Meteoroloģisko datu analīze ar datorprogrammu R
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
N/A
Abstract
Bakalaura darbā aplūkotas matemātisku metožu pielietošanas iespējas meteoroloģiskiem datiem
ar datorprogrammu R. Izmantoti meteoroloģisko novērojumu Latvijas staciju dati. Aprakstīti
un pielietoti ARIMA modeļi temperatūras, vidējā vēja ātruma un vēja brāzmu ikstundas
novērojumu laikrindām. ARIMA modeļu prognozes salīdzinātas ar Latvijas Vides, Ģeoloģijas
un Meteoroloģijas Centra prognozēm. Analizēta temperatūras novērojumu telpiskā autokorelācija.
Izteikti pieņēmumi par piemērotākajiem STARIMA modeļiem temperatūras datiem. Konstruētas
empīriskās variogrammas temperatūras novērojumu datiem un veikts parastais krīgings.
Secināts, ka ARIMA modeļi ir piemēroti temperatūras laikrindu analīzei. Telpiskās statistikas
un ģeostatistikas ietvaros secināts, ka temperatūras novērojumi ir korelēti telpā, bet korelācija
atšķiras vasarā un ziemā.
This thesis investigates applications of mathematical methods to analyse metheorological data using R. Data from weather stations in Latvia is used. ARIMA models are outlined and applied to hourly temperature, average wind speed and maximum wind speed data time series. ARIMA forecasts are compared to Latvian Environment, Geology and Meteorology Centre forecasts. Spatial autocorrelation of temperature observations is analysed. Assumptions about best STARIMA models for temperature data are made. Experimental variograms are constructed and ordinary kriging is carried out. It was concluded that ARIMA models are suitable for temperature time series analysis. As for spatial autocorrelation an geostatistics approach, it is concluded that temperature observations exhibit spatial autocorrelation, but it is different un summer and winter.
This thesis investigates applications of mathematical methods to analyse metheorological data using R. Data from weather stations in Latvia is used. ARIMA models are outlined and applied to hourly temperature, average wind speed and maximum wind speed data time series. ARIMA forecasts are compared to Latvian Environment, Geology and Meteorology Centre forecasts. Spatial autocorrelation of temperature observations is analysed. Assumptions about best STARIMA models for temperature data are made. Experimental variograms are constructed and ordinary kriging is carried out. It was concluded that ARIMA models are suitable for temperature time series analysis. As for spatial autocorrelation an geostatistics approach, it is concluded that temperature observations exhibit spatial autocorrelation, but it is different un summer and winter.