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Abstract: In recent years, aqueous rechargeable lithium-ion batteries (ARLIBs) have attracted at-
tention as an alternative technology for electrical storage. One of the perspective battery anode
materials for application in ARLIBs is Bi2Se3, which has already shown good perspectives in the
application of conventional lithium-ion batteries (LIBs) that use organic electrolytes. In this study, the
electrochemical properties of Bi2Se3 thin films with two different layers on the electrode surface—the
solid electrolyte interphase (SEI) and the Bi2O3 layer—were investigated. The results of this work
show that the formation of the SEI layer on the surface of Bi2Se3 thin films ensures high diffusivity of
Li+, high electrochemical stability, and high capacity up to 100 cycles, demonstrating the perspectives
of Bi2Se3 as anode material for ARLIBs.

Keywords: bismuth selenide (Bi2Se3); anode; aqueous rechargeable lithium-ion batteries (ARLIBs);
solid electrolyte interphase (SEI); bismuth oxide (Bi2O3); electrochemical performance

1. Introduction

LIBs have dominated the field of battery technology in the last few decades due to
their remarkable advantages such as high energy density (>200 Wh kg−1), high Coulombic
efficiency (>95%), and long cycle life (3000 cycles at the deep discharge of 20%) [1–3]. The
disadvantages of lithium-ion batteries include the flammability of non-aqueous solvents
(e.g., ethylene carbonate, dimethyl carbonate, etc.), which may lead to accidents, and
the high costs of fabrication (the average LIB cell cost in 2021 was EUR 104/kWh) [4].
Alternatively, in 1994, Dahn’s group proposed aqueous rechargeable lithium-ion batteries
(ARLIBs) consisting of LiMn2O4/VO2 in the 5 M LiNO3 electrolyte [5]. This battery
demonstrated an average voltage of 1.5 V with an energy density of 75 Wh kg−1, which
was higher than the energy density of Pb-acid batteries (30 Wh kg−1) [5].

For a long time, investigations on the development of aqua-based batteries were sus-
pended due to several serious limitations—poor cycling performance, low voltage potential
window (1.23 V), and decomposition of the water, which made these batteries commercially
unviable [6]. In the last 5 years, the requirement for cheap, safe, and environmentally
friendly energy storage devices has generated a great deal of interest. ARLIBs have been
shown to be one of the potential candidates for the most suitable battery systems to meet
these requirements. Thus, the interest in research into this battery technology has only
increased [7]. Such a rapid development might allow for the production of ARLIBs with
properties that are competitive in the worldwide market [8].

While significant progress has been achieved in the development of cathode materials
(e.g., enhancement of mechanical stability), the research on anode materials has been
limited [9]. Among a variety of material candidates for the ARLIBs anodes (e.g., Li1.2V3O8,
VO2, TiP2O7) [10–12], the TiP2O7 is considered to be the most promising [10,13]; however,
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it suffers significant capacity fading during charge/discharge processes, which might be
related to the deterioration of the anode material [11].

Another possible perspective anode material for ARLIBs comes from bismuth chalco-
genides Bi2X3 (X = S, Te, Se), which are unique lamellar materials with high ionic conductivity
that have shown great performance in organic electrolyte LIBs [12]. Among the chalcogenides,
Bi2Se3 has the highest density and theoretical volumetric capacity (3667 mAh cm−3) [14],
which, being coupled with its high electrical conductivity (10.6 S cm−1 at 300 K) [15],
allows for the possibility of fabricating compact electrical devices [14,16].

The crystal lattice of Bi2Se3 consists of a sequential layer arrangement that is perpen-
dicular to the trigonal C-axis [17]. Each molecule consists of five atomic planes arranged in
the following pattern: Se1-Bi-Se2-Bi-Se1, where van der Waals gaps are located between
Se1 atoms [18]. The thickness of such a quintuple layer is about 1 nm. The arrangement of
quintuple layers provides enough space for Li+ during intercalation and deintercalation
processes, which makes them suitable anode materials for LIBs [19].

While both Bi2Se3 and TiP2O7 have higher potential for Li+ intercalation than for H2
evolution, which allows for avoiding unwanted side reactions [20], Bi2Se3 is still considered
a more unique material due to its quintuple layer structure. Bi2Se3 has a ~4 times higher
theoretical gravimetric capacity than TiP2O7 (491 mAh g−1 [12] vs. 121 mAh g−1 [21]).

Additionally, in anode material research, special attention should be paid to the
formation of the solid-electrolyte interphase (SEI) layer, which impacts the safety and
stability of the anode electrode [22]. In aqueous electrolytes, the SEI layer consists of
two layers: Li2O (inner layer) and Li2CO3 (outer layer), which are formed by Li+ reactions
with dissolved O2 and CO2 [23–27]. For the ARLIBs, it is necessary to use concentrated
aqueous electrolytes, which will ensure the formation of stable SEI layers as, in the diluted
electrolytes, the SEI layer quickly undergoes hydrolysis and dissolves [25,27].

In this work, the electrochemical properties of Bi2Se3 thin films are investigated for
the first time to evaluate their possible application as anode electrodes in ARLIBs. To
examine the formation of the SEI layer and its effect on the performance of the Bi2Se3 anode,
measurements were carried out in two different potential ranges. One of the potential
ranges ensured the formation of the SEI layer on the surface of Bi2Se3, and the other did
not. 5 M LiNO3 solution, which is electrochemically more stable than LiCl and Li2SO4 [28]
and can be prepared in high concentrations (up to 9 M) [6], was used as an electrolyte.

