Periodisko orbītu eksistence diskrētās dinamiskās sistēmās
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Bakalaura darbā apskatīti diskrētu dinamisku sistēmu pamatjēdzieni, akcentējot periodisko punktu eksistenci un to meklēšanu. Ar piemēriem parādīts, kā noskaidrot autonoma pirmās kārtas diferenču vienādojuma periodiskos punktus ar periodu 2 un 3. Darba lielākā daļa veltīta neautonomu pirmās kārtas diferenču vienādojumu periodisko punktu jeb ģeometrisko r-ciklu eksistencei, kur vienādojuma periodiskos koeficientus veido polinomi vai racionālas funkcijas.
In our Theses well encounter with discrete dynamic systems basic concepts, emphasizing periodic points existents and how to find them. With examples will show how to find autonomous first degree difference equations periodic points with period 2 and 3. Most time in our Theses will be placed in nonautonomous first degree difference equations periodic points or geometric r-cycls existence, where equations periodic coefficients are polynomials or rational functions.
In our Theses well encounter with discrete dynamic systems basic concepts, emphasizing periodic points existents and how to find them. With examples will show how to find autonomous first degree difference equations periodic points with period 2 and 3. Most time in our Theses will be placed in nonautonomous first degree difference equations periodic points or geometric r-cycls existence, where equations periodic coefficients are polynomials or rational functions.