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Abstract: Recently, promising results were obtained in studies of the electrocaloric effect in thin films.
Therefore, research into this effect at high applied electric field values in bulk ferroelectrics is an
important task for those scoping out materials that could be appropriate for cooling devices based on
the electrocaloric effect. The present study addresses electrocaloric effect in (1−x)(0.8Na1/2Bi1/2TiO3-
0.2BaTiO3)−xCaTiO3 solid solutions by the direct method in electric fields ranging from 0 up to
100 kV/cm and at temperatures of up to 150 ◦C. The choice of 0.8Na1/2Bi1/2TiO3-0.2BaTiO3 as the
starting composition is motivated by high spontaneous polarization within the studied range of
electric fields, while CaTiO3 is added to reduce depolarization temperature at, and below, room
temperature. In the studied temperature range, the maximal value of electrocaloric effect with
temperature change of ∆T = 1.0 ◦C was found in the composition with x = 0.050 at 100 ◦C, having
significant contribution from the entropy jump at the first-order phase transition induced by an
electric field. At increasing CaTiO3 concentration, the attainable ∆T decreases. Measurements of
polarization current, which were taken simultaneously with ∆T measurements, allowed us to study
differences between ∆T obtained by the direct and the indirect methods.

Keywords: sodium bismuth titanate; solid solutions; electrocaloric effect; dielectric polarization;
phase transitions; Maxwell relation

1. Introduction

Recently, the electrocaloric effect (ECE) has attracted great interest, as it could be
applied for designing active cooling elements, especially in micro and power electronics,
and environmentally friendly air-conditioning and cooling systems. As a consequence, a
large number of electrocaloric effect studies have been published (see a recent review by
Barman et al. [1]). They bring a certain optimism regarding the prospect of implementation
of electrocaloric cooling. First of all, it concerns ECE obtained in thin films. The promising
results are obtained at high electric fields not suitable for bulk materials [2,3]. At the
same time, the extremely small heat capacity of thin films significantly reduces practical
application opportunities. Nevertheless, the possibility of such application is already
demonstrated in PVDF thin film [4].

Regarding ECE in bulk ferroelectrics, two cases should be considered separately:
(1) moderate electric fields and (2) high electric fields. In the easily accessible moderate
electric field range (20–30 kV/cm), only a few compositions have been found with values of
ECE temperature change ∆T exceeding 1 ◦C. All of these are related to entropy change at a
first-order phase transition, which is induced by an electric field. One of these compositions
is Pb0.99Nb0.02(Zr0.70Sn0.20Ti0.05)0.98O3, which belongs to Pb(Sn,Zr,Ti)O3 solid solutions
and has the largest values of ∆T found until now in this electric field range (2.6 ◦C at
30 kV/cm) [5]. It is established that the reason for such high ∆T values is the electric field-
induced phase transition between ferroelectric and paraelectric states around 160 ◦C. Values
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of ∆T at the first-order phase transition between ferroelectric and antiferroelectric states,
observed for this composition at lower temperatures, as well as for other Pb(Sn,Zr,Ti)O3
compositions, are much lower [6,7]. Unfortunately, the temperature region of the most
expressed ECE in this case is not appropriate for cooling devices. PbSc1/2Ta1/2O3 (PST)-
based compositions are much more promising from this point of view. It is found that,
at the first-order phase transition between ferroelectric and paraelectric states in partly
B-site-ordered PST, observed in the temperature range from 0 to 10 ◦C, ∆T exceeds 1 ◦C at
20 kV/cm [8]. Later, increased B-site ordering and modification of PST with Sb allowed a ∆T
increase of up to 1.5–1.8 ◦C at 25 kV/cm [9,10]. Still, this value is below the level necessary
for implementing a promising prototype, which goes beyond mere demonstration of the
working principle. At the moment, it seems that there are no suggestions for seeking out
new materials with higher values of ∆T in this electric field range.

