• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • English 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Login
View Item 
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
  •   DSpace Home
  • B6 – LU institūti un aģentūras / Institutes and agencies of the UL
  • Cietvielu fizikas institūts / Institute of Solid State Physics
  • Zinātniskie raksti (CFI) / Scientific articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Unraveling the Structure and Properties of Layered and Mixed ReO3–WO3 Thin Films Deposited by Reactive DC Magnetron Sputtering

Thumbnail
View/Open
Unraveling_the_Structure_and_Properties_Polyakov_etal_ACS_Omega_7_2022.pdf (3.818Mb)
Author
Polyakov, Boris
Butanovs, Edgars
Ogurcovs, Andrejs
Sarakovskis, Anatolijs
Zubkins, Martins
Bikse, Liga
Gabrusenoks, Jevgenijs
Vlassov, Sergei
Kuzmin, Alexei
Purans, Juris
Date
2022
Metadata
Show full item record
Abstract
Tungsten trioxide (WO3) is a well-known electrochromic material with a wide band gap, while rhenium trioxide (ReO3) is a “covalent metal” with an electrical conductivity comparable to that of pure metals. Since both WO3 and ReO3 oxides have perovskite-type structures, the formation of their solid solutions (ReO3–WO3 or RexW1–xO3) can be expected, which may be of significant academic and industrial interest. In this study, layered WO3/ReO3, ReO3/WO3, and mixed ReO3–WO3 thin films were produced by reactive DC magnetron sputtering and subsequent annealing in air at 450 °C. The structure and properties of the films were characterized by X-ray diffraction, optical spectroscopy, Hall conductivity measurements, conductive atomic force microscopy, scanning and transmission electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoemission spectroscopy. First-principles density functional theory calculations were performed for selected compositions of RexW1–xO3 solid solutions to model their crystallographic structure and electronic properties. The calculations predict metallic conductivity and tetragonal distortion of solid solutions in agreement with the experimental results. In contrast to previously reported methods, our approach allows us to produce the WO3–ReO3 alloy with a high Re content (>50%) at moderate temperatures and without the use of high pressures. --//-- Article published under the CC BY license.
URI
https://pubs.acs.org/doi/10.1021/acsomega.1c05085
https://dspace.lu.lv/dspace/handle/7/56959
DOI
10.1021/acsomega.1c05085
Collections
  • Zinātniskie raksti (CFI) / Scientific articles [604]

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV
 

 

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

University of Latvia
Contact Us | Send Feedback
Theme by 
@mire NV