2. Material and methods
2.1. Synthesis and Characterization of Bi2Se3

Bi2Se3 thin films were synthesized on microscope glass slides (25 × 75 mm) using the
physical vapor deposition method [29–31]. The synthesis procedure was performed in a
programmable quartz tube (length = 60 cm, diameter = 4.5 cm) furnace (GSL-1100x-S, MTI
Corp.) with adjustable valves on both sides.

In total, 15 mg of raw Bi2Se3 (Sigma-Aldrich, Burlington, MA, USA, 99.999%) was
weighted in ceramic boats using analytical scales (KERN “ABP 200-5DM”, ±0.01 mg,
Balingen, Germany). Inside the quartz tube at certain temperature regions, microscope glass
slides (330–380 ◦C) and raw Bi2Se3 (585 ◦C) were inserted. The quartz tube was connected
to the N2 gas cylinder (Linde, Berlin, Germany, 99.999%) and a vacuum pump. Before the
synthesis, the quartz tube was purged with N2 and vacuumed. The synthesis of Bi2Se3 thin
films was performed according to the following protocol: first, linear heating of the quartz
tube for 45 min up to a temperature of 585 ◦C; second, maintaining a constant temperature
for 15 min (pressure 2–3 Torr); and third, gradual cooling down to 470 ◦C, reinjecting N2
gas into the tube up to atmospheric pressure, and cooling down to room temperature.

The morphology and stoichiometry of the samples were investigated with a scanning
electron microscope (SEM) (Hitachi FE-SEM S-4800, Marunouchi, Tokyo, Japan) equipped
with an energy-dispersive X-ray (EDX) (Bruker XFLASH 5010, Billerica, MA, USA) detec-
tor, X-ray diffraction analysis (XRD) (Bruker D8 Discover, Billerica, MA, USA), and X-ray
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photoelectron spectroscopy (XPS) (ThermoFisher Escalab 250Xi+, Walthman, MA, USA) with
monochromatic Al-Kα X-ray source).

2.2. Electrochemical Measurements

The electrochemical measurements were performed at room temperature using a 3-
electrode cell with 3 M Ag/AgCl as a reference electrode (RE), Pt wire as a counter electrode
(CE)—(ItalSens, PalmSens, Houten, The Netherlands), and Bi2Se3 thin film on the glass
substrate as a working electrode (WE)—(Supplementary Figure S1). 5 M LiNO3 (Ther-
moFisher, Walthman, MA, USA, analytical grade 99%) was used as an electrolyte. To ensure
appropriate electrical contact, copper wire was fixed to the surface of the working electrode
with silver conductive paint (Electrolube, Ashby-de-la-Zouch, UK). Cyclic voltammetry
(CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge/discharge
measurements were performed by potentiostat PalmSens4. CV curves were measured at
different scan rates (0.1–1.0 mV s−1). The galvanostatic charge/discharge measurements
were carried out at room temperature with a C-rate of 1 C. EIS spectra were measured
in the frequency range of 0.01–10000 Hz at open circuit potential before and between the
galvanostatic charge/discharge cycles (after the 1st, 2nd, 5th, 50th, and 100th cycle). After
CV measurements, the Bi2Se3 samples were washed ~4–5 times with deionized water,
dried, and investigated using the SEM, EDX, and XPS analysis methods.

3. Results and Discussion
3.1. Characterization of Synthesized Bi2Se3 Thin Film

To increase the effective interaction surface between the electrode and the electrolyte,
the synthesis method for Bi2Se3 thin films with nanoplates that grow at different angles
(partly disordered) to the substrate surface was selected [32,33] (Figure 1a). This type
of Bi2Se3 morphology has no dead volume or gap spacing shrinkage [34] which could
lead to the decrease of the anode active sites, thus making it a promising candidate as
anode material for ARLIBs. The size of the nanoplates varied between 1.0 and 8.0 µm.
The thickness of the synthesized Bi2Se3 thin films with partly disordered nanoplates
was between 350 and 500 nm. The EDX spectra (Supplementary Figure S2) showed
intensive peaks of C, O, Se, Si, and Bi. Si, O, and C peaks were the background signals
from the microscope glass slides on which Bi2Se3 was synthesized. The Se/Bi atomic
ratio determined from the EDX spectra was 1.44 ± 0.03, which is close to the theoretical
stoichiometric ratio of Bi2Se3 (1.50) and indicates a rather uniform chemical composition
of the films. The XRD pattern (Figure 1b) of Bi2Se3 powder obtained by scratching the
synthesized thin film off the substrate showed Bi2Se3 diffraction peaks, which refer to
the rhombohedral (R-3 m) crystal system of Bi2Se3 (Ref. card No. PDF 01-085-9274):
a = b = 4.13850 Å; c = 28.62400 Å, as well as cubic γ-Bi2O3 (I23) (Ref. card. No. PDF 01-074-
1375) with crystal system a = b = c = 10.08000 Å. It should be noted that the difference in
the peak intensity ratios between the reference cards and the actual XRD patterns obtained
for the powdered Bi2Se3 thin films most likely are related to the impact of the substrate
on the growth of Bi2Se3 thin films, resulting in the domination of certain crystallographic
growth directions [32,33]. The formation of Bi2O3 could be explained by the oxidation of
Bi2Se3 powder, which, due to its increased surface area after scratching, is more prone to
oxidation in an ambient environment.