Another way to increase ∆T is to apply higher electric fields. Indeed, in PST, at
50 kV/cm, ∆T reached 2.3 ◦C [9]. Promising values of ∆T even at higher electric fields,
exceeding 100 kV/cm, were reported in recent years. This was achieved by reducing the
sample thickness and creating multilayers. In such a case, the reduced thickness allows
one to increase the applied electric field, while the multilayer structure compensates for
reduced heat capacity of a thin single layer. In 0.9PbMg1/3Nb2/3O3-0.1PbTiO3 ceramics
at 160 kV/cm, ∆T reaches 3.5 ◦C [11]. In Ba(Ti0.8Zr0.2)O3 ceramics at 145 kV/cm, ∆T
is 4 ◦C [12], while in a multilayer structure of the same composition, even ∆T of 6 ◦C
was achieved at 150 kV/cm [13]. Taking into account the large passive heat capacity in
multilayer structures, which does not contribute to ECE, but consumes part of the gen-
erated heat [14], such a high value of ∆T is surprising. ∆T of 4 ◦C is reported also in a
BaTiO3 multilayer structure, but at two very different applied electric field values—176 and
350 kV/cm [15,16]. In a PST multilayer structure, ∆T of 5.5 ◦C was observed at
290 kV/cm [14]. Lower values are obtained in PbMg1/3Nb2/3O3—at 90 kV/cm, ∆T of
2.4 ◦C was reported by Rožič et al. [17], and only 1.5 ◦C in Peräntie et al. [18]. Such results
bring optimism about increasing ∆T by increasing of applied electric field. Even though
the obtained values of ∆T are remarkably lower compared with thin films, they are usu-
ally within a range useful for development of the first prototype coolers with real output
power, assuming problems related with breakdown fields are resolved. Unfortunately,
measurements of ∆T in bulk ceramics at high electric fields are published rarely. More-
over, sometimes they are not mutually consistent, which can be seen also from the results
mentioned in the previous paragraph.

The experimental results described above are obtained via direct measurement of
the temperature change created by ECE (heat flow measurements by adapted DSC are
also used). As follows from a large number of published results, another method—the
indirect approach—is even more widely used for the study of ECE. In this case, ∆T values
are calculated using the Maxwell’s relations from electric field-temperature dependences
of polarization P(E,T), which are extracted from experimentally measured polarization
hysteresis loops. The great popularity of such an approach is understandable—the experi-
mental part is much easier to implement. It is especially valuable for studies in thin films,
where performing direct ECE measurements is extremely complicated. Promising values
of ∆T, obtained by the indirect method in PbZr0.95Ti0.05O3 thin film [19], alone started the
“renaissance” in ECE research.

In Na1/2Bi1/2TiO3 (NBT)-based materials, ∆T values above 1 ◦C, as calculated by
an indirect method, are reported repeatedly, paying more attention to the morphotropic
phase boundary of NBT–BaTiO3 solid solutions. Controversial results are obtained in a
pure 0.94NBT–0.06BaTiO3 composition: in [20], the minimum of temperature dependence
of ∆T (∆T = −2.3 ◦C at 70 kV/cm) is found at 50 ◦C; starting at room temperature, only
positive, monotonously increasing values of ∆T at higher temperatures were measured by
Li et al. [21]. Modification of this composition by 0.5 wt% of La [22] facilitated improved
∆T (∆T = −2.6 ◦C at 50 kV/cm, 65 ◦C). A similar value in the same temperature range was
obtained in 0.9NBT–0.1K1/2Bi1/2TiO3 [23]. ECE in NBT, doped with various lanthanides,
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is surprisingly sensitive to the choice of doping element [24], in particular for doping with
2 mol% Gd—reaching ∆T = 1.8 ◦C (90 kV/cm, 150 ◦C). Positive and negative ECE was
frequently reported in the same composition across different temperature ranges [20–22].

∆T values obtained by a direct method are lower. Le Goupil and Alford [25] have
observed ∆T = 1.5 ◦C at 70 kV/cm, 125 ◦C in a 0.94NBT–0.06KNbO3 solid solution. A
similar value was obtained at 100 ◦C in 0.94NBT–0.06BT, where 1.5 mol% Bi was replaced
by Sm [26].

The correspondence between the direct and the indirect methods is discussed re-
peatedly. Sometimes both methods give comparable results [27–29], although sometimes
obtained results are clearly different [29–31]; even the sign of ∆T may differ [30,32]. None-
godicity [31] and the presence of polar nanoregions (PNRs) [29,33] are used to explain such
nonconformance. Violation of conditions necessary to apply the Maxwell’s relations due
to polydomain state existing in the studied materials is also mentioned [30,34]. Usability
of polarization data should be treated with extreme caution if they are extracted from
polarization hysteresis loops in bipolar electric fields, because reorientation of domains is
essential for this kind of loops. Polarization hysteresis loops in the ferroelectric state should
be at least with well-expressed saturation of polarization, while in the nonpolar phase,
they should have low contribution of dielectric losses. Ignoring these requirements yields
disputable results, such as negative ECE, sometimes obtained in Na1/2Bi1/2TiO3-based
compositions [22,23,35,36], or physically unrealistically high values of ∆T [37].

