.2. Contents of the dissertation
	1.3. Publications and author's contribution
	1.3.1. Publications covered in the thesis
	1.3.2. Publications not covered in this thesis

	1.4. Conferences as a presenting author on the topics of the thesis

	I Nonlinear magneto-optical rotation in atomic rubidium vapor
	2. Theoretical background
	2.1. Description of NMOR
	2.1.1. Linear magneto-optical rotation
	2.1.2. Nonlinear effects
	2.1.3. The Liouville equation


	3. Nonlinear magneto-optical rotation with blue light
	3.1. Modeling NMOR for higher level excitation
	3.1.1. Atomic system
	3.1.2. Description of the theoretical model
	Optical pumping
	Evolution of polarization in a magnetic field
	Probing the ground state polarization


	3.2. Experimental verification of the model
	3.2.1. Model adaptation

	3.3. Results
	3.3.1. NMOR Spectrum
	3.3.2. Dependence of the NMOR signals on the light intensity
	3.3.3. Influence of the beam diameter on the NMOR signals

	3.4. Conclusions


	II Magneto-optical effects in nitrogen–vacancy centers in diamond
	4. Introduction to Part II
	5. Background
	5.1. Physical structure of the NV center
	5.2. Energy structure of the NV center
	5.2.1. Energy level structure of the NV center
	5.2.2. Hyperfine structure of the NV center
	5.2.3. NV center interaction with a magnetic field
	5.2.4. NV center interaction with strain
	5.2.5. Optical polarization of the electron spin of the NV center
	5.2.6. Nuclear spin polarization process

	5.3. A method to examine the energy-level structure in NV centers: ODMR

	6. Modeling ODMR signals in the presence of an external magnetic field
	6.1. NV centers in an external magnetic field
	6.1.1. Hyperfine-level mixing of the ground-state level anti-crossing

	6.2. Modeling ODMR signals in NV centers with HFS
	6.2.1. Modeled ODMR signal for |mS=0>–>|mS=+1> transition manifold
	6.2.2. Modeled ODMR signal for the |mS=0>–>mS=-1 transition
	6.2.3. Modeling ODMR signals with proximal C13 nuclear spins

	6.3. Comparison of the modeled signals with experimentally measured signals
	6.3.1. Data analysis and fitting procedure
	6.3.2. ODMR signals for the |mS=0>–>mS=+1 transition
	6.3.3. ODMR signals for the |mS=0>–>mS=-1 transition
	6.3.4. Influence of the angle between the magnetic-field direction and the principal axis of the NV center
	6.3.5. ODMR signals with C13 interaction

	6.4. Conclusions

	7. Dynamic 14N nuclear spin polarization in nitrogen–vacancy centers in diamond
	7.1. Lindblad equation model
	7.1.1. Dependence of nuclear-spin polarization on magnetic field angle
	7.1.2. Dependence of nuclear-spin polarization on transition rates
	7.1.3. Dependence of nuclear-spin polarization on transverse strain
	7.1.4. Dependence of the nuclear-spin polarization on pumping rate

	7.2. Testing the model against experimental data
	7.3. Conclusions


	Main results
	Theses
	Bibliography
	Appendix
	A. The experimental setups
	A.1. The experimental setup for the NMOR experiment
	A.2. The experimental setup for the GSLAC experiment
	A.3. The experimental setup for the DNP experiment