3.2. Electrochemical processes and mechanisms of Bi2Se3 thin film

Cyclic voltammetry of Bi2Se3 thin films in 5 M LiNO3 at the scan rate of 0.25 mV s−1

in the potential range (−1.0 ÷ 1.3 V vs. Ag/AgCl) showed two cathodic peaks (I, II)
and four anodic peaks (III, IV, V, VI) (Figure 2a). The peaks I (−0.65 V vs. Ag/AgCl)
and III (0.02 V vs. Ag/AgCl) represent the intercalation/deintercalation processes of
Li+ according to the reaction in Equation (1) [19]. The peaks II (−0.71 V vs. Ag/AgCl)
and IV (−0.65 V vs. Ag/AgCl) are related to the substitution reaction of Bi2Se3 and
Li2Se (Equation (2)) [18,35]. Anodic peak V (0.61 V vs. Ag/AgCl) might describe a
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formation of NO2
− from NO3

− (Equation (3)) [36]. NO2
− can be rapidly oxidized back

to NO3
− due to the presence of dissolved O2 in the electrolyte [37]. The peak VI (0.84

V vs. Ag/AgCl) appeared only in the first cycle and was attributed to the formation of
the SEI layer, which, according to the literature on the other aqueous Li+ systems (Mo6S8,
carbon-coated TiO2, and carbon electrodes), is most probably composed of Li2O and Li2CO3
(Equations (4) and (5)) [24–26,38,39].
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Figure 1. (a)—SEM image of Bi2Se3 thin films on the glass substrate, (b)—XRD pattern of Bi2Se3

powder obtained by scratching the as-grown thin film off the substrate.
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Figure 2. Cyclic voltammograms of Bi2Se3 thin films in 5 M LiNO3 at the scan rates 0.25 mV s−1:
(a)—samples with SEI layer (−1.0 V ÷ 1.3 V vs. Ag/AgCl), (b)—samples with Bi2O3 layer
(−1.0 V ÷ 0.5 V vs. Ag/AgCl).

To avoid the formation of NO2
− in the solution (at 0.61 V vs. Ag/AgCl) and to

investigate the impact of the SEI layer on the stability and operation of the Bi2Se3 electrode
in the aqueous electrolyte, parallel experiments were performed in the narrower potential
range (−1.0 ÷ 0.5 V vs. Ag/AgCl) (Figure 2b). In this case, a new low-intensity anodic
peak VII (−0.05 V vs. Ag/AgCl) appeared starting from the second cycle. This peak might
be related to the formation of the Bi2O3 layer on the surface of Bi2Se3 by the reaction
with dissolved oxygen in the electrolyte (Equation (6)) [40,41]. For the wide potential
range (−1.0 ÷ 1.3 V vs. Ag/AgCl), this peak was not observed, which indicates that, after
the formation of the SEI layer on the surface of Bi2Se3, further formation of Bi2O3 was
inhibited. Further in the text, both potential ranges are referred to as “samples with the
SEI layer” (−1.0 ÷ 1.3 V vs. Ag/AgCl) and “samples with the Bi2O3 layer” (−1.0 ÷ 0.5 V
vs. Ag/AgCl).

It is important to note that the CV peak potential values obtained in this work may
differ from the values reported in the literature by 0.6–1.0 V in terms of the standard
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hydrogen potential scale. This is due to the fact that, in this work, the 3-electrode cell
configuration was used, which allowed us to measure the properties of the anode material
solely, while in the literature, the 2-electrode cell configuration was applied, thus measuring
the properties of the whole cell.

Bi2Se3 + xLi+ + xe− ↔ Li+x[Bi2Se3]x−, (1)

Bi2Se3 + 6Li+ + 6e− ↔ 3Li2Se + 2Bi, (2)

NO3
− + 2H+ +2e− → NO2

− + H2O, (3)

O2 + 4Li+ + 4e− → 2Li2O, (4)

2Li+ +
1
2

O2 + CO2 + 2e− → Li2CO3, (5)

4Bi3+ + 3O2 + 6e− → 2Bi2O3. (6)

For both samples with the formed SEI layer and with the Bi2O3 layer, the intensities of
peaks corresponding to Li+ intercalation/deintercalation processes (I, III) in subsequent cy-
cles increased (Figure 2a,b). The increase in the intensity of Li+ intercalation/deintercalation
processes may be related to the pre-treatment of Bi2Se3. The pre-treatment involves the sta-
bilization of the SEI (−1.0 ÷ 1.3 V vs. Ag/AgCl) and the Bi2O3 (−1.0 ÷ 0.5 V vs. Ag/AgCl)
layers until their continuous coverage of the entire electrode’s surface.

Charge/discharge curves obtained for the Bi2Se3 thin films in the potential range
(−1.0 ÷ 1.3 V vs. Ag/AgCl) at the C-rate 1C (Figure 3a) exhibited, in the first cycle, a
plateau near 0.6 V. This confirmed the formation of the SEI layer. In the next cycles, this
plateau was not observed, which confirms that the layer formation process was finished.
These findings are in line with the data reported by the other groups, pointing out that the
fully developed SEI layer, which is stable and ensures long-term capacity retention and high
Coulombic efficiency, forms in the first cycle due to an irreversible electrochemical reac-
tion [42]. In the subsequent cycles, charge (−0.55 V) and discharge (−0.02 V) plateaus, cor-
responding to Li+ intercalation and deintercalation, respectively, were observed (Figure 3a).
Although the SEI layer was formed in the first cycle, the charge/discharge profiles were
changing until the third cycle (samples with the SEI layer), indicating that, during the first
three cycles, the surface pre-treatment took place. After the pre-treatment of the Bi2Se3, the
charge/discharge profiles did not change significantly (Figure 3a).

