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Overview

This thesis belongs to the field of Computational Learning Theory, a part of Machine

Learning (and Artificial Intelligence) research that specializes in using mathematical

models to reason about such phenomena as learning, inference, induction, adaptation,

prediction, self-discovery and others. The ultimate goal of Machine Learning is to

build “intelligent” computer systems that “learn” from experience. These are systems

that can re-program themselves, are capable of continuously acquiring knowledge,

can change their behavior in order to better comply with a changing environment,

can analyze data patterns, predict future events, or possess some other skills that

are widespread among living beings but not machines. Such learning systems are

urgently needed for a variety of practical applications. They would be invaluable

in mobile robots, diagnostic equipment, text translation, language interpretation

or handwriting recognition systems, and would be of immense help in automatic

software development, various computer aided design tools and many other much

more widespread tools, for example, text editors. When artificial learning systems

become a reality they are going to find uses that are hard to imagine today. In

order to build these complex devices we need to have clear mathematical models

that specify how each system interacts with the world, what kind of knowledge it

accumulates, what constitutes adequate change in the systems’ behavior and many

1
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other issues. It is very important to have at least a crude estimate as to how successful

a system can be before actually wasting time and resources on an idea that may have

a poor foundation.

Learning is a rather complicated process and up to this day no clear definition of

it exists. Consequently, it is very hard to model it formally and a great number of

assumptions and simplifications are to be expected. Computational Learning The-

ory research focuses on inventing and analyzing all kinds of models that demonstrate

how learning can be done. None of these models give details for building a thinking

machine, still a very distant goal. Instead they typically present some very concrete

learning problem and either give an algorithm that solves it or prove that it is not

solvable. There is no clear winner among the various models in existence, since many

are far too different to compare in any way and there is no measure of goodness for

these models. Each model seems to have its advantages and disadvantages and, not

surprisingly, new models get introduced all the time. Usually it happens with the

hope that they will better address a weakness of some other model or will overcome

a difficulty observed when applying a theoretically plausible algorithm to a real-life

problem. Other reasons for inventing a new model may range from simply exhibit-

ing other methods of algorithmic learning to imitating various interesting features

observed in human (or animal) learning and development. Every little peculiarity

has the potential to influence how intelligent machines are eventually built.

This dissertation focuses on what has been the main emphasis of the field, in-

ductive learning from examples. Such learning problems are in general modeled as

consisting of a learning algorithm, an environment that it interacts with, and of

success criteria for the algorithm. Typically, a learning algorithm is required to de-

termine some general rule, given some kind of examples of this rule. This framework
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has a wealth of formal models that differ from each other in many ways. Quite ob-

viously there are many possible types of rules to infer: geometric objects, recursive

functions, boolean formulas, to mention just a few. The environment can be modeled

in many different ways, for example, it could be an adversarial process, a random

process, or a process specifically designed to make the task of the learning algorithm

simpler. There are many more variations in the success criteria or the environment

for the learner that make each model unique, for example:

• There may or may not be a limit on the time the algorithm may spend for

inferring the rule;

• The algorithm may be considered as reached its objective if it keeps outputting

rules that are logically equivalent to the original, or it may be required to start

outputting the same rule, or it may be required to stop in order to signify that

the final answer has been produced;

• The output of the algorithm may or may not have to be in the same represen-

tation as the original rule was envisioned in;

• The algorithm may be required to output a rule logically equivalent to the

original one, or it could be allowed to output any rule that is similar “enough”

to it;

• The algorithm may or may not influence what examples of the rule it is given;

• The examples the algorithm sees may or may not be absolutely correct;

• The algorithm may or may not have prior knowledge of how the examples are

distributed or what broader class of rules the unknown rule belongs to;
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• The algorithm may or may not have access to other sources of input, such as,

for example, a procedure for testing intermediate hypothesis.

Models where the environment of the learning algorithm is modeled by a random

or adversarial process are customarily called learning models. They tend to focus

mostly on studying the learning algorithm itself. Such models are good for studying

the average or worst-case behavior of the algorithm. There are other models where

the environment is specifically designed to help the algorithm. These are usually

called teaching models, especially if there is another nontrivial algorithm generating

examples for the learning algorithm or interacting with it in some way. In this case

both the learning and the teaching algorithms are studied as well as the interaction

between them. The advantage of teaching models is that they allow harder target

rules to be learned or let the learning algorithm be more efficient in its use of re-

sources, such as time or memory space. Some models cannot be easily classified one

way or another, and both names seem to apply to them. This thesis considers several

well known learning and teaching models. These models are extended to form new

ones that either better represent certain trends observable in human learning or that

overcome certain problems associated with applying in practice learning algorithms

developed for other models.

Among the most common problem with implementations of learning algorithms is

the possibility of errors that are not accounted for in the model. Algorithms that are

designed for error-free models often cannot tolerate a single error. That is, instead

of “almost learning” the target rule or taking longer to do that, they may in fact

output a wrong rule, decide that there is no rule explaining all the examples, run

forever, crash, or exhibit some other kind of unwanted behavior. A related problem

with many algorithms is their high degree of specialization. That is, they are capable
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of learning rules only from certain, often very narrow, classes of possible target rules.

If the rule to be learned is not exactly in the class that the algorithm is tuned to

work with, it need not do anything reasonable. Both these problems are considered

in this work and in some sense compared.

A different kind of weakness that often troubles teaching models is the “coding

issue”. It arises when the environment or the teaching algorithm is too helpful,

making learning trivial. For example, suppose that we have an algorithm that learns

some rule from the examples of that rule, but only because there is an example that

encodes the rule within itself. Or perhaps several examples together provide encoding

of a formal representation of the rule. Can we call this a learning algorithm and

present the model as a reasonable model exhibiting learning? The general feeling

among the researchers is that the situation above should be called “coding” (or

cheating) but not learning. Coding is the way we program our computers to do

something today. It is a good approach for many tasks that computer systems do,

but seems infeasible for certain things that we would like them to do, for example,

replacing human experts in medical diagnosis. There are many other problems that

we cannot imagine to have solutions that can be simply programmed. This in fact

is one of the reasons that researchers have started to analyze the phenomenon of

learning.

If we try to draw comparisons to human learning, it is also quite obvious that

coding has no place there. Why are textbooks so full of examples and exercises as

opposed to carefully thought out ready recipes for every skill that we may want to ac-

quire? Of course, many of our skills are such that no one can imagine them described

in any way on paper, but there are other skills that do have concise algorithms be-

hind them. Take, for example, elementary arithmetic. We could come up with a set
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of algorithms that specify how to perform addition, subtraction, multiplication, and

division on decimal numbers. But we would not be comfortable learning these oper-

ations by memorizing the algorithms. We don’t learn well by being “programmed”

to do something and much rather prefer to “program” ourselves.

Now that we’ve concluded that coding is not learning, how does this affect a

teaching model in which coding is possible? Usually, it means that extra steps need

to be taken to eliminate coding as a way to find the target rule, or else the model will

not be considered interesting. Many originally simple models have been augmented

with various features that eliminate the possibility of coding. This may lessen the

overall appeal of a model, especially if the anti-coding measures seem artificial and

don’t resemble any difficulties encountered in real-life learning situations. This work

gives some reasons why coding is not a natural way of human learning and introduces

a new model where there are no precautions against coding—it simply does not

help. The new model reflects well another interesting characteristic of humans—the

uncertainty about one’s own capabilities. It is very hard to precisely define what

constitutes learning and there is no artificial learning to experiment with, therefore

it is very important and natural to build models that attempt to express what we

can observe.

This work is organized into three nearly independent parts. Each part contains

enough motivation, introduction and discussion of related previous work to be read

as a separate unit. The first part takes a recursion-theoretic approach to learning

and is concerned with issues such as coding and lack of knowledge about intrinsic

capabilities. The models introduced in this part also exhibit what impact a teacher

can have on learning. Parts 2 and 3 of this thesis belong to a different area of

Computational Learning Theory that studies “concept” learning and puts a lot of
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emphasis on efficiency. Every learning algorithm is required to learn the target rule in

time that is polynomial in various parameters that depend on the concrete problem.

Besides time, it is similarly constrained in the amount of memory it may use and

the number of examples that it may consume. The focus in the second part of

this dissertation is mostly on the effect of errors in the examples to the target rule,

but the issue of designing algorithms that learn “broader than customary” classes of

target rules is also considered. A relation between overcoming errors in examples and

learning broader classes of rules is given. The third part is somewhat related to the

second, as it explores a particular learning algorithm from Part 2 in a slightly relaxed

model. The errors in examples as considered in the second part are “malicious”, i.e.,

spread across the examples in the worst possible way. In Part 3 they are “random”

and thus possibly easier to cope with. The goal of this part, however, is to determine

whether the concrete algorithm developed for malicious errors can be adapted to work

well with random errors and what would be its advantages over a trivial algorithm

that works only for the related error-free model.

Many of the results proved in this dissertation are based on algorithms given in

the accompanying figures. The algorithms are written in a syntax that resembles

the “C” programming language. It has convenient flow control statements and it

allows one to code very compactly. It may, however, look very obscure to somebody

who is not familiar with its syntax. Therefore, a reference to a “classic” C book and

explanations of most of the constructs used in this thesis are given in the Appendix,

page 232.
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Learning from Teachers that are

Different
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Chapter 1

Introduction

One of the goals of Computational Learning Theory is to find new learning and

teaching models that better reflect different issues of human learning or help in

building “intelligent” computer systems. Despite the large number and variety of

existing models, the quest for better ones is far from over.

Learning Theory originally started with learning models (no teaching) but it

was soon discovered that in order to make broader classes of concepts learnable, we

need to help the learner somehow [38]. From then on both learning and teaching

models have been considered. Teaching models are those where the environment

is specifically designed to help the learning algorithm. Often it involves another

algorithm, called the teaching algorithm (or simply, teacher) that interacts with the

learning algorithm (or learner).

As soon as too much freedom is given to the teacher, a well known problem

arises—the possibility of “outright coding”. By this we mean a protocol where the

teacher transmits (using an encoding via examples or other information) a represen-

9
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tation of the target concept to the learner. This, most authors agree, does not seem

to involve learning in an interesting sense, and is usually prevented by deliberately

chosen features of the model. Different models address the issue of outright coding in

different ways. Some require that the teacher be capable of teaching every consistent

learner (one that only outputs hypotheses consistent with the examples seen) [22, 35].

Others require the learner to learn from every teacher supplying correct examples [3].

Still others introduce adversaries that add other examples or misorder the existing

ones, before passing them from the teacher to the learner [21, 25]. Others require that

the learner is never fooled into converging to a wrong concept [26]. There are other

ways in which different authors deal with coding, but everybody tries to prevent it.

In short, it is a common belief that passing a description of the target concept

from the teacher to the learner does not reflect learning. It may be a good way

to program a computer, but there is more going on in the process that we call

“learning”. Unfortunately, many models need to include artificial features to cope

with the possibility of coding. Therefore, we introduce yet another model of teaching.

In this model we do not take any precautions to avoid coding. Both the teacher and

the learner are welcome to “cheat” all they want. The good thing is that it does not

help to do so. More precisely speaking, the negative results that we have for this

model discourage the idea that there could be coding going on. At the same time,

the positive ones are achieved in a straightforward way with no intention of outright

coding.

One of the main goals of our model is to try to reflect in a more direct way the

reasons why outright coding is not a common mode of human learning. Our analysis

of this issue involves two related ideas:
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1. The “hardware and software environment” differs substantially from one person

to the next, and

2. In many human endeavors, simulation does not give a feasible solution.

In support of the first point, the interconnections of neurons in human neural

circuitry appears to involve a degree of randomness, as well as influence by external

stimuli, that suggests that a neuron-by-neuron isomorphism of two human nervous

systems is extremely unlikely. The fantasy of somehow transferring the patterns of

neural activation from one person to another thus allowing the latter to experience

exactly what the former is experiencing is, to put it mildly, improbable. Taking the

neural level as “hardware” and the pattern of activations as “software,” our hardware

and software are just different—one person cannot meaningfully run somebody else’s

program.

Of course, there are other, more abstract, levels of human cognitive function-

ing where we could make analogies to hardware and program, but it does not seem

plausible that there is any level for which the analogy of transferring a program

between two identical computers is very accurate. Interestingly, these observations

also apply to the problem of transferring a program between two real computers,

where differences of processors, buses, networks, peripherals, communications proto-

cols, programming languages, operating systems, and other installed software rather

complicate the process of porting a program.

This brings us to the second point, whether simulation can help. Simulation has

been a powerful tool in theoretical computer science, in a huge variety of settings.

Consequently, a theoretical computer scientist’s almost immediate reaction to the

situation of two different computational systems is to ask if they can efficiently
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simulate each other. If so, then for most theoretical purposes they are equivalent.

So, even if we assume that the teacher and the learner are modeled by non-identical

computers, the learner can use the teacher’s program by simulating it, and a version

of outright coding is still possible.

Suppose we map the idea of simulation to the situation of someone trying to

teach another person to juggle; what problems arise? The behavior, juggling, is an

extended process that interacts physically with the world of muscles, juggling bags,

air, light, and so on, in a time-critical fashion. What must the learner do to simulate

the teacher’s juggling program? The perceptual signals of vision, touch, and pressure

from the learner must be translated into equivalent ones for the teacher’s program.

Motor signals generated by the teacher’s program for the teacher’s muscles must be

translated to equivalent motor signals for the learner’s muscles. And all this must be

done before the juggling bags hit the floor. It seems extremely unlikely that people

have the capacity to simulate one another in anything like this sense.

In addition to the obvious constraints on memory and speed, one major obstacle

to simulation in this sense for humans is the fact that many of a person’s capabilities

are only partly and poorly known to that person. This is most evident in embodied

capabilities, for example, the sequence of motor signals and responses that allow a

person’s hands to type a word, but it probably holds equally of more strictly cognitive

capabilities, like the ability to picture a friend’s face. Many of our capabilities are,

in effect, “black boxes” in the sense that we learn to produce appropriate control

signals to achieve certain effects, but the actual details of how the signals lead to the

effects are opaque to us.

We have attempted to reflect some of these considerations in the model we

present. We are aware that it is only a first approach to the issues, with many
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drawbacks of its own, but we hope that it will inspire others to think more about

models of teaching.

Since we are considering issues that lie at the foundation of theoretical computer

science, we start from the theory of computable functions, complexity measures

and identification in the limit. Instead of the usual Turing machine model of the

learner, we assume that the learner is a Turing machine with “black box” access

to a programming system with a complexity measure. Thus, the learner is an or-

acle Turing machine, where the oracle is answering questions about an unknown

programming system. (Programming systems and complexity measures axiomat-

ically generalize the notion of enumerations of programs and their corresponding

step-counting functions.) Approximately speaking, the Turing machine component

represents the purely cognitive operations of the learner, and the programming sys-

tem in the black box represents the repertoire of possible actions of the learner, or,

more succinctly, “thinking” and “doing”. In this setting, the concept to be learned

is a partial recursive function, and the goal of the learner is to find a correct program

in the programming system of the black box for the target function. Again speaking

approximately, the learner must learn to “do” the exemplified thing, and not just

“imagine” doing it. That is, having a correct program for the target function in

the standard Turing machine system is not enough; the learner must find a correct

program in the black box system.

If the black box system is known to be the same as the standard Turing machine

system, or if the learner knows a program in the black box system to simulate

programs in the standard Turing machine system, then this distinction collapses.

Therefore we assume that the programming system in the black box is more or less

arbitrary and unknown to the learner, and require that a learning algorithm (for the
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Turing machine, or “cognitive,” component of the learner) work correctly for a whole

class of possible programming systems in the black box. We can characterize this

aspect of the model as treating the action-space of the learner as part of the initially

unknown environment. A new-born animal may be in somewhat analogous situation,

having to discover how to focus its eyes or move its limbs partly by experiment.

Modeling lack of self-knowledge in this way has some fairly strong consequences.

For example, suppose that the black box may contain an arbitrary acceptable pro-

gramming system (i.e., some “fairly natural” programming system; see the formal

definitions in Section 2.1), and suppose that the task of the learner is to find in the

limit a program in the black box system for the constant all-zero function, intuitively

a very simple function. Theorems 2 and 4 below show this to be impossible. The

explanation for this is that there are acceptable programming systems in which the

constant all-zero function is not at all simple to compute.

We also model the teacher, who attempts to help the learner learn an arbitrary

partial recursive function in the limit. We could model the teacher by a standard

Turing machine, with no lack of self-knowledge, but we choose to model the teacher

similarly by a pair consisting of a Turing machine and a black box containing a

programming system. This assumption is made partly for uniformity, so that teacher

and learner are agents of the same kind. (For example, extensions of the theory

might naturally permit the learner to go on to become a teacher.) This assumption

also strengthens our positive results, since if a teacher with a black box is able to

teach effectively, then so also can a simple Turing machine teacher. By the same

argument, the assumption would seem to weaken our negative results, since perhaps

any difficulty comes from the teacher’s lack of self-knowledge. However, as we note,

all of our negative results actually hold also in the case in which the teacher is a
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simple Turing machine.

Non-standard programming systems have seldom been brought up since the fa-

mous Rogers’ Isomorphism Theorem [30]. This is no surprise, since all the non-

awkward ones (i.e., all acceptable programming systems) are closely related to each

other (both literally and nonliterally speaking, see Machtey and Young [30] and

Chapter 2). Despite this, the main idea of our model is using different programming

systems for the teacher and the learner. The objectives of this dissertation are to

discover what relations between the teacher’s and learner’s programming systems

allow certain classes of functions to be learned. In addition to that, we would like

to know when these classes can be learned in a more robust way. For example, we

prefer learners that can fail gracefully in cases such as:

1. The target function is not from the designated class;

2. The learner’s black box is not from the designated class;

3. The teacher maliciously tries to mislead the learner.

We would also like to discover classes of functions that cannot be learned under

certain circumstances, or that cannot be learned due to the possible problems men-

tioned above. Other questions that we could ask are about the usefulness of the

teacher and the reasonableness of the model itself. For example, does knowledge of

the teacher’s programming system make learning any easier for the learner? Some

answers to these and other questions are given in this part of the thesis.



Chapter 2

Definitions and Notation

In this chapter we give definitions for the concepts used extensively throughout Part 1

of the thesis. Some more specific definitions appear in the chapters where they are

relevant. We assume that the reader is familiar with basic recursion theory and

do not give definitions of, say, Turing machines. A good book to consult is “An

Introduction to the General Theory of Algorithms” by Machtey and Young [30], in

fact, many of the definitions below are taken from it. A more recent text covering

the same concepts is “A Recursive Introduction to the Theory of Computation” by

Carl Smith [37].

2.1 Programming Systems and Complexity Mea-

sures

All our functions work from subsets of the set of natural numbers to the set of natural

numbers (denoted by N), unless otherwise specified. By natural numbers we mean

16
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all non-negative integers, i.e., 0 ∈ N. We consider only functions of one argument

because all other functions can be “coded” into them by composing with appropriate

projection functions. In particular, for situations in which we need two-argument

functions, we use the following kind of encoding.

We fix some total recursive bijection between pairs of natural numbers and natural

numbers. By 〈·, ·〉 we denote the function that maps pairs to numbers and by π1(·)

and π2(·) we denote the two functions that map natural numbers to the first and

second components of their corresponding pairs, respectively. That is, π1(〈x, y〉) = x

and π2(〈x, y〉) = y. Now, when we wish to define a function f of two arguments, we

simply define f(〈x, y〉) to have the value we would like to assign to f(x, y). Having

said this, we will sometimes omit the angle braces around arguments when it will

create no confusion. When we need to encode a three-argument function as a one-

argument function, we define f(〈〈x, y〉, z〉) to have the value f(x, y, z).

We denote the class of all partial recursive functions by P . We start our definitions

by recalling some facts about programming systems and complexity measures.

Definition 1 A programming system is a listing φ0, φ1, . . . which includes all partial

recursive functions (of one argument, from N to N).

Definition 2 Function Uφ is called the universal function for the programming sys-

tem φ0, φ1, . . . , if Uφ(i, x) = φi(x) for all i and x. Note that the universal function

itself need not be partial recursive and thus may not belong to the listing φ0, φ1, . . . .

Definition 3 A programming system φ0, φ1, . . . is universal if the universal function

Uφ for it is partial recursive. This means that the listing φ0, φ1, . . . includes Uφ. In
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this case we denote the universal function by φuniv rather than Uφ, and treat univ

as an index of the universal function in the listing.

Definition 4 Function Cφ is called a composition function for the programming

system φ0, φ1, . . . , if it is total and if φCφ(i,j) ≡ φi ◦φj for all i and j. That is, for all

i, j, and x,

φCφ(i,j)(x) =


φi(φj(x)), if φj(x) and φi(φj(x)) are defined;

undefined, otherwise.

Note that a composition function need not be recursive.

Definition 5 A programming system φ0, φ1, . . . is acceptable if it is universal and

if there exists a (total) recursive composition function for it.

Programming systems are often referred to elsewhere in the literature as indexings

or Gödel numberings of the partial recursive functions. Some of the most frequently

used indexings are obtained by fixing a particular encoding of Turing machine pro-

grams and ordering all valid programs based on some fixed total order on their

encodings. In this thesis we often refer to the “Turing machine with index i”. By

this we mean the following.

We fix an encoding of Turing machine programs by strings over {0, 1}∗. (There are

a number of ways to do this, we just assume that we have decided on one particular

encoding E, which is the one we always use and refer to.) Then we fix the total order

on the encodings of programs to be the lexicographical one. The Turing machine

with index i is the one with program p, where p encodes to string e (i.e., E(p) = e),
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and e is the string with number i in the lexicographical order of all strings that are

valid E-encodings of Turing machine programs.

Definition 6 The Turing Machine Programming System is the listing TM0, TM1,

TM2 . . . , where each TMi is the function computed by the Turing machine with

index i. It is a widely used acceptable programming system.

Definition 7 Let φ0, φ1, . . . be any acceptable programming system. A listing

Φ0, Φ1, . . . of partial recursive functions is a computational complexity measure (for

the given acceptable programming system) if it satisfies the following conditions:

1. For all i and x, Φi(x) is defined if and only if φi(x) is defined.

2. Inequality Φi(x) 6 s is a recursive predicate of i, x, and s.

Definition 8 The Turing Machine Complexity Measure is the listing TM0, TM1, . . . ,

where each TMi(x) is defined to be the number of steps in which the Turing machine

with index i stops on input x after writing output. TMi(x) is undefined if the machine

never stops on x or does not produce output before stopping.

2.2 Black Boxes

Now we introduce some concepts and notation more specific to this thesis.

Definition 9 A Black Box is any total recursive three-argument function from N×

N×N to N∪{?}. (We could recode N∪{?} as natural numbers in a straightforward

way, but we prefer human intelligibility.)
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We often consider restricted classes of Black Boxes. For example, the primitive

recursive Black Boxes are the the ones defined by primitive recursive three-argument

functions. When such classes of Black Boxes are recursively enumerable (e.g., the

class of primitive recursive three-argument functions), we sometimes use notation

BB bb to refer to the Black Box with index bb in the recursive enumeration of class

BB. This superscript notation should not be confused with the subscript notation

introduced in the next definition.

Definition 10 If BB is a Black Box, and i ∈ N then by BBi we denote the function

defined as follows:

BBi(x)
def
=


BB(i, x, s0), if BB(i, x, s0) 6= ? and BB(i, x, s) = ? for all s < s0;

undefined, if BB(i, x, s) = ? for all s.

We say that BB contains the functions BBi, i.e., we think of BB as of a listing of

functions BB0, BB1, . . . .

Definition 11 A Black Box BB is full if it contains every partial recursive function.

That is, BB is full if the listing BB0, BB1, . . . is a programming system.

Note that since a Black Box itself is a total recursive function, it cannot contain

any uncomputable functions.

Definition 12 A Black Box BB is universal if the listing BB0, BB1, . . . is a universal

programming system. That is, BB is universal if it contains a universal programming

system, i.e., a programming system such that its universal function is itself partial

recursive.
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Univ(n)
{

i = π1(n);
x = π2(n);

For (s = 0; ; s++) /* Infinite Loop */

{
v = DefineBB(i, x, s);

If (v 6= ?) /* BBi(x) defined */

Return v;

}

}

Figure 2.1 Algorithm for the universal function

Lemma 1 Every full Black Box is universal.

Proof: The universal function for a Black Box BB is a function U such that for all i

and x, U(〈i, x〉) = BBi(x). It can be computed by the algorithm given in Figure 2.1,

which just scans the values of BB(i, x, s) for s = 0, 1, . . . .

It is obvious that this algorithm can be implemented on a Turing machine that

has access to a program DefineBB that gives the values of BB. There must be

such a program, since every Black Box is a total recursive function. Therefore, this

algorithm defines a partial recursive function, and since BB is full this function is

contained in BB. Hence, BB is a universal Black Box.

From Definition 12 it follows that every universal Black Box is full, hence “full

Black Box” and “universal Black Box” are synonyms. We use the term “universal

Black Box” rather than “full” throughout the rest of Part 1 of the thesis. We hope

that this will remind the reader about the existence of the universal function in the

Black Box and will provide greater compatibility with the terminology of Machtey
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and Young [30].

Definition 13 A Black Box BB is acceptable if the listing BB0, BB1, . . . is an ac-

ceptable programming system. That is, BB is acceptable if it contains an acceptable

programming system, which is one that is universal and for which there is a total

recursive composition function.

Lemma 2 There is a universal Black Box UBB which is not acceptable.

The proof of Lemma 2 is given in the Appendix to Part 1, page 106. It is not

hard but long enough to interfere with the focus of this chapter, which is definitions.

It is not necessary to understand the proof before reading further, one should just

keep in mind that there exist universal Black Boxes that are not acceptable.

Definition 14 If BB is a Black Box, and i ∈ N then by BBi we denote the function

defined as follows:

BBi(x)
def
=


s0, if BB(i, x, s0) 6= ? and BB(i, x, s) = ? for all s < s0;

undefined, if BB(i, x, s) = ? for all s.

We think of each BBi as the complexity function corresponding to BBi and call

it the measure (of BBi). We say that measures BB0, BB1, . . . are contained in BB .

Note that since every Black Box BB is recursive by definition, the listing of

measures BB0, BB1, . . . satisfies both conditions of Definition 7 and is therefore a

valid computational complexity measure for the functions contained in BB (assuming

that BB is acceptable).
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There is one particular acceptable Black Box which is of special interest to us.

In addition to being acceptable, it is also primitive recursive, showing that there are

very natural primitive recursive and acceptable Black Boxes.

Definition 15 The Turing Machine Black Box is denoted by TMBB and defined

as follows:

TMBB(i, x, s)
def
=


y, if TMi(x) 6 s and TMi(x) = y;

?, otherwise.

Note that the listing TMBB0, TMBB1, TMBB2 . . . is just the Turing Machine

Programming System (also denoted by TM0, TM1, TM2 . . . ), and that the listing

TMBB0, TMBB1, TMBB2 . . . is the Turing Machine Complexity Measure (also de-

noted by TM0, TM1, TM2 . . . ). Another interesting property of the Turing Machine

Black Box is that TMBB(i, x, s) = ? implies that TMBBi(x) > s, which is not

necessarily true for arbitrary Black Boxes.

2.3 b-relatedness

In this section we explore some relationships between Black Boxes.

Definition 16 Let f be any partial function from N to N. The domain of f is the

set of all points in N where f is defined. We denote this set by Dom(f).

Definition 17 Function f extends function g if f(x) = g(x) for all x ∈ Dom(g) (i.e.,

f agrees with g on all points x where g is defined). We denote this fact by f = g

and sometimes say that f is an extension of g.
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Note that extending is a transitive relation, i.e., if f = g and g = h then f = h.

Also note that if f = g and g = f then f ≡ g. Let us now introduce two symbols

that are sometimes used to save space in formulas.

Definition 18 The phrase for all but finitely many is denoted by
∞
∀. This is very

similar to saying for all (∀), except that a finite number of exceptions is allowed.

Similarly, the phrase exist infinitely many is denoted by
∞
∃. This is like exists (∃),

except that not just one but infinitely many objects exist that satisfy the required

condition.

We now proceed to the most important definition of this section. We define a

relation of being “not more than b slower” between Black Boxes.

Definition 19 A Black Box BB ′ is b-related to the Black Box BB if there exists

a total recursive two-argument function b(x, s) such that for all i there exists a j

satisfying the following properties:

1. BB ′j = BBi;

2. BB ′j(x) 6 b(x,BBi(x)), for all but finitely many x ∈ Dom(BBi).

It is easy to see that b-relatedness is essentially analogous to the bounding re-

lationship between two acceptable programming systems with complexity measures,

as given by the Rogers’ Isomorphism Theorem and the theorem about recursive re-

latedness of complexity measures. The two relationships differ in that we do not

require the Black Boxes to be universal or acceptable, we do not assume a recursive

translation function t between them, and we allow the function in one Black Box
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to extend the corresponding function in the other. We now develop some further

properties of b-relatedness and find some cases when it provably exists. Most of the

time we will need plain b-relatedness, but on some occasions we will use the extra

features proved below.

Rogers’ Isomorphism Theorem together with the theorem about recursive relat-

edness of complexity measures [30] imply that every two acceptable Black Boxes are

b-related for some total recursive function b. Indeed, if the translation function be-

tween the two systems is known (intuitively, a function that will find a j for every i

such that they satisfy property 1 above), it is easy to construct the necessary total

recursive function b. Furthermore, b can be made such that not only BB ′ is b-related

to BB but also BB is b-related to BB ′ and, in addition, b is monotone in its second

argument.

In our model the recursive translation between the two Black Boxes is usually

not known. Therefore, the total recursive function b(·, ·) cannot be constructed in a

straightforward way, but we can still prove that it exists.

If the two Black Boxes are not acceptable, then the situation becomes even less

promising, since then it is not known whether the translation function exists. The

following lemma proves that it does exist between a universal and an acceptable

Black Box.

Lemma 3 Let BB ′ be an acceptable Black Box. Let BB be a universal Black Box.

Then there exists a total recursive function t such that BBi ≡ BB ′t(i), for all i ∈ N.

Proof: Theorem 3.1.5 from Machtey and Young [30] proves that a translation func-

tion exists from any universal programming system into any programming system
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with a total recursive s-1-1 function. By Theorem 3.1.2 from Machtey and Young [30]

(the s-m-n Theorem), every acceptable programming system has a total recursive

s-m-n function, so our lemma follows immediately from these two theorems.

Knowing that some translation function t exists from a universal into an accept-

able Black Box, we can now prove that they are b-related for some total recursive

two-argument function b. The construction is a little simpler than the one used in

the theorem about recursive relatedness of complexity measures because we require

less of b.

Lemma 4 Let BB ′ be an acceptable Black Box. Let BB be a universal Black Box.

Then there exists a total recursive two-argument function b(x, s) such that BB ′ is

b-related to BB.

Proof: By Lemma 3 there is a total recursive function t such that BBi ≡ BB ′t(i),

for all i ∈ N. We use a typical “maximizing” construction to prove the lemma. First

we define an auxiliary three-argument function b′(i, x, s) as follows:

b′(i, x, s)
def
=


BB ′t(i)(x), if BBi(x) = s;

0, otherwise.

Now we define b(x, s)
def
= max{ b′(i, x, s) : i 6 x }.

It is easy to see that when we fix any i, there exists j = t(i), such that:

1. BBi ≡ BB ′j and thus BB ′j = BBi;

2. For all x > i, if x ∈ Dom(BBi) then BBi(x) = s, for some s ∈ N and therefore,

BB ′j(x) = b′(i, x, s) 6 b(x, s) = b(x,BBi(x));
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Hence, Black Box BB ′ is b-related to Black Box BB.

We now continue by proving that b-relatedness can be made monotone in the

second argument.

Lemma 5 Let BB and BB ′ be two Black Boxes. If BB ′ is b-related to BB for some

total recursive two-argument function b(x, s), then BB ′ is also b′-related to BB by a

total recursive two-argument function b′(x, s) which is monotonically nondecreasing

in its second argument.

Proof: Define b′(x, s) to be max{ b(x, z) : z 6 s }. Since b is total recursive, so is

b′, and from the definition it follows that (s′ > s)⇒ (b′(x, s′) > b′(x, s)). Obviously,

b(x, s) 6 b′(x, s) for all x and s, so BB ′ is b′-related to BB.

Using this simple construction, we can now prove the transitivity of b-relatedness.

Lemma 6 Let BB, BB ′ and BB ′′ be three Black Boxes. If BB ′ is b1-related to

BB for some total recursive two-argument function b1(x, s) and BB ′′ is b2-related to

BB ′ for some total recursive two-argument function b2(x, s), then there exists a total

recursive two-argument function b(x, s), such that BB ′′ is b-related to BB.

Proof: By Lemma 5 we know that BB ′′ is b′2-related to BB ′ for some total recursive

two-argument function b′2(x, s) which is nondecreasing in its second argument. Thus,

we have that for all i there exists a j and a k such that:

1. BB ′′k = BB ′j = BBi;

2. BB ′′k(x) 6 b′2(x,BB ′j(x)), for all but finitely many x ∈ Dom(BB ′j);
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3. BB ′j(x) 6 b1(x,BBi(x)), for all but finitely many x ∈ Dom(BBi).

Since b′2(x, s) is nondecreasing in its second argument, BB ′′k(x) 6 b′2(x, b1(x,BBi(x)),

for all but finitely many x ∈ Dom(BB ′j). We can now define b(x, s)
def
= b′2(x, b1(x, s)),

which is obviously a total recursive two-argument function. Since BB ′j = BBi, we

have that Dom(BBi) ⊆ Dom(BB ′j), and therefore BB ′′k(x) 6 b(x,BBi(x)), for all but

finitely many x ∈ Dom(BBi). This concludes the proof of the lemma.

2.4 Learners and Teachers

Here we describe in detail our model of learning (and teaching). We have two agents,

the learner and the teacher , usually denoted by L and T , respectively. Each of the

agents is an oracle Turing machine, equipped with the usual Work Tape and a few

special tapes. Both the teacher and the learner share a common Input Tape. We

need another definition to describe the contents of this tape.

Definition 20 An arbitrary enumeration of a function f (also called simply an

enumeration) is an infinite listing of elements a0, a1, . . . , that satisfies the following

two conditions:

1. Each ai is either the symbol ‘*’ or an ordered pair (x, f(x)), for some point

x ∈ Dom(f);

2. Each point x from the domain of f appears as the first component of some pair

in the listing.

Note that from this definition it follows that if (x, y) and (x, z) are two pairs in

the listing, then y = z.
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The Input Tape (of the teacher and the learner) contains an arbitrary enumeration

of the target function, i.e., it contains distinct elements each of which is the symbol

‘*’ or an ordered pair. Both agents can only read this tape and they can do it

independently of each other. That is, they each have a tape-head on this tape, and

the tape is read-only.

The teacher and the learner also share a common Message Tape. This tape is

for their communication and they both can read and write it. It is assumed that

this communication happens using some known alphabet and encodings for whatever

messages they would like to exchange. More specifically, we assume that the learner

has exclusive access to the Message Tape until it enters a special send state, at

which time its computation is suspended. At this point, the teacher’s (initially

or previously) suspended computation is resumed and it has exclusive access to the

Message Tape until the teacher enters its send state. Then the teacher’s computation

is suspended again and the learner’s is resumed, and so it goes on forever.

Both the teacher and the learner have their private Work Tape and Box Tape,

where they perform computations and communicate with their oracles, respectively.

The teacher’s oracle holds the teacher’s Black Box, which we denote by TBB most

of the time. The learner’s oracle holds the learner’s Black Box, which we usually

denote by BB. The teacher and the learner can encode the question “Does program i

on input x stop in s or less steps, and if so, what is the output?” on their Box Tapes

and their oracles encode the appropriate answer, which is TBB(i, x, s) for the teacher

and BB(i, x, s) for the learner. We don’t describe the details of this mechanism, just

say that the agents “find out” the respective values of their Black Boxes. We also say

that the teacher T is equipped with a Black Box TBB and denote this by T (TBB).

Similarly, for the learner L with a Black Box BB we write L(BB) and say that L is
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equipped with a Black Box BB.

The teacher has one more tape, which is the Answer Tape. It is read only and

contains an index i such that TBBi extends the target function. The learner has no

access to this tape, but the teacher is allowed to pass this index to the learner with

the help of the Message Tape.

The learner also has one more tape, which is the Output Tape. From time to time

it writes a number on this tape and puts a special marker at the end of the number

to indicate that a new hypothesis has been output. For simplicity we assume that it

moves to the right after each index (with marker) written and does not destroy the

previous ones. The teacher cannot access this tape.

Definition 21 The learner converges to hypothesis h if after a finite number of

steps it outputs (writes) the number h to the Output Tape and never again outputs

a different number.

Note that the learner may converge to h in two ways: either by outputting h

after some finite number of steps and never outputting any hypothesis again, or by

beginning to systematically output h from some point on. That is, eventually h must

become the last number written or the only number that will ever subsequently be

written.

Definition 22 Given a learner L, a teacher T , a Black Box BB for the learner,

a Black Box TBB for the teacher, a partial recursive function f , and an arbitrary

enumeration of f on the Input Tape, and an arbitrary index i on the Answer Tape

such that TBBi extends f , we say that the learner L(BB) converges correctly if
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L(BB) converges to h and BBh extends the function f . We say that L(BB) converges

incorrectly if L(BB) converges to h and BBh does not extend the function f .

If there is no index h such that L(BB) converges to h, then it must be that L(BB)

either does not output any hypothesis, or that it outputs infinitely many hypotheses

on the Output Tape, and for each hypothesis output, there is a later time at which

a different hypothesis is output. In the latter situation, we say that L(BB) changes

its mind infinitely often.

Definition 23 The learner L, equipped with a Black Box BB, learns the target

function f from the teacher T equipped with a Black Box TBB, if TBB contains a

function extending f , and for every enumeration of f given on the Input Tape and

every index i such that TBBi extends f on the Answer Tape, L(BB) communicating

with T (TBB) converges correctly.

We extend this definition to the case of learning a class C of partial recursive

functions in the following way.

Definition 24 The learner L, equipped with a Black Box BB, learns the class of

partial recursive functions C from the teacher T , equipped with a Black Box TBB, if

for each function f ∈ C, TBB contains a function extending f , and for every f ∈ C,

every enumeration of f on the Input Tape, and every index i on the Answer Tape

such that TBBi extends f , L(BB) communicating with T (TBB) converges correctly.

In this thesis we primarily consider two cases: the learnability of a single function,

or the learnability of P , the class of all partial recursive functions. In the second

case, we generally assume that the teacher’s Black Box is at least universal.
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We also consider independent learners , that is, learners that have no send state.

