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ABSTRACT

Type 2 diabetes is a metabolic disease with increasing prevalence and burden on healthcare

and the economy. Metformin, a first-line treatment for type 2 diabetes, is a medication that has

strong  effects  on  the  gut  microbiome.  A  substantial  part  of  metformin  users  experiences

gastrointestinal  side  effects  or  intolerance,  limiting  the  use  of  this  effective  drug.  Several

modification strategies for gut microbiome exist, though these methods have limitations and are

generally not targeted. Therefore, novel techniques on how to modulate gut microbiome precisely

are necessary. These methods would be applicable not only in the context of metformin treatment

of  type  2  diabetes  but  other  metformin  targets  as  this  medication  has  been  shown  to  have

pleiotropic  effects,  and  its  application  is  continuously  extended.  Furthermore,  the  targeted

microbiome modulation method would be highly valued in numerous other microbiome-related

disorders.

This study aimed to investigate the effects of metformin therapy and host-related factors on

the gut microbiome in the intestinal tract of a mouse model of type 2 diabetes. First, we performed

an animal experiment in which type 2 diabetes was modeled by a high-fat diet feeding in mice of

both sexes, followed by a ten-week-long metformin treatment. Using various sequencing-based

methods  for  microbiome  composition  determination,  we  characterized  the  metformin-induced

microbiome alterations in fecal samples and various gastrointestinal tract sites. In addition, we

sequenced fecal and mucosal miRNAs to determine whether there is a correlation between host

miRNAs and the gut microbiome composition. To assess the translatability of the mice study, we

evaluated  the  correlation  between  host  miRNAs  and  gut  microbiome  in  human  subjects

undergoing colonoscopy procedure. 

We  showed  that  metformin  increases  the  relative  abundance  of  various  Bacilli and

Bacteroides representatives in feces. Furthermore, we were able to locate this increase mainly in

the distal small intestine, where in general, metformin’s effects on the gut microbiome were more

pronounced, corresponding to the absorption pattern of the medication. We observed significant

differences in metformin’s effects between sexes in fecal and intestinal microbiome samples and

miRNA composition. We found a correlation between host miRNAs and distinct bacterial families

and genera in mice and humans. We analyzed the potential biological interaction between host

miRNAs and gut bacteria and found several miRNAs with potential bacterial targets. These results

provide a systemic insight into metformin’s effects on the gut microbiome and a potential strategy

for modulating it in a targeted fashion that should be studied in-depth in further functional studies.
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KOPSAVILKUMS

Otrā tipa cukura diabēts ir vielmaiņas slimība ar pieaugošu izplatību un slogu uz veselības

aprūpi  un ekonomiku.  Metformīns,  pirmās izvēles  līdzeklis  2.  tipa diabēta  ārstēšanai,  ir  zāles,

kurām ir  spēcīga  ietekme uz  zarnu mikrobiomu.  Ievērojamai  daļai  metformīna  lietotāju  rodas

kuņģa-zarnu trakta blakusparādības vai nepanesība, kas ierobežo šo efektīvo zāļu lietošanu. Pastāv

vairākas  zarnu mikrobioma modifikācijas  stratēģijas,  lai  gan šīm metodēm ir  ierobežojumi  un

parasti tās nav mērķētas. Ir nepieciešami jauni paņēmieni, kā precīzi modulēt zarnu mikrobiomu.

Šīs metodes būtu piemērojamas ne tikai otrā tipa cukura diabēta metformīna terapijas kontekstā,

bet arī citiem metformīna mērķiem, jo ir pierādīts, ka šīm zālēm ir pleiotropiska iedarbība, un to

lietošana tiek nepārtraukti  paplašināta. Turklāt mērķētās mikrobioma modulēšanas metode būtu

vērtīga daudzu citu ar mikrobiomu saistītu slimību ārstēšanā. 

Šī  pētījuma  mērķis  bija  analizēt  metformīna  terapijas  un  ar  saimniekorganismu  saistīto

faktoru ietekmi uz zarnu mikrobiomu otrā tipa cukura diabēta peļu modeļa zarnu traktā. Pirmkārt,

mēs veicām eksperimentu  ar  dzīvniekiem, kurā abu dzimumu pelēm ar  diētas  ar  paaugstinātu

tauku saturu  palīdzību  tika  ierosināts  otrā  tipa  cukura  diabēts,  kam sekoja  desmit  nedēļu  ilga

metformīna terapija. Izmantojot dažādas uz sekvencēšanu balstītas metodes mikrobioma sastāva

noteikšanai, mēs raksturojām metformīna izraisītās mikrobioma izmaiņas fēču un dažādu zarnu

trakta vietu paraugos. Papildus tam, mēs sekvencējām fēču un gļotādas miRNS, lai noteiktu, vai

pastāv korelācija starp saimniekorganisma miRNS un zarnu mikrobioma sastāvu. Lai novērtētu

peļu  pētījuma  rezultātu  pārnesamību,  mēs  analizējām  saimniekorganisma  miRNS  un  zarnu

mikrobioma korelāciju cilvēkos, kam veikta rutīnas kolonoskopijas procedūra.

Mēs parādījām, ka metformīns palielina dažādu  Bacilli un  Bacteroides pārstāvju relatīvo

sastopamību fēcēs. Turklāt mēs varējām lokalizēt šo pieaugumu galvenokārt tievās zarnas distālajā

daļā,  kur  kopumā  metformīna  ietekme  uz  zarnu  mikrobiomu  bija  izteiktāka,  kas  atbilst  zāļu

absorbcijas  raksturojumam.  Mēs  novērojām  būtiskas  atšķirības  metformīna  iedarbībā  starp

dzimumiem fēču un zarnu mikrobioma paraugos un miRNS sastāvā. Mēs noskaidrojām, ka pastāv

korelācija starp saimniekorganisma miRNS un noteiktām baktēriju dzimtām un ģintīm pelēs un

cilvēkos. Mēs analizējām iespējamo bioloģisko mijiedarbību starp saimniekorganisma miRNS un

zarnu baktērijām un atradām vairākas miRNS ar iespējamiem bakteriāliem mērķiem. Šie rezultāti

sniedz sistēmisku ieskatu par metformīna ietekmi uz zarnu mikrobiomu un iespējamo stratēģiju tā

mērķtiecīgai modulēšanai, kas būtu padziļināti jāizpēta turpmākos funkcionālajos pētījumos.
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INTRODUCTION

Type 2 diabetes is a common metabolic disease characterized by chronic hyperglycemia,

increasing prevalence, healthcare burden, and associated costs. Metformin is an antidiabetic drug

that,  in addition to  controlling glucose levels,  strongly affects  the gut microbiome. Metformin

provides effective and inexpensive treatment; however, some patients develop gastrointestinal side

effects or drug intolerance. Research into the effects of metformin on the gut microbiome is an

active  area  of  biomedical  studies,  as  this  knowledge may  improve  the  utility  of  the  drug.  In

addition,  other therapeutic targets for metformin are increasingly being discovered,  demanding

improved management of its use. Controlling gut microbiome changes associated with metformin

therapy may improve metformin efficacy; therefore, targeted microbiome modulation strategies

are needed for successful metformin treatment management.

Importance of this work: An in-depth, systematic study of the effects of metformin therapy

on the gut microbiome in feces and the entire intestinal tract under controlled conditions provides

valuable  information  on  the  interaction  between  metformin  and  the  microbiome.  It  is  also

necessary to evaluate other host-related factors that may affect this interaction. Once metformin's

interaction with members of the gut microbiome has been characterized, it is necessary to search

for targeted microbiome modification methods that could serve as a tool to improve therapy. Such

knowledge allows personalized care of patients in the context of various diseases.

Aim of the study: To investigate the effects of metformin therapy and host-related factors

on the gut microbiome in the intestinal tract of a mouse model of type 2 diabetes and test those

factors for other conditions.

Tasks to achieve the aim: 

(1) Determine whether and how metformin therapy affects the gut microbiome and its functions

using fecal metagenomic analysis.

(2)  Characterize  the  composition  of  the  gut  microbiome  in  different  parts  and  layers  of  the

intestinal  tract  and  analyze  the  effect  of  metformin  therapy  on  it  using  the  16S  rRNA gene

sequencing analysis of gut microbiome samples.

(3) Determine whether the host miRNAs are able to affect the gut microbiome using miRNA

analysis of fecal and intestinal samples in combination with microbial composition data both in

mice and humans.
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1 LITERATURE REVIEW

1.1 Type 2 diabetes

Diabetes mellitus is a term for a complex and heterogeneous group of metabolic diseases

characterized by chronic hyperglycemia caused by impaired insulin secretion, disturbed insulin

effect, or a combination of both (Petersmann et al., 2019). The prevalence of diabetes is constantly

increasing – it has been estimated that 9.3% of the adults aged 20–79 years (463 million adults)

had diabetes globally in 2019, and it is expected to rise to 578 million by 2030  (Saeedi  et al.,

2019). The most common form of diabetes mellitus is type 2 diabetes (T2D) which accounts for

90-95% of all diabetes cases (American Diabetes Association, 2019), followed by type 1 diabetes

(T1D), occurring in 5-10% of diabetes patients (Mobasseri et al., 2020). According to the current

classification, other forms of diabetes mellitus include gestational diabetes (hyperglycemia that

develops during pregnancy); monogenic diabetes, including neonatal diabetes and maturity-onset

diabetes of the young (MODY); and other rare conditions, for example, pancreatogenic or type 3c

diabetes (Redondo et al., 2020). 

Type 2 diabetes occurs when insulin resistance is acquired (usually from obesity) on the

background of inherited and acquired beta cell  dysfunction  (Pearson, 2019). T2D results from

several  disturbances  in  glucose  homeostasis,  including  impaired  insulin  secretion;  insulin

resistance in muscle, liver, and adipocytes; and deviations in glucose uptake in the gut and liver

(DeFronzo, 2004).

Glucose homeostasis is maintained by a complex interaction of glucoregulatory hormones,

including insulin, glucagon, somatostatin, amylin, and incretins  (Campbell, 2011; Andersen and

Holst, 2022). Under normal physiology, the increase in plasma glucose concentration caused by

glucose ingestion stimulates insulin release. The combination of high insulin and high glucose

levels  stimulates  glucose  uptake  by  the  liver,  gut,  and  peripheral  tissues,  mainly  muscle,  and

suppresses hepatic glucose output (DeFronzo, 2004). The incapacity of insulin to suppress hepatic

gluconeogenesis is  a major contributor to hyperglycemia characteristic of T2D  (Hatting  et al.,

2019). Sustained hyperglycemia and hyperinsulinemia result in insulin resistance in both human

subjects and animal models (Lee et al., 2017). Furthermore, prolonged hyperglycemia triggers beta

cell dysfunction, which in turn impairs insulin secretion (Cerf, 2013). As a result, T2D gradually

develops,  and  the  chronically  increased  glucose  level  is  associated  with  long-term  damage,
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complications, and failure of various organ systems (American Diabetes Association, 2013). The

pathophysiology and main affected organs by T2D have been illustrated in Figure 1.

Figure 1. Type 2 diabetes pathophysiology – effects in main affected organs.  FFA – free fatty acids;

GLUT2 – type 2 glucose transporter; GLUT4 – type 4 glucose transporter; IL-1β – interleukin 1 β; IL-6 –

interleukin 6; IR – insulin resistance; sdLDL – small dense low density lipoproteins; SCFAs – short-chain

fatty  acids;  TNFα –  tumor  necrosis  factor  α;  VLDL –  very  low  density  lipoproteins. Adapted  from

(Bocanegra et al., 2021).

Due to a long asymptomatic period of five to seven years from onset to diagnosis, many

patients develop complications before diagnosis.  Complications of T2D are separated into two

main groups – microvascular and macrovascular. Microvascular complications are more common

and  include  retinopathy,  nephropathy,  neuropathy,  and  diabetic  foot,  while  macrovascular

complications  include  cerebrovascular  disease,  arrhythmias,  coronary  artery  disease,  and

peripheral artery disease (Viigimaa et al., 2020; Aikaeli et al., 2022).

1.2 Type 2 diabetes treatment

Various international and regional guidelines have been developed for the management of

T2D  (Mohan  et  al.,  2020;  World  Health  Organization,  2020;  Mannucci  et  al.,  2022).  A

combination of non-pharmacological and pharmacological treatment is most often recommended.

Non-pharmacological  management  includes  modifications  in  risk  factors  related  to  lifestyle –
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improved diet,  reduced calorie intake for overweight patients, physical activities, and avoiding

smoking and excessive alcohol use (World Health Organization, 2020). 

If  lifestyle  interventions  fail  to  maintain  glycemic  control,  a  variety  of  medications  are

available  to treat type 2 diabetes.  These pharmacological  agents can be divided into ten main

classes: drugs that reduce hepatic glucose output (biguanides); drugs that promote insulin release

from  the  beta  cells  (sulphonylureas);  drugs  that  increase  incretin  levels  via  blocking

dipeptidylpeptidase-4 (DPP4 inhibitors); drugs that promote glucose excretion with urine (sodium-

glucose  co-transporter-2  (SGLT2)  inhibitors)  (Whaley  et  al.,  2012);  glucagon-like  peptide  1

(GLP1) receptor agonists that increase insulin secretion and inhibit glucagon secretion; drugs that

delay  the  digestion  and  intestinal  absorption  of  complex  carbohydrates thus  controlling

postprandial  hyperglycemia (alpha-glucosidase  inhibitors)  (Hossain  et  al.,  2020);  drugs  that

increase the insulin sensitivity mainly due to changes in body fat metabolism (thiazolidinediones)

(Greenfield and Chisholm, 2004); dopamine agonists  that decrease insulin resistance; bile acid

sequestrants that bind bile acids in the intestine and excrete LDL cholesterol in feces; and insulin

secretagogues distinct from sulfonylureas (meglitinides) (Greenfield and Chisholm, 2004; Whaley

et al., 2012; Hossain et al., 2020; Padhi, Kumar and Behera, 2020; Taylor, Yazdi and Beitelshees,

2021).

Metformin is recommended as an initial pharmacological treatment to control blood glucose

levels,  increasing  the  dosage  gradually.  However,  20%  of  patients  experience  metformin

intolerance characterized by gastrointestinal side effects, and 5% cannot continue the treatment

due to the severity of intolerance manifestations (McCreight et al., 2018). 

Second-generation sulfonylurea is recommended as a first-line treatment when metformin is

contraindicated or not tolerated. If metformin and sulfonylurea fail to control glycemia, insulin

treatment might be initiated or used in combination with oral agents. However, if insulin is not

suitable, another medication might be added, including SGLT2 inhibitors, GLP1 receptor agonists,

DPP4 inhibitors, and thiazolidinediones, with each of them having specific efficacy levels, effects

on cardiovascular system, weight, and risks for side effects in addition to a high cost (Anderson,

2020; World Health Organization, 2020).

1.3 Metformin and its mechanisms of action

Metformin, a biguanide, is the first-line therapy for the treatment of T2D. According to the

American Diabetes Association and European Association for the study of Diabetes guidelines, it
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is the preferred option for initiating glucose-lowering due to its efficacy, safety, tolerability, and

low cost (Davies et al., 2018). It has been widely used in clinical practice for over 65 years and

attenuates  not  only  hyperglycemia  but  also  diabetes  mortality  and  complications  (Nasri  and

Rafieian-Kopaei, 2014; Bailey, 2017). The applicability of metformin is constantly expanding, as

evidenced by the growing number of new roles of the medication in the context of numerous

cancers (Saraei et al., 2019), cardiovascular diseases (Rena and Lang, 2018), aging (S. Chen et al.,

2022),  liver  diseases  (Brandt  et  al.,  2019),  obesity  (Yerevanian and Soukas,  2019),  polycystic

ovary syndrome (Zhao et al., 2021), and renal diseases (Ren et al., 2019).

Although metformin has been shown to exert  pleiotropic effects  on glucose metabolism,

general  agreement  exists  that  the  main  activity  is  mainly  due  to  the  inhibition  of  hepatic

gluconeogenesis (Lamoia and Shulman, 2021). However, the precise mechanism is still discussed

despite being studied for decades. Several pathways in the liver are potentially involved, including

inhibition  of  mitochondrial  complex  I  that  provides  indirect  AMP-activated  protein  kinase

(AMPK) activation, direct activation of AMPK, suppression of adenylate cyclase function that

attenuates glucagon signaling, and inhibition of  mitochondrial glycerophosphate dehydrogenase

(mGPD) (Wu, Horowitz and Rayner, 2017).

There  is  increasing  evidence  that  metformin's  action  mechanism  is  associated  with

physiological processes in the gastrointestinal tract. For example, a more pronounced effect of

metformin  can  be  observed  when  the  drug  is  administered  orally  than  intravenously  at  an

equivalent  dose  (Stepensky  et  al.,  2002).  Metformin  accumulates  in  gastrointestinal  tissues

(Kinaan, Ding and Triggle, 2015); for example, it is 30-300 times more concentrated in the small

intestine than in plasma, and 30-50% of the drug reaches the colon and is eliminated with feces.

1.4 Metformin pharmacokinetics

The fate of metformin in the body has been illustrated in Figure 2. Upon oral administration,

metformin is absorbed by the enterocytes of the proximal small intestine. Absorption of metformin

in the gastrointestinal tract is incomplete,  and its  oral  bioavailability has been estimated to be

approximately 55% (Graham et al., 2011). Passive diffusion has been suggested to be responsible

for half of the intestinal uptake of metformin (Szymczak-Pajor, Wenclewska and Sliwinska, 2022).

The rest of the medication is transported by facilitated diffusion using several transporters. The

plasma membrane transporter (PMAT) and the organic cation transporter 3 (OCT3), which has a

higher affinity for the drug, are the primary transporters involved in metformin absorption; both
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are located on the polarized apical membranes of enterocytes (Szymczak-Pajor, Wenclewska and

Sliwinska,  2022).  Metformin transport into the portal  vein is  also mediated by organic cation

transporter  1  (OCT1)  located  in  the  basolateral  membrane  of  enterocytes.  Other  transporters

potentially  involved  in  the  intestinal  absorption  of  metformin,  including  serotonin  re-uptake

transporter (SERT), thiamine transporter 2 (THTR2), and carnitine/organic cation transporter 1

(OCTN1), have also been described (Liang and Giacomini, 2017). Peak plasma concentrations of

metformin can be detected approximately 3 hours after the intake (Graham et al., 2011).

Figure  2.  Metformin  transporters  and  the  fate  of  metformin  in  the  body – absorption  and

elimination. (a) Metformin uptake by enterocytes. (b) Metformin uptake by hepatocytes and disposal into

bile. (c) Uptake into renal epithelial cells and excretion of unchanged metformin into the urine. Adapted

from (Florez, 2017).

Metformin  is  not  metabolized  in  the  liver;  however,  the  multidrug  and  toxin  extrusion

protein 1 (MATE1) found in hepatocytes is involved in the biliary excretion of an unchanged drug

or its transport by blood to the kidney (Szymczak-Pajor, Wenclewska and Sliwinska, 2022). The

primary route of metformin clearance is renal excretion of the drug in the unchanged form via

tubular secretion in the urine. Metformin transport to the kidney is mediated by MATE1, MATE2,

and the leading transporter that ensures drug uptake in renal epithelial cells – OCT2. MATE1 has a

higher affinity for metformin than MATE2, and its absence causes lactic acidosis, a significant side

effect of the drug  (Toyama  et al., 2012). Up to 30% of an oral dose of metformin is excreted

unchanged into feces (McCreight, Bailey and Pearson, 2016).

1.5 Microbiome

The  human  body  is  an  ecosystem  comprised  of  trillions  of  microorganisms  (bacteria,

archaea, microscopic eukaryotes), known collectively as the microbiota (Hou et al., 2022). Older

definitions also include viruses, but since they are not living organisms, they have been excluded

lately.  A microbiome is  a  collection  of  microorganisms  in  a  specific  site,  together  with  their
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genomes and the surrounding environmental conditions, structural elements, and metabolites (Berg

et al.,  2020). Research of the microbiome and its impact on human health has been a rapidly

growing  area  of  biomedical  science.  The  main  human  body  niches  include  skin,  vaginal,

gastrointestinal,  and  oral  microbiomes,  although  the  research  on  other  body  sites  constantly

intensifies (Reynoso-García et al., 2022). 

It is widely accepted that colonization with the first microbial communities occurs at birth

(Houghteling  and  Walker,  2016).  This  is  supported  by  differences  in  the  composition  of  the

neonatal  microbiome depending on the method of delivery – a vaginally delivered newborn is

inoculated with the mother’s vaginal  and intestinal  bacteria,  while  an infant  born by cesarean

section is colonized by environmental bacteria with a smaller diversity and lacking Bacteroidetes

(Dominguez-Bello  et al., 2010). Contrary to the existing dogma that the fetus is sterile,  in utero

colonization has been proposed lately (Stinson et al., 2019). Additional factors that affect a child’s

microbiome in the first years of life include feeding type, use of antibiotics, and household pet

keeping (Kim et al., 2020).

The human microbiome is constantly evolving and changing in response to various factors

throughout life, including genetic background, age, diet, hormonal changes, underlying diseases,

lifestyle, and environmental interactions (Ogunrinola et al., 2020). Nevertheless, each person has

distinct and stable microbiota, evidenced by the observation that samples from the same individual

are more similar than those from different individuals (Dickson, 2019).

1.6 Gut microbiome

The most diverse and most studied human microbiome subpopulation is the gut microbiome.

According to the latest human gut microbiome reference set, almost 3600 species can be found in

the gut  (Leviatan  et al., 2022). At three to five years of age, the establishment of the core gut

microbiome appears (Rodríguez et al., 2015). The latest decade has shown that deviations from the

core microbiome, collectively named dysbiosis, are associated with a wide variety of diseases, in

particular  obesity,  diabetes,  and inflammatory bowel diseases,  though it  is  still  unknown what

confers these deviations and how the core microbiome is maintained  (Singh  et al., 2021). The

potential  for  modulating  the  gut  microbiome  or  host-microbiome  interactions  offers  new

therapeutic strategies for many chronic diseases.

The gut microbiome is dominated by four phyla – Bacteroidetes (Gram-negative, anaerobic),

Firmicutes (Gram-positive, anaerobic or obligate or facultatively aerobic), Actinobacteria (Gram-
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positive, anaerobic), and Proteobacteria (Gram-negative, aerobic or facultative anaerobic) in both

mice and humans  (Belizário and Napolitano, 2015). However, the functional niche for each of

these phyla is different as Bacteroidetes mainly produces acetate and propionate, but Firmicutes –

butyrate (Thursby and Juge, 2017). 

The gut microbiome exists in close interaction with the host and performs many essential

functions, summarized in Figure 3. The main functions of the gut microbiome include digestion of

food  compounds,  synthesis  of  vitamins  and  amino  acids;  immune  system  development  and

training;  ensuring  colonization  resistance  against  opportunistic  pathogens;  and  mechanical

strengthening of the intestinal epithelium (Laukens et al., 2015).

Figure 3. Key functions of the gut microbiome. Adapted from (Laukens et al., 2015).

1.7 Spatial variation of the gut microbiome

Gut microbiome composition and density vary along the gastrointestinal tract longitudinally

and cross-sectionally  (Tropini  et  al.,  2017).  Components  contributing  to  this  diversity  include

nutrient  availability,  chemical  gradients,  oxygen levels,  mucosal  structure,  the diameter  of  the

lumen, and cellular composition (Donaldson, Lee and Mazmanian, 2015).
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Functional differences between distinct regions of the gut correspond to the distribution of

the microbial genera with respect to both identity and abundance. Studies in mice, piglets, and

humans have shown that the proximal part of the small intestine – duodenum-jejunum, which is

characterized  by faster  transit  and facilitation  of  simple  sugar  and amino acid  metabolism,  is

dominated  by  facultative  anaerobes  Lactobacillus,  Proteobacteria,  and  obligate  anaerobes

Bacteroides, distal small intestine – ileum by Fusobacterium and Escherichia and the cecum and

colon  where  the  passage  is  slower  and  metabolism  advantages  fermentation  of  complex

polysaccharides  arising  from  undigested  fibers  or  host  mucus  is  prevailed  by  saccharolytic

Bacteroidales,  Clostridiales, and  Prevotella (Gu  et al., 2013; Tropini  et al., 2017; Y. Liu  et al.,

2019). In healthy mice, Lactobacillaceae dominates the stomach and small intestine, while in the

large  intestine,  the  most  abundant  families  are  Bacteroidaceae,  Prevotellaceae,  Rikenellaceae,

Lachnospiraceae, and Ruminococcaceae (Yamamoto et al., 2018).

Microbial communities differ on the transverse axis as well. Bacteria associated with the gut

mucosa remain located at the same place; thus, these depend on the available substrate, whereas

bacteria in the gut lumen can freely associate with various substrates. The mucosa is inhabited by

aerotolerant  taxa  such  as  Proteobacteria and  Actinobacteria,  Clostridium,  Lactobacillus,

Enterococcus,  and  Akkermansia,  while  other  bacteria  predominate  towards  the  lumen –

Bacteroides,  Bifidobacterium,  Streptococcus,  Enterobacteriaceae,  and  Ruminoccoccus among

others  (Jandhyala  et al., 2015; Tropini  et al., 2017). The mucosa-associated microbiota varies in

different  intestinal  parts.  Although  fecal  samples  representing  luminal  content  can  provide

information on global microbiota composition to a certain extent, research on mucosa-associated

microbial communities can provide critical information on the interaction between gut microbiota

and host (Kirchgessner, 2016).

