Trīs dimensiju paraboliska diferenciālvienādojuma Ņūtona problēmas atrisinājums ar Grīna funkciju metodi

Loading...
Thumbnail Image

Date

Journal Title

Journal ISSN

Volume Title

Publisher

Latvijas Universitāte

Language

N/A

Abstract

Maģistra darbā aplūkots lineārs, nehomogēns trīs dimensiju parabolisks diferenciālvienādojums ar lineāriem, nehomogēniem Ņūtona robežnosacījumiem. Iegūts problēmas analītiskais atrisinājums. Pirmo reizi iegūtas ātrumu limitējošas nevienādības, kas ir Ņūtona robežproblēmas atrisinājuma eksistences nosacījumi. Programmēšanas valodā Fortran 90 izstrādāts programmas kods, kurā iekļauta MPI paralēlo rēķinu bibliotēka. Datu apstrādes paralēlās tehnoloģijās veikti skaitliskie eksperimenti, izmantojot testa funkcijas. Ar skaitlisko eksperimentu palīdzību parādīta ātrumu limitējošo nevienādību nozīmība atrisinājuma eksistencei.
In this master’s thesis the linear inhomogeneous three dimensional parabolic differential equation with linear inhomogeneous Newton type boundary conditions is considered. The analytic solution for problem is found. For first time velocities limiting bilateral inequalities, which are solution existence conditions, are acquired. The program code algorithm for numerical implementation of the solution is developed using the MPI parallel calculation library in the Fortran 90 programming language. In the parallel data processing system numerical experiments are accomplished using test functions. The importance of bilateral inequalities for solution existence is shown using numerical experiments.

Keywords

Citation

Relation

Endorsement

Review

Supplemented By

Referenced By