In this case, we can delete the teacher and the Answer Tape, and regard the Mes-

sage Tape as just another work tape, since there can be no interaction with the

teacher. Independent learners are analogous to inductive inference machines, except

that inductive inference machines have a fixed, known programming system, while

independent learners must work with an unknown Black Box.

2.5 Reliability and Proofness Properties

Motivated by the work of Minicozzi [31] and Blum and Blum [15] on reliable (or

strong) identification, we are interested in designing learning protocols that “fail

gracefully” in certain situations other than those for which the protocol is specifically

intended. In particular, we would like the learner to avoid converging incorrectly.

That is, if it does not converge correctly, then it should either not output any hy-

pothesis or change its mind infinitely often. The possible “unanticipated situations”

that a teacher and a learner might have to cope with are:

1. A function from outside the intended target class,

2. A Black Box from outside the intended class for the learner, or

3. A Black Box from outside the intended class for the teacher.

The first situation is considered both by Blum and Blum [15] and by Mini-

cozzi [31], and the inductive learners that can overcome this difficulty are called

reliable (or strong). We have extended the notion of reliability to cover all three

situations mentioned above.
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Definition 25 Let BBC and TBBC be two classes of Black Boxes. Let C be

a class of partial recursive functions. A learner L and a teacher T are called

(C,BBC ,TBBC )-reliable if for any learner’s Black Box BB ∈ BBC , any teacher’s

Black Box TBB ∈ TBBC , any target function f ∈ C, any enumeration of f on

the Input Tape and all indices i such that TBBi = f on the Answer Tape, L(BB)

communicating with T (TBB) does not converge incorrectly.

In this dissertation we frequently focus on specialized cases of (C,BBC ,TBBC )-

reliability, where only some parameters are considered “truly variable”, while the

rest are varying within their “acceptable”, “designated” classes. For example, we

may design the teacher and the learner to correctly learn some class of functions

provided that their Black Boxes come from two fixed classes; then we may investigate

what happens if, say, learner’s Black Box does not conform to this requirement,

while everything else does. We introduce a set of definitions that describe such

specializations.

Definition 26 Let BBC , BBC ′, TBBC and TBBC ′ be classes of Black Boxes. Let

C and C ′ be two classes of partial recursive functions. Let T and L be a teacher and

a learner, respectively. Let the class of all Black Boxes be denoted by ABBC .

1. We say that L and T are target-proof on C ′ for BBC and TBBC if L and T

are (C ′,BBC ,TBBC )-reliable.

2. We say that L and T are learner-box-proof on BBC ′ for C and TBBC if L and

T are (C,BBC ′,TBBC )-reliable.

3. We say that L and T are teacher-box-proof on TBBC ′ for C and BBC if L and

T are (C,BBC ,TBBC ′)-reliable.
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4. We say that L and T are target-proof for BBC and TBBC if L and T are

(P,BBC ,TBBC )-reliable.

5. We say that L and T are learner-box-proof for C and TBBC if L and T are

(C,ABBC ,TBBC )-reliable.

6. We say that L and T are teacher-box-proof for C and BBC if L and T are

(C,BBC ,ABBC )-reliable.

7. We say that L and T are learner-box-and-teacher-box-proof for C if L and T

are (C,ABBC ,ABBC )-reliable.

8. We say that L and T are target-learner-box-and-teacher-box-proof if L and T

are (P,ABBC ,ABBC )-reliable.

The definitions above are meant to highlight the parameters of the generalized

reliability that do not comply with the requirements of some learning protocol. Al-

though no learning protocol is explicitly mentioned in these definitions, they become

more useful and convenient when used in the context of some teacher and learner

learning a class of concepts. Unless L and T are required to be able to learn some

class of concepts, it is extremely easy to make them target-learner-box-and-teacher-

box-proof. It suffices for this that the learner either never outputs a hypothesis or

that it alternates between two different ones.

Note that (X ′, Y ′, Z ′)-reliability implies (X, Y, Z)-reliability for all X ⊆ X ′, Y ⊆

Y ′ and Z ⊆ Z ′. It is an open question, however, whether (X ′, Y ′, Z)-reliability

together with (X ′, Y, Z ′)-reliability imply (X ′, Y ′, Z ′)-reliability, for any X ⊆ X ′,

Y ⊆ Y ′ and Z ⊆ Z ′. Similar questions applied to the other pairs of parameters to

reliability are also open.
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Target-proofness is meant to be analogous to reliable (or strong) learning, ex-

plored by Minicozzi [31] and Blum and Blum [15]. Learner-box-proofness and tea-

cher-box-proofness are introduced specifically for our model. Target-proofness is

considered very briefly in this thesis since (nearly) all our learning results hold for

P , the class of all partial recursive functions. Learner-box-proofness, however, is

very important for some of our results. So is teacher-box-proofness, although for

different reasons. It is the “dual” property of learner-box-proofness and is related to

two properties of the learner and the teacher which we now describe.

If both the learner and the teacher are the (correctly functioning) agents designed

for a specific learning problem, then there can be only the three above mentioned

unanticipated situations that may prohibit them from performing the learning task

successfully. From the learner’s point of view, however, there is another, potentially

more serious source of trouble—the teacher. We would like to build learners that

do not converge incorrectly even when coupled with adversarial teachers. When

considering teachers other than the intended ones, we permit any infinite sequence of

messages for the Message Tape, say m1, m2, . . . , which is used in place of the teacher

as follows. When the learner enters its send state for the i-th time, the message mi

is placed on the Message Tape and the learner’s computation is resumed.

Definition 27 Let C be a class of functions and BBC be a class of Black Boxes. We

say that a learner L is non-gullible for C and BBC , if for all f ∈ C, any enumeration

of f on the Input Tape, all Black Boxes BB ∈ BBC and any infinite sequence

of messages m1, m2, . . . used as responses on the Message Tape, L(BB) does not

converge incorrectly.
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This definition models a large class of possible behaviors for teachers. It does

not model the situation of the teacher causing the learner’s computation to remain

indefinitely suspended, however. Unfortunately, such an outcome cannot be ruled

out easily, since many good teachers can fail to respond as a result of either of the

three problems mentioned before:

1. The target function may not be from the designated class, causing the teacher

to attempt some infinite computation, for example;

2. The learner’s Black Box may not be from the intended class, causing the learner

to ask an unexpected query to the teacher, which results in some infinite com-

putation, for example;

3. The teacher’s Black Box may not be from the intended class, causing an infinite

search for a value, for example.

Therefore, we introduce a special responsiveness property for teachers that requires

them to give a response despite any or all of the difficulties given above, and even

in cases when the learner is adversarial. For this we need to consider a wide range

of learner behaviors, which, as above, can be best accomplished by using an infinite

sequence of messages m1, m2, . . . for the Message Tape. Initially m1 is placed on the

Message Tape and the teacher’s computation is started, and when the teacher enters

its send state for the i-th time, the message mi+1 is placed on the Message Tape and

the teacher’s computation is resumed.

Definition 28 Let C be a class of functions and TBBC be a class of Black Boxes.

We say that a teacher T is responsive for C and TBBC , if for all Black Boxes

TBB ∈ TBBC , all f ∈ C, any enumeration of f on the Input Tape, any index i
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such that TBBi = f on the Answer Tape, and any infinite sequence of messages

m1, m2, . . . used as responses on the Message Tape, T (TBB) enters its send state

infinitely many times.

The following lemma follows directly from the definitions of (C,BBC ,TBBC )-

reliability, non-gullible learners and responsive teachers.

Lemma 7 Let C be a class of partial recursive functions. Let BBC and TBBC be

two classes of Black Boxes. Let L be a non-gullible learner for C and BBC . Let T be

a responsive teacher for C and TBBC . Then L and T are (C,BBC ,TBBC )-reliable.

Proof: For any message that the learner may write on the Message tape, the teacher

is required to provide a response. For whatever responses the teacher may provide,

they can be modeled by some sequence of messages m1, m2, . . . . Therefore, the

learner may not converge incorrectly.

Corollary 1 Let L be a non-gullible learner for P and the class of all Black Boxes

ABBC . Let T be a responsive teacher for P and ABBC . Then L and T are target-

learner-box-and-teacher-box-proof.

Proof: Follows immediately by replacing C with P , BBC with ABBC and TBBC

with ABBC in Lemma 7.

To put the results of Minicozzi [31], Blum and Blum [15] and our results in

perspective, we now mention a few important results from their work and compare

them with related results found in this dissertation. Blum and Blum introduce the

notion of a function being h-honest and prove that for machines that are reliable on
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the set of all partial recursive functions P , all the functions that a machine M can

identify are h-honest for some total recursive function h (which can be uniformly

constructed using M), and that all the functions that are h-honest can be identified

by some inductive inference machine M (which can be uniformly constructed from

h). Theorems 1 and 3 below give a somewhat similar result for learner-box-proof

learning. Minicozzi proves the Union Theorem, which states that given two inductive

inference machines that are reliable on some set of partial recursive functions S, one

can construct another machine, reliable on S which is as powerful (on S) as both

the two given machines. It is easy to see that if the set S in Minicozzi’s Union

Theorem is replaced by the set of all partial recursive functions P (thus weakening

the theorem, of course), then it follows from the above-mentioned result by Blum and

Blum. Similarly, Corollary 6, a result about unions of primitive recursive learner’s

Black Boxes, follows from Theorems 1 and 3. Minicozzi’s Union Theorem in its

stronger form is related to three theorems of Chapter 7, especially to Theorem 7.

All these theorems have generalizations which are related to the generalization of

Minicozzi’s Union Theorem.



Chapter 3

Teaching the Fast Learners

Since we began with the issue of outright coding, it is instructive to examine a

protocol for outright coding in this new setting. Consider the teacher T0 that copies

the contents of the Answer Tape to the Message Tape each time control is passed

to T0. Consider the learner L0 that initially passes control to the teacher, and,

when control returns to L0, copies the contents of the Message Tape to the Output

Tape and halts. Clearly, for every universal Black Box BB, L0(BB) learns every

partial recursive function from T0(BB). That is, in case the Black Boxes of learner

and teacher are the same, this setting permits a straightforward version of outright

coding. Note that the agents are far from being learner-box-proof or teacher-box-

proof and the learner is definitely not non-gullible; a different teacher or a slight

difference between the teacher’s and learner’s Black Boxes suffice to make L0 converge

incorrectly.

To create an example of a teacher and a learner that are learner-box-proof and

teacher-box-proof, and where the learner is non-gullible, we appeal to the well-known

idea of using a computational complexity bound to guide learning. We describe a

39
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teacher T1 that supplies information about the computational complexity of the

target function, obtained as follows.

Suppose TBB is the teacher’s Black Box. The teacher has an index i on the

Answer Tape such that TBBi extends the target function f . Thus, for any x in the

domain of f , the teacher can make oracle calls to find out TBB(i, x, s) for s = 0, 1,

2, . . . until it determines the minimum s for which TBB(i, x, s) 6= ?, i.e., until it

determines the value of the measure TBBi(x). For any entry (x, f(x)) on the Input

Tape, the teacher T1 supplies (on request) the value of TBBi(x) on the Message Tape,

where i is the index on the Answer Tape, and TBB is the teacher’s Black Box.

We describe a learner L1 that makes use of this complexity information. The

learner L1 initially outputs index 0 on the Output Tape, and sets its current hypoth-

esis j to 0. For each new entry (x, f(x)) on the Input Tape, L1 makes a request to the

teacher, and then uses the number z returned on the Message Tape as a running-time

bound, checking whether BBj(x) = f(x) or BBj(x) > z, where BB is the learner’s

Black Box. If BBj(x) = f(x), L1 retains the hypothesis j and searches for the next

entry (x, f(x)) to check on the Input Tape. Otherwise, L1 writes j+1 on the Output

Tape, sets j to j + 1, and restarts the process of checking values (x, f(x)) on the

Input Tape from the beginning.

Then for every universal Black Box BB, L1(BB) learns all the partial recursive

functions from T1(BB) and T1 and L1 are learner-box-proof and teacher-box-proof.

(Recall that by the definition of teacher-box-proofness we still require that TBBi = f ,

even though TBB can be any Black Box. Therefore, it is safe for the teacher to

compute TBBi(x) for all x ∈ Dom(f) even though TBB may be a Black Box that

was not intended for T1.) Furthermore, L1 is non-gullible and T1 with L1 together

are actually (P,ABBC ,ABBC )-reliable, where ABBC is the class of all Black Boxes.
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In other words, they are target-learner-box-and-teacher-box-proof. This protocol no

longer involves outright coding; T1 does not send i to the learner, but rather uses i

and access to its Black Box to provide information to guide the learner’s own search.

In fact, the Black Boxes of the teacher and learner need not be identical; as long as

the learner’s Black Box has a program that computes an extension of f and runs at

least as fast on every input as program i in the teacher’s Black Box, the learner will

converge correctly.

Unless we specify in greater detail how L1 and T1 communicate, we cannot assert

that T1 is responsive. For example, the simplest way for a learner to specify that

it needs to know complexity information for the pair (x, f(x)) would be to write x

on the Message Tape before entering its send state. The teacher could then take

the value x found on the Message Tape and determine the measure TBBi(x) as

described above. Unfortunately, if the learner for some reason writes x 6∈ Dom(f) on

the Message Tape, there is no guarantee that x ∈ Dom(TBBi) and the teacher may

become stuck trying to find the measure TBBi(x). If, however, we require the learner

to just specify which element of the Input Tape it is seeking information about, this

problem disappears, since the teacher can find the respective element on the Input

Tape and then safely determine TBBi(x), if this element is a pair. Or, if the element

is a ‘*’ then the learner has made a mistake in its request and the teacher can return

some special value indicating this. When the latter specification is used, we can not

only say that T1 and L1 are target-learner-box-and-teacher-box-proof and that the

learner is non-gullible but also that the teacher is responsive.

By extending the above ideas somewhat more, we prove the following positive

result.
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Theorem 1 There exists a learner L∗ such that for every total recursive two-argu-

ment function b(x, s) there is a teacher T ∗b such that for every universal Black Box

TBB and for every Black Box BB that is b-related to TBB, L∗(BB) learns P from

T ∗b (TBB). Furthermore, L∗ is non-gullible, T ∗b is responsive and both agents together

are target-learner-box-and-teacher-box-proof.

Proof: Every time the teacher’s computation is resumed, it reads the number k

written by the learner from the Message Tape. It then finds the k-th element on the

Input Tape. If this element is a ‘*’, it clears the Message Tape, writes 0 on it and

enters its send state. Otherwise, the k-th element is a pair (x, f(x)) and the teacher

T ∗b computes s = TBBi(x) as described above for teacher T1, clears the Message

Tape and writes z on it, where z = b(x, s). The learner L∗ is similar to L1, with

the addition of dovetailing to re-try previously discarded hypotheses, which allows

for finitely many exceptions to the bounds supplied by the teacher. Intuitively, the

teacher supplies information of the form: “it shouldn’t take you longer than z steps

to compute the result y from x,” and the learner uses that information to prune

fruitless searches for a satisfactory program in its Black Box. The algorithm for L∗

is given in Figure 3.1.

In the Main Loop the learner picks a new hypothesis j, which selects a “hypothe-

sis-function” BBj from its Black Box. It also picks a new “testing parameter” m and

enters the Testing Loop. There it tests whether BBj agrees with the target function

given on the Input Tape and whether its complexity is within the bound supplied by

the teacher on the Message Tape. When a function fails this test, the learner breaks

out of the Testing Loop and reiterates the Main Loop, i.e., picks another index, and

repeats everything. This computation is “dovetailed”, meaning that if no function

meets the test requirements then the learner will return to each formerly abandoned
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L∗()
{

For (n = 0; ; n++) /* The Main Loop */

{
j = π1(n);
m = π2(n);
Output j + 1;
Output j;

For (k = 0; ; k++) /* The Testing Loop */

{
Read k-th element e from the Input Tape;

If (e is a pair (x, y))
{

Clear the Message Tape and write k on it;
Enter the send state; /* Get Suspended */

Read z from the Message Tape; /* On Resuming Computation */

For (s = 0; s 6 max(m, z); s++) /* The Bounded Loop */

{
v = BB(j, x, s);

If (v 6= ?)
Break; /* Out of the Bounded Loop */

}

If ((v 6= y) or (s > max(m, z)))
Break; /* Out of the Testing Loop */

}

}

}

}

Figure 3.1 Learner’s algorithm
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index infinitely often. Every time the learner returns to the same index j, the testing

parameter m is different, and thus the test will eventually be made with arbitrarily

large values of m.

The test itself is inside the Testing Loop and consists of comparing each pair (x, y)

found on the Input Tape against the value of the current hypothesis-function on x.

However, the hypothesis-function need not be defined on x at all, so the learner

uses a bound on the complexity of this function. This bound is chosen to be the

maximum of the teacher-supplied bound from the Message Tape and the parameter

m, which is different for each return to the same hypothesis. The actual search for

the value BBj(x) is in the Bounded Loop, which is controlled by the bound. As soon

as the hypothesis-function fails to comply with the test being performed, the learner

abandons this hypothesis, outputs a new one and starts testing it.

Now we prove that this learner is capable of learning every partial recursive target

function f if its Black Box BB is b-related to the teacher’s Black Box TBB.

Claim 1 There exists a natural number n such that:

1. BBπ1(n) = f ;

2. BBπ1(n)(x) 6 max(π2(n), b(x,TBBi(x))), for all points x ∈ Dom(f).

Proof: Recall that the teacher is given an index i such that TBBi = f . Since BB

is b-related to TBB, there exists a j such that

1. BBj = TBBi = f ;

2. BBj(x) 6 b(x,TBBi(x)), for all but finitely many x ∈ Dom(TBBi).
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Since TBBi = f we have that Dom(f) ⊆ Dom(TBBi) and from item 2 above

we now have that BBj(x) 6 b(x,TBBi(x)), for all but finitely many x ∈ Dom(f).

Let X be the set of points in Dom(f) where BBj(x) > b(x,TBBi(x)). Let m
def
=

max{BBj(x) : x ∈ X }. Then it must be that BBj(x) 6 max(m, b(x,TBBi(x))), for

all x ∈ Dom(f). Now, if we take n = 〈j,m〉, the claim follows.

Let n0 be the least n that satisfies Claim 1. Once variable n in the Main Loop

of the algorithm reaches n0, the learner will output a correct hypothesis j and will

never change it. For all those n that are less than n0, however, the hypothesis will

eventually be changed, because of our choice of n0 and because the learner always

outputs a hypothesis j + 1 just before outputting j—this introduces at least one

hypothesis change between these hypotheses.

What remains to be proved is that the agents are target-learner-box-and-teacher-

box-proof and that L∗ is non-gullible and T ∗b is responsive. Notice that the learner

can converge to an index only if the algorithm stays in the Testing Loop forever,

either suspended or reiterating the loop. It cannot be suspended forever, since the

teacher T ∗b is clearly responsive. Thus, the learner can converge to an index only

by reiterating the Testing Loop forever. This can happen only if the hypothesis-

function BBj agrees with the target function f on all points x that appear (as the

first components) in the pairs in its enumeration. But all points x ∈ Dom(f) will

appear eventually, and thus j must be an index for an extension of the target function

f . In other words, L∗ cannot converge incorrectly. Even when the target function

is not partial recursive, which implies that learning in this model is impossible, the

learner still cannot converge incorrectly as long as the teacher responds to every

query, but must change its mind infinitely often.
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In this chapter we showed how to construct a special teacher T ∗b , which depends

on a total recursive two-argument function b, and a special learner L∗, such that

they are target-learner-box-and-teacher-box-proof, the teacher is responsive and the

learner is non-gullible and they learn the class of all partial recursive functions P if

the learner’s Black Box is b-related to the teacher’s. From now on we refer to the

teacher given in the proof of Theorem 1 as the Standard Teacher (with bound b) and

we always denote it (and no other teacher) by T ∗b . Likewise, we call the learner given

in this proof the Standard Learner , and we denote it (and no other learner) by L∗.

Theorem 1 has a simple non-constructive corollary.

Corollary 2 Let BB be an acceptable Black Box and TBB be a universal Black Box.

Then there exists a total recursive two-argument function b(·, ·), such that L∗(BB)

(i.e., the Standard Learner, equipped with the Black Box BB) learns P from T ∗b (TBB)

(i.e., the Standard Teacher with bound b, equipped with the Black Box TBB).

Proof: By Lemma 4 from Chapter 2, every acceptable Black Box is b-related to

every universal Black Box, for some total recursive function b(·, ·). Thus, although

we do not know how to construct the function b or the Standard Teacher T ∗b that

depends on it, we still know that it exists, which suffices to prove the corollary.

Theorem 1 seems in some respects fairly modest; L∗ is able to learn all the partial

recursive functions from T ∗b , but only when its Black Box is “not too much slower”

(as measured by b) than the teacher’s. However, it may be that a much stronger

positive result is provable in this model, possibly by using a more elaborate version

of outright coding. We address the following question:

Is there a learner L, a teacher T , and a Black Box TBB such that L(BB)
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learns all the partial recursive functions from T (TBB) for all acceptable

Black Boxes BB?

An affirmative answer to this question would cast serious doubt on the model we

have defined. In the next chapter we present a basic theorem, one corollary of which

is a negative answer to this question.



Chapter 4

Is the Teacher Important?

In the previous chapter we proved a relatively simple theorem exhibiting successful

learning. Here we present a basic negative result, which seems to point to the ne-

cessity of the teacher or at least the necessity of some knowledge about the learner’s

Black Box. It is implied by Theorem 4 from Chapter 6, but we present it here for

its simple and interesting proof.

Definition 29 Let Z be the constant all-zero function, defined by Z(x)
def
= 0, for all

x ∈ N.

The following theorem indicates how difficult it is to deal with all acceptable

Black Boxes. In particular, there are acceptable programming systems in which an

intuitively simple function like the constant all-zero function is not at all “simple”

to compute. In particular, without additional information, no independent learner is

capable of finding in the limit a program that computes the constant all-zero function

Z for every acceptable Black Box.

48
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Theorem 2 There is no independent learner L such that L(BB) learns the constant

all-zero function Z for all acceptable Black Boxes BB.

Proof: Assume to the contrary that such an independent learner L exists. For

every acceptable Black Box BB given, and for every enumeration of the all-zero

function Z on the Input Tape, L(BB) correctly converges to an index for Z (that is,

an index j such that BBj(x) = 0, for all x ∈ N). We show how to use L to construct

an inductive inference machine M that identifies in the limit every total recursive

function, which is known to be impossible [15].

M gets the values of a total recursive target function f on its input tape. That

is, it gets pairs (x, f(x)) (intermixed with *’s, possibly). Every x ∈ N appears at

least once on the tape as the first component of a pair. Let φ0, φ1, φ2, . . . denote a

standard Turing machine programming system (i.e., φi ≡ TMi, for all i ∈ N), with

a step-counting complexity measure Φ0, Φ1, Φ2, . . . (i.e., Φi ≡ TMi, for all i ∈ N).

The goal of the inductive inference machine M is to converge correctly to an index

i for f in the Turing Machine Programming System, that is, an index i such that

φi ≡ f .

The inductive inference machine M “builds” another acceptable programming

system ψ (i.e., a listing of partial recursive functions ψ0, ψ1, ψ2, . . . ) using φ (i.e.,

the listing φ0, φ1, φ2, . . . ) and the values of f on the input tape. In the new system ψ,

the constant all-zero function Z has the same indices as the total recursive function f

has in φ. That is, φi ≡ f if and only if ψi ≡ Z. M simulates the independent learner

L with some enumeration of the constant all-zero function on its Input Tape and a

Black Box BB containing the programming system ψ with complexity measure Φ.

According to our assumption, L(BB) converges to an index for Z in the programming
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system ψ, which is an index for f in the Turing Machine Programming System φ.

We now describe the construction of ψ.

Definition 30 Let 	 be a binary operator on natural numbers defined by x	 y def
=

|x− y|.

The new programming system ψ is defined by ψi(x)
def
= φi(x) 	 f(x). If φi(x) is

undefined, so is ψi(x). The complexity measure for ψ is defined to be the Turing

Machine Complexity Measure Φ (i.e., the listing Φ0, Φ1, Φ2, . . . ). It is clear that i

is an index of f in φ if and only if i is an index of Z in ψ.

In order to simulate L, the inductive inference machine M must supply the an-

swers to L’s queries to the Black Box BB containing ψ. In order to compute the

value of BB(i, x, s), M reads its own input tape with the enumeration of f until it

finds the pair (x, f(x)). We are only concerned with learning all the total recursive

functions, so this value will be found. M also simulates the Turing machine with

index i on input x for s steps. If the machine stops, it answers the query with the

value φi(x)	 f(x). Otherwise, the answer is a ?, meaning that BBi(x) > s. (Recall

that in general BB(i, x, s) = ? does not imply that BBi(x) > s, but it does in this

case, due to the Turing machine simulation that takes place.)

When M simulates L as described above, it appears to L that it is equipped with

a Black Box BB, containing the programming system ψ with the complexity measure

Φ and that its Input Tape contains an enumeration of the constant all-zero function

Z. When L outputs a hypothesis, M outputs the same hypothesis and after L has

converged to an index for Z, M will have converged to an index for f in the Turing

Machine Programming System φ.
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One thing remains to be proved, namely, that ψ is an acceptable programming

system. We show this with three claims.

Claim 2 Listing ψ0, ψ1, . . . is a programming system, that is, it contains all the

partial recursive functions.

Proof: Suppose, by way of contradiction, that g is a partial recursive function

missing in the listing ψ0, ψ1, . . . . Then there is a partial recursive function h(x)
def
=

f(x) + g(x), which is missing in the programming system φ. This is a contradiction,

because a programming system by definition contains all the partial recursive func-

tions.

Claim 3 The programming system ψ is universal, that is, the universal function Uψ

for this system is itself partial recursive and thus belongs to ψ.

Proof: We need to prove that there exists an index univψ, such that ψunivψ(〈i, x〉) =

ψi(x). We can take univψ to be an index for the Turing machine that takes input

〈i, x〉 and outputs (φi(x) 	 f(x)) + f(〈i, x〉), assuming that it has access to a pro-

gram computing the values of the total recursive function f . Then we will have that

φunivψ(〈i, x〉) 	 f(〈i, x〉) = φi(x) 	 f(x), from which it follows that ψunivψ(〈i, x〉) =

ψi(x). Thus, we have shown that knowing the Turing machine program that com-

putes f , it is straightforward to find an index univψ such that ψunivψ ≡ Uψ.

Claim 4 The programming system ψ is acceptable, that is, there exists a total re-

cursive composition function Cψ for it.

Proof: We need to show that there exists a total recursive two-argument function

Cψ(·, ·) such that ψCψ(i,j)(x) = ψi(ψj(x)), for all indices i and j. Using the definition
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of the programming system ψ, we know that ψCψ(i,j)(x) = φCψ(i,j)(x)	f(x). We also

know that ψi(ψj(x)) = φi(ψj(x))	 f(ψj(x)), which can be expanded farther into

ψi
(
ψj(x)

)
= φi

(
φj(x)	 f(x)

)
	 f

(
φj(x)	 f(x)

)
.

Therefore, we can take Cψ(i, j) to be an index for the Turing machine that takes

input x and outputs φi(φj(x)	 f(x))	 f(φj(x)	 f(x)) + f(x), assuming again that

it has access to a program computing the values of the total recursive function f .

Then we will have that φCψ(i,j)(x)	 f(x) = φi(φj(x)	 f(x))	 f(φj(x)	 f(x)), from

which it follows that ψCψ(i,j)(x) = ψi(ψj(x)). Thus, knowing the Turing machine

program that computes f , we can construct a total recursive two-argument function

Cψ(i, j) which is a composition function for the programming system ψ.

Claims 2, 3 and 4 show that ψ is an acceptable programming system, and therefore

the simulated Black Box BB is an acceptable Black Box. Theorem 2 is proved.

Corollary 3 There is no learner L, no teacher T and no Black Box TBB for the

teacher, such that the learner L(BB) learns the constant all-zero function Z from the

teacher T (TBB) for all acceptable Black Boxes BB.

Proof: If for some teacher T and some teacher’s Black Box TBB there exists such

a learner L, then there exists an independent learner L′(BB) which simulates both

T (TBB) and L(BB) and thus learns Z for all Black Boxes BB.

Corollary 4 There is no learner L, no teacher T and no Black Box TBB for the

teacher, such that the learner L(BB) learns all the partial recursive functions from

the teacher T (TBB) for all acceptable Black Boxes BB.
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Proof: Since there is no learner, teacher and Black Box such that the learner can

learn the constant all-zero function Z from the teacher, there cannot be one that can

learn all partial recursive functions.

This answers the question raised above of whether there might exist a teacher and

a learner such that the learner can learn all the partial recursive functions using any

acceptable Black Box, and shows that the issue of outright coding does not trivialize

the model. It is important to note that these negative results do not depend on the

teacher having only black box access to its programming system; the teacher and

its Black Box can be chosen arbitrarily (e.g., the programming system can be the

standard Turing Machine Programming System), and still there is no learner that

can cope with all acceptable Black Boxes.



Chapter 5

Classifying the Successful Learners

Our definition permits a Black Box to be any total recursive function of three ar-

guments; this parallels the generality of Blum’s definition of an abstract complexity

measure for a programming system, and allows any programming system with a

complexity measure to be represented as a Black Box. However, one cost of this

generality is that the class of all Black Boxes is not recursively enumerable. Be-

cause our motivation is ultimately to gain insight into practical situations involving

teaching and learning, we now move away from this generality and restrict our at-

tention to the class of Black Boxes that are not only recursive, but also primitive

recursive. In the general case, we are interested in recursively enumerable classes of

Black Boxes that have certain additional properties; however, for concreteness we

consider the specific class of primitive recursive Black Boxes. Black Boxes derived

from many natural programming systems (for example, Turing machines measured

by step-counting functions) are very easy to compute; primitive recursive is more

than sufficient. In a practical setting, a particular kind of robot might have an

action space drawn from a rather limited set of possibilities.

54
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One interesting consequence of restricting the class of Black Boxes for the learner

to be primitive recursive is that the learner is able to find, in the limit, a primitive

recursive program that is equivalent to its Black Box. This follows from the well-

known result that any recursively enumerable class of total recursive functions can be

identified in the limit by an inductive inference machine. In particular, the learner

enumerates the primitive recursive Black Boxes and compares their values on all

triples of inputs with the values returned by its calls to its own Black Box, rejecting

any Black Box that does not agree with its own. This ability to gain a certain kind

of “self-knowledge” in the limit suggests that the restriction to primitive recursive

Black Boxes might make the learner’s job considerably easier in general. However,

in Chapter 6 we see that this optimism is not borne out.

The restriction to primitive recursive Black Boxes does allow us to prove an

approximate converse of Theorem 1, showing that in this case, for each teacher–

learner pair such that they are learner-box-proof on the class of all primitive recursive

Black Boxes (for P and {TBB}), there is a partial recursive function b such that

the standard teacher T ∗b (equipped with TBB) and the standard learner L∗ are as

powerful as the given pair, in terms of the class of primitive recursive learner’s Black

Boxes for which they can learn P .

We define a notation to represent the class of primitive recursive Black Boxes on

which a given teacher and a learner “succeed” in this sense. We fix a teacher T ,

a learner L and a teacher’s Black Box TBB and we focus on class G of primitive

recursive Black Boxes for L which contains all Black Boxes BB such that the learner

L(BB) learns P from the teacher T (TBB). We show that if T and L are learner-box-

proof on the class of all primitive recursive Black Boxes for P and {TBB} then there

exists a total recursive function b such that every Black Box in class G is b-related to
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the teacher’s Black Box TBB . Intuitively, this result says that if the teacher and the

learner can learn all the partial recursive functions and be learner-box-proof, then

the learner’s Black Box must not be too much slower (as measured by b) than the

teacher’s. Together with Theorem 1 this result nicely characterizes the relationship

between the programming system complexities of a successful teacher–learner pair.

Now we present the results and their consequences in a more formal way.

Definition 31 Let T be a teacher, L be a learner, and TBB be a universal Black

Box for the teacher. The set of good Black Boxes with respect to T , TBB and L is

denoted by G(T,TBB, L) and defined to be the set of all those primitive recursive

Black Boxes BB for which L(BB) learns P from T (TBB).

As mentioned above, for the sake of the following theorem it is not at all important

that G(T,TBB, L) is defined as a class of primitive recursive Black Boxes. It could

equally well be any recursively enumerable set of Black Boxes and the theorem would

still hold provided that T and L are learner-box-proof on this set. We chose to avoid

overgeneralization of the result in order to provide greater compatibility with the rest

of the Part 1 of the thesis, where being primitive recursive is an important property

of a Black Box, as it can be easily verified given a primitive recursive program that

defines it.

Theorem 3 Let PBBC be the class of all primitive recursive Black Boxes. Let T

be a teacher, L be a learner and TBB be a universal Black Box for the teacher such

that T and L are learner-box-proof on PBBC for P and {TBB}. Then there exists

a total recursive function b(x, s), such that every Black Box BB in G(T,TBB, L) is

b-related to TBB.
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The theorem says that there must be a way to construct a bound b from all

the good Black Boxes so that they all are b-related to the teacher’s Black Box.

By Lemma 4 of Chapter 2, we know that every acceptable Black Box is b-related to

every universal Black Box for some total recursive two-argument function b. However,

when the translation between the programming systems in these Black Boxes is not

known, we do not know how to construct this function b. Here we use the fact

that the learner learns all the partial recursive functions from the teacher and that

the agents are learner-box-proof on the class of all primitive recursive Black Boxes,

and we construct one b which works with all the Black Boxes that are good. The

algorithm to compute the bound is given in Figure 5.1.

The algorithm is based on simulations of the teacher and the learner on target

functions taken from the teacher’s Black Box and using different primitive recursive

Black Boxes for the learner. These simulations are done in the subroutine RunThem.

When called with parameters T , TBB, enum(TBBi), L, BB bb and steps , this sub-

routine performs a simulation of the teacher T and the learner L for steps steps.

RunThem returns the last hypothesis output by the learner, or ?, if the learner

does not output one in steps steps. The teacher’s Black Box used in the simulation is

TBB and the learner’s Black Box is BB bb . That is, it is the Black Box defined by the

primitive recursive function with index bb in some fixed recursive enumeration of all

primitive recursive functions. Both T and L share access to the common Input Tape,

containing an enumeration of TBBi. It is not crucial what particular enumeration of

TBBi is used, as long as it is the same whenever we need an enumeration of TBBi,

even for different values of x and s, that is, even in different runs of the algorithm

B(x, s). Therefore, for simplicity, we decide on one particular enumeration, and we

use this enumeration for all functions TBBi in the teacher’s Black Box TBB and at
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B(x, s)
{

b = 0;

For (i = 0; i < x; i++) /* The Outer Loop */

If (TBBi(x) == s)

For (bb = 0; bb < x; bb++) /* The Middle Loop */

{
h = RunThem(T,TBB, enum(TBBi), L,BB bb , x);

If (h == ?)
Continue; /* Reiterate the Middle Loop */

For (z = 0; BB bb(h, x, z) == ?; z++) /* The Inner Loop */

{
h′ = RunThem(T,TBB, enum(TBBi), L,BB bb , x+ z);

If (h′ 6= h)
Break; /* Out of the Inner Loop */

}

b = max(b, z);
}

Return b;
}

Figure 5.1 Algorithm for computing the bound b(x, s)

all times. This is the enumeration that we denote by enum(·). For example, it could

be the enumeration defined as follows (for every function TBBi contained in TBB).

Example 1 Enumeration enumTBB(TBBi) is a listing e0, e1, . . . of elements, where

each en is defined by

en
def
=


(
π1(n),TBBi(π1(n))

)
, if TBBi(π1(n)) = π2(n);

*, otherwise.
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In particular, enumTMBB(TMBBi) gives what is called elsewhere in the literature

a primitive recursive enumeration of some partial recursive function TMi.

Intuitively, the algorithm for computing the bound b(x, s) does the following.

Inside the Outer Loop, an “implicit bound” b′(i, x, s) is computed as if the target

function TBBi were fixed. Then with the help of the Outer Loop, it maximizes

over the first x i’s. The best way to compute the implicit bound would be to take

all the good Black Boxes, run the learner with each one of them, wait for the last

(and therefore correct) hypotheses, and then maximize over the number of steps the

corresponding hypothesis-functions take on input x. Unfortunately, there is no way

to take exactly all the good Black Boxes, so we have to consider them all. Maximizing

over an infinite set also poses a problem, so in reality the algorithm only considers

the first x Black Boxes for L, which it does inside the Middle Loop. Since it cannot

tell which hypothesis is right and which is not, and whether there will be a right one

at all, the algorithm only simulates T and L for x steps and uses whatever hypothesis

was produced by L, if any. In the Inner Loop it waits for the value of the hypothesis-

functions on x and at the same time continues simulating T and L. If a different

hypothesis is produced, the algorithm abandons the current one. Here we use the

assumption that the agents are learner-box-proof, which guarantees that for no Black

Box that we try will L converge incorrectly. In other words, every hypothesis will

get changed eventually, unless it is a correct one.

Now we present the proof in a more formal way.

Proof: We begin the proof by showing that the function b(x, s), as computed by

the algorithm B(x, s), is a total recursive function.

Claim 5 b(x, s) is total recursive.
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Proof: Obviously, this algorithm can be implemented on a Turing machine, having

access to the programs of T and L and to a program returning the values TBB(i, x, s).

Thus, the bound is partial recursive.

It is not as obvious that it is total. Both the Outer and the Middle Loops

are clearly bounded, but the situation with the Inner Loop is unclear and, in fact,

suspicious. All the non-loop statements, however, are either simple and doable in

constant time, or they involve bounded loops (the first If statement or simulations in

RunThem). Therefore, we only need to show that the Inner Loop terminates. This

loop continues as long as BB bb(h, x, z) is equal to ?, and z gets incremented with

every iteration. First, let us observe that we only get to this loop if the target function

TBBi is defined on x (and, in fact, has complexity s there). Thus, if BB bb(h, x, z)

gives ? forever, then h is not the right hypothesis for the target function. Regardless

of whether or not the Black Box BB bb is good (with respect to T , TBB and L), we

know that L will eventually change h to a different hypothesis because the agents are

learner-box-proof on the class of all primitive recursive Black Boxes. But a change

of hypothesis causes the algorithm to leave the Inner Loop. Therefore the algorithm

necessarily terminates and thus, b(x, s) is total recursive.

Now we can prove that b(x, s) satisfies the other requirements of the theorem,

namely that every Black Box BB bb ∈ G(T,TBB, L) is b-related to the teacher’s

Black Box TBB. Note that bb is an index in some fixed recursive enumeration of all

primitive recursive functions for the function that defines BB bb .

