Summary of Doctoral Thesis

YEAST DERIVED VIRUS-LIKE PARTICLES AS COMPONENTS OF NOVEL VACCINE PROTOTYPES

Promotion to the degree of Doctor of Biology
Department of Molecular Biology

Riga 2013
The doctoral study was carried out in the Latvian Biomedical and Study Centre during years 2005-2013

The Doctoral Thesis is a summary of publications

This study was supported by:
Grants from Latvian Council of Sciences 05.1631 and 09.1294
Latvian State Research Program 07-VP2.6 “Technology of virus-like particles for recombinant vaccine prototypes”
European Social Fund projects 1DP/1.1.1.2.0/09/APIA/VIAA/150 and 1DP/1.1.1.2.0/09/IPIA/VIAA/004

Supervisors: Dr. biol. Andris Kazâks
Prof., Dr. habil. biol. Pauls Pumpēns

University of Latvia, Promotion Council of Biology

Chairman: Prof., Dr. biol. Uldis Kalnenieks

Opponents: Prof., Dr. biol. Uldis Kalnenieks
Dr. biol. Andris Zeltiņš
Asoc. prof., Dr. sc. ing. Juris Vanags
CONTENTS

ABBREVIATIONS 4
SUMMARY 4
IMPORTANCE, AIM AND OBJECTIVES OF THE STUDY 5
GENERAL INTRODUCTION 6
MATERIALS AND METHODS 8
Yeast strains 8
Restriction enzymes, markers and kits 8
Expression vectors 8
Yeast transformation 9
Isolation of yeast genomic DNA 10
Southern blotting 11
Yeast cultivation in flasks 11
Yeast *P. pastoris* cultivation in fermentor 12
Analytical methods 12
RESULTS AND DISCUSSION 13
I Expression of bacteriophage CP genes in yeast 13
1. Assembly of bacteriophage Qβ virus-like particles in yeast
 Saccharomyces cerevisiae and *Pichia pastoris* (paper 1) 13
2. High-level expression and purification of bacteriophage GA virus-like particles from yeast *Saccharomyces cerevisiae* and *Pichia pastoris* (paper 2) 15
3. Specificity of packaging mRNAs in bacteriophage GA virus-like particles in yeast *Saccharomyces cerevisiae* (paper 3) 17
4. Yeast-expressed bacteriophage-like particles for packaging of nanomaterials (paper 4) 17
II Expression of HBV protein genes in yeast 19
5. Highly efficient production of phosphorylated hepatitis B core particles in yeast *Pichia pastoris* (paper 5) 19
6. Expression of HBV genes in other yeasts 22
CONCLUSIONS 24
THE LIST OF ORIGINAL PUBLICATIONS 24
CONFERENCE THESIS 24
PATENT 25
AUTHOR’S EDUCATION AND SCIENTIFIC EXPERIENCE 25
ACKNOWLEDGEMENTS 25
REFERENCES 26
ORIGINAL PUBLICATIONS 29
ABBREVIATIONS

aa – amino acid(s)
AOX – alcohol oxidase
AEC – anion-exchange chromatography
BMGY – buffered complex glycerol medium
CP – coat protein
CBB – Coomassie brilliant blue
DEAE – diethylaminoethanol
DHAP – dihydroxyacetone phosphate
DNA – deoxyribonucleic acid
FMD – format dehydrogenase
HBV – human hepatitis B virus
HBc – hepatitis B virus core protein
HBe – hepatitis B virus e protein
HBs – hepatitis B virus S protein
MALDI – matrix assisted laser desorption/ionization
MOX – methanol oxidase
MW – molecular weight
OD – optical density
PAAG – polyacrylamide gel
PCR – polymerase chain reaction
PEG – polyethylene glycol
RNA – ribonucleic acid
RDB – regeneration dextrose medium
SDS-PAGE – sodium dodecyl sulfate – polyacrylamide gel electrophoresis
SEC – size-exclusion chromatography
TEF – translation elongation factor
YEPD – yeast extract peptone dextrose medium

SUMMARY

Heterologous expression of viral structural genes often leads to formation of non-infectious virus-like particles (VLPs), which exhibit morphology, antigenicity, and cell tropism similar to the native viruses. In recent years, VLPs have been used for a wide range of applications, both in basic and applied research, but especially in vaccine development. Non-modified (wild-type) or chimeric (exposing defined antigenic epitopes) VLPs with packaged nanomaterials are recently evaluated as components of novel vaccines and vaccine prototypes.