Taking into account the above considerations, extending the range of ECE results
obtained by the direct method across a higher range of electric fields is of great impor-
tance. The presented research reports on detailed studies of ECE temperature change
∆T in (1−x)(0.8Na1/2Bi1/2TiO3-0.2BaTiO3)−xCaTiO3 ((1−x)(0.8NBT-0.2BT)−xCT) solid
solutions in electric field range up to 100 kV/cm. The initial composition of this group—
0.8NBT-0.2BT (x = 0.00)—is located in the tetragonal side from the morphotropic phase
boundary in the phase diagram of NBT-BT solid solutions. This choice is motivated by
well-expressed ferroelectric–nonferroelectric phase transition in this composition with the
largest polarization and the highest jump of lattice parameter comparing to the whole
NBT-BT concentration range [38]. CaTiO3 was added in order to reduce the depolarization
temperature and increase ∆T around and below room temperature, which is a relevant
condition considering the application of ECE in cooling devices.

2. Materials and Methods

(1−x)(0.8Na0.5Bi0.5TiO3-0.2BaTiO3)−xCaTiO3 ((1−x)(0.8NBT-0.2BT)−xCT) ceramics
with various CaTiO3 concentrations (x = 0.050, 0.075, 0.100, and 0.125) were prepared by
solid-state reaction from chemical-grade oxides and carbonates: Bi2O3 (purity 99.9%), TiO2
(99.8%), Na2CO3 (99%), BaCO3 (≥99%), and CaCO3 (≥99%). The two-stage calcination
was performed for 2 h at temperatures 850 ◦C and 1000 ◦C. Sintering was carried out for
3 h at 1140–1200 ◦C depending on composition.

The crystal structures of the crushed ceramic samples were determined using a PANa-
lytical X’Pert PRO X-ray diffractometer (Malvern Panalytical Ltd., Malvern, UK).

Weak-field dielectric permittivity measurements were performed in a temperature
range from room temperature to above 400 ◦C in the frequency range from 130 Hz to 1 MHz,
using an impedance analyzer HP precision LCR meter 4284A. Samples of the compositions
x = 0.050 and x = 0.075 were poled at room temperature before measurements.

Direct measurements of ECE (Figure S1, Supplementary file) were taken in sam-
ples of two different thicknesses for each (1−x)(0.8NBT-0.2BT)−xCT composition: up to
70 kV/cm for samples 0.3 mm thick and up to 100 kV/cm for samples 0.2 mm thick. Sil-
ver electrodes were fired on the sample surfaces at temperatures 500–600 ◦C. Then, 15 s
long electric field pulses of various amplitudes up to 2 kV were applied via high-voltage
amplifier TREK 609E-6. Temperature change of the measured sample and polarization
current were simultaneously measured by Keithley nanovoltmeter 2182A and Keithley
picoampermeter 6485, accordingly. In order to perform the measurements of temperature
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change, a thin copper–constantan thermocouple was glued with silver paste onto the
sample surface, which was electrically grounded. For application of voltage to the sample,
thin copper wires (0.08 mm diameter) were also glued onto the sample electrodes. The
edges of each sample were covered with a breakdown-resistant acryl coating. This coating,
together with the glued thermocouple and the wires used to apply an electric field, created
passive thermal capacity. The impact of this thermal capacity was evaluated in two ways:
(1) by calculating it from weight of the glue, wires, and lacquer, and (2) by comparing
the measured temperature change ∆T values of the samples of different thicknesses (from
0.5 mm, with only minor influence of passive thermal capacity to 0.2 mm) with the same
composition. It was found that the measured ∆T value of 0.3 mm thick samples is 23%
lower, and 41% lower in for 0.2 mm samples—compared with the real temperature change
caused by ECE. The shape of time dependence of the temperature change ∆T(t) was
carefully followed for absence of narrow pulses induced by change of electric field. The
measured ∆T(t) curves reflected slow thermal decay of temperature difference (Figure S2,
Supplementary File), related to incomplete thermal isolation between the sample and the
environment, without any additional features. During the measurements, electric field
dependence of ∆T was measured at sequential electric field pulses at chosen temperatures.
The temperature-dependent measurements were taken in a Delta 9023 chamber up to
150 ◦C.