Fix an arbitrary bb such that BB bb ∈ G(T,TBB, L). Fix an arbitrary i and place

it on the Answer Tape. Simulate the teacher T with its universal Black Box TBB and

the learner L with BB bb on a common Input Tape containing enum(TBBi). Since
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BB bb is good, L will eventually converge to a hypothesis j such that BB bb
j = TBBi.

Suppose that this happens in steps steps.

Clearly, for all x > max(i, bb, steps), if TBBi(x) = s then the algorithm simulates

the learner L(BB bb) with the teacher T (TBB) on the enumeration of the target

function TBBi for enough steps for L to produce the final (and correct) hypothesis

j. This implies that property 1 of b-relatedness is satisfied. Having a correct and

final hypothesis j, however, causes the algorithm to reiterate the Inner Loop until

the complexity of BB bb
j on input x is determined. Therefore, the algorithm sets

the bound b(x, s) to at least the value of BB bb
j (x), which implies that property 2 of

b-relatedness is satisfied as well. This concludes the proof of the theorem.

As mentioned above, without knowing a translation function between a universal

and an acceptable programming system, we do not know how to construct the total

recursive function b that b-relates them. It is known, however, that such a function

exists. The achievement of Theorem 3 is the actual construction of the total recursive

bound for all good (with respect to T , TBB and L) primitive recursive Black Boxes

(even those that are not acceptable).

We now present some important corollaries. Theorem 1 from Chapter 3 showed

that for each total recursive two-argument function b(x, s), we can construct the

Standard Teacher (with bound b) and the Standard Learner, such that the learner

learns all the partial recursive functions for all Black Boxes that are b-related to

the teacher’s Black Box, and that the agents are target-learner-box-and-teacher-box-

proof. If we combine Theorem 1 with Theorem 3, we have that teacher–learner pairs

in the form T ∗b and L∗ are as powerful in this setting as any pair T and L that are

learner-box-proof on the class of all primitive recursive Black Boxes (for P and some
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class {TBB}).

Corollary 5 Let PBBC be the class of all primitive recursive Black Boxes. Let L be

a learner, T be a teacher and TBB be a universal Black Box for the teacher such that

T and L are learner-box-proof on PBBC for P and {TBB}. Then there exists a total

recursive two-argument function b(x, s) such that G(T,TBB, L) ⊆ G(T ∗b ,TBB, L∗).

Proof: Theorem 3 allows us to construct a bound b(x, s), which is exactly what is

needed to apply Theorem 1. The result follows immediately.

We can derive a type of closure result using Corollary 5. (A variety of interesting

closure results are given by Minicozzi for the case of target-proof (i.e., reliable)

learning [31].)

Corollary 6 Let PBBC be the class of all primitive recursive Black Boxes. Let L1

and L2 be learners and let T1 and T2 be teachers. Let TBB be an arbitrary universal

Black Box for both T1 and T2 such that both T1 with L1 and T2 with L2 are learner-box-

proof on PBBC for P and {TBB}. Then there exists a total recursive two-argument

function b(x, s) such that G(T1,TBB, L1) ∪G(T2,TBB, L2) ⊆ G(T ∗b ,TBB, L∗).

Proof: Corollary 5 implies that there is a total recursive two-argument function

b1(x, s), such that G(T1,TBB, L1) ⊆ G(T ∗b1 ,TBB, L∗), and a total recursive two-

argument function b2(x, s), such that G(T2,TBB, L2) ⊆ G(T ∗b2 ,TBB, L∗). Let us

define b to be the greater of b1 and b2, i.e., b(x, s)
def
= max(b1(x, s), b2(x, s)). Then

we have that all Black Boxes BB that are b1-related or b2-related to TBB, are also

b-related to it. The result follows.
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Corollary 6 is analogous to a weakened version of Minicozzi’s [31] Union Theorem.

We now explain why.

In full generality this theorem asserts that given two inductive inference machines

that are reliable (or strong) on some class of partial recursive functions S, one can

construct a new machine that is also reliable on S and as powerful (on S) as both

of its predecessors combined. If, however, S is replaced with the set of all partial

recursive functions P (weakening the theorem), then this theorem follows from the

theorem about “A Priori Inference” by Blum and Blum [15]. In our work Theorems

1 and 3 together form a characterization result somewhat similar to that by Blum

and Blum. Corollary 6 follows from these theorems, just as the weakened Union

Theorem follows from the result of Blum and Blum. Theorem 3 has the obvious

disadvantage of working with a restricted class of Black Boxes, namely, the primitive

recursive ones. Similarly, the result by Blum and Blum requires reliability on P ;

reliability on any smaller set does not suffice. These peculiarities suggest there may

be other closure results that are stronger than Corollary 6 (i.e., are not restricted to

primitive recursive Black Boxes) and that can be proved directly, not via Theorems

1 and 3. We focus on such closure results in the Chapter 7, after we have developed

some important negative results.



Chapter 6

Is Everything Easy?

Recall that the restriction to primitive recursive Black Boxes allows the learner to

find in the limit a primitive recursive program for its own Black Box. This, and the

fact that the counterexample Black Box constructed in the proof of Theorem 2 is

not necessarily primitive recursive, make it imperative to address the question:

Does there exist a learner L, a teacher T , and a Black Box TBB for the

teacher such that L(BB) learns all the partial recursive functions from

T (TBB) for all primitive recursive acceptable Black Boxes BB?

Corollary 4 answered this question in the negative without the restriction to

primitive recursive Black Boxes, since it was proved using Theorem 2. However,

even with the restriction to primitive recursive Black Boxes, the answer is still “no.”

Despite knowing (in the limit) how to build the Black Box on its own, the learner

still cannot do much without the help of a teacher (or without some more knowledge

about the Black Box). In particular, if asked to find the index for the constant all-

zero function Z, it cannot do it. The following theorem strengthens Theorem 2 for

64
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the case of primitive recursive Black Boxes.

Theorem 4 There is no independent learner L such that the learner L(BB) learns

the constant all-zero function Z for all primitive recursive acceptable Black Boxes

BB.

Proof: Suppose such a learner L exists. We describe the algorithm DefineBB

which, given a program for any independent learner L, defines a Black Box BB (L)

such that L(BB (L)) cannot find an index for Z, even though BB (L) is primitive

recursive and acceptable.

We assume that the algorithm knows the program for L, which is a Turing ma-

chine. The algorithm simulates L step by step and observes its behavior, namely,

whether it has output a new hypothesis and whether it needs a response from its

oracle. DefineBB provides L with such responses. It is given in Figure 6.3 and it

uses two subroutines given in Figures 6.1 and 6.2. The subroutine TMDefine, given

in Figure 6.1 uses another subroutine TMBB which returns the values of the Turing

Machine Black Box TMBB . Given arguments i, x and s, this subroutine simulates

the Turing machine with index i on input x for at most s steps and returns ? if the

machine does not stop or does not produce output before stopping, or a value y if

the machine stops with output y.

DefineBB, started with arguments i, x and s, defines the value BB (L)(i, x, s) of

the Black Box in the following way. It starts with an infinite three-dimensional array

Table, each entry of which is initialized to a special value “undefined”, not equal to

any natural number or ?. We have put the line

Table[∞][∞][∞] = { undefined, undefined, . . . };
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TMDefine(beginning index, size, Table)
{

For (i = 0; i 6 size; i++)

For (x = 0; x 6 size; x++)

For (s = 0; s 6 size; s++)

If (Table[beginning index + 2 · i][x][s] == undefined)
Table[beginning index + 2 · i][x][s] = TMBB(i, x, s);

}

Figure 6.1 Subroutine TMDefine

QuestionDefine(size, Table)
{

For (i = 0; i 6 size; i++)

For (x = 0; x 6 size; x++)

For (s = 0; s 6 size; s++)

If (Table[i][x][s] == undefined)
Table[i][x][s] = ?;

}

Figure 6.2 Subroutine QuestionDefine

in the algorithm to indicate that the table is initialized to these values.

Definition 32 Let BB be a Black Box. A block of size n is the set of values

BB(i, x, s), such that 0 6 i, x, s 6 n.

The algorithm initializes some local variables and after that computes the value

n = max(i, x, s), which is the size of the block to be defined. In order to compute

the value BB (L)(i, x, s), the algorithm actually computes a block of size n of values.

These values are stored in the table Table for easy reference if, for example, L asks a

query about one of them. The computation of these values depends on the simulation

of L, but basically we can think of it as of four “processes” running simultaneously,
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DefineBB(i, x, s)
{

Table[∞][∞][∞] = { undefined, undefined, . . . };
previous hypothesis = undefined;
TM zone = 1;
max spoiled i = 1;
n = max(i, x, s);
Initialize the simulation of L;

For (size = 0; size 6 n; size++)
{

Perform step size of the simulation of L;

If (L asks for the value of BB (L)(j, y, z))
{

If (Table[j][y][z] == undefined)
Table[j][y][z] = ?; /* “Direct Process” */

Give Table[j][y][z] as answer to L;
}

If (L outputs a hypothesis h)

If (h 6= previous hypothesis)
{

previous hypothesis = h;

If (h is odd and h > TM zone)
TM zone = max spoiled i = max(max spoiled i , h) + 2;

TMDefine(0, 2 · size,Table); /* “Even Process” */

}

TMDefine(TM zone, 2 · size,Table); /* “Odd Process” */

max spoiled i = TM zone + 4 · size;
QuestionDefine(size,Table); /* “Slow Process” */

}

Return Table[i][x][s];
}

Figure 6.3 Algorithm DefineBB
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each attempting to define certain values of the Black Box that are not defined yet.

Since we are interested in what the Black Box BB (L) would look like if all its values

had been defined, it is convenient to imagine that n = ∞ and that the algorithm

DefineBB runs forever, defining the values of BB (L). The For loop in it insures

that it first defines a block of size 0, then a block of size 1, 2, and so on. But first

let us discuss separately each of the four processes that each define certain values of

the Black Box.

The “Slow Process” is hidden in the subroutine QuestionDefine, given in

Figure 6.2. It is the only process that defines a true block of values and it defines

all these values to be ? (i.e., all those values which have not been defined yet). It

is the last thing called in every iteration of the For loop in algorithm DefineBB

and it insures that after the iteration numbered size at least a block of size size has

been defined. Unless other processes interfere with the Slow Process, it will define all

values of BB (L) as ?, causing all functions contained in the Black Box to be undefined

on absolutely all inputs. The other processes are faster than this, however, and thus

manage to define some points of the Black Box in a more interesting way, which we

discuss next.

There are two “Fast Processes”, each hidden in a call to the subroutine TMDe-

fine, given in Figure 6.1. Their goal is to construct all the partial recursive functions

somewhere in the Black Box. For this they make use of the subroutine TMBB, which

returns the values of the Turing Machine Black Box TMBB. The Fast Processes write

these values in the corresponding places in the table Table, unless they are already

defined. The only real difference from the values of TMBB is in the function index,

i.e., the first variable. These processes only define the values for every other func-

tion, and one of them does not define functions with indices smaller than the value
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of variable TM zone. We now elaborate on these peculiarities.

One of the Fast Processes is called the “Even Process”. It only defines the values

of the functions with even indices in the Black Box. It is invoked every time L

changes its hypothesis h. Its goal is to insure that if L changes its mind infinitely

often, the Black Box BB (L) contains all the partial recursive functions. If L does not

output any hypothesis or converges, this process will not be invoked after some time

and thus stay suspended forever. If this happens, all but a finite number of functions

with even indices will be undefined everywhere (due to the Slow Process, which will

get to them eventually). The other functions with even indices will be undefined on

all but a finite number of inputs at most (again, due to the Slow Process, which will

get to the rest of the inputs eventually).

The other Fast Process is called the “Odd Process”. It defines only the values of

functions with odd indices in the Black Box and it does so only for indices that are

big enough. The algorithm maintains variables TM zone and max spoiled i , which

hold the lowest and highest indices, respectively, of the functions that were defined

on more inputs by the last invocation of the Odd Process. Every time L outputs an

odd index greater or equal to TM zone, the algorithm DefineBB changes the values

of TM zone and max spoiled i . The next invocation of the Odd Process then tries to

define the values of functions with odd indices sufficiently large that they have not

been touched by the Odd Process yet and L has not yet made a hypothesis equal

to any of them. The goal of the Odd Process is to insure that if L does not output

any hypothesis or if it converges to some index i∗, the Black Box BB (L) contains all

the partial recursive functions, but all the indices of the constant all-zero function

exceed i∗ and therefore the hypothesis cannot be correct. In this case the functions

with smaller odd indices (i.e., smaller than TM zone) will be undefined on all but
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a finite number of inputs (due to the Slow Process, which will get to these inputs

eventually). If, on the other hand, L changes its mind infinitely often, then the Odd

Process will get invoked with bigger and bigger values of TM zone and will never have

a chance to define any function for all inputs. All the functions with odd indices will

be undefined on all but a finite number of inputs (due to the Slow Process, again).

Yet another way to define a point in the Black Box is when L directly asks for a

value of a point which has not been defined by any of the three processes discussed

above. We refer to such a situation as the “Direct Process”. If L asks for a value

of the Black Box BB (L) which is not defined yet, the algorithm has to provide an

answer and so it does. The answer given is always ?, and, of course, it is marked

in the table Table as such. Thus, the Direct Process fills the table with ?’s, just

like the Slow Process. The difference between them is that the Slow Process does it

systematically, by filling bigger and bigger blocks with ?’s, while the Direct Process

does it in some arbitrary hard-to-predict way. There is a good thing about the ?

values in the Black Box, though. If we fix an index for a function i and fix an input

x, then unless BB (L)(i, x, s) = ? for all s ∈ N, there is always a chance to define the

function BB
(L)
i on input x in any way we like.

Thus we have come to a very important factor in the coexistence of the four

processes capable of defining the values of the Black Box, which is their relative

speed. We need the Fast Processes to always “be ahead” of the Slow and Direct

Processes, each of which try to make all functions undefined everywhere. This is

why the Odd Process defines blocks twice as big as the Slow Process and so does the

Even Process, except that it sometimes “misses its turn” (since L does not necessarily

change its hypothesis in every step) and then catches up rapidly.

We now prove that for every independent learner L, the Black Box BB (L) given
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by the algorithm DefineBB is a primitive recursive and acceptable Black Box, and

that L(BB (L)) does not converge to a correct index for Z. We start with the latter

assertion.

Claim 6 L(BB (L)) never converges to a correct index for the all-zero function Z.

Proof: Suppose L does converge to some index i∗. Furthermore, let s∗ be the least

s such that i∗ was output in step s of L and was never changed afterwards. Here

we start counting the steps of L with 0, which means that the value of variable size

was s∗ at the moment this hypothesis i∗ was output. In this case, the last invocation

of the Even Process is by a call to TMDefine with parameters 0, 2s∗ and Table.

It possibly defines the values of functions with even indices in the Black Box where

the indices do not exceed 4s∗ and the inputs do not exceed 2s∗. The Slow Process

eventually defines the rest and therefore all but these first 2s∗ + 1 functions with

even indices are undefined on all inputs. The first 2s∗+1 functions with even indices

are undefined on all but finitely many inputs. Obviously, none of the functions with

even indices can be the constant all-zero function Z. Therefore, if i∗ is even, it is

clearly not an index for the all-zero function. If, however, it is odd, we have to do

some further analysis.

When an odd index i∗ is output in step s∗, it is different from the previous

hypothesis of L by our choice of s∗. Therefore, the algorithm compares it to the

current value of TM zone. If i∗ > TM zone, L changes the TM zone to be at least

i∗+2. From then on, the Odd Process defines the functions with odd indices that are

greater than or equal to TM zone, which is strictly greater than i∗. (Obviously, the

same happens in the case when i∗ < TM zone, too.) Even though the Odd Process

creates many all-zero functions, i∗ is clearly too small to be an an index for any of
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them. The functions with indices that are odd and less than or equal to i∗ become

undefined (due to the Slow Process) on all but a finite number of inputs. That is,

they may be defined on the first 2(s∗ − 1) + 1 = 2s∗ − 1 inputs by the Odd Process

but are undefined on the rest of the inputs. Therefore, i∗ cannot be equal to an index

for the all-zero function Z.

We now show that BB (L) is primitive recursive and acceptable. The first claim

is easy—it suffices to note that the algorithm DefineBB and its subroutines con-

sist entirely of For loops with fixed bounds and of bounded simulations of Turing

machines. Therefore it describes a primitive recursive function.

It only remains to prove that the Black Box BB (L) is acceptable; that is, it

contains all the partial recursive functions (i.e., is full and, therefore, by Lemma 1

universal) and there exists a total recursive composition function for the program-

ming system in BB (L).

The following claim greatly simplifies the proof that BB (L) is a universal Black

Box.

Claim 7 Let Tablerow be an infinite one-dimensional array (indexed from 0). Let

D, F and S be processes capable of defining values of this array. Let there be an

infinite loop For(size = 0; ;size++) invoking the processes in the following manner.

Each iteration starts with process D which defines one value Tablerow [s] for some

s (unless already defined). After that some arbitrary event determines whether pro-

cess F gets invoked or does not. It is guaranteed, however, that F will be invoked

infinitely many times. If invoked, F defines the first 2 · size + 1 values of Tablerow

excluding the ones that are defined already (i.e., it defines the undefined values



73

Tablerow [i] such that 0 6 s 6 2 · size). Each iteration of the loop concludes with an

invocation of process S which defines the first size + 1 values of Tablerow excluding

the ones that are defined already (i.e., it defines the undefined values Tablerow [i] such

that 0 6 s 6 size).

Then for all natural numbers s0, there is at least one value Tablerow [s], such that

s > s0 and it was defined by process F .

Before proceeding to the proof of this claim, let us explain its relationship to the

algorithm DefineBB and the proof of Theorem 4. Claim 7 focuses on a scenario

where the Slow and Direct Processes have allied to overcome one of the Fast Pro-

cesses. They have fixed some i and x and are trying to make sure that all values

Table[i][x][s] are defined by them as ?. If they succeed, the function BB
(L)
i will be

undefined on input x. By choosing the values i and x appropriately, they could un-

dermine the goal of either of the Fast Processes to insure that every partial recursive

function is contained in the Black Box BB (L).

Quite obviously, process D in this claim corresponds to the Direct Process of

algorithm DefineBB. Similarly, process S corresponds to the Slow Process and

process F can be either of the Fast Processes. If F is the Odd Process, then it is

invoked in every iteration. If it is the Even Process, then we do not know whether it

will or will not be invoked in a particular iteration. However, the assumption that

the fast process will be invoked infinitely many times is valid, as will be shown in

the proof of Claim 8.

Proof: Assume that the claim does not hold. Let us look at an iteration of the

loop such that size > s0 and process F does get invoked in it. Consider the situation

just before the invocation of F . Denote the current value of size by size0. In this
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and previous iterations of the loop, process D may have defined at most size0 + 1

values of Tablerow . In addition, process S may have defined at most size0 values

with indices ranging from 0 to size0−1. At this moment process F gets invoked and

it attempts to define all the undefined values Tablerow [s], where 0 6 s 6 2 · size0.

In particular, there are size0 + 1 values such that size0 6 s 6 2 · size0, which cannot

have been defined by process S yet. We distinguish two cases.

1. If not all of the values Tablerow [s] such that size0 6 s 6 2 · size0 have been

defined by process D, then process F actually defines at least one of them and

we are done.

2. Otherwise, i.e., if all of the entries Tablerow [s] such that size0 6 s 6 2 · size0

have been defined by process D, we have to look at a later iteration of the

For loop where process F is invoked again. Denote the current value of size

by size1. Clearly, size1 > size0 > s0. In this and previous iterations, process

D may have defined at most size1 + 1 values of Tablerow . Process S may

have defined at most size1 values of Tablerow [i], with indices ranging from 0 to

size1 − 1. Process F attempts to define all the undefined values Tablerow [s],

where 0 6 s 6 2 · size1. In particular, there are size1 + 1 values such that

size1 6 s 6 2 · size1, which cannot have been defined by process S yet. In

this iteration of the loop it is impossible that all of them have been defined by

process D since it has defined at most size1 + 1 values and one of those values

definitely is Tablerow [size0]. Therefore, process F will define at least one of

the values such that size1 6 s 6 2 · size1.

We have proved that sooner or later process F will define a value Tablerow [s] such

that s > s0. Therefore the claim holds.
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Now we prove that the Black Box BB is universal. By Lemma 1 it suffices to

show the following.

Claim 8 The Black Box BB (L) contains every partial recursive function.

Proof: Let us pick an arbitrary index i. We will show that the partial recursive

function TMi, defined by the Turing machine with index i, is contained in BB (L).

That is, we need to find an index i′ such that for every x:

1. If the value TMi(x) is defined and equal to y then there exists s′ such that

BB (L)(i′, x, s′) = y and BB (L)(i′, x, s) = ?, for all s < s′;

2. If TMi(x) is undefined, then BB (L)(i′, x, s) = ?, for all s.

First, let us suppose that L changes its mind infinitely often. In this case, the

Even Process gets invoked infinitely many times and keeps defining bigger and bigger

blocks of the functions with even indices. The function TMi has index i′ = 2i in the

Black Box BB (L). Let us verify this. Pick an arbitrary x. If TMi(x) is undefined,

then simulating the Turing machine i on data x for any number of steps will yield

nothing and the call to the subroutine TMBB with arguments 2i, x and s will return

? for any value of s. Therefore, for any s, the value of Table[2i][x][s] will be ? if first

defined by the Even Process and also ? if first defined by the Slow or the Direct

Processes. (The Odd Process cannot define functions with even indices.)

If, however, TMi(x) = y, then let s0 be the least s such that at step s the Turing

machine with index i outputs y when run on input x. Then TMBB(i, x, s) = y

for all s > s0. The entry Table[2i][x][s] will be ? for all 0 6 s < s0, regardless of

which process defined it. For all s > s0, however, the value of Table[2i][x][s] will
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be y if defined by the Even Process, or ? if defined by the Slow or Direct Process.

(The Odd Process cannot define functions with even indices). By Claim 7 we know

that the Slow and Direct Processes cannot define all entries Table[2i][x][s], where

s > s0, which means that there will be an s′ > s0 such that Table[2i][x][s′] = y and

Table[2i][x][s] = ? for all s 6 s′. Therefore BB
(L)
2i (x) = y = TMi(x) and we are done

with the case when L never converges.

Now, let us suppose that L converges to some index i∗. Let s∗ be the least s,

such that i∗ is output in step s of L and is never changed afterwards. Recall that

we start counting the steps of L with 0, which means that the value of variable

size was s∗ at the moment this hypothesis i∗ was output. If the hypothesis is never

changed after step s∗, then the variable TM zone may be changed in this iteration

of the For loop, but not in any later one. Let t denote the final value of TM zone.

Recall that TM zone is odd at all times. Also note that every time when a new value

of TM zone is chosen, it is taken larger than any k such that the Odd Process has

accessed Table[k][x][s], for any x and s. Variable max spoiled i controls this choice.

The function TMi has index i′ = t+2i in the Black Box BB (L). Let us verify this.

Pick an arbitrary x. If TMi(x) is undefined, then simulating the Turing machine with

index i on input x for any number of steps will yield nothing. Therefore, for every

s the entry Table[t + 2i][x][s] will be ? if first defined by the Odd Process and also

? if first defined by the Slow or Direct Processes. (The Even Process cannot define

functions with odd indices.)

If, however, TMi(x) = y, then let s0 be the least s such that at step s the Turing

machine with index i outputs y when run on input x. Then TMBB(i, x, s) = y

for all s > s0 by the definition of the Turing Machine Black Box. The value of

Table[t+ 2i][x][s] will be ?, for all 0 6 s < s0, regardless of which process defined it.
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For all s > s0, however, the value of Table[t+ 2i][x][s] will be y if defined by the Odd

Process or ?, if defined by the Slow or Direct Processes. (The Even Process cannot

define functions with odd indices.) By Claim 7 we know that the Slow and Direct

Processes cannot define all entries Table[t + 2i][x][s], where s > max(s0, s
∗), which

means that there will be an s′ > max(s0, s
∗) such that Table[t + 2i][x][s′] = y and

Table[t + 2i][x][s] = ? for all s 6 s′. Therefore BB
(L)
t+2i(x) = y = TMi(x) and we are

done with the case when L converges to some index i∗.

The case when L never outputs any hypothesis is essentially analogous to the

previous case. The function TMi has index i′ = 1 + 2i in the Black Box BB (L) since

the final and only value of the variable TM zone is 1.

This completes the proof that the Black Box BB as defined by the algorithm

DefineBB is universal.

And finally, it remains to prove that the programming system in BB (L) is an

acceptable one, i.e., that there exists a total recursive composition function for it.

Claim 9 There exists a total recursive function C such that BB
(L)
C(〈i,j〉) = BB

(L)
i ◦

BB
(L)
j , for every i and j.

Proof: In other words, we have to prove that for every i and j, we can find an

index C(i, j) such that for every x, if BB
(L)
j (x) is defined and equal to y and if also

BB
(L)
i (y) is defined and equal to z, then BB

(L)
C(i,j)(x) = z, while in all other cases

BB
(L)
C(i,j)(x) is not defined.

Let Univ denote the universal function for the programming system in BB (L).

(Recall that every universal programming system has a partial recursive universal
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Compose(x)
{

y = Univ(〈j, x〉);
Return Univ(〈i, y〉);

}

Figure 6.4 Algorithm for the composition function

function and therefore Univ is partial recursive.) In Figure 6.4 we have illustrated an

algorithm with built in (i.e., “hard-coded”) values of i and j, which takes an argument

x and finds the value of BBj(BBi(x)), unless it is undefined. This algorithm uses

Univ as a subroutine.

It is obvious that for any i and j this algorithm is easy to implement on a Turing

machine. Thus, there is a total recursive function c such that c(i, j) is an index for

a Turing machine that implements the above algorithm. We need to find an index

C(i, j) such that BB
(L)
C(i,j) = TMc(i,j). For this we need to know whether L(BB (L))

converges and, if so, what is the final value of the variable TM zone in algorithm

DefineBB. As described in the proof of Claim 8, the required index is C(i, j) =

2 · c(i, j) if L(BB (L)) changes its mind infinitely often, and C(i, j) = t + 2 · c(i, j) if

L(BB (L)) does not output any hypothesis or converges and the final value of TM zone

in DefineBB is t. Note that we cannot tell which of the total recursive functions

C is the right one, but for each possible behavior of the algorithm L(BB (L)) there

definitely is one.

This completes the proof of Theorem 4.

We now list the corollaries of Theorem 4. The first two strengthen Corollary 3

and Corollary 4, respectively.
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Corollary 7 There is no learner L, no teacher T and no Black Box TBB for the

teacher such that the learner L(BB) learns the constant all-zero function Z from the

teacher T (TBB) for all primitive recursive acceptable Black Boxes BB.

Proof: If for some teacher T and some teacher’s Black Box TBB there exists such

a learner L, then there exists an independent learner L′(BB) which simulates both

T (TBB) and L(BB) and thus learns Z for all primitive recursive acceptable Black

Boxes BB.

Corollary 8 There is no learner L, no teacher T and no Black Box TBB for the

teacher such that the learner L(BB) learns P from the teacher T (TBB) for all prim-

itive recursive acceptable Black Boxes BB.

Proof: Since there is no learner, teacher and Black Box such that the learner learns

the constant all-zero function Z from the teacher, there cannot be one that learns

all partial recursive functions.

Corollary 9 There is no total recursive function b and no universal Black Box TBB

such that L∗(BB) (i.e., the Standard Learner equipped with a Black Box BB) learns

P from T ∗b (TBB) (i.e., the Standard Teacher with bound b, equipped with a Black

Box TBB) for all primitive recursive acceptable Black Boxes BB.

Proof: This is a special case of Corollary 8.

Corollary 10 For every universal Black Box TBB and for every total recursive

two-argument function b(x, s) there exists a primitive recursive acceptable Black Box

BBB which is not b-related to TBB.
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Proof: Suppose to the contrary that there exists a universal Black Box TBB and

a total recursive function b(x, s) such that every primitive recursive acceptable Black

Box is b-related to TBB. Then, applying Theorem 1, for every Black Box BB that

is b-related to TBB, the Standard Learner L∗(BB) learns all the partial recursive

functions from the Standard Teacher (with bound b) T ∗b (TBB). In particular, for

this b, L∗(BB) learns all the partial recursive functions from T ∗b (TBB) for every

primitive recursive acceptable Black Box BB, because of our assumption that they

are all b-related to TBB. This contradicts Corollary 9.

Corollary 10 says that for every universal teacher’s Black Box and every total

recursive function b, there is some “bad” but primitive recursive and acceptable

Black Box for the learner. We call it bad because it is not b-related to the teacher’s

Black Box. Furthermore, since this Black Box is both acceptable and primitive

recursive, it must not be inherently awkward. In fact, it is quite “normal” according

to the functions and measures that it contains. In particular, it can be translated to

and from the most natural Black Boxes (including the Turing Machine Black Box),

and the measures that it contains are recursively related to the most natural ones.

In other words, it is b′-related to any other acceptable Black Box by some function b′.

Its only drawback must be that the measures that it contains are not good enough

for the particular teacher’s Black Box TBB and the particular function b.

The proof of Corollary 10 only proves the existence of a bad Black Box for ev-

ery total recursive two-argument function b(x, s). It is possible, however, to give

a constructive proof for this result. That is, given an index for a Turing machine

computing b, we can construct an algorithm that defines the bad Black Box. The

construction is quite simple if TBB ≡ TMBB and such an approach easily proves the

corollary, if restricted only to acceptable Black Boxes TBB. A direct and construc-
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tive proof of the more general case is harder and the simpler proof is recommended

as an introduction to it. Both these proofs are given in the Appendix to Part 1,

pages 110 and 115, respectively.

Finally, we observe that for every universal Black Box TBB and every total

recursive function b0, there is some bad but primitive recursive and acceptable Black

Box BB(0) for the learner, such that L∗(BB(0)) cannot learn all the partial recursive

functions from T ∗b0(TBB). However, because BB(0) is acceptable, it is b1-related to

TBB for some (larger) total recursive function b1, which means that L∗(BB(0)) can

learn all the partial recursive functions from T ∗b1(TBB). However, for b1 there is

another bad but primitive recursive and acceptable Black Box BB(1) for the learner,

for which L∗(BB(1)) cannot learn all the partial recursive functions from T ∗b1(TBB).

Continuing in this way, there exists an infinite sequence of “worse and worse” but

still primitive recursive and acceptable Black Boxes for the learner.



Chapter 7

Building More Powerful Teachers

and Learners

In this chapter we prove three closure results analogous to Minicozzi’s [31] Union

Theorem by giving one fairly general construction. Afterwards we show how to

extend this construction to prove even stronger versions of these theorems.

Let us start by presenting one of the three union theorems, and, in particular,

the one that generalizes Corollary 6.

Theorem 5 Let TBBC, BBC0 and BBC1 be three classes of Black Boxes. Let C be

a class of partial recursive functions. Let L0 and L1 be learners and let T0 and T1 be

teachers such that:

1. L0(BB) learns C from T0(TBB) for all BB ∈ BBC0 and TBB ∈ TBBC and

the agents are learner-box-proof for C and TBBC;

2. L1(BB) learns C from T1(TBB) for all BB ∈ BBC1 and TBB ∈ TBBC and

82
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the agents are learner-box-proof for C and TBBC.

Then there exists a teacher T and a learner L such that L(BB) learns C from

T (TBB) for all BB ∈ BBC0 ∪BBC1 and TBB ∈ TBBC and the agents are learner-

box-proof for C and TBBC.

Proof: The main ideas of the proof are the following. The learner L simulates both

learners L0 and L1 so that they each have exactly the same environment as when

running on their own. That is, they each have their own copies of L’s Input, Message,

Work, Oracle and Output Tapes. The same holds for the teacher T simulating T0

and T1, i.e., they have exact copies of T ’s Input, Message, Work, Oracle and Answer

Tapes. The learner L then monitors the Output Tapes of L0 and L1 and chooses

its own hypothesis depending on what the simulated learners output. Furthermore,

T and L must collaborate in such a way that the T0 and L0 pair is being simulated

in parallel with the T1 and L1 pair. If this were not the case, problems could arise

due to the fact that one or both pairs of agents can output nothing and abandon all

communication among themselves, thus avoiding converging incorrectly, which is an

acceptable behavior if the environment is not as intended for learning.

The algorithm for the learner L is given in Figure 7.1. It uses a subroutine

HypoDecide given in Figure 7.2. The algorithm for the teacher T is given in

Figure 7.3.

We first explain how T and L as given by the algorithms UnionTeacher and

UnionLearner perform the simulations of T0, T1, L0 and L1. We will refer to T

and L as “agents” and to T0, T1, L0 and L1 as “sub-agents” in this discussion. At

any time one of the agents T and L is suspended and the other is not, as defined by

the model. Initially the teacher is suspended. The agents can perform only a few
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UnionLearner()
{

suspended [2] = { 0, 0 };
step[2] = { 0, 0 };
Initialize the simulation of L0;
Initialize the simulation of L1;

For (which = 0; ; which = 1− which)
{

If (suspended [which] == 0)
{

Perform step step[which] of the simulation of Lwhich ;
step[which] = step[which] + 1;

If (Lwhich outputs a hypothesis h)
HypoDecide(which, h);

If (Lwhich enters the send state)
{

Let message be the contents of Lwhich ’s Message Tape;
Replace ? and ? with which and message on the Message Tape;
suspended [which] = 1;

}

}

Enter the send state; /* Get Suspended */

Read i and message from the Message Tape; /* On Resuming Comp. */
Replace i and message with ? and ? on the Message Tape;

If (i 6= ?)
{

Clear the Message Tape of Li and write message on it;
suspended [i] = 0;

}

}

}

Figure 7.1 Algorithm UnionLearner
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HypoDecide(which, h)
{

static previous hypothesis [2] = { undefined, undefined };
static last by whom = undefined;

If (previous hypothesis [which] == h)
Return;

previous hypothesis [which] = h;

If (previous hypothesis [1− which] == undefined)
{

last by whom = which;
Output h;
Return;

}

If (last by whom 6= which)
Return;

last by whom = 1− which;
Output h;
Output previous hypothesis [last by whom];

}

Figure 7.2 Subroutine HypoDecide

actions every time that their computation is resumed (or started initially), before

becoming suspended again. In particular, they can:

1. Copy the contents of the Message Tape to the Message Tape of one of the

sub-agents;

2. Simulate one of the sub-agents;

3. Copy the contents of the Message Tape of the simulated sub-agent to the

Message Tape.

It is not guaranteed, however, that any of these actions will be performed, as each

action is governed by certain variables and conditions.
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UnionTeacher()
{

suspended [2] = { 1, 1 };
step[2] = { 0, 0 };
Initialize the simulation of T0;
Initialize the simulation of T1;

For (which = 0; ; which = 1− which)
{

Read i and message from the Message Tape;
Replace i and message with ? and ? on the Message Tape;

If (i 6= ?)
{

Clear the Message Tape of Ti and write message on it;
suspended [i] = 0;

}

If (suspended [which] == 0)
{

Perform step step[which] of the simulation of Twhich ;
step[which] = step[which] + 1;

If (Twhich enters the send state)
{

Let message be the contents of Twhich ’s Message Tape;
Replace ? and ? with which and message on the Message Tape;
suspended [which] = 1;

}

}

Enter the send state; /* Get Suspended */

Continue; /* On Resuming Computation, Reiterate Loop */

}

}

Figure 7.3 Algorithm UnionTeacher
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As long as neither L0 nor L1 have entered their send states, the computation

of T and L proceeds as follows. Each time when L’s computation is resumed, it

simulates one step of either L0 or L1—variable which controls which of the sub-

agents is simulated. The next time when L’s computation is resumed, which has

changed its value, thus causing the other sub-agent to be simulated. Similarly, the

teacher T has a variable which that lets it alternate between simulating the sub-

agents T0 and T1. Initially, both these sub-agents are suspended and therefore do

not get simulated. The messages exchanged between T and L on the message tape

consist of two ?’s.

When either one of L’s sub-agents enters its send state, the contents of its Message

Tape are copied to the Message Tape of L, and are prepended by the index of the

sub-agent, held in which at this moment. The sub-agent who entered the send state

is marked as suspended. At this point, when T ’s computation is resumed, it reads

the index i that comes first on the Message Tape, then copies the remaining contents

of the Message Tape to the Message Tape of Ti and marks Ti as not suspended (let

us denote the current value of i by i′ at this moment, since we will need to refer to

it later when i will have changed). From now on Ti′ will get simulated every other

time that teacher’s computation is resumed (i.e., whenever teacher’s variable which is

equal to i′), and as long as Ti′ has not entered its send state. Li′ , however, will not be

simulated as it is now marked as suspended. Similarly, if the other learner’s sub-agent

enters its send state, then it is marked as suspended and the corresponding teacher’s

sub-agent is marked as unsuspended. In this case, both learner’s sub-agents become

suspended and both teacher’s sub-agents unsuspended. When either of the teacher’s

sub-agents enters its send state (which is only possible if it is unsuspended and being

simulated at the moment), it is marked as suspended and the corresponding learner’s
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sub-agent unmarked. Thus, the T0 and L0 pair and the T1 and L1 pair are simulated

in parallel, and within each pair, one of the sub-agents is suspended and the other

is not.

Let us now look at what happens when L is equipped with a Black Box BB ∈

BBC0 ∪ BBC1 and T is equipped with a Black Box TBB ∈ TBBC, and the target

function is f ∈ C. If BB ∈ BBC0 then L0 and T0 correctly learn the target function.

That is, L0 eventually converges to an index h such that BBh = f . The other pair

of sub-agents, L1 and T1, are not required to learn this target function in this case

but they are required not to converge incorrectly because they are learner-box-proof

for C and TBBC. Similarly, if BB ∈ BBC1 then L1 and T1 correctly learn the target

function, while L0 and T0 may or may not learn it, but at least they do not converge

incorrectly. One more case that is of interest to us is when BB 6∈ BBC0 ∪ BBC1. In

this case neither of the sub-agent pairs has to learn the target function but both are

required not to converge incorrectly.

Armed with this knowledge we can now see whether L converges to some hy-

pothesis or does not, for each of the cases mentioned above. The decision of whether

to output some hypothesis or not is done in the subroutine HypoDecide, which is

called every time after one of the learner’s sub-agents outputs a hypothesis. This

subroutine keeps track of the previous hypothesis (if any) output by each of the

sub-agents. For this purpose it has an array previous hypothesis . It also keeps track

of which sub-agent’s hypothesis was last chosen to be output by L itself, if any. The

respective sub-agent’s index is kept in the variable last by whom. Both the array and

the variable are static, meaning that they get initialized to the values given in the

pseudo-code (i.e., “undefined”), but in every subsequent invocation of the subroutine

they retain their values from the previous invocation. In this respect, they resemble
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global variables.

