• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • Deutsch 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Einloggen
Dokumentanzeige 
  •   DSpace Startseite
  • B4 – LU fakultātes / Faculties of the UL
  • A -- Eksakto zinātņu un tehnoloģiju fakultāte / Faculty of Science and Technology
  • Bakalaura un maģistra darbi (EZTF) / Bachelor's and Master's theses
  • Dokumentanzeige
  •   DSpace Startseite
  • B4 – LU fakultātes / Faculties of the UL
  • A -- Eksakto zinātņu un tehnoloģiju fakultāte / Faculty of Science and Technology
  • Bakalaura un maģistra darbi (EZTF) / Bachelor's and Master's theses
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aizskarošu tekstu filtrēšana ar neironu tīklu metodēm

Thumbnail
Öffnen
302-75838-Berzkalns_Andris_ab16118.pdf (1.174Mb)
Autor
Bērzkalns, Andris
Co-author
Latvijas Universitāte. Datorikas fakultāte
Advisor
Paikens, Pēteris
Datum
2020
Metadata
Zur Langanzeige
Zusammenfassung
Pētījuma mērķis ir izstrādāt neironu tīklu modeli, kas spēj izvērtēt angļu valodā rakstītu tekstu un noteikt aizskaroša satura esamību. Pētījuma ietvaros apskatītas tādas teksta apstrādes metodes kā lemmatizēšana un teksta sadalīšana tekstvienībās, veikta datu kopas sagatavošana un salīdzināti vairāki neironu tīklu arhitektūru tipi. Rezultātā iegūts neironu tīkla modelis, kas ar 93,75% precizitāti spēj noteikt aizskaroša teksta esamību noteiktā teksta gabalā. Izstrādātais modelis pārsēj pētījumā apskatīto bāzlīnijas metodes precizitāti par 33,28%. Pētījuma ietvaros izstrādāta tīmekļa lietotne, kas pielieto izstrādāto modeli un vizuāli ataino iegūtos rezultātus.
 
The purpose of this paper is to develop a neural network model, that can filter text that is written in English and determine if it contains offensive speech. The research looks at text processing methods like lemmatization and tokenization, it describes the creation of a dataset and evaluates different neural network architecture types. The result is a neural network model, that can detect offensive language in a body of text with a 93,75% precision. The developed model surpasses the baseline method’s accuracy by 33,28%. As part of the study a Web application is designed, that uses the most optimal model and visualizes the results.
 
URI
https://dspace.lu.lv/dspace/handle/7/50758
Collections
  • Bakalaura un maģistra darbi (EZTF) / Bachelor's and Master's theses [5770]

University of Latvia
Kontakt | Feedback abschicken
Theme by 
@mire NV
 

 

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDiese SammlungErscheinungsdatumAutorenTitelnSchlagworten

Mein Benutzerkonto

Einloggen

Statistik

Benutzungsstatistik

University of Latvia
Kontakt | Feedback abschicken
Theme by 
@mire NV