Polarization hysteresis loops were measured by the Sawyer–Tower method at trian-
gular pulses, with voltage U(t) slope of 100 V/s. Temperature dependence of remnant
polarization was determined by measuring static pyroelectric effect on heating for the
samples previously poled at room temperature at E = 70 kV/cm.

3. Results and Discussion

The X-ray diffraction patterns of the studied (1−x)(0.8NBT-0.2BT)−xCT compositions
confirm pure perovskite structure. Splitting of pseudocubic [200] maximum for the compo-
sition x = 0.050 at 2θ = 46◦ is seen, while at higher CaTiO3 concentrations, no deviations
from the cubic pattern were detected (Figure 1).

Crystals 2022, 12, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 1. X-ray diffraction patterns at room temperature for (1−x)(0.8NBT-0.2BT)−xCT compositions 
with various concentrations. 

Temperature dependences of the dielectric permittivity (ε) of dielectric losses (tgδ) 
for all studied compositions are presented in Supplementary file, Figure S3, and reveal 
characteristics for NBT-based composition features: diffused frequency-independent 
maximum (for studied compositions located around 250 °C) and frequency-dependent 
shoulder at lower temperatures. Well-expressed, frequency-independent maximum in tgδ 
dependence on temperature of composition x = 0.05 slightly above 100 °C is related to 
depolarization temperature (Td). For composition x = 0.075, corresponding anomaly is 
transformed into small jump close to 60 °C.  

Polarization hysteresis loops for all studied compositions at bipolar electric field 
pulses at various temperatures are shown in Figure 2. Well-expressed double hysteresis 
loops for the compositions x = 0.050 and x = 0.075 are observed in the region of Td. Signs 
of a double hysteresis loop at room temperature region are also observed for the compo-
sition x = 0.100, while P(E) for the composition x = 0.125 is almost linear.  
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Temperature dependences of the dielectric permittivity (ε) of dielectric losses (tgδ) for
all studied compositions are presented in Supplementary file, Figure S3, and reveal charac-
teristics for NBT-based composition features: diffused frequency-independent maximum
(for studied compositions located around 250 ◦C) and frequency-dependent shoulder at
lower temperatures. Well-expressed, frequency-independent maximum in tgδ dependence
on temperature of composition x = 0.05 slightly above 100 ◦C is related to depolarization
temperature (Td). For composition x = 0.075, corresponding anomaly is transformed into
small jump close to 60 ◦C.

Polarization hysteresis loops for all studied compositions at bipolar electric field pulses
at various temperatures are shown in Figure 2. Well-expressed double hysteresis loops for
the compositions x = 0.050 and x = 0.075 are observed in the region of Td. Signs of a double
hysteresis loop at room temperature region are also observed for the composition x = 0.100,
while P(E) for the composition x = 0.125 is almost linear.
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Temperature dependences of remnant polarization Prem(T) for the compositions which
are in the ferroelectric phase at room temperature (x = 0.050, x = 0.075) are presented in
Figure 3. The dependences were determined in two ways: (1) calculated from measure-
ments of static pyroelectric effect, and (2) extracted from bipolar hysteresis loops at different
temperatures. In both cases, Prem(T) decreases if temperature is increased, but, in the case
of static pyroelectric effect, this dependence is more expressed. The abrupt drop of Prem(T)
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around 100 ◦C for the composition with x = 0.050 and around 40 ◦C for the composition
with x = 0.075 indicates the region of depolarization temperature Td.
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Figure 3. Temperature dependences of maximal (Pmax) and remnant (Prem) polarization for
(1−x)(0.8NBT-0.2BT)−xCT compositions with x = 0.050 (a) and 0.075 (b), determined from po-
larization hysteresis loops, as well as from static pyroelectric effect measurements. Inset in
(a): Temperature dependence of the critical electric fields for the composition with x = 0.050. Inset in
(b): Temperature dependence of the critical electric fields for the composition with x = 0.075.