The subroutine takes two arguments, which and h. These arguments denote the

index and the hypothesis output by a sub-agent. First, HypoDecide compares h to

the previous hypothesis output by Lwhich to see whether there has been a change in

hypothesis for Lwhich . The first hypothesis output by Lwhich is treated as a changed

hypothesis by this test. If there is no change then this hypothesis can be ignored,

so the subroutine just returns. Otherwise, there has been a change in hypothesis

and thus some further processing is required. First, the hypothesis h is saved in

previous hypothesis [which] for use in later calls to HypoDecide. Then the subrou-

tine checks whether there is any hypothesis already output by the other sub-agent,

L1−which . If there is none, then the same hypothesis h is output by L, the index which

of the sub-agent who output it originally is saved in last by whom and the subroutine

returns. Otherwise, there is some hypothesis output by the other sub-agent and the

learner L may decide to use that hypothesis.

This requires more explanation. As long as neither of the sub-agents L0 and

L1 have output hypotheses, L does not output any hypothesis either. When one of

the sub-agents outputs a hypothesis (as seen from the fact that it writes the special

marker on its Output Tape and moves to the right), L outputs the same hypothesis.

Then, in general, it holds on to this hypothesis as long as it is not changed by the sub-

agent who output it. At this point, usually, it outputs the hypothesis output by the

other sub-agent and, again, holds it until it is changed by this sub-agent. Since both

sub-agents are required to either converge to the correct index or not to converge

at all, this strategy is meant to insure that L changes its mind infinitely often if

both of its sub-agents do so, that it does not output any hypothesis if neither of its

sub-agents do, and that it converges to the correct index if at least one sub-agent



90

converges. The greater complexity of the subroutine HypoDecide comes merely

from various exceptions to the overall principle. For example, special attention has

to be paid to the case when one or both sub-agents have not output any hypothesis

yet, when the change of hypothesis is done by the sub-agent whose hypothesis is not

currently held on to by L, or when switching to the other sub-agent’s hypothesis

does not constitute a change in L’s hypothesis.

Our analysis of HypoDecide has now reached the third If statement in the

pseudo-code. This is the test where the subroutine checks whether the change of hy-

pothesis done by Lwhich warrants switching to this newest hypothesis. If last by whom

is not equal to which, i.e., if L has last output the hypothesis produced by the other

sub-agent L1−which and is currently holding on to it, then there is no reason to switch.

Intuitively, at this point it seems to L that L1−which may be converging while Lwhich is

changing its mind, thus it keeps holding on to the hypothesis of L1−which which looks

more credible. In this case there is nothing more to do, since the last hypothesis

output by Lwhich was already saved before, and the subroutine just returns.

Finally, if the subroutine has not returned yet, we know the following. The sub-

agent Lwhich , whose last hypothesis was so far the one output and held on to by L,

has output a new, different hypothesis h, already saved in previous hypothesis [which].

The other sub-agent L1−which has also produced some hypotheses before and the last

one of those is saved in previous hypothesis [1− which]. Intuitively, at this moment it

looks like Lwhich is changing its mind and L1−which is the one who may be on its way to

converging. Thus, the subroutine marks that the last hypothesis output by L is now

the one that was last output by L1−which (by saving 1− which in last by whom) and

really outputs the hypothesis from previous hypothesis [last by whom], which equals

previous hypothesis [1− which]. Before doing so, however, it outputs the hypothesis
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h, to force a hypothesis change. This avoids the following undesirable scenario.

Suppose Lwhich had output the hypothesis h′ which was also output and held on to

by L until the current invocation of HypoDecide where it was discovered that Lwhich

has now output a new, different hypothesis h. Suppose also that the other learner

L1−which has last output the hypothesis h′. If L just switched to the hypothesis

output by L1−which , it would output another h′, i.e., no change in L’s hypothesis

would happen. This could continue indefinitely, e.g., Lwhich could now output h′ and

then L1−which could output h and L would switch to the other sub-agent’s hypothesis,

i.e., output yet another h′. In other words, unless we force a hypothesis change for

L, the simple scheme described above may lead to a situation where both sub-agents

change their minds infinitely often, but L nevertheless converges, possibly incorrectly.

Proceeding as given by the pseudo-code, there is always a hypothesis change since it

was discovered earlier that Lwhich is the learner whose last hypothesis was output and

held on to by L and that Lwhich really performed a change of hypothesis by outputting

h. Thus, L changes its hypothesis by outputting h and then possibly changes it again

by outputting previous hypothesis [last by whom] = previous hypothesis [1− which].

To summarize, the subroutine HypoDecide achieves the following. If L ever

converges, then at least one of the simulated learners must have converged, namely,

the one whose index is saved in the variable last by whom, and which produced the

last hypothesis output by L. If neither L0 nor L1 converges, then L cannot converge

due to the forced hypothesis change that it always performs before changing to the

hypothesis produced by the other sub-agent. Since both L0 with T0 and L1 with T1

are learner-box-proof for C and TBBC, neither L0 nor L1 can converge incorrectly.

Thus, L cannot converge incorrectly either, making L and T learner-box-proof for C

and TBBC, as required by the theorem. Furthermore, if L does not converge, then
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neither L0, nor L1 can have converged, since if one of them or both converged, so

would L. When BB ∈ BBC0 ∪BBC1, at least one of the sub-agents L0 and L1 must

converge correctly and therefore so must L, meaning that L and T learn C for all

learners Black Boxes BB ∈ BBC0 ∪BBC1 and teachers Black Boxes TBB ∈ TBBC.

Note that for the sake of this theorem we could allow that T and L be learner-

box-proof on some other class of Black Boxes (not on all possible Black Boxes) and

the theorem would still hold as long as this class is a superset of BBC0 ∪ BBC1.

The construction presented in the proof of Theorem 5 can also be used to prove

two other union theorems. We now present them both, and give brief explanations

of why the same construction works.

Theorem 6 Let TBBC0, TBBC1 and BBC be three classes of Black Boxes. Let C

be a class of partial recursive functions. Let L0 and L1 be learners and let T0 and T1

be teachers such that:

1. L0(BB) learns C from T0(TBB) for all TBB ∈ TBBC0 and BB ∈ BBC and

the agents are teacher-box-proof for C and BBC;

2. L1(BB) learns C from T1(TBB) for all TBB ∈ TBBC1 and BB ∈ BBC and

the agents are teacher-box-proof for C and BBC.

Then there exists a teacher T and a learner L such that L(BB) learns C from

T (TBB) for all TBB ∈ TBBC0 ∪ TBBC1 and BB ∈ BBC and the agents are

teacher-box-proof for C and BBC.
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Proof: Since both L0 with T0 and L1 with T1 are teacher-box-proof for C and

BBC, they cannot converge incorrectly if f ∈ C and BB ∈ BBC. This means

that L and T are also teacher-box-proof for C and BBC. Furthermore, if f ∈ C,

BB ∈ BBC and TBB ∈ TBBC0 ∪ TBBC1, then at least one of the sub-agents L0

and L1 converges correctly. Therefore, T and L learn C for all BB ∈ BBC and

TBB ∈ TBBC0 ∪ TBBC1. Again, for this theorem it was not important that T and

L were teacher-box-proof on the class of all Black Boxes.

Theorem 7 Let TBBC and BBC be two classes of Black Boxes. Let C0, C1 and

C ′ be classes of partial recursive functions such that C0 ∪C1 ⊆ C ′. Let L0 and L1 be

learners and let T0 and T1 be teachers such that:

1. L0(BB) learns C0 from T0(TBB) for all BB ∈ BBC and TBB ∈ TBBC and

the agents are target-proof on C ′ for BBC and TBBC;

2. L1(BB) learns C1 from T1(TBB) for all BB ∈ BBC and TBB ∈ TBBC and

the agents are target-proof on C ′ for BBC and TBBC;

Then there exists a teacher T and a learner L such that L(BB) learns C0 ∪C1 from

T (TBB) for all BB ∈ BBC and TBB ∈ TBBC and the agents are target-proof on

C ′ for BBC and TBBC.

Proof: Since both L0 with T0 and L1 with T1 are target-proof on C ′ for BBC

and TBBC, they cannot converge incorrectly if f ∈ C ′, BB ∈ BBC and TBB ∈

TBBC. This means that L and T are also target-proof on C ′ for BBC and TBBC.

Furthermore, if f ∈ C0 ∪ C1, BB ∈ BBC and TBB ∈ TBBC, then at least one of

the sub-agents L0 and L1 converges correctly. Therefore, T and L learn C0 ∪ C1 for

all BB ∈ BBC and TBB ∈ TBBC.
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Theorem 7 is our closest analogue to the Union Theorem by Minicozzi [31]. The

statement of the theorem is essentially the same, although the terminology and the

model differ somewhat. The proof of our union theorems is slightly more intri-

cate, since we cannot use the same method of choosing the hypotheses of simulated

learners. Minicozzi first transforms the simulated machines so that they give only

monotonically increasing hypotheses and always chooses the smaller of the last hy-

potheses output. Because our learners work with arbitrary Black Boxes, they in

general have no way of finding a bigger index for the same function in the Black

Box. A padding function is not in general known, even if it exists. This difficulty

was overcome using our method of holding the hypothesis that does not change.

Like Minicozzi’s theorem, our three union theorems can be generalized for infinite

but countable unions. We now give the statements of all the generalized theorems.

Theorem 5′ Let TBBC be a fixed class of Black Boxes and C be a fixed class of

partial recursive functions. Let BBC0, BBC1, . . . be a sequence of classes of Black

Boxes. Let T0, T1, . . . be a recursively enumerable sequence of teachers and L0, L1, . . .

be a recursively enumerable sequence of learners. Assume that for each i ∈ N,

• Li(BB) learns C from Ti(TBB) for all BB ∈ BBCi and TBB ∈ TBBC, and

• Li and Ti are learner-box-proof for C and TBBC.

Then there exists a teacher T and a learner L such that L(BB) learns C from

T (TBB) for all TBB ∈ TBBC and BB ∈
⋃
i∈N BBCi and the agents T and L

are learner-box-proof for C and TBBC.

Theorem 6′ Let BBC be a fixed class of Black Boxes and C be a fixed class of

partial recursive functions. Let TBBC0, TBBC1, . . . be a sequence of classes of
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Black Boxes. Let T0, T1, . . . be a recursively enumerable sequence of teachers and

L0, L1, . . . be a recursively enumerable sequence of learners. Assume that for each

i ∈ N,

• Li(BB) learns C from Ti(TBB) for all BB ∈ BBC and TBB ∈ TBBCi, and

• Li and Ti are teacher-box-proof for C and BBC.

Then there exists a teacher T and a learner L such that L(BB) learns C from

T (TBB) for all BB ∈ BBC and TBB ∈
⋃
i∈N TBBCi and the agents T and L

are teacher-box-proof for C and BBC.

Theorem 7′ Let BBC and TBBC be two fixed classes of Black Boxes and C ′ be a

fixed class of partial recursive functions. Let C0, C1, . . . be a sequence of classes of

partial recursive functions such that
⋃
i∈NCi ⊆ C ′. Let T0, T1, . . . be a recursively

enumerable sequence of teachers and L0, L1, . . . be a recursively enumerable sequence

of learners. Assume that for each i ∈ N,

• Li(BB) learns Ci from Ti(TBB) for all BB ∈ BBC and TBB ∈ TBBC, and

• Li and Ti are target-proof on C ′ for BBC and TBBC.

Then there exists a teacher T and a learner L such that L(BB) learns
⋃
i∈NCi from

T (TBB) for all BB ∈ BBC and TBB ∈ TBBC and the agents T and L are target-

proof on C ′ for BBC and TBBC.

Proof of Theorems 5′, 6′ and 7′: The construction given in the proof of Theo-

rem 5 has to be changed to allow for the simulation of a recursively enumerable set
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of teachers and learners. Both T and L have to be able to simulate an infinite (but

countable) number of subagents; thus infinite arrays (or some other data structures)

have to be used for suspended , step and previous hypothesis . It is also convenient

to use another infinite array initialized which allows the main agent to determine

whether a particular subagent has or has not been initialized yet. A subagent is

initialized just before it is simulated for the first time. Other than this, the only

fundamental change is in the mechanism of choosing the next sub-agent to simulate

and the sub-agent whose last hypothesis should be output by L.

In the simple case of two sub-agents they could both be simulated in parallel

by using a variable which, alternating between the values 0 and 1. Now a more

complicated scheme involving dovetailing is needed, for example, the For statement

in UnionTeacher and UnionLearner could be replaced by the following one:

For (n = 0, which = π1(n); ; n++, which = π1(n)).

This way L simulates each learner in the countable set for infinitely many steps and

T simulates each teacher.

Choosing the next hypothesis to output is a little more complicated than choos-

ing the next sub-agent to simulate. As before, if the sub-agent Lwhich outputs a

hypothesis (as seen from it writing the special marker on its (simulated) Output

Tape and moving to the right), a special subroutine HypoDecidePrime is called

with parameters which and h, where h is the new hypothesis. This subroutine is

given in Figure 7.4 and is similar in its logic to the subroutine HypoDecide used

in the simpler case of two sub-agents.

As before, the last hypotheses of all those sub-agents that have output any are
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HypoDecidePrime(which, h)
{

static previous hypothesis [∞] = { undefined, undefined, . . . };
static last by whom = undefined;
static n = −1;

If (previous hypothesis [which] == h)
Return;

previous hypothesis [which] = h;

If ((last by whom 6= undefined) and (last by whom 6= which))
Return;

For (n++; ; n++)
{

next = π1(n);

If (previous hypothesis [next ] 6= undefined)
Break; /* Out of this loop */

}

last by whom = next ;
Output h;
Output previous hypothesis [last by whom];

}

Figure 7.4 Subroutine HypoDecidePrime

kept in the array previous hypothesis and the index of the sub-agent whose hypothesis

was last output by L is stored in the variable last by whom. There is another static

variable n which insures that every sub-agent is treated “fairly” by L when it is

looking for the next hypothesis to output. The first If statement checks whether

there has been a hypothesis change done by Lwhich or whether it just output its

previous hypothesis again. In the latter case the subroutine just returns. In the

former case it is known that Lwhich has changed the hypothesis (or output its first

one) and its current hypothesis is stored in previous hypothesis [which]. After this the

subroutine checks whether there is a reason for L to output a hypothesis. In the case
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when L has already output some hypothesis previously (as seen from last by whom 6=

undefined) and the last hypothesis output by L was not produced by Lwhich (as seen

from last by whom 6= which), there is no need to output a new hypothesis and the

subroutine returns.

At the For loop of the subroutine it is known that either h is the very first

hypothesis produced by any sub-agent of L or that the last hypothesis output by

L was produced by Lwhich and that Lwhich has now made a hypothesis change by

outputting h. The loop finds the index next of some sub-agent that has also out-

put at least one hypothesis (the last hypothesis of this sub-agent will be output by

L in a moment). In the case when h is the first hypothesis output by any sub-

agent, next = which. In this case L outputs two hypotheses h. Even when h

is not the first hypothesis output by any sub-agent of L, it can still happen that

next = which = last by whom and that L outputs two hypotheses h. Note that

outputting the first h causes a hypothesis change of L (although it does not cause a

change in last by whom). This situation arises when the values that n goes through

in the For loop are such that π1(n) is not equal to an index of any sub-agent that

has already output a hypothesis, before becoming equal to which (again). It is

also possible, of course, that next 6= which after the loop and that L performs one

hypothesis change by outputting h and then possibly another one by outputting

previous hypothesis [last by whom] = previous hypothesis [next ]. The index of the

sub-agent whose last hypothesis was output by L is saved in last by whom in all

cases.

Intuitively speaking, HypoDecidePrime provides another dovetailing which is

independent from the one introduced in the revised version of UnionLearner, and

which insures that the following two possible cases have a satisfactory conclusion:
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1. If no simulated learners converge but at least one of them them outputs some

hypothesis then L should change its mind infinitely often. In this case all

simulated learners that have output hypotheses have to change their mind

infinitely often. L visits all these sub-agents infinitely often for the purpose of

outputting their last hypotheses as its own. This is so because π1 returns the

first components of all pairs of natural numbers according to some recursive

enumeration of them. Due to the inevitable hypothesis change when outputting

h (the first one if two in a row), the learner L does not converge but changes

its mind infinitely often.

2. If at least one of the simulated learners converges then L should converge to

the same hypothesis as this sub-agent. Due to the properties of π1, one of

the converging learners will be reached by the For loop (i.e., next will hold

its index) and reached after it has output a hypothesis that will not change.

Thus, L converges to the same hypothesis.

In the trivial case when none of the simulated sub-agents outputs any hypothe-

ses, the subroutine HypoDecidePrime does not get called and L does not output

any hypothesis. We know, of course, that none of the simulated learners can con-

verge incorrectly (because of learner-box-proofness, teacher-box-proofness or target-

proofness, depending on which theorem is being proved). From the discussion above

it follows that L cannot converge incorrectly either. This makes L and T learner-

box-proof, teacher-box-proof or target-proof on C ′, depending on which theorem is

being proved (for the appropriate classes). It can also be seen that if at least one of

the simulated learners converges then it converges correctly and so does L, although

it could converge to some other sub-agent’s (correct) hypothesis. This concludes the

proof of all three generalized union theorems.



Chapter 8

Conclusion

In this chapter we review our new learning (and teaching) model and sketch a few

of the many questions and directions that could be explored. We address questions

such as: “Why step back from all the achievements provided by Rogers’ Isomorphism

Theorem?”, “Why hide the Black Box from the learner (or teacher)?”, “How strong

is the model?”, “Isn’t it too strong?”, “How feasible is coding?”, “Can the model

be made more realistic?”, “Can it be extended/generalized?”, “What else can we do

next?”, and others.

We start with some justification of the model. It is true that Rogers’ Isomor-

phism Theorem and also the recursive relatedness theorem for complexity measures

have had a great impact on the development of all of theoretical computer science.

Basically, these theorems imply that all the normal programming systems are closely

related and, therefore, what can be done in one, can be done in all others with no sig-

nificant sacrifice in performance. Thus, when we need to prove something for Turing

machines and it gets hard, we have the option of switching to RAMs, for example.

Or, what happens more often, perhaps, in order to prove that some conventional

100
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programming language cannot achieve some goal, we prove that a Turing machine

cannot do it either.

Despite this, we feel that in learning theory there is a reason to look at different

programming systems and not to think of them as related. It is desirable that learning

theory reflects learning in real life where the capabilities of different learners do not

seem to be the same. Or, if we feel that the goal of learning theory is to get us closer

to building intelligent machines, where does Rogers’ Isomorphism Theorem take us?

To coding. That is how we program our computers and that is the way they respond

to our wishes best. But is it learning? Well, most researchers would say “no”. As

mentioned above, nearly every model in Learning Theory includes some features that

insure that learning does not become too trivial. Usually this concerns the possibility

of coding.

In our model we have tried to make coding useless as opposed to taking steps to

prevent it. That is, we have taken one big step which seems to destroy the common

ground that permits coding, even if it is a step back from the isomorphism of all

acceptable programming systems. Once the teacher and the learner have different

programming systems, with no known translation, we can allow them to exchange

information which would be regarded as highly confidential if the translation were

known. We believe that this “freedom of speech” in our model is something that

makes it worth exploring farther.

Another decision about the model, which may seem strange, is the separation of

agents and their Black Boxes. This is done to reflect another phenomenon which we

believe exists in reality—not knowing one’s own capabilities before they have been

tried out. Humans tend to feel very uncertain regarding their strengths with respect

to new things—certainty or at least optimism usually comes only after something
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similar has been successfully tried out. This applies to each new task and to physical

and mental strengths. We are not quite sure about how “smart” we are (especially,

while still in graduate school). We have much higher confidence with more familiar

issues than with strange, unfamiliar ones.

We now discuss how strong the model is. As the reader must have noticed,

Theorems 1 and 3 both refer to a situation where the class of all the partial recursive

functions is learned. This is a very strong result, since in regular inductive inference

even the class of total recursive functions cannot be learned [15]. This may suggest

that the model is on the strong side. This also urges us to look for other relationships

between the teacher’s and the learner’s Black Boxes, that would perhaps allow smaller

classes of functions to be learned. However, it is also obvious that the “strength” of

the model is due to an excellent job on the teacher’s side. As soon as the teacher

leaves, the learner (i.e., the independent learner) becomes quite helpless, being unable

to learn the constant all-zero function, as proved by Theorem 4. Both this inability

of the learner alone and the strength of it when the teacher knows the bound relating

the complexities of their Black Boxes are somewhat extreme.

There is, however, a definite positive side to the learner’s weakness in the absence

of the teacher. Namely, it discourages the idea that there could be some coding going

on between the teacher and the learner. When the learner tries to learn the all-zero

function without a teacher, there is not much that it could be missing. It knows

what the all-zero function looks like and it knows a number of indices for the all-zero

function in any natural programming system that the teacher could have had in its

Black Box. That is, it could simulate a number of teachers itself, which of course

would not help. According to Theorem 1, what it really needs is the knowledge of a

bound b(·, ·) such that its Black Box is b-related to some other reasonable Black Box
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that it can simulate. Without the bound, even the knowledge of how to build its

own Black Box (which is attainable in the limit for primitive recursive Black Boxes)

does not help. The bound b, however, does not give the impression of being some

encoding for the target function. It is the same total recursive function for whatever

partial recursive function the target could be. Besides, the Standard Teacher with

bound b and the Standard Learner are target-learner-box-and-teacher-box-proof and

in addition the Standard Teacher is responsive and the Standard Learner is non-

gullible. This is additional evidence that coding is unlikely here.

The above discussion exposes a question about the model. We could combine

the separate agents of the teacher and the learner into one agent with a somewhat

different task. This agent would be a Turing machine with two oracles, each giving

values of one Black Box. It would be given an index for the target function in one of

the Black Boxes and required to find a correct index in the other. Of course, if the

agent possesses some valuable information about the relationship of the programming

systems in the Black Boxes, like a translation function or the bound for b-relatedness,

it could then find an index in the other Black Box. But this does not look like such

a natural model any more. We feel that it is much nicer to separate the Black Boxes

by making each belong to a different agent, thus providing some symmetry to the

model. As was mentioned above, this could provide for easy extensions of the model

in the future, for example, the learner could become a teacher. Furthermore, the

intuition that one can teach “anything” to somebody who is not too much “slower”

(or “dumber”) is quite satisfying. The “opposite” result given by Theorem 3 then

also has an interesting interpretation: if somebody can learn everything from you,

then he/she cannot be much “slower” than you are. Thus, we feel that the model

has just the right balance of tools given to each agent.
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Now we discuss a wish-list for our new model. Most of our results concern learning

the class of all partial recursive functions in the limit; smaller target classes and

more restricted versions of relationships between Black Boxes are natural directions.

Perhaps there can be more natural relationships than b-relatedness. For example, we

could consider polynomial-time related Black Boxes. We could also consider nicer

classes of Black Boxes, e.g., polynomial-time computable as opposed to primitive

recursive.

Questions about the relationships between target-proofness, learner-box-proof-

ness, teacher-box-proofness, and combinations of them (for example, learner-box-

and-teacher-box-proofness) are another possible direction of future research. For

example, there might be some class of Black Boxes for the teacher and some class of

Black Boxes for the learner such that some class of target functions can be learned by

two agents that are both learner-box-proof and teacher-box-proof but are not learner-

box-and-teacher-box-proof. Union theorems open the door to many other questions

regarding combinations of proofness properties. For example, can we do unions on

both learners’ and teachers’ Black Boxes? A very interesting and probably difficult

question is how to translate some of these insights into the domain of polynomial-time

learning, instead of learning in the limit.

Rather than taking the model in a more applied direction, we could move in the

opposite direction, and allow an action-space to contain uncomputable functions. For

example, we might define a Pitch-Black Box to be any total three-argument function,

and provide our agents with those. The contents of the Input Tape are then an

enumeration of a function such that it has an extension contained in the teacher’s

Pitch-Black Box, and the other basic definitions remain essentially the same. In this

setting it appears that the analog of Theorem 1 still holds, but, beyond that, things
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rapidly become very murky. However, the gap between the (computable) cognitive

space and the (potentially uncomputable) action space might provide interesting

analogies to the opacity of some of our own “black box” capabilities.



Appendix to Part 1

Proof of Lemma 2

This section of the appendix contains the proof of Lemma 2 from Chapter 2.

Lemma 2 There is a universal Black Box UBB which is not acceptable.

One might think that an argument similar to the one presented in the proof

of Claim 9 in Chapter 6 would allow to conclude that every universal Black Box

is also acceptable. However, this is not so, since without knowing whether there

is a translation from some well-known programming system to this Black Box, we

cannot prove the existence of the necessary composition function. Now we present a

construction of a universal Black Box which is not acceptable.

Proof: A simple algorithm that gives the values of the Black Box UBB is given

in Figure 8.1. It uses the subroutine TMBB which returns the values of the Turing

Machine Black Box TMBB and was first used in Theorem 4 of Chapter 6. That is,

given arguments i, x and s, it simulates the Turing machine with index i on input x

for at most s steps and returns ? if the machine does not stop or does not produce

output before stopping, or a value y if the machine stops with output y.
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UBB(j, x, s)
{

i = blog(j + 2)c − 1; /* 2i+1 − 2 6 j < 2i+2 − 2 */

base = 2i+1 − 2;
offset = 0;

For (k = 0; k 6 i; k++)

If (TMBB(k, k, s) 6= ?)
offset = offset + 2k;

If (j == base + offset)
Return TMBB(i, x, s);

Else
Return ?;

}

Figure 8.1 Algorithm UBB

We can describe the functions contained in the Black Box UBB as follows. First,

separate the functions that it contains into clusters: the first two functions form the

first cluster, the next four functions form the second cluster, the next eight functions

form the third cluster, and so on. In general, if we number the clusters beginning with

0, then cluster i contains functions with indices from 2i+1 − 2 to 2i+2 − 3, inclusive.

Furthermore, cluster i contains the partial recursive function given by the Turing

machine with index i somewhere. The exact offset of the function in the cluster

depends on which Turing machines with indices from 0 to i stop on their own indices

and which do not. Now we elaborate on this property and explain the algorithm in

detail.

The algorithm starts by finding i such that 2i+1 − 2 6 j < 2i+2 − 2. In other

words, it finds the cluster to which function UBBj belongs. The beginning of this

cluster is held in variable base. Next it enters a For loop in which it attempts to

calculate the offset within the cluster, at which the function TMi should be. It is
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obvious that for different s this calculated offset will be different but as s → ∞,

offset will converge to the number
∑i

k=0 ck2
k, where ck = 1 if TMk stops on input k

and ck = 0 otherwise. In other words, the bit values of the final value of offset tell

which Turing machines with indices from 0 to i stop on their own indices as inputs.

Of course, for small enough s the value of offset may not have converged yet and thus

algorithm UBB may define some finite number of values for any function in cluster

i. However, at most one of these functions (namely, the one that has offset equal

to the limit value of variable offset , and which is given by TMi) can be defined on

infinitely many inputs. (Note that this function TMi will in general have complexity

in UBB much higher than that of TMi.)

Finally, the algorithm checks whether j matches its current estimate of where

function TMi should go in the Black Box UBB. If it does, it outputs whatever the

Turing machine with index i would output on input x in s steps. Otherwise, it

outputs ?.

From this description of the algorithm UBB it should be clear that every partial

recursive function is contained in UBB. Namely, function TMi can be found in cluster

i with offset such that its bit values encode which Turing machines with indices from

0 to i stop on their own indices as inputs. It is also obvious that the algorithm

computes a total recursive three-argument function. Therefore, UBB is a full Black

Box. From Lemma 1 it follows that UBB is a universal Black Box. Now we need to

prove that it is not an acceptable Black Box.

Suppose that it is. Then there exists a total recursive composition function

for it. Also, there is a translation from the Turing Machine Black Box TMBB

into our new Black Box UBB. There certainly is also a translation from UBB into

TMBB, as there is between every universal and acceptable Black Box. Furthermore,
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by Proposition 3.4.5 (Padding Lemma) from Machtey and Young [30], using these

translations we can find a total recursive one-to-one padding function p(x, y), such

that UBBx ≡ UBBp(x,y), for all natural x and y. It is important that the padding

function is one-to-one, since it implies that for every x and every z, there exists a y

such that p(x, y) > z.

Now we show that our assumption that UBB is acceptable can be used to solve the

diagonalized halting problem. Namely, we can now determine whether an arbitrary

Turing machine with index i stops on input i. For this we do the following. First

take an index i0 for the Turing machine that computes the all-zero function Z. Now,

find its image j0 in UBB under the translation from TMBB to UBB . That is, j0 is

such that UBBj0(x) = 0, for all x ∈ N. If j0 < 2i+1 − 2, we need to find a bigger

index for the all-zero function. We find the smallest y such that p(j0, y) > 2i+1 − 2,

where p(·, ·) is the padding function for UBB. Now we have some index m such that

m > 2i+1 − 2 and UBBm computes the all-zero function Z. Since Z is defined on all

inputs and in every cluster at most one function can be defined on infinitely many

inputs, we must have found the only all-zero function in that cluster. What remains

is to obtain the offset of UBBm within its cluster and decode the information stored

in the bit values.

The base of the cluster can be found by computing i′ = blog(m + 2)c − 1. The

offset is then given by m − i′. We are interested in seeing whether bit i is set in

m − i′, where bits are numbered from right to left, beginning with 0. This can be

readily checked by taking the offset modulo 2i+1 and then comparing it to 2i. That

is, bit i is set and the Turing machine with index i stops on input i if and only if

(m− i′) mod 2i+1 > 2i.

We have now given an algorithmic method to solve the diagonalized halting prob-
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lem using the assumption that the Black Box UBB is acceptable. It is well known

that this problem cannot be solved and therefore the assumption must be wrong.

Thus, the Black Box UBB, as given by the algorithm UBB, is universal but not

acceptable.

Proof of Weakened Corollary 10

In Chapter 6 we proved Theorem 4 which implied Corollary 10. This corollary

says that there is no universal Black Box TBB and no total recursive two-argument

function b(·, ·) such that all the primitive recursive acceptable Black Boxes BB are

b-related to TBB. In other words, for every universal Black Box TBB and for

every total recursive two-argument function b there is some “bad” primitive recursive

acceptable Black Box BBB, such that BBB is not b-related to TBB.

The proof of this corollary, as given in Chapter 6, was not constructive, i.e., it

was only proved that no bound can b-relate all primitive recursive acceptable Black

Boxes to any universal Black Box. It is possible, however, to give a construction of

a bad primitive recursive Black Box BBB for every given universal Black Box TBB

and every total recursive two-argument function b(·, ·). Presenting this proof in detail

is the goal of the next section, here we give a simpler, more elegant proof which is

not completely constructive in its nature and is good only for all acceptable (and not

all universal) Black Boxes TBB. Nevertheless, the construction of the bad primitive

recursive Black Box in this proof is very similar to that in the stronger proof and

therefore reading this section prior to the next one is highly recommended.

We now present the exact statement of the weakened Corollary 10 which we are
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going to prove.

Corollary 10′ For every acceptable Black Box TBB and every total recursive two-

argument function b(x, s) there exists a primitive recursive acceptable Black Box BBB

which is not b-related to TBB.

Proof: First we fix a very special Black Box for the teacher, namely, the Turing

Machine Black Box TMBB. We prove a lemma which says that in this special case,

for every total recursive two-argument function b there is a bad acceptable primitive

recursive Black Box for the learner. Then we assume that for some other acceptable

teacher’s Black Box TBB the corollary is not true, and use this assumption to prove

that it is not true for the Turing Machine Black Box TMBB as well, which contradicts

the lemma. In this step of the proof we rely on the b-relatedness of all acceptable

Black Boxes as well as the transitivity of b-relatedness.

Lemma 8 For every total recursive two-argument function b(x, s) there exists an

acceptable primitive recursive Black Box BBB which is not b-related to the Turing

Machine Black Box TMBB.

Proof: First let us analyze what it means for a Black Box BBB to be not b-related

to the Turing Machine Black Box TMBB. Then there must exist an i0 such that for

all j either:

1. BBBj � TMi0 , or

2.
∞
∃x ∈ Dom(TMi0) such that BBBj(x) > b(x,TMi0(x)).
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In other words, there exists an i0 such that for all j:

(
BBBj = TMi0

)
⇒
(∞
∃x ∈ Dom(TMi0) such that (BBBj(x) > b(x,TMi0(x)))

)
.

We choose the index i0 first. Let i0 be an index (in TMBB) for the constant

all-zero function Z. That is, TMi0 ≡ Z, meaning that TMi0(x) = 0, for all x ∈

N. Furthermore, let us specify that i0 is not just any index for Z but the one

corresponding to the Turing machine which simply ignores any input, outputs a 0

and then stops. Thus, we can also assume that this Turing machine takes exactly

s0 steps for any input. That is, TMi0(x) = s0, for all x ∈ N. Intuitively, we would

like to define BBB(i, x, s) to be the same as TMBB(i, x, s) except that on those

values of x where TMi0(x) = 0 we would like to insure that BBB(i, x, s) = ? for all

s 6 b(x, s0) and BBB(i, x, s0 + 1) = 0, so that BBBi(x) > b(x,TMi0(x)). However,

since the function b may not be primitive recursive, we use the step bound s in the

computation of b(x, s0).

In Figure 8.2 we present algorithm BBB which gives the values of the bad Black

Box BBB. We assume that the algorithm knows i0, s0, and an index β, such that the

Turing machine with index β computes the values of b(x, s). That is, TMβ(〈x, s〉) =

b(x, s), which is a total recursive function.

The algorithm uses the subroutine TMBB, known from the proof of Theorem 4,

which computes the values of the Turing machine Black Box TMBB. That is, given

arguments i, x and s, it simulates the Turing machine with index i on input x for at

most s steps and returns ? if the machine does not stop or does not produce output

before stopping, or a value y if the machine stops with output y.

BBB begins by finding the value of TMBB(i, x, s), which it puts in variable v.
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BBB(i, x, s)
{

v = TMBB(i, x, s);

If (v 6= 0) /* TMi(x) > s or TMi(x) 6= 0 */

Return v;

v = TMBB(β, 〈x, s0〉, s);

If (v == ? or v > s) /* TMβ(〈x, s0〉) > s or b(x, s0) > s */
Return ?;

Return 0;
}

Figure 8.2 Algorithm for constructing the bad Black Box

A value v = ? means that the Turing machine with index i does not stop on input

x in s or less steps. A value v > 0 means that it does stop but that its value is not

0. In both cases, checked by the test If (v 6= 0), the algorithm returns the value

v, which is the same value as TMBB would give. Only if v = 0, meaning that the

Turing machine with index i does stop on input x in s or less steps and gives output

0, the algorithm performs additional computation, which we now describe.

The algorithm knows the complexity of TMi0 on every input, which is s0. It now

tries to compute the bound b(x, s0). This is done by calling the subroutine TMBB

with parameters β, 〈x, s0〉, and s. The value is once again put in the variable v.

Since b is a total recursive function and TMβ(〈x, s0〉) computes b(x, s0), there will

be non-? return values from this call of TMBB for sufficiently big values of s. For

smaller values of s, however, v will be ?. If this is the case, the algorithm returns a

?. If v 6= ?, then it must be that the Turing machine with index β stops on input

〈x, s0〉, producing output v. Therefore, b(x, s0) = v. The algorithm compares v to s

and if v > s, it returns ? again. It returns 0 only if s > v = b(x, s0).
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Since the algorithm has no loops and only bounded simulations of Turing ma-

chines (performed inside the subroutine TMBB), it is clear that it computes a prim-

itive recursive three-argument function. Therefore, we can say that it defines a

primitive recursive Black Box. It is also obvious that this Black Box BBB contains

exactly the same functions as TMBB, and in the same order. This means that it is

an acceptable primitive recursive Black Box.

The algorithm can only return 0 if s > b(x, s0), and it does output 0 for all x,

if i is an index for the all-zero function and s is sufficiently big. This means that

for all x and for all j such that BBBj ≡ Z, we have that BBBj(x) > b(x, s0), which

completes the proof of the lemma.

We have constructed a primitive recursive acceptable Black Box BBB which is

not b-related to the Turing Machine Black Box TMBB. Now we prove Corollary 10′

for all acceptable Black Boxes. We assume that the corollary does not hold. Then

there is some acceptable Black Box TBB and there is a total recursive two-argument

function b(x, s) such that all primitive recursive acceptable Black Boxes are b-related

to TBB.

Since by Lemma 4 every two acceptable Black Boxes are b′-related for some

total recursive two-argument function b′, we have that TBB is b′-related to TMBB.

Now, using Lemma 6, the transitivity of b-relatedness, we have that all the primitive

recursive acceptable Black Boxes are b′′-related to TMBB, for some total recursive

two-argument function b′′. This contradicts Lemma 8 and our assumption must be

incorrect.

This proof is simpler than the one given in the next section. However, it is not as

strong in many respects. Most importantly, it does not give a construction of the bad
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Black Box for a given acceptable Black Box TBB and total recursive function b(·, ·).

It only constructs one for the special Black Box TMBB and proves that there exists

one for TBB as well. Secondly, the bad Black Box whose existence is proved (not the

Black Box BBB that is actually constructed) has high complexity for the constant

all-zero function on all but finitely many inputs x (since we used the fact that TBB

is b′-related to TMBB), as opposed to absolutely all inputs which is achieved in the

directly constructive proof of Corollary 10. And, finally, this proof only works for

acceptable Black Boxes instead of all universal Black Boxes.

Constructive Proof of Corollary 10

In this section we give a direct, constructive proof of Corollary 10.

Corollary 10 For every universal Black Box TBB and for every total recursive

two-argument function b(x, s) there exists a primitive recursive acceptable Black Box

BBB which is not b-related to TBB.

Proof (direct and constructive): As in the simpler proof above, we prove that

there exists a Black Box BBB and an index i0 such that for all j:

(
BBBj = TBBi0

)
⇒
(∞
∃x ∈ Dom(TBBi0) such that BBBj(x) > b(x,TBBi0(x))

)
.