Additionally, the voltammograms (Figure 2a) showed that after the formation of
the SEI layer in the first cycle, the peaks corresponding to the processes of Li+ intercala-
tion/deintercalation slightly shifted towards the negative potential, which might be related
to the structural and textural modification of Bi2Se3 [43]. A similar tendency was also
observed for the anodic peak (V) associated with NO2

− formation, where, after the first
cycle, the peak had shifted from 0.67 V to 0.61 V vs. Ag/AgCl (Figure 2a).

For the samples with the Bi2O3 layer, the plateau corresponding to the intercalation
process was observed already in the first cycle, while the plateau corresponding to the
deintercalation process was observed starting with the second cycle (Figure 3b), as there
were no Li+ ions intercalated into Bi2Se3 at the beginning of the first anodic (discharge)
scan from −1 V to 6 + 0.5 V vs. Ag/AgCl. The change in the charge/discharge profiles was
observed up to the ninth cycle (Figure 3b), indicating slower pre-treatment of the Bi2Se3
surface in comparison to the samples with the SEI layer, as well as the formation of the
Bi2O3 layer.

After pre-treatment, the formed SEI or Bi2O3 layers on the surfaces of the Bi2Se3
electrodes inhibited further substitution reaction (Equation (2)), which is characterized by
decreased peak intensities (II, IV).



Batteries 2022, 8, 144 6 of 18
Batteries 2022, 8, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. Charge/Discharge profiles of Bi2Se3 thin films in 5 M LiNO3 at 1 C: a—first 5 cycles for the 
SEI layer (−1.0 V ÷ 1.3 V), b—first 10 cycles for the Bi2O3 layer (−1.0 V ÷ 0.5 V), c—profiles up to the 
100th cycle for the SEI layer (−1.0 V ÷ 1.3 V), d—profiles up to the 100th cycle for the Bi2O3 layer (−1.0 
V ÷ 0.5 V). 

Additionally, the voltammograms (Figure 2a) showed that after the formation of the 
SEI layer in the first cycle, the peaks corresponding to the processes of Li+ intercalation/de-
intercalation slightly shifted towards the negative potential, which might be related to the 
structural and textural modification of Bi2Se3 [43]. A similar tendency was also observed 
for the anodic peak (V) associated with NO2- formation, where, after the first cycle, the 
peak had shifted from 0.67 V to 0.61 V vs. Ag/AgCl (Figure 2a). 

For the samples with the Bi2O3 layer, the plateau corresponding to the intercalation 
process was observed already in the first cycle, while the plateau corresponding to the 
deintercalation process was observed starting with the second cycle (Figure 3b), as there 
were no Li+ ions intercalated into Bi2Se3 at the beginning of the first anodic (discharge) 
scan from −1 V to 6 + 0.5 V vs. Ag/AgCl. The change in the charge/discharge profiles was 
observed up to the ninth cycle (Figure 3b), indicating slower pre-treatment of the Bi2Se3 
surface in comparison to the samples with the SEI layer, as well as the formation of the 
Bi2O3 layer. 

0 200 400 600 800
-1.0

-0.5

0.0

0.5

1.0

Specific Capacity, mAh g-1

E,
 V

 v
s.

 (A
g/

Ag
Cl

)

1st Cycle

2nd Cycle

3rd Cycle

4th Cycle

5th Cycle

Discharge

Charge

0 100 200 300 400
-1.0

-0.5

0.0

0.5

Specific Capacity, mAh g-1

E,
 V

 v
s.

 (A
g/

Ag
Cl

)

1st Cycle

2nd Cycle

5th Cycle

Charge

Discharge

9th Cycle

10th Cycle

a b

0 200 400 600
-1.0

-0.5

0.0

0.5

1.0

Specific Capacity, mAh g-1

E,
 V

 v
s.

 (A
g/

Ag
Cl

)

Charge

Discharge

1st Cycle
10th Cycle
25th Cycle
50th Cycle

100th Cycle

c

0 100 200 300
-1.0

-0.5

0.0

0.5

Specific Capacity, mAh g-1

E,
 V

 v
s.

 (A
g/

Ag
Cl

)

Charge

Discharge

d

−

−

−

−

−

− −

−

Figure 3. Charge/Discharge profiles of Bi2Se3 thin films in 5 M LiNO3 at 1 C: (a)—first 5 cycles for
the SEI layer (−1.0 V ÷ 1.3 V), (b)—first 10 cycles for the Bi2O3 layer (−1.0 V ÷ 0.5 V), (c)—profiles
up to the 100th cycle for the SEI layer (−1.0 V ÷ 1.3 V), (d)—profiles up to the 100th cycle for the
Bi2O3 layer (−1.0 V ÷ 0.5 V).

The comparison of the heights of the peaks corresponding to Li+ intercalation/
deintercalation (I, III) showed that they were up to 10 times higher for the samples with
formed SEI layers than for the samples with formed Bi2O3 layers, which could have been
related to the higher transportation rate of Li+ in the samples with the SEI layer. This may
mean that, while Bi2O3 has been shown as a suitable additive in Bi2Se3 water-based battery
systems [44], its performance as an “SEI” layer is not optimal as its high density inhibits
ion transport.