Double hysteresis loops for (1−x)(0.8NBT-0.2BT)−xCT compositions x = 0.050 and
x = 0.075 allow us to determine the temperature dependence of the critical electric fields in
these compositions (insets in Figure 3). For both compositions, temperature dependence of
the critical electric field Ec2, corresponding to the phase transition from ferroelectric state to
nonpolar state upon reducing the electric field, crosses the x-axis (Ec2 = 0). This temperature
indicates the temperature at which the poled state remains after electric field is switched
off in the direction of low temperatures. Therefore, this is another way to determine the
depolarization temperature Td. For the composition with x = 0.050, Td is 100 ◦C, while
for the composition with x = 0.075, it is 50 ◦C. Temperature dependence of another critical
electric field, Ec1—characterizing the phase transition from nonpolar to ferroelectric state
upon increasing of field—is less expressed.

Temperature dependences of ∆T of all studied compositions at 100 kV/cm pulses are
presented in Figure 4. The presented experimental data are measured upon switching off
the electric field pulse in order to avoid contribution of the Joule heat in the measured
∆T, which appears at the highest electric fields and temperatures. The composition with
x = 0.050 at room temperature is in ferroelectric state, which is the reason for ∆T being
low. Significant increasing of ∆T(T) is observed around 100 ◦C, corresponding to the
depolarization temperature, where a drop in remnant polarization occurs (Figure 2). The
diffused jump of ∆T(T) in the temperature range between 70 and 130 ◦C is apparently
related to a mixed ferroelectric–nonpolar state at E = 0 below 130 ◦C. With increasing
temperature, concentration of the ferroelectric phase at E = 0 decreases. In the case of
the composition with x = 0.075, the jump is shifted towards lower temperatures and is
more pronounced. The broad maximum of ∆T(T) indicates that the applied electric fields
are sufficient to induce ferroelectric state in a wide range of temperatures above Td. In
the compositions with higher concentrations of CaTiO3, Td is no longer found in the
temperature range above room temperature, and ∆T only weakly depends on temperature,
while ∆T values are significantly reduced.
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switching off electric field pulse E = 100 kV/cm.

Electric field dependences of ∆T for all studied compositions at different temperatures
are shown in Figure 5. For the composition with x = 0.050 (Figure 5a), at measurement
temperatures up to 90 ◦C, where the composition is in the ferroelectric state, ∆T is low
across the whole electric field E range, with weakly negative curvature of ∆T(E). Above
this temperature range, ∆T(E) contains significant contribution from the jump, which is
observed in the vicinity of the critical electric field Ec and corresponds to the entropy jump
(∆SPT) characteristic for the first-order phase transition:

∆TPT(Ec) =
T(Ec) · ∆SPT

cEc

(1)

where cEc is heat capacity at the critical electric field. The ∆TPT value, roughly evaluated
from ∆T(E), is 0.65 ◦C. On the other hand, ∆TPT can be evaluated indirectly from the
Clausius–Clapeyron equation:

∆TPT =
Tc(Ec)

cEc

dEc

dT
· ∆P (2)

Considering that Equation (2) is derived from the condition that chemical potentials
of both phases are equal, it does not take into account the actually-observed hysteresis of
the critical electric field values upon increasing and decreasing the electric field (Ec1 or Ec2—
accordingly) due to metastability of both states. For this reason, temperature dependence
of the critical electric field Ec(T), which could be used in Equation (1), should have values
between Ec1(T) and Ec2(T). In order to compare directly and indirectly determined values
of ∆TPT for the composition with x = 0.050, we have used the polarization jump at phase
transition ∆PPT and slopes of Ec1(T) and Ec1(T), as well as heat capacity of 0.92NBT–0.08BT
at E = 0 [39], which should be close to the heat capacity of the measured compositions.
Near the depolarization temperature, dEc1/dT = 475 V/cm and dEc2/dT = 775 V/cm. ∆TPT

calculated from these values is 1.3 and 2.2 ◦C accordingly—which is significantly higher
than the directly measured value. The reason for such a difference could be the nature of
the relaxor state existing in this case [38], which can be considered as a mixture of polar
(polar nanoregions) and nonpolar phases instead of a pure nonpolar (paraelectric) phase.
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pulse is switched off.

For the composition with x = 0.075, transformation of ∆T(E) with increasing or de-
creasing temperature (Figure 5b) follows the same trend as for the composition with
x = 0.050. Obviously, due to lower Td, related to the phase transition induced by the electric
field, the jump of ∆T(E) is shifted towards lower temperatures, while the value of the jump
is similar.

At higher temperatures, ∆T(E) for the compositions with x = 0.050 and x = 0.075
becomes diffuse, losing signs of electric field-induced first-order phase transition, and
its values at maximal electric field pulses decrease significantly. At the same time, mod-
erate increasing of ∆T due to the Joule heat, upon application of an electric field pulse,
is observed.