We choose the index i0 first. Let i0 be an index (in the teacher’s Black Box

TBB) for the constant all-zero function Z. That is, TBBi0 ≡ Z, meaning that

TBBi0(x) = 0, for all x ∈ N. The choice of this function is not very important—any

primitive recursive function would do.
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BBB(i, x, s)
{

v = TMBB(i, x, s);

If (v 6= 0) /* TMi(x) > s or TMi(x) 6= 0 */

Return v;

For (z = 0; z 6 s; z++)
{

v = BBSim(tbb, 〈〈i0, x〉, z〉, s); /* Try to compute TBB(i0, x, z) */

If (v == ??) /* TMtbb(〈〈i0, x〉, z〉) > s */
Return ?;

If (v 6= ?) /* z == TBBi0(x) */
Break; /* Out of this loop */

}

If (v == ?) /* TBBi0(x) > s */
Return ?;

v = TMBB(β, 〈x, z〉, s);

If (v == ? or v > s) /* TMβ(〈x,TBBi0(x)〉) > s or b(x,TBBi0(x)) > s */
Return ?;

Return 0;
}

Figure 8.3 Algorithm that gives the values of the bad Black Box

Now we build the bad Black Box BBB for the learner such that for all j and all

x, if BBBj(x) = 0 then BBBj(x) > b(x,TBBi0(x)). This Black Box is “very bad” in

the sense that not only the all-zero function has high complexity for every occurrence

of it in the Black Box, but, in fact, every function the value of which is 0 on some

input x has high complexity on that input. Hence, every occurrence of the all-zero

function Z in the Black Box BBB has high complexity on all inputs, not just on

infinitely many.

The algorithm BBB for building the bad Black Box BBB (with respect to the
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Black Box TBB and a total recursive two-argument function b) is given in Figure 8.3.

We assume that it knows an index tbb such that the Turing machine with index tbb

computes the values of TBB(i, x, s). That is, TMtbb(〈〈i, x〉, s〉) = TBB(i, x, s). We

also assume that the algorithm knows an index i0, such that TBBi0 ≡ Z and that it

knows an index β such that the Turing machine with index β computes the values

of b(x, s). That is, TMβ(〈x, s〉) = b(x, s), which is total recursive.

The algorithm uses the subroutine TMBB, from the proof of Theorem 4, which

computes the values of the Turing Machine Black Box TMBB. That is, given ar-

guments i, x and s, it simulates the Turing machine with index i on input x for at

most s steps and returns ? if the machine does not stop or does not produce output

before stopping, or a value y if the machine stops with output y. This subroutine

is good for simulating Turing machines that do not output ? themselves. For those

that do, for example, the ones that implement Black Boxes, our algorithm uses a

more sophisticated subroutine BBSim. It takes three arguments i, x and s and

works almost like TMBB, except that it returns the special value ?? (instead of ?)

if the simulated Turing machine i does not stop or does not produce output before

stopping, or a value y (where y can be ? as well) if the machine stops with output y.

BBB begins by finding the value of TMBB(i, x, s), which it puts in variable v.

A value v = ? means that the Turing machine with index i does not stop on input

x in s or less steps. A value v > 0 means that it does stop but that its value is not

0. In both cases, checked by the test If (v 6= 0), the algorithm returns the value

v, which is the same value as TMBB would give. Only if v = 0, meaning that the

Turing machine with index i does stop on input x in s or less steps and gives output

0, the algorithm performs additional computation, which we now describe.

The algorithm then enters a For loop, which has a parameter z, initialized to
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0 and incremented after each iteration. In the last iteration of the loop z = s,

unless either the Return or the Break statement inside it gets executed sooner.

In each iteration the algorithm gets the value of BBSim(tbb, 〈〈i0, x〉, z〉, s), which it

puts in variable v. Recall that tbb is the index for a Turing machine that gives the

values of TBB. However, for small values of s this Turing machine may not stop,

in which case v is assigned a ??. This is tested in the next If statement and the

algorithm returns a ? if s is indeed not big enough for this Turing machine to stop.

The second If statement inside the loop checks whether v = ?. If so then the loop

is reiterated, since it means that the Turing machine with index tbb does stop on

input 〈〈i0, x〉, z〉 in s steps and that its output is ?, which, of course, means that the

value TBB(i0, x, z) is ?. The algorithm is interested in finding the least value of z

such that TBB(i0, x, z) 6= ?, which is the complexity of TBBi0 on input x. Thus,

if it ever happens that v 6= ? in this second test of the loop, the algorithm has the

complexity TBBi0(x) in variable z. Then it leaves the loop and, of course, gets past

the immediately following test If (v == ?). If, however, the loop was terminated

because z reached s + 1, then it must be that v = ? and the immediately following

test succeeds, causing the algorithm to return a ?. This occurs if the complexity of

TBBi0 on input x is greater than s and therefore could not be captured in variable

z during this bounded loop.

The following claim proves that for sufficiently big s, the loop will terminate via

the Break statement, meaning that TBBi0(x) will be found, for all x. If this were

not the case, then the algorithm could never return 0 and the Black Box defined by

it could not contain any functions with 0 values.

Claim 10 For every x there is an s such that the For loop terminates with z 6 s

and v 6= ?, i.e., via the Break statement.
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Proof: Suppose there is an x for which it does not happen. Let us denote by

stepsz
def
= TMtbb(〈〈i0, x〉, z〉) the number of steps it takes for the Turing machine with

index tbb to stop on input 〈〈i0, x〉, z〉. That is, BBSim(tbb, 〈〈i0, x〉, z〉, stepsz) cannot

output ??. Let us define M as M
def
= max{ stepsz : z 6 TBBi0(x) }. Let us now look

at what happens when s > max(TBBi0(x),M). It is clear that for all z 6 TBBi0(x),

the Turing machine with index tbb stops on input 〈〈i0, x〉, z〉 in s or less steps. Thus,

the value of v as returned by the subroutine BBSim will not be ??, meaning that

the loop will not terminate via the Return statement for these z. It is also clear,

that TBB(i0, x, z) = ?, for all z < TBBi0(x). Therefore the subroutine BBSim

will definitely output ? for these z, which will cause the loop to be reiterated, until

z reaches TBBi0(x). At this point z will be big enough for TBB(i0, x, z) to have

a non-? value, and s will be big enough (recall that s > max(TBBi0(x),M)) for

BBSim to discover this. Therefore, at this point the BBSim will return v 6= ? and

the loop will exit via the Break statement.

Thus the For loop succeeds in capturing TBBi0(x) in variable z, provided s is

sufficiently large, by Claim 10. If it succeeds, then the algorithm also gets past the

If test immediately following the loop. After that the algorithm tries to compute the

bound b(x, z). This is done by calling the subroutine TMBB with parameters β,

〈x, z〉 and s. The value is once again put in the variable v. Since b is a total recursive

function and TMβ(〈x, z〉) computes b(x, z), there will be non-? return values from

this call of TMBB for sufficiently big values of s. For smaller values, however, the

return value will be ?. If this is the case, the algorithm returns a ?. If v 6= ?, then

it must be that the Turing machine with index β has stopped on input 〈x, z〉, with

output v. Therefore, b(x, z) = v. The algorithm compares v to s and if v > s, it

returns a ? again. It returns 0 only if s > v = b(x, z) = b(x,TBBi0(x)).
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Since the loop in the algorithm is bounded and it performs only bounded simu-

lations of Turing machines, it follows that it computes a primitive recursive three-

argument function. Thus it defines a primitive recursive Black Box. From the dis-

cussion above it can also be seen that this Black Box BBB contains exactly the

functions of TMBB and in the same order. Therefore it is an acceptable Black Box.

The measures contained in this Black Box are different from the Turing Machine

Complexity Measure, though. We now explain how.

The first call to the subroutine TMBB with parameters i, x and s implies that

BBB(i, x, s) = ? whenever TMBB(i, x, s) = ?. In other words, BBBi(x) > TMi(x),

meaning that the complexity of any function BBBi on any input x in the Black Box

BBB is at least as high as the Turing machine complexity for the machine with index

i on input x. When TMi(x) 6= 0, we actually have that BBBi(x) = TMi(x). When

TMi(x) = 0, the complexity of BBBi on input x may be higher. In this case it is at

least as high as:

1. The value of TMi(x), as explained above;

2. The value of max(M,TBBi0(x)), as discussed in the proof of Claim 10;

3. The value of TMβ(〈x,TBBi0(x)〉), since the Turing machine with index β must

be simulated long enough on input 〈x, z〉 for it to produce output;

4. The value of b(x,TBBi0(x))+1, since only for s > v = b(x, z) = b(x,TBBi0(x))

can the algorithm return 0.

The last bound implies that for all x and for all j such that BBBj ≡ Z we have that

BBBj(x) > b(x,TBBi0(x)). Thus, BBB is a primitive recursive acceptable Black

Box and it is not b-related to TBB. This concludes the proof of Corollary 10.
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Note that this proof of Corollary 10 guarantees that every occurrence of the

all-zero function in BBB has high complexity on every input x, although this was

required only on infinitely many x. (The preceding proof of Corollary 10′ works for

all but finitely many x.)



Part II

Learning with Malicious Errors in

Queries
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Chapter 9

Introduction

9.1 Query Models

In this and the following part of the dissertation we focus on models of learning dif-

ferent from the ones explored in Part 1. Partial recursive functions are an extremely

powerful target rule to learn but the models where learning them is possible do not

require the algorithms to stop. The identification happens in the limit and it is not

possible to argue about the complexity of these algorithms. Therefore, we take a

different approach to learning and require that learning algorithms be efficient. This

generally means that their running time, used memory space and the number of ex-

amples that they require are polynomial in various input parameters that depend on

the concrete problem. In order to make this possible we have to replace the partial

recursive functions with simpler target rules, namely, concepts. Informally, a concept

is a binary classification of all the examples that a learner may see.

The models that we consider in this and the next part are all derived from that of

123
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a “minimally adequate teacher” [3]. In this model the learner is assisted by a teacher

that answers two types of queries: equivalence and membership. An equivalence

query corresponds to the learner verifying its current hypothesis about the target

function; the teacher either acknowledges that they match or provides a counterex-

ample. A membership query is a request by a learner to obtain the classification of

a particular example it has chosen.

There is an impressive and growing number of polynomial-time algorithms, many

of them quite beautiful and ingenious, to learn various interesting classes of concepts

using equivalence and membership queries. To apply such algorithms in practice,

however, researchers need to overcome a number of problems.

One significant issue is the problem of errors or omissions in answers to queries.

(An omission is an indecisive answer given by a teacher when asked to classify a

particular example.) Previous learning algorithms in the equivalence and member-

ship query model are guaranteed to perform well assuming that queries are answered

correctly, but there is often no guarantee that the performance of the algorithm will

“degrade gracefully” if that assumption is not exactly satisfied.

A related issue is the assumption that the target concept is drawn from a par-

ticular class of concepts, for example, monotone DNF formulas. Even if the target

concept is “nearly” a monotone DNF formula, there is typically no guarantee that

the learning algorithm will do anything reasonable. We address these two issues, and

demonstrate a useful relationship between them.

The focus of this part of the thesis is the model of equivalence and malicious

membership queries. In a malicious membership query, the answer given may be cor-

rect or it may be an error. The answers are persistent; that is, repeated queries about
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the same strings (examples) are given the same answer. Intuitively, the teacher never

admits its errors. The choice of which examples are classified incorrectly is assumed

to be made by a malicious adversary, hence the name of the model. Persistent errors

are the hardest to overcome; non-persistent errors may provide additional informa-

tion if contradicting answers are given, namely, that there has been an error and that

one of the answers is wrong.

We assume that equivalence queries remain correct, that is, the counterexamples

returned are always correct. Very interesting models can be constructed by allowing

incorrect counterexamples to be returned, but they are all beyond the scope of this

dissertation. Equivalence queries can be thought of as comparing the hypothesis

to some actual phenomenon existing in nature. They may seem too powerful at

first but are no stronger than the ability to draw random samples according to an

unknown distribution—the basis of the PAC model [39]. Algorithms that learn from

equivalence and membership queries can be translated to learn in the PAC model

with membership queries.

We introduce a new parameter L to quantify the “amount” of errors in mem-

bership queries—it is a bound on the table-size of the set of strings on which the

adversarial teacher gives the wrong answer. (The table-size of a set of strings is the

number of strings in the set plus the sum of their lengths. Note that strings may

have different lengths, including 0. Table-size is 0 if and only if the set is empty.)

A polynomial-time learning algorithm is permitted time polynomial in the usual

parameters and L. We give a polynomial-time algorithm to learn monotone DNF

formulas using equivalence and malicious membership queries.

When considering target concepts that are “nearly” in some fixed class of con-

cepts, we represent them as concepts from the class with “few” exceptions. That
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is, we consider variants of the concepts in a given class and use table-size of the

set of exceptions as a measure of “how different” the target concept is from one in

the specified class. We define what it means for a concept class to be polynomially

closed under finite exceptions. Some concept classes, for example, DFA’s and decision

trees, are polynomially closed under finite exceptions, while others, like monotone

DNF formulas, are not. For the latter, we define a natural operation of adding excep-

tion tables to the concept class to make it polynomially closed under exceptions. We

give a polynomial-time learning algorithm for the resulting class of monotone DNF

formulas with finite exceptions, using equivalence queries and standard membership

queries.

We then give a general transformation that shows that any class of concepts

that is polynomially closed under exceptions and polynomial-time learnable using

equivalence queries and standard membership queries is also polynomial-time learn-

able using equivalence queries and malicious membership queries. Corollaries include

polynomial-time learning algorithms using equivalence queries and malicious mem-

bership queries for the concept classes of DFA’s, decision trees, and monotone DNF

formulas with finite exceptions.

The notion of a finite variant of a concept, that is, a concept with a finite set

of exceptions, is a unifying theme in this part. Our model of errors in membership

queries can be viewed as asking equivalence queries to a teacher that knows the target

concept and asking membership queries to a teacher that knows a finite variant of

the target concept. When learning concepts with finite exceptions we can view

the learning problem as one in which the same teacher answers equivalence and

membership queries but it knows a finite variant of the monotone DNF formula. In

both cases, the goal of the learner is to exactly identify the concept according to
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which equivalence queries are answered.

9.2 Previous Work

The effect of errors in examples in the PAC model has been studied extensively,

starting with the first error-tolerant algorithm for the model, given by Valiant [39].

In this case the goal is PAC-identification of the target concept, despite the corruption

of the examples by one or another kind of error, for example, random or malicious

classification errors, random or malicious attribute errors, or malicious errors (in

which both attributes and classification may be arbitrarily changed).

There has been not as much work on errors or omissions in learning models in

which membership queries are available, and the issues are not as well understood.

One relevant distinction is whether the errors or omissions in answers to membership

queries are persistent or not. In general, the case of persistent errors or omissions is

more difficult, since non-persistent errors or omissions can yield extra information,

and can always be made persistent simply by caching and using the first answer for

each domain point queried.

Sakakibara defines one model of non-persistent errors, in which each answer to

a query may be wrong with some probability, and repeated queries constitute inde-

pendent events [34]. He gives a general technique of repeating each query sufficiently

often to establish the correct answer with high probability. This yields a uniform

transformation of existing query algorithms. The method also works for both of

Bultman’s models [18]. This could be a reasonable model of a situation in which

the answers to queries were being transmitted through a medium subject to random
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independent errors; then the technique of repeating the query is eminently sensible.

A related model is considered by Dean et al. for the case of a robot learning a

finite-state map of its environment using faulty sensors and reliable effectors [19].

This model assumes that observation errors are independent as long as there is a

nonempty action sequence separating the observations. This means that there is no

simple way to “repeat the same query”, since a nonempty action sequence may take

the robot to another state, and no reset operation is available. A polynomial-time

learning algorithm is given for the situation in which the environment has a known

distinguishing sequence. It achieves exact identification with high probability.

The method of “repeating the query” is insufficient for the more difficult case of

persistent errors or omissions in membership queries. In this case, we must exploit

the error-correcting properties of groups of “related” queries. In an explicit and very

interesting application of the ideas of error-correcting algorithms, Ron and Rubinfeld

use the criterion of PAC-identification with respect to the uniform distribution, and

give a polynomial-time randomized algorithm using membership queries to learn

DFA’s with high rates of random persistent errors in the answers to the membership

queries [33].

Algorithms that use membership queries to estimate probabilities (in the spirit

of the statistical queries defined by Kearns [27]) are generally not too sensitive to

small rates of random persistent errors in the answers to queries. For example,

Goldman, Kearns, and Schapire give polynomial-time algorithms for exactly learn-

ing read-once majority formulas and read-once positive NAND formulas of depth

O(log n) with high probability using membership queries with high rates of persis-

tent random noise or modest rates of persistent malicious noise [23]. It is an open

question whether Kushilevitz and Mansour’s algorithm that uses membership queries
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and exactly learns logarithmic-depth decision trees with high probability in polyno-

mial time can sustain nontrivial rates of persistent random noise in the answers to

queries [29].

Learning algorithms for other classes of concepts using equivalence and member-

ship queries may depend more strongly on the correctness of the answers to individual

queries; in these cases, there is no guarantee of a learning algorithm for the class that

can tolerate errors or omissions in the answers to membership queries.

A model introduced by Angluin and Slonim addresses these issues: equivalence

queries are assumed to be answered correctly, while membership queries are either

answered correctly or with “I don’t know” and the answers are persistent. The “I

don’t know” answers are determined by independent coin flips the first time each

query is made [13]. They give a polynomial-time algorithm to learn monotone DNF

formulas with high probability in this setting. They also show that a variant of this

algorithm can deal with one-sided errors, assuming that no negative point is classified

as positive. Goldman and Mathias also consider this model [24].

Sloan and Turán [11, 36] introduce a model of equivalence and limited member-

ship queries which is midway between that of Angluin and Slonim and our current

model. They consider malicious omissions in membership queries but assume that

the equivalence queries remain correct. More precisely, they explore two such mod-

els: a strict and a nonstrict one. In the strict model the final hypothesis of the

algorithm must be equivalent to the target concept while in the nonstrict model the

hypothesis and the target may differ on examples that are answered with “I don’t

know”. Furthermore, the equivalence queries in the nonstrict model may not use an

example previously classified as “I don’t know” for a counterexample. Both models

are proven equivalent for the purpose of polynomial-time learnability of concepts if
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equivalence queries are used. Sloan and Turán, however, also consider the simpler

strict and nonstrict models where equivalence queries are not available, only the

membership queries with malicious omissions. They give a polynomial-time learning

algorithm using limited membership queries in the nonstrict model for the class of

monotone monomials and also prove a lower bound on the query complexity for this

problem. They also give a polynomial time algorithm in this model for the class of

k-term monotone DNF formulas. If equivalence queries are available, they show that

general monotone DNF formulas can be learned.

Blum, Chalasani, Goldman and Slonim introduce the models of incomplete bound-

ary queries and unreliable boundary queries [14]. These are like limited and mali-

cious membership queries, respectively, but subject to the restriction that omissions

or errors may occur only in the “boundary region” of the target concept. Further-

more, equivalence queries may not return counterexamples from this region, or in

the case of PAC-learning, the example distribution has zero probability in this re-

gion. The running time of algorithms may not depend on the number of omissions

or errors received. They show that intersections of two halfspaces are PAC-learnable

with unreliable boundary queries (and thus also with incomplete boundary queries).

Considering learning from equivalence and “false-positive-only” unreliable boundary

queries, they show that read-once monotone DNF formulas with terms of size at least

four are learnable for boundary radius 1 (this implies learnability from equivalence

and incomplete boundary queries). They also show that (r + 1)-separable k-term

monotone DNF formulas are learnable from equivalence and “false-positive-only”

unreliable boundary queries for boundary radius r.

Frazier, Goldman, Mishra and Pitt [20] introduce a model of omissions in answers

to membership queries, called learning from a consistently ignorant teacher. The
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basic idea is to require that if the teacher gives answers to certain queries that would

imply a particular answer to another query, the teacher cannot answer the latter

query with “I don’t know.” For example, in the domain of monotone DNF formulas,

if the teacher classifies a particular point as positive, then the teacher cannot answer

“I don’t know” about any of the ancestors of the point. The goal of the learner

is to learn exactly the ternary classification of points into positive, negative, and

“I don’t know” that is presented by the teacher. Such a ternary classification can

be represented by the agreement of a set of binary-valued concepts; the agreement

classifies a point as positive (respectively, negative) if all the concepts in the set

classify it as positive (respectively, negative), otherwise, the agreement classifies the

point as “I don’t know.” They give efficient learning algorithms in this model for

monomials with at least one positive example, concepts represented as the agreement

of a constant number of monotone DNF formulas, k-term DNF formulas, DFA’s, or

decision trees, and concepts represented by an agreement of boxes with samplable

intersection. Compared to the model of Sloan and Turán, this model has a different

measure of the representational complexity of a concept with omissions, which allows

a much higher rate of omissions to be compactly represented. It also differs in

requiring the learner to reproduce exactly the “I don’t know” labels of the teacher,

whereas in the (nonstrict) model of limited membership queries such examples can

be classified arbitrarily.



Chapter 10

Preliminaries

10.1 Concepts and Concept Classes

Our definitions for concepts and concept classes are a bit non-standard. We have

explicitly introduced the domains of concepts in order to try to unify the treatment of

fixed-length and variable-length domains. We take Σ and Γ to be two finite alphabets.

Examples are represented by finite strings over Σ and concepts are represented by

finite strings over Γ.

A concept consists of a pair (X, f), where X ⊆ Σ∗, and f maps X to {0, 1}. The

set X is the domain of the concept. The positive examples of (X, f) are those w ∈ X

such that f(w) = 1, and the negative examples of (X, f) are those w ∈ X such that

f(w) = 0. Note that strings not in the domain of the concept are neither positive

nor negative examples of it.

A concept class is a triple (R,Dom, µ), where R is a subset of Γ∗, Dom is a map

from R to subsets of Σ∗, and for each r ∈ R, µ(r) is a function from Dom(r) to

132
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{0, 1}. R is the set of legal representations of concepts. For each r ∈ R, the concept

represented by r is (Dom(r), µ(r)).

A concept (X, f) is represented by a concept class (R,Dom, µ) if and only if for

some r ∈ R, (X, f) is the concept represented by r. The size of a concept (X, f)

represented by (R,Dom, µ) is defined to be the length of the shortest string r ∈ R

such that r represents (X, f). The size of (X, f) is denoted by |(X, f)|; note that it

depends on the concept class chosen.

The concept classes we consider in this part of the dissertation are boolean for-

mulas and syntactically restricted subclasses of them, boolean decision trees, and

DFA’s. The representations are more or less standard, except each concept represen-

tation specifies the relevant domain. For DFA’s, the domain of every concept is the

set Σ∗ itself. For boolean formulas and decision trees, we assume that Σ = {0, 1},

and each concept representation specifies a domain of the form {0, 1}n.

For each finite set S of strings from Σ∗, we define its table-size, denoted ‖S‖,

as the sum of the lengths of the strings in S and the number of strings in S. Note

that ‖S‖ = 0 if and only if S = h
�� . The table-size of a set of strings is related in a

straightforward way to an encoding of a list of the strings; see Chapter 12.

10.2 Queries

For a learning problem we assume that there is an unknown target concept r drawn

from a known concept class (R,Dom, µ). Information about the target concept is

available to the learning algorithm as the answers to two types of queries: equivalence

queries and membership queries.
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In an equivalence query, the algorithm gives as input a concept r′ ∈ R with the

same domain as the target, and the answer depends on whether µ(r) = µ(r′). If so,

the answer is “yes”, and the learning algorithm has succeeded in its goal of exact

identification of the target concept. Otherwise, the answer is a counterexample, any

string w ∈ Dom(r) on which the functions µ(r) and µ(r′) differ. We denote an

equivalence query on a hypothesis h by EQ(h).

The label for a counterexample v = EQ(r′) is the value of µ(r) on v, giving its

classification by the target concept. Since the hypothesized concept r′ and the target

concept r differ on the classification of the counterexample v, the label of v is also

the complement of the value of µ(r′) on v. Positive counterexamples are those with

label 1 and negative counterexamples are those with label 0.

In a membership query, the learning algorithm gives as input a string w ∈ Dom(r),

and the answer is either 0 or 1. If the answer is equal to the value of µ(r) on w, then

the answer is correct. If the answer is not equal to the value of µ(r) on w, then the

answer is an error or a lie.

In a standard membership query, denoted MQ, all the answers are required to

be correct. In a malicious membership query, denoted MMQ, each answer can be

either correct or an error. The related model of limited membership query requires

that answers of 0 and 1 are always correct but allows a third possible answer, ⊥.

The answers to malicious membership queries are also restricted as follows.

1. They are persistent; that is, different membership queries with the same input

string w receive the same answer. Note that non-persistent queries may reveal

some information; in case two different queries to the same string receive dif-

ferent answers, the learning algorithm knows that there has been an error on
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this string, though this will not in general determine the correct classification

of the string. Every algorithm designed to work with persistent queries can

be made to work with non-persistent ones by caching the queries and always

using the first answer for subsequent queries of the same string.

2. In addition, we bound the quantity of errors permitted in answers to malicious

membership queries. One natural quantity to bound would be the number of

different strings whose membership queries can be answered incorrectly, and

this works well in fixed-length domains. However, in variable-length domains,

we wish to account for the lengths of the strings as well as their number.

Therefore, in general the algorithm is given a bound L on the table-size, ‖S‖,

of the set S of strings whose malicious membership queries are answered erro-

neously during a single run. In the case of a fixed-length domain, {0, 1}n, we

may instead give a bound ` on the number of different strings whose MMQ’s

are answered incorrectly Note that L = `(n + 1) is a bound on the table-size

in this case.

Note that when L = 0 or ` = 0 there can be no errors in the answers to MMQ’s

and we have the usual model of standard membership queries as a special case.

We assume that an online adversary controls the choice of counterexamples in

answers to equivalence queries and the choice of which elements of the domain will be

answered with errors in malicious membership queries. When the learning algorithms

we consider are deterministic, the adversary may be viewed as choosing in advance

the set of strings for which it will give incorrect answers to membership queries, as

well as all the counterexamples it will give to equivalence queries.

We extend the usual notion of polynomial-time learning to our model of equiv-
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alence and malicious membership queries by allowing the polynomial bound on the

running time to depend on three parameters, that is, p(s, n, L). Here s is the usual

parameter bounding the length of the representation of the target concept, n is the

usual parameter bounding the length of the longest counterexample seen so far, and

L is a new parameter, bounding the table-size of the set of strings on which MMQ

gives incorrect answers.

The definitions are extended in the usual way to cover randomized learning al-

gorithms and their expected running times, and also extended equivalence queries,

in which the inputs to equivalence queries and the final result of the algorithm are

allowed to come from a concept class different from (usually larger than) the concept

class from which the target is drawn.

It is straightforward to transform any algorithm that uses malicious membership

queries into one that uses limited membership queries. Every ⊥ answer can be

replaced by a 0 or a 1 arbitrarily and given to the learner. Therefore learning with

malicious membership queries is at least as hard as learning with limited membership

queries in the strict model. The same applies to learning from equivalence and

malicious membership queries and learning from equivalence and limited membership

queries in the strict model. Note that the most general kind of membership query is

one in which both wrong and ⊥ answers are possible, but such queries are not harder

than the malicious ones. This work considers only malicious membership queries.

It is possible, however, that limited membership queries or a mix of malicious and

limited membership queries would allow other classes of concepts to be learned.
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10.3 Monotone DNF Formulas

We assume a set of propositional variables V and denote its elements by x1, x2,

. . . , xn, where n is the cardinality of V . A monotone DNF formula over V is a DNF

formula over V where no literal is negated. The domain of such a formula is {0, 1}n.

For example, for n = 20,

x1x4 ∨ x2x17x3 ∨ x9x5x12x3 ∨ x8

is a monotone DNF formula (with domain {0, 1}20). We assume that the target

formula h∗ has been minimized, that is, it contains no redundant terms. (Incidentally,

there is an efficient algorithm to minimize the number of terms of a monotone DNF

formula.) We denote the number of terms by m.

We view the domain {0, 1}n of monotone DNF formulas as a lattice, with com-

ponentwise “or” and “and” as the lattice operations. The top element is the vector

of all 1’s, and the bottom element is the vector of all 0’s. The elements are partially

ordered by 6, where v 6 w if and only if v[i] 6 w[i] for all 1 6 i 6 n. Often we refer

to the examples as points of the hypercube {0, 1}n. For a point v, all points w such

that w 6 v are called the descendants of v. Those descendants that can be obtained

by changing exactly one coordinate of v from a 1 to a 0 are called the children of v.

The ancestors and the parents are defined similarly. Note that v is both a descendant

and ancestor of itself.

For convenience, we use a representation of monotone DNF formulas in which

each term is represented by the minimum vector, in the ordering 6, that satisfies

the term. Thus, vector 10011 (where n = 5) denotes the term x1x4x5. In this
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representation, if h is a monotone DNF formula and v is a vector in the domain,

v satisfies h if and only if for some term t of h, t 6 v. That is, a monotone DNF

formula is satisfied only by the ancestors of its terms. In the other direction, we

say that term t covers point v if and only if v satisfies t. For the sake of simplicity

we often use in our algorithms something called “the empty DNF formula”. This is

the formula with no terms, which is not satisfied by any point, and is therefore the

identically false formula.

For any n-argument boolean function f , we call point x a local minimum point of

f if f(x) = 1 but for every child y of x in the lattice, f(y) = 0. The local minimum

points of a minimized DNF formula represent its terms in our representation.

For two n-argument boolean functions f1 and f2 we define the set Err(f1, f2) to

be the set of points where they differ. I.e., Err(f1, f2) = {x : f1(x) 6= f2(x) }. The

cardinality of Err(f1, f2) is called the distance between f1 and f2 and is denoted by

d(f1, f2).

There is a simple algorithm that learns monotone DNF formulas from equivalence

and standard membership queries. It cannot tolerate any errors or omissions but has

been the basis for many algorithms that can, including several in this thesis. This

algorithm was given by Angluin [4] and is shown in Figure 10.1.

The idea for this algorithm is to always ask an equivalence query with a subset

of the terms of the target formula, starting with the empty DNF formula. Thus,

every counterexample it receives must be positive and lie above some local minimum

point, corresponding to an unknown term of the target function. The algorithm uses

a simple subroutine Reduce, shown in Figure 10.2, to find such terms.
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LearnStandard()
{

h = “the empty DNF formula”;

While ((v = EQ(h)) 6= “yes”)
{

w = Reduce(v);
Add term w to h;

}

Output h;
}

Figure 10.1 Algorithm for learning monotone DNF from EQ’s and standard MQ’s

Reduce(v)
{

For (each child w of v)

If (MQ(w) == 1)
Return Reduce(w);

Return v;
}

Figure 10.2 Subroutine Reduce



Chapter 11

Malicious Membership Queries

In this chapter we present and analyze an algorithm that uses equivalence and ma-

licious membership queries to learn monotone DNF formulas. The key idea is to

depend on equivalence queries as much as possible, since they are correct.

11.1 The Algorithm

The algorithm keeps track of all the counterexamples and their labels received

through equivalence queries and consults them first, before asking a membership

query. The pairs of counterexamples and their labels are kept in a set named

CounterExamples. Obviously, for a positive counterexample v, if x > v then it

is not worth making a membership query about x; it must be a positive point. Sim-

ilarly, for a negative counterexample v, if x 6 v then x has to be a negative point of

the target formula. For this reason we define a subroutine CheckedMQ and use it

instead of a membership query. The subroutine is given in Figure 11.1.

140
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CheckedMQ(x, CounterExamples)
{

If (∃〈v, 1〉 ∈ CounterExamples s.t. x > v)
Return 1;

If (∃〈v, 0〉 ∈ CounterExamples s.t. x 6 v)
Return 0;

Return MMQ(x);
}

Figure 11.1 Subroutine CheckedMQ

Reduce(v, CounterExamples)
{

For (each child w of v)

If (CheckedMQ(w,CounterExamples) == 1)
Return Reduce(w,CounterExamples);

Return v;
}

Figure 11.2 Subroutine Reduce

Our algorithm is based on the algorithm LearnStandard, illustrated in Fig-

ure 10.1 and given by Angluin [4]. Thus, it also uses a subroutine Reduce in order

to move down in the lattice from a positive counterexample. All the membership

queries are done using the subroutine CheckedMQ, which possibly lets the algo-

rithm avoid some incorrect answers. The subroutine Reduce for the new algorithm

is given in Figure 11.2.

The algorithm for exactly identifying monotone DNF formulas using equivalence

queries and malicious membership queries is given in Figure 11.3.

The algorithm is based on a few simple ideas. A positive counterexample is

reduced to a point that is added as a term to the existing hypothesis h, which is a
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LearnMonDNF()
{

CounterExamples = h
�� ;

h = “the empty DNF formula”;

While ((v = EQ(h)) 6= “yes”)
{

Add 〈v, (1− h(v))〉 to CounterExamples;

If (h(v) == 0)
{

w = Reduce(v,CounterExamples);
Add term w to h;

}
Else

For (each term t of h)

If (t(v) == 1)
Delete term t from h;

}

Output h;
}

Figure 11.3 Algorithm for learning monotone DNF from EQ’s and MMQ’s

monotone DNF. That is, the new hypothesis classifies the latest counterexample and

possibly some other points as positive.

Negative counterexamples are used to detect inconsistencies between membership

and equivalence queries. They show that there have been errors in membership

queries that have caused wrong terms to be added to the hypothesis. The algorithm

reacts by removing all the terms that are inconsistent with the latest counterexample.

These are the terms that have the negative counterexample above them. A term is

removed only when there is a negative counterexample above it.
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11.2 Analysis of LearnMonDNF

Theorem 8 LearnMonDNF learns the class of monotone DNF formulas in poly-

nomial time using equivalence and malicious membership queries.

We need a definition and a simple lemma before proving the theorem.

Let h∗ be a monotone boolean function on {0, 1}n, and let h′ be an arbitrary

boolean function on {0, 1}n. Let C be any subset of {0, 1}n. The monotone correction

of h′ with h∗ on C, denoted mc(h′, h∗, C), is the boolean function h′′ defined for each

string x ∈ {0, 1}n as follows:

h′′(x)
def
=



1, if there exists y ∈ C such that y ≤ x and h∗(y) = 1;

0, if there exists y ∈ C such that x ≤ y and h∗(y) = 0;

h′(x), otherwise.

Note that since h∗ is monotone, the first two cases above cannot hold simulta-

neously. It is also clear that if the value of h′′(x) is determined by one of the first

two cases, h′′(x) = h∗(x). We prove a simple monotonicity property of the monotone

correction operation.

Lemma 9 Suppose h∗ is a monotone boolean function and h′ is an arbitrary boolean

function on {0, 1}n. Let C1 ⊆ C2 be two subsets of {0, 1}n. Let h1 = mc(h′, h∗, C1)

and h2 = mc(h′, h∗, C2). Then the set of points on which h2 and h∗ differ is contained

in the set of points on which h1 and h∗ differ. That is, Err(h2, h
∗) ⊆ Err(h1, h

∗).

Proof: Let x be an arbitrary point on which h2(x) 6= h∗(x). Then it must be
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that h2(x) = h′(x) and there does not exist any point y ∈ C2 such that x ≤ y and

h∗(y) = 0 or y ≤ x and h∗(y) = 1. Since C1 is contained in C2, there is no point

y ∈ C1 such that x ≤ y and h∗(y) = 0 or such that y ≤ x and h∗(y) = 1. Thus,

h1(x) = h′(x) and h1(x) 6= h∗(x). Consequently, Err(h2, h
∗) ⊆ Err(h1, h

∗).

Now we start the proof of Theorem 8.

Proof: Let h∗ denote the target concept, an arbitrary monotone DNF formula over

{0, 1}n with m terms. Let ` be a bound on the number of strings whose MMQ’s

are answered incorrectly. Because equivalence queries are answered correctly, if the

algorithm ever halts, the hypothesis output is correct, so we may focus on proving a

polynomial bound on the running time.

Since LearnMonDNF is deterministic and the target concept h∗ is fixed, we

may assume that the adversary chooses in advance how to answer all the queries,

that is, chooses a sequence y1, y2, . . . of counterexamples to equivalence queries and

a set S of strings on which to answer MMQ’s incorrectly. Note that |S| 6 `.

In turn, these choices determine a particular computation of LearnMonDNF

which we now focus on. It suffices to bound the length of this computation. In this

computation the answers to MMQ’s agree with the boolean function h0 defined as

follows. h0(x) = h∗(x) for all strings x 6∈ S and h0(x) = 1 − h∗(x) for all strings

x ∈ S. Also, if CheckedMQ is called with arguments x and C, where x is some

string and C is the current value of the set CounterExamples, its return value agrees

with the value of the boolean function mc(h0, h
∗, C) on string x.

The set CounterExamples only changes when a new counterexample is received.

Therefore, the successive distinct sets of counterexamples in this computation can
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be denoted by C0, C1, . . ., where C0 = h
�� and Ci = Ci−1∪{yi}, for i = 1, 2, . . .. If we

also define hi = mc(h0, h
∗, Ci) for i = 1, 2, . . ., then CheckedMQ answers according

to h0 until the first counterexample is received, then according to h1 until the second

counterexample is received, and so on.

Clearly, since h0 disagrees with h∗ on at most ` strings, d(h0, h
∗) 6 `. Since the

sets C0, C1, . . . are monotonically nondecreasing, Lemma 9 shows that Err(hi, h
∗) ⊆

Err(hi−1, h
∗) for i = 1, 2, . . ..

We say that a counterexample yi corrects a positive error at point x if hi−1(x) = 1

but hi(x) = h∗(x) = 0. We say that a counterexample yi corrects a negative error

at point x if hi−1(x) = 0 but hi(x) = h∗(x) = 1. Note that from the construction of

CheckedMQ it follows that positive errors can be corrected only by negative coun-

terexamples and negative errors can be corrected only by positive counterexamples.

Let there be `p positive and `n negative errors corrected in the whole computation.

Of course, `p + `n 6 `.

Claim 11 If Reduce is called after counterexample yi and before counterexample

yi+1, it returns a local minimum point of hi.

Proof: After yi is added to CounterExamples, CheckedMQ answers according to

hi. The claim follows from the construction of Reduce.

Claim 12 The following condition is preserved. At the i + 1-th equivalence query

EQ(h), each term of h is a positive point of hi.

Proof: We prove the claim by induction.
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Induction Basis: The first EQ is made on an empty formula. Thus, the claim

is vacuously true.

Induction Step: Suppose the claim is true up to the i-th EQ. Let h′ be the

hypothesis h at the i-th EQ and h′′ be the hypothesis h at the i + 1-th EQ. There

are two cases to consider.

Case 1: yi is a positive counterexample. Then hi(x) = 1 if and only if hi−1(x) =

1 or x > yi. Let t be the term returned by Reduce with parameters yi and

CounterExamples. Then h′′ = h′ ∨ t. Let t′′ be a term in h′′. Then either t′′ is

a term of h′ or t′′ = t. If t′′ is a term of h′ then hi−1(t
′′) = 1 by the inductive as-

sumption and therefore hi(t
′′) = 1. If t′′ = t then hi(t

′′) = 1 since t was returned by

Reduce(yi,CounterExamples) which used CheckedMQ, which answered accord-

ing to hi.