In this work, yeast expression system was adapted for generation of (i) the bacteriophage (phage) VLPs composed from RNA phage coat proteins (CPs) of different origin and (ii) hepatitis B virus (HBV) core (nucleocapsid) particles arranged from the HBV core protein (HBc). Seven different phages were tested for their CP gene expression and VLP formation in yeast S. cerevisiae and P. pastoris, namely, coliphages Qβ, SP, fr, GA, Acinetobacter phage AP205, Pseudomonas phage PP7 and Caulobacter phage φCb5. In all cases except phage SP VLP formation was detected although synthesis level was very different. The highest synthesis was observed for phage PP7 VLPs (about 8 mg from 1 g of wet cells), and it was found also scalable for fermentation conditions. This was the first report of abovementioned phage VLP production in yeast.
High-level fermentor production was established for HBc VLPs in *P. pastoris* and rapid purification scheme was developed leading to outcome of 3 mg protein from 1 g of wet cells. Mass spectrometry analysis and direct polyacrylamide gel staining revealed the HBc as a phosphoprotein. This was the first report of HBc phosphorylation in yeast.

Another two promising yeast expression systems have been successfully introduced in laboratory practice, namely, *Kluyveromyces lactis* and *Hansenula polymorpha*. A set of new vectors for expression in yeast *H. polymorpha* was constructed. For testing capacity of the new vectors, HBe and HBs genes were used. Synthesis of HBs in *H. polymorpha* resulted in formation of 22 nm particles.

IMPORATANCE, AIM AND OBJECTIVES OF THE STUDY

Generation of pure and functionally active proteins is one of the main challenges of the modern biotechnology. These proteins can be then used for diagnostic and structural purposes as well as for development of novel vaccines and vaccine prototypes. Due to the different origin and high diversity of proteins, it is important to establish a broad host range for their successful expression.

Only minor part of eukaryotic proteins can be functionally produced in bacterial cells. Yeast as the simplest eukaryotic organism offers an attractive alternative to quite expensive and non-effective mammalian cell culture systems. Cultivation of yeast cells is relatively simple and material expenses are comparable with bacterial systems. Another benefit of the yeast system is the lack of bacterial endotoxins which need to be removed prior human use. Thus, handling with yeast expression systems is important to obtain functional proteins of different origin.

With development of new expression strategies, the number of purified yeast-derived proteins dramatically increases. Among them, significant part comprises viral structural proteins being capable of self-assembly in VLPs morphologically and immunologically indistinguishable from native viruses or their shells. Modern commercial vaccines against HBV and human papillomavirus have been formulated from yeast-derived VLPs. A number of VLP-based studies are now under different clinical stages of investigation.

The main aim of this work was to establish a broad-range yeast expression system in Laboratory of Protein Engineering of BMC to obtain preparative amounts of VLPs for downstream applications. To achieve this goal, the following objectives have been proposed:

- generation of system for intracellular synthesis of VLPs in yeast *Saccharomyces cerevisiae* and *Pichia pastoris*,
- optimization of expression conditions and comparison of effectivity,
- adaptation of yeast VLP producer strains for large-scale fermentation,
- development of VLP purification methods from yeast and characterization of the final product,
- construction of new vectors for expression in yeast *Hansenula polymorpha*.

For particular investigation, two main VLP targets have been selected: (i) the bacteriophage capsids composed from RNA phage coat proteins of different origin and (ii) HBV core (nucleocapsid) particles arranged from HBc. Other HBV proteins were also used for experiments involving secretion studies (HBe) and testing capacity of new yeast vectors (HBs).
Construction of expression vectors was done by standard cloning techniques. In handling with yeast, well-described methods were combined with novel experimental findings for shortening of time-consuming protocols in many cases. A lot of experimental work has been performed to establish optimal protocols for yeast transformation, selection of superproducer clones and optimization of expression conditions. Besides standard analytic laboratory methods, a new approaches were developed to scale-up the process to preparative amounts (fermentation and cell disruption with the French press unit). For fractionation of proteins, classical chromatography methods were combined with novel FPLC techniques. Obtained bacteriophage and HBc VLPs could be further used for a number of applications including structural studies, packaging of nanomaterials, coupling of epitopes and gene delivery.

These thesis are written as a review of five original publications, where papers 1-4 deal with phage-derived VLPs while paper 5 describes generation of HBc particles in yeast.