∆T(E) for the composition with x = 0.075 (Figure 5c) maintains the inflection point,
presumably reflecting the diffuse transfer to the partly ferroelectric state, which almost
disappears with increasing temperature. In the composition with x = 0.125, the inflection
point disappears completely at higher temperatures (Figure 5d).

The difference between ∆T values with the electric field switched on and off is not
related to Joule heat alone. This behavior is illustrated in the case of the composition with
x = 0.075 at T = 40 ◦C (Figure 6a), where a significant difference between ∆T values appears
already at moderate temperatures and electric fields. The reason for such a difference is
slow relaxation of polarization observed in the unipolar P(E) cycle (Figure 6b), which is
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responsible for P(E) hysteresis and persists even after the cycle is finished and electric field
reaches E = 0. Relaxation is complete within a few minutes and can be followed by measure-
ment of polarization. However, the corresponding contribution to ∆T is outside the peak
of ∆T(t), which is used to measure ∆T and is determined by thermal relaxation between
the sample and thermocouple. This slow relaxation of polarization is very expressed in the
temperature range where the electric field induced phase transition occurs.
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(P(E) is measured at E = 67 kV/cm unipolar pulse).

Experimentally measured polarization data are frequently used to determine ∆T by the
Maxwell relation. In the ferroelectric state, data from the upper branch of bipolar hysteresis
loops in the electric field ranging from the maximal value Emax to 0 are used for this purpose.
Earlier, we noted that polarization, especially in the case of bipolar electric field pulses,
depends significantly on ferroelectric domains switched by an electric field. Obviously, a
switched domain pattern at different temperatures can be different, while polarization at
fixed values of E (extracted from polarization hysteresis loops) upon change of temperature
does not describe the continuous development of the same domain state. Especially in
the case where Emax does not significantly exceed the coercive electric field, temperature
dependence of concentration of switched domains is remarkably reduced comparing to
the fully oriented case. As the coercive field usually decreases upon approaching the
phase transition, concentration of the domains oriented in direction of electric field also
increases. It can lead even to increased polarization upon increasing of temperature, which
results in negative ECE, sometimes determined in NBT-based compositions by the indirect
method [28–30]. At first sight, the problem with dependence of remnant polarization on
domain switching can be avoided using measurements of static pyroelectric coefficient.
However, unfortunately also in this case, contribution of domain reorientation or, more
presumably, irreversible shift of domain boundaries contributes to polarization. These
problems are illustrated in Figure 3. Temperature dependence of remnant polarization
extracted from polarization hysteresis loops is more weakly expressed, compared with
remnant polarization determined from measurements of static pyroelectric effect, and the
corresponding Td is shifted towards higher temperatures. At the same time, temporary
change of direction of temperature for the composition with x = 0.050 around 50 ◦C (inset
in Figure 2) clearly reveals irreversibility, related to irreversible domain processes. On the
other hand, incomplete switching of domains, which should be quite a common behavior
in polydomain ferroelectrics, reduces the value of ∆T compared with the fully aligned
domain pattern. Therefore, both directly measured values—∆T and (∂P/∂T)E—can be
far from thermodynamic conditions where direct and indirect values can be compared.
Their coincidence in the ferroelectric state within the electric field range usually accessible
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for bulk ferroelectrics (where contribution of domain processes is expected) could be
rather accidental.

Outside of a stable ferroelectric state, polarization consists of solely electric field-
induced polarization, and evaluation of ∆T from the Maxwell relation seems more appro-
priate. As unipolar pulses are used for measurements of ∆T, P(E) dependence could be also
more adequate if measured at unipolar pulses. In the present case, the Maxwell relation
will be applied to temperature dependence of polarization at different electric field values,
obtained from measurements of polarization current at the same electric field pulses which
were used in the measurements of ∆T (Figure 7).
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0.2BT)−xCT compositions with x = 0.050 (a), x = 0.075 (b), x = 0.100 (c), and x = 0.125 (d), obtained
from measurements of polarization current simultaneously with measurements of ∆T.

From our point of view, comparison of values of ∆T obtained by the direct and the
indirect methods is not the best way, because integration of (∂P/∂T)E does not allow one
to extract correspondence between both methods at different ranges of electric field. For
that reason, differential layout of the Maxwell formula (Equation (1)) was transformed,
allowing us to compare dT/dE and (∂P/∂T)E.

dT
dE

= − T
cE

·
(

∂P
∂T

)
E

(3)
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As with the calculation of the jump of ∆TPT, dependence of cE on the electric field is
neglected and values of heat capacity are borrowed from [39].