SEM images and XRD patterns acquired from the samples’ surface XPS spectra demon-
strated the structural differences of the Bi2Se3 thin film surface before and after 5 cycles
and 10 cycles for the samples covered with continuous SEI and Bi2O3 layers, respectively
(Figures 4 and 5).
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Figure 4. Scanning electron microscope images of Bi2Se3 thin films in 5 M LiNO3 before and after
cyclic voltammetry measurements for: (a)—SEI layer after 5 cycles (−1.0 V ÷ 1.3 V), (b)—Bi2O3

layer after 10 cycles (−1.0 V ÷ 0.5 V), (c)—XRD pattern of samples with SEI layer after 5 cycles
(−1.0 V ÷ 1.3 V) and Bi2O3 layer after 10 cycles (−1.0 V ÷ 0.5 V).

According to the observation by SEM, the surface of the sample with the SEI layer
after five cycles was coated with amorphous material (Figure 4a). The XPS data (Figure 5a)
showed a noticeable Li 1s peak, which may indicate the presence of Li2O and Li2CO3. The
water-soluble Li2O could have been preserved if the Li2CO3 had grown on top of it and
had shielded it from the electrolyte (Equations (4) and (5)). While the XRD pattern of the
sample with the SEI layer demonstrated pure rhombohedral Bi2Se3 (R-3 m) without the
initial cubic y-Bi2O3 signal (Figure 4c), the XPS data still showed a Bi2O3 signal (Figure 5b).
This indicates that the initial Bi2O3 has remained, but further growth of the Bi2O3 was
inhibited by the formation of the SEI layer.

In turn, the sample with the Bi2O3 layer after 10 cycles had a smooth surface (Figure 4b),
which could mean that the Bi2Se3 thin film was covered with the thin and dense Bi2O3 layer.
This assumption is supported by both XRD and XPS data where a small cubic γ-Bi2O3 (I23)
peak (Figure 4c) and very pronounced peaks related to the oxidized Bi (Bi 4f, Figure 5d)
were detected. It should be noted that only a very small peak of Bi2Se3 is observed in the
surface layer of the sample (Figure 5c), which confirms that it is mainly composed of Bi2O3
and proves the formation of continuous dense layers of Bi2O3. In addition, the representing
SEI layer Li 1s peak is negligible for the samples coated with the Bi2O3 layer (Figure 5c),
which proves the absence of SEI layers composed of Li2O and Li2CO3 on the surface of
these samples.

These data support the claim that, during cycling in the potential window (−1.0÷ 0.5 V),
the dense Bi2O3 layer is formed, and this layer may inhibit Li+ intercalation/deintercalation
processes, which results in the decrease of the heights of the CV peaks for the samples
coated with the Bi2O3 layer (Figure 2).

The stability of Bi2Se3 thin films in terms of the chemical composition of Bi and Se
was checked with EDX before cycling and after the fifth (sample with the SEI layer) and
ninth (sample with the Bi2O3 layer) cycles. While it is well known that Bi2Se3 tends to lose
selenium during the cycling [15], the results of this study demonstrate that the dissolution
of Se for both samples covered with SEI and Bi2O3 layers was negligible (Table 1), which
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indicates the good stability of the Bi2Se3 electrode in the LiNO3 for the first 5 (SEI layer)
and 10 (Bi2O3 layer) cycles.
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Figure 5. XPS spectra of Bi2Se3 thin films in 5 M LiNO3 after cyclic voltammetry measurements
for: (a)—SEI layer Se 3d and Li 1s data after 5 cycles (−1.0 V ÷ 1.3 V), (b)—SEI layer Bi 4f data
after 5 cycles (−1.0 V ÷ 1.3 V), (c)—Bi2O3 layer Se 3f and Li 1s data after 10 cycles (−1.0 V ÷ 0.5 V),
(d)—Bi2O3 layer Bi 4f data after 10 cycles (−1.0 V ÷ 0.5 V).

Table 1. The atomic composition of Bi2Se3 thin films in 5 M LiNO3 before and after CV measurements.

Element Before After 5 Cycles
(SEI Layer)

After 10 Cycles
(Bi2O3 Layer)

Bi 41 ± 1 46 ± 3 41 ± 1
Se 59 ± 1 54 ± 3 59 ± 1

Charge/discharge profiles up to 100 cycles for the samples with the SEI and Bi2O3
layers demonstrated Li+ intercalation/deintercalation plateaus from the 5th to 25th cycle
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(Figure 3c,d). After the 25th cycle, these plateaus were not observable anymore, which
might be due to the fast process of Li+ intercalation/deintercalation [45].

To investigate the mechanisms of Li+ intercalation/deintercalation processes in the
Bi2Se3 thin film, the CV curves were obtained at different scan rates (0.1–1.0 mV s−1)
after the surface pre-treatment was finished (the third cycle for the samples with SEI layer
(Figure 6a) and ninth cycle for the samples with Bi2O3 (Figure 6b)).
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The dominant stage of Li+ intercalation/deintercalation processes (diffusion-controlled
or capacitive process) was determined by Equation (7) [46]:

I = avb, (7)

where I is the current of the Li+ intercalation/deintercalation process (mA), v is the scan
rate (mV s−1), and a, b are the adjustable fitting values.

