Kvantu algoritmi algoritmiskās ģeometrijas uzdevumiem
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Viens no svarīgākajiem uzdevumiem teorētiskajā datorzinātnē ir 3SUM uzdevums. 3SUM uzdevumu var formulēt sekojoši: ir dota kopa S ar n veseliem skaitļiem, ir jānoteic, vai eksistē tādi a, b, c ∈ S, ka a + b + c = 0. Šim uzdevumam algoritms ar sarežģītību O(n^(2-ϵ)) nav zināms. Uzdevums 3SUM ir reducējams uz daudziem ģeometriskajiem uzdevumiem, un tiem algoritms ar sarežģītību O(n^(2-ϵ)) arī nav zināms. Darbā ir apvienotas divas svarīgas datorzinātnes nozares: kvantu skaitļošana un algoritmiskā ģeometrija ar mērķi izveidot kvantu algoritmus 3SUM-HARD klases ģeometriskajiem uzdevumiem. Daudziem no tiem ir atrasts kvantu algoritms ar sarežģītību O(n^(1+o(1))).
One of the important problems in theoretical computer science is 3SUM problem. One can formulate 3SUM problem as follows: given a set S of n integers, are there a, b, c ∈ S, such that a + b + c = 0. No algorithm, that solves this problem in O(n^(2-ϵ)) time is known. 3SUM can be reduced to many geometrical problems and so, there is also no algorithm to solve those problems in O(n^(2-ϵ)) time. Author combines two computer science fields: quantum computing and algorithmic geometry, in order to create quantum algorithms for 3SUM-HARD class geometric problems. For most of them we have found quantum algorithm with complexity O(n^(1+o(1))).
One of the important problems in theoretical computer science is 3SUM problem. One can formulate 3SUM problem as follows: given a set S of n integers, are there a, b, c ∈ S, such that a + b + c = 0. No algorithm, that solves this problem in O(n^(2-ϵ)) time is known. 3SUM can be reduced to many geometrical problems and so, there is also no algorithm to solve those problems in O(n^(2-ϵ)) time. Author combines two computer science fields: quantum computing and algorithmic geometry, in order to create quantum algorithms for 3SUM-HARD class geometric problems. For most of them we have found quantum algorithm with complexity O(n^(1+o(1))).