1.8 Metformin effects on the gut microbiome

Studies  in  humans  have  convincingly  shown  that  metformin  specifically  alters  the  gut

microbiome both in T2D patients (Napolitano et al., 2014; Forslund et al., 2015; Wu et al., 2017)

and in healthy subjects (Elbere et al., 2018; Bryrup et al., 2019). A multi-country cross-sectional

study employing metformin-untreated T2D patients,  metformin-treated T2D patients,  and non-

diabetic controls has shown depletion of butyrate producers such as Roseburia, Subdoligranulum,

and  butyrate-producing  Clostridiales spp.  in  the  metformin-untreated  T2D  subset;  in  turn,

metformin treatment significantly increased the abundance of Escherichia spp. and decreased the

abundance of  Intestinibacter and, when analyzed functionally, significantly augmented butyrate
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and propionate production potential  (Forslund  et al.,  2015). These results  have been approved

further by a longitudinal double-blind study on individuals with treatment-naive T2D (Napolitano

et al.,  2014). Another direction of metformin’s effects  on the gut microbiome is the increased

abundance of the mucin-degrading Akkermansia muciniphila (De La Cuesta-Zuluaga et al., 2017).

Studies in healthy individuals have reported an increase in Escherichia/Shigella and a decrease in

the abundance of  Intestinibacter spp. and  Clostridium spp. (Elbere  et al.,  2018; Bryrup  et al.,

2019). It has been shown that metformin exerts its effects on the microbiome already in the first 24

hours (Elbere et al., 2018) and that the alterations in the gut microbiome could be related to the

metformin-induced immune response (Ustinova et al., 2020).

A number of studies that have specifically targeted metformin effects in rodents have used

16S rRNA sequencing and have identified that metformin modifies the metabolic profile of high-

fat diet-fed animals accompanied by changes in the microbiome (Zhang et al., 2015; Lee  et al.,

2018; Ji, Wang and Li, 2019). Reduced abundances of Akkermansia and Alistipes and increases in

the proportions of Anaerotruncus, Lactococcus, Parabacteroides, Odoribacter, Lawsonia, Blautia,

and  Lactonifactor have  been  reported  in  high-fat  diet-fed  mice,  which  were  countered  by

metformin  treatment  (Shin  et  al.,  2014).  The  gut  microbiome  of  high-fat  diet-fed  mice  is

dominated by Firmicutes, in contrast to mice fed the regular diet in which Bacteroidetes prevail.

Lee  and  colleagues  have  demonstrated  that  metformin  treatment  increases  Bacteroidetes

abundance  to  a  level  similar  to  that  of  the  control  mice  and  changes  the  abundances  of

Bacteroidaceae,  Verrucomicrobiaceae,  Clostridiales family XIII, incertae sedis, and Akkermansia

muciniphila (Lee, 2014). Metformin exerts changes in the gut microbiome of healthy mice also by

increasing  the  abundances  of  Rikenellaceae,  Ruminococcaceae,  Verrucomicrobiaceae,  Alistipes

spp.,  Akkermansia spp., and Clostridium spp.  (Lee, 2014). A study on the modulation of the gut

microbiome in a high-fat diet-fed male rat model in response to metformin treatment has shown

increased  abundances  of  Blautia,  Bacteroides,  Butyricoccus,  Phascolarctobacterium,

Parasutterella,  Akkermansia,  Prevotella,  Lactobacillus, and Allobaculum (Zhang et al., 2015). A

review on the effects of metformin on the gut microbiome in the context of obesity and T2D has

summarized the differences  in the results  obtained in  both human and animal  studies  (Zhang,

2020),  showing that  certain  unclarities  still  remain,  for  example,  the  directions  of  changes  in

response  to  metformin  treatment  in  the  abundances  of  Prevotella and  Lactobacillus differ  in

various studies.  The effect of metformin treatment has mainly been studied in cecal and fecal

samples  only,  providing only  limited  information  about  the  various  aspects  of  the  interaction
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between the gut microbiome and metformin. Short-term effects of metformin have been shown in

different parts of the small intestine in the luminal layer in a recent study (Bravard et al., 2021).

1.9 Strategies to modulate the gut microbiome

Several strategies to prevent or treat dysbiosis exist.  The range of interventions that may

modulate the microbiome can be divided into two categories – lifestyle modifications (diet change,

caloric  restriction,  physical  activity)  and  clinical  interventions  (fecal  microbiota  transfer,

antibiotics, prebiotics, probiotics, postbiotics, non-antibiotic drugs)  (Quigley and Gajula, 2020).

The strategies  from the  clinical  category  are  shown to  mechanistically  change the  microbiota

composition, modulate innate immunity, improve the intestine's barrier function, prevent pathogen

colonization, and display selective cytotoxicity against tumor cells, thus having great potential for

successful  treatment  of  microbiome-related diseases  (Fong,  Li  and Yu,  2020).  Nevertheless,  it

should  be  noted  that  these  approaches  are  accompanied  by  risks  and  controversies  that  can

potentially  introduce  clinical  complications.  Most  of  the  studies  reported  describe  efforts  to

modulate the gut microbiome by using live microorganisms ranging from single strains to non-

defined fecal transplants; however, the use of beneficial bacteria fails to live up to its expectations.

The  main  limitations  are  colonization  resistance,  inter-individual  variation,  and  the  risk  of

transferring  pathogens,  suggesting  that  the  mechanisms  underlying  the  modulation  of  the

microbiome are not fully explained and involve host-related factors (Suez and Elinav, 2017).

Probiotics are living microorganisms that benefit the health of the host when administered in

adequate  amounts  (Fong,  Li  and  Yu,  2020).  Lactobacillus,  Bacillus,  Bifidobacterium,

Streptococcus,  and  Enterococcus are  the  most  prevalent  bacterial  genera applied as  probiotics

(Wang and Li, 2022). The main functions of probiotics include immunomodulation, colonization

resistance, and enhancing the intestinal barrier (Wang and Li, 2022).

Prebiotics are defined as nondigestible food ingredients that selectively stimulate the growth

and/or activity of specific bacteria in the gut and improve host health (Davani-Davari et al., 2019).

Prebiotics  act  in  the  gut,  mainly  by  stimulating  the  growth  of  probiotics;  being  selectively

fermented by probiotics; communicating with pathogens and preventing their colonization; and

being absorbed into the intestine and exerting anti-inflammatory effects, although the benefits of

prebiotics may not be universal and are dependent from an individual (Fong, Li and Yu, 2020).

Postbiotics,  also known as  metabiotics,  pharmabiotics,  or  heat-killed probiotics,  describe

molecules exhausted in the dysbiotic gut, which when supplemented in whole or precursor form,
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help to resume the balance in the gut (Chaluvadi, Hotchkiss and Yam, 2016; Diez-Gutiérrez et al.,

2020). Postbiotics include all the bioactive functional compounds that can be used or produced by

the  microbial  community  to  promote  health.  Vitamin  B12,  vitamin  K,  folate,  SCFAs,  indole

produced from amino  acids,  gamma-aminobutyric  acid,  and enzymes  are  typical  examples  of

postbiotics  (Diez-Gutiérrez  et  al.,  2020;  Thorakkattu  et  al.,  2022).  The  main  functions  of

postbiotics  are  exerting  selective  cytotoxicity  against  tumor  cells  and protecting  the  intestinal

epithelium by suppressing apoptosis of epithelial cells and promoting IgA output (Fong, Li and Yu,

2020).

An antibiotic has been defined as a compound made by a microbe to destroy other microbes

(Hutchings, Truman and Wilkinson, 2020). Antibiotics are widely used due to their action against

pathogenic microbes.  However,  the use of antibiotics has a  negative effect  on gut microbiota,

including reduced biodiversity  of  bacteria,  alterations  in  metabolic  functions,  and selection of

antibiotic-resistant bacteria, causing a rapid rise of antimicrobial resistance – a global threat to

health (Hutchings, Truman and Wilkinson, 2020; Wang and Li, 2022).

Fecal  microbiota  transplantation  (FMT)  is  a  therapeutic  method  that  is  defined  as

transferring fecal material from a healthy donor into the gastrointestinal tract of the patient (Bibbo

et al., 2020). FMT is an approved method for treating  Clostridium difficile infection in clinical

practice  (Bibbo  et  al.,  2020).  However,  it  has  shown  potential  for  use  in  managing  obesity,

inflammatory  bowel  diseases,  diabetes,  non-alcoholic  fatty  liver  disease,  and  cardiovascular

diseases (Wang and Li, 2022).

1.10 MiRNAs

MicroRNAs (miRNAs) are small (average 22 nucleotides in length) non-coding RNAs that

are involved in regulating gene expression at the post-transcriptional level primarily by interacting

with the 3` UTR of target mRNAs; however, binding of miRNAs to 5` UTR, coding regions or

within promoter  regions  of  target  mRNAs has  been described as  well  (O’Brien  et  al.,  2018).

Mature miRNAs repress gene expression through two main mechanisms: binding to the target

mRNA molecule,  thereby  repressing  its  translation,  or  promoting  target  mRNA degradation

(Sarshar et al., 2020). Nevertheless, under specific conditions, miRNAs can exhibit gene activation

(O’Brien et al., 2018). 

MiRNA biogenesis consists of a series of sequential processes to create mature miRNAs (see

Figure 4). Half of the described miRNAs are intragenic and processed mainly from introns and
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relatively few exons of protein-coding genes, while the others are intergenic and are transcribed

independently of the host gene and have their own promoters (O’Brien et al., 2018). Many of the

known miRNAs  are  encoded  as  gene  clusters  transcribed  on  a  single  polycistronic  transcript

(Tanzer and Stadler, 2004). These may share similar seed regions, hence forming a miRNA family

(O’Brien et al., 2018). 

        

Figure 4. MiRNA biogenesis. Adapted from (Leitao and Enguita, 2022). 

Using the canonical biogenesis pathway, the dominant pathway for miRNA processing, the

miRNA gene is initially transcribed by RNA polymerase II into a primary precursor, pri-miRNA,

which is approximately 200 nucleotides long (Bartel, 2018). The pri-miRNA is then cleaved by the

nuclear  microprocessor  complex  consisting  of  Rnase  III  group  endonuclease  Drosha  and  the

DiGeorge critical region 8 (DGCR8) protein (Winter et al., 2009). This results in the formation of

a 60-70 nucleotide hairpin precursor miRNA (pre-miRNA) which is exported from the nucleus to

the cytoplasm across the nuclear pore by a carrier protein Exportin-5 (Leitao and Enguita, 2022).
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The pre-miRNA is further processed by the Rnase III endonuclease Dicer to approximately 22-

nucleotide-long, mature, leading- and lagging-strand duplex miRNA (Sarshar et al., 2020). Upon

formation, the duplex miRNA is loaded into an Argonaute 2 (Ago2) protein, which then relaxes to

its basic conformation thus expelling one of the strands of the duplex miRNA for a following

degradation  (Bartel, 2018). The mature miRNA strand selected by Ago2 associates with several

RNA-binding proteins, including Argonaute, to form a microribonuclear protein (miRNP) complex

called the RNA-induced gene silencing complex (RISC), which then binds to the target mRNA to

perform one of its gene regulation functions (Sarshar et al., 2020). 

The target specificity of RISC is determined by the sequence complementarity between the

miRNA and the respective sequence of the target mRNA, called miRNA response element (MRE)

(O’Brien et al., 2018). Perfect base pairing of the miRNA with its MRE, frequently found in plants

but rarely in animals, causes endonucleolytic cleavage of the target mRNA by Ago2 (Chipman and

Pasquinelli, 2020). In animals, most miRNAs exhibit partial complementarity with the MRE and

therefore  prevent  Ago2-mediated  cleavage.  Instead  the  expression  of  the  target  is  regulated

through  translational  repression  and  destabilization  of  the  mRNA  (Chipman  and  Pasquinelli,

2020). The seed region (nucleotides 2-7 of the 5` side) of the miRNA is generally considered the

minimal sequence to bind the MRE principally located at the 3` UTR of the target mRNA (Nair et

al.,  2020). In addition, the 3` end of the miRNA has been demonstrated to provide additional

pairing thus increasing the specificity and the stability of the interaction  (O’Brien  et al., 2018).

MiRNAs can bind to MREs of several different target genes; in turn, a single mRNA can have one

or more distinct MRE sites and, therefore, can be targeted by multiple miRNAs (Nair et al., 2020).

Similar to mRNAs, some miRNAs are distributed in specific tissues; for example, the miR-

122 family is found in the liver, whereas the miR-124 family is expressed in neural tissues (Weber

et  al.,  2016).  The  stability  of  miRNAs  is  robust  compared  to  mRNA  (Jung  et  al.,  2010).

Extracellular  miRNAs can be secreted and transported both via  extracellular  vesicles,  such as

microvesicles,  exosomes and in a form associated with high-density lipoproteins or Argonaute

protein, thus contributing to extracellular miRNA stability (Liu et al., 2016). Circulating miRNAs

can be detected in body fluids, such as blood, saliva, cerebrospinal fluid, breast milk, and urine,

making them promising biomarkers (Zhou et al., 2011; Wang et al., 2012; Yoshizawa and Wong,

2013; Kopkova et al., 2018; Shang et al., 2019). Fecal miRNAs have mostly been studied in the

context of colorectal cancer (Yuan, M. Burns, et al., 2018) and inflammatory bowel diseases (Ji et

al.,  2018;  Wohnhaas  et  al.,  2020).  Despite  their  known  functional  role  in  the  intestine,  the
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involvement of fecal miRNAs in host-microbiome interaction is not yet fully understood (Sarshar

et al., 2020).

1.11 MiRNA interaction with gut microbiome

The latest studies have provided evidence that miRNAs not only function in the host cells

but also can be transmitted from one species to another,  ensuring communication or inducing

signal interference between different species or even kingdoms. Thereby the miRNAs endogenous

to one species are able to target the biological processes of other species  (Liang  et al., 2013).

Strong evidence exists that a single miRNA can target many mRNAs, and a single mRNA can be

targeted by many miRNAs (Taganov et al., 2006). Synthesis of miRNAs is rapid and requires little

energy  input,  being  economical  in  cellular  terms;  thereby,  it  is  possible  for  host  miRNAs  to

modulate a large number of members of the gut microbiome (Choi et al., 2017).

Until  now,  three  important  interactions  between  the  host  and gut  microbiome involving

miRNAs have been clarified (Figure 5). Firstly, miRNAs regulate host gene expression; secondly,

the gut microbiome influences host miRNA expression; and lastly,  the host influences the gut

microbiome through the release of miRNAs (Williams et al., 2017a). 

Figure 5. Known interactions between miRNAs and microbiota and the effect on gene expression

regulation. (A) MiRNAs regulate gene expression in response to microbiota. (B) Microbiota regulates host
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miRNA expression.  (C)  Host  miRNA influences  its  microbiome  through  fecal  miRNAs,  which  are

introduced in bacteria. Adapted from (Williams et al., 2017b).

Liu and colleagues have shown that the host itself may regulate its microbiome and that the

overall abundance of fecal miRNAs is higher in germ-free mice compared to the SPF-colonized

mice  (Liu  et  al.,  2016).  Furthermore,  they  observed  that  Dicer1  knockout  mice  exhibit

uncontrolled growth of the gut microbiome, but after fecal miRNA transplantation, homeostasis

was restored, suggesting that extracellular miRNAs are involved in controlling bacterial growth. It

was observed that intestinal epithelial cells (IECs) are major sources of extracellular fecal miRNAs

due to their  ability to secrete exosome-like vesicles. Host miRNAs in feces specifically target

bacterial genes and thus regulate the gut microbiota  (Liu  et al., 2016). Though the relationship

between miRNA expression and microbiome-associated diseases, as well as the association of gut

microbiome dysbiosis to these diseases, has been studied to some extent, studies regarding the

communication between the microbiome and miRNAs in the context of gut diseases are not fully

investigated  (Williams  et  al.,  2017a).  Further  research  regarding  host  miRNA effects  on  the

microbiome in relation to microbiome-associated diseases such as type 2 diabetes is needed.

1.12 Model systems for gut microbiome research

Model systems are non-human species or non-living systems that replicate essential aspects

of the living body and can be manipulated and experimented with to study specific biological

phenomena,  diseases,  molecular  pathways,  and  behaviors.  Modeling  approaches  are  often

classified into in vitro,  ex vivo,  in vivo, and in silico models.  Studying the interaction between a

host and its gut microbiome requires complex model systems, as both the host and the microbiome

community must be integrated into the model (Elzinga et al., 2019).

In vitro models are characterized by their  controlled chemical and physical environment,

scalability, high throughput, and being relatively cost-effective  (Xu  et al., 2021). Limitations of

these systems include lack of  the  representation of  the actual  anatomy and physiology of  the

intestine and the lack of interindividual differences  (Ashammakhi  et al., 2020; Xu et al., 2021).

Furthermore, conventional, two-dimensional in vitro model systems are not suitable for long-term

co-cultivation of mammalian cells and microbiota due to the overgrowth of aerobic bacteria in one

day, and cultivation of obligate anaerobic bacteria, which dominate the gastrointestinal tract is not

possible  (Steinway  et  al.,  2020).  Current  microbiome  culture  models  do  not  maintain  the

functional  activities  and compositional  profiles  of  the  gut  microbiome when compared to  the
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inoculum (L. Li et al., 2019). However, efforts have been invested to increase the maintenance of

functional  activities  of  the  gut  microbiome  in  vitro including  the  MiPro  model  which  shows

improved conservation of the gut microbiome functional profile (L. Li et al., 2019) but still lacks

the host component.

Other,  more  complex  in  vitro models  from the  host’s  perspective  that  can  be  used  for

microbiome  research  include  adult  stem  cell-derived  organoids,  pluripotent  stem  cell-derived

organoids,  and  gut-on-a-chip  system,  among  others  (Puschhof,  Pleguezuelos-Manzano  and

Clevers, 2021). From the microbe perspective, model systems include continuous culture system

(CCS), gastrointestinal tract systems TIM1 (mimics the stomach and the small intestine) and TIM2

(simulates the large intestine), which incorporate peristaltic mixing and absorption of water and

fermentation products; simulator of the human intestinal microbial ecosystem (SHIME), which is

comprised of five sequentially connected reactors containing luminal microbes; and M-SHIME

which in  addition  includes  the  mucus  layer  (Fritz  et  al.,  2013).  These  model  systems do not

incorporate host cells or have limited abilities to model the interaction with the host. Studies on the

interaction between the host and the microbiome are allowed by several co-cultivation strategies,

including 3D microinjection, organoid shearing, organ-on-a-chip co-culture, and explant co-culture

(Puschhof,  Pleguezuelos-Manzano and Clevers,  2021).  Explant cultures are considered  ex vivo

models,  as  these  are  taken  directly  from the  living  organism and  thus  represent  the  mucosal

architecture  and  include  a  mucus  layer.  The  main  limitation  of  ex  vivo models  is  their  short

lifespan (Xu et al., 2021).

Although more and more complicated alternative methods are being developed including

microfluidics-based model systems – gut on a chip (Kim et al., 2016) or the human-microbial cross

talk (HuMiX) device (Shah et al., 2016), they currently cannot yet model processes at the level of

the whole organism, moreover,  these methods use cells  originating from intestinal  carcinomas

Caco-2 or HT-29, which may have altered biological features including miRNA expression profile

compared to the T2D background.

In silico models can be used for modeling and predicting various parameters of separate

organisms living in a particular host. However, their construction strongly depends on existing

experimental data collected in  in vitro and  in vivo studies  (Fritz  et al., 2013). Furthermore, the

construction of large-scale, high-quality networks requires vast computational and manual analysis

resources, and identified results need experimental validation (Fritz et al., 2013). Other limitations

include potential translatability issues if the model is developed based on animal experimental data
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and the limited knowledge of the non-bacterial gut microbiome compartment (Molina Ortiz et al.,

2021). Nevertheless,  in silico methods are developing rapidly, and their potential has yet to be

fully exploited.

Even though a great effort is invested in developing and advancing various  in vitro and in

silico alternative methods to reduce or avoid the use of animals in research according to the widely

endorsed 3Rs principle  (replacement,  reduction,  and refinement  of  animal  studies),  the  use of

animal models (in vivo model systems) remains the most appropriate approach in many biomedical

studies. The use of living organisms helps to investigate and understand the complex etiology and

interplay  of  multiple  systems  in  the  context  of  different  diseases  or  biological  conditions

(Kottaisamy et al., 2021).

1.13 Type 2 diabetes animal models

Type 2 diabetes is a complex disease affecting various organ systems and processes in the

body; therefore, a complex model system is necessary for its research. Rodent models, especially

mice,  are  widely used for gut  microbiome studies.  Results  obtained from such studies can be

translated to humans due to a 90% similarity between gut microbiome compositions in mice and

humans (Zhang, Franklin and Ericsson, 2021). The main advantages of mice as an in vivo model

system include  a  relatively  short  life  span  and  generation  interval,  relatively  low cost,  well-

characterized gut microbiome, and miRNAs, and can be maintained and bred under controlled

conditions. Although, pigs have been characterized as the closest models to humans regarding both

the gastrointestinal tract and gut microbiome composition  (Crespo-Piazuelo  et al., 2019), these

model organisms are not feasible for most studies.

Animal models for studying T2D can be classified into the following categories based on

T2D induction methods – spontaneous or congenital diabetes; diet-induced; chemically-induced;

surgical; and transgenic models (Srinivasan and Ramarao, 2007). The main manifestations of type

2 diabetes are insulin resistance and beta cell failure; therefore, most T2D animal models involve

one or a combination of these characteristics. Obesity is another feature strongly associated with

T2D;  accordingly,  most  animal  models  are  obese  (King,  2012).  Obesity  can  be  caused  by

spontaneous mutations or genetic manipulation, or it can be induced by a high-fat diet. 

Monogenic models of obesity include Lepob/ob mouse (developed in C57BL/6J strain), which

is deficient in leptin,  a hormone necessary for the appetite regulation and sensation of satiety,

Leprdb/db mouse (developed in C57BL/KsJ strain)  and Zucker  diabetic  fatty  (Leprfa/fa)  rat,  both
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deficient  in  the  leptin  receptor.  Polygenic  models  include  Kuo  Kondo  (KK)  mouse  (severe

hyperinsulinemia  and  insulin  resistance,  alterations  in  pancreatic  islets),  Otsuka  Long  Evans

Tokushima Fatty (OLETF) rat (mild obesity and late onset hyperglycemia, inherited in males),

New  Zealand  Obese  (NZO)  mouse  (hyperleptinemia,  hyperinsulinemia,  impaired  glucose

tolerance,  insulin  resistance),  TallyHo/Jng  mouse  (hyperglycemia,  hyperinsulinemia,  increased

adiposity),  and  NoncNZO10/LtJ  mouse  (liver  and  skeletal  muscle  insulin  resistance,

hyperglycemia) (Srinivasan and Ramarao, 2007; King, 2012).

High-fat  diet  induces  obesity,  hyperinsulinemia,  insulin  resistance,  and impaired  glucose

homeostasis due to ineffective compensation by pancreatic islets (Srinivasan and Ramarao, 2007).

Diet-induced models better correspond to the disease in humans due to their environmental origin

rather than the genetic background. C57BL/6 mice are used for this model most widely, with a first

report of this model in 1988 by Surwit and colleagues  (Surwit  et al., 1988). The severity of the

disease depends on the duration and composition of the diet. Most popular diet types used for this

model are either 45% or 60% kcal from fat. Feeding duration from 4 to 20 weeks old has been

proposed as a standard protocol, furthermore, animals of both sexes should be used (Heydemann,

2016).

Chemically-induced T2D models include alloxan and streptozotocin (STZ)-induced diabetes.

Alloxan,  a  uric  acid  derivative,  selectively  destroys  the  pancreatic  beta  cells  causing  insulin

deficiency,  hyperglycemia,  glucosuria,  hyperlipidemia.  It  can induce diabetes manifestations in

rodents  and non-rodent  animals  and is  best  used in  rabbits  due  to  STZ ineffectiveness  in  the

species (Srinivasan and Ramarao, 2007). STZ is an antimicrobial agent which induces diabetes by

its  cytotoxic  effect  on  pancreatic  beta  cells,  thus  causing  hypoinsulinemia  and  hyperglycemia

(Damasceno et al., 2014). STZ is the most popular chemical for the induction of T2D in animals

and can be used in many different species including rats, mice, and guinea pigs (Kottaisamy et al.,

2021).

Surgical induction of T2D manifestations comprises partial pancreatectomy, as 70-90 percent

dissection of pancreas.  This approach has been used in dogs,  pigs, rabbits,  and rats.  It causes

moderate hyperglycemia (Srinivasan and Ramarao, 2007).

Transgenic  and  knockout  T2D  models  are  used  for  investigating  gene  regulation  and

development, pathogenic mechanisms, and therapeutic targets (Srinivasan and Ramarao, 2007). In

the  context  of  T2D many  genes  and  their  effects  can  be  altered  forming  various  phenotypic
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manifestations ranging from mild to severe hyperglycemia, insulin resistance, hyperinsulinemia

(Srinivasan and Ramarao, 2007).

1.14 Translatability of mouse experiments to humans

Remarkable  similarity  exists  between  mice  and  humans  in  regard  to  physiology  and

anatomical structures (Figure 6), which is one of the main reasons why mouse models are widely

used in biomedical research (Nguyen et al., 2015). In particular, the gastrointestinal tracts of both

species are formed of organs that are anatomically similar. 

             

Figure 6. Comparison of human and mouse intestinal tracts. Adapted from (Hugenholtz and Vos, 2018).

Although,  it  should  be  noted  that  significant  differences  also  exist,  which  might  be

influenced  by  their  different  diets,  feeding  patterns,  body  sizes,  and  metabolic  requirements

(Nguyen et al., 2015). Mice possess a colon and cecum with a proportionally larger surface area,

as well as taller intestinal villi, which could potentially facilitate greater nutrient absorption and

essential  element  synthesis  (Park and Im,  2020).  Unlike mice,  humans have an appendix that

serves as a reservoir for microorganisms, while a cecal patch is considered the equivalent of the

human  appendix  in  mice  (Kooij  et  al.,  2016).  Substantial  differences  in  gut  microbiome

composition have been described between these anatomical structures. The predominant bacterial

taxa  found  in  the  human  appendix  are  Firmicutes,  Proteobacteria,  Bacteroidetes,  and
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Fusobacteria, whereas cecal patches of mice are primarily composed of Bacteroidetes, Firmicutes,

Actinobacteria, and Proteobacteria (Park and Im, 2020).

