• English
    • Latviešu
    • Deutsch
    • русский
  • Help
  • Deutsch 
    • English
    • Latviešu
    • Deutsch
    • русский
  • Einloggen
Dokumentanzeige 
  •   DSpace Startseite
  • B4 – LU fakultātes / Faculties of the UL
  • B --- Bij. Fizikas, matemātikas un optometrijas fakultātes studentu noslēguma darbi / Faculty of Physics, Mathematics and Optometry - Graduate works
  • Bakalaura un maģistra darbi (FMOF) / Bachelor's and Master's theses
  • Dokumentanzeige
  •   DSpace Startseite
  • B4 – LU fakultātes / Faculties of the UL
  • B --- Bij. Fizikas, matemātikas un optometrijas fakultātes studentu noslēguma darbi / Faculty of Physics, Mathematics and Optometry - Graduate works
  • Bakalaura un maģistra darbi (FMOF) / Bachelor's and Master's theses
  • Dokumentanzeige
JavaScript is disabled for your browser. Some features of this site may not work without it.

Laikrindas anomāliju noteikšana izmantojot GAN

Thumbnail
Öffnen
304-96996-Rihlicka_Nika_nr19013.pdf (1.824Mb)
Autor
Rihlicka, Nika
Co-author
Latvijas Universitāte. Fizikas, matemātikas un optometrijas fakultāte
Advisor
Valeinis, Jānis
Datum
2023
Metadata
Zur Langanzeige
Zusammenfassung
Darbs fokusējas uz GAN tīkliem un to pielietošanai laikrindas anomāliju noteikšanai. Anomāliju noteikšana ir būtisks process jebkurā jomā. Anomālijas var atklāt svarīgu informāciju par datiem: potenciālu risku un būtiskās izmaiņas nākotnes datos. Šajā darbā tiek aplūkoti DCGAN un LSGAN tīkli. Praktiskajā daļā šie tīkli tiek pielietoti laikrindas anomāliju noteikšanai un rezultāti tiek novērtēti ar atbilstošam metrikām. Tīklu izveide, analīze un pielietošana anomāliju noteikšanai tika veiktas Python programmēšanas valodā.
 
This work focuses on GAN networks and their application for time series anomaly detection. Anomaly detection is an essential process in any field. Anomalies can reveal important information about data: potential risks and significant changes in future data. DCGAN and LSGAN networks are considered in this work. In the practical part, these networks are applied to detect time series anomalies and the results are evaluated with appropriate metrics. The construction, analysis and application of the networks for anomaly detection were performed in the Python programming language.
 
URI
https://dspace.lu.lv/dspace/handle/7/64382
Collections
  • Bakalaura un maģistra darbi (FMOF) / Bachelor's and Master's theses [2775]

University of Latvia
Kontakt | Feedback abschicken
Theme by 
@mire NV
 

 

Stöbern

Gesamter BestandBereiche & SammlungenErscheinungsdatumAutorenTitelnSchlagwortenDiese SammlungErscheinungsdatumAutorenTitelnSchlagworten

Mein Benutzerkonto

Einloggen

Statistik

Benutzungsstatistik

University of Latvia
Kontakt | Feedback abschicken
Theme by 
@mire NV