Calculated from the linear regression slopes (Figure 7a,b), the b-values for both samples
with SEI and Bi2O3 layers varied from 1.05 to 1.28, indicating the dominant contribution of
the capacitive process (pseudo-capacitance and electrical double-layer capacitance) to the
Li+ intercalation/deintercalation in both potential ranges. The quantitative contribution of
the capacitive and diffusion-based processes in Li+ intercalation/deintercalation at different
scan rates (Figure 7c,d) was determined by Equation (8):

i(V) = k1v + k2v
1
2 , (8)

where i(V) is the current of the Li+ intercalation/deintercalation process, k1v is the contri-
bution of the capacitive process, and k2v1/2 is the contribution of the diffusion-controlled
process [47,48].

At the scan rate of 0.1 mV s−1, the contribution of the capacitive process to Li+ in-
tercalation/deintercalation was similar (51.4% and 53.9%) for the samples with SEI and
Bi2O3 layers, respectively (Figure 7c,d). With the increasing scan rate, the contribution of
the capacitive process increased, and at the scan rate of 1.0 mV s−1, it reached 78.3% for
the samples with the SEI layer and 75.4% for the samples with the Bi2O3 layer. The higher
contribution of the capacitive processes to the Li+ intercalation/deintercalation process in
the scan rate range from 0.25 to 1.00 mV s−1 indicates the removal of limitations on charge
transfer processes for both SEI and Bi2O3 layers.
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Figure 7. Investigation of the dominant stage and contribution of capacitive and diffusion-based pro-
cesses for Li+ intercalation/deintercalation in Bi2Se3 thin films in 5 M LiNO3: (a)—log-scale plots for
the SEI layer (−1.0 V ÷ 1.3 V vs. Ag/AgCl), (b)—log-scale plots for the Bi2O3 layer (−1.0 V ÷ 0.5 V
vs. Ag/AgCl), (c)—the contribution of capacitive and diffusion-controlled processes for the SEI layer
(−1.0 V ÷ 1.3 V vs. Ag/AgCl), (d)—the contribution of capacitive and diffusion-controlled processes
for the Bi2O3 layer (−1.0 V ÷ 0.5 V vs. Ag/AgCl).

As the capacitive processes of Li+ intercalation/deintercalation were similar for the
samples with the SEI and Bi2O3 layers, and thus could not explain the differences between
them, the diffusion coefficients for Li+ intercalation/deintercalation were determined. The
diffusion coefficients of Li+ intercalation/deintercalation were calculated from the slope
fitted values (Figure 8) using Equation (9) [49]:

D =

(
slope

0.446nFAC

)2(RT
nF

)
, (9)

where D is the diffusion coefficient (cm2 s−1), slope is the slope value, n is the number
of electrons, F is the Faraday constant (C mol−1), A is the surface area (cm2), C is the
electrolyte concentration (mol cm−3), R is the universal gas constant (J K−1 mol−1), and T
is the temperature (K).

Calculated diffusion coefficient values (Table 2) show that, in the first approximation,
Li+ diffusion for samples with the SEI layer was higher than for the samples with the Bi2O3
layer by an order of magnitude.
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Figure 8. Dependence of v1/2 vs. I for Bi2Se3 thin films in 5 M LiNO3 for Li+ intercalation/deintercalation
with fitted slope values for: (a)—SEI layer (−1.0 V÷ 1.3 V vs. Ag/AgCl), (b)—Bi2O3 layer (−1.0 V ÷ 0.5 V
vs. Ag/AgCl).

Table 2. Comparison of Li+ intercalation and deintercalation diffusion coefficients (cm2 s−1) for
different anodes and electrolytes.

Electrode Electrolyte Intercalation Deintercalation Reference

Bi2Se3 thin film
(SEI layer) 5 M LiNO3 3.3 × 10−12 2.2 × 10−12 This study

Bi2Se3 thin film
(Bi2O3 layer) 5 M LiNO3 4.3 × 10−13 4.5 × 10−13 This study

Li0.3V2O5 5 M LiNO3 10−11–10−12 [50]
TiP2O7 1 M Li2SO4 3.80 × 10−15 1.77 × 10−15 [51]

TiNb6O17
1 M LiPF6

EC/DMC b (1:2) 3.43 × 10−13 3.72 × 10−13
[52]

TiNb2O7
1 M LiPF6

EC/DMC b (1:2) 1.08 × 10−14 3.01 × 10−14

a ethylene carbonate/diethyl carbonate. b ethylene carbonate/dimethyl carbonate.

Thus, it can be assumed that the formation of less dense Li2O and Li2CO3 SEI layers
ensures the faster transportation of Li+ in comparison to the Bi2O3 layer and can be the
contributing factor to the difference in the peak intensities in CV curves for both samples
(Figure 2).

Estimations for the Bi2Se3 thin films with SEI layer Li+ diffusion coefficients were
comparable with the values reported for the Li0.3V2O5 in Li+ aqueous electrolyte while
exceeding the diffusion coefficients of TiP2O7 (1 M Li2SO4), as well as the diffusion co-
efficients reported for other anode materials—TiNb6O17 and TiNb2O7 tested in lithium
non-aqueous electrolytes (Table 2). These results demonstrate that Li+ diffusion coefficients
for Bi2Se3 anodes in the 5 M LiNO3 electrolyte are sufficient for their perspective application
in ARLIBs systems.