Overall,  the human and murine microbiomes are approximately 90% similar in  terms of

phyla  and  genera  content  (Krych  et  al.,  2013).  The  main  differences  are  manifested  in  the

abundance of microorganisms and their proportions in the microbiome composition, with humans

having a higher ratio of  Firmicutes to  Bacteroidetes – dominant phyla in the gut microbiome of

both mice and humans (Park and Im, 2020). At the genera level, Bacteroides is the most abundant

genus in the human gut microbiome, followed by members of Ruminococcaceae and Clostridiales,

whereas  in  mice,  S24-7 family  members  (representatives  of  Bacteroidetes phylum)  prevail,

followed by Clostridiales representatives (Nagpal et al., 2018). The top 15 genera in fecal samples

of  both  mice and humans are  illustrated in  Figure  7.  In  turn,  Faecalibacterium, Mitsuokellla,

Megasphera,  Dialister,  Asteroleplasma,  Succinivibrio,  Sutterella,  Paraprevotella,  and

Phascolarctobacterium have  been  described  as  found  mainly  in  humans,  while  Mucispirillum

generally is rodent-specific (Park and Im, 2020).

                       

Figure 7. Top 15 genera and their mean relative abundance in fecal samples of mice and humans.

Adapted from (Nagpal et al., 2018) .
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Despite  the  limitations,  mouse  models  remain  a  valuable  tool  for  studying  disease

mechanisms and testing potential therapies. Animal experimentation allows for manipulations and

interventions that are essential for gut microbiome research in the context of metabolic diseases,

including  dietary  interventions,  providing  the  treatment  to  be  studied,  and  collecting  tissue-

associated microbiome samples that  would not be possible with human subjects.  Furthermore,

these  advantages  are  accompanied  by  a  controlled  environment,  known  and  shared  genetic

background, and opportunities for the complex experimental setup. Specific pathogen-free status

characteristic for many animal facilities allows increased uniformity and reproducibility of the

results  (Aguanno  et al.,  2022).  Although studies in mice are  not  fully  translatable to humans,

currently available model systems do not provide a better alternative (Hugenholtz and Vos, 2018).

1.15 Colorectal adenomas

Neoplastic  colorectal  polyps,  also  known  as  adenomas,  are  potential  predecessors  of

colorectal adenocarcinoma, the most common form of colorectal cancer (constitutes more than

95% of colorectal cancer cases) (Shussman and Wexner, 2014; Thrumurthy et al., 2016). They are

typically small, benign tumors that develop on the inner lining of the colon or rectum, and can

often be removed during a routine colonoscopy. Histologically colorectal polyps are classified into

two major classes – conventional adenomas and serrated lesions (Rex et al., 2017). Conventional

adenomas  are  further  categorized  based  on  the  dysplasia  grade  (high  or  low)  and  villousity

(tubular, tubulovillous, and villous). Subgroups of serrated lesions include hyperplastic polyps that

are not precancerous, sessile serrated polyps (with or without cytologic dysplasia), and traditional

serrated adenomas (Rex et al., 2017).

The  prevalence  of  colorectal  adenomas  varies  between  30-50%  (Øines  et  al.,  2017).

Nonmodifiable risk factors associated with the development of colorectal adenomas include age,

sex, family history of colorectal  cancer,  and hereditary polyposis syndromes.  Lifestyle factors,

such as smoking, red-meat consumption, alcohol use, physical inactivity among others, may also

increase the risk of developing colorectal adenomas (Sninsky et al., 2022). It has been estimated

that 5% of adenomas develop into carcinomas, and the adenoma-carcinoma sequence is the widely

accepted process by which colorectal cancer arises (J. Li et al., 2019; Nguyen, Goel and Chung,

2020). 

Colorectal  cancer is the third most common malignancy globally,  with 1.93 million new

cases and 0.94 million deaths in 2020, and it is projected to progress to over 3 million new cases in
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2040  (Xi  and  Xu,  2021).  Due  to  the  heavy  financial  burden  and  global  healthcare  issues,

prevention strategies are critical to reducing colorectal cancer risk. The most common prevention

and treatment strategy for colorectal  adenomas is  regular  colonoscopy screening to detect  and

remove any precancerous growths (Herszényi, 2019). Other prevention strategies include regular

physical activity, a healthy diet, intake of vitamins, limiting alcohol and red meat consumption,

smoking cessation, and aspirin use as a chemoprevention agent among individuals with elevated

risk (Hou, Huo and Dignam, 2013).

1.16 MiRNAs and gut microbiome in patients with colorectal adenomas

Individual  miRNAs  can  function  as  oncogenes  or  tumor  suppressors,  though  miRNA

expression  has  been shown to  be  downregulated  in  tumor  cells,  suggesting  impaired  miRNA

biogenesis  in  cancer  (Lin  and  Gregory,  2015).  An increasing  body of  evidence  indicates  that

miRNAs could serve as potential biomarkers for early-stage colorectal cancer detection due to

their resistance to degradation and ability to provide insight into the presence of the disease based

on their  expression levels in colorectal  adenomas,  blood samples,  and feces  (Yi  et al.,  2016).

Changes in miRNA profile during the progression from normal colorectal tissue to adenoma and to

colorectal cancer have been investigated in several studies  (Yin  et al., 2016; J. Li  et al., 2019).

Although existing data on altered miRNA profiles between different tissue states are inconsistent,

miRNAs that are upregulated in both colorectal adenoma and carcinoma stages include miR-18a,

miR-18b,  miR-31,  miR-142-5p,  miR-212,  miR-21,  miR-92a,  miR-135b,  miR-486,  miR-1290,

miR-15a, miR-17, miR-20a, and miR-31, while miR-320 family, miR-145, miR-451, miR-638,

miR-137, miR-30, miR-24, miR-423-5p, and miR-148a are downregulated (Liu and Li, 2019).

There  is  mounting  evidence  indicating  that  the  human  gut  microbiota  and  microbiota-

associated metabolites play a significant role in the early stages of colorectal adenocarcinoma and

colorectal  adenoma development  by disrupting various  intestinal  functions  and contributing to

chronic inflammation (Coker et al., 2022). Changes in the microbiome in adenoma and carcinoma

stages have been evaluated in fecal samples (Feng et al., 2015) and colonoscopy aspirates (Saito et

al.,  2019).  Colorectal  adenocarcinoma  has  been  shown  to  be  associated  with  an  increase  of

Fusobacterium  nucleatum,  Peptostreptococcus  anaerobius and  Bacteroides  fragilis in  fecal

samples  (Yuan  et al., 2021). In another study, an increase in  Bacteroides dorei and  Bacteroides

massiliensis has been shown in patients with advanced adenoma compared to healthy subjects, and

an increase in Bacteroides massiliensis, Bacteroides ovatus, Bacteroides vulgatus, and Escherichia

coli in carcinoma patients compared to patients with advanced adenoma  (Feng  et al., 2015). In
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turn,  Ruminococcus,  Bifidobacterium,  and  Streptococcus species  have  been  reported  to  be

decreased in patients with adenoma or colorectal cancer (F. Chen et al., 2022).

The interaction between host miRNAs and the gut microbiome have been investigated in the

background  of  colorectal  cancer.  (Yuan,  M.  B.  Burns,  et  al.,  2018;  Tomkovich  et  al.,  2020).

Several microbial taxa that are correlated with certain host miRNAs have been identified in tumor

tissue samples including Parabacteroides and Blautia which were positively correlated with miR-

129-5p  and  miR-139-5p,  respectively,  while  the  relative  abundances  of  Rikenellaceae and

Bacteroidales S24-7 were negatively correlated with the expression of miR-139-3p and miR-143-

3p, respectively  (Yuan, M. B. Burns,  et al., 2018). In mice inoculated with the biofilm-positive

human colorectal tumor-derived microbiome showed positive correlation between  Enterococcus

and  mmu-miR-103-3p,  among  others,  in  turn  the  abundance  of  Roseburia was  negatively

correlated with mmu-let-7c-5p (Tomkovich et al., 2020). The inconsistent results between studies

necessitate  further  investigation  into  the  interaction  between  the  host  miRNAs  and  the  gut

microbiome; furthermore, studies in the context of the colorectal adenoma stage still need to be

performed.
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2 MATERIALS AND METHODS

2.1 Animal experiment for studies I-III

2.1.1 Ethical approval

Animal procedures were reviewed and approved by the National animal welfare and ethics

committee, State Food and Veterinary Service, Riga, Latvia.

2.1.2 Design of animal experiment

This study was designed as a randomized block experiment comprised of three blocks with a

three-way factorial  treatment arrangement where factors of interest  are T2D status induced by

high-fat diet (HFD) or control diet (CD) feeding, sex, and metformin therapy status, forming eight

different  treatment  groups –  HFD_M_Met-,  HFD_F_Met-,  HFD_M_Met+,  HFD_F_Met+,

CD_M_Met-, CD_F_Met-, CD_M_Met+, and CD_F_Met+ (Figure 8). Study's sample size was

determined by the Resource Equation method, appropriate for complex designs  (Festing  et al.,

2016). In each of the eight treatment groups, we included three experimental units, 24 in total. As

the experimental unit was a cage with three animals – the total number of animals involved in the

experiment was 72.

After the adaptation week, all experimental units of the same block were randomly assigned

to HFD- or CD-fed groups so that each of the treatment groups would consist of animals with

similar  body weight,  and experimental  units  of  both sexes  would  be represented  in  the  same

number in both types of treatment groups. After the induction of T2D manifestations, experimental

units were randomly assigned to receive or not to receive metformin treatment providing that the

number of experimental units in each of the groups is equal. During all the procedures, treatments,

and measurements, as well as sample collection were performed randomly within the same block.

Work with each of the blocks was performed on separate days of the week, keeping the interval

between interventions in the same block constant.
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Figure 8. Experimental design and timeline.  After the adaptation period (A), the total duration of the

study was 30 weeks, including 20 weeks of the induction of type 2 diabetes manifestations followed by 10

weeks-long metformin treatment.  Abbreviations: HFD – high-fat diet; CD – control diet;  M – male; F –

female; Met+ – receiving metformin treatment for 10 weeks; Met- – not receiving metformin treatment.
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2.1.3 Experimental animals

Age-matched 4-5-week-old male and female C57BL/6N mice with specific pathogen-free

(SPF) status were obtained from the University of Tartu Laboratory Animal Centre. All the animals

were housed in SPF conditions, 23 ± 2 ºC, 55% humidity. The light cycle was 12:12 hours, with a

light period from 7:00 am to 7:00 pm. All the procedures were performed during the first half of

the day in a specially designated procedure room. 

Animals were housed in individually ventilated cages (Techniplast) up to three same-sex

animals per cage on aspen bedding mixed with ALPHA-dri. All the animals had free access to

drinking  water.  Animals  were  fed  HFD or  CD  ad libitum.  All  the  cages  were  enriched  with

cardboard tunnels, plastic shelters, wooden sticks, and nesting material. For the whole duration of

the experiment, animals were observed once a day; if we observed any type of suffering that could

not be alleviated, the suffering animal was euthanized by cervical dislocation. During the study

humane endpoint was implemented for 13 animals mainly due to male fighting wounds. Thus 59

animals completed the study, however, at the end of the experiment each of the experimental units

remained represented by at least one animal.

2.1.4 Experimental procedures

After a one to two-weeks long adaptation period during which animals were fed regular

chow diet  ad libitum and received regular drinking water a diet change was initiated. The age of

animals at this point was approximately six weeks. All the cages from each of the blocks were

randomly assigned to a high-fat diet-fed group or control diet-fed group. Animals were provided

with a rodent diet containing 60 kcal% fat (D12492, Research Diets) or rodent diet with 10 kcal%

fat (D12450J, Research Diets) ad libitum. Both types of diets were sterilized by irradiation. Body

weight and food intake (per cage) were measured once a week; water intake (per cage) – twice a

week. 

The  cages  were  changed  on  a  weekly  basis.  Upon  opening  the  cage,  each  mouse  was

immediately  transferred  to  a  clean,  separate  box  in  which  animals  were  allowed  to  defecate

voluntarily.  Each of  the  animals  was  weighted.  Feces  were  collected  in  sterile  tubes  in  three

aliquots. Bottles with drinking water were changed two times a week.

Four weeks after starting the assigned diet,  we initiated a measurement of blood glucose

levels at two weeks interval using an Accu-Chek Performa glucometer (Roche). Blood for regular

glucose level measurements was obtained from the saphenous vein by puncturing the vein with a

25G needle. Accu Chek Performa glucometer with Accu Chek test strips was used to measure the
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glucose level in blood samples. Before the procedure animals were fasted for 6 hours starting from

8:00  am  to  2:00  pm.  The  induction  of  T2D  was  evaluated  by  glucose  and  insulin  level

measurements in plasma samples at week 20 after starting the assigned diet. The plasma necessary

for the analysis was obtained from blood drawn from the saphenous vein. To estimate the insulin

resistance,  the  HOMA-IR  index  was  calculated  (by  formula

HOMA−IR= glucose,mmol /L∗insulin,mU / L
180

)  based  on  fasting  plasma  glucose  and  insulin

levels determined by the mouse glucose assay and mouse insulin ELISA kit (both from Crystal

Chem) following manufacturer’s instructions at week 20.

Metformin was provided to mice with drinking water. The concentration of metformin was

calculated to correspond to 50 mg/kg body mass/day. During the therapy period, all of the bottles,

including those of the control group, were changed every day. Metformin was freshly added to the

drinking water every day upon water changing. The duration of metformin therapy was ten weeks.

After the treatment period, at week 30, blood was collected from the saphenous vein for

repeated evaluation of fasting glucose and insulin levels in plasma samples. On a day after the

blood  collection,  all  of  the  animals  of  the  corresponding  block  were  sacrificed  by  cervical

dislocation without any other anesthesia, as the effect of other medications would interfere with

the study's aims.

2.1.5 Sample collection

Fecal samples

Upon opening the cage, each mouse was immediately transferred to a clean, separate box in

which animals were allowed to defecate voluntarily.  Each of the animals was weighted.  Feces

were collected in sterile tubes in three aliquots.

Gut microbiome samples

Luminal and mucosal microbiome samples representing four different intestinal segments –

proximal  small  intestine  (duodenum),  distal  small  intestine  (ileum),  cecum,  and  colon  were

collected. First, intestinal segments were rinsed separately with distilled water to collect luminal

contents. Second, rinsed tissue samples were put in a tissue dish containing cold PBS and cut

longitudinally. The remaining lumen contents were removed by repeated rinsing in separate clean

tissue  dishes.  Mucosa  samples  containing  microbiome  were  obtained  by  scraping  the  inner

intestinal  surface  of  the  intestinal  segment  with  a  cell  scraper  and  collected  in  sterile  tubes.

Samples were stored at -80ºC until further analysis.
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2.2 Human study (Study IV)

2.2.1 Ethical approval

The study was approved by the Central Medical Ethics committee of Latvia (01-29.1.2/1751)

and  performed  in  agreement  with  the  principles  of  the  Declaration  of  Helsinki.  Before  the

recruitment  of  donors,  written  informed  consent  was  obtained  from  each  participant  after  a

thorough explanation of the aim of the study and the nature of each procedure. 

2.2.2 Participant engagement criteria

In  total,  43  patients  undergoing  colonoscopy  procedures  due  to  various  reasons  were

included  in  the  study.  Patients  provided  informed  consent  and  were  recruited  based  on  the

following criteria: (1) the participant is of legal age; (2) women are not pregnant or breastfeeding;

(3)  there  are  no  following  health  problems:  a)  acute  illness  at  the  time  of  enrollment;  b)

oncological diseases during the three years before enrollment in the study (three years after the

completion of therapy); c) kidney failure or kidney dysfunction; d) autoimmune diseases; e) HIV,

HBV or HCV; f) regular consumption of alcohol; (4) the following medications have not been

used  in  the  last  two  months:  antibiotics;  probiotics  in  the  form  of  tablets/capsules;

immunosuppressive medications; anticytokines; corticosteroids; proton pump inhibitors; (5) there

have not been significant intestinal surgeries (for example, intestinal resection, bariatric surgery),

except for appendectomy; (6) no diarrhea in the past week. All of the patients were divided into

two groups based on the presence (n = 20) or the absence (n =23) of colorectal adenomas in their

intestines.

2.2.3 Sample collection

Intestinal  biopsy  samples  were  collected  by  trained  medical  personnel  during  the

colonoscopy procedure.  Two to  three  sample  aliquots  (2  mm each)  were collected  from each

patient in a sterile tube, with RNAlater added. To collect feces, a sterile fecal collection tube was

provided to the participant, and the collection procedure was explained. Within the following 24

hours after the collection, the fecal sample was placed and stored at -80oC.

2.3 Laboratory methods

2.3.1 Microbial DNA isolation

The microbial  DNA from fecal samples representing each experimental unit  at  two time

points – before and after the metformin treatment (N = 48) (for mouse study) or from patients

undergoing colonoscopy procedures (N = 43) was extracted with the FastDNA®SPIN Kit for Soil
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(MP Biomedicals) following manufacturer’s instructions. DNA yield was determined using the

Qubit dsDNA HS Assay Kit on the Qubit® Fluorometer 1.0 (Invitrogen Co.). 

2.3.2 Total RNA isolation

Total RNA from fecal samples stored in RNAlater, of mice representing each experimental

unit at the two time points – before and after the metformin treatment (N = 48) was isolated using

All  Prep  DNA/RNA/miRNA  Universal  Kit  (QIAGEN)  according  to  the  manufacturer’s

instructions. The same kit was used for total RNA isolation from gut mucosal samples from the

same mice at the time point after the metformin treatment collected from two intestinal parts –

proximal  gut  and  cecum  (N =  48)  or  intestinal  biopsies  of  patients  undergoing  colonoscopy

procedures (N = 43). Qubit RNA HS Assay Kit on the Qubit 2.0 (Invitrogen Co.) was used to

determine  the concentration of  isolated RNA. The quality  of  the  extracted  RNA samples  was

analyzed using Agilent 2100 Bioanalyzer (Agilent, USA) and Agilent Small RNA Kit (Agilent,

USA).

2.3.3 Metagenomic library preparation and sequencing

Libraries  for  metagenomic shotgun sequencing were  prepared  using MGIEasy Universal

DNA Library Prep Kit (MGI Tech Co., Ltd.) for both mice and human samples. The input of DNA

was  200  or  300  ng,  respectively.  The  construction  of  libraries  representing  each  study  was

completed in a single batch. Library preparation was performed according to the Universal DNA

Library Prep Set User Manual and spiked with 1% PhiX. Preparation steps briefly: DNA shearing

into 300 bp fragments by S220 focused-ultrasonicator (Covaris) followed by size selection using

magnetic  beads;  end  repair  and  A-tailing;  adapter  ligation  followed  by  magnetic  bead-based

cleanup of adapter-ligated DNA; PCR and cleanup of the product; quality control; denaturation;

single strand circularization; enzymatic digestion; cleanup of enzymatic digestion product; quality

control  by Qubit  dsDNA HS Assay Kit  on the Qubit® Fluorometer  1.0 (Invitrogen Co.),  and

Agilent  High  Sensitivity  DNA  Kit  (Agilent  Technologies)  on  the  Agilent  2100  Bioanalyzer

(Agilent  Technologies).  For  metagenomic  analysis  of  the  samples  collected  from  mice,  each

experimental unit was represented by one randomly chosen animal, as some experimental units

contained only one animal at the end of the experiment. The microbiome generally was shared

between animals in the same cage, indicated by sequencing all of the same cage's microbiome

samples for some cages.

Pooled,  circularized  and  barcoded  libraries  were  used  as  templates  for  DNA nanoball

preparation  and  further  analyzed  on  DNBSEQ-G400RS  next  generation  sequencing  platform
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(MGI Tech Co., Ltd.) using DNBSEQ-G400RS High-throughput Sequencing Set (FCL PE100)

(MGI Tech Co., Ltd.) according to manufacturer's instructions. Sequencing depth was calculated to

achieve at least 20 million paired-end 100 bp reads per sample.

2.3.4 16S rRNA gene library preparation and sequencing

The concentration of DNA before library preparation was normalized to 5 ng/µl for every

sample.  The  V1-V2,  V3-V4,  and  V5-V6  hypervariable  regions  of  the  16S  rRNA gene  were

amplified by PCR using specific primers tagged with Illumina sequencing adapters and sample-

specific  barcodes  according  to  Illumina’s  instructions.  PCR products  were  analyzed  by  1.2%

agarose  gel  electrophoresis  and  purified  using  NucleoMag (Macherey-Nagel)  magnetic  beads.

Purified amplicons were pooled at equimolar concentrations, and sample indexes were added by

additional  PCR.  The  quality  of  libraries  was  assessed  by  Agilent  High  Sensitivity  DNA Kit

(Agilent Technologies) on the Agilent 2100 Bioanalyzer (Agilent Technologies). Samples were

sequenced  on  Illumina  MiSeq  (Illumina)  platform  with  MiSeq  Reagent  Kit  V2  (500-cycles)

(Illumina) according to the manufacturer’s instructions.

2.3.5 Small RNA library preparation and sequencing

Fecal samples of mice

QIAseq miRNA Library QC Spike-ins (QIAGEN, Germany) were added before preparing

the  libraries.  For  library  preparation  with  QIAseq  miRNA Library  Kit  (QIAGEN) 100 ng of

isolated RNA from each sample was used. Preparation steps briefly: 3’ ligation; 5’ ligation; reverse

transcription, converting miRNAs into cDNA while assigning unique molecular indices (UMIs) to

every  miRNA molecule  followed  by  cDNA cleanup  using  the  magnetic  bead-based  method;

library amplification, where a universal forward primer is paired with reverse primers to assign to

each sample followed by library cleanup using the magnetic bead-based method; quality control by

Qubit dsDNA HS Assay Kit on the Qubit 2.0 (Invitrogen Co.) and Agilent High Sensitivity DNA

Kit (Agilent Technologies) on the Agilent 2100 Bioanalyzer (Agilent Technologies). The prepared

libraries were sequenced on MiSeq System (Illumina) using MiSeq Reagent Kit v3 for 150 cycles

(Illumina), following the manufacturer’s instructions. Sequencing depth was calculated to achieve

at least six million single-end small RNA-seq reads per sample.

Gut mucosal samples of mice or human intestinal biopsies

MiRNA libraries were prepared using MGIEasy Small RNA Library Prep Kit, the input of

total RNA was 100 ng per sample. Preparation of the libraries involved: 3’ ligation; 5’ ligation;

reverse transcription, library amplification; cleanup with magnetic beads; quality control by Qubit
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dsDNA HS Assay Kit on the Qubit 2.0 (Invitrogen Co.) and Agilent High Sensitivity DNA Kit

(Agilent  Technologies)  on  the  Agilent  2100  Bioanalyzer  (Agilent  Technologies);  pooling  of

libraries; denaturation; circularization; enzymatic digestion and cleanup of the digestion product

by magnetic beads; and quality control by Qubit ssDNA Assay Kit and Agilent High Sensitivity

DNA Kit.  The  prepared  libraries  were  sequenced  on  DNBSEQ-G400RS sequencing  platform

(MGI  Tech  Co.  Ltd)  using  Small  RNA  FCL  SE50  (MGI  Tech  Co.  Ltd)  following  the

manufacturer’s instructions. At least 16 million single-end reads per sample were expected to be

obtained.

2.4 Bioinformatics and statistical analysis

2.4.1 Biochemical parameters

Differences  in  body weights  and biochemical  parameters  between  HFD-fed  and CD-fed

groups were determined by one-way anova and t-test. The normality of measurement distributions

was assessed by Shapiro-Wilk test, equality of variances was evaluated by an F-test.

2.4.2 Metagenomic data analysis

Mice fecal samples

Read quality evaluation was performed with FastQC (Andrews, 2010). Adapter clipping was

performed with cutadapt v1.16 (Martin, 2011). Reads were trimmed from 5' and 3' end using 5 bp

window with quality threshold 20 using Trimmomatic v0.39  (Bolger, Lohse and Usadel, 2014).

Paired reads with length 75 bp or longer were retained for further data processing.

Reads originating from the host were removed by mapping reads against mouse reference

genome GRCm38 release 96. Taxonomic classification of unmapped reads was performed with

Kraken 2.0.8-beta against progenomes database  (Mende  et al., 2020) with additionally included

mouse (GRCm38) and human (GRCh38) reference genomes  (Wood, Lu and Langmead, 2019).

Only  reads  with  a  confidence  score  of  0.5  or  higher  were  regarded as  classified.  Abundance

reestimation was done with bracken v2.5 at species level  (Lu  et al., 2017). Reads classified as

Homo sapiens or  Mus musculus were removed from subsequent analyses. Taxonomies with low

read counts were removed using filterByExpr function implemented in edgeR 3.26.8  (Robinson,

McCarthy and Smyth, 2009).

Due  to  the  complex  experimental  design,  the  differential  abundance  analysis  was  not

performed  using  statistical  tools  that  take  into  account  compositional  nature  of  the  data.

Differential abundance testing was performed with limma 3.40.6 using voom transformation with
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sample quality weights (Ritchie et al., 2015). Differential testing was performed for combinations

of  multiple  factors:  metformin usage,  time,  diet,  and sex.  Correction  for  multiple  testing  was

implemented with Benjamini-Hochberg method. Taxa with FDR ≤ 0.05 were regarded statistically

significant. The effect of the individual mouse was accounted for using the duplicateCorrelation

function in limma.

