The Electronic Structures and Energies of the Lowest Excited States of the Ns0, Ns+, Ns− and Ns-H Defects in Diamond
View/ Open
Author
Platonenko, Alexander
Mackrodt, William C.
Dovesi, Roberto
Date
2023Metadata
Show full item recordAbstract
This paper reports the energies and charge and spin distributions of the mono-substituted N defects, N0s, N+s, N−s and Ns-H in diamonds from direct Δ-SCF calculations based on Gaussian orbitals within the B3LYP function. These predict that (i) Ns0, Ns+ and Ns− all absorb in the region of the strong optical absorption at 270 nm (4.59 eV) reported by Khan et al., with the individual contributions dependent on the experimental conditions; (ii) Ns-H, or some other impurity, is responsible for the weak optical peak at 360 nm (3.44 eV); and that Ns+ is the source of the 520 nm (2.38 eV) absorption. All excitations below the absorption edge of the diamond host are predicted to be excitonic, with substantial re-distributions of charge and spin. The present calculations support the suggestion by Jones et al. that Ns+ contributes to, and in the absence of Ns0 is responsible for, the 4.59 eV optical absorption in N-doped diamonds. The semi-conductivity of the N-doped diamond is predicted to rise from a spin-flip thermal excitation of a CN hybrid orbital of the donor band resulting from multiple in-elastic phonon scattering. Calculations of the self-trapped exciton in the vicinity of Ns0 indicate that it is essentially a local defect consisting of an N and four nn C atoms, and that beyond these the host lattice is essential a pristine diamond as predicted by Ferrari et al. from the calculated EPR hyperfine constants. © 2023 by the authors.--//-- This is an open access article Platonenko A., Mackrodt W.C., Dovesi R.; The Electronic Structures and Energies of the Lowest Excited States of the Ns0, Ns+, Ns− and Ns-H Defects in Diamond; (2023) Materials, 16 (5), art. no. 1979; DOI: 10.3390/ma16051979; https://www.scopus.com/inward/record.uri?eid=2-s2.0-85149871852&doi=10.3390%2fma16051979&partnerID=40&md5=b11fbcbf91ce1013d1a0e817573fd2fe published under the CC BY 4.0 licence.