Case 2: yi is a negative counterexample. Then hi(x) = 1 if and only if hi−1(x) =

1 and x 66 yi. Let t′′ be a term in h′′, which consists of all those terms t′ of h′ such

that t′ 66 yi. Therefore, t′′ 66 yi and by the inductive assumption hi−1(t
′′) = 1. It

follows that hi(t
′′) = 1.

Claim 13 Once a term x is deleted from hypothesis h, it can never reappear in it.

Proof: Since x was deleted, there must have been a negative counterexample yi

such that yi > x. But then (yi, 0) belongs to CounterExamples and the subroutine

call CheckedMQ(x,CounterExamples) can never return 1 again, which is necessary

for x to be added to h.

We divide the run of the algorithm into non-overlapping stages. A new stage be-

gins either at the beginning of the run or with a new negative counterexample. Thus
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with each new stage CounterExamples contains one more negative counterexample

and possibly (but not necessarily) some new positive counterexamples. The following

claim establishes that the distance d(hi, h
∗) decreases with every new stage.

Claim 14 Every negative counterexample corrects at least one error. More formally,

if yi is a negative counterexample, then there exists x ∈ {0, 1}n such that hi−1(x) = 1

and hi(x) = h∗(x) = 0.

Proof: Let yi be a negative counterexample returned by EQ(h). Hence h(yi) = 1,

and there is some term x 6 yi in h. By Claim 12, hi−1(x) = 1.

Since h∗(yi) = 0 and yi > x it follows that h∗(x) = 0. By the definition of hi it

follows that hi(x) = 0.

From Claim 14 it follows that there are at most `p negative counterexamples.

Hence there are at most `p + 1 stages in the run of the algorithm.

We divide each stage of the algorithm into non-overlapping substages. A substage

begins either at the beginning of a stage or with a new positive counterexample that

corrects an error. Obviously there can be no more than `n positive counterexamples

that correct errors and hence no more than `p + `n + 1 substages in the whole run

of the algorithm. The distance d(hi, h
∗) decreases with every new substage. If,

however, functions hi and hj belong to the same substage, they are equivalent and

their local minima are the same. This allows us to bound the total number of positive

counterexamples.

Claim 15 Every new positive counterexample is reduced to a local minimum point

of h0, h1, . . . that has not been found earlier.
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Proof: Let v be a positive counterexample that Reduce is started with. Let t be

the point Reduce(v,CounterExamples) returns. Assume, by way of contradiction,

that t has already been found before. From Claim 13 it follows that t is a term in h.

Since v > t, it follows that h(v) = 1. This is a contradiction to the assumption that

v is a positive counterexample.

We denote the set of local minimum points of a boolean function f by Lmp(f).

We bound the total number of different local minima of the functions h0, h1, . . ..

Lemma 10 Let f and f ′ be n-argument boolean functions such that Err(f, f ′) =

{x}. Then

(a) If f ′(x) = 1 then
∣∣Lmp(f ′)− Lmp(f)

∣∣ 6 1.

(b) If f ′(x) = 0 then
∣∣Lmp(f ′)− Lmp(f)

∣∣ 6 n.

Proof:

(a) The only point that can be a local minimum of f ′ and is not a local minimum

of f , is x itself. The claim follows immediately.

(b) Any point which is a local minimum of f ′ but not of f is a parent of x. Since

x has at most n parents, the claim follows.

Corollary 11 Let f and f ′ be n-argument boolean functions such that Err(f, f ′)

contains dp positive points of f ′ and dn negative points of f ′. Then

∣∣Lmp(f ′)− Lmp(f)
∣∣ 6 ndn + dp.
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Corollary 12 Let g0, g1, . . . , gr be the subsequence of h0, h1, . . ., such that each gi is

the first of all the hj’s in its substage. Let Err(h∗, gi−1)− Err(h∗, gi) contain `p,i−1

positive and `n,i−1 negative points of h∗ for all i = 1, 2, . . . , r. Let Err(h∗, gr) contain

`p,r positive and `n,r negative points of h∗. Then the total number of different local

minima of functions g0, g1, . . . , gr, h
∗ is bounded above by m+n

∑r
i=0 `n,i +

∑r
i=0 `p,i.

Proof: Note that g0, g1, . . . , gr are the different functions in h0, h1, . . ., and that

CheckedMQ first answers according to g0, then according to g1 and so on. Obvi-

ously, Err(h∗, gi) ⊆ Err(h∗, gi−1) and Err(gi−1, gi) = Err(h∗, gi−1)−Err(h∗, gi) for

all i = 1, 2, . . . , r. Also note that for each i = 0, 1, . . . , r − 1, one of `p,i and `n,i is 0,

but `p,r and `n,r may both be positive.

We want to find
∣∣⋃r

i=0 Lmp(gi) ∪ Lmp(h∗)
∣∣, knowing that

∣∣Lmp(h∗)
∣∣ = m. Since

r⋃
i=0

Lmp(gi) ∪ Lmp(h∗)

⊆ Lmp(h∗) ∪
(
Lmp(gr)− Lmp(h∗)

)
∪
r−1⋃
i=0

(
Lmp(gi)− Lmp(gi+1)

)
,

from Corollary 11 it follows that

∣∣∣∣∣
r⋃
i=0

Lmp(gi) ∪ Lmp(h∗)

∣∣∣∣∣ 6 ∣∣Lmp(h∗)
∣∣+ (n`n,r + `p,r) +

r−1∑
i=0

(n`n,i + `p,i)

and the bound follows.

Since each error can be corrected at most once, it follows that
∑r

i=0 `n,i 6 `n

and
∑r

i=0 `p,i 6 `p. Hence the total number of the local minima and the total

number of positive counterexamples that can be found in a computation is bounded

by m + n`n + `p. The number of negative counterexamples in a complete run is
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bounded by the number of positive errors. The total number of counterexamples is

therefore bounded by m+ `nn+ `p + `p 6 m+ `(n+ 1) = O(m+ `n).

We now count the number of membership queries in a complete run of the algo-

rithm. Each positive counterexample v may cause at most n(n + 1)/2 membership

queries, before Reduce(v,CounterExamples) returns. Therefore there can be at

most O(mn2 + `n3) membership queries in a complete run of the algorithm.

It is also clear that the running time of the algorithm is polynomial in m, n and

`. This concludes the proof of Theorem 8.

Comparing LearnMonDNF with the algorithm for learning monotone DNF

formulas from equivalence and limited membership queries, given by Sloan and

Turán [36], we see that LearnMonDNF is able to cope with MMQ’s instead of

the more benign limited membership queries, but at a cost of making more queries

overall. In particular, it uses O(m + `n) equivalence queries while the algorithm of

Sloan and Turán only m + ` + 1, and it uses O(mn2 + `n3) malicious membership

queries while the algorithm of Sloan and Turán uses mn + `n limited membership

queries.



Chapter 12

Finite Exceptions

In this chapter we define concepts with exceptions and introduce concept classes

that are polynomially closed under finite exceptions. We present several examples of

such classes. Finally, we develop a polynomial-time algorithm that learns the class

of monotone DNF formulas with finite exceptions from equivalence and membership

queries.

12.1 Exceptions

For a concept (X, f) and a finite set S ⊆ X, we define the concept (X, f) with

exceptions S, denoted xcpt((X, f), S), as the concept (X, f ′) where f ′(w) = f(w)

for strings in X − S, and f ′(w) = 1 − f(w) for strings in S. (Thus f and f ′ have

the same domain, and are equal except on the set of strings S, which is a subset

of their common domain.) It is useful to note that S is partitioned by (X, f) into

the set of positive exceptions S+ that are classified as negative by f , and the set of

151
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negative exceptions S− that are classified as positive by f . When the domain X of

a function f is clearly understood and we do not wish to mention it explicitly, we

often call this function itself a concept. In this case we also use a shorthand notation

for xcpt((X, f), S), namely, we just write xcpt(f, S).

A concept class (R,Dom, µ) is closed under finite exceptions provided that for

every concept (X, f) represented by (R,Dom, µ) and every finite set S ⊆ X, the

concept xcpt((X, f), S) is also represented by (R,Dom, µ). If, in addition, there is

a fixed polynomial of two arguments such that the concept xcpt((X, f), S) is of size

bounded by this polynomial in the size of (X, f) and ‖S‖, we say that (R,Dom, µ)

is polynomially closed under finite exceptions.

This definition differs from a similar earlier definition given by Board and Pitt [16]

in that we do not require the existence of a polynomial-time algorithm that produces

the new concept given the old concept and a list of exceptions. However, for the

classes that we consider there are such algorithms.

We define a natural operation of adding finite exception tables to a class of con-

cepts to produce another class of concepts that “embeds” the first and is polynomially

closed under finite exceptions.

We assume Σ ⊆ Γ and |Γ| ≥ 2. We define a simple encoding e that takes a string r

from Γ∗ and a finite set of strings S ⊆ Σ∗ and produces a string r′ in Γ∗ from which r

and the elements of S can easily be recovered, and is such that |r′| = 2(1+ |r|+‖S‖).

The details of the encoding are as follows.

Assume that 0 and 1 are distinct symbols in Γ. We define

eb(b1b2 . . . bj)
def
= bbbb1bb2 . . . bbj,
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for b ∈ {0, 1} and b1, b2, . . . , bj ∈ Γ. Note that |eb(w)| = 2(1 + |w|) for every string

w ∈ Γ∗. We then define the encoding of r and S as

r′ = e(r, S)
def
= e0(r)e1(s1)e0(s2) . . . ek mod 2(sk),

where s1, s2, . . . , sk are the strings in S.

Given a concept class (R,Dom, µ), we define the class obtained from it by adding

exception tables to be (R′,Dom′, µ′), where R′ is the set of all strings of the form

e(r, S) such that r ∈ R and S is a finite subset of Dom(r), and for each r′ ∈ R′, the

concept represented by r′ = e(r, S) is the concept represented by r with exceptions

S, that is, (Dom′(r′), µ′(r′)) = xcpt((Dom(r), µ(r)), S).

For example, adding exception tables to the monotone DNF formulas produces

a concept class that we call monotone DNF formulas with finite exceptions. More

detailed discussion of classes obtained by adding exception tables and of polynomial

closure under finite exceptions can be found in the next section.

12.2 Examples and Lemmas

Example 2 The class of regular languages represented by DFA’s is polynomially

closed under finite exceptions. Board and Pitt give an algorithm that takes as input

a DFA M and an exception set S, and produces a new DFA for xcpt(M,S) [16]. The

DFA’s size is polynomial in the size of M and S.

Example 3 Another example of a class that is polynomially closed under finite

exceptions is the class of boolean decision trees. A boolean decision tree over a set
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of propositional variables V is a full (but not necessarily complete) labeled binary

tree. Each internal node of it is labeled with a boolean variable from V and each

leaf is labeled with 0 or 1. The value of a boolean decision tree on a domain point

is computed recursively starting at the root. Each internal node tests the variable

that it is labeled with. If the variable is set to 1, the result is the value of the right

subtree, otherwise it is the value of the left subtree. The value of a leaf node is its

label. The following result is taken from the paper by Board and Pitt [16] but since

the construction is not given there, we sketch it here.

Lemma 11 The class of boolean decision trees is polynomially closed under finite

exceptions.

Proof: Let T be a decision tree on n variables. Let S be the exception set for T .

We construct the decision tree for xcpt(T, S) as follows. We treat each exception

point x ∈ S individually. First we walk down from the root of the original tree T

to see where x is located in it. If this leads us to a leaf with depth n (i.e., if all

variables are tested on this path), then we just reverse the value of the leaf, because

this path is for x only. However, if we find ourselves at a leaf with depth less than

n, we have to add new internal nodes to the tree. Denote the value of this leaf by

b. We then continue the path that led us to this leaf with a path in which all the

remaining variables are tested. We move to the right if the variable is 1 and to the

left if it is 0. We end the path by a leaf with value 1− b. For each new internal node

on the path, we make the other child (the one not on the path) a leaf, and give it

the original value b. Thus, each counterexample adds at most n new internal nodes

to the tree. The size of the new tree, measured as the number of internal nodes, is

bounded by |T |+ n× |S| = |T |+ ‖S‖.
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Example 4 One more interesting example is the class of DNF formulas.

Lemma 12 The class of DNF formulas is polynomially closed under finite excep-

tions.

Proof: Let f be an m-term DNF formula over n variables and S be an exception

set for it. Let S be partitioned into the sets of positive and negative exceptions (S+

and S−, respectively), as described in Section 12.1. We construct a DNF formula for

xcpt(f, S) from the formula (f ∧ f−) ∨ f+, where f− is a DNF formula which is true

on all the points in its domain except the ones in S−, and f+ is a DNF formula which

is true exactly on the points in S+. The domain for all these formulas is {0, 1}n.

Obtaining f+ is easy—straightforward disjunction of all the terms in S+, where

we make terms from points by substituting the respective variable for a 1 value of

a coordinate and its negation for a 0 value. Obtaining f− is harder. First we make

a decision tree corresponding to f−. We put each point from S− individually in the

tree as a 0-valued leaf at the end of a path of length n. All the remaining leaves

get value 1. Then for each leaf with value 1 we make a term that will go into f−

by following the path from this leaf to the root. Obviously f− has at most n× |S−|

terms. Thus, after “multiplying” the terms out, the formula (f ∧ f−) ∨ f+ will have

at most mn× |S−|+ |S+| 6 (mn+ 1)× |S| terms.

For example, if f = x1x2 ∨ x3 is a DNF formula over {0, 1}3 and the set of

exceptions S is {010, 001, 101}, then S+ = {010} and S− = {001, 101}. The DNF

formula f+ that is true only on points from S+ is x1x2x3 and a possible decision tree

corresponding to the function that is true on all points except the ones in S− is given
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Figure 12.1 A decision tree corresponding to the formula f−

in Figure 12.1. Formula f− is then x3x2 ∨ x2. Hence,

xcpt(f, S) =
(
(x1x2 ∨ x3) ∧ (x3x2 ∨ x2)

)
∨ x1x2x3

= x1x2x3 ∨ x2x3 ∨ x1x2x3.

Example 5 By duality it follows that the class of CNF formulas is polynomially

closed under finite exceptions.

Note that stronger bounds on the size of the new formula can be obtained by

using the result by Zhuravlev and Kogan [41]. We, however, chose to present a

simpler argument. Also note that the size bound is insufficient for strong polynomial

closure under exception lists as defined by Board and Pitt [16].

Example 6 As our final example we show that any class that is obtained by adding

exception tables to another class is polynomially closed under finite exceptions.

Lemma 13 Let (R,Dom, µ) be any class of concepts. Then the concept class ob-

tained from it by adding exception tables is polynomially closed under finite excep-

tions.
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Proof: Let (R′,Dom′, µ′) be the class of concepts obtained from (R,Dom, µ) by

adding exception tables, as defined in Section 12.1. Let (X ′, f ′) be any concept from

(R′,Dom′, µ′) and let r′ ∈ R′ be a shortest representation of (X ′, f ′). Then there

exists a concept r ∈ R and a finite set S ⊆ Dom(r), such that (Dom′(r′), µ′(r′)), the

concept represented by r′, is equal to xcpt((Dom(r), µ(r)), S), the concept represented

by r with exceptions S, and |r′| = 2(1 + |r| + ‖S‖). Let S ′ ⊆ Dom′(r′) = Dom(r)

be any finite set. Let concept h′′ be defined as h′′
def
= xcpt((Dom′(r′), µ′(r′)), S ′). It

is easy to see that h′′ = xcpt((Dom(r), µ(r)), S 4 S ′) and thus h′′ is represented by

some r′′ ∈ R′ with size 2(1+ |r|+‖S4S ′‖) 6 2(1+ |r|+‖S‖+‖S ′‖) = |r′|+2‖S ′‖.

Corollary 13 The class of monotone DNF formulas with finite exceptions is poly-

nomially closed under finite exceptions.

12.3 The Learning Algorithm

In this section, we present an algorithm that learns the class of monotone DNF

formulas with finite exceptions. The target concept is a boolean function on n

variables h∗
def
= xcpt(h∗M , S

∗), where h∗M is some monotone DNF formula and S∗ is a

set of exceptions for it. The domain of the target concept is {0, 1}n.

We assume that we have an upper bound on the cardinality of S∗ and denote it

by l (i.e., |S∗| 6 l). If this bound is not known, we can start out by assuming it to

be any positive integer and doubling it whenever convergence is not achieved within

the proper time bound, which will be given later. We assume that h∗M is minimized

and has m terms.

Like LearnMonDNF, our current algorithm also has a set CounterExamples
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GetExceptions(h, CounterExamples)
{

S = h
�� ;

For (each 〈x, b〉 ∈ CounterExamples)

If ((h(x) 6= b))
Add x to S;

Return S;
}

Figure 12.2 Subroutine GetExceptions

that stores all labeled counterexamples received from equivalence queries. The pur-

pose of it is slightly different: it lets the algorithm conclude that some points cannot

be classified by h∗M alone, and, therefore, have to be included in the exception set.

The algorithm tries to find a suitable monotone DNF formula, which, coupled

with a proper exception set, would give the target concept. The equivalence queries

are made on a pair 〈h, S〉 of a monotone DNF formula h and a set of exceptions S.

The algorithm focuses only on building h, and sets S to be those elements of the set

CounterExamples that are currently misclassified by h. It uses a simple subroutine

GetExceptions for building S. The subroutine is given in Figure 12.2.

In order to classify the counterexamples received, the algorithm needs to evaluate

the current function xcpt(h, S). This is done by another very simple subroutine

TheFunction, given in Figure 12.3.

Our algorithm also uses a subroutine Reduce similar to those used in Chapter 11

and by the algorithm LearnStandard shown in Figure 10.1. With the help of this

subroutine it can move down in the lattice from a positive counterexample. Its goal

is to reduce the positive counterexample to some point that can be added as a term

to the formula h. Then the new hypothesis would classify the counterexample and
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TheFunction(h, S, x)
{

If (x ∈ S)
Return 1− h(x);

Else
Return h(x);

}

Figure 12.3 Subroutine TheFunction

Reduce(v, CounterExamples)
{

For (each child w of v)

If ((MQ(w) == 1) and (|{ y > w : 〈y, 0〉 ∈ CounterExamples }| 6 l))
Return Reduce(w,CounterExamples);

Return v;
}

Figure 12.4 Subroutine Reduce

possibly some other points as positive. However, this may not always be possible.

There can be overwhelming evidence that the candidate point is just a positive

exception and thus should not be added to h. More precisely, if there are more

than l negative counterexamples above a term of h, then they all have to be in the

exception set, which is then too big. Therefore the current subroutine Reduce is

somewhat more complex and checks whether a point has enough evidence to be an

undoubted exception point or not. The subroutine is given in Figure 12.4.

The algorithm for learning monotone DNF formulas with at most l exceptions

using equivalence queries and membership queries is given in Figure 12.5.

The algorithm is based on the following ideas. Each positive counterexample is

reduced if possible to a new term to be added to the formula, as was explained above.
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LearnMonDNFwithFX()
{

S = CounterExamples = h
�� ;

h = “the empty DNF formula”;

While ((v = EQ(〈h, S〉)) 6= “yes”)
{

Add 〈v, (1−TheFunction(h, S, v))〉 to CounterExamples;

If (TheFunction(h, S, v) == 1)

For (each term t of h)

If (|{w > t : (w, 0) ∈ CounterExamples }| > l)
Delete term t from h;

For (each 〈x, 1〉 ∈ CounterExamples)

If ((h(x) == 0) and (|{ y > x : 〈y, 0〉 ∈ CounterExamples }| 6 l))
{

w = Reduce(x,CounterExamples);
Add term w to h;

}

S = GetExceptions(h,CounterExamples);
}

Output 〈h, S〉;
}

Figure 12.5 Algorithm for learning monotone DNF with finite exceptions

In case this is not possible, the algorithm benefits anyway by storing it in the set

CounterExamples.

Negative counterexamples imply that there are not as many positive points in

the target concept as we thought. Sometimes more exception points are necessary

for the hypothesis to be correct. Other times some terms have to be removed from

the formula. Deleting a term happens only when there is enough evidence that a

term is wrong, namely, when there are more than l negative counterexamples above

it.
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12.4 Analysis of the Algorithm

Theorem 9 LearnMonDNFwithFX learns the class of monotone DNF formu-

las with exceptions in polynomial time using equivalence and standard membership

queries.

Proof: We begin the analysis with this simple claim.

Claim 16 Once a term t is deleted from hypothesis h, it can never reappear in it.

Proof: A term t can be deleted only if there are more than l negative counterex-

amples above it. To reappear, t must be returned by Reduce. But every point

returned by Reduce must have at most l negative counterexamples above it at the

time it is returned, so Reduce cannot return t again.

The following lemma shows what points Reduce can return.

Lemma 14 Reduce always returns either a local minimum of h∗ or a parent of a

positive exception in S∗.

Proof: First note that Reduce can only be called on points x such that h∗(x) = 1

and can only return points w such that h∗(w) = 1. Let w be a point returned by

Reduce. Assume w is not a local minimum point of h∗. Then there is some child

y of w such that h∗(y) = 1, and the number of negative counterexamples above y

must exceed l (or else Reduce would have been called recursively on y). Hence, y

cannot be above any term t of h∗M , since each term t can have at most l negative

counterexamples above it. Therefore, y is a positive exception in S∗.
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Now we are ready to bound the number of different points that can be returned

by the subroutine Reduce.

Claim 17 The number of different points that Reduce can return is at most m +

(n+ 1)l.

Proof: By Lemma 14, the number of different points that can be returned by

Reduce is at most the number of points that are local minima of h∗ or parents

of positive exceptions in S∗. Let S∗ contain lp positive exceptions and ln negative

exceptions, where lp + ln 6 l. The formula h∗M has m terms and therefore m local

minima. By Lemma 10, the number of local minima of h∗ is at most m + lp + nln.

Each positive exception has at most n parents, so the number of parents of positive

exceptions is bounded by nlp. Thus, the number of different points Reduce can

return, and the number of calls to Reduce, is bounded by m + (n + 1)lp + nln 6

m+ (n+ 1)l.

All equivalence queries are asked about the current hypothesis xcpt(h, S). Since

S is computed right before each equivalence query, the argument of an equivalence

query is always consistent with all the counterexamples seen to that point. Let hi

and hj denote the function xcpt(h, S) at the time when i-th and j-th equivalence

query is asked, respectively, and let i < j. Let vi be the counterexample returned by

the i-th equivalence query. Clearly, the values of hi(vi) and hj(vi) must be different.

Thus, the function xcpt(h, S) is different for each equivalence query. This allows us

to bound the total number of equivalence queries.

Claim 18 The number of equivalence queries made before success is bounded by

O(m2n2l3).
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Proof: We examine how xcpt(h, S) changes. Either h itself changes, or h remains

the same and S changes; namely, it contains exactly one more point, the most recent

counterexample.

By Claim 16, each term of h can appear in h or disappear from it only once. Thus

each possible term can induce at most two changes in formula h—first by appearing

in it and then by disappearing. Thus, h can only change twice as many times as the

number of terms that Reduce can return. Therefore, by Claim 17, there can be at

most 2(m+ (n+ 1)l) + 1 different functions h in a complete run of the algorithm.

We now count the number of times that S can change while h remains the same.

Set S grows larger by one with each new counterexample. It may contain some points

x such that h(x) = 1 and possibly some points x such that h(x) = 0. We bound the

number of each of these separately.

Each point x ∈ S such that h(x) = 1 is above some term of h. No term can have

more than l negative counterexamples above it. Therefore, the number of points

x ∈ S such that h(x) = 1 can be bounded by l times the bound m+ (n+ 1)l on the

number of different terms of h, that is, by ml + (n+ 1)l2.

Each point x ∈ S such that h(x) = 0 is a positive counterexample, and thus is

not above any term in h. Such an x must have more than l negative counterexamples

above it. Otherwise, the algorithm would have called Reduce on x and added a

new term t 6 x to h. If x has more than l negative counterexamples above it, then it

cannot be above a term in h∗M and thus has to be a positive exception in S∗. Hence

we have a bound of lp on the number of points x ∈ S such that h(x) = 0.

Altogether, we can bound the cardinality of S by |S| 6 ml + (n + 1)l2 + lp 6

(m + 1)l + (n + 1)l2. While h stays the same, the number of possible different sets
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S is at most (m+ 1)l + (n+ 1)l2 + 1.

Hence, the total number of equivalence queries in a complete run of the algorithm

is bounded by (2(m+ (n+ 1)l) + 1)× ((m+ 1)l + (n+ 1)l2 + 1) = O(m2n2l3).

We now count the total number of membership queries. Membership queries are

made only in Reduce, at most n(n+1)/2 per call to Reduce. Claim 17 bounds the

number of different points that Reduce can return by m + (n + 1)l. By Claim 16,

the number of calls to Reduce is bounded by the number of different points that

it can return. Therefore, the total number of membership queries is bounded by

O(mn2 + n3l).

It is not difficult to see that the total running time of the algorithm is polynomial

in n, m and l. This concludes the proof of Theorem 9.



Chapter 13

Exceptions and Errors

In this chapter, we exhibit a relation between learning concepts with exceptions and

learning with malicious membership queries. We give a generic algorithm transfor-

mation. This transformation shows that any class of concepts that is polynomially

closed under finite exceptions and learnable in polynomial time with equivalence and

standard membership queries is also learnable in polynomial time using equivalence

and malicious membership queries.

Theorem 10 Let H be a class of concepts that is polynomially closed under finite

exceptions and learnable in polynomial time with equivalence and standard member-

ship queries. Then H is learnable in polynomial time with equivalence and malicious

membership queries.

Proof: Let H = (R,Dom, µ) be a target class of concepts that is polynomially

closed under finite exceptions. We assume that Learn is an algorithm to learn H

using equivalence (EQ) and standard membership queries (MQ) in time pA(s, n),

for some polynomial pA. Without loss of generality, pA is non-decreasing in both
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arguments. We transform this algorithm into algorithm LearnwithMMQ, which

learns any concept h∗ ∈ H using equivalence and malicious membership queries in

time polynomial in |h∗|, n and the table-size L of the set of strings on which MMQ

may lie.

As in Chapters 11 and 12 the main idea is to keep track of all the counterexamples

seen and to use them to avoid unnecessary membership queries. For this purpose

we use a set CounterExamples again. As before it stores pairs of counterexamples

and their labels. Now, before asking a membership query about string x, we scan

CounterExamples to see whether it already contains x and a label for it. If x and

the label are found, the algorithm knows the answer and does not make the query.

(For some concept classes, such as monotone DNF formulas, it might be possible to

infer the classification of x according to the target concept h∗ even though x and its

label are not contained in CounterExamples. However, this simple checking suffices

for our algorithm and, what is more important, works in the general case.)

Another idea is to keep track of the answers received from membership queries,

and to use them to conclude that MMQ has lied. For this purpose Learnwith-

MMQ has a set MembershipAnswers. This set stores pairs 〈x, b〉 for which MMQ

was called on string x and returned answer b. After receiving a new counterexam-

ple from EQ, the algorithm stores it in CounterExamples and checks whether this

counterexample is already contained in MembershipAnswers. If it is present in Mem-

bershipAnswers with the wrong label, the algorithm discards everything except the

set CounterExamples and starts from scratch. If this is not the case, the algorithm

continues the simulation of Learn, which we now describe in detail.

The new algorithm simulates Learn on the target concept, but modifies Learn’s

queries as follows:
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NewMQ(x,CounterExamples,MembershipAnswers)
{

If (〈x, b〉 ∈ CounterExamples)
Return b;

b = MMQ(x);
Add 〈x, b〉 to MembershipAnswers;
Return b;

}

Figure 13.1 Subroutine NewMQ

• Each membership query of Learn, MQ(x), is replaced by a subroutine call

NewMQ(x,CounterExamples,MembershipAnswers). The subroutine is given

in Figure 13.1.

• Each equivalence query of Learn, x = EQ(h), as well as the output statement,

Output h, is replaced by the block of code given in Figure 13.2.

Note that when the simulation is restarted, only the set CounterExamples reflects

any work done so far. We now show that LearnwithMMQ is correct and runs in

time polynomial in |h∗|, n, and L. We partition the run of the algorithm into stages,

where a stage begins with a new simulation of Learn. First we show that a stage

cannot last forever.

Claim 19 Every stage ends in time polynomial in |h∗|, n, and L.

Proof: Note that H is polynomially closed under finite exceptions, which means

that there is a polynomial p(·, ·) such that for every concept h ∈ H and every

finite set S ⊆ Dom(h) there exists a concept h′ ∈ H equal to xcpt(h, S) such that

size |h′| 6 p(|h|, ‖S‖). Without loss of generality we can assume that p is non-

decreasing in both arguments. We now prove that each stage ends in time bounded
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{
x = EQ(h);

If (x == “yes”)
{

Output h;
Return;

}

Add 〈x, (1− h(x))〉 to CounterExamples;

If (〈x, h(x)〉 ∈ MembershipAnswers)
{

MembershipAnswers = h
�� ;

Restart Simulation, retaining CounterExamples;
}

}

Figure 13.2 The block of code replacing “x = EQ(h)” or “Output h”

by pA(p(|h∗|, L), n), where we count only the time spent on Learn operations (i.e.,

we do not count the simulation and bookkeeping overhead).

We prove this by contradiction. Assume that stage i goes over the limit. Let

us look at the situation right after the number of simulated steps of Learn exceeds

our stated time bound. Let Si denote the set of strings the MMQ has lied about

during this stage, up to the time bound. Let n denote the length of the longest

counterexample received during this stage, up to the time bound.

None of the strings in Si can belong to CounterExamples. Assume by way of con-

tradiction otherwise. Let x ∈ Si be a string contained in CounterExamples with some

label. Set Si contains exactly the strings that the MMQ lied on in this stage and time

bound, so there was a query MMQ(x). It must have happened before x was added

to CounterExamples. But then at the moment x was added to CounterExamples it

already belonged to MembershipAnswers and an inconsistency had to be found. The
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stage had to end.

Therefore, considering Si as an exception set, all the information received by

Learn in this stage and within the given time bound is consistent with the con-

cept h′ = xcpt(h∗, Si) ∈ H. Learn either has to output h′ in time bounded by

pL(p(|h∗|, ‖Si‖), n) 6 pL(p(|h∗|, L), n), or it has to receive a counterexample x ∈ Si.

In the former case, LearnwithMMQ makes an equivalence query EQ(h′) and re-

ceives a counterexample x ∈ Si, since only counterexamples from Si are possible at

that point. In either case, an element of Si is added to CounterExamples by the

above time bound, which we showed above was impossible. This is a contradiction

to the assumption that stage i goes over this bound.

What remains is to show that there can be only a polynomial number of stages.

That is, we do not restart the simulation too many times.

Claim 20 There are at most L+ 1 stages in the run of the algorithm Learnwith-

MMQ.

Proof: At the beginning of each stage (except the first one) the algorithm discovers

a new string where the MMQ lies and from then on MMQ can never lie on this

string again, because it is added to CounterExamples. To be more precise, MMQ

does not get a chance to lie on this string because it is never asked about it again.

Let S be the set of the strings that MMQ lies on. Since |S| 6 ‖S‖ 6 L, in stage

L + 1 the MMQ can lie on no strings (i.e., it is not asked queries about any of the

strings where it may lie). Therefore Learn has to converge to the target concept

h∗.

The time spent on simulation and bookkeeping is clearly polynomial in |h∗|, n, and
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L. Thus, LearnwithMMQ is a polynomial-time algorithm that uses equivalence

and malicious membership queries to learn the class of concepts H = (R,Dom, µ).

This concludes the proof of Theorem 10.

As corollaries of Theorem 10 we have the following.

Corollary 14 The class of regular languages, represented by DFA’s, is learnable in

polynomial time with equivalence and malicious membership queries.

Proof: Board and Pitt [16] have shown that this class of concepts is polynomially

closed under finite exceptions. Angluin [3] has shown that it is learnable in polyno-

mial time using membership and equivalence queries.

Corollary 15 The class of boolean decision trees is learnable in polynomial time

with extended equivalence and malicious membership queries.

Proof: Lemma 11 shows that the class of boolean decision trees is polynomially

closed under finite exceptions. Bshouty [17] has shown that it is learnable in poly-

nomial time using membership and extended equivalence queries.

Corollary 16 The class of monotone DNF formulas with finite exceptions is learn-

able in polynomial time with equivalence and malicious membership queries.

Proof: Corollary 13 shows that the class of monotone DNF formulas with ex-

ceptions is polynomially closed under finite exceptions. In Chapter 12 we gave an

algorithm that learns this class in polynomial time with membership and equivalence

queries.
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Note that we can also learn the class of monotone DNF formulas without any

exceptions with this generic algorithm, using extended equivalence and malicious

membership queries, since it is just a subclass of the class that allows exceptions.

However, the algorithm is much less efficient than the one described in Chapter 11.



Chapter 14

Discussion and Open Problems

In Chapter 11 we showed how to learn monotone DNF formulas in polynomial time

from equivalence and malicious membership queries. It would also be nice to give a

lower bound result for this problem. So far we can only prove the trivial fact that

there must be more membership queries than lies (otherwise membership queries do

not reveal any information and equivalence queries alone do not suffice [5]).

There are many other classes of concepts besides monotone DNF formulas that

do not have any lower bound results in the model of equivalence and malicious mem-

bership queries. Sloan and Turán [36] have proved such lower bounds in their model

of equivalence and limited membership queries for the class of monotone monomials

and for another specially constructed class. These bounds apply to the model of

equivalence and malicious membership queries as well. These, however, are the only

two lower bound results known for these models.

Another question regarding lower bounds for the model of equivalence and ma-

licious membership queries is whether this model is harder than or as hard as the
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model of equivalence and limited membership queries, from the point of view of

polynomial-time learnability. Sloan and Turán exhibited a concept class that re-

quires so many more examples to learn from equivalence and malicious membership

queries than it takes to learn from equivalence and limited membership queries that

no polynomial can bound the former number in terms of the latter. However, in

both models the number of queries required is exponential in the number of lies and

therefore does not answer the question whether one model is harder with respect to

polynomial-time learnability.

In Chapter 12 we gave a polynomial-time algorithm using equivalence and (error-

free) membership queries to learn the class of monotone DNF formulas with ex-

ceptions. Among the open problems regarding learning with exceptions are finding

polynomial-time algorithms for other classes of concepts and proving lower bounds

for any of the classes. Also, it may be possible to improve the running time of the

algorithm given in Chapter 12.

In Chapter 13 we showed that there is a polynomial-time algorithm using equiv-

alence and malicious membership queries for learning any concept class that is poly-

nomially closed under finite exceptions and can be learned in polynomial time using

equivalence and (error-free) membership queries. Thus, learning with exceptions is

not easier than learning with lies if polynomial-time identification is the only goal

and actual running times are not considered. An immediate question is whether

it really is harder than learning with lies or they both are equally hard. In other

words, is there a class that is polynomially closed under finite exceptions, is learnable

with malicious membership queries in polynomial time, and is not polynomial-time

learnable with exceptions?

The generic method of Chapter 13 allows us to learn new classes with equiva-
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lence and malicious membership queries. These include DFA’s and boolean decision

trees. However, this result leaves the question open for other classes, polynomial-time

learnable with equivalence and (error-free) membership queries, such as read-once

formulas, that are not polynomially closed under finite exceptions. A start in this di-

rection is made by Angluin [6], who gives a randomized polynomial-time algorithm to

learn read-once DNF formulas with equivalence and malicious membership queries.



Part III

Learning with Random Errors in

Queries
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Chapter 15

Introduction and Definitions

In this part of the thesis we continue to explore the effect of errors on the learning

model that uses equivalence and membership queries. In this model, introduced by

Angluin [3], a learner tries to exactly identify an unknown target concept belonging

to a known class of possible concepts. While being an appealing and well-studied

model [1, 2, 3, 7, 32], it is an error-free model, and thus more susceptible to failures

in practical applications. Several attempts have been made to augment this model

with various kinds of errors; see the discussion in Section 9.2 of Part 2 for more

details. Typically, when adding errors to the model, the equivalence queries remain

error-free, while membership queries are allowed to be a (limited) source of errors or

omissions [8, 12, 13, 24, 36].

Obviously, errors are harder to correct for than omissions which point out that

reliable classification of certain examples is not available. This part of the thesis con-

siders only errors in answers to membership queries. An important issue is whether

these errors are persistent or non-persistent. The former kind is harder to overcome,

as repeated queries do not reveal any more information. Another issue is how the
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errors are distributed. Two popular approaches are to treat them as either mali-

cious or as random. Malicious errors are introduced by an online adversary and were

the focus of Part 2. In this part we look at random errors in membership queries.

Random errors are distributed uniformly at random among all possible examples

according to a certain error rate (or fraction) p < 1/2.

When considering models that involve randomness it may happen that the learn-

ing algorithm cannot exactly identify the target concept. For example, in the PAC

model it is possible that the distribution of the examples seen is significantly different

from the real distribution. In models that allow errors in queries it may happen that

the error rate that the algorithm has to cope with is much higher than it is supposed

to be. It is even possible (although unlikely in all realistic models) that all the queries

are answered incorrectly. For these reasons, the goal of the learning algorithm can-

not be exact identification of the target concept under all circumstances. Instead,

algorithms are required to identify the target concept with high probability, i.e., with

probability at least 1− δ, for any δ > 0. Algorithms are considered polynomial-time

if their running times can be bounded by a polynomial in the size of the target con-

cept, the size of the longest counterexample seen and in 1/δ. Algorithms that have

to overcome errors (or omissions) occurring with rate p < 1/2 are in addition allowed

to have their running times depend polynomially on 1
1/2−p , i.e., on the inverse of how

far the error rate is from a fair coin toss.

Malicious errors can be expected to be harder to overcome than random errors,

and this is often seen from the fraction of errors that polynomial-time algorithms

for each model can sustain. For example, the algorithm LearnMonDNF from

Section 11.1 in Part 2 can overcome very few errors if its running time may not

depend on the actual number of errors received, as was the case in the model of
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equivalence and malicious membership queries. Each error it receives may result in

as many as Ω(n2) extra membership queries done, each of which may contain another

error. Thus, saying that it could perhaps cope with an error rate of about 1/n2 is

probably a very optimistic claim.

Monotone DNF formulas are a promising target concept class for models allow-

ing errors in membership queries, since the monotonicity may be useful in error

detection and correction. The simplicity of the algorithm LearnMonDNF given in

Section 11.1 of Part 2 suggests that with minor modifications it may be applicable

to the model of random errors as well. In this part of the thesis we randomize the

algorithm in a straightforward way and perform a thorough analysis of its probability

of success. After obtaining both upper and lower bounds on the probability of suc-

cess, we compare it to a randomized version of the algorithm that learns monotone

DNF formulas from equivalence and (error-free) membership queries [4], illustrated

in figure 10.1 in Part 2. This algorithm is very simple and efficient but depends on all

the answers being correct. It appears that the more complex algorithm is in general

more promising than the simple one, although its advantages are best seen for a very

limited range of the parameters representing error rate and term size.