Alpha diversity was expressed as the exponential of Shannon diversity index resulting in the

effective number of species, genera, and phyla at the respective taxonomic levels. To account for

the compositional nature of taxonomic data, the imputation of zero values was performed with

Bayesian-multiplicative replacement method as implemented in R 3.6.3 package zCompositions

1.3.4 with default  parameters  (Martín-Fernández  et  al.,  2015).  Resulting  taxonomic data  were

subsequently transformed using centered log ratio transformation with scikit-bio 0.5.5 (Aitchison,

1986).  Aitchison's  distance  was used  as  a  beta  diversity  metric.  Principal  component  analysis

biplot was constructed from the transformed compositions with scikit-learn 0.22.

Hypothesis testing for changes in alpha diversity before and after therapy was performed

using paired t-test for each metformin and diet group separately. The normality of the diversity

differences between time points was assessed with the Shapiro-Wilk test. P-values < 0.05 were

considered statistically significant.

Human fecal samples

Read quality evaluation was performed with FastQC. Adapter cutting was performed with

cutadapt v1.16. Reads were trimmed with fastp (0.20.0) by using default trimming parameters.

Paired reads with a length of 75 bp or longer were retained for further data processing. Reads

originating from the host were removed with bmtagger using GRCh38 as a reference. Taxonomic

classification was performed with Kraken 2.0.8-beta  and Bracken 2.7 against  UHGG database

(version 2) using Kraken’s confidence threshold value of 0.1.

2.4.3 Functional analysis

Functional analysis was performed by mapping sequencing reads against protein database

and annotating matches with functional information of the corresponding protein. Paired-end reads

were merged with FLASH v1.2.11. Merged and uncombined read-pairs were aligned against the

SWISS-PROT database (release 2020_04) with  DIAMOND (version 2.0.4). At least 80% of the

read had to be aligned with 80% identity for it to be regarded as a possible hit. For merged read-

pairs, a single best hit was retained (using DIAMOND's option –max-target-seqs =1). Uncombined
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read-pairs were mapped independently. For each read up to 25 best hits were reported. If there was

an overlap of matched UniProt IDs for a read-pair, then the hit with highest bit-score sum was

selected from overlapping IDs. Otherwise hit with the highest bit-score from any read in a pair was

selected.  In  both cases  multiple  best  hits  were resolved by random selection.  Where possible,

KEGG  orthologies  corresponding  to  UniProt  identifiers  were  used  to  map  KEGG  BRITE

functional hierarchies to UniProt IDs. Reads assigned to functional hierarchies of carbohydrate

metabolism (ID 09101), lipid metabolism (ID 09103) and amino acid metabolism (09105) were

counted resulting in a read count per BRITE table. BRITE IDs with median less than 100 reads

were  removed  and  differential  abundance  testing  was  performed  as  described  in  differential

abundance analysis of taxonomies.

2.4.4 16S rRNA gene sequencing analysis

Data  analysis  began  with  the  evaluation  of  sequencing  data  quality  and  read  count

distribution per sample group using the FastQC (v0.11.9) (Andrews, 2010) and MultiQC (v1.12)

(Ewels  et al., 2016) tools, to identify possible sample level outliers and adapter contamination.

Most  of  the  analysis  and diversity  index calculation  was  performed using  QIIME2 (v2022.2)

(Bolyen  et  al.,  2019) microbiome  analysis  environment.  First,  we  processed  the  regional

amplicons for each individual, using the Cutadapt plugin (Martin, 2011) to trim the forward and

reverse primers for each amplicon, specifying the allowed error rate of 0.1 and allowing for indels

or deletions in bases when matching with the primers. In this step, reads which did not match to

the primers were discarded.

The demultiplexed regional  sequences  were denoised with the  DADA2  (Callahan  et  al.,

2016) plugin to generate Amplicon Sequence Variants (ASVs). The trim lengths for DADA2 were

selected for each region based on the base quality drop-off threshold from the visual inspection of

the sample  group level  sequence quality  box and whiskers  plots,  to  maximize the number  of

merged reads. Subsequently, all merged reads for each region were truncated to the length of 200

base pairs. The SILVA (v128) taxonomic database (Quast et al., 2013) was imported into QIIME 2

using  the  RESCRIPt  (Robeson  et  al.,  2021) plugin;  the  database  was  filtered  to  remove any

sequence with more than 5 degenerate nucleotides. Regional database reads were extracted using

the q2-feature-classifier plugin (Bokulich et al., 2018). The regional database reads were aligned

with the representative ASV sequences, allowing a mismatch of 2 nucleotides. Regional average

relative abundances were solved through the Sidle implementation of the Short Multiple Reads

Framework (SMURF) algorithm (Fuks et al., 2018; Debelius et al., 2021). 
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The phylogenetic tree was reconstructed by inserting consensus sequences for reconstructed

amplicons into the SILVA (v128) backbone using the SEPP algorithm  (Mirarab S, Nguyen N,

2012) phylogenetic reference backbone, while also inserting sequences that did not align to the

SILVA taxonomy  reference  database.  To  discard  low  information  or  artifact  sequences,  the

reconstructed ASV table was frequency filtered for features observed in at least three samples and

with a taxonomic classification of genus level or higher. From the resulting table, a random feature

subsample of 945 sequences per sample was made, to normalize for the differences in library size,

which was then used to calculate Shannon diversity, Faith’s phylogenetic diversity and Pielou’s

evenness alpha diversity indices. Statistically significant differences of the alpha diversity between

analyzed groups were identified using the Wilcoxon Rank Sum test and Benjamini-Hochberg’s

procedure. False discovery rate (FDR) values < 0.05 were regarded as statistically significant.

Further analysis  and visualization of results were performed in the RStudio (v2021.09.0)

environment.  Reconstructed and classified data  was then imported into the phyloseq (v1.38.0)

(McMurdie and Holmes, 2013) environment. Sample level ordination was calculated on rarefied

(945 sequences, seed = 43980), genus-level aggregated data, which was then transformed with the

centered log ratio method and reduced with principal components analysis for each intestinal part

and layer. Taxonomic distribution bar plot graphs and ordination graphs were created with the

microViz  (v0.9.0.9009)  (Barnett,  Arts  and  Penders,  2021) and  Matplotlib  (3.5.2)  (Hunter,

2007) packages  while  alpha  diversity  box plot  graphs were  created  with  the  ggplot2  (v3.3.6)

(Wickham, 2016) package. Finally, we performed a differential abundance test with the ANCOM-

BC (v1.4.0) (Lin and Peddada, 2020) package, including independent variables in the formula and

excluding features not observed in at least 10% of all samples. Median log fold change values of

differentially abundant taxa of the same genera were visualized as bar plots using python libraries

Matplotlib (3.5.2) and pandas (1.4.3) (McKinney, 2010).

Analysis  of  compositions  of  microbiomes  with  bias  correction  (ANCOM-BC)  was

performed using  different  combinations  of  factors:  metformin treatment  status;  sex;  diet  type;

intestinal layer; and intestinal part. Additionally, the effect of metformin was evaluated in each of

the subsets formed by the combinations of the levels of the studied factors. Features representing

the same genus were combined and medians of the LogFC of abundances were plotted in each of

the analyzed contrasts. Individual dots were included in the plots to show the genera consisting of

multiple  features  and  the  distribution  of  LogFC for  each  of  the  features.  To  investigate  the

interaction  between metformin treatment  and the studied  factors,  ANCOM-BC was performed
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separately  for  each of  the  different  combinations  of  factor  levels,  contrasting  Met+  and Met-

samples. Features of the same genus were combined and medians of the LogFC of abundances

were plotted in each of the analysis subsets: proximal small intestine; distal small intestine; cecum;

and colon.

2.4.5 MiRNA sequencing analysis – mice samples

Data were analyzed using CLC Genomics Workbench 20.0.4. and Galaxy Release v21.01.

QIAseq Small RNA (Version 1.0) reference data set was used in the analysis. For fecal samples

read quality assessment was performed with QC for Sequencing Reads. Reads were trimmed using

a quality score of 0,012. 3’ and 5’ adapter trimming as well as sequence filtering on length (reads

below 15 nt and above 55 nt were discarded) was performed. Read quality of gut mucosal samples

was evaluated by Galaxy platform using FastQC (v0.11.8). Adapters were removed using Cutadapt

(v.1.16),  indicating  AAGTCGGAGGCCAAGCGGTCTTAGGAAGACAA  as  a  3`  adapter

sequence  and  AAGTCGGATCGTAGCCATGTCGTTCTGTGAGCCAAGGAGTTG  as  a  5`

adapter  sequence.  Quantify miRNA was used to  map the reads  against  miRBase  release v22,

pointing out Mus musculus as prioritized species. Reads fixed for seed counting had a minimum

sequence length of 18 nt and a maximum sequence length of 25 nt. Spike-in controls were enabled

and reference from QIAseq Small RNA (Version 1.0) dataset was used. RNA-Seq Analysis tool

was used to map the reads against mouse reference genome Ensembl v86. Spike-in controls were

also used. Reads were mapped allowing 2 mismatches.

Differential abundance was tested with edgeR package 3.32.1 and limma 3.46.0 using voom

transformation with sample quality weights. Differential testing was executed for combinations of

multiple  factors:  sex,  metformin  treatment,  time.  MiRNA with  p-value ≤  0.05  were  noted  as

statistically significant.

2.4.6 MiRNA sequencing analysis – human samples

MiRNA data were analyzed with Quantify miRNA on CLC Genomics Workbench 20.0.4.

CLC Genomics Workbench in order to map the reads against miRBase release v22, designating

Homo Sapiens as a prioritized species.

Differential  abundance  was  tested  with  edgeR  package  3.38.1  and  limma  3.52.1.  False

discovery rate (FDR) values < 0.05 were regarded as statistically significant. Samples with less

than 2000 assigned metagenomic or miRNA reads were removed. MiRNA features were filtered

out by edgeR filterByExpr.
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2.4.7 Correlation analysis

Taxa and miRNAs with at least 100 and 10 reads in 10% of samples, respectively, were

retained for further analyses. Prior to centered log ratio normalization (clr), an arbitrary constant

(value 1) was added to all values in order to enable clr. Correlation analysis of metagenome and

miRNA datasets  was  performed  on  the  obtained  clr  values  using  sparse  partial  least  squares

regression as implemented in R package mixomics 6.20.0.

2.4.8 Molecular target analysis

Potential binding sites for all miRNAs that had at least 10 reads in 10% of samples were

evaluated in the corresponding sample metagenomic sequencing data. Since minimum free energy

calculation is a relatively resource-intensive task, we first screened for reads that had at most three

mismatches/indels with the evaluated miRNAs as a heuristic in order to speed up the process.

The number  of  mismatches/indels  was calculated  using  Smith-Waterman’s  algorithm for

sequence alignment (but since we are not interested in alignment itself, the traceback part of the

algorithm was  not  implemented).  For  candidate  reads,  the  minimum free  energy  (MFE)  was

calculated with RNAup 2.5.1. All reads with MFE values ≤ -20.0 kcal/mol were considered hits.

Taxonomic classification of hits was then performed with Kraken 2.0.8-beta against the UHGG v2

database, and the number of hits per taxa per miRNA was aggregated as a table.
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3 RESULTS

Study I: Metformin strongly affects gut microbiome composition in high-fat diet-

induced type 2 diabetes mouse model of both sexes

3.1 Body mass and metabolic parameters of mice

Mice were fed with HFD for 20 weeks in order to induce T2D manifestations. Significant

differences in body weights between HFD-fed and CD-fed mice were observed after two weeks

with mean body weight 22.89 ± 3.36 and 19.9 ± 3.08 g, respectively (P-value = 0.03) (Figure 9).

As  expected,  body  weight  was  higher  in  males  than  in  females  in  each  of  the  diet  groups.

Metformin treatment had no significant effect on body weight gain in any of the studied groups.

                             

Figure 9. Mean body weight of each of the experimental groups in each of the weeks.  Dashed line

indicates the beginning of metformin treatment.

Fasting  blood  glucose  level  was  monitored  by  glucometer  fortnightly.  Upon  detecting

statistically significant differences in blood glucose levels between HFD-fed and CD-fed groups,

we initiated regular determination of fasting glucose and insulin levels in plasma samples (Table

1). We calculated the HOMA-IR index, and values above two were considered to correspond to
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insulin resistance suggesting the onset of T2D. Before the beginning of the metformin treatment

mean HOMA-IR index was above 2 in all of the HFD-fed groups but below 2 in all of the CD-fed

groups. After the ten-week-long metformin treatment, fasting glucose and insulin levels in plasma

samples were remeasured.

Table 1. Biochemical parameters before and after metformin treatment. n = 3 in each of the studied

groups. Significance codes: 0 (***), 0.001 (**), 0.01 (*), >0.05 (NS).

 

3.2 Microbiome composition in experimental groups

We determined  the  microbiome  composition  of  fecal  samples  by  shotgun  metagenomic

sequencing. The median value of the obtained paired-end reads was 40044941 (IQR 10957336).
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After  quality  trimming  and  host  removal,  a  median  of  28807601  (IQR 9664060)  reads  were

retained. The median percentage of classified reads after taxonomic classification was 40.33%

(IQR 12.24%).

The relative abundances of the top genera in each of the experimental groups are depicted in

Figure 10. For comprehensibility reasons, only the genera with a relative abundance of at least 1%

are presented. 

       

Figure 10. Microbiome composition at genus level in each of the experimental groups before and

after the treatment. The abundances of top genera are expressed as proportions, only the genera or other
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lowest identified taxa with the relative proportion of at least 1% are shown. (A) time point before the

treatment; (B) time point after the treatment.

Before the initiation of the treatment, in all HFD-fed groups, Lactococcus, Bacteroides, and

genera representing Lachnospiraceae dominated the gut microbiome composition. Other top taxa

represented  in  all  HFD-groups  were  Muribaculaceae,  Lactobacillus,  Parabacteroides,

Mucispirillum, and Dorea. Bacteroides prevailed in all CD-fed groups, followed by Lactococcus,

Lachnospiraceae, and Muribaculaceae, the relative abundance of which was greater in all CD-fed

groups compared to HFD-fed mice. 

At  the  time  point  after  the  treatment,  we  identified  an  increase  in  Bacteroides relative

abundance  in  all  HFD-fed  groups,  which  was  maintained  at  the  expense  of  reduced  relative

abundance  of  Lachnospiraceae,  whereas  Bacteroides,  Lactococcus,  and  Lachnospiraceae

remained top taxa in all  HFD-fed groups. All  CD-fed groups were dominated by  Bacteroides,

followed by smaller proportions of Lactococcus, Lachnospiraceae, and Muribaculaceae.

3.3 Diversity analysis

3.3.1 Alpha diversity

We identified a trend of decrease in the alpha diversity of the HFD_Met+ groups before and

after metformin treatment (Figure 11), though not statistically significant. In CD_Met+ groups and

groups that did not receive metformin, no alpha diversity changes were observed before and after

metformin treatment. 

Overall the effective number of species (ENS) was higher in HFD-fed groups – mean ENS

before treatment was 10.99 ± 3.04 and 9.62 ± 2.64 in HFD-fed and CD-fed mice, respectively. The

same was observed at the time point after the treatment – mean ENS was 10.62 ± 3.55 and 10.18 ±

1.70 in HFD-fed and CD-fed mice, respectively.
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Figure 11. Alpha diversity analysis. Changes in alpha diversity in each of the groups expressed as an

effective number  of  species.  Samples  representing each experimental  unit  in  each of  the  experimental

groups are shown as dots.

3.3.2 Beta diversity

Beta diversity analysis revealed clustering depending on various factors included in the study

(Figures 12A and 12B). Samples obtained from HFD-fed mice clustered apart from those of CD-

fed  mice  at  both  time  points,  with  the  principal  microbial  identifiers  being  Pediococcus

acidilactici,  Lactobacillus spp.,  Desulfomicrobium  orale,  Desulfovibrio  fairfieldensis,

Fusicatenibacter  saccharivorans,  Proteus  spp.  before  the  beginning  of  metformin  treatment.

Lactospiraceae  bacterium  6_1_37FAA,  Staphylococcus  xylosus,  Intestinimonas  massiliensis

supplemented this list of microbial identifiers after the metformin treatment, though some species

were represented by < 100 reads in any of the samples. Furthermore, when analyzing both sexes

separately, before the treatment, HFD_F groups were directed toward  Lactobacillus vectors, but

HFD_M  groups  towards  Proteobacteria  members.  In  both  sexes  of  CD-fed  mice,  principal

identifiers were affiliated to Bacteroidetes and Clostridia, although the species were different for

males and females. After the treatment, samples of HFD-fed mice tended to cluster closer, and
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Clostridia members appeared among the most characteristic taxa of these groups. In CD_F groups,

representatives  of  Bacteroidetes and  Clostridia remained the  principal  identifiers;  however,  in

CD_M_Met+  group,  a  shift  towards  Proteobacteria was  observed.  Nevertheless,  no  apparent

clustering regarding metformin treatment status was observed.

Figure 12.  Beta diversity analysis. (A) Beta  diversity  in  each of  the  groups before  the  beginning of

metformin treatment. (B) Beta diversity in each of the groups after 10 weeks long metformin treatment.

Samples representing each experimental unit in each of the experimental groups are shown as dots.

3.4 Differentially abundant species between treatment arms

We evaluated the relative abundance of different species of microbes between groups using

various  contrasts  shown  in  Figure  13.  The  analysis  revealed  significant  differences  between

HFD_Met-  and  CD_Met-  groups  and  between  HFD_Met+  and  CD_Met+  groups  before  the

beginning of metformin treatment. We observed 63 and 48 differentially abundant species between

HFD-  and  CD-fed  groups  with  or  without  metformin  treatment,  respectively  (Figure  13),

indicating  apparent  differences between  these  experimental  units  at  the  time  point  when

experimental  units  were  allocated  to  receive  metformin  treatment.  At  the  same  time,  no

differentially abundant taxa were identified between CD-fed groups and between HFD-fed groups.

When  considering the  effect  of  sex,  only  one  species,  Bacteroides  eggerthii (LogFC =  -4.05,

FDR < 0.001), was detected to be differentially abundant between HFD-fed groups, indicating that

some variability may exist between identically treated groups based on sex differences. No other
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substantial differences in microbiome composition between the same groups before the beginning

of metformin treatment were found.

Figure 13.  Contrasts in which microbiome compositions were compared. Dashed lines indicate the

contrasts between which a comparison was performed. Red bold lines indicate the contrasts between which

statistically significant  differences in taxa relative abundance at  species level were discovered with the

numbers of the different species.

We did not find any differences between HFD_Met+ and HFD_Met- groups at the time point

after the treatment (Figure 13). The same applies to the contrast between CD_Met+ and CD_Met-

groups.  When  each  of  the  sexes  was  compared,  Bacteroides  eggerthii  remained  significantly

differentially abundant between HFD_Met- groups (LogFC = -3.64, FDR = 0.007).
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We observed  a  strong  effect  of  diet  on  microbiome  composition  both  before  and  after

metformin treatment. Before initiating metformin treatment, we observed 48 and 63 differentially

abundant species in contrasts between HFD_Met- and CD_Met- groups and between HFD_Met+

and CD_Met+ groups,  respectively.  The same applied  to  identical  contrasts  at  the  end of  the

experiment; 42 differentially abundant species were identified between HFD_Met- and CD_Met-

groups  and  33 –  between  HFD_Met+  and CD_Met+  groups.  Common to  all  of  the  contrasts

mentioned above, HFD was associated with a lower relative abundance of Bacteroidales bacteria,

Prevotella sp., Lactobacillus aviarius, Bacteroides helcogenes, and Bacteroides oleiciplenus.

When  comparing  the  differentially  abundant  taxa  between  HFD-fed  and  CD-fed  groups

representing the same metformin treatment status cross-sectionally, in all contrasts not influenced

by metformin (HFD_Met- vs. CD_Met- before treatment, HFD_Met- vs. CD_Met- after treatment,

and  HFD_Met+  vs.  CD_Met+  before  treatment)  in  HFD groups  we  observed  higher  relative

abundance of Acetivibrio ethanolgignens (LogFC values ranging from 3.07 to 3.84, FDR ≤ 0.008)

and lower relative abundance of  Prevotella lascolai  (LogFC values ranging from -2.54 to  -1.70,

FDR ≤ 0.008),  Gabonia massiliensis  (LogFC values ranging from  -3.09 to  -1.77, FDR ≤ 0.02),

Culturomica massiliensis  (LogFC values ranging from  -3.24 to  -1.79, FDR ≤  0.03), and several

Bacteroides species  (LogFC  values  ranging  from  -3.72  to  -1.82,  FDR ≤ 0.03).  The  pairwise

comparison between CD_Met+ groups before and after the treatment showed no differences in

taxa relative abundance (Figure 13); the same was observed between CD_Met- groups.

Comparing HFD_Met- groups between the time points of metformin initiation and the end of

the experiment, we observed no differentially abundant taxa. However, in HFD_Met+ groups, 100

species  were altered (Figures 14 and 15),  with most  of the species relative abundances  being

increased  due  to metformin  treatment.  The  most  pronounced  changes  were  in  the  relative

abundance  of  such  Bacteroidetes  genera  as  Bacteroides,  Parabacteroides,  Prevotella,

Paraprevotella,  Porphyromonas;  Firmicutes  genera  Bacillus,  Butyrivibrio,  Enterococcus,

Lactobacillus,  Lactococcus,  Leuconostoc,  and  Streptococcus  as  well  as  in Enterorhabdus

representing Actinobacteria.

In general, the variability of the magnitude of the differences in the relative abundance of

species between the samples of the studied contrast was more pronounced in species representing

phylum Bacteroidetes (LogFC values ranging from 0.70 to 2.46). In contrast, members of the class

Bacilli – Lactobacillus,  Lactococcus,  Enterococcus,  Leuconostoc,  Bacillus,  and  Streptococcus
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genera all representing  Firmicutes were increased (LogFC values ranging from 0.79 to 1.17) in

response to metformin in all of the samples relatively uniformly.

Figure 14. Heatmap showing differentially abundant species in HFD_Met+ groups before and after

metformin treatment. 

                                      

Figure 15.  Volcano plot showing P-values of differentially abundant species in HFD_Met+ groups

before and after metformin treatment. Red dots represent differentially abundant species with P-values <

0.05.
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Analysis  of  relative  taxa  abundances  in  HFD_Met+  groups  before  and  after  metformin

treatment in each of the sexes separately revealed sex-specific effects of metformin. In males, we

did not identify significantly differentially abundant taxa while in females, the relative abundance

of 53 species was significantly altered (Figures 16 and 17). A decrease in response to metformin

was  observed in  bacteria  of  Clostridia class  including  Faecalibacterium prausnitzii  (LogFC =

-2.18, FDR = 0.03), Enterocloster clostridioformis (LogFC = -1.74, FDR = 0.03) and Anaerostipes

sp. 992A (LogFC =  -1.64, FDR = 0.04) as well as  Desulfovibrio fairfieldensis  (LogFC =  -2.97,

FDR = 0.04) of Deltaproteobacteria class. We identified an increase in the differentially abundant

taxa in response to metformin; a subtle increase in the relative abundance of species representing

Bacilli  was observed (LogFC up to 1.36), while the increase in Bactoroidia class representatives

was particularly pronounced, for example, B. ilei (LogFC = 2.85), B. vulgatus (LogFC = 2.45), B.

pyogenes (LogFC = 2.43). The list of differentially abundant species in females corresponds to the

taxa identified in the analysis where samples from both sexes are taken together,  although the

extent of changes in relative abundances was greater in females.

Figure 16. Heatmap showing differentially abundant species in HFD_F_Met+ group before and after

metformin treatment.
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Figure 17. Volcano plot showing P-values of differentially abundant species in HFD_F_Met+ group

before and after metformin treatment. Red dots represent differentially abundant species with P-values <

0.05.

To further analyze the effect of metformin treatment we compared microbial compositions

between CD_Met- and HFD_Met+ groups. At the time point before the treatment we observed 58

differentially abundant taxa dominated by members of  Clostridia and  Bacteroidetes which were

increased and decreased in HFD-fed animals,  respectively.  Clostridiaceae were represented by

Hungatella  hathewayi (LogFC = 6.65, FDR < 0.001) and  Acetivibrio ethanolgignens (LogFC =

4.30, FDR < 0.001). Members of Lachnospiraceae including Roseburia and Dorea followed with

LogFC  from  0.94  to  3.35,  FDR <0.05,  as  well  as  non-Clostridia Mucispirillum  schaedleri

(LogFC =  2.89,  FDR =  0.02),  and  Enterorhabdus  mucosicola  (LogFC =  1.27,  FDR =  0.02).

Bacteroidetes were represented by various Bacteroidales with the most extreme changes identified

in the relative abundance of  Bacteroidales bacterium M10 (LogFC =  -10.33, FDR < 0.001), in

addition  Parabacteroides  timonensis (LogFC =  -2.04,  FDR =  0.01),  members  of  Prevotella

(LogFC from -2.53 to -3.61, FDR < 0.001) and others were decreased.

The same contrast at the time point after the metformin treatment revealed 67 differentially

abundant species.  Bacilli and  Bacteroides prevailed among the increased taxa, while  Clostridia

and  different  Bacteroidetes represented  decreased  taxa.  Bacilli were  represented  by

Staphylococcus  xylosus (LogFC =  6.40,  FDR =  0.02)  and  members  of  genera  Enterococcus,

Streptococcus, Leuconostoc, and Lactococcus (LogFC from 1.08 to 1.58, FDR > 0.05). LogFC of

Actinobacteria Enterorhabdus mucosicola was 1.91, FDR = 0.004). Among increased Bacteroides
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were such species as B. salyersiae, B. pyogenes, B. vulgatus, B. ovatus, B. coprocola, B. eggerthii,

B. clarus, B. congonensis, B. caccae, and B. acidifaciens (LogFC from 1.12 to 2.40, FDR < 0.05).

Decreased  Bacteroidetes included  Bacteroidales bacterium M10 (LogFC = -9.68, FDR < 0.001),

other  Bacteroidales, members of  Prevotella,  Porphyromonas, and Bacteroides species B. ilei, B.

helcogenes, B. gallinarum, B oleiciplenus, B. cellulosilyticus, B. togonis, B. intestinalis, and B.

coprophilus  (LogFC from  -1.19 to  -5.62,  FDR < 0.05).  Clostridia were represented  by  Dorea

formicigenerans (LogFC =  -3.38,  FDR =  0.04)  and  [Eubacterium]  infirmum (LogFC =  -4.65,

FDR = 0.009). The 58% and 76% of differentially abundant species were shared between contrasts

HFD_Met- vs. CD_Met- and HFD_Met+ vs. CD_Met+, respectively. When the same contrasts

were analyzed at the time point after the treatment, 83% and 100% were shared.