GENERAL INTRODUCTION

Nowadays, highly immunogenic VLPs generated by heterologous expression of viral structural genes have become a powerful tool for vaccine development. In addition to being effective vaccines against the corresponding virus from which they were derived, VLPs can also be used to present foreign epitopes to the immune system (Jennings and Bachmann, 2008, Buonaguro et al., 2011). This approach might be combined with the packaging of selected genes, drugs and proteins inside VLPs (see Xu et al., 2006, Kaczmarczyk et al., 2011, Ma et al., 2012). Furthermore, targeted VLPs can be generated by including specific peptide ligands as “molecular addresses” on the particle surface (Yildiz et al., 2011).

The RNA bacteriophages (phages) are small viruses with a simple organization. Their $T=3$ icosahedral shell is composed from 180 copies of the CP and one copy of the maturation protein that encapsidate approximately 3,500 nucleotide long genomic RNA. These phages were first isolated from Escherichia coli (Loeb and Zinder, 1961), but later were also found in Caulobacter (Schmidt, 1966), Pseudomonas (Bradley, 1966) and Acinetobacter (Coffi, 1995). Icosahedral capsids of RNA phages have attracted the attention of scientists as promising carriers of foreign epitopes and nucleic acids. A special interest has been devoted to group III phage Qβ VLPs. Bacterially expressed Qβ VLPs have been explored for chemical coupling of desired peptides to surface-exposed lysine residues. To increase their immunogenicity, such chimeric VLPs can be further engineered by loading them with short synthetic DNA sequences (Storni et al., 2004). Several Qβ phage-derived therapeutic vaccine candidates against nicotine addiction and hypertension have entered clinical trials (Cornuz et al., 2008, Tissot et al., 2008). Another set of vaccine prototypes targeting West Nile and influenza virus infections has been recently constructed using chimeric phage AP205 VLP platform (Spohn et al., 2010, Tissot et al., 2010).

Another very promising VLP carrier is the HBV core protein which forms the inner shell (nucleocapsid) of the HBV. Heterologously expressed HBc spontaneously assembles into the particles that are routinely used for HBV diagnostics worldwide (Stahl et al., 1982). The ability of HBc carrier to provide inserted epitopes with T-cell help (Feher et al., 1998) and preferential priming of Th1 cells, without any requirement for adjuvants (Milich et al., 1997), stimulates the development of a broad range of vaccine prototypes on the basis of HBc VLPs (Pumpens et al., 2008). Recently, HBc
has attracted special interest in medicinal nanotechnology as a putative packager of organic and inorganic compounds, including stimulatory oligonucleotides, low molecular weight drugs, and magnetic particles.

For vaccine development, \textit{E. coli}-derived VLPs need to be purified from contamination of bacterial endotoxins, which is costly and time consuming process. Alternatively, VLPs could be produced in “endotoxin-free” organisms, such as yeast, which has been regarded as generally safe for human use. Up to now, a large number of structural genes from mammalian viruses have been expressed in yeast resulting in formation of VLPs (Valenzuela \textit{et al}., 1982, Sasnauskas \textit{et al}., 1999; Samuel \textit{et al}., 2002; Slibinskas \textit{et al}., 2004; Juozapaitis \textit{et al}., 2007). The yeast expression system has been used successfully to produce licensed prophylactic vaccines against human HBV (see Pumpens \textit{et al}., 2008) and human papillomavirus (HPV; Bryan, 2007).