Many of the relevant definitions and notation have already been presented in

Chapter 10 of Part 2. The most important concepts as well as notation and termi-

nology unique to this part are briefly explained below.

Boolean formulas are defined in terms of variables, each of which may be assigned

a value that is true or false. It is very common to denote the assignment of these

values to each of the variables by a string in {0, 1}n, also called boolean n-vector,

where n is the number of variables in the formula. By convention, 1 stands for true

and 0 for false. This applies also to the values of formulas on particular assignments;
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formulas are viewed as functions from the domain of all boolean n-vectors and having

a range of {0, 1}.

The individual digits in boolean n-vectors are called bits throughout this part

of the thesis. The sample space of the target formula consists of all the possible

assignments that can be applied to its n variables, i.e., of all the 2n boolean n-vectors.

We view this sample space as a lattice and consider each of the possible assignments

to variables as a point in this lattice. The top element is the vector of all 1’s and

the bottom element is the vector of all 0’s. Componentwise “or” and “and” are the

lattice operations. The partial order in the lattice is tied to the representations of

points by boolean n-vectors. A point x is above point y if and only if each bit of x

is not smaller than the corresponding bit of y and there is at least one bit that is

strictly greater. More formally, x[i] > y[i] for all 1 6 i 6 n and there is an 1 6 i 6 n

such that x[i] > y[i]. In this case we may also say that point y is below point x. All

the points that are above point x are called the proper ancestors of x, while those

that are below x are called its proper descendants. Proper ancestors of x together

with point x itself form the ancestors of x. Similarly for the descendants. Proper

ancestors of x that differ from it only in the value of one bit are called the parents

of x. Proper descendants of x that differ only in the value of one bit are called its

children.

In this part of the thesis we analyze the performance of algorithms on the target

concept class of monotone monomials. These are monotone DNF formulas that con-

tain exactly one term. Each monotone monomial can be represented conveniently by

its minimum point. This is the lowest point in the lattice such that its corresponding

assignment makes the monomial true. In other words, the value of the monomial is

1 (or true) on this minimum point but false on all its children. Due to the mono-
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tonicity, it is 1 only on all the ancestors of the minimum point. The points on which

the value of the monomial is 1 are called its positive points. All other points in the

lattice are called negative.

More generally, each monotone DNF formula can be described in this way by a

set of its local minimum points, each of which corresponds to one term of the formula

(assuming that it has been minimized). A natural way to identify monotone DNF

formulas (at least in the error free model of equivalence and membership queries) is

to start with a conjecture of the empty DNF formula which contains no terms and

is therefore the identically false formula. Unless this trivial hypothesis is correct, a

positive point will be returned as a counterexample, which, due to the monotonicity,

is a point that is above one of the local minimum points of the formula. All that

remains is to work one’s way down the lattice using membership queries to inquire

about the truth value of each point until a local minimum point is reached. This is

exactly the approach taken by the algorithm LearnStandard given by Angluin [4]

and illustrated in Figure 10.1 of Part 2. Each new term found is an increment of

progress towards the identification of the monotone DNF formula. In case the target

formula is a monotone monomial only one term needs to be found.

Clearly, when we have a positive point x that is above a minimum point y (which

is also positive) and we wish to traverse the lattice down to the minimum point,

there are certain bits of x that have values 1 and need to be set to 0 in order to

reach y. Such bits are called the unwanted 1-bits. There may be other bits that have

values 1 in both x and y. These bits are called the needed 1-bits and may not be set

to 0 while moving down the lattice (or else we will miss point y and find ourselves

on a negative point).

Our model of random persistent errors in the membership queries can be described
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as follows. Let the target function be denoted by f . A parameter p defines the

probability of an error in each individual membership query, independently of others.

This is also called the error rate. For each point x in the lattice, if a membership query

is asked about it and has not been asked before, the answer corresponds to f(x) (and

is not an error) with probability 1− p and it is 1− f(x) (an error) with probability

p. Subsequent queries about point x receive the same answer. Since the errors

are introduced independently of each other, we may consider that their location is

decided before the actual start of the learning algorithm. When membership queries

are subject to this kind of errors, we often refer to them as the random membership

queries and denote by RMQ.

In the next chapter we define the randomized algorithm that we want to analyze

and introduce an analogy between the algorithm and an imagined “game”, thus pro-

viding a somewhat more entertaining and less technical way to discuss the algorithm.

After that, in Chapter 17 we derive the exact formula for the probability of success of

the algorithm and give some sample values according to the formula. Subsequently,

in Chapter 18 we derive the lower and upper bounds on the formula and finally, in

Chapter 19 we compare the algorithm to a simpler one.



Chapter 16

The Algorithm and the Game

We would like to find out how well the algorithm LearnMonDNF from Section 11.1

of Part 2 performs in the setting of random and persistent errors. To simplify the

analysis, we focus on learning monotone monomials. We also restrict our attention

to only the first call of its subroutine Reduce. That is, we are interested in whether

Reduce will return the correct monomial or not. To be more precise, we also

consider it acceptable for Reduce to return a point above the monomial, that is,

to classify a subset of the positive points of the monomial as being positive. This is

not a serious error, since a subsequent equivalence query in such case would have to

present another positive counterexample, thus giving an opportunity to improve the

former result. As we will see in Chapter 18, if a point above the target monomial is

returned, then it is very likely to be close to the monomial, requiring few additional

counterexamples. We do not, however, want Reduce to return a negative point of

the monomial, as such would have to be discarded eventually. This would result in

a very inefficient way of finding the correct point since there seems to be no useful

bound on the number of such negative points that can be returned.
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RandomReduce(v)
{

While (unmarked child w of v exists)
{

Uniformly select a random unmarked child w;

If (RMQ(w) == 1)
Return RandomReduce(w);

Else
Mark w;

}

Return v;
}

Figure 16.1 Algorithm RandomReduce

Since we only look at the first call of Reduce, there are no useful counterexam-

ples to consider and thus the other subroutine CheckedMQ can be ignored (i.e.,

substituted by a call to MMQ in the model of malicious errors). The algorithm

basically consists of getting a positive point v from EQ and calling Reduce on it.

Note that Reduce has not been completely specified yet. In particular, there is

freedom in determining the order in which to examine the children of v. Since the

errors are now assumed to happen randomly, it seems natural and helps in analy-

sis to ask that the children of v are selected randomly (excluding the ones already

queried, if any). Thus, the interesting part of the algorithm LearnMonDNF in the

setting of random persistent errors can be described by the randomized algorithm

RandomReduce given in Figure 16.1.

Algorithm RandomReduce is started on a positive point v and it tries to move

down recursively from this point until it finds a local minimum point—one that is

positive but has only negative-valued children. Marking the children of v helps it

avoid repeated queries of the same point. If all the children have been queried and
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no positive ones found, the algorithm terminates returning its current point as its

hypothesis for the monotone monomial. In order to query the children of v it uses

the random membership query, denoted by RMQ, which may make random errors

at a certain rate. Thus there is a chance of the algorithm stopping above the actual

monomial and there is also a chance of it making a recursive call on a negative point—

a mistake that will inevitably lead to returning a negative point as the hypothesis

monomial. We now analyze the probabilities associated with the possible outcomes

of the call to RandomReduce.

We assume that RandomReduce is started on a positive point of the target

monomial. We are interested in the probability of it returning this monomial. We

call a success the event where RandomReduce returns any point above the tar-

get term. We call a complete success the event where RandomReduce returns

exactly the target monomial. If it returns a point not above the target, we call it

a failure. In order to calculate the probabilities corresponding to these events, we

need another description of how RandomReduce works. Let the point v on which

RandomReduce is started be encoded by a string containing T needed 1-bits and

F unwanted 1-bits. Obviously, all the unwanted 1-bits have to be set to 0 in order to

achieve complete success. In the following description of RandomReduce we focus

on the bits that the boolean n-vectors (or points in the lattice) consist of. We mark

and unmark individual bits, not the points themselves.

RandomReduce is initially invoked on a point containing some mix of 0-bits

and 1-bits. All 1-bits are considered unmarked. It sets to 0 a random unmarked

1-bit and asks RMQ whether the new string is a positive point of the target. If the

answer is 1 (i.e., “yes”), RandomReduce calls itself on this new point, unmarking

all marked 1-bits (if any) before that. If the answer is 0 (i.e., “no”), it flips the newly
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created 0-bit back to 1, marks it and tries a different unmarked 1-bit. When all the

unmarked 1-bits (if any) are tried, it terminates. It is easy to see that if any of the T

needed 1-bits get set to 0 and the RMQ classifies the new string as a positive point,

a failure is inevitable.

This description differs somewhat from the pseudocode of RandomReduce,

given in Figure 16.1. In the pseudocode points themselves become marked and

unmarking is not necessary. In the new description, however, we depend on points

being boolean n-vectors and we mark the position (or index, coordinate) where the

current point and its child being queried differ, as opposed to marking the child

itself. This way we can keep track of the progress of the algorithm by storing only a

string of n characters, where each character stands for a 0-bit, a marked 1-bit or an

unmarked 1-bit. If we wanted to mark points themselves, as given in the pseudocode,

we would need to store all the 2n points plus a flag for each point describing whether

the point is marked.

We now draw parallels between the behavior of the algorithm RandomReduce

and the following “Bottle Shooting Game.” The game proceeds through states,

each characterized by the number and kind of bottles in it. There are two kinds

of bottles—the fat ones and the thin ones. The fat bottles are called fat because

they are easier to hit than the thin ones. They correspond to the unwanted 1-bits

in the current point that RandomReduce is being called (or is calling itself) on.

The thin bottles correspond to the needed 1-bits in the current point. Thus, initially

there are F fat bottles and T thin bottles. During the game, some bottles, either

fat or thin, may get marked (as well as unmarked). Due to this there are really four

possible kinds of bottles in a state: “fat unmarked”, “fat marked”, “thin unmarked”

and “thin marked”. In the beginning no bottles are marked.
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The game consists of repeatedly choosing an unmarked bottle, shooting at it

and moving to a different state depending on whether the bottle was hit or missed.

Shooting at a bottle corresponds to querying a child of the current point in Ran-

domReduce. The marked bottles are “protected”, i.e., ineligible for shooting at,

which corresponds to a certain child of the current point having been queried already.

Hitting a bottle in the game corresponds to RMQ returning answer 1 on the queried

child of the current point. This would lead to a recursive call of RandomReduce

and in the game this leads to unmarking all the bottles (making them eligible for

shooting at). Missing a bottle corresponds to RMQ returning 0, which leads to the

child being marked and another unmarked child of the current point being selected.

In the game this leads to marking the bottle that was missed, i.e., protecting it

temporarily. Here it is worth pointing out that when shooting at a particular bottle

it is impossible to hit a different one (imagine, for example, that they are sufficiently

far apart from each other). Also note that if a bottle is hit, it becomes a pile of

broken glass that is thrown away at that very moment.

The difficulty of hitting a fat bottle and that of hitting a thin one is not the same.

As mentioned above, fat bottles correspond to the unwanted 1-bits in the current

point and a query of a child which differs from the current string in an unwanted

1-bit should return 1, if there is no error. This happens with probability 1− p in the

algorithm and therefore the probability of hitting a fat bottle is set to 1 − p in the

game. Naturally, the probability of missing a fat bottle is p, which corresponds to the

probability of RMQ making an error on the queried child. Thin bottles correspond

to the needed 1-bits and a query of a child differing from the current point in a needed

1-bit should return 0, if no error occurs. Therefore, the probability of missing a thin

bottle is set to 1−p in the game and the probability of hitting it is p. Since p < 1/2,
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it happens that fat bottles are easier to hit than the thin ones and thin are easier to

miss than the fat ones.

Hitting a thin bottle actually terminates the game after changing its state to a

special Failure state, since this corresponds to calling RandomReduce recursively

on a negative point, due to an unfortunate error in the RMQ. The game also ends

if there are no more bottles eligible for shooting at. In this latter case the game ends

in one of the Success states. These states have T marked thin bottles in them and

no unmarked fat bottles. The Success state that has no fat bottles at all is special,

for it leads to yet another state, the Complete Success state. In order to simplify

references to the beginning of the game, we introduce a special Start state. This is

the state that the game starts at and from this state it immediately moves to the

state with T thin and F fat bottles, all of which are unmarked. It is impossible to

move to any other state than this from the Start state.

Since the total number of thin bottles can never change in the game (excluding

Start, Failure and Success states), we do not consider it as a useful parameter of

each state. Instead, we treat it as a parameter of the game. Thus, the state with f

fat bottles, of which f ′ are unmarked, and T thin bottles, of which t′ are unmarked,

is denoted by ST (f, t′, f ′). The rules of the game are schematically presented in

Figure 16.2, where arrows denote the possible transitions between the states and the

numbers on arrows denote the probabilities associated with these transitions. The

Failure state and the transitions leading to it are omitted to save space—for every

state shown the probabilities on its outgoing arrows should add to 1; if they do not,

the remaining probability is for the omitted transition to the Failure state.
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For all 0 6 f ′ 6 f 6 F and 0 6 t′ 6 T :

Start
1−→ ST (F, T, F )

?

H
HHH

HHHH
HHH

HHHHj

�
���

���
���

���
���

ST (f, t′, f ′)

ST (f, t′ − 1, f ′) ST (f, t′, f ′ − 1) ST (f − 1, T, f − 1)

t′

t′+f ′
(1− p) f ′

t′+f ′
(p) f ′

t′+f ′
(1− p)

ST (f, 0, 0)
1−→ Successf

Success0
1−→ Complete Success

Figure 16.2 States, transitions and their probabilities in the game



Chapter 17

Probabilities Associated with the

Game Events

We are interested in the probability of getting from the Start state to any of the

Success states, and especially to the Complete Success state. This, of course, cor-

responds to getting from state ST (F, T, F ) to one of the states ST (f, 0, 0), where

0 6 f 6 F , and in the ideal case—to the state ST (0, 0, 0). It is possible to express

these probabilities explicitly, that is, in terms of T, F, f and p. Before we do this,

however, let us introduce some new notation and a convenient way to analyze the

game.

Let us imagine that the states of the game are positioned on a three-dimensional

grid according to their three parameters. The first parameter, the total number of

fat bottles, defines the level of a state. The game starts on level F , the top level.

The game either ends on this level, meaning that it goes to the Failure state or to

the SuccessF state, or it eventually moves down to level F − 1. From there it can

end again or move down one more level. Level 0 is the bottom level and its states

189
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have no fat bottles in them. Obviously, moving down one level is achieved by hitting

a fat bottle which is possible from most states of each level above level 0.

Within each level, the states are positioned from left to right according to the

second parameter, the number of unmarked thin bottles. States with more unmarked

thin bottles are to the left of those with less. They are also positioned closer or farther

according to the third parameter, the number of unmarked fat bottles. States with

more unmarked fat bottles are farther away than those with less.

There are also the special states in our game: Start, Failure, Complete Success

and Successf , for all 0 6 f 6 F . Let us imagine that these states are kept away

from our three-dimensional grid where the other states are positioned. It is, however,

convenient to imagine that Successf state “belongs” to level f , for all 0 6 f 6 F .

That is, they are away from the grid but stacked on each other at the appropriate

heights. Thus, Successf is often referred to as the level f Success state and the event

of reaching it is called success on level f . Figure 17.1 shows all the states of some

level f .

Now let us take an arbitrary state ST (f, t′, f ′), where t′ 6= 0 or f ′ 6= 0, and analyze

the possible transitions and their respective probabilities from this state (if both t′

and f ′ are 0, then the only transition possible is to Successf state):

1. Suppose a fat bottle is chosen and hit. This happens with probability f ′

t′+f ′
(1−

p) and takes us to state ST (f − 1, T, f − 1), which is the farthest leftmost state

of the next (one down) level.

2. Now suppose that a fat bottle is chosen and missed. This happens with proba-

bility f ′

t′+f ′
(p) and takes us to state ST (f, t′, f ′ − 1), which is on the same level

and one grid line closer than the original state.
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ST (f, T, f) → ST (f, T − 1, f) → · · · → ST (f, 0, f)

↓ ↓ ↓

ST (f, T, f − 1) → ST (f, T − 1, f − 1) → · · · → ST (f, 0, f − 1)

↓ ↓ ↓

ST (f, T, f − 2) → ST (f, T − 1, f − 2) → · · · → ST (f, 0, f − 2)

↓ ↓ ↓
...

...
. . .

...

↓ ↓ ↓

ST (f, T, 1) → ST (f, T − 1, 1) → · · · → ST (f, 0, 1)

↓ ↓ ↓

ST (f, T, 0) → ST (f, T − 1, 0) → · · · → ST (f, 0, 0)

↘

Successf

Figure 17.1 The states of level f and transitions between them

3. It is also possible to choose a thin bottle and miss. The probability of this

event is t′

t′+f ′
(1− p) and the next state in such case is ST (f, t′− 1, f ′), which is

on the same level and just to the right of the original state.

4. The final possibility is to choose a thin bottle and hit it. This event has

probability t′

t′+f ′
(p) and it leads to the Failure state.

It can be seen from the above description that the game proceeds as follows. It

starts at the farthest leftmost state of the top level. It possibly moves to some other

state on the same level, always moving only right or closer and never leaving the

level. The arrows in Figure 17.1 show how the game can change states within the

same level. If it manages to reach the closest rightmost state of the level, then it

goes straight to the SuccessF state and stops there. Otherwise, at some point it
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either goes to the Failure state (i.e., “fails”) or moves to the farthest leftmost state

of the next (one lower) level. From there the same behavior continues. The farthest

leftmost state of each level is called its entry state—moving to a lower level implies

moving to the entry state of that level.

For example, if there were 5 fat and 3 thin bottles originally, the game could

proceed as follows. It would start in state S3(5, 3, 5), the entry state of level 3, the

top level. From there it could go to state S3(5, 2, 5) due to a thin bottle chosen and

missed. From this state it could proceed to state S3(5, 2, 4) due to a fat bottle chosen

and missed. After that the game could move to state S3(4, 3, 4) of the level below,

if a fat bottle is chosen and hit. This is the entry state of level 4. After that the

game could proceed through states S3(4, 3, 3), S3(4, 2, 3), S3(4, 1, 3) before moving

to the entry state of level 3, which is state S3(3, 3, 3). These transitions correspond

to a fat bottle being missed, two thin bottles in a row being missed and then a fat

bottle being hit. After that the game could move through the states S3(3, 3, 2) and

S3(3, 3, 1) and then suddenly end in the Failure state. These transitions correspond

to two fat bottles being missed in a row and then a thin bottle being hit.

Returning to the analysis of the game in general, let us denote by P{S;S ′}

the probability of reaching state S ′ from state S, possibly via other states. Let us

denote by P{S→S ′} the probability of reaching state S ′ from state S directly; this

is possible only if this transition has a nonzero probability in the game. According

to this notation, we are interested in finding

F∑
f=0

P{Start;Successf} =
F∑
f=0

P{ST (F, T, F );ST (f, 0, 0)}.
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We are also interested in finding

P{Start;Complete Success} = P{ST (F, T, F );ST (0, 0, 0)}.

Clearly, it would be very helpful to express

P{ST (F, T, F );ST (f, 0, 0)} = P{Start;Successf}

in terms of T, F, f and p, that is, the probability of starting at the Start state and

reaching the level f Success state. The following theorem accomplishes this goal.

Theorem 11 For every 0 6 f 6 F , the probability P{ST (F, T, F );ST (f, 0, 0)} can

be expressed as

(1− p)T+F−fpf
F∏

g=f+1

∑T
t=0

∑g
h=1

(
T−t+g−h

T−t

)(
t+h−1

t

)
(1− p)T−tpg−h(

T+g
T

) .

Proof: Reaching state ST (f, 0, 0) from state ST (F, T, F ) involves first reaching the

entry state of level f and only then moving to state ST (f, 0, 0). Therefore, we may

write

P{ST (F, T, F );ST (f, 0, 0)}

= P{ST (F, T, F );ST (f, T, f)} ·P{ST (f, T, f);ST (f, 0, 0)}.

Of course, reaching a particular level f from level F involves going through all the

levels in between, therefore

P{ST (F, T, F );ST (f, T, f)} =
F∏

g=f+1

P{ST (g, T, g);ST (g − 1, T, g − 1)}.
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There are many different ways to get from the entry state of level g, ST (g, T, g), to

the entry state of level g − 1, ST (g − 1, T, g − 1). That is, on level g the game can

move to some arbitrary state ST (g, t, h), where t 6 T and h 6 g, and from there go

directly to ST (g − 1, T, g − 1), as long as h > 0. Therefore,

P{ST (g, T, g);ST (g − 1, T, g − 1)}

=
T∑
t=0

g∑
h=1

P{ST (g, T, g);ST (g, t, h)} ·P{ST (g, t, h)→ST (g − 1, T, g − 1)}.

The following lemma is the most important component in the proof of Theo-

rem 11.

Lemma 15 The probability of reaching state ST (g, t, h) from state ST (g, T, g), where

t 6 T and h 6 g, is given by

P{ST (g, T, g);ST (g, t, h)} =

(
T−t+g−h

T−t

)(
t+h
t

)(
T+g
T

) (1− p)T−tpg−h.

Proof: In order to reach state ST (g, t, h) from state ST (g, T, g), the game must do

T − t+ g− h transitions from state to state. Furthermore, T − t of these transitions

must go one state to the right on the same left-right grid line, and g − h of them

must move one state closer, staying on the same farther-closer grid line. There are

two possible directions for movement and each sequence of T −t+g−h transitions of

which T − t transitions move to the right and g− h transitions move closer specifies

a distinct way of getting from ST (g, T, g) to ST (g, t, h). Thus, there are
(
T−t+g−h

T−t

)
such ways altogether. Not surprisingly, the probability that the game proceeds in

any one of these ways is exactly the same. This can be best seen as follows.

Suppose the game is in state ST (g, t′, f ′) at the moment. The probability of
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moving right is then t′(1−p)
t′+f ′

and it leads to state ST (g, t′ − 1, f ′). The probability

of moving closer is f ′p
t′+f ′

and leads to state ST (g, t′, f ′ − 1). Suppose we fix some

way of getting from ST (g, T, g) to ST (g, t, h) and write down the probabilities of

all the transitions in the same order as they happen. Regardless of the direction of

movement, the total number of unmarked bottles decreases by 1 with each transition.

Thus, the denominators of these probabilities form the sequence T + g, T + g − 1,

T + g − 2, . . . , t+ h+ 2, t+ h+ 1.

The numerators of these probabilities form a sequence which is a merge of two

sequences: T (1− p), (T − 1)(1− p), (T − 2)(1− p), . . . , (t+ 2)(1− p), (t+ 1)(1− p)

and gp, (g−1)p, (g−2)p, . . . , (h+2)p, (h+1)p.This can be best seen as follows. The

numerator of the probability for the first transition to the right is definitely T (1−p),

regardless of what the denominator is (which will depend on how many moves in

the other direction have been performed already). The numerator of the probability

for the next transition to the right is (T − 1)(1 − p), again regardless of whether

it immediately follows the first transition to the right or has transitions that move

closer in between. So it continues, until all T − t transitions to the right are done.

Similarly, the probability for the first transition that moves closer has numerator gp,

regardless of how many transitions to the right have been performed before it. The

next one will have numerator (g − 1)p and so on. In general, the numerator of the

probability for the i-th transition to the right is (T − i+ 1)(1−p) and the numerator

of the probability for the i-th transition that moves closer is (g− i+ 1)p. Altogether,

no matter which way the game moves from ST (g, T, g) to ST (g, t, h), the numerators

of the sequence of probabilities corresponding to these transitions will contain each

of the elements T (1−p), (T−1)(1−p), . . . , (t+1)(1−p) and gp, (g−1)p, . . . , (h+1)p

exactly once.
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According to the above, the probability that the game will follow any particular

way of getting from ST (g, T, g) to ST (g, t, h) is equal to

(
T !
t!

)
(1− p)T−t

(
g!
h!

)
pg−h(

(T+g)!
(t+h)!

) =
T !g!

(T + g)!

(t+ h)!

t!h!
(1− p)T−tpg−h =

(
t+h
t

)(
T+g
T

)(1− p)T−tpg−h.

Multiplying this by the number of possible ways to get from ST (g, T, g) to ST (g, t, h)

gives the desired result.

Now we are ready to continue with the proof of Theorem 11. The probability of

moving from some state ST (g, t, h) directly to the entry state of the level below is

P{ST (g, t, h)→ST (g − 1, T, g − 1)} =
h

t+ h
(1− p).

Therefore, by Lemma 15, the probability to get to level g − 1 when starting at the

entry state of level g is

P{ST (g, T, g);ST (g − 1, T, g − 1)}

=
T∑
t=0

g∑
h=1

(
T−t+g−h

T−t

)(
t+h
t

)(
T+g
T

) (1− p)T−tpg−h · h

t+ h
(1− p)

=
(1− p)(
T+g
T

) T∑
t=0

g∑
h=1

(
T − t+ g − h

T − t

)(
t+ h− 1

t

)
(1− p)T−tpg−h.

Using the above we can express the probability of reaching level f from the Start
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state (or, equivalently, from the entry state of the (highest) level F ):

P{ST (F, T, F );ST (f, T, f)}

=
F∏

g=f+1

(1− p)(
T+g
T

) T∑
t=0

g∑
h=1

(
T − t+ g − h

T − t

)(
t+ h− 1

t

)
(1− p)T−tpg−h

= (1− p)F−f
F∏

g=f+1

∑T
t=0

∑g
h=1

(
T−t+g−h

T−t

)(
t+h−1

t

)
(1− p)T−tpg−h(

T+g
T

) .

The probability of moving from state ST (f, T, f) to state ST (f, 0, 0), i.e., the

probability of ending the game with a success in level f when starting at this very

level, is

P{ST (f, T, f);ST (f, 0, 0)} = (1− p)Tpf ,

as can be easily seen either from Lemma 15 or by observing that no matter in what

order the fat and thin bottles are chosen, each one of them has to be missed. Using

this knowledge, we can express the probability of starting in the Start state and

reaching the level f Success state, that is, state Successf , which is reachable only

from ST (f, 0, 0):

P{ST (F, T, F );ST (f, 0, 0)}

= (1− p)T (1− p)F−fpf
F∏

g=f+1

∑T
t=0

∑g
h=1

(
T−t+g−h

T−t

)(
t+h−1

t

)
(1− p)T−tpg−h(

T+g
T

) .

This completes the proof of Theorem 11.

Now we are ready to express the probabilities of success and complete success in

the game, which are simple corollaries of Theorem 11.
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Corollary 17 The probability of success in the game is:

(1− p)T
F∑
f=0

pf (1− p)F−f
F∏

g=f+1

∑T
t=0

∑g
h=1

(
T−t+g−h

T−t

)(
h+t−1

t

)
(1− p)T−tpg−h(

T+g
T

)
Proof: As mentioned above, this is the same as

∑F
f=0 P{Start;Successf}, which

equals
∑F

f=0 P{ST (F, T, F );ST (f, 0, 0)}. The result follows easily from Theorem 11.

Corollary 18 The probability of complete success in the game is:

(1− p)T+F
F∏
g=1

∑T
t=0

∑g
h=1

(
T−t+g−h

T−t

)(
t+h−1

t

)
(1− p)T−tpg−h(

T+g
T

)
Proof: As mentioned above, this is the same as P{ST (F, T, F );ST (0, 0, 0)}. Set-

ting f = 0 in the formula given by Theorem 11 completes the proof.

Unfortunately the formulas given in Corollaries 17 and 18 do not give a good

insight about the asymptotics of the probabilities of success or complete success in

the game. Tables 17.1, 17.2 and 17.3 illustrate the values of these probabilities for

different T , F and p.



199

F = 0 F = 20 F = 40 F = 60 F = 80 F = 100

T = 0 1.000000 0.998999 0.998999 0.998999 0.998999 0.998999

T = 100 0.904792 0.694685 0.650498 0.625407 0.608038 0.594833

T = 200 0.818649 0.484561 0.424966 0.392844 0.371341 0.355397

T = 300 0.740707 0.339025 0.278532 0.247585 0.227551 0.213061

T = 400 0.670186 0.237916 0.183145 0.156551 0.139904 0.128159

T = 500 0.606379 0.167458 0.120807 0.099312 0.086300 0.077346

T = 600 0.548647 0.118214 0.079939 0.063204 0.053408 0.046832

T = 700 0.496411 0.083693 0.053060 0.040352 0.033159 0.028449

T = 800 0.449149 0.059423 0.035328 0.025844 0.020652 0.017337

T = 900 0.406387 0.042311 0.023593 0.016603 0.012904 0.010599

T = 1000 0.367695 0.030211 0.015803 0.010699 0.008087 0.006500

Table 17.1 Probability of Complete Success in the Game for p = 0.001

F = 0 F = 20 F = 40 F = 60 F = 80 F = 100

T = 0 1.000000 0.999900 0.999900 0.999900 0.999900 0.999900

T = 100 0.990049 0.964118 0.957800 0.954040 0.951357 0.949272

T = 200 0.980198 0.929646 0.917503 0.910314 0.905202 0.901238

T = 300 0.970444 0.896434 0.878930 0.868621 0.861316 0.855664

T = 400 0.960788 0.864436 0.842007 0.828866 0.819585 0.812423

T = 500 0.951227 0.833605 0.806661 0.790958 0.779903 0.771394

T = 600 0.941762 0.803899 0.772825 0.754808 0.742168 0.732462

T = 700 0.932391 0.775275 0.740432 0.720335 0.706282 0.695518

T = 800 0.923113 0.747694 0.709421 0.687460 0.672155 0.660461

T = 900 0.913927 0.721116 0.679730 0.656107 0.639698 0.627192

T = 1000 0.904833 0.695504 0.651304 0.626205 0.608829 0.595619

Table 17.2 Probability of Complete Success in the Game for p = 0.0001
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F = 0 F = 20 F = 40 F = 60 F = 80 F = 100

T = 0 1.000000 0.999990 0.999990 0.999990 0.999990 0.999990

T = 100 0.999000 0.996351 0.995696 0.995305 0.995025 0.994806

T = 200 0.998002 0.992726 0.991422 0.990642 0.990084 0.989650

T = 300 0.997004 0.989115 0.987166 0.986002 0.985169 0.984521

T = 400 0.996008 0.985517 0.982928 0.981383 0.980278 0.979418

T = 500 0.995012 0.981932 0.978709 0.976786 0.975412 0.974343

T = 600 0.994018 0.978361 0.974509 0.972212 0.970571 0.969294

T = 700 0.993024 0.974803 0.970326 0.967659 0.965753 0.964271

T = 800 0.992032 0.971258 0.966163 0.963127 0.960960 0.959275

T = 900 0.991040 0.967726 0.962017 0.958618 0.956192 0.954305

T = 1000 0.990050 0.964208 0.957889 0.954129 0.951447 0.949361

Table 17.3 Probability of Complete Success in the Game for p = 0.00001



Chapter 18

Bounds on Probabilities

In this chapter we develop a lower bound on the probability of success and both

upper and lower bounds on the probability of complete success in the game. We

start with the upper bound.

18.1 Upper Bound

There are several relatively easy upper bounds that can be obtained for the proba-

bility of complete success. The following theorem presents one which is best for the

majority of interesting p, T and F values and is also very simple to prove.

Theorem 12 The probability P{Start;Complete Success} of reaching the Com-

plete Success state when starting at the Start state is bounded from above by

(
1− pT

T + F

)F
(1− p)T .

201
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Proof: In order to reach state ST (0, 0, 0) the game must necessarily go through

the entry states of all the levels, ST (F, T, F ), ST (F − 1, T, F − 1), . . . , ST (1, T, 1).

In each state ST (f, T, f), where 1 6 f 6 F , there is a possibility of immediate

failure, which has probability pT
T+f

. The game must also go through all of the states

ST (0, T, 0), ST (0, T−1, 0), . . . , ST (0, 1, 0). In each of these states there is a possibility

of immediate failure which has probability p. Thus, the probability of reaching the

Complete Success state from the Start state is bounded from above by

(
F∏
f=1

(
1− pT

T + f

))
· (1− p)T 6

(
1− pT

T + F

)F
(1− p)T ,

and the proof of Theorem 12 is complete.

18.2 Lower Bound for Success

Reasonable lower bounds for the probability of success or complete success are much

harder to obtain. In this section, we present a lower bound for the probability of

success in the game and give a proof of it in a “top-down” fashion. Certain compo-

nents of the proof are discussed in later sections. A lower bound for the probability

of complete success can be developed from our lower bound for the probability of

success; this is also done in a separate section.

Theorem 13 The probability
∑F

f=0 P{Start;Successf} of reaching any of the Suc-

cess states when starting at the Start state is bounded from below by

1− 2pT

(
ln

(
1 +

F − 1

pT + 1

)
+ 1.5

)
,
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for all T > 2.

Note that a similar expression gives a lower bound for all T > 1:

1− 2pT

(
ln

(
1 +

F − 2

pT + 2

)
+ 2.5

)
.

We prove the correctness of both formulas but focus more on the former, since we

are mostly interested in understanding the asymptotics of these bounds.

Proof: The main idea of the proof is changing the game to a harder one (in terms

of the probability of success) which is easier to analyze. We call this the new game

and refer to the original game as the old game. The new game differs from the old

one only on some (higher) levels, namely on levels F , F −1, . . . , f0 + 1. The value of

f0 will be determined later, so as to make the bound as strong as possible. On lower

levels (i.e., f0, f0 − 1, . . . , 0) both games are essentially the same. Nevertheless, we

do introduce new state symbols for the new game even on levels where it does not

differ from the old game. For the top levels, the states are denoted by S ′T (f, f ′),

since, as we shall see, the game does not depend on the number of unmarked thin

bottles at this stage. For the bottom levels, the states are denoted by S ′T (f, t′, f ′)

with the same interpretation as ST (f, t′, f ′) in the old game. Analogously to the old

game, there are also the Start′, Failure′, Complete Success′ and Success′f states.

The first step of the proof of Theorem 13 is to introduce the new game with all

the details. This is done in Section 18.3. The next step is to prove that the new

game is really no easier than the old one. Formally, we have to prove that

F∑
f=0

P{Start;Successf} >
F∑
f=0

P{Start′;Success′f},
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and Claim 22 in Section 18.5 accomplishes this. The proof strongly depends on the

fact that

f∑
g=0

P{ST (f, t′, f ′);Successg} <
f∑
g=0

P{ST (f, t′ − 1, f ′);Successg},

that is, picking a thin bottle to shoot at and missing it increases the probability of

success (in the old game). The above inequality is proved by Claim 21 in Section 18.4.

The next step is to bound the probability of success in the new game. We

assume that F > f0. The possibility of reaching the upper level success states

Success′F , Success′F−1, . . . , Success′f0+1 is ignored, since the corresponding probabili-

ties are very small. (This can be seen from the proof of the lower bound for complete

success, in Section 18.8.) Formally, we say that

F∑
f=0

P{Start′;Success′f} >
f0∑
f=0

P{Start′;Success′f},

if F > f0. Now we notice that the game will necessarily move through the state

S ′T (f0, T, f0) if it reaches a success state on levels 0 through f0. Formally,

f0∑
f=0

P{Start′;Success′f}

= P{Start′;S ′T (f0, T, f0)} ·
f0∑
f=0

P{S ′T (f0, T, f0);Success′f},

if F > f0.

What remains is to bound the probability of reaching state S ′T (f0, T, f0) from the

Start′ state and to bound the probability of success from state S ′T (f0, T, f0). Claim 23
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in Section 18.6 proves that

P{Start′;S ′T (f0, T, f0)} > 1− 2pT ln
pT + F

pT + f0
,

if F > f0. The only other constraint imposed by this claim is that f0 > 0 if T > 2 and

f0 > 2 if T = 1. The statement of the claim does not hold for T = 0 but the game

is not very interesting in this case and easy to find the exact probability of success

for. From the point of view of this claim, we would like f0 to be as large as possible,

but this would in fact harm the overall bound that we are proving. Therefore, f0 is

not chosen yet. Claim 24 in Section 18.7 proves that

f∑
g=0

P{S ′T (g, T, g);Success′g} > 1− (pTg + pT + pg),

for all f 6 f0. Obviously, this gives a lower bound for all F 6 f0, a case that we had

not considered yet. Of course, in this case we may want to use the exact formula for

the probability of success, especially if f0 is sufficiently small (which will be the case).

However, since the ultimate goal of this analysis is to gain understanding about the

asymptotics of success probabilities, we now return to the case when F > f0.

What remains for the proof to be complete is to combine Claims 23 and 24 and
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thus obtain the bound given by Theorem 13. We have that

F∑
f=0

P{Start′;Success′f}

> P{Start′;S ′T (f0, T, f0)} ·
f0∑
g=0

P{S ′T (f0, T, f0);Success′g}

=

(
1− 2pT ln

pT + F

pT + f0

)
·
(
1− (pTf0 + pT + pf0)

)
> 1− 2pT ln

pT + F

pT + f0
− pTf0 − pT − pf0

= 1− 2pT ln
pT + F

pT + f0
− pT (f0 + 1)− pf0

> 1− 2pT

(
ln

(
1 +

F − f0
pT + f0

)
+ f0 + 0.5

)
,

for all F > f0 and respecting all the constraints introduced by Claim 23. At this

point we can choose f0 so as to make the bound as strong as possible. If we treat p,

T and F as constants for a while and only f0 as a variable, we can see that our goal

is to minimize

ln
pT + F

pT + f0
+ f0,

for which it is best to take f0 = 1− pT . If T = 1 then the smallest f0 > 2 will give

the best bound, while if T > 2, we have a choice between 0 and 1 as the values for

f0. It can be seen however that this lower bound can be useful only in cases when

pT is small, in fact, quite small, thus f0 = 1 appears to be the better of the two

choices. Setting f0 = 1 completes the proof of Theorem 13.
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18.3 The New Game

In this section we describe the new game with all the details. It is derived from

the old game by disallowing the marking of thin bottles, as long as there are any

unmarked fat bottles remaining. Thus, picking a thin bottle to shoot at and missing

it is usually a wasted shot—nothing changes and the game is at the same state. In

the next chapter we prove that marking a thin bottle in this case would actually

increase the probability of success (in the old game), but we don’t do it here, in

the new game. One more section later we prove that this indeed makes the new

game harder (in terms of the probability of success) than the old game. The reason

we change the game is that the probabilities in the new game essentially lose their

dependence on the number of unmarked thin bottles (because we do not mark any),

and, because of this, are easier to analyze.