3.5 Differentially abundant functional hierarchies between treatment arms

To investigate the changes in the functional profile of the gut microbiome in response to

metformin treatment, we evaluated the relative abundance of each Kyoto Encyclopedia of Genes

and Genomes (KEGG) BRITE hierarchy in metagenomic data focusing on carbohydrate, lipid, and

amino acid metabolism. Statistical analysis of the differentially abundant functional  hierarchies

between experimental groups in various contrasts corresponding to the ones indicated in Figure 10

showed  significant  differences  in  ten  occasions  mainly  shared  with  the  previously  identified

significant differences in taxa relative abundances.

In HFD_Met+ groups between the time points of metformin treatment initiation and the end

of the experiment, 14 metabolic hierarchies were altered. The most markedly decreased functions

were  phenylalanine  metabolism  (ko00360)  (LogFC -0.69,  FDR <  0.001),  and  glyoxylate  and

dicarboxylate metabolism (ko00630) (LogFC = -0.66, FDR = 0.002). The top increased hierarchies

were  arachidonic  acid  metabolism  (ko00590)  (LogFC = 0.36,  FDR <  0.05),  and  arginine  and

proline metabolism (ko00330) (LogFC = 0.32, FDR < 0.05).

Similar to what was observed in the longitudinal contrast between HFD_Met+ groups when

analyzing  differentially  abundant  species,  functional  analysis  in  each  of  the  sexes  separately

reinforced sex-related differences. In males, none of the analyzed hierarchies showed alterations in

the  number  of  corresponding  reads.  In  females,  5  functions  were  significantly  differentially

represented  by  the  reads.  The  list  of  altered  hierarchies  in  females  coincides  with  the  ones

identified in the combined analysis of both sexes, albeit the changes were more pronounced in

female mice, for example, phenylalanine metabolism (ko00360) (LogFC =1.07, FDR < 0.001), and
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glyoxylate and dicarboxylate metabolism (ko00630) (LogFC = -0.96, FDR = 0.003). In contrast to

the combined analysis in both sexes, in females, the relative abundance of only one hierarchy -

pyruvate metabolism (ko00620) was slightly increased (LogFC = 0.15, FDR < 0.05).
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Study II: Spatial variation of the gut microbiome in response to long-term metformin

treatment in high-fat diet-induced type 2 diabetes mouse model of both sexes

3.6 Microbial composition analysis

In total, 192 microbiome samples representing four different intestinal regions at the luminal

and mucosal layers collected from 24 mice were sequenced. One of the samples was excluded

from further analysis due to possible mislabeling. Mice representing three experimental units were

included  in  each group representing  each  of  the  eight  treatment  arms  described in  this  study

(Figure 18).

Figure 18. Experimental design of the study (N = 24) and intestinal sites studied. Abbreviations: HFD –

high-fat diet; CD – control diet; M – male; F – female; Met+ – receiving metformin treatment for 10 weeks;

Met- – not receiving metformin treatment.

To summarize the microbiome composition in each analyzed site, we compiled a list of the

top 20 location-specific genera, as shown in Figures 19 and 20. We observed variation in microbial

composition  both  longitudinally  and  cross-sectionally.  Both  parts  of  the  small  intestine  were

dominated  by  Lactobacillus  in  high-fat  diet  (HFD)-fed  mice,  followed  by  Pseudomonas and

Microbacterium in  the  mucosal  layer  and  Pseudomonas and  Lactococcus in  the  luminal  layer

(Figures 19A; 19B; 19E; 19F). Likewise, Lactobacillus and Pseudomonas prevailed in control diet

(CD)-fed mice, followed by Lactococcus in the mucosal layer (Figures 20A and 20B). 
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Figure 19. Microbiome composition at different sites of high-fat diet-fed mice at the genus level – top

20 genera are shown. Mucosal layer: (A) proximal small intestine; (B) distal small intestine; (C) cecum;

(D) colon. Luminal content layer: (E) proximal small intestine; (F) distal small intestine; (G) cecum; (H)

colon. Samples representing mice receiving metformin treatment are highlighted. Red and blue bars under

each plot indicate females and males, respectively. 

61



Figure 20. Microbiome composition at different sites of control diet-fed mice at the genus level – top

20 genera are shown. Mucosal layer: (A) proximal small intestine; (B) distal small intestine; (C) cecum;

(D) colon. Luminal content layer: (E) proximal small intestine; (F) distal small intestine; (G) cecum; (H)

colon. Samples representing mice receiving metformin treatment are highlighted. Red and blue bars under

each plot indicate females and males, respectively. 
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In the luminal layer,  Lactobacillus was followed by  Pseudomonas and  Microbacterium in

the proximal part of the small intestine and by Lactococcus and Streptococcus – in the distal part

(Figures 20E and 20F). The relative abundance of Lactococcus was increased in the distal small

intestine of CD-fed male mice receiving metformin treatment. In contrast, in HFD-fed mice, this

effect was more pronounced in female mice in both parts of the small intestine. Streptococcus was

more abundant  in  the  small  intestine of  female HFD-fed mice  than in  males,  and its  relative

abundance was higher in the metformin-treated animals.

In HFD-fed mice, Blautia had the highest relative abundance in the cecum at both layers

(Figures 19C and 19G). Mucispirillum, Lachnoclostridium, and Bacteroides were among the other

top genera in the cecum. In CD-fed mice, Mucispirillum showed the highest relative abundance in

the mucosa, while luminal content was enriched in Bacteroidales representatives (Figures 20C and

20G).  Blautia and  Lachnoclostridium had high relative abundance in both layers. Similar to the

cecum, in the colon of HFD-fed mice top bacteria were Bacteroides in the mucosa, followed by

Blautia and  Lachnoclostridium, and  Blautia in the luminal layer,  followed by  Bacteroides and

other  Bacteroidales members (Figures 19D and 19H). Similar results were observed in CD-fed

mice (Figures 20D and 20H).

3.7 Diversity analysis

3.7.1 Alpha diversity analysis

Shannon diversity index analysis revealed significant differences in alpha diversity between

all  the studied  intestinal  segments,  with  the most  pronounced differences  present  between the

distal part of the small intestine and two other locations, cecum, H = 55.90, p-value < 0.001 and

large intestine, H = 55.67, p-value < 0.001 (Figure 21). Similar results were observed for Pielou’s

evenness  and  Faith’s  phylogenetic  diversity  (data  not  shown).  There  were  no  significant

differences  in alpha diversity between intestinal  layers for all  the metrics analyzed. When the

effect of metformin treatment on alpha diversity in each intestinal site was evaluated, we did not

observe  any  significant  differences  after  adjustment  for  multiple  testing  for  all  the  metrics

analyzed. 
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Figure 21. Microbiome alpha diversity analysis expressed as Shannon index: (A) between intestinal

parts;  (B)  between  intestinal  layers.  Microbiome  alpha  diversity  analysis  in  response  to  metformin

treatment  expressed  as  Shannon  index,  n =  12  per  group:  (C)  between  intestinal  parts;  (D)  between

intestinal layers. PSI – proximal small intestine; DSI – distal small intestine; CEC – cecum; COL – colon;

M – mucosa; L – lumen. **Adjusted p < 0.05; *** adjusted p < 0.01.

3.7.2 Beta diversity analysis

Beta  diversity  was evaluated by ordination  analysis.  Biplots  using PCA were generated,

including  each  of  the  studied  groups  based  on  the  diet  type  and  metformin  treatment  status

(Figures 22 and 23). When taken together, samples representing both parts of the small intestine

clustered separately from the samples of the cecum and colon (Figure 22). Sphingobium, Sarcina,

Propionibacterium,  Pseudomonas, and  Microbacterium  representatives  were  the  principal

microbial identifiers of the proximal small intestine.  Lactococcus,  Lactobacillus,  Streptococcus,

Enterococcus,  and  Staphylococcus were the main drivers of the distal  small  intestine.  In turn,

cecum samples were identified by Mucispirillum, Anaerotruncus, Blautia, Ruminiclostridium, and

Bacteroides.  Colon  was  characterized  by Desulfovibrio, Parabacteroides,

Eubacterium_coprostanoligenes_group members, Alistipes, and Bacteroidales_S24-7_group (now

known as Muribaculaceae) representatives.
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Figure 22. Beta diversity of all samples taken together was estimated using principal components

analysis on centered log-ratio transformed values. Intestinal part, diet, and metformin treatment status

are indicated. PSI – proximal small intestine; DSI – distal small intestine; CEC – cecum; COL – colon. In

the  corresponding  intestinal  part,  continuous  and  dashed  ellipses  represent  Met+  and  Met-  subsets,

respectively.

A  separate  analysis  of  each  intestinal  part  (Figure  23)  revealed  Chryseobacterium,

Propionibacterium,  Corynebacterium_1,  and  Sphingobium as  the  principal  identifiers  of

metformin  treatment  in  the  proximal  small  intestine.  The  distal  part  was  characterized  by

Lactococcus,  Streptococcus,  Enterococcus,  Proteus,  and  Staphylococcus  in CD-fed  mice  and

Blautia,  Ruminiclostridium_9,  Sphingobium,  Bacteroides, and  Roseburia in HFD-fed mice. The

main  identifiers  of  metformin  treatment  in  the  cecum  of  HFD-fed  mice  were  Eubacterium

representatives,  Mucispirillum,  Ruminococcaceae_UCG-003,  and  Streptococcus  and

Lachnospiraceae_FCS020_group, Ruminiclostridium representatives, Lactococcus, and Blautia in

CD-fed mice. At the same time,  Sphingobium,  Curvibacter,  Microbacterium,  Pseudomonas, and

Mucispirillum were the strongest identifiers in the colon.
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Figure 23. Beta diversity in each of the groups in response to 10 weeks long metformin treatment in

each of the intestinal sites, n = 6 per group: (A) mucosa; (B) lumen; (C) proximal small intestine; (D)

distal small intestine; (E) cecum; (F) colon.
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3.8 Metformin treatment-mediated effects on the abundance of bacteria in 

different intestinal sites

When  samples  were  contrasted  regarding  metformin  treatment  status  (Met+  vs.  Met-

groups), up to 41 different genera were significantly differentially abundant in any of the parts of

the small intestine; 28 genera in the cecum and 31 in the colon; and up to 11 genera in each of the

intestinal layers studied (Figure 24).

Metformin treatment showed a varied effect in different sites of the intestine. The effect on

the abundance of  Bacteroidales_S24-7_group members was inversed in each layer – metformin

increased the abundance of  this  genus in mucosa samples but  decreased it  in  luminal  content

samples (Figures 24A and 24B).  Ruminiclostridium increased in the mucosa and lumen, while

Lachnoclostridium decreased in both layers. Several genera were significantly affected only in one

of the layers. The abundance of  Roseburia declined in luminal content samples. In contrast, the

abundances of Micrococcus, Pseudomonas, and Methylophilus were significantly affected only in

the mucosa.

Analysis of each of the intestinal parts separately revealed that metformin had a stronger

effect on the abundance of the bacteria in the small intestine. Bacteria with increased abundances

in  response  to  metformin  treatment  only  in  the  proximal  small  intestine  include  Duganella,

Chryseobacterium,  Anaeroplasma,  Undibacterium, Corynebacterium, Mucispirillum,  and

Methylophilus  (Figure 24C).  In turn, Eubacterium_halli_group members  were increased in the

proximal small intestine but decreased in the cecum. Genera augmented uniquely in the distal part

of  the  small  intestine,  include  Faecalibaculum and  Tepidimonas,  while  Proteus was  depleted

(Figure 24D).  The abundance of  Roseburia and  Micrococcus was increased in both parts of the

small intestine, while  Ochrobactrum was decreased in these parts.  Pseudomonas was affected in

opposite directions in each part of the small intestine, with the abundance of the genus decreasing

in the proximal part and increasing in the distal part. The most pronounced effect of metformin on

the  increased  abundance  was  detected  for  Lactococcus in  the  distal  small  intestine  (LogFC =

1.03 ± 0.41, FDR < 0.001), it was also increased in the colon, though to a lesser extent.
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Figure 24. Differentially abundant genera in response to metformin treatment in different intestinal

parts and layers (expressed as LogFC), n = 12 per group: (A) mucosa; (B) lumen; (C) proximal small

intestine;  (D)  distal  small  intestine;  (E)  cecum;  (F)  colon.  Blue  bars  represent  genera  with  increased

abundance among metformin users, and red bars – with decreased abundance. Dots of the corresponding

color indicate all the individual features assigned to the genus.
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Blautia was enriched in the distal part of the small intestine and cecum but diminished in the

colon samples. Ruminiclostridium increased in all sites except cecum, where it was one of the most

depleted genera (Figure 24E). Several genera were altered in the cecum and colon in opposite

directions. Methylobacterium and Ruminococcaceae_UCG-014 were enriched in both parts, while

Bacteroides was decreased. In turn,  Clostridiales_vadinBB60_group members were decreased in

the cecum and increased in the colon. Butyricicoccus was significantly increased uniquely in the

colon, but  Gastranaerophilales was decreased (Figure 24F).  Ruminiclostridium_5 was the most

reduced genus in response to metformin treatment in the colon (LogFC =  -1.17 ± 0.40, FDR <

0.001), but it was increased in the proximal small intestine. The abundance of  Parabacteroides

was decreased in both parts of the small intestine and colon but was not affected in the cecum. A

similar pattern was detected for Lachnospiraceae_UCG-008, the only difference being that it was

augmented in the distal part of the small intestine.

3.9 Sex-related differences in the abundance of microbiome members in the 

intestinal sites studied 

The  effect  of  sex  was  evaluated  by  contrasting  the  samples  from  male  mice  of  all

experimental  groups  with  corresponding  samples  from  female  mice  at  each  intestinal  site

separately. In total, 11 genera in mucosal samples and 8 genera in luminal content samples were

differentially abundant between males and females. When each of the intestinal parts was analyzed

separately, 51 genera in the proximal small intestine; 40 genera in the distal small intestine; 28

genera in the cecum; and 30 genera in the colon were significantly differentially abundant between

sexes (Figure 25).

Lactobacillus showed the most pronounced differences between sexes, with being decreased

in males both in mucosal and luminal content samples (Figures 25A and 25B). Members of the

Bacteroidales_S24-7_group were also depleted in both layers in males compared to females. In

contrast,  Proteus was increased in males in both mucosa and lumen, while  Staphylococcus and

Ruminococcaceae_UCG-003 were increased, and Ruminiclostridium_5 was decreased only in the

lumen.
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Figure  25. Differentially  abundant  genera  between  sexes  in  different  intestinal  parts  and  layers

(expressed as LogFC), n = 12 per group: (A) mucosa; (B) lumen; (C) proximal small intestine; (D) distal

small intestine; (E) cecum; (F) colon. Blue bars represent genera with increased relative abundance among

males, and red bars – with decreased abundance. Dots of the corresponding color indicate all the individual

features assigned to the genus.

The  abundance  of  Lactobacillus was  strongly  reduced  in  all  of  the  intestinal  parts  of  males

(distinct features in the cecum). Among the genera with significantly different abundance only in
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the proximal small intestine,  Roseburia was enriched, while  Chryseobacterium, Undibacterium,

and Corynebacterium were  depleted  in  males  relative  to  females  (Figure  25C).

[Eubacterium]_hallii_group was  affected  by  the  sex  in  the  small  intestine –  in  males,  it  was

decreased in the proximal part but increased in the distal  part of the small  intestine; however,

Enterorhabdus was  enriched  in  both  parts.  Lachnoclostridium and  Ruminiclostridium_5 were

increased in the distal  part  of the small  intestine in males compared to females (Figure 25D).

Meanwhile, the abundance of Proteus was increased in both the distal small intestine and colon.

The abundance of  Anaerotruncus was markedly decreased in the cecum of males (Figure 25E).

Ruminococcaceae_UCG-003 was  increased  in  males  only  in  the  colon.  Parabacteroides,

Staphylococcus,  and  Prevotellaceae_UCG-001 representatives were enriched in the cecum and

colon in males compared to females (Figures 25E and 25F).

3.10 Diet-induced effects on the abundance of intestinal microbiome representatives

To assess dietary effects, samples from all HFD-fed mice were compared with corresponding

samples  from  CD-fed  mice  at  each  intestinal  site  separately.  Diet  significantly  affected  the

abundance of 20 genera in the mucosa, 22 genera in the lumen, 55 and 41 genera in the proximal

and distal small intestine, respectively, 36 genera in the cecum, and 42 genera in the colon (Figure

26).

The abundance of Lactobacillus increased in HFD-fed mice in both studied layers LogFC =

2.79 ±  0.48,  FDR <  0.001  and  LogFC =  2.44 ±  0.53,  FDR =  0.002  for  mucosa  and  lumen,

respectively  (Figures  26A  and  26B).  In  contrast,  Ruminiclostridium_5,  Mollicutes_RF9,

Lachnoclostridium,  Marvinbryantia,  and  Clostridiales_vadinBB60_group members  were

significantly lowered in both layers in response to HFD feeding.  Ralstonia and  Staphylococcus

were  decreased  in  HFD-fed  mice  solely  in  mucosa  samples.  Parabacteroides and

Ruminiclostridium_9 were significantly increased in the lumen of HFD-fed mice exclusively.

Uniquely to the proximal small intestine, the abundance of  Paucimonas and  Oscillibacter

increased,  while  Undibacterium decreased  in  HFD-fed  mice  (Figure  26C).  Genera,  which

significantly decreased in both parts of the small intestine in response to HFD feeding, include

Micrococcus, Enterorhabdus, and Candidatus_Saccharimonas (Figures 26C and 26D). 
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Figure  26. Differentially  abundant genera between high-fat  diet-fed and control  diet-fed mice in

different intestinal parts and layers (expressed as LogFC), n = 12 per group: (A) mucosa; (B) lumen;

(C) proximal small intestine; (D) distal small intestine; (E) cecum; (F) colon. Blue bars represent genera

with increased abundance among HFD-fed mice, and red bars – with decreased abundance. Dots of the

corresponding color indicate all the individual features assigned to the genus.
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Staphylococcus  was  depleted  in  the  cecum  of  HFD-fed  mice  (Figure  26E).  In  turn,

Eubacterium_oxidoreducens_goup members  were  increased  only  in  the  colon  (Figure  26F).

Mollicutes_RF9 was  decreased  in  both  the  cecum  and  colon  of  HFD-fed  mice,  while

Ruminococcaceae_UCG-003 was increased in these parts. The abundance of  Methylobacterium

decreased in the proximal small intestine and colon in response to HFD feeding. Lactobacillus was

affected similarly in the proximal small intestine but increased in the colon. Parabacteroides was

augmented mainly in the proximal small intestine and colon. Ralstonia and Bacteroides were both

decreased  in  the  distal  small  intestine,  but  in  the  colon  these  were  decreased  and  increased,

respectively.  Lachnoclostridium decreased in all the parts up to the cecum.  Marvinbryantia was

reduced  in  both  parts  of  the  small  intestine  and  colon,  whereas  Anaeroplasma was  similarly

affected in the proximal small intestine, cecum, and colon. In HFD-fed mice, representatives of

two  genera, Ruminiclostridium_5  and  Clostridiales_vadin_BB60_group,  were  decreased  in  all

intestinal parts compared to CD-fed mice. As described above, these genera were also depleted in

both intestinal layers of HFD-fed mice.

3.11 Differentially abundant bacteria between the mucosa and the lumen in all 

intestinal parts

The luminal and mucosal samples from all experimental groups were contrasted in each of

the intestinal parts to investigate layer-related differences in microbiome composition. A total of 41

genera in the proximal small intestine, 48 – in the distal small intestine, 32 – in the cecum, and

38 – in the colon were significantly differentially abundant between the lumen and mucosa (Figure

27).

Differential abundance analysis between mucosa and lumen layers in each of the intestinal

parts separately revealed substantial spatial variation of genera. Uniquely to the proximal small

intestine, its lumen was depleted of  Corynebacterium_1 and  Micrococcus  (Figure 27A). Genera

specifically  increased  in  the  lumen  of  the  distal  part  of  the  small  intestine  include

Erysipelatoclostridium,  Intestinibacter,  and  Marvinbryantia.  Anaerotruncus and

Lachnospiraceae_UCG-006 also were enriched in the lumen of the distal small intestine (Figure

27B). 

Several  genera  were  increased  in  the  cecum  and  colon,  including  Parabacteroides,

Prevotellaceae_UCG-001, Methylobacterium, and Faecalibacterium (Figures 27C and 27D). The

abundance of  Mucispirillum was lower in the lumen of the proximal small intestine and cecum.
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Similarly, Oscillibacter was reduced in the lumen of the proximal small intestine but increased in

the cecum. Ruminiclostridium_5 and Enterococcus were enriched in the lumen of the distal small

intestine and cecum. Genera with altered abundance, specifically in the distal small intestine and

colon, include  Microbacterium and  Propionibacterium, with reduced abundance in the lumen of

both parts; and Lactococcus, with increased abundance in the same sites.

Figure 27. Differentially abundant genera between lumen and mucosa in different intestinal parts

(expressed as  LogFC),  n = 12 per  group:  (A)  proximal  small  intestine;  (B)  distal  small  intestine;  (C)

cecum; (D) colon. Blue bars represent genera with increased abundance in the lumen, and red bars – with

decreased abundance. Dots of the corresponding color indicate all the individual features assigned to the

genus.

Curvibacter was  depleted  solely  in  the  lumen  of  the  colon.  Roseburia and

Ruminiclostridium_9 were  altered  in  opposite  directions  in  the  same  sites.  Roseburia was

decreased  in  both  parts  of  the  small  intestine  and  increased  in  the  cecum;  in  turn,

Ruminiclostridium_9 was  depleted  in  the  small  intestine  and  enriched  in  the  cecum.

Ruminiclostridium, together with Alistipes and Sphigobium, were oppositely affected, the former
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two being enriched in the lumen of the distal small intestine, cecum, and colon, while the latter

was reduced in the same sites.  Coprococcus_1 and Blautia were differentially abundant between

layers in all intestinal parts. Blautia was increased in the lumen of the proximal small intestine and

cecum but  decreased  in  the  distal  part  of  the  small  intestine  and  colon.  Coprococcus_1 was

enriched in the lumen in all parts of the intestine except the colon, where the abundance of the

genus was reduced.

3.12 Interaction of metformin treatment with diet type, sex, and intestinal layer

The genera with the most substantial differences in response to metformin treatment in each

of the analyzed subsets were summarized in Figure 28. In total, we found 77 genera with a LogFC

of at least 1 in any of the analysis subsets (Figure 28). Metformin affected representatives of all the

main phyla found in the intestine – Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and

Verrucomicrobia.

Members  of  Betaproteobacteria:  Paucimonas and  Alcaligenes were  reduced  only  in  the

mucosal layer of both parts of the small intestine, while another representative  Curvibacter was

altered in opposite directions in different sites, including the cecum and colon in the mucosal layer

but not in the luminal layer. Deltaproteobacteria member Desulfovibrio was affected by metformin

almost  in  all  studied  sites.  The most  remarkable  changes  in  abundance  were  observed in  the

proximal small intestine in both layers and the distal small intestine in the mucosal layer of HFD-

fed mice. In addition, this genus showed marked sexual dimorphism in response to metformin

treatment,  with  being  increased  in  HFD-fed  males  in  both  parts  of  the  small  intestine  and

decreased in  females  in  the mucosal  layer  and the proximal  small  intestine and cecum in the

luminal  layer.  In CD-fed mice,  Desulfovibrio was reduced in both sexes,  though it  was  more

pronounced in females. Sex-related differences in the proximal small intestine were also observed

for  Pseudomonas in  mice  fed  both  diet  types,  with  being  reduced in  males  and increased  in

females. The abundance of  Pseudomonas was altered only in the mucosal layer, except for an

increase in the lumen of the distal small intestine of HFD-fed males.

The most pronounced changes in the abundance of Actinobacteria members were found in

both layers of the proximal small intestine; however, significant changes in at least one genus were

observed in all intestinal parts.  Bacteroides was increased in both sexes of HFD-fed mice in the

lumen of both parts of the small intestine and decreased in the colon. In turn, in the colon of CD-

fed mice, Bacteroides was increased. Bacteroidales_S24-7 group (Muribaculaceae) was altered in
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almost all studied sites. The strongest reduction in the abundance of the genus was found in the

mucosa of the distal small intestine of CD-fed males. 

Figure 28. Summary of differentially abundant genera between Met+ and Met- mice in different

subsets formed by various combinations of the levels of studied factors (expressed as LogFC) , n = 3

per  group.  Only  the  genera  with  an  absolute  LogFC ≥ 1  in  at  least  one  of  the  subsets  are  included,

indicating the directions of changes (with an absolute LogFC > 0.2), if detected, in all subsets. M – mucosa;

L – lumen; PSI – proximal small intestine; DSI – distal small intestine; CEC – cecum; COL – colon. Blue

triangle – an increase of the abundance among metformin users; red triangle – a decrease among metformin

users.
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The abundance of Akkermansia was significantly affected exclusively in CD-fed male cecum

in both layers.  Mucispirillum was strongly decreased in the mucosa of the proximal and distal

small intestine of HFD-fed females, while it was slightly increased in males. In contrast, CD-fed

females  had  marked  increases  in  the  genus  at  the  exact  locations.  In  the  luminal  layer,

Mucispirillum was depleted in the proximal small intestine of CD-fed males and the distal small

intestine of HFD-fed females, whereas the genus was increased in the distal small intestine of

males fed both diet types and in HFD-fed males in the cecum.