\textit{Saccharomyces cerevisiae} is perhaps the most useful species of yeast, having been instrumental to winemaking, baking and brewing since ancient times. It is one of the most intensively studied eukaryotic model organisms in molecular and cell biology, much like \textit{Escherichia coli} as the model bacterium (Pausch \textit{et al}., 2005). A large number of \textit{S. cerevisiae} expression systems has been constructed. The first human vaccines against HBV and HPV were produced namely in \textit{S. cerevisiae}. Discovery of the \textit{methylotrophic yeasts} being able to obtain all the carbon and energy needed for growth from methanol, has led to construction of heterologous gene expression systems driven by strong methanol-inducible promoters in a number of methylotrophic yeast strains, including \textit{Pichia pastoris}, \textit{Hansenula polymorpha} (\textit{Pichia angusta}), \textit{Pichia methanolica}, and \textit{Candida boidinii}. Increasing industrial and academic use of these expression systems allowed the heterologous production of a large number of proteins including enzymes, antibodies, cytokines, plasma proteins, and hormones. Some of the advantages of these systems include (i) cheap synthetic salt-based media for growing the yeast, (ii) strong and tightly regulated promoters induced by methanol and repressed by glucose or ethanol, and (iii) the fact that the processes of protein folding, secretion, and other functions in these yeasts are similar in many respects to the same processes in higher eukaryotes (Gellissen, 2000). One of the most prominent yeast expression systems provided by Invitrogen is based on the methylotrophic \textit{P. pastoris} strain, which has been used successfully to produce more than 500 proteins both for basic laboratory research and industrial manufacturing (Macauley-Patrick \textit{et al}., 2005; Böer \textit{et al}., 2007). Another highly effective yeast expression platform for the production of recombinant proteins on an industrial scale is based on methylotropic yeast \textit{H. polymorpha} (Gellissen, 2002) and is now provided by Artes Biotechnology. Recently, New England Biolabs has developed yeast \textit{Kluyveromyces lactis} expression system generally for secretion of proteins. \textit{K. lactis} is not methylotrophic but instead can utilize lactose as a sole carbon source. In this system, heterologous genes are expressed under strong inducible \textit{LAC4} promoter (van Ooyen \textit{et al}., 2006).
MATERIALS AND METHODS

Yeast strains

Saccharomyces cerevisiae
AH22 MATa leu2 his4
DC5 MATa leu2 his3
FH4C wild type
YPH499 ura3–52 lys2–801amber ade2–101ochre trp1–Δ63 his3–Δ200 leu2–Δ1 (Stratagene)
S. cerevisiae strains AH22, DC5 and FH4C as well as the expression plasmid pFX7 was a kind gift of Dr. K. Sasnauskas (Institute of Biotechnology, Lithuania)
Pichia pastoris GS115 his4 (Invitrogen)
Kluyveromyces lactis GG799 wild type (New England Biolabs)
Hansenula polymorpha NCYC 495 leu1-1 (Kind gift of Dr. A. Sibirny, Institute of Cell Biology, Ukraine)

Restriction enzymes, markers and kits

All the enzymes, protein and DNA MW markers as well as kits used in this work were purchased from Fermentas (Vilnius, Lithuania) unless otherwise indicated.

Expression vectors

Basic vectors for this study are listed in Table 1. These vectors were used for cloning of target genes described in Table 2.

Table 1. Basic expression vectors

<table>
<thead>
<tr>
<th>Plasmid</th>
<th>Selection markers (E.coli/yeast)</th>
<th>Integration site(s)</th>
<th>Promoter(s) for expression in yeast</th>
<th>Signal sequence</th>
<th>Reference/manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>pFX7</td>
<td>Ap/FDH1</td>
<td>-</td>
<td>GAL10-PYK1</td>
<td>-</td>
<td>Sasnauskas et al., 1999</td>
</tr>
<tr>
<td>pESC-URA</td>
<td>Ap/URA3</td>
<td>-</td>
<td>GAL1, GAL10</td>
<td>-</td>
<td>Stratagene</td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>Ap/HIS4</td>
<td>AOX1, HIS4</td>
<td>AOX1</td>
<td>-</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pPIC9K</td>
<td>Ap/HIS4</td>
<td>AOX1, HIS4</td>
<td>AOX1</td>
<td>αMF</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pKLAC1</td>
<td>Ap/amdS</td>
<td>LAC4</td>
<td>LAC4</td>
<td>αMF</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>pKLAC1_</td>
<td>Ap/amdS</td>
<td>LAC4</td>
<td>LAC4</td>
<td>αMF</td>
<td>New England Biolabs</td>
</tr>
<tr>
<td>malE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pHIPX2</td>
<td>Em/LEU2</td>
<td>MOX</td>
<td>MOX</td>
<td>-</td>
<td>Faber et al., 1994</td>
</tr>
<tr>
<td>pTEF1/Zeo</td>
<td>Ap/Zeo</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>pHaTEF</td>
<td>Ap/Zeo</td>
<td>HaRNA</td>
<td>TEF</td>
<td>-</td>
<td>This work</td>
</tr>
<tr>
<td>pHaMOX</td>
<td>Ap/Zeo</td>
<td>HaRNA</td>
<td>MOX</td>
<td>-</td>
<td>This work</td>
</tr>
<tr>
<td>pHaFMD</td>
<td>Ap/Zeo</td>
<td>HaRNA</td>
<td>FMD</td>
<td>-</td>
<td>This work</td>
</tr>
</tbody>
</table>