Examples of comparison of the results obtained by the direct and the indirect methods
are presented in Figure 8. In the case where ∆T(E) has a clear enough inflection point, the
shapes of curves representing the left and the right side of Equation (3) mutually correlate.
However, the differences between these values can be significant. If the inflection point is
not as pronounced (maximum of dT/dE as a function of E is low), even the shapes of the
two curves do not correlate. This might partly be explained by rather flat P(T)E dependence
in this case (low values of (∂P/∂T)E accordingly) when any additional contribution to
polarization can seriously influence the values of (∂P/∂T)E. From another point of view,
as it was assumed above, the expressed inflection point could reflect at least a partial
phase transition between nonpolar and ferroelectric phases, which could present a more
appropriate case for using the Maxwell equation rather than rearrangement of polarization
in the nonpolar phase clearly representing the relaxor state.
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Figure 8. Comparison of dT/dE values obtained by the direct measurements of ∆T(E) and extracted
from P(T,E) according to Equation (3), using data from experimentally measured polarization current,
for (1−x)(0.8NBT-0.2BT)−xCT compositions with x = 0.100 (a) and x = 0.125 (b).

4. Conclusions

The direct method is used for studies of electrocaloric effect in (1−x)(0.8Na1/2Bi1/2TiO3-
0.2BaTiO3)−xCaTiO3 solid solutions within the temperature range up to 150 ◦C at electric
field pulses up to 100 kV/cm. The maximal values of ECE temperature change ∆T are
found in the temperature region slightly above depolarization temperature. In the case of
the composition with x = 0.050, ∆T reaches 1.0 ◦C at 100 ◦C. Approximately 0.65 ◦C in the
total value of ∆T is accounted for by the contribution from the entropy jump at the phase
transition between relaxor and ferroelectric states induced by an electric field. The directly
measured temperature change is much lower compared with the temperature change
calculated using the Clausius–Clapeyron equation. Such a difference is explained by the
nature of relaxor state, which can be considered as a mixture of polar (polar nanoregions)
and nonpolar phases instead of pure nonpolar (paraelectric) phase. In a wide temperature
range around the depolarization temperature, values of ∆T measured upon switching off
the electric field pulse are lower than the values obtained upon switching on the electric
field pulse. The reason for the lower values is slow relaxation of polarization.

Increasing CaTiO3 concentrations result in lower depolarization temperatures, but
simultaneously significantly decrease the attainable values of ∆T.

In the temperature range above the depolarization temperature, a novel approach
is used to compare the direct and indirect method of study of ECE. In the temperature
range where the electric field at least partly induces a ferroelectric state, the shape of the
calculated electric field dependence of the derivative dT/dE corresponds to the directly
measured dependence, although the absolute values can differ substantially. Far above the
depolarization temperature, correspondence between dT/dE obtained in both cases is lost.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cryst12020134/s1, Figure S1: Principal diagram of experimental
setup for measurements of ∆T and polarization current. Thermocouple is attached to two samples
A and B. Samples are inserted in Delta chamber 9023 for measurements at different temperatures;
HV—source of high voltage pulses TREK 609; nV—nanovoltmeter Keithley 2182A for measurement
of ∆T; picoammeter Keithley 6485 for measurement of polarization current.; Figure S2: Example of
dependence of temperature difference between sample and environment on time during measurement
of ECE. Steep increasing and decreasing of ∆T(t) corresponds to switching on and off of field pulse,
accordingly.; Figure S3: Temperature dependences of tdhe real part of dielectric permittivity (solid
lines) at several frequencies (1 kHz, 20 kHz and 400 kHz) and of dielectric losses (dashed lines) on
heating of all studied compositions of (1−x)(0.8NBT-0.2BT)-xCT: x = 0.050 (a), x = 0.075 (b), x = 0.100 (c)
and x = 0.125 (d). Samples of compositions x = 0.050 and x = 0.075 were poled before measurements.
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2. Lu, S.G.; Rožič, B.; Zhang, Q.M.; Kutnjak, Z.; Xinyu, L.; Furman, E.; Gorny, L.J.; Lin, M.; Malič, B.; Kosec, M.; et al. Organic and
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