A substantial interaction between metformin treatment and sex, diet type, and the intestinal

layer  was  observed  regarding  the  abundance  pattern  of  Bacilli members.  Lactobacillus,

Enterococcus,  Staphylococcus,  and  Streptococcus, opposite  to  Lactococcus,  were  markedly

decreased in the lumen of the proximal small intestine of CD-fed males. In contrast, all genera

together with  Lactococcus were increased in HFD-fed males at the same site.  Lactococcus was

substantially increased in the distal small intestine of CD-fed mice of both sexes, while in HFD-

fed males, it was reduced.  Lactococcus was increased in HFD-fed males and CD-fed females in

the  lumen  of  the  colon.  In  the  mucosa,  the  abundance  of  Lactococcus was  not  affected  by

metformin in the proximal small intestine. However, it was increased in both sexes of HFD-fed

mice and CD-fed males in the distal  small  intestine,  whereas in  females,  it  was reduced.  The

abundance  of  Lactobacillus was  mainly  reduced  in  response  to  metformin,  though  it  was

augmented in the mucosa of the proximal small intestine of HFD-fed males. 

Intestinimonas and  Clostridiales_vadinBB60_group members  were  affected  only  in  the

cecum and colon in the mucosa layer. A similar pattern was observed in the lumen, except that

Clostridiales_vadinBB60_group was strongly increased in CD-fed males in the proximal small

intestine and HFD-fed females in the distal small intestine. Butyricicoccus was affected similarly,

mainly being augmented only in the mucosa of the cecum of male mice and the colon of HFD-fed

males. In the lumen of the cecum, HFD-fed male mice were enriched in Butyricicoccus, while in

CD-fed males genus was reduced. Butyricicoccus was increased in HFD-fed females in the lumen

of  the  colon  but  unchanged  in  other  subsets.  Other  Clostridiaceae representatives  were  not

affected in the cecum and colon in the luminal layer. 

Genera  representing  families  Lachnospiraceae,  Peptococcaceae,  Peptostreptococcaceae,

and Ruminococcaceae were affected more in the cecum and colon in both layers. In contrast to this

observation, Eubacterium_coprostanoligenes_group members were more affected in both parts of

the small  intestine in  both layers.  In general,  members of the families mentioned above were
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enriched in the mucosa of the proximal small intestine of HFD-fed males but decreased in HFD-

fed females. Other features common to these genera (with a few exceptions) are a decrease in the

lumen of the proximal small intestine and cecum of CD-fed mice; and enrichment in the distal

small intestine and colon (predominantly males) of HFD-fed mice. Roseburia showed strong sex-

related differences in the abundance changes in response to metformin treatment. The abundance

of the genus was increased in the mucosa of the proximal small intestine of male mice fed both

types of diet and decreased in females.  Roseburia was enriched only in HFD-fed males in the

cecum but unchanged in other subsets. Similarly, it was increased in the colon of HFD-fed males,

and a decrease was also found in other subsets, CD-fed mice and HFD-fed females. In the lumen,

Roseburia was increased in HFD-fed mice of both sexes in all intestinal parts (except a decrease in

females in the distal small intestine) and decreased in CD-fed mice of both sexes in the cecum and

colon and both parts of the small intestine in males only.
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Study III: Host miRNAs are associated with gut microbiome composition in high-fat

diet-induced type 2 diabetes mouse model of both sexes

3.13 MiRNA composition in feces

A total  of  48  fecal  samples  representing  time  points  before  and  after  ten  weeks-long

metformin treatment of 24 experimental units  included in the animal experiment were used to

determine the miRNA profile by miRNA-seq. These samples corresponded to the experimental

units used for metagenome sequencing in fecal samples described in Study I of the thesis. The

median value of the obtained single-end reads was 2220516. After quality trimming, a median of

443840  reads  was  retained.  The  median  percentage  of  annotated  reads  with  miRBase  (Mus

musculus) was 0.61%. The median percentage of mapped reads, when mapped against the  Mus

musculus genome, was 69.53%.

After aligning reads to miRBase, 240 known mature miRNAs were detected by at least one

read when samples are pooled together. Of the identified known miRNAs, 49 had only one read

count in any of the samples and 47 had at least 100 read counts. The top 20 miRNAs represented

81.7% of the total read counts. The relative abundances of the top 20 miRNAs in each of the

experimental groups at the time points before and after the metformin treatment in HFD-fed and

CD-fed mice are shown in Figures 29 and 30, respectively. 

In all groups mmu-miR-192-5p dominated the miRNA composition, followed by mmu-miR-

21a-5p, mmu-miR-200a-3p, and mmu-miR-29a-3p. All of the top 20 miRNAs were represented in

each of the experimental groups of each diet type. Differences in the composition of miRNAs

depending on the diet status were observed for mmu-let-7f-5p, mmu-let-7c-5p, mmu-miR-26a-5p,

mmu-miR-101a-3p, and mmu-miR-30a-5p, which were found among the top 20 miRNAs only in

HFD mice. The top 20 miRNAs unique for CD-fed groups include mmu-miR-215-5p, mmu-miR-

429-3p, mmu-let-7i-5p, mmu-miR-196b-5p, mmu-miR-26b-5p, and mmu-miR-203-3p.
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Figure 29.  Mean percentage of the 20 most abundant fecal  miRNAs in each of the experimental

groups of high-fat diet-fed mice before and after metformin therapy. n = 3 in each of the groups.

                           

Figure 30.  Mean percentage of the 20 most abundant fecal  miRNAs in each of the experimental

groups of control diet-fed mice before and after metformin therapy. n = 3 in each of the groups.
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3.14 MiRNA composition in gut mucosa

In total, 48 samples representing the proximal small intestine and the cecum at the mucosal

layer collected from 24 mice were sequenced by miRNA-seq. These samples corresponded to the

experimental  units  used  for  microbiome  determination  with  the  16S  rRNA gene  sequencing

method in the respective intestinal samples described in Study II of the thesis. The median value of

the  obtained single-end reads  was  20698971.  The median  percentage  of  annotated  reads  with

miRBase  (Mus  musculus)  and  against  the  Mus  musculus genome  was  0.83%  and  42.73%,

respectively.  After aligning reads to miRBase, 296 known mature miRNAs were detected by at

least  one read when samples are pooled together in the proximal small  intestine,  while in the

cecum 237 miRNAs were identified. 

Of the identified known miRNAs in the proximal small intestine, 117 had less than 100 reads

in  all  samples,  and  179  had  at  least  100  reads  in  any  of  the  samples.  The  top  20  miRNAs

represented 81.6% of the total read counts. One sample was excluded from the further analysis due

to low read count. In the cecum, 115 miRNAs had less than 100 reads in all samples, and 122 had

at least 100 reads in any of the samples. The top 20 miRNAs comprised 69.3% of the read counts

taken together. Two of this subset of samples were excluded from the future analysis as these had

insufficient miRNA read counts.

The relative abundances of the top 20 miRNAs in each of the experimental groups in the

mucosa of the proximal gut are shown in Figure 31. In all groups, mmu-miR-215-5p prevailed,

except  for  HFD_F_Met+ and HFD_F_Met-,  where mmu-miR-192-5p,  followed by mmu-miR-

215-5p, dominated the miRNA composition. In all groups, mmu-miR-192-5p and mmu-miR-194-

5p were the second and the third most abundant miRNA, respectively (except for HFD_F_Met-,

where the third most abundant miRNA was mmu-miR-200c-3p). Overall, the miRNA composition

of the proximal gut is relatively similar between experimental groups.

In cecum, all groups were dominated by mmu-miR-192-5p, followed by mmu-miR-143-3p

and mmu-miR-21a-5p in different order (Figure 32). In CD_F_Met- group mmu-let-7c-5p, mmu-

let-7b-5p, and mmu-let-7f-5p were among the most abundant miRNAs. The composition of the top

20 miRNAs is relatively comparable between the groups. However, it is more diverse than the one

observed in the proximal gut, thus each of the miRNAs represents smaller proportion of the whole

composition.
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Figure 31. Mean percentage of the 20 most abundant miRNAs in the mucosa of the proximal small

intestine. n = 3 in each of the groups.

      

Figure 32. Mean percentage of the 20 most abundant miRNAs in the mucosa of the cecum.  n = 3 in

each of the groups.
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3.15 Differentially expressed miRNAs

We evaluated  the  relative  abundance  of  different  miRNAs between experimental  groups

using  different  contrasts  in  fecal  and  gut  mucosal  samples  representing  the  proximal  small

intestine and cecum. Contrasts for fecal sample analysis and differentially expressed miRNAs are

shown in Figure 33 and Table 2. 

                 

Figure 33. Contrasts in which fecal miRNA compositions were compared.  Dashed lines indicate the

contrasts between which a comparison was performed. Red bold lines indicate the contrasts between which

statistically  significant  differences  in  miRNA expression  were  detected;  the  significantly  differentially

expressed (adjusted p < 0.05) miRNAs are shown for each comparison.
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In fecal samples, mmu-let-7g-5p was depleted in HFD-fed mice compared to CD-fed ones;

however,  it  showed  a  significant  increase  in  HFD-fed  male  mice  group  without  metformin

treatment  over  time.  Similarly,  mmu-miR-215-3p  increased  over  time  in  CD-fed  mice  not

receiving metformin treatment. Mmu-miR-10a-5p was significantly increased in female HFD-fed

mice compared to males at the time point before the initiation of metformin treatment. At the time

point after the metformin treatment, mmu-miR-215-5p and mmu-miR-429-3p were significantly

depleted in HFD-fed mice compared to CD-fed ones in the groups receiving the treatment. None

of the other studied contrasts detected significant differences in miRNA composition, indicating

that metformin treatment has no effect on the miRNA composition in studied groups.

Table 2. Differentially  expressed miRNAs in fecal samples before  (0) and after  (10) the metformin

treatment,  N =  48.  Comparisons  in  which  statistically  significant  differences  have  been  detected  are

shown. FDR – false discovery rate.

As for gut mucosal samples, only cross-sectional contrasts were feasible due to the collection

of the samples at one time point – upon the termination of the experiment.  Main comparisons

aimed to investigate the differences between intestinal parts, the effect of metformin treatment,

sex, and diet  type,  similar to fecal samples.  Significantly differentially expressed miRNAs are

summarized in Table 3. In the proximal small intestine, we found three differentially expressed

miRNAs between HFD-fed males and females after receiving metformin treatment. All of these

miRNAs (mmu-miR-217-5p, mmu-miR-99a-5p, and mmu-miR-216a-5p) were depleted in male

mice. In the cecum of HFD-fed mice not receiving metformin, mmu-miR-193a-3p was augmented

compared to CD-fed mice, while mmu-miR-712-5p and mmu-miR-714 were strongly decreased in

mice fed an HFD.
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Table 3. Differentially  expressed miRNAs in mucosal samples of proximal small intestine  (PSI) or

cecum  (CEC).  N = 48. Comparisons in which statistically significant differences have been detected are

shown. FDR – false discovery rate.

3.16 MiRNA correlation with the gut microbiome

3.16.1 Correlation of fecal miRNAs with the fecal microbiome

We  performed  a  correlation  analysis  between  miRNAs  and  previously  identified  gut

microbiome at the genus level independent of metformin treatment status using the sequencing

data  obtained  from  fecal  samples.  Due  to  the  significant  differences  in  gut  microbiome

composition observed between high-fat diet and control diet-fed mice in the previous analysis,

correlation analysis was performed for each of these subgroups separately. 

Analysis in high-fat diet-fed mice (Figure 34) revealed a very strong positive correlation

between  miR-8  family  members  (mmu-miR-200a-3p,  mmu-miR-200b-3p,  mmu-miR-200c-3p,

mmu-miR-141-3p, and mmu-miR-429-3p), miR-378 family members (mmu-miR-378c and mmu-

miR-378d),  and  mmu-miR-23a-3p,  and  the  abundance  of  Akkermansia  muciniphila,  and

Lachnospiraceae members  (Acetatifactor,  Roseburia,  Eubacterium),  Erysipelotrichaceae

representative, and  Oscillospiraceae members (Oscillibacter and  Lawsonibacter). Likewise, the

abundance of these genera was very strongly negatively correlated with another set of miRNAs

containing mmu-miR-5119, mmu-miR-6239, mmu-miR-6238, and mmu-miR-6240.

A set of miRNAs, including mmu-miR-101a-3p, mmu-miR-194-5p, mmu-miR-30e-5p, and

mmu-miR-340-5p  showed  a  strong  negative  correlation  with  Bacteroides,  Paramuribaculum,

Christensenella, Pseudomonas, and Eggerthellaceae representative. These miRNAs were, in turn,

positively correlated with  Duncaniella and  Schaedlerella, among others. An opposite correlation

pattern with the genera mentioned above was observed for another miRNA set containing mmu-

miR-191-5p, mmu-miR-375-3p, and mmu-miR-183-5p as the key representatives.
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Figure 34. Correlation analysis between fecal miRNAs and gut microbiome representatives of high-

fat diet-fed mice identified by miRNA-seq and shotgun metagenomic sequencing, respectively. N = 24

of each of the datasets. The color key indicates the correlation levels, with blue and red color denoting

negative and positive correlation, respectively.

In  control  diet-fed  mice  (Figure  35),  mmu-miR-200c-3p  showed  the  strongest  positive

correlation with members of  Borkfalkiaceae, while the correlation was negative with  Roseburia

and several  unclassified  members  of  Lachnospiraceae.  Mmu-miR-194-5p was  detected  as  the

most prominent representative with a correlation in the opposite direction.
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Figure 35. Correlation analysis between fecal miRNAs and gut microbiome representatives of control

diet-fed mice identified by miRNA-seq and shotgun metagenomic sequencing, respectively. N = 24 of

each  of  the  datasets.  The  color  key  indicates  the  correlation  levels,  with  blue  and red  color  denoting

negative and positive correlation, respectively.

3.16.2 Correlation of gut mucosal miRNAs with the gut microbiome

To assess the potential differences in the correlation pattern between various intestinal sites

and to expand the range of identified potential correlations, we performed a correlation analysis

using miRNAs isolated from gut mucosa samples collected from the proximal small intestine and

the cecum and 16S rRNA gene sequencing data obtained both from the mucosal and the luminal

microbiome of the respective sites. Due to the 16S rRNA gene sequencing data analysis algorithm,

some features can be attributed to different genera with equal probability; therefore, these features

show an equal correlation with the same miRNA.

Analysis of samples collected from the proximal small intestine showed a distinct pattern

when correlating miRNAs with mucosal or luminal microbiome members. In the analysis subset
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with  the  mucosal  microbiome  (Figure  36),  the  strongest  negative  correlation  was  observed

between  mmu-miR-101b-3p,  mmu-miR-18a-5p,  mmu-miR-19a-3p,  mmu-miR-20a-5p,  among

others,  and  the  abundance  of  Lactobacillus.  In  turn,  mmu-miR-676-3p  and  mmu-miR-205-5p

showed a positive correlation with Lactobacillus. Pseudomonas was another genus, the abundance

of which was strongly correlated with different sets of miRNAs. A set containing mmu-miR-497a-

5p,  mmu-miR-223-3p,  and both  strands of  mmu-miR-126a-3p as  the  strongest  representatives

correlated  positively,  while  a  set  containing  mmu-miR-186-3p  as  the  strongest  hit  correlated

negatively with the abundance of Pseudomonas.

Figure 36. Correlation analysis between mucosal miRNAs and gut microbiome representatives of the

mucosa of the proximal small intestine identified by miRNA-seq and 16S rRNA gene sequencing,

respectively. N = 24 of each of the datasets. The color key indicates the correlation levels, with blue and

red color denoting negative and positive correlation, respectively.
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In  the  analysis  subset  with  the  luminal  microbiome (Figure  37),  the  same genera  were

represented  among  the  correlated  ones  in  addition  to  Bacteroidales  S24-7  group members,

Lachnoclostridium,  Propionibacterium,  and  Microbacterium.  The  strongest  positive  correlation

was observed between mmu-miR-222-3p and the abundance of Lactobacillus and mmu-miR-136-

5p and  Pseudomonas. In turn, the strongest negative correlation was detected between a set of

miRNAs  containing  mmu-miR-101b-3p  and  mmu-miR-20a-5p  and  the  abundance  of

Lactobacillus.

Figure 37. Correlation analysis between mucosal miRNAs and gut microbiome representatives of the

lumen of  the proximal  small  intestine identified by miRNA-seq and 16S rRNA gene sequencing,

respectively. N = 24 of each of the datasets. The color key indicates the correlation levels, with blue and

red color denoting negative and positive correlation, respectively.

Analysis of samples collected from the cecum revealed more similar correlation pictures

when analyzing the mucosal and luminal microbiome than in the proximal small intestine. In the
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mucosal  microbiome analysis  subset  Bacteroidales  S24-7  group members  showed  a  strongest

correlation  with different  sets  of  miRNAs  (Figure 38).  Two different  sets  of  miRNAs – a  set

including  let-7 family members and a second set  containing mmu-miR-203-3p as the strongest

representative  were  negatively  correlated  with  Bacteroidales  S24-7  group.  In  turn,  miRNAs

including mmu-miR-30e-5p and mmu-miR-6236 were correlated with the genus positively. Other

bacteria  which  showed  a  correlation  with  miRNAs  in  this  analysis  subset  showed  moderate

correlation.

Figure 38. Correlation analysis between mucosal miRNAs and gut microbiome representatives of the

mucosa of the cecum identified by miRNA-seq and 16S rRNA gene sequencing, respectively. N = 24 of

each  of  the  datasets.  The  color  key  indicates  the  correlation  levels,  with  blue  and red  color  denoting

negative and positive correlation, respectively.

Luminal  microbiome  analysis  subset  showed  two  main  miRNA sets  with  a  different

correlation pattern with bacterial  genera (Figure 39).  Similar to  the analysis  with the mucosal
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microbiome,  the  strongest  correlation  was  observed  between  different  sets  of  miRNAs  and

Bacteroidales S24-7 group. A set of miRNAs including members of miR-8 family (mmu-miR-

200a-3p, mmu-miR-200b-3p, mmu-miR-141-3p), miR-30 family (mmu-miR-30b-5p, mmu-miR-

30c-5p, mmu-miR-30d-5p and mmu-miR-30e-5p), miR-10 family (mmu-miR-10a-5p, mmu-miR-

10b-5p,  mmu-miR-99a-5p,  and  mmu-miR-99b-5p),  mmu-miR-21a-5p,  mmu-miR-22-3p,  and

mmu-miR-24-3p, among others showed a negative correlation with  Bacteroidales S24-7 group,

Bacteroides,  and  Lachnoclostridium.  Other  miRNA set  containing  mmu-miR-714,  mmu-miR-

6236,  mmu-miR-30d-3p,  and  mmu-miR-8101  was  strongly  positively  correlated  with

Bacteroidales S24-7 group and Lachnoclostridium.

Figure 39. Correlation analysis between mucosal miRNAs and gut microbiome representatives of the

lumen of the cecum identified by miRNA-seq and 16S rRNA gene sequencing, respectively. N = 24 of

each  of  the  datasets.  The  color  key  indicates  the  correlation  levels,  with  blue  and red  color  denoting

negative and positive correlation, respectively.
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A moderate positive correlation was observed between a miRNA set including let-7 family

members (mmu-let-7a-5p, mmu-let-7b-5p, mmu-let-7c-5p, and mmu-let-7f-5p), mmu-miR-196a-

5p,  mmu-miR-139-3p,  and  mmu-miR-192-5p  and  the  abundance  of  Roseburia,  Oscillibacter,

Ruminiclostridium 5,  and  Ruminiclostridium 9.  In turn,  this  set  was negatively correlated with

Ruminiclostridium and  Lactobacillus;  however,  the  correlation  with  Anaerotruncus,

Lachnoclostridium, and Bacteroidales S24-7 group for these miRNAs was not consistent.

3.17 Potential bacterial targets of the correlated miRNAs in mice feces

To investigate the potential of the correlated miRNAs to biologically target the respective

bacteria, the homology of all correlated fecal miRNA sequences with the sequenced metagenome

data  were  analyzed. In  addition,  the  thermodynamic  stability  of  the  miRNA-mRNA duplex,

expressed as the free energy of binding between the miRNA and the target site, was evaluated.

Homology assessment allowing a maximum of three mismatches revealed a median value of

7816.5 (IQR 4217.0) miRNA-read hits per sample (reads from each pair counted independently).

This set of pairs  was further tested based on the minimum free energy, setting a threshold of

minimum free energy (MFE) values ≤ -20.0 kcal/mol. In total, this analysis retrieved 31 miRNAs

and  68  microbial  genera  between  which  at  least  one  potential  interaction  exists.  The  top  six

miRNAs and their target microorganisms are shown in Figure 40.

Homology and minimum free energy value assessment revealed that for mmu-miR-6538, at

least  20 potential  targets exist,  with the largest number of hits  against Oscillospiraceae_NOV,

UBA9475 (Oscillospiraceae member), and Oscillibacter. Other Oscillospiraceae members include

Lawsonibacter,  UMGS1872,  Evtepia,  and  Flavonifractor.  Lachnospiraceae was represented by

Acetatifactor,  Kineothrix,  and  Lachnospiraceae_NOV,  while  Angelakisella is  affiliated  with

Ruminococcaceae.  Bacteroidales was represented by members of four families –  Prevotellaceae

(CAG-873),  Muribaculaceae (UBA7173,  CAG-485,  Duncaniella),  Tannerellaceae

(Parabacteroides), and Rikenellaceae (Alistipes). In turn, phylum Actinobacteriota was manifested

in a form of Adlercreutzia. Bacteroides is potentially targeted by mmu-miR-5119 and mmu-miR-

215-5p. However, Lactococcus was only targeted by mmu-miR-5106.
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Figure 40. List of fecal miRNAs that have homology with bacterial genomes in mice. One tick indicates

that at least 100 reads have been detected for the pair. Two ticks indicate that at least 1000 reads have been

found for the pair.

Taken together  with  a  correlation  analysis  results,  Oscillospiraceae members  (Clostridia

class),  including  Oscillospiraceae_NOV,  Lawsonibacter,  and  UBA9475,  showed  a  negative
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correlation with mmu-miR-5126 both in high-fat diet- and control diet-fed mice, while with mmu-

miR-5119 the correlation was negative in high-fat diet-fed mice and positive in control diet-fed

mice for all three bacterial genera. Opposite results were obtained for  CAG-873, affiliated with

Prevotella, a genus from  Bacteroidia class. It was positively correlated with mmu-miR-5126 in

mice fed with both types of diet. In contrast, the correlation with mmu-miR-5119 was positive in

high-fat  diet-fed mice and negative in control  diet-fed mice.  In the correlation analysis  of the

control diet-fed mice subset, mmu-miR-5126 represented a distinct miRNA set, which showed an

opposite correlation pattern than other above-mentioned miRNAs. In contrast, in the high-fat diet-

fed mice, all of these miRNAs were clustered in one miRNA set.

94



Study IV: Intestinal miRNAs are associated with the presence of colorectal adenomas 

and are correlated with the abundance of gut bacteria in patients undergoing 

colonoscopy

3.18 MiRNA composition in different sample types – pilot analysis

First,  to investigate the homogeneity of miRNA compositions between different types of

samples, a pilot analysis using a small subset of the recruited samples was performed (Figure 41).

All analyzed samples were collected from the same three individuals. The study revealed that the

most diverse miRNA population can be detected in intestinal biopsies,  in addition to its inter-

sample  homogeneity.  Therefore,  intestinal  biopsies  were  chosen  as  a  sample  type  of  primary

interest for further analysis.

Figure  41.  MiRNA composition  in  different  sample  types:  (A)  feces;  (B)  luminal  contents;  (C)

intestinal biopsies. N = 3 in each dataset.

3.19 Intestinal miRNA composition

Intestinal miRNA composition was determined in a total of 43 patients undergoing routine

colonoscopy  procedures  for  various  reasons.  Patients  were  divided  into  two  study  groups –

patients with colorectal adenomas detected by an experienced colonoscopist (n = 20) and patients

without  colorectal  adenomas  (n =  23).  The  main  characteristics  of  the  patient  cohort  are

summarized in Table 4.

Table 4. Characteristics of the analyzed patient cohort. 
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The median of obtained single-end reads was 3475739. After annotating the reads against the

miRBase, 982 mature miRNAs with at least 1 read were found. Of the miRNAs identified, 77 had

at least 1 read and 12 had at least 100 reads in any of the samples. The top 20 miRNAs accounted

for 71.91% of the total reads. 

In both groups, hsa-miR-192-5p was the dominant miRNA, followed by hsa-miR-21-5p and

hsa-miR-16-5p (Figure 42). All of the top 20 miRNAs were found in each of the experimental

groups, and their relative abundances were similar, except for lower abundances of hsa-miR-126-

3p and hsa-miR-101-3p in patients with colorectal adenomas.

Figure 42. Mean percentage of the 20 most abundant intestinal miRNAs in each of the experimental

groups. C – patients without colorectal adenomas, n = 23; A – patients with colorectal adenomas, n = 20.

3.20 Differentially expressed miRNAs

Abundances  of  miRNAs  detected  in  intestinal  biopsy  samples  were  compared  between

patients with and without colorectal adenomas (N = 43). Analysis revealed significant differences

for  three  miRNAs  (Figure  43).  Hsa-miR-101-3p  was  decreased  in  patients  with  adenomas

(LogFC = -0.66, FDR = 0.005), while hsa-miR-454-3p (LogFC = 0.46, FDR = 0.04) and hsa-miR-

132-3p (LogFC = 0.76, FDR < 0.05) were increased.
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Figure 43. Volcano plot showing P-values of differentially expressed miRNAs between patients with

and without colorectal adenomas.  Red dots represent differentially expressed miRNAs with P-values <

0.05.

