Nestriktās matemātikas morfoloģijas operatori: teorijas pamati un operatoru realizācija konkrētiem konjuktoru-implikatoru pāriem
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
lav
Abstract
Maģistra darbā apskatīti matemātiskās morfoloģijas pamatoperatoru - dilācija, erozija, atvēršana, slēgšana - paplašinājumi nestriktās kopās. Vispārīga nestrikta morfoloģijas operatora definīcija realizēta konkrētiem konjunktoru-implikātoru pāriem. Operatoru realizācijā par konjunktoriem izvēlētas minimuma, reizinājuma un Lukasieviča t-normas un par implikatoriem - tām atbilstošie rezidiji un Klīnī-Dinesa implikācija. Konkrētie konjunktoru-implikatoru pāriem iegūtie operatori ilustrēti ar vizuāliem piemēriem, to realizācijai izstrādāta arī lietojumprogramma. Veikta iegūto rezultātu analīze.
This paper is dedicated to the corresponding fuzzy extensions of classical mathematical morphology operators - dilation, erosion, opening, closing. General definitions of fuzzy morphology operators are implemented for specific conjunctorimplicator pairs. Minimum, product and Łukasiewicz t-norms and their corresponding residuums or Kleene-Dienes implication are used as conjuntors and implicators in realizations of specific conjunctor-implicator pairs. The explored pairs are illustrated with visual examples, an application has been developed for their implementation. Conclusions have been drawn from the results obtained.
This paper is dedicated to the corresponding fuzzy extensions of classical mathematical morphology operators - dilation, erosion, opening, closing. General definitions of fuzzy morphology operators are implemented for specific conjunctorimplicator pairs. Minimum, product and Łukasiewicz t-norms and their corresponding residuums or Kleene-Dienes implication are used as conjuntors and implicators in realizations of specific conjunctor-implicator pairs. The explored pairs are illustrated with visual examples, an application has been developed for their implementation. Conclusions have been drawn from the results obtained.