To investigate the changes in the electrochemical properties of the Bi2Se3 thin film
electrode over 100 cycles for the samples with formed SEI (Figure 9a) and Bi2O3 (Figure 9b)
layers, EIS measurements were carried out. The obtained impedance hodographs were
described using the standard equivalent circuit schemes, which represent the electrochem-
ical properties at the electrolyte/electrode interface. The schemes were complicated by
the presence of a constant phase element (CPE1), which, in addition to the capacity of
the double layer, characterized the inhomogeneity of the surface of the working electrode.
The Warburg element indicated the diffusion of the reacting ions and/or molecules to
the electrode surface. Rel values demonstrated not only the resistance of the electrolyte
but also the penetrability of the electrolyte within the electrode [53] (Figure 9c). During
the cycling, the SEI layer for the first sample and the Bi2O3 layer for the second sample
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were modeled as a capacitor formed by a CPE (characterizing the heterogeneity and the
double-layer capacitance of the layer), with a parallel resistance for the charge transfer
reaction (Figure 9d).
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The resistance values of the electrochemical processes (Table 3) were calculated using
the Levenberg–Marquardt algorithm [54].

Table 3. Cycle-dependent fitted resistance values of Bi2Se3 thin films with SEI and with the
Bi2O3 layer.

Layer Resistance Before Cycling 1st 5th 10th 25th 50th 100th

SEI

Rel,
kΩ cm2 0.5 0.9 2.3 2.8 2.9 3.0 3.1

Rlayer,
kΩ cm2 - 2162 1515 772 252 208 225

Rct,
kΩ cm2 584 154 379 275 1246 1965 490

Bi2O3

Rel,
kΩ cm2 0.1 0.4 0.8 1.3 1.4 1.7 2.0

Rlayer,
kΩ cm2 - 112 130 170 196 39 26

Rct,
kΩ cm2 111 13 10 17 25 17 20

The values of Rel remained almost unchanged during the cycling, indicating good
stability of the electrolyte over the whole 100 cycles for both samples. The Rel values were
2.8 ± 0.3 kΩ cm2 and 1.6 ± 0.3 kΩ cm2 for the samples with the SEI layer and the Bi2O3
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layer, respectively (Table 3). However, in the first five cycles, the Rel values for both cases
were significantly lower, which might be related to the pre-treatment processes of the Bi2Se3
thin films, including the stabilization of the surface layer which was also confirmed by the
CV curves (Figure 2). For the sample with the SEI layer, Rel was ~2 times higher than for
the sample with the Bi2O3 layer, which might indicate that the processes occurring with
the participation of the electrolyte are more complicated in the first case.

The semicircle at the medium-frequency range (Figure 9a,b) represents the charge-
transfer resistance Rct of Bi2Se3 thin films. Starting from the first cycle, Rct values decreased
~4 times and ~9 times for the samples with SEI and Bi2O3 layers, respectively, which may be
related to the beginning of textural and structural changes of the Bi2Se3 surface. After the
2nd cycle, the Rct for the sample with the Bi2O3 layer was almost constant (17 ± 5 kΩ cm2)
until the 100th cycle, while, for the sample with the SEI layer, these values increased (from
154 kΩ cm2 to 1965 kΩ cm2). This might indicate the continuation of the textural and
structural changes of the Bi2Se3 thin films with the formed SEI layer. The ~4 times decrease
of Rct after the 100th cycle most likely corresponds to the electrochemical and mechanical
degradation of the electrode.

For the samples with the SEI layer, the Rct was ~10–50 times higher than for the
samples with the Bi2O3 layer, which might be related to the different structures of the SEI
and Bi2O3 layers.

From the 1st to the 100th cycle, a small semicircle corresponding to Rlayer was observed
in the low-frequency range (Figure 9a,b). For the sample with the formed SEI layer, Rlayer
gradually decreased ~10 times from the 1st to the 100th cycle, probably indicating the
mechanical and electrochemical degradation of the SEI layer by becoming more porous
with cracks and cavities on the electrode surface [55,56].

For the samples with the Bi2O3 layer, the Rlayer gradually increased from the 1st to
the 25th cycle. This represents the gradual formation of the Bi2O3 layer, including the
pre-treatment processes (stabilization of the Bi2O3 layer) till the 9th cycle (Figure 2) and
possible increase of the thickness of the Bi2O3 layer between the 10th and 25th cycles.
After the 25th cycle, the Rlayer of the sample with the Bi2O3 layer started to gradually
decrease from 196 kΩ cm2 (25th cycle) to 39 kΩ cm2 (50th cycle), which might be related
to the degradation (formation of mechanical cracks and cavities) of the Bi2O3 layer. The
comparison between the SEI and the Bi2O3 layers showed that Rlayer was ~5–20 times
higher for the sample with the SEI layer. This probably indicates a higher affinity of energy
for an electron of the Bi2O3 layer in comparison with the SEI layer.