3.21 Fecal  microbiome  composition  in  patients  with  and  without  colorectal

adenomas

Shotgun metagenome sequencing of  fecal  samples  yielded a  median  of  19473888.5 raw

reads. Median value of assigned reads to taxonomy by mOTUs 2 was 6628.5 (interquartile range –

3908). Two of the samples were excluded from the study after the sequencing procedure due to too

low read count.

An overview of the gut microbiome composition at the genus level has been shown in Figure

44.  Overall,  the fecal  microbiome compositions  of  patients  in  both experimental  groups were

similar for most of the top 20 genera. However, the relative abundance of the dominant genus

Bacteroides was lower in patients with colorectal adenomas, while Prevotella was more abundant

in patients with colorectal adenomas.
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Figure 44. Top 20 microbial genera found in fecal samples from each of the experimental groups. C –

patients without colorectal adenomas, n = 21; A – patients with colorectal adenomas, n = 18.

3.22 MiRNA correlation with gut microbiome

Correlation analysis was performed using intestinal miRNA and fecal metagenome datasets

obtained from the same patients (N = 41). To detect potential differences in the correlation patterns

between  patients  with  colorectal  adenomas  and  patients  without  due  to  diverse  miRNA

compositions, we performed correlation analysis in each of the experimental groups separately

(Figures 4 and 5). Taken together, each of the subsets of this study showed a distinct correlation

pattern likely due to differences in miRNA and fecal microbiome compositions.

In the group of patients with colorectal adenomas (Figure 45), a set of miRNAs with the

strongest representatives affiliated to miR-10 family – hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-

miR-99b-5p, and a separate miRNA – hsa-miR-145-5p showed a strong positive correlation with

Actinobacteria members  Collinsella,  Pauljensenia,  and  Gordonibacter.  Firmicutes members

Peptacetobacter,  Faecalimonas,  Streptococcus,  Bulleidia,  and Lactiplantibacillus.  In  turn,  a

smaller  set,  including  hsa-miR-552-5p  as  the  strongest  representative,  correlated  with  the

aforementioned taxa in the opposite direction. 

Another  set  including  miR-29  family  members  positively  correlated  with  Firmicutes

Lactiplantibacillus and  Erysipelotrichaceae, and  Olsenella affiliated with  Actinobacteria, while

other  Actinobacteria members  did  not  show  a  consistent  correlation  pattern  for  this  set  of

98



miRNAs. A negative correlation was observed with Veillonella and Gammaproteobacteria member

Haemophilus. Correlations in opposite directions with all taxa associated with previous miRNA

sets were found for a set of miRNAs that included members of the miR-423 family, among others.

Figure 45. Correlation between intestinal miRNAs and fecal metagenome in patients with colorectal

adenomas, N = 18. The color key indicates the correlation levels, with blue and red color denoting negative

and positive correlation, respectively.

Overall,  the  correlation  pattern  in  patients  without  colorectal  adenomas  showed  distinct

clusters of miRNAs with correlations with specific genera in opposite directions (Figure 46). The

strongest positive correlation was detected between miR-199 members and Oscillospiraceae and

Atopobiaceae representatives. In addition, Atopobiaceae was strongly correlated with both strands

of hsa-miR-126, while hsa-miR-30a-5p, hsa-miR-195-5p, and miR-10 family members hsa-miR-

125a-5p and hsa-miR-125b-5p among others were associated with Oscillospirales representatives

including Acutalibacteraceae and CAG-272. Negative correlation between miRNAs from this set
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with the strongest hits observed for hsa-miR-27b-3p, miR-126 family, and miR-199 family and

Lachnospiraceae members  including  Clostridium  Q.  In  addition,  this  set  of  miRNAs  was

negatively  correlated  with  Ligilactobacillus  ruminis,  Streptococcus pasteurianus,  Megasphaera

and Dielma.

Figure  46.  Correlation  between  intestinal  miRNAs  and  fecal  metagenome  in  patients  without

colorectal  adenomas, N = 21. The color  key indicates  the  correlation levels,  with blue and red color

denoting negative and positive correlation, respectively.

An opposite correlation pattern was observed for the miRNA set containing miR-8 family

members hsa-miR-200b-5p, hsa-miR-200b-3p, hsa-miR-200c-3p, and hsa-miR-141-5p and several

other miRNAs and all bacterial taxa mentioned above. The abundance of Proteobacteria members

with the strongest hit for Proteus mirabilis was strongly positively correlated with another set of

miRNAs, including hsa-miR-30e-3p, hsa-miR-21-5p, and members of families miR-192, miR-28,

and  miR-29.  Other  positively  correlated  bacterial  taxa  with  this  miRNA  set  include
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Peptoniphilaceae and  CAG-917 members,  among  others,  while  a  negative  correlation  was

observed between these taxa and a  set  containing let-7 family,  hsa-miR-423-3p, and hsa-miR-

320a-3p.

3.23 Potential bacterial targets of the correlated miRNAs in humans

To investigate the potential of the correlated miRNAs to biologically target the respective

bacteria, the homology of all correlated fecal miRNA sequences with the sequenced metagenome

data  were  analyzed. In  addition,  the  thermodynamic  stability  of  the  miRNA-mRNA duplex,

expressed as the free energy of binding between the miRNA and the target site, was evaluated.

Homology assessment allowing a maximum of three mismatches, revealed median value of

625062.0  (IQR  304540.0)  miRNA-read  hits  per  sample  (reads  from  each  pair  counted

independently). This set of pairs was further tested based on the minimum free energy, setting a

threshold  of  MFE  ≤ -20.0  kcal/mol.  In  total,  146  miRNAs  had  at  least  one  microbial  target

expressed in terms of at least hundred reads and 240 microbial genera were potential targets for at

least  one  miRNA.  For  better  comprehensibility,  only  the  top  20  miRNAs  and  their  target

microorganisms are shown in Figure 47.

The  list  of  top  20  miRNAs  which  have  potential  microbial  targets  includes  a  row  of

consecutive  miRNAs –  hsa-miR-4290,  hsa-miR-4291,  hsa-miR-4292,  hsa-miR-4293,  hsa-miR-

4294, hsa-miR-4295 (outside the top 20 list), hsa-miR-4296, hsa-miR-4297, hsa-miR-4298, and

hsa-miR-4299. Hsa-miR-1275 was found to be the miRNA with the most pronounced potential

binding with microbial targets, which was followed by hsa-miR-1260a, hsa-miR-1246, and hsa-

miR-12136. Almost all  of these miRNAs have potential  targets in the following  Bacteroidales

genera –  Prevotella,  Bacteroides,  Phocaeicola,  RC9,  and  Alistipes.  Families,  including

Ruminococcaceae (Ruminococcus E,  Ruminococcus D,  Ruminococcus B,  Ruminiclostridium E,

Ruthenibacterium),  Lachnospiraceae (Blautia,  Coprococcus,  Hungatella,  Agathobacter,  COE1,

Butyrivibrio  A,  CAG-127,  Roseburia,  Acetatifactor,  Enterocloster,  Dorea,  Fusicatenibacter),

Acutalibacteraceae (CAG-177,  CAG-180),  and  Oscillospiraceae (Faecalibacterium,  Gemmiger,

CAG-83,  CAG-170,  UBA5446,  CAG-110),  all  had  potential  targets  for  the  above-mentioned

miRNAs.  Other  potentially  targeted  taxa  include  Bacilli (Enterococcus and  Holdemanella),

Gammaproteobacteria (Escherichia and  Klebsiella),  Akkermansia,  Actinobacteria representative

Bifidobacterium, and Archaea member Methanomassillicoccus A.
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Figure 47. List of miRNAs that have homology with bacterial genomes in humans
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3.24 Bacterial  targets  of  the  miRNAs  identified  in  different  subsets  of  the

correlation analysis in mice and humans

To investigate the translatability of the results  between species, correlation patterns were

compared. Furthermore, the homology between the sequences of the identified miRNAs and the

genomes of bacteria with which they correlate was assessed. In total, we found 39 miRNAs and 95

microbial genera shared between mice and humans in our datasets. Although the exact miRNAs

and their microbial targets were not found to be intersected between mice and humans, notable

patterns were observed. Both in mice and humans,  Bacteroidales members were among the top

potential microbial targets of miRNAs. In mice, this order was represented by  Muribaculaceae

genera (UBA9475, UBA7173,  CAG-485,  Duncaniella),  Parabacteroides, and  Alistipes, while in

humans, by  Prevotella,  Bacteroides, Phocaeicola,  RC9, and  Alistipes. In both host species, top

microbial  targets  included  members  of  families  Ruminococcaceae,  Lachnospiraceae,

Acutalibacteraceae, and Oscillospiraceae. In addition, phylum Actinobacteria was represented by

one genus in each host. In contrast to mice, in humans, representatives of separate domain Archaea

were found to have potential targets for analyzed miRNAs. In each host species, a different set of

species-unique miRNAs was found among the miRNAs with the most microbial targets.
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4 DISCUSSION

Type 2 diabetes is a widespread metabolic disease,  and there is strong evidence that the

microbiome plays an important role in its pathogenesis and interaction with therapy (Larsen et al.,

2010). The prevalence of the disease is constantly increasing and is recognized as a major concern

in public health globally. T2D is associated with the risk of long-term complications that affect

patients' functional capacity and quality of life, and potential premature mortality, thus having a

significant  impact  on  human  lives  and  the  economy  (Khan  et  al.,  2020).  This  global  threat

demands  the  optimization  of  therapeutic  strategies and  improvements  in  their  efficiency.

Metformin is the first-line drug to treat T2D, and it has strong effects on the gut microbiome.

Metformin is administered orally, and its main benefits compared with other types of T2D therapy

are low risk of hypoglycemia, lowering or neutral effect on body weight, low cost, relative safety,

and potential cardiovascular improvements  (Dujic  et al., 2016; Wu  et al., 2017). Nevertheless,

there  is  high  variability  in  the  efficacy  of  metformin  therapy,  with  up  to  20-30% of  patients

receiving metformin developing gastrointestinal side effects and 5% unable to continue the therapy

(Dujic  et  al.,  2016).  The  pharmacodynamic  mechanism of  metformin  action  is  only  partially

explained;  furthermore,  aspects  underlying  the  common  gastrointestinal  side  effects  are  still

unknown.  In  addition,  the  pleiotropic  effects  of  metformin  have  shown  promising  results  in

treating many other diseases, thus expanding the drug's applicability and emphasizing the need for

successful management of its use.

Studies in both mice and humans have indicated that alterations in the gut microbiome and

its metabolic pathways could be related to the antidiabetic effect of metformin (Lee, 2014; Wu et

al., 2017). Our previous studies have shown that metformin therapy reduces the diversity of the

gut microbiome (Shannon diversity index) for both healthy volunteers and T2D patients (Elbere et

al., 2018). The decrease in diversity might be related to the side effects of the therapy. Few studies

have been published on the effects of metformin on the gut microbiome in diabetic mice; however,

research has tended to focus on fecal samples, which represent the luminal fraction of the large

intestine only rather than the microbiome along the entire length of the intestine (Lee, 2014). The

same applies to studies involving human subjects to an even greater extent.

We propose this study in order to answer many unclarified issues mentioned above. This

thesis aimed to characterize the metformin-induced changes in the gut microbiome composition

both in fecal samples and the gastrointestinal tract longitudinally and cross-sectionally. This was

proceeded with  an  analysis  of  the  possible  mechanism of  how targeted  alterations  of  the  gut
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microbiome compositions could be introduced. The hypothesis of the study is that the regulation of

host miRNA expression in the intestinal cells is one of the mechanisms by which the host can alter

the composition of the gut  microbiome,  and this  mechanism is  an important  part  of  the T2D

pathophysiology.  Even  more,  we  hypothesize  that  metformin  may  elucidate  its  effect  on  the

microbiome by changing the miRNA repertoire in intestinal cells.

The effect of metformin on gut microbiome composition and function has been extensively

studied both in humans and animal models and even  in vitro. However, all rodent studies have

used 16S rRNA gene sequencing, and most were limited to evaluating metformin effects on only

one of the animal sexes. Our study has several strengths. First, we included mice of both sexes in

contrast to almost all existing studies in this specific field, providing valuable information on sex-

related differences in response to metformin treatment regarding changes in the gut microbiome.

Next,  we employed a randomized block factorial  design, which rendered the study feasible in

terms of time and available resources, increased power and reproducibility, and limited the impact

of  various  controllable  and  uncontrollable  sources  of  bias.  We  aimed  to  reliably  evaluate

metformin's effect on the microbiome rather than reach the maximal effect of metformin response

with  elevated  doses.  Therefore,  we  chose  to  use  a  smaller  metformin  dose  (50  mg/kg  body

mass/day) compared to other studies (200-300 mg/kg body mass/day) to match the concentrations

applied to humans. Finally, we fed the mice representing control groups in our study with a well-

matched diet and not the regular chow, which is not standardized and has beneficial effects on the

gut microbiome per se due to its short-chain fatty acid-increasing nutritional composition (Dalby

et  al.,  2017).  The use of regular  chow is  common in previous  studies assessing the effect  of

metformin on the microbiome, which can substantially alter the results. 

Moving  to  separate  subsets  of  the  study,  fecal  samples  were  analyzed  using  a  shotgun

metagenomic  sequencing  approach,  which  allows  a  species-  or  even  strain-level  precision  in

detecting microbiome representatives. Additionally, it enables the determination of the functional

profile. Furthermore, we took advantage of using an animal model to collect intestinal samples and

their  associated microbiome to analyze spatial  differences.  Our study is  the first  to report  the

results of such a systematic assessment of spatial variation in the effects of metformin in animals

of both sexes. According to the 3Rs principle, strongly promoted in animal research, we proposed

a new hypothesis about the host miRNA-mediated effects of metformin on the gut microbiome,

which we investigated using the extensive resources of biological materials collected during the
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mice  experiment.  This  approach  allows  combining  different  -omics-based  data  sets,  thus

enhancing the investigation of the complex picture of metformin effects.

To  further  test  the  hypothesis,  the  interaction  between  host  intestinal  miRNAs  and  gut

microbiome  was  assessed  in  human  subjects  as  well.  As  the  concept  that  certain  miRNAs

molecularly interact with bacterial genomes should be existing in different hosts, available patient

cohort (patients undergoing the colonoscopy procedure due to various reasons) was used for the

study. In addition, we analyzed the differences in miRNA composition between patients with and

without  colorectal  adenomas,  which  allowed  to  determine  which  miRNAs  have  biomarker

potential for early detection of colorectal cancer risk.

4.1 The effect of metformin treatment on the fecal microbiome

Fecal metagenome analysis revealed a uniform effect of metformin treatment on bacteria

representing Bacilli. Genus Lactobacillus, represented by L. murinus, L. farraginis, L. paracasei,

L.  kefiranofaciens,  was  increased. This  finding is  consistent  with  previous  work showing that

metformin increases the relative abundance of genus Lactobacillus in HFD-fed rats (Bauer et al.,

2018). Probiotic supplementation with Lactobacillus improves glucose parameters in diabetic rats

and prevents insulin resistance and hyperglycemia in HFD-fed mice (Bauer et al., 2018), which is

in  line with our  observations.  Lactococcus,  another  genus of lactic  acid bacteria  Lactococcus,

including  L. raffinolactis,  L. garvieae,  L. fujiensis,  L.  chungangensis, L. lactis, L. plantarum is

increased in response to metformin treatment, which is in agreement with a study evaluating the

effect of metformin on the microbiome in the short term HFD-induced obesity (Ji, Wang and Li,

2019).

One  of  the  gut  microbiome's  main  roles  is  to  break  down  the  dietary  fiber  and  starch

incompletely hydrolyzed by the host. Short-chain fatty acids (SCFA), including propionate and

butyrate, are the main fermentation products of fiber digestion and can be used for lipid or glucose

de  novo synthesis.  Changes  in  the  SCFA profiles  are  associated  with  changes  in  the  gut

microbiome (McKnite et al., 2012). In our study, taxa associated with SCFA production, such as

Bacteroides and Enterorhabdus, which convert amino acid derivatives as the energy source (Clavel

et al., 2014), are represented among the species that are increased after metformin treatment.

The  relative  abundance  of  Bacteroides was  significantly  higher  after  the  metformin

treatment, with the most represented bacteria being B. intestinalis, B. vulgatus, and B. acidifaciens.

However, the effect was heterogeneous, as we observed a decrease in several Bacteroides species
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in some experimental units. The increased abundance of  Bacteroides and  Parabacteroides is in

line  with  existing  data  (Lee  et  al.,  2018).  It  has  been  described  that  B.  fragilis colonization

aggravates metabolic disorders induced by HFD, whereas metformin inhibits  the growth of  B.

fragilis through modification of folate and methionine metabolism (Sun et al., 2018).

In a study on core gut bacteria of healthy mice, a high prevalence (99%) and a relatively high

abundance of Parabacteroides were observed, suggesting that Parabacteroides might be essential

to host health  (Wang et al., 2019). This fact corresponds to metformin's reported health benefits

regarding the microbiome composition shift  (Wu et al., 2017). It has been hypothesized that the

microbial growth-inhibitory effect of metformin is more pronounced on anaerobic organisms than

aerobic  organisms,  as  anaerobic  respiration  produces  less  ATP  than  aerobic  respiration

(Prattichizzo et al., 2018).

Metformin-induced changes in the abundance of  Akkermansia muciniphila and metabolic

improvement due to these changes have previously been shown in several studies (Lee, 2014; Wu

et al., 2017). Instead, our study reports no significant changes in  A. muciniphila abundance in

response to metformin in fecal metagenomic data.

Our study revealed a consistent effect of metformin on the abundance of species representing

Clostridia, more specifically, members of Lachnospiraceae and Ruminococcaceae. Thus all of the

identified differentially abundant taxa from these dominant butyrate-producing families (except for

Butyrivibrio and Rumonicoccus sp. Zagget7) were decreased after the treatment in the HFD_Met+

group.  Dominant  butyrate-producing  bacteria  Roseburia  hominis,  Roseburia  intestinalis,

Faecalibacterium prausnitzii  found in the human intestine (La Rosa et al., 2019), Intestinimonas

butyriciproducens and  Eubacterium  plexicaudatum  first found  in  mouse  intestine  (Wilkins,

Fulghum and Wilkins, 1974; Kläring et al., 2013), and Anaerotruncus spp. are among these taxa.

Butyrate has been demonstrated to positively impact gastrointestinal tract homeostasis promoting

the growth of intestinal epithelial cells, increasing the expression of tight junction proteins, and

acting  as  an  anti-inflammatory  agent  (Kant  et  al.,  2016).  Previous  studies  have  reported  that

obesity and T2D are associated with a reduction of butyrate-producing bacteria and an increase in

opportunistic pathogens  (Forslund  et al., 2015; McCreight, Bailey and Pearson, 2016). A recent

randomized pilot  study in which the impact  of probiotic  supplement  on metformin's  effect  on

glycemia in prediabetic subjects was assessed has identified an increase in the relative abundance

of Anaerotruncus colihominis (Cluster IV) only in participants receiving both metformin and the

probiotic but not in participants taking either metformin or probiotic alone (Palacios et al., 2020).
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Our  results  show  that  metformin  alone  can  impact  the  relative  abundance  of  different

Anaerotruncus species in opposite directions;  Anaerotruncus sp. G3(2012) was decreased, while

the  relative  abundance  of  uncultured  Anaerotruncus  sp. was  augmented.  Another  member  of

Lachnospiraceae – Dorea is shown to be increased in T2D individuals and negatively correlated

with  the  abundance  of  butyrate-producing  bacteria  (Qian  Li  et  al.,  2020).  Gene-targeted

approaches  to  investigate  the  butyrate-producing  bacterial  communities  of  the  human  gut

microbiome have suggested that butyrate-producing colon bacteria form a functional group rather

than a monophyletic group (Rivière et al., 2016). This finding suggests that the functional niche of

R. hominis, R. intestinalis, I. Butyriciproducens, and F. prausnitzii as butyrate-producing bacteria

is  substituted  by  other  taxa,  possibly  butyrate-producing  species  identified  with  an  increased

relative abundance in response to metformin treatment which was discovered in our study.

4.2 Functional analysis

We  focused  the  functional  analysis  on  the  hierarchies related  to  the  three  main

macronutrients consumed in the diet – carbohydrates, lipids, and proteins, which can reach the

colon due to their structural complexity or ingested amount, which surpasses the possibilities of

primary digestion (Oliphant and Allen-Vercoe, 2019). Most of the altered hierarchies in response

to metformin treatment in HFD-fed groups represent amino acid metabolism-related functions.

Our data show that metformin increases the metagenome functions affiliated with arginine and

proline  metabolism;  glycine,  serine,  and  threonine  metabolism;  and  cysteine  and  methionine

metabolism; in turn, valine, leucine, and isoleucine biosynthesis is hindered.

In contrast to the previously reported results, in our study, metformin affects the functions

associated  with  propionate  (propanoate)  and  butyrate  (butanoate)  metabolism  in  opposite

directions (Forslund et al., 2015; Wu et al., 2017). When HFD-fed groups were contrasted to CD-

fed mice, regardless of the metformin treatment status, propionate metabolism was enriched. An

analysis between HFD_Met+ groups before and after the treatment, both in the combined sexes

and  female  subset,  highlighted  a  decrease  in  butyrate  metabolism.  This  corresponds  to  a

metformin-related decrease in the relative abundances of different butyrate producers representing

Lachnospiraceae and Clostridiaceae observed in our study.

The role of phenylalanine-derived metabolites – phenylethylamine and trans-cinnamic acid

in the context  of gut  microbiome functions  is  not well  described  (Oliphant  and Allen-Vercoe,

2019). A study of children consuming a low-phenylalanine diet due to phenylketonuria indicated
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that the gut microbiome of these children was depleted in butyrate-producing species and enriched

in Blautia spp. and Clostridium spp.  (Bassanini  et al., 2019), which is in partial agreement with

our data. We observed a significant decrease in the abundance of butyrate metabolism hierarchy in

HFD_Met+  groups  before  and  after  metformin  treatment  simultaneously  with  decreased

phenylalanine metabolism; however, in contrast, the relative abundance of  Blautia spp. was not

promoted.

4.3 Spatial variation of the effect of metformin on the gut microbiome

The effect of metformin therapy on the composition and function of the gut microbiome has

been demonstrated in  previous  studies  (Wu  et  al.,  2017;  Lee  et  al.,  2018;  Dong  et  al.,  2019;

Ahmadi et al., 2020; Qingzhong Li et al., 2020; Jauvain et al., 2021; Liu et al., 2021); however, an

in-depth  analysis  of  spatial  variation  of  the  effects  of  long-term metformin  treatment  on  the

gastrointestinal tract has not yet been performed in vivo. Our study provides novel information on

the  effects  of  metformin  on  both  the  gastrointestinal  mucosa  and  the  luminal  layers  at  four

different sites of the gut.

We observed significantly different alpha diversities between all the studied intestinal parts

corresponding to anatomical and functional differences of the various sites. The cecum and colon

microbiomes were more diverse than those of the small intestine, consistent with a previous report

(Lkhagva et al., 2021). Analysis revealed that metformin treatment has the most pronounced effect

on the samples representing the proximal small intestine, followed by the distal small intestine.

Cecum samples of all experimental groups clustered most closely, showing the least effect of any

studied factors on this intestinal part and suggesting its relative stability. 

We have shown the effect of metformin treatment, sex, diet type, and intestinal layer on the

spatial variation of the gut microbiome by analyzing each of these factors separately. Furthermore,

we  have  investigated  the  effect  of  metformin  treatment  in  each  of  the  subsets  formed  by

combinations of levels of the studied factors: intestinal layer, intestinal part, diet type, and sex, and

detected substantial variation of metformin’s effects in each of these subsets.

Metformin treatment had a more pronounced effect on the microbiome composition in both

parts of the small intestine (indicated by higher absolute LogFC values). This finding confirms the

hypothesis that the effect of metformin treatment is not uniform in the whole intestine but rather

depends on the absorption characteristics of the medication. When all mice were contrasted based

on metformin  treatment  status,  several  genera  were  increased  uniquely  in  the  proximal  small
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intestine, where according to a previous study (Bauer  et al., 2018), the absorption of metformin

occurs  most.  Among these  genera,  many are aerobic  bacteria –  Duganella,  Chryseobacterium,

Undibacterium,  Corynebacterium,  Methylophilus,  and  the  anaerobes  Anaeroplasma and

Mucispirillum.

Mucispirillum is commensal in the microbiota of humans and various vertebrates. The only

species  of  the  genus,  Mucispirillum  schaedleri,  is  a  core  member  of  the  laboratory  mouse

microbiota  throughout  the  whole  gastrointestinal  tract.  Mucispirillum schaedleri has  not  been

widely identified in human studies due to its low abundance in fecal samples, but it is enriched in

the gut mucosa (Herp et al., 2021). Genomic data have indicated that instead of degrading mucosal

glycans such as mucin,  M. schaedleri predominantly processes monosaccharides, oligopeptides,

amino acids, glycerol, and short-chain fatty acids produced by other bacteria (Loy et al., 2017).