The above discussion is a little inaccurate. We really only change the game in

the “upper” levels, that is, in levels F , F −1, . . . , f0 +1, where f0 will be determined

later. On the “lower” levels, (i.e., f0, f0−1, . . . , 0) both games are exactly the same.

The states in the new game are derived from the ones in the old game by adding

a “prime” symbol (′). The interpretation of the parameters is the same. However,

since the thin bottles are not marked as long as (1) the level is high (i.e., f > f0),

and (2) there are unmarked fat bottles (i.e., f ′ > 0), there are many states in the

old game which do not have their counterparts in the new game. For example,

states S ′T (f, t′, f ′), where T > t′, f ′ > 0 and f > f0, simply do not exist. The only

existing state for f ′ > 0 and f > f0 is S ′T (f, T, f ′) and we denote it by S ′T (f, f ′) to

keep the unnecessary parameter out. In effect, the transition from state ST (f, T, f ′)

to state ST (f, T − 1, f ′) in the old game has been replaced by a self loop back to
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state ST (f, T, f ′).

This replacement has an effect on the probabilities associated with direct tran-

sitions from state S ′T (f, f ′). In the old game we had the following four possibilities

associated with state ST (f, T, f ′):

1. Pick a fat bottle, shoot and hit it, moving on to state ST (f − 1, T, f − 1) one

level below. The probability of this happening was f ′

T+f ′
(1− p);

2. Pick a fat bottle, shoot and miss it, moving to state ST (f, T, f ′ − 1) on the

same level, with probability f ′

T+f ′
p;

3. Pick a thin bottle, shoot and hit it, terminating the game in the Failure′ state,

which could happen with probability T
T+f ′

p;

4. Pick a thin bottle, shoot and miss it, moving to state ST (f, t′ − 1, f ′) on the

same level. The probability of this was T
T+f ′

(1− p).

Now this last option is eliminated and the probabilities for the former three possi-

bilities have to be adjusted. We get the corrected probabilities if we divide each one

of them by

1− T

T + f ′
(1− p) =

pT + f ′

T + f ′
,

which is the combined probability of the former three possibilities. After this adjust-

ment is done, we have the following possible transitions from state S ′T (f, f ′) in the

new game:

1. Pick a fat bottle, shoot and hit it, moving on to state S ′T (f −1, f −1) one level

below. The probability of this happening is f ′

pT+f ′
(1− p);
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2. Pick a fat bottle, shoot and miss it, moving to state S ′T (f, f ′ − 1) on the same

level, with probability f ′

pT+f ′
p;

3. Pick a thin bottle, shoot and hit it, terminating the game in the Failure′ state,

which could happen with probability T
pT+f ′

p.

As we see, all these probabilities add to 1, as needed. The self loop has been elimi-

nated by recalculating the probabilities.

When f > f0 but f ′ = 0, marking of thin bottles is resumed. At this point,

however, there are not many possibilities how the game can end. Namely, if all

T thin bottles are now shot at and missed, the game ends in the Success′f state,

while if any one of them is hit, the game ends in the Failure′ state. Therefore,

we can simplify the game some more and just say that from state S ′T (f, 0) (which

obviously corresponds to state ST (f, T, 0) in the old game) there is a probability of

(1 − p)T associated with a direct transition to the Success′f state and there are no

other transitions from this state except to the Failure′ state.

As mentioned above, when the new game reaches level f0, the rules of the old

game are restored. The lower portion of its state diagram is isomorphic to the one

for the old game, and the probabilities associated with the transitions are the same.

The new game has essentially the same states, the same transitions and the same

probabilities on these levels. The state with T total thin bottles, f total fat bottles,

t′ unmarked thin bottles and f ′ unmarked fat bottles is denoted by S ′T (f, t′, f ′). The

prime symbol is used just as a reminder that it is a “different” game. A state diagram

of the new game is given in Figure 18.1.
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For all f0 < f 6 F and 0 6 f ′ 6 f :

Start′
1−→ S ′T (F, F )

?

HH
HHH

HHH
HHH

HHHHj

S ′T (f, f ′)

S ′T (f, f ′ − 1) S ′T (f − 1, f − 1)

f ′

pT+f ′
(p) f ′

pT+f ′
(1− p)

S ′T (f, 0)
(1−p)T−→ Success′f

S ′T (f0, f0)
1−→ S ′T (f0, T, f0)

For all 0 6 f ′ 6 f 6 f0 and 0 6 t′ 6 T :

?

HH
HHH

HHH
HHH

HHHHj

��
���

���
���

�����

S ′T (f, t′, f ′)

S ′T (f, t′ − 1, f ′) S ′T (f, t′, f ′ − 1) S ′T (f − 1, T, f − 1)

t′

t′+f ′
(1− p) f ′

t′+f ′
(p) f ′

t′+f ′
(1− p)

S ′T (f, 0, 0)
1−→ Success′f

Success′0
1−→ Complete Success′

Figure 18.1 States, transitions and their probabilities in the new game
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18.4 Missing Thin Bottles

This section introduces the idea behind the invention of the new game. It appears

that every time when a thin bottle is picked, shot at, missed and marked in the old

game, the probability of success increases (assuming that 0 < p < 1/2). This leads to

the introduction of the new game where the thin bottles are not marked temporarily,

as already described in Section 18.3. A full proof that the probability of success in

the new game does not exceed that in the old game is given in Section 18.5. Now we

present the main result of this section.

Claim 21 Picking a thin bottle, shooting at it and missing increases the probability

of success in the old game:

f∑
g=0

P{ST (f, t′, f ′);Successg} <
f∑
g=0

P{ST (f, t′ − 1, f ′);Successg},

for all 0 6 f ′ 6 f 6 F and 1 6 t′ 6 T .

Proof: We prove this claim by induction on f ′, the number of unmarked fat bottles.

Induction Basis: Claim 21 holds if there are no unmarked fat bottles:

f∑
g=0

P{ST (f, t′, 0);Successg} <
f∑
g=0

P{ST (f, t′ − 1, 0);Successg},

for all 0 6 f 6 F and 1 6 t′ 6 T .

Proof: In this case the only bottles that can be picked and shot at are thin. If

all of them are missed, the game ends in the Successf state. If any of them is hit,

the game ends in the Failure state. Therefore, it is not possible to get to any of the
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Successg states for g < f and, quite obviously,

f∑
g=0

P{ST (f, t′, 0);Successg} = P{ST (f, t′, 0);Successf}

= (1− p)t′

< (1− p)t′−1 = P{ST (f, t′ − 1, 0);Successf}

=

f∑
g=0

P{ST (f, t′ − 1, 0);Successg},

for all 0 6 f 6 F and 1 6 t′ 6 T .

Induction Hypothesis: We assume that Claim 21 holds when the number of

unmarked fat bottles is f ′ − 1:

f∑
g=0

P{ST (f, t′, f ′ − 1);Successg} <
f∑
g=0

P{ST (f, t′ − 1, f ′ − 1);Successg},

where 1 6 f ′ 6 f 6 F and 1 6 t′ 6 T

Inductive Step: To complete the induction we need to prove that Claim 21 holds

when the number of unmarked fat bottles is f ′. The proof is again by induction, this

time on the number of remaining unmarked thin bottles, t′.

Induction Basis: Claim 21 holds when only one unmarked thin bottle and f ′

unmarked fat bottles remain:

f∑
g=0

P{ST (f, 1, f ′);Successg} <
f∑
g=0

P{ST (f, 0, f ′);Successg},

for all 0 6 f ′ 6 f 6 F .

Proof: In order to make the displayed material shorter and improve its readabil-
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ity we introduce the following notation for the probability of success from state

ST (f, t′, f ′):

PT (f, t′, f ′)
def
=

f∑
g=0

P{ST (f, t′, f ′);Successg}, (∗)

for all 0 6 f ′ 6 f 6 F and 0 6 t′ 6 T .

According to this notation, we may write that

PT (f, 1, f ′) =
f ′(1− p)
f ′ + 1

PT (f − 1, T, f − 1) +
f ′p

f ′ + 1
PT (f, 1, f ′ − 1)

+
(1− p)
f ′ + 1

PT (f, 0, f ′),

and that

PT (f, 0, f ′) = (1− p)PT (f − 1, T, f − 1) + pPT (f, 0, f ′ − 1).

Therefore, we have to show that

f ′(1− p)
f ′ + 1

PT (f − 1, T, f − 1) +
f ′p

f ′ + 1
PT (f, 1, f ′ − 1) +

(1− p)
f ′ + 1

PT (f, 0, f ′)

< (1− p)PT (f − 1, T, f − 1) + pPT (f, 0, f ′ − 1),

or that

f ′(1− p)
f ′ + 1

PT (f − 1, T, f − 1) +
f ′p

f ′ + 1
PT (f, 1, f ′ − 1)

<
(
(1− p)PT (f − 1, T, f − 1) + pPT (f, 0, f ′ − 1)

)(
1− 1− p

f ′ + 1

)
=
(
(1− p)PT (f − 1, T, f − 1) + pPT (f, 0, f ′ − 1)

)f ′ + p

f ′ + 1

=
(f ′ + p)(1− p)

f ′ + 1
PT (f − 1, T, f − 1) +

(f ′ + p)p

f ′ + 1
PT (f, 0, f ′ − 1),
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which is easy because PT (f, 1, f ′ − 1) < PT (f, 0, f ′ − 1) by the induction hypothesis

on unmarked fat bottles.

Induction Hypothesis: We assume that Claim 21 holds when the number of

remaining unmarked thin bottles is t′− 1 and the number of unmarked fat bottles is

f ′:

f∑
g=0

P{ST (f, t′ − 1, f ′);Successg} <
f∑
g=0

P{ST (f, t′ − 2, f ′);Successg},

where 0 6 f ′ 6 f 6 F and 1 6 t′ 6 T .

Inductive Step: To complete the induction, we need to prove that Claim 21

holds when the number of unmarked thin bottles is t′ and the number of unmarked

fat bottles is f ′. According to the notation used in the proof of the base case of

this induction (on unmarked thin bottles), we have to prove that PT (f, t′, f ′) <

PT (f, t′ − 1, f ′), where 0 6 f ′ 6 f 6 F and 1 6 t′ 6 T ;

Proof: We know that

PT (f, t′ − 1, f ′) =
f ′(1− p)
f ′ + t′ − 1

PT (f − 1, T, f − 1) +
f ′p

f ′ + t′ − 1
PT (f, t′ − 1, f ′ − 1)

+
(t′ − 1)(1− p)
f ′ + t′ − 1

PT (f, t′ − 2, f ′).

Using the inductive hypothesis on the number of remaining unmarked thin bottles,

we can rewrite it as

PT (f, t′ − 1, f ′) >
f ′(1− p)
f ′ + t′ − 1

PT (f − 1, T, f − 1) +
f ′p

f ′ + t′ − 1
PT (f, t′ − 1, f ′ − 1)

+
(t′ − 1)(1− p)
f ′ + t′ − 1

PT (f, t′ − 1, f ′).
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If we try to solve it for PT (f, t′ − 1, f ′), we get the following:

PT (f, t′ − 1, f ′)

(
1− (t′ − 1)(1− p)

f ′ + t′ − 1

)
>

f ′(1− p)
f ′ + t′ − 1

PT (f − 1, T, f − 1) +
f ′p

f ′ + t′ − 1
PT (f, t′ − 1, f ′ − 1),

PT (f, t′ − 1, f ′)
f ′ + t′p− p
f ′ + t′ − 1

> f ′(1−p)
f ′+t′−1PT (f − 1, T, f − 1) + f ′p

f ′+t′−1PT (f, t′ − 1, f ′ − 1),

PT (f, t′ − 1, f ′)

>
f ′(1− p)
f ′ + t′p− p

PT (f − 1, T, f − 1) +
f ′p

f ′ + t′p− p
PT (f, t′ − 1, f ′ − 1).

Since

PT (f, t′, f ′) =
f ′(1− p)
f ′ + t′

PT (f − 1, T, f − 1) +
f ′p

f ′ + t′
PT (f, t′, f ′ − 1)

+
t′(1− p)
f ′ + t′

PT (f, t′ − 1, f ′),

we have to show that

f ′(1− p)
f ′ + t′

PT (f − 1, T, f − 1) +
f ′p

f ′ + t′
PT (f, t′, f ′ − 1)

< PT (f, t′ − 1, f ′)

(
1− t′(1− p)

f ′ + t′

)
= PT (f, t′ − 1, f ′)

f ′ + t′p

f ′ + t′
.
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Now it suffices to show that

f ′(1− p)
f ′ + t′

PT (f − 1, T, f − 1) +
f ′p

f ′ + t′
PT (f, t′, f ′ − 1)

<

(
f ′(1− p)
f ′ + t′p− p

PT (f − 1, T, f − 1) +
f ′p

f ′ + t′p− p
PT (f, t′ − 1, f ′ − 1)

)
f ′ + t′p

f ′ + t′

=
f ′(1− p)(f ′ + t′p)

(f ′ + t′)(f ′ + t′p− p)
PT (f − 1, T, f − 1)

+
f ′p(f ′ + t′p)

(f ′ + t′)(f ′ + t′p− p)
PT (f, t′ − 1, f ′ − 1).

This is not hard, using the inductive hypothesis on the number of unmarked fat

bottles, which says that PT (f, t′, f ′ − 1) < PT (f, t′ − 1, f ′ − 1).

With this we have concluded the induction on the remaining number of unmarked

thin bottles, t′, and thus proved the induction step on the number of unmarked

fat bottles, f ′. Therefore, the induction on the number of unmarked fat bottles is

complete and Claim 21 is proved.

18.5 The New Game is Not Easier

In this section we use Claim 21 to prove that the probability of success in the new

game does not exceed the probability of success in the old game. In other words, the

new game is no easier than the old one. We already know that on levels f0, f0 − 1,

. . . , 0 both games are the same, thus, we only need to prove that for F > f0 the

following holds:

F∑
g=0

P{S ′T (F, F );Success′g} 6
F∑
g=0

P{ST (F, T, F );Successg}.
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The claim that we prove in this section is actually stronger. It proves that for every

state of the new game, the probability of reaching the success states will not exceed

the probability of success from the corresponding state in the old game. There is no

need for the claim to be so strong, it is merely a side effect of the method of proving

it.

Claim 22 The probability of reaching any of the success states when starting at state

S ′T (f, f ′) in the new game is less than or equal to the probability of reaching any of

the success states when starting at state ST (f, T, f ′) in the old game:

f∑
g=0

P{S ′T (f, f ′);Success′g} 6
f∑
g=0

P{ST (f, T, f ′);Successg},

for all f0 < f 6 F and 0 6 f ′ 6 f .

Proof: The proof is by induction on the total number of fat bottles, f .

Induction Basis: There is a transition with probability 1 from state S ′T (f0, f0)

to state S ′T (f0, T, f0) in the new game and from then on it proceeds just as the old

game. Therefore,

f∑
g=0

P{S ′T (f0, f0);Success′g} =

f∑
g=0

P{ST (f0, T, f0);Successg}.

Induction Hypothesis: We assume that the following inequality holds:

f−1∑
g=0

P{S ′T (f − 1, f − 1);Success′g} 6
f−1∑
g=0

P{ST (f − 1, T, f − 1);Successg}.

Inductive Step: Now we just need to prove that Claim 22 holds when there are
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f total fat bottles. This is also done by induction; this time the induction is on the

number of remaining unmarked fat bottles, f ′.

Induction Basis: When there are f total fat bottles but none of them are

unmarked, the following holds:

f∑
g=0

P{S ′T (f, 0);Success′g} =

f∑
g=0

P{ST (f, T, 0);Successg}.

Proof: In this case the only bottles that can be picked and shot at in the old game

are the thin ones. If all of them are missed, then the game ends in the Successf state.

Otherwise it ends in the Failure state. Therefore,

f∑
g=0

P{ST (f, T, 0);Successg} = P{ST (f, T, 0);Successf}

= (1− p)T

= P{S ′T (f, 0)→Success′f}

=

f∑
g=0

P{S ′T (f, 0);Success′g}.

Induction Hypothesis: We assume that Claim 22 holds when from f total fat

bottles f ′ − 1 remain unmarked:

f∑
g=0

P{S ′T (f, f ′ − 1);Success′g} 6
f∑
g=0

P{ST (f, T, f ′ − 1);Successg}.

Inductive Step: To complete the induction we need to prove that the claim

holds when there are f total fat bottles and f ′ of them are unmarked. At this point

we again use the notation (∗) introduced in the proof of Claim 21 which allows us to

express the probability of success in the old game in a more compact way. We also
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introduce similar notation for the probability of success from state S ′T (f, f ′) in the

new game:

P ′T (f, f ′)
def
=

f∑
g=0

P{S ′T (f, f ′);Success′g},

for all f0 < f 6 F and 0 6 f ′ 6 f , as well as for f = f ′ = f0. According to this

notation, we now have to prove that P ′T (f, f ′) 6 PT (f, T, f ′).

Proof: We can express the probabilities of success in each game as:

P ′T (f, f ′) =
f ′p

pT + f ′
P ′T (f, f ′ − 1) +

f ′(1− p)
pT + f ′

P ′T (f − 1, f − 1),

PT (f, T, f ′) =
f ′p

f ′ + T
PT (f, T, f ′ − 1) +

f ′(1− p)
f ′ + T

PT (f − 1, T, f − 1)

+
T (1− p)
f ′ + T

PT (f, T − 1, f ′)

By the inductive assumption on the number of remaining unmarked fat bottles

we have that P ′T (f, f ′ − 1) 6 PT (f, T, f ′ − 1). By the inductive assumption on the

number of total fat bottles we have that P ′T (f − 1, f − 1) 6 PT (f − 1, T, f − 1). By

Claim 21 we know that PT (f, T, f ′) < PT (f, T − 1, f ′). Therefore, we can write that

PT (f, T, f ′) >
f ′p

f ′ + T
P ′T (f, f ′ − 1) +

f ′(1− p)
f ′ + T

P ′T (f − 1, f − 1)

+
T (1− p)
f ′ + T

PT (f, T, f ′).
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If we solve this for PT (f, T, f ′) we get that

PT (f, T, f ′)

(
1− T (1− p)

f ′ + T

)
>

f ′p

f ′ + T
P ′T (f, f ′ − 1) +

f ′(1− p)
f ′ + T

P ′T (f − 1, f − 1),

PT (f, T, f ′)
pT + f ′

f ′ + T
>

f ′p

f ′ + T
P ′T (f, f ′ − 1) +

f ′(1− p)
f ′ + T

P ′T (f − 1, f − 1),

PT (f, T, f ′) >
f ′p

pT + f ′
P ′T (f, f ′ − 1) +

f ′(1− p)
pT + f ′

P ′T (f − 1, f − 1),

PT (f, T, f ′) > P ′T (f, f ′).

This concludes the induction on the number of remaining unmarked fat bottles

and thus also the induction on the number of total fat bottles. Claim 22 is proved.

18.6 Getting Through the Top Levels

In this section we bound the probability of reaching level f0 in the new game from a

start state above it.

Claim 23 The probability P{Start′;S ′T (f0, T, f0)} of reaching level f0 in the new

game when starting at state Start′ is bounded from below by

1− 2pT ln
pT + F

pT + f0
,

for all F > f0, assuming that f0 > 2 if T = 1 and f0 > 0 if T > 2.

Proof: We start by deriving a lower bound on the probability of reaching level

f − 1 from the entry state of level f . That is, we are going to bound the value of

P{S ′T (f, f);S ′T (f − 1, f − 1)} from below. In order to get to level f − 1 we have to
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hit any of the unmarked fat bottles, of which there are f initially. If we miss all of

them, then we cannot get to the next level any more. Therefore, to get to the next

level, one of the following must happen: we hit the first fat bottle that we shoot at

(this can happen with probability f(1−p)
pT+f

); we miss the first one but hit the second

one (probability fp(f−1)(1−p)
(pT+f)(pT+f−1)); and so on. In general, the probability of missing the

first i fat bottles picked and hitting the i+ 1-th bottle is

pi(1− p) f(f − 1) · · · (f − i)
(pT + f)(pT + f − 1) · · · (pT + f − i)

.

Therefore,

P{S ′T (f, f);S ′T (f − 1, f − 1)}

=

f−1∑
i=0

pi(1− p) f(f − 1) · · · (f − i)
(pT + f)(pT + f − 1) · · · (pT + f − i)

= (1− p)
f−1∑
i=0

pi
f

pT + f
· f − 1

pT + f − 1
· · · · · f − i

pT + f − i

> (1− p)
f−1∑
i=0

pi
(

1

pT + 1

)i

= (1− p)
1−

(
p

pT+1

)f
1− p

pT+1

.

If we denote α
def
= 1

pT+1
, then α < 1 and the inequality above may be rewritten as

P{S ′T (f, f);S ′T (f − 1, f − 1)} > 1− p
1− αp

(
1− (αp)f

)
>

1− p
1− αp

(1− pf ). (∗∗)

Now we prove two simple lemmas.
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Lemma 16 For α = 1
pT+1

and f > 1 it holds that

1− p
1− αp

> 1− pT

pT + f
.

Proof: First we prove that 1−p
1−αp > 1 − 2p(1 − α). Assume the opposite, i.e., that

1−p
1−αp < 1− 2p(1− α). Then

1− p <
(
1− 2p(1− α)

)
(1− αp)

= 1− p+ 2αp2(1− α)− (1− α)p,

0 < 2αp2(1− α)− (1− α)p,

(1− α)p < 2αp2(1− α),

1 < 2αp,

1/2 < αp,

which is a contradiction since p < 1/2 and α < 1. Therefore 1−p
1−αp > 1 − 2p(1 − α)

and now it suffices to prove that 1− 2p(1− α) > 1− pT
pT+f

. We know that 1− α =

pT
pT+1

6 pT
pT+f

, for f > 1. Therefore, since p < 1/2, we have that

2p(1− α) <
pT

pT + f
,

1− 2p(1− α) > 1− pT

pT + f
.

Lemma 17 For all f > 3, T > 1 and f > 1, T > 2 it holds that

1− pf > 1− pT

pT + f
.

Proof: We need to prove that pf < pT
pT+f

or that fpf−1 < T (1 − pf ). For this it

suffices to prove that f(1/2)f−1 6 T (1− (1/2)f ).
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If we assume that T > 1, it suffices to prove that

f(1/2)f−1 6 1− (1/2)f

(f + 1/2)(1/2)f−1 6 1

f + 1/2 6 2f−1.

The last inequality holds for all f > 3.

If, however, we assume that T > 2, it suffices to prove that

f(1/2)f−1 6 2− (1/2)f−1

(f + 1)(1/2)f−1 6 2

f + 1 6 2f .

The last inequality holds for all f > 1.

Two more lemmas are given here without proofs. Lemma 18 can be easily proved

by induction while Lemma 19 can be proved by merely looking at the geometric

interpretation of integrals.

Lemma 18 For all nonnegative a1, a2, . . . , an the following inequalities hold:

1−
n∑
i=1

ai 6
n∏
i=1

(1− ai) 6 1−
n∑
i=1

ai +
∑

16i<j6n

aiaj.

Lemma 19 For all X > 1 and Y > 0 the following inequalities hold:

ln
X + Y + 1

X
=

∫ X+Y

X−1

dz

z + 1
<

Y∑
z=0

1

X + z
<

∫ X+Y

X−1

dz

z
= ln

X + Y

X − 1
.
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We now continue with the proof of Claim 23. Using Lemmas 16, 17 and 18 and

equation (∗∗) we may now write that

P{S ′T (f, f);S ′T (f − 1, f − 1)} >
(

1− pT

pT + f

)2

> 1− 2pT

pT + f
,

which holds for all T > 1, f > 3 and for all T > 2, f > 1.

The probability P{Start′;S ′T (f0, T, f0)} of reaching level f0 from the Start′ state

in the new game can now be expressed as

P{Start′;S ′T (f0, T, f0)} = P{S ′T (F, F );S ′T (f0, f0)}

=
F∏

f=f0+1

P{S ′T (f, f);S ′T (f − 1, f − 1)}

>
F∏

f=f0+1

(
1− 2pT

pT + f

)
.

Using Lemma 18 we may rewrite this as

P{Start′;S ′T (f0, T, f0)} > 1−
F∑

f=f0+1

2pT

pT + f

= 1− 2pT
F∑

f=f0+1

1

pT + f
.

Using Lemma 19 we get that

P{Start′;S ′T (f0, T, f0)} > 1− 2pT ln
pT + F

pT + f0
,

which concludes the proof of Claim 23.
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18.7 Succeeding on Lower Levels

In this section we bound from below the probability of reaching any of the success

states on levels f0 and lower in the new game, assuming that we have already reached

state S ′T (f0, T, f0). As we know, from this level both games are the same, so we

analyze the new game just as we would analyze the old one.

Claim 24 The probability
∑f

g=0 P{S ′T (f, T, f);Success′g} of reaching success in the

new game when starting in state S ′T (f, T, f) is bounded from below by 1 − (pTf +

pT + pf), for all 0 6 f 6 f0.

Proof: Suppose that on each level g we miss all the thin bottles that we choose

and hit the first fat bottle. This way we inevitably get to the entry state of level

g−1 below. The probability of this happening is
∑T

t=0(α(g, T, t)(1−p)t(1−p), where

α(g, T, t) denotes the probability of choosing exactly t thin bottles in a row, when

given T thin and g fat bottles. Since
∑T

t=0 α(g, T, t) = 1, we can easily conclude that

the probability to reach level g−1 from level g is at least (1−p)T+1. Obviously, if we

reach the lowest level and then miss all the thin bottles there, we will have reached

a success state. Therefore

f∑
g=0

P{S ′T (f, T, f);Success′g} > (1− p)(T+1)fP{S ′T (0, T, 0);Success′0}

= (1− p)(T+1)f (1− p)T

= (1− p)Tf+f+T .

We now apply Lemma 18 and the claim follows.
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18.8 Lower Bound for Complete Success

In this section we prove a lower bound for the probability of complete success in the

game. The bound seems quite close to the lower bound for the probability of success.

Theorem 14 The probability P{Start;Complete Success} of reaching the Com-

plete Success state when starting at the Start state is bounded from below by

1− 2pT

(
ln

(
1 +

F − 1

pT + 1

)
+ 2

)
,

for all T > 2.

Proof: We prove an easy upper bound on the probability of reaching any of the

states Successf where f > 0 and then subtract it from our existing lower bound on

the probability of success. In order to reach state Successf , for any 0 < f 6 F it

is necessary to first reach state ST (f, T, f) and then shoot at and miss every single

bottle on level f . Therefore,

F∑
f=1

P{Start;Successf} =
F∑
f=1

P{Start;ST (f, T, f)}pf (1− p)T

6
F∑
f=1

pf (1− p)T

= (1− p)Tp1− pF

1− p

6 (1− p)T−1p,

which is bounded from above by p because T > 1. All that remains is to subtract p

from the bound given by Theorem 13. We subtract pT instead of p because it makes

the final bound shorter and more similar to the bound given in Theorem 13.
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Obviously, if we take the weaker lower bound on the probability of success which

holds for all T > 1, we get a weakened lower bound for the probability of complete

success:

1− 2pT

(
ln

(
1 +

F − 2

pT + 2

)
+ 3

)
,

for all T > 1.



Chapter 19

Comparison to a Simpler

Algorithm and Conclusions

The lower bound on complete success of algorithm RandomReduce learning mono-

tone monomials exhibits the same asymptotics as the sample values tabulated in the

tables given in the end of Chapter 17. That is, the probability of complete success

(and success) seems to drop proportionally to the increase in the number of needed

1-bits (thin bottles) and to drop logarithmically with respect to the increase in the

number of unwanted 1-bits (fat bottles). In other words, starting RandomReduce

high in the lattice, far from the minimum point of the monomial does not pose a big

problem for the algorithm. However, trying to learn a monomial containing many

variables is hard for RandomReduce. And, of course, the higher the error rate p,

the harder it is for the algorithm to find the minimum point.

The purpose of this part of the thesis was not to investigate the learnability of

monotone monomials from equivalence queries and membership queries with ran-

dom persistent errors. Monotone monomials can be learned in polynomial time from
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equivalence queries alone, thus errors in membership queries do not matter. The

goal was to estimate whether it would be practical to use RandomReduce in algo-

rithm LearnMonDNF from Section 11.1 of Part 2 instead of its original subroutine

Reduce in order to apply it to the model of equivalence and random membership

queries. Unfortunately, the lower bound suggests that the usefulness of this modified

algorithm LearnMonDNF would be very limited (assuming no further modifica-

tions are made). A polynomial-time learning algorithm for this model is required to

have probability 1− δ of exactly identifying the target concept in time polynomial in

the size of the concept, the size of the longest counterexample, 1/δ and the inverse

of 1/2− p, for any δ > 0. The closer the error rate p is to 1/2, the more time is the

algorithm allowed.

If such running times are what we need to achieve then the lower bound on the

probability of complete success does not give rise to much hope. Each “failure” in

RandomReduce (i.e., adding a negative point as a term to the formula) would

eventually be corrected by a negative counterexample resulting in the removal of the

offending term(s), but a rather high number of runs of RandomReduce would be

required to find the correct term. Having RandomReduce return a positive point

which is not a minimum point would not cause a subsequent negative counterexample

but we would still need to repeat RandomReduce for the same term until it is

found. If we ran RandomReduce for each term a number of times that is the

inverse of the lower bound of complete success, we could be sure that with very high

probability we have found all the terms. This number however is not polynomial in

the inverse of 1/2− p.

Despite the fact that the applicability of RandomReduce in the general case

appears limited, it may be useful if p, T and F are within certain bounds. For
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example, if p ≈ logn
n

and T ≈ log n, where n is the number of variables in the target

monotone DNF formula, RandomReduce performs clearly better than a different

randomized algorithm SimpleReduce that assumes all membership queries to be

correct and therefore never unmarks any bits. SimpleReduce can be obtained by

randomizing an efficient implementation of subroutine Reduce for the error-free

model, i.e., one that marks each 1-bit tried and never unmarks them or tries an

already marked bit. When SimpleReduce is first called on a positive point of the

target formula (and no bits are marked yet), it sets a random unmarked 1-bit to 0

and asks a membership query about the new point. If the answer is 1, it calls itself

recursively, otherwise, it restores the bit to 1, marks it and tries another unmarked

1-bit. When no more unmarked 1-bits remain, it returns the current point. Clearly,

SimpleReduce is faster than RandomReduce but it needs to get correct answers

about all the points queried, or it will not find the correct minimum point. This

happens with probability (1 − p)T+F , where, as before, T stands for the number of

needed 1-bits or variables in the term and F stands for the unwanted 1-bits.

If we take p and T as in the example above, n large, and F close to n − T , i.e.,

almost n, the probability that SimpleReduce reaches the minimum point nearly

vanishes, since

lim
n→∞

(
1− log n

n

)n
= 0.

However, the probability of complete success for RandomReduce in the above

example is not negligible. Suppose we wanted to determine how big should n be

before the lower bound on the probability of complete success exceeds some fixed

constant l, where 0 < l < 1:

1− 2pT

(
ln

(
1 +

F − 1

pT + 1

)
+ 2

)
> l.
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For this it would suffice if we found c such that ln pT+F
pT+1

< c and that pT (4+2c) <

1− l. The first inequality would be satisfied if F 6 ec, so we can take c = dlnF e 6

lnF+1. The second inequality would hold if pT < 1−l
6+2 lnn

. Recalling that pT ≈ log2 n
n

,

we are interested in finding n big enough to satisfy (log2 n)(6 + 2 lnn) < n(1 − l),

which is clearly achievable.

To summarize the results derived in this part of the thesis, the algorithm Ran-

domReduce does perform better than the simple algorithm SimpleReduce, which

is ideal (in terms of efficiency) for the error-free model. However, direct applicabil-

ity of RandomReduce as the key subroutine of algorithm LearnMonDNF is

questionable, as the lower bound from Theorem 14 is not strong enough. Other al-

gorithms or further modifications to LearnMonDNF are necessary for polynomial-

time learning of monotone DNF formulas from equivalence and random membership

queries.



Appendix

This appendix describes some of the less obvious constructs of the “C” programming

language that are used in the algorithm pseudo-code throughout the thesis. An

excellent reference to the language in general is [28].

Comments. Comments in C are put between the symbols /* and */. They do

not have any effect on the execution of the code statements.

Assignment. The assignment in C is denoted by a single equals sign. For example,

x = y assigns the value of variable y to variable x. Assignment also returns the value

assigned, that is, it may be used as part of a more complicated expression, such as

a comparison or another assignment.

Comparisons and Logical Operators. C has six comparison operators and three

logical ones for performing boolean operations. In this thesis the relational opera-

tors for expressing various inequalities have been replaced with the better looking

mathematical symbols >, >, <, 6 and 6=, the latter testing whether the operands

are different. The equality operator == should be read as “is equal to” and would

perhaps look better as a single equals sign but that is already used for assignments.
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The logical operators of C have been put in words for readability.

Increment. A very popular C construct is ++. It is the increment operator, for

example, x++ increments the value of variable x by one. It has the peculiarity that

it returns the former value of x but the pseudo-code used in this dissertation does

not depend on this feature.

If-Else Statements. The If statement evaluates the immediately following paren-

thesized expression, called the test condition, and assigns a true or a false value to

it. If the value is true, the following block in figure braces, called the if-block, is

executed. If the value of the test condition is false and there is an Else statement

immediately following the if-block, then the block in figure braces immediately fol-

lowing the Else statement is executed. This block is known as the else-block. The

braces are not required around either block if it consists of a single statement. Only

one of the two blocks can be executed as a result of one evaluation of the If-Else

construct.

While Loops. C has several looping constructs, the simplest of which is While.

It evaluates the immediately following parenthesized test condition, just like the If

statement. In case the expression is true, it executes the following block in figure

braces, called the while-block. Braces may be omitted if the block contains only one

statement. After executing the while-block, the control is returned back to the While

statement, that is, the test condition is re-evaluated and the while-block executed

again in case the condition is true. Thus, the While loop is reiterated while the

test condition stays true. When it becomes false, the while-block is skipped and

control is returned to the statement following the block. Note that the variables
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involved in the test condition may be modified from inside the while-block as well.

This makes statements such as the following possible (although not strictly in C):

While (unmarked child exists).

For Loops. Another popular looping construct in C is For. It is more compli-

cated than While since it has separate initialization, test and reiteration statements.

These three statements, separated by semicolons and surrounded by parentheses

come immediately after the keyword For. For example, For (x = 0; x < y; x++).

The first statement is executed when the control is passed to the For statement. It is

the initialization statement. It may happen that the initialization is already done or

not needed and this statement may be missing. The semicolon separating it from the

next statement must remain, however. After evaluating the initialization statement,

the next statement is evaluated. This is the test statement. This statement may

also be missing in which case it is considered to be true. The semicolon separating

it from the next statement must exist. If the condition is true, the following block of

code, enclosed in figure braces and known as the for-block is executed. Braces may

be omitted if the block contains only one statement. After that, the control is passed

back to the For statement but not quite the same way. This time the initialization

statement is skipped and instead the third statement in parenthesis, the reiteration

statement, is executed. This statement may be missing, just like the former two

statements. After evaluating this statement, the test statement is evaluated and, if

true, the for-block is executed again. A For loop is repeated this way as long as

the test statement returns a true value. The variables used in initialization, test and

reiteration statements may be modified from within the for-block as well.

Some algorithms in this thesis use a modified version of For loop that has no
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analogies in the C programming language (but resembles Foreach of Perl [40]).

When the parenthesized expression following the key word For does not contain any

semicolons the reader should just follow his or her intuition about how this loop is

executed. For example, For (each child w of v) means that the loop is executed once

for each child of v, and that in each iteration the variable w is set to a different child

of v. There is no test condition as such in this loop, rather a set consisting of all

children of v is created once and w then iterates over this set.

Break and Continue Statements. Additional flexibility in executing looping

constructs is achieved by using the Break and Continue statements. The former

statement, Break, passes the control to the statement immediately following the

innermost loop it is in, i.e., to the statement after the for-block or while-block. Note

that this does not apply to if-blocks or else-blocks. Thus, it allows a loop to be

terminated early. The latter statement, Continue, passes the control immediately

to the loop control statement of the innermost loop that it is in, i.e., to the While or

For statement. In case of the For statement, the reiteration and test statements, not

the initialization statement, are executed. Thus, it allows the loop to be reiterated

immediately, bypassing all the statements of the loop block that come after the

Continue.

Subroutines and the Return Statement. In C all the subroutines are called

functions. There is no difference in calling conventions between built-in (i.e., library)

functions and user defined functions. When defined, each function must have its

name (typeset in SmallCaps font in this thesis), a parenthesized list of its formal

parameters (possibly empty, if it does not take parameters), and the body of the

function which is a block of statements enclosed in mandatory figure braces. When
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called, a function is specified by its name followed by a parenthesized list of its

arguments. The values of these arguments are copied into the formal parameters

of the function which become its local variables, i.e., they “go out of scope” or

disappear once the control is passed out of the function. The control is passed out

of the function after the last statement in its body is executed or when a Return

statement is encountered. A Return statement may specify a value to be returned

by the function to the calling function. This value is typically used on the right hand

side of an assignment operator. For example, x = max(y, z). The value may be quite

complex; returning pairs or arrays is acceptable (at least in the pseudo-code used in

this thesis).

Arrays and Multi-Dimensional Arrays The arrays in C are indexed from 0

and square brackets are used to refer to a cell in an array, for example, Tablerow [s].

Arrays can be initialized by listing all the values inside figure braces, for example,

step[2] = { 0, 0 }. In this case the square brackets after the array name and the

value (if any) inside them do not refer to a specific cell but instead specify the size

of the array.

Multi-dimensional arrays are also allowed, although in reality they are just one

dimensional arrays each cell of which is an array of one dimension less having the same

cardinalities as those of the arrays contained in other cells. For example, Table[i][x][s]

denotes a cell in a three-dimensional array which is found at offset i(d2d3)+x(d3)+s

from its beginning, where d2 and d3 denote the cardinalities of the second and third

dimension, respectively.

The pseudo-code in this thesis extends arrays and multi-dimensional arrays to

allow infinite cardinalities. That is, it uses concepts such as, for example, infinite



237

arrays and infinite three-dimensional arrays. Such data structures are unlikely to

exist in most of today’s programming languages but they serve as useful abstractions

in the pseudo-code. It would perhaps be more precise to refer to them as hash tables

but that would make the pseudo-code less convenient. The reader should not worry

about the issue that addressing a cell in a multi-dimensional array does not work in C

without knowing exact cardinality of each dimension, an impossible requirement for

infinite arrays. If the three coordinates are viewed as parameters to a hash function,

the problem does not exist.
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[11] D. Angluin, M. Kriķis, R. Sloan, and G. Turán. Malicious omissions and errors

in answers to membership queries. Machine Learning, 28:211–255, 1997.
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