3.3. Electrochemical Performance of Bi2Se3 Thin Films

To investigate the possibility of using Bi2Se3 thin films as anodes in the ARLIBs
systems, the charge/discharge capacity changes during the cycling were evaluated. After
the first cycle, the initial charge and discharge capacities of the Bi2Se3 thin film in the
samples with the SEI layer were 985 mAh g−1 and 404 mAh g−1 (Figure 10a). For the
samples with the Bi2O3 layer, these capacities were lower at 250 mAh g−1 (charge) and
115 mAh g−1 (discharge), confirming that the formation of Bi2O3 makes the electrode
less efficient in comparison with the samples covered by the SEI layer consisting of Li2O
and Li2CO3 (Figure 9c). During the first 30 cycles, the charge/discharge capacities of
the samples with the SEI layer decreased by ~3 times, which might be associated with
the gradual degradation of the SEI layer, as Li2O and Li2CO3 are soluble in aqueous
electrolyte compounds. Re-formation of the SEI layer might become more difficult due
to the significant consumption of the dissolved O2 and CO2 during the first cycle of the
SEI layer formation. For the sample with a Bi2O3 layer, the capacity increase (till the 10th
cycle) and decrease (till the 30th cycle) were observed (Figure 10c), possibly indicating the
gradual formation and degradation (the formation of mechanical cracks and cavities) of
the Bi2O3 layer. Such tendencies of the re-formation of the SEI and Bi2O3 layers were also
confirmed by the increment and decrement of the Rlayer values (Table 3). With the further
cycling, the discharge capacities of the samples with the SEI layer also continued to decline,
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but not as rapidly (~2 times) as in the previous 30 cycles, from 151 mAh g−1 (30th cycle) to
79 mAh g−1 (100th cycle). For the samples with the Bi2O3 layer, the values of both charge
and discharge capacities remained constant after the 30th cycle and up to the 100th cycle.
The initial Coulombic efficiency for the samples with the SEI layer was 41%. However, after
cycling up to the 30th cycle, it increased up to 67% and remained almost constant up to
the 100th cycle (73%) (Figure 10b). For the samples with the Bi2O3 layer, the Coulombic
efficiency was almost constant until the 97th cycle (~40%) and decreased down to 33%
during the next three cycles (Figure 10d).
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Figure 10. Galvanostatic charge/discharge cycling performances of Bi2Se3 thin films in 5M LiNO3 at
1 C: (a)—cycling performance for the SEI layer (−1.0 V÷ 1.3 V), (b)—Coulombic efficiency for the SEI
layer (−1.0 V÷ 1.3 V), (c)—cycling performance for the Bi2O3 layer (−1.0 V÷ 0.5 V), (d)—Coulombic
efficiency for the Bi2O3 layer (−1.0 V ÷ 0.5 V).

The comparison of the discharge capacities of the Bi2Se3 thin films with different
previously reported anodes (TiO2, TiP2O7, L0.3V2O5, L1.2V3O8) in the lithium aqueous
electrolytes studied in this work (Table 4) show that the Bi2Se3 thin films with SEI and
Bi2O3 layers demonstrate the highest specific capacities at the fastest charge/discharge rate
(1 C), indicating their perspective application as anode electrodes in ARLIBs.
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Table 4. Comparison of galvanostatic discharge cycling performances of different anodes in lithium
aqueous electrolyte.

Electrode Electrolyte C-rate Initial Specific
Capacity Cycles Specific

Capacity
Capacity

Retention
Coulombic
Efficiency Reference

Bi2Se3 thin film
(SEI layer)

5 M
LiNO3

1 C 404
mAh g−1 30 151

mAh g−1 40% 70% This
study

Bi2Se3 thin film
(Bi2O3 layer)

5 M
LiNO3

1 C 115
mAh g−1 30 96

mAh g−1 83% 43% This
study

TiO2
21 M

LiTFSI 0.2 C 115
mAh g−1 40 8

mAh g−1 7% 70% [24]

TiP2O7
5 M

LiNO3
0.1 C 42

mAh g−1 25 15
mAh g−1 35% - [11]

Li0.3V2O5
5 M

LiNO3
1 C 75

mAh g−1 50 38
mAh g−1 51% 99% [50]

Li1.2V3O8
1 M

Li2SO4
1 C 101

mAh g−1 30 70
mAh g−1 70% - [9]

4. Conclusions

Bi2Se3 thin films were synthesized and investigated for their application in ARLIBs in
aqueous the 5 M LiNO3 electrolyte in two potential ranges which enabled two different
interface layers, (−1.0 V ÷ 1.3 V—for Li2O and Li2CO3 SEI) and (−1.0 V ÷ 0.5 V—for
Bi2O3). With the formed SEI layer, Bi2Se3 thin films demonstrated rapid pre-treatment
(formation of stable SEI layer), high reversibility, and high transportation of Li+ during
the intercalation/deintercalation processes. For both SEI and Bi2O3 layers, the capacitive
process dominated (>50%) Li+ intercalation/deintercalation, which indicates the removal of
limitations on charge transfer processes. In addition, the SEI layer enabled an Li+ diffusion
coefficient an order of magnitude higher than the Bi2O3 layer, which was in line or higher
than that reported in the literature. The EIS investigation showed relatively stable and
similar electrochemical performances for both the SEI and Bi2O3 layers up to the 100th
cycle for electrolyte (Rel), while charge transfer (Rct) and layer (Rlayer) resistances changed
during the cycling and were significantly lower for the Bi2O3. This may be attributed to the
different structures and electron affinities of the SEI and the Bi2O3 layers.

The galvanostatic charge/discharge curves obtained at an intensive rate of 1 C for
100 cycles demonstrated that the formation of the SEI layer in the first cycle plays a crucial
role in the electrode stabilization, which in turn, ensures high Coulombic efficiency (73%),
high charge/discharge capacity, and protection from the mechanical and electrochemical
degradation up to 100 cycles. Overall, the Bi2Se3 thin films with a formed SEI layer demon-
strated better electrochemical performance in comparison to the ones with a formed Bi2O3
layer. These results demonstrate that the Bi2Se3 thin films can be promising candidates for
use as anode materials for ARLIBs; however, further research is needed to optimize the
electrochemical properties (e.g., capacity fading) of the system.
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