Metformin treatment substantially increased the abundance of Lactococcus in the distal part

of the small intestine. This is consistent with a previous study with a similar duration and route of

metformin  treatment  but  using  only  aged  male  mice,  where  an  increase  in  Lactococcus was

observed  in  fecal  samples  after  treatment  with  metformin  (Ahmadi  et  al.,  2020).  Lactic  acid

bacteria, including Lactococcus, produce lactate, a substrate for other members of the microbiota

to convert it into butyrate  (Thursby and Juge, 2017). We observed a subtle increase in another

lactate producer,  Lactobacillus, in the distal small intestine, whereas the abundance of the genus

was reduced in the proximal small  intestine and cecum and unchanged in the colon. Previous

studies  have  produced  conflicting  results  regarding  the  effect  of  metformin  on  Lactobacillus

(Zhang, 2020). This could be explained by the use of fecal samples that do not fully represent the

small intestinal microbiota, differences in experimental designs, and species-specific effects not

detected in the genus-level analysis  (Gurung  et al., 2020).  Lactobacillus has been suggested to

help restore glucose sensing in the upper small intestine by increasing SGLT1 expression (Bauer et

al., 2018). The most reduced genus Proteus in the distal small intestine was also not significantly

affected  elsewhere.  A  previous  study  showed  that  metformin  reduces  the  abundance  of

opportunistic pathogens, including Proteus, in db/db mice (Zhang et al., 2015). 

Roseburia,  another  butyrate-producing  genus,  was  increased  in  both  parts  of  the  small

intestine.  This,  together  with the  intestinal  part-unique  effects  of  metformin treatment,  further

supports the proximal and the distal part of the small intestine as principal sites of metformin-

mediated effects on the gut microbiome. Furthermore, we are the first to locate the previously
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reported metformin-induced increase in  Parabacteroides  in both parts of the small intestine and

colon.

Our  results  show  that  metformin  mostly  targets  genera  belonging  to  Clostridia in  all

intestinal  sites.  Altered  genera  include  the  representatives  of  Lachnospiraceae (Blautia,

Lachnoclostridium,  Lachnospira,  Marvinbryantia,  Roseburia),  Clostridiaceae (Butyricicoccus,

Clostridium), Ruminococcaceae (Anaerotruncus, Faecalibacterium, Oscillibacter, Ruminococcus),

and Eubacteriaceae (Eubacterium).

Our  study,  in  which  we analyzed fecal  metagenome similarly  to  others,  has  shown that

metformin therapy decreases the abundance of members of Clostridia families Ruminococcaceae

and Lachnospiraceae – major butyrate producers (Bravard et al., 2021). We found an increase of

Roseburia in both parts of the small intestine and a depletion of the genus in the cecum and colon

in  the  luminal  layer.  This  could  explain  the  reduced  abundance  of  Roseburia in  feces  after

metformin treatment (Ahmadi et al., 2020), as feces mostly correspond to the samples of colonic

contents. Bacteroides has been shown to be affected by metformin treatment. Our spatial variation

study supports these findings as we report a decrease in  Bacteroides in response to metformin,

specifically in the colon (Lee et al., 2018).

4.4 Sex differences in response to metformin treatment and gut microbiome 

composition

We found substantial sex-related differences in response to metformin treatment. In contrast

to  another  study  involving  both  sexes  of  mice  where  serum  glucose  level  decreased  after

metformin treatment, especially in female mice, we observed an increase in plasma glucose level

in females, although male mice responded with a decrease in plasma glucose level in both HFD-

and  CD-fed  groups  (Lee,  2014).  Also,  insulin  resistance  indicated  by  the  HOMA-IR  index

declined  after  the  metformin  intervention  in  the  HFD_M_Met+  group  but,  inconsistent  with

previously reported data, insulin resistance was augmented in the HFD_F_Met+ group. The same

pattern was manifested in CD_Met+ groups, thereby strengthening the discrepancies in metformin

effects  between  sexes.  These  differences  might  be  explained  by  the  fact  that  we  used  a

substantially  lower  dose  of  metformin  (50  mg/kg  body  mass/day),  which  is  considered  the

maximum dose that the body can utilize efficiently (He and Wondisford, 2015).

In  addition,  several  studies,  which  have  investigated  sex-related  differences  in  the  gut

microbiome in the context of changed diet, have identified hormonal effects on gut microbiome
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composition  (Org  et  al.,  2016;  Kaliannan  et  al.,  2018;  Acharya  et  al.,  2019),  specifically

emphasizing  estrogen-induced  gut  microbiome  changes  and  protection  against  metabolic

syndrome  in  mice,  both  of  the  C57BL/6  and  ob/ob background.  These  effects  possibly  also

contribute to the identified differences between sexes.

In addition,  we observed a  strong sex-specific  effect  on  the  spatial  variation  of  the  gut

microbiome when all mice were contrasted based on sex, as the abundance of Lactobacillus was

strongly reduced in all intestinal parts and layers of males. This finding is supported by a study in

healthy humans, where an increase of Lactobacillales in female mucosa-associated microbiota was

reported  (Borgo et al., 2018).  Lactobacillus has been shown to be increased in diabetes patients

and animals fed with a high-fat diet (Forslund et al., 2015; Sedighi et al., 2017; Wang et al., 2020),

consistent with enrichment of the genus in the colon and both intestinal layers of HFD-fed mice

compared to CD-fed mice in our study. However, we observed that Lactobacillus was decreased in

the proximal small intestine of HFD-fed mice, showing the differences between the composition of

the fecal microbiome and the microbiome of different intestinal parts.

Previous studies have shown that Lactobacillus spp. reduce blood glucose levels in high-fat

diet-induced diabetic male mice  (Gulnaz  et al., 2021), but in turn is positively correlated with

blood  glucose  levels  in  European  women  with  T2D  (Karlsson  et  al.,  2013),  and  metabolites

produced by Lactobacilli may contribute to the glucose modulation of metformin (Rooj, Kimura

and  Buddington,  2010).  Sex-related  differences  in  Lactobacillus abundance  that  we  observed

might partially explain these discrepancies emphasizing the need to perform studies on individuals

of both sexes to obtain as complete information as possible. An increase in  Anaerotruncus has

been found in women with metabolic syndrome compared to men  (Santos-Marcos  et al., 2019).

Our  data  support  these  sex-related  differences,  narrowing  them down to  the  cecum.  We also

detected a higher abundance of opportunistic pathogens Proteus in both layers and Staphylococcus

in the lumen of male mice compared to females. Proteus was increased in the distal small intestine,

Staphylococcus in  the  cecum,  and  both  genera  in  the  colon  of  males.  This  suggests  that  the

microbiota of male mice in this model contains more opportunistic pathogens than females, which

could contribute to  another  layer  of phenotypic sexual  dimorphism reported in  HFD-fed mice

(Casimiro et al., 2021).
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4.5 The effect of studied factors on the miRNA composition in mice

The study by Liu  and colleagues  demonstrated for  the  first  time that  host-derived fecal

miRNAs specifically target bacterial genes and thereby modulate the gut microbiota  (Liu  et al.,

2016). Since then, several studies investigating the effects of host miRNAs on gut microbiota in

different disease contexts have been performed, including colorectal cancer (Yuan, M. B. Burns, et

al., 2018; Tomkovich  et al., 2020), inflammatory bowel diseases  (He  et al., 2022; Shen  et al.,

2022), insulin resistance  (Guo et al., 2020), liver dysfunction  (Santos  et al., 2020), neurological

disorders (Hewel et al., 2019; S. Liu et al., 2019; H. M. Chen et al., 2022) as well as healthy mice

and humans (Horne et al., 2019; Tarallo et al., 2022). 

Based on the findings by Liu and colleagues  (Liu  et al., 2016), we hypothesized that host

miRNAs are mediators in metformin-induced changes in the gut microbiome composition and

functions in the context of type 2 diabetes. To test this idea, we investigated the effect of ten weeks

long metformin treatment on miRNA expression in fecal and gut mucosal samples representing

proximal  small  intestine  and  cecum of  diabetic  and  control  group  mice  and  combined  these

datasets with metformin-induced gut microbiome changes in the background of T2D described in

the previous parts of the thesis. To our best knowledge, this is the first study to address the effect

of metformin on fecal miRNA composition and its implications on the gut microbiome.

Our results  show that  the repertoire  of miRNAs in fecal samples  is  relatively consistent

despite  the  changes  in  time  and  treatment  status.  The  fact  that  at  least  20  miRNAs  were

represented  in  each  of  the  experimental  groups,  including  longitudinal  samples,  provides  an

information  on the  overall  stability  of  the  fecal  miRNA content  over  time,  marking  them as

consistent  players  of  the microbiome ecosystem. All  miRNAs from the top 20 list  have been

shown previously to be present in fecal samples of mice and humans (Liu et al., 2016; Moloney et

al.,  2018;  Horne  et  al.,  2019;  S.  Liu  et  al.,  2019;  Tarallo  et  al.,  2019;  Viennois  et  al.,  2019;

Tomkovich  et  al.,  2020;  Wohnhaas  et  al.,  2020).  It  should  be  noted  that  we  have  used  a

sequencing-based approach compared to many of the other studies, thus providing a relatively

unbiased  view of  fecal  miRNA content.  Intestinal  miRNA composition  of  the  proximal  small

intestine was similar to the one of the cecum; almost all top 20 miRNAs corresponded between

sites, though the relative abundances of miRNAs were different. 

Differential expression analysis between the studied groups mainly revealed diet-related and

some sex-related effects on miRNA composition, while metformin had no significant effect in the

different contrasts. Dietary lipid effects on intestinal miRNAs have been characterized previously
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and have shown a large number of miRNAs that are influenced in response to high-fat diet feeding

(Gil-Zamorano et al., 2020)

Correlation analysis  showed the ability  of certain miRNAs to distinguish bacteria  at  the

family and genus levels.  Thus specific  groups of  miRNAs were inversely associated with the

Akkermansia and  the  genera  from  Lachnospiraceae (with  some exceptions),  Oscillospiraceae,

Erysispelotrichaceae and  the  genera  from  Bacteroidaceae and  Muribaculaceae (both  from

Bacteroidales). Most of the miRNAs grouped based on their affiliation within miRNA families.

Strong example of this is miR-8 family with its members – mmu-miR-200a-3p, mmu-miR-200b-

3p, mmu-miR-200c-3p, mmu-miR-141-3p, and mmu-miR-429-3p. 

The negative correlation between miR-29 family members and Bacteroides further supports

the relationship between miR-29, T2D status,  and specific microbiome composition.  It  can be

hypothesized that the previously shown decrease in miR-29 abundance in response to metformin

therapy (Udesen et al., 2020) is the joining factor between the elevated abundance of Bacteroides

and the reduction of T2D manifestations after the treatment.

When  analysis  of  potential  bacterial  targets  in  feces  was  combined  with  a  respective

correlation analysis, several miRNA and bacterial genus pairs were identified. Both mmu-miR-

5126 and mmu-miR-5119 potentially target several  Oscillospiraceae genera and  Prevotellaceae

genus  CAG-873 and  affect  their  abundance  in  opposite  directions.  This  is  consistent  with  the

results of the fecal metagenome analysis, where we have shown a lower relative abundance of

Prevotella and an increase in  Oscillibacter in the feces of high-fat  diet-fed mice compared to

control diet-fed ones both of which were altered by metformin treatment (Silamiķele et al., 2021).

Oscillospira has been suggested to be a butyrate producer and can use both animal-derived and

plant  sugars,  furthermore,  glucose  significantly  increases  its  growth  (Yang  et  al.,  2021).

Furthermore, a study on the interaction between colon mucosal biofilms and mice hosts after their

inoculation with colorectal cancer patient-derived microorganisms has identified several miRNAs

that mainly target bacterial genes  (Tomkovich  et al., 2020). These miRNAs include mmu-miR-

2137,  mmu-miR-5126,  and  mmu-miR-6538,  which  completely  corresponds  to  our  results.

Additionally, we identified mmu-miR-5119, mmu-miR-215-5p, and mmu-miR-5106 as miRNAs

that target Bacteroides, Parabacteroides, Muribaculaceae members, and Lactococcus not targeted

by the first mentioned three miRNAs in our analysis.

114



4.6 The effect of studied factors on the miRNA composition in humans

Studies  profiling  miRNA expression  in  the  transition  from  normal  colorectal  tissue  to

adenoma and to carcinoma have identified several potential diagnostic and treatment biomarkers

(J. Li  et al., 2019). Analysis of the differentially expressed miRNAs between patients with and

without colorectal adenomas in the present study revealed three significantly different miRNAs.

All of these miRNAs have previously been associated with the development of different cancer

types. Hsa-miR-101-3p has been described as a tumor suppressor in various types of cancer by

targeting genes involved in the cell growth, apoptosis, migration, and invasion of cancer cells (Liu

et al., 2015; Gu et al., 2021). This is consistent with the downregulation of hsa-miR-101-3p in our

data  from  patients  with  colorectal  adenomas,  a  potential  precursor  of  colorectal  cancer.

Furthermore, hsa-miR-101-3p has been suggested as a biomarker for colorectal cancer diagnosis

and prognosis (Strillacci et al., 2013). In contrast, in another study in which miRNAs involved in

colorectal tumorigenesis were investigated, miR-101 has been identified as one of the miRNAs

upregulated continuously as the normal tissue progresses to adenoma and to cancerous tissues (Yin

et  al.,  2016).  It  has  been  shown  that  hsa-miR-101-3p  and  hsa-miR-132-3p  both  have

experimentally validated target genes involved in the KEGG pathway of colorectal cancer (X.-N.

Li et al., 2019). These studies and our results suggest that hsa-miR-101-3p may have a prognostic

potential for colorectal adenoma progression to carcinoma.

MiRNAs which were increased in patients with colorectal adenomas, have been reported to

be involved in carcinogenesis. Compared to sensitive ones, an upregulation of hsa-miR-454-3p has

been  shown  in  oxaliplatin  (first-line  chemotherapy  for  colorectal  cancer)-resistant  colorectal

cancer cells  (Qian  et al.,  2021). Studies have shown that hsa-miR-454-3p exhibits  both tumor

suppressive  and  oncogenic  properties  in  various  types  of  cancer.  It  promotes  breast  cancer

progression  by inducing the  epithelial-mesenchymal  transition  phenotype  (Wang  et  al.,  2021),

while in glioblastoma and several other types of cancers hsa-miR-454-3p functions as a tumor

suppressor (Zuo et al., 2019).

Similarly,  hsa-miR-132-3p  has  been  involved  in  different  human  tumors  (Rafat  et  al.,

2021) and exhibits both oncogene and tumor suppressor functions (Moghbeli et al., 2021). In the

context  of  colorectal  cancer,  hsa-miR-132-3p  has  been  described  as  downregulated  in  tumor

tissues compared to paired non-tumoral tissues  (Yong et al., 2016). In contrast, in another study

using colorectal  cancer tissues, the expression of hsa-miR-132-3p, which targets anti-apoptotic

protein SIRT1, was augmented compared to the normal colon tissue (Kara et al., 2015).
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In contrast to a previous study that evaluated differentially expressed miRNAs in colorectal

adenoma and carcinoma patients compared to healthy subjects, and described eight dysregulated

miRNAs (Liu and Li, 2019), none of these miRNAs were significantly differentially expressed in

our study.

Microbial  target  analysis  showed  that  the  differentially  expressed  miRNAs in  colorectal

adenoma patients have several potential microbial targets. For hsa-miR-101-3p, the main targeted

bacterial families include Lachnospiraceae, Acutalibacteraceae, and Ruminococcaceae, while hsa-

miR-132-3p  targets  Bacteroidaceae members  and  Lachnospiraceae representative

Marvinbryantia.  Hsa-miR-454-3p potentially targets  Acutalibacteraceae member  CAG-180 and

Methanomassiliicoccus  A  affiliated  with  Archaea. Another  Archaea representative

Methanobrevibacter A is potentially targeted by hsa-miR-101-3p.

When the results  of differential  expression analysis,  correlation analysis,  and analysis  of

potential microbial targets were combined, some hypotheses can be put forward. Hsa-miR-101-3p,

which  was  decreased  in  colorectal  adenoma  patients,  potentially  targets  members  of

Lachnospiraceae (Blautia  A,  Coprococcus,  Ruminococcus  B,  Lachnospira),  Ruminococcaceae,

and Acutalibacteraceae families, in addition one Archaea target has been shown. In turn, hsa-miR-

132-3p,  which  was  increased  in  colorectal  adenoma  patients,  has  potential  targets  in

Bacteroidaceae members  Bacteroides and Phocaeicola as well as Marvinbryantia affiliated with

Lachnospiraceae. Correlation analysis in the colorectal adenoma patient subset is in agreement

with the opposite roles for these miRNAs, as each of them corresponds to a different miRNA set.

Furthermore,  hsa-miR-132-3p  shows  a  negative  correlation  with  Prevotella (Bacteroidaceae

member) and hsa-miR-101-3p a positive correlation with Lachnospiraceae and Ruminococcaceae

representatives.

Another  finding  originating  from  the  target  analysis  relates  to  the  widely  described

differentially  abundant  genus  Fusobacterium,  enriched  in  colorectal  adenomas  and

adenocarcinomas  (Kostic  et al., 2013; Xue et al., 2021). We found that this genus is potentially

targeted by miRNAs, including hsa-miR-4291, hsa-miR-1260a, hsa-miR-4299, hsa-miR-190a-5p,

and hsa-miR-29a-3p. MiR-29 family members have been described as potential  biomarkers of

colorectal cancer  (Nguyen  et al., 2022), suggesting a possible interaction between miR-29 and

Fusobacterium in the development of colorectal cancer.
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4.7 Bacterial targets for miRNAs – similarities and differences between species and

backgrounds

The microbial taxa identified as potential targets of host miRNAs in both mice and humans

correspond to the described microbiome composition in both species. As illustrated before (Nagpal

et  al.,  2018),  mouse  fecal  microbiome  is  dominated  by  the  genus  of  S24-7 (now  known  as

Muribaculaceae), followed by Clostridiales members and Oscillospira. In humans, Bacteroides is

the top genus, and Ruminococcaceae, Clostridiales, and Prevotella are the taxa that follow. All of

these taxa were represented among the ones with the most bacterial targets for host miRNAs in

each of the respective host species. Possible explanation of this is that the count of microbial reads

directly correlates to the relative abundance of the species in the microbiome.

According to miRBase, most of the top miRNAs with potential microbial targets are species-

specific for both mice and humans.  This could be explained by the miRNA nomenclature and

naming system in which a novel miRNA is given an identification number consequently. This

means that, for example, miR-4290 to miR-4299 found only in humans or miR-5106, miR-5119,

and miR-5126 found only in mice are not described in other species yet.  As most of existing

studies have focused on searching the miRNA targets in host itself, miRNAs widely characterized

in different species tend to have lower numbers in their names. 

Another possible explanation for the differences between species was the miRNA source for

correlation  and  target  analysis;  in  mice  fecal  miRNAs  were  analyzed  together  with  fecal

microbiome, while in humans fecal microbiome data were combined with intestinal miRNAs. The

fact that we identified the same miRNAs which have bacterial targets in mouse host as the ones in

another  study using mouse model  inoculated with microbiome from colorectal  cancer  patients

(Tomkovich et al., 2020) suggests that host miRNAs which have bacterial targets are rather host

species-specific than disease-specific. Furthermore, miRNAs seem to specialize to some extent

regarding their potential targets – part of the identified miRNAs target host genes, while another

part mainly targets microbial genes; however, it should be noted that these interactions are not

exclusive.

Our  results,  together  with  previous  studies  in  different  conditions,  including  multiple

sclerosis, inflammatory bowel diseases, and colorectal cancer  (S. Liu  et al., 2019; Tarallo  et al.,

2019; Viennois et al., 2019) demonstrate that host miRNAs found in fecal and intestinal samples

potentially mediate the changes in the gut microbiome composition also in the context of T2D.

Prevotella,  Oscillospiraceae members  (represented  by  Faecalibacterium in  humans),  and
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Bacteroides were among the bacterial taxa with the most targets for miRNAs in both host species.

This  supports  the  previously  reported  ability  of  several  different  miRNAs  to  target  the  same

mRNA target (Taganov et al., 2006). Furthermore, in agreement with the existing literature (Choi

et al., 2017), we identified that several bacterial nucleic acid sequences are potentially targeted by

the same miRNAs, thus showing their potential to serve as a tool for microbiome composition

interventions.

4.8 Limitations of the study

Though the  study was  designed considering  almost  all  the  possible  feasibly-controllable

aspects, several limitations were still present. The sample size for the study was determined by the

resource equation method, which is appropriate for such complex designs as our animal study.

Despite theoretical knowledge that the microbiome should be shared between animals housed in

the same cage due to the characteristic coprophagy of mice, we did not observe this phenomenon

to  the  full  extent.  Animals  were  bred  in  specific  pathogen-free  conditions,  and  our  facility

corresponds  to  this  microbiological  status.  Despite  the  assumptions  that  the  microbiome

composition between litter mates coming from the same institution should be relatively similar, we

observed a substantial variation in microbiome compositions between different mice. To overcome

this, the sample size in future studies should be increased. In addition, we were not able to measure

the intake of food and water and thus metformin dosage for each mouse individually. Because of

this, the precise information on metformin dosage was not available, and it could differ between

mice.

Some of the animals were single-housed for a substantial duration of the study mainly due to

the euthanasia of their cage mates because of substantial fighting wounds. This possibly led to a

decreased exchange of gut microbiome between mice and potentially influenced the microbiome

composition  dynamics  in  these  cages,  which  is  another  possible  source  of  the  microbiome

variation between animals. In the future, samples representing all of the animals included in the

study could be processed and sequenced to obtain knowledge and microbiome variation between

cages and its dependence on the cage’s social structure and the number of mice in a cage.

Another limitation is related to data processing and analysis methods. Existing databases and

tools often do not provide complete information on microbiome abundance or classification; hence

we were  not  yet  able  to  explain  a  substantial  part  of  the  data.  Though  this  deficiency  could

potentially be eliminated by re-analyzing the data with state-of-the-art tools and techniques as they
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emerge. MiRNA sequencing data showed low mapping to the miRBase and the respective host

genome. Nevertheless, for miRNA analysis three different library preparation kits were used and

libraries  were  sequenced  on two different  platforms.  When  the  obtained  data  were  compared

between different methods, the results were comparable, showing the robustness of the obtained

results.

The low sequencing depth of miRNAs potentially did not allow enough power to detect

metformin-related changes in miRNA expression, as these changes could be pronounced in the

miRNAs with a relatively low expression.  Therefore, although we did not observe statistically

significant changes in miRNA expression, these could in fact exist. Re-sequencing of the samples

could be necessary to eliminate this doubt.

Limitations  of  the  human  study  include  the  relatively  small  sample  size  and  small

sequencing  depth  of  miRNA sequencing,  thus  not  allowing  to  characterize  the  full  scope  of

miRNAs present. Although this was not the aim of the human study, it would benefit from the

inclusion of the analysis between patients with colorectal adenomas and colorectal carcinomas as

this  would  allow  to  fully  assess  the  role  of  miRNAs  in  the  adenoma-carcinoma  sequence,

furthermore, paired samples (normal tissue, adenoma, carcinoma) from the same patients would be

optimal for such an analysis.

4.9 Future perspectives

The interaction between host miRNAs and the gut microbiome should also be investigated in

a group of type 2 diabetic patients to strengthen the translatability of miRNA analysis results in

mice. However, obtaining intestinal biopsy samples from such patients is challenging; therefore,

fecal samples should be considered a potential alternative. 

An analysis of the exact genes targeted by miRNAs in the microbial targets would provide a

valuable continuation of the study. After combining the data obtained in mice with the data from

humans,  candidate  miRNAs  for  further  validation  of  their  effects  in  vivo should  be  selected.

Similar  to  the  existing  studies  investigating  the  potential  of  host  miRNAs  to  alter  the  gut

microbiome, synthetic miRNA mimics could be utilized for oral administration in mice to assess

the  changes  induced  in  the  microbiome  composition  and  the  functional  implications  of  such

treatment as well as to functionally validate specific miRNA-microbial interactions.
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We have identified three differentially expressed miRNAs in intestinal biopsies of patients

with colorectal adenomas, though the analysis should be repeated in a larger cohort. To investigate

and advance the applicability of these results as potential biomarkers to be used for the prediction

of the risk of colorectal cancer development, studies in other, less invasive sample types should be

performed, for example, blood or feces. We have collected such samples from all recruited study

participants, in addition to luminal content samples, allowing us to proceed with further analysis.

Future studies could assess the relationship between host miRNAs and the gut microbiome in the

context of various microbiome-related diseases using different types of biological material.
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5 CONCLUSIONS

1. Metformin  treatment  changes  the  relative  abundance  of  100  bacterial  species  in  fecal

samples of high-fat diet-fed mice.

2. Metformin-induced  changes  in  fecal  microbiome composition  are  more  pronounced  in

female mice than in males.

3. Most altered functional hierarchies in response to metformin treatment in high-fat diet-fed

groups represent amino acid metabolism-related functions.

4. Metformin  mainly  exerts  its  microbiome-modulating  effects  in  the  small  intestine;

however, significant changes are induced in all intestinal sites.

5. The strongest effect of metformin is observed in the distal small intestine on the relative

abundance of Lactococcus.

6. The relative abundance of Lactobacillus in the male intestinal microbiome composition is

significantly lower than in females.

7. Significant differences in microbiome composition between mucosal and luminal layers of

the intestinal tract exist.

8. Fecal and intestinal miRNA compositions are similar, and mice fecal miRNA content is

relatively stable over time. No metformin treatment-related changes in miRNA expression

have been detected.

9. Three  differentially  expressed miRNAs,  previously associated with  the development  of

different cancer types, have been identified between patients with and without colorectal

adenomas.

10. The abundances of multiple host miRNAs and bacterial taxa are correlated in fecal and

intestinal samples, and bacteria that are potential microbial targets of host miRNAs have

been identified.
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6 THESIS

1. Metformin changes fecal microbiome composition and substantial sex-related differences

in metformin’s effects on the gut microbiome exist.

2. The effect of metformin treatment on the gut microbiome is not uniform throughout the

gastrointestinal tract.

3. Host fecal and intestinal miRNAs have the potential to target specific bacterial taxa found

in the respective microbiome samples  in  both mice and humans,  suggesting a  targeted

microbiome modulation strategy to be studied in further functional studies.
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