Kvantu algoritmi punktu sadalīšanai pa taisnēm
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Bakalaura darba mērķis ir uzlabot klasisko algoritmu punktu sadalīšanai pa taisnēm, pielietojot kvantu algoritmus. Darbā tiek apskatīti klasiskie algoritmi punktu sadalīšanas problēmai un sadalīšanas problēmas speciālgadījumam, kad punktu izvietošanā atbilsts daļiņu pozīcijai pēc sadursmes lielā hadronu paātrinātājam. Darba rezultātā tiek piedāvāti kvantu algoritmi ar sarežģītību O(n^(1+(k-1)/k)/k) pamata problēmai un O(n^1.5/√k log(n/k) ) speciālgadījumam. Dotie algoritmi uzlabo efektīvāko zināmo klasisko algoritmu, kuram darbības laiks ir O(n^2/k*log(n/k) ). Secinājumos tiek piedāvāts paņēmiens, ka pielietot speciālgadījuma rezultātus reālajam daļiņu ceļu atrašanas uzdevumam, kad daļiņu ceļi ir slīpas līnijas.
The aim of the bachelor’s thesis is to improve the classical algorithm for point dividing among lines. Author observes classical algorithms for line covering problem and the specific case of it when point distribution corresponds to particle position in space after collision in the large hadron collider. As a result, the author presents quantum algorithms, providing O(n^(1+(k-1)/k)/k) solution for line covering problem and O(n^1.5/√k log〖n/k〗 ) solution for the specific case. Both solutions are better than the most effective known classical algorithm with complexity O(n^2/k*log(n/k) ). In conclusion, author observes line covering special case algorithm usage to solve the real problem of particle track recreation after collision, when track is a curved line.
The aim of the bachelor’s thesis is to improve the classical algorithm for point dividing among lines. Author observes classical algorithms for line covering problem and the specific case of it when point distribution corresponds to particle position in space after collision in the large hadron collider. As a result, the author presents quantum algorithms, providing O(n^(1+(k-1)/k)/k) solution for line covering problem and O(n^1.5/√k log〖n/k〗 ) solution for the specific case. Both solutions are better than the most effective known classical algorithm with complexity O(n^2/k*log(n/k) ). In conclusion, author observes line covering special case algorithm usage to solve the real problem of particle track recreation after collision, when track is a curved line.