Selection markers encoding antibiotic resistance genes: Ap, ampicillin, Zeo, zeocin, Em, erithromycin. HaRNA, ribosomal RNA locus from H. polymorpha genome.
Table 2. Created expression vectors

<table>
<thead>
<tr>
<th>Basic vector</th>
<th>Expressed gene</th>
<th>GeneBank acc. No/Reference</th>
<th>Construction</th>
</tr>
</thead>
<tbody>
<tr>
<td>pFX7</td>
<td>fr CP</td>
<td>X15031; Adhin et al., 1990</td>
<td>pFX-fr<sup>Sc</sup></td>
</tr>
<tr>
<td>pFX7</td>
<td>GA CP</td>
<td>X03869; Inokuchi et al., 1986</td>
<td>pFX-GA<sup>Sc</sup></td>
</tr>
<tr>
<td>pFX7</td>
<td>Qβ CP</td>
<td>PQM99039; Kozlovska et al., 1993</td>
<td>pFX-Qβ<sup>Sc</sup></td>
</tr>
<tr>
<td>pFX7</td>
<td>SP CP</td>
<td>X07489; Inokuchi et al., 1988</td>
<td>pFX-SP<sup>Sc</sup></td>
</tr>
<tr>
<td>pFX7</td>
<td>AP205 CP</td>
<td>AF334111; Klovins et al., 2002</td>
<td>pFX-AP<sup>Sc</sup></td>
</tr>
<tr>
<td>pFX7</td>
<td>PP7 CP</td>
<td>X08191; Olsthoorn et al., 1995</td>
<td>pFX-PP7<sup>Sc</sup></td>
</tr>
<tr>
<td>pFX7</td>
<td>ϕCb5 CP</td>
<td>HM066936; Kazaks et al., 2011</td>
<td>pFX-Cb<sup>Sc</sup></td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>fr CP</td>
<td>X15031; Adhin et al., 1990</td>
<td>pPIC-fr<sup>Pp</sup></td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>GA CP</td>
<td>X03869; Inokuchi et al., 1986</td>
<td>pPIC-GA<sup>Pp</sup></td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>Qβ CP</td>
<td>PQM99039; Kozlovska et al., 1993</td>
<td>pPIC-Qβ<sup>Pp</sup></td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>SP CP</td>
<td>X07489; Inokuchi et al., 1988</td>
<td>pPIC-SP<sup>Pp</sup></td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>AP205 CP</td>
<td>AF334111; Klovins et al., 2002</td>
<td>pPIC-AP<sup>Pp</sup></td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>PP7 CP</td>
<td>X08191; Olsthoorn et al., 1995</td>
<td>pPIC-PP7<sup>Pp</sup></td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>ϕCb5 CP</td>
<td>HM066936; Kazaks et al., 2011</td>
<td>pPIC-Cb<sup>Pp</sup></td>
</tr>
<tr>
<td>pPIC9K</td>
<td>HBe</td>
<td>X02496; Bichko et al., 1985</td>
<td>pPIC-HBe<sup>Pp</sup></td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>HBe</td>
<td>X02496; Bichko et al., 1985</td>
<td>pPIC-HBe<sup>Pp</sup></td>
</tr>
<tr>
<td>pPIC3.5K</td>
<td>HSbs</td>
<td>X02496; Bichko et al., 1985</td>
<td>pPIC-HBs<sup>Pp</sup></td>
</tr>
<tr>
<td>pKLAC1</td>
<td>HBe</td>
<td>X02496; Bichko et al., 1985</td>
<td>pKLAC-HBe<sup>Kl</sup></td>
</tr>
<tr>
<td>pKLAC1</td>
<td>HBe</td>
<td>X02496; Bichko et al., 1985</td>
<td>pKLAC-HBe<sup>Kl</sup></td>
</tr>
<tr>
<td>pTEF1/Zeo</td>
<td>HBe</td>
<td>X02496; Bichko et al., 1985</td>
<td>pHaMOX-HBe<sup>Hp</sup></td>
</tr>
<tr>
<td>pTEF1/Zeo</td>
<td>HBe</td>
<td>X02496; Bichko et al., 1985</td>
<td>pHaTEF-HBs<sup>Hp</sup></td>
</tr>
<tr>
<td>pTEF1/Zeo</td>
<td>HSbs</td>
<td>X02496; Bichko et al., 1985</td>
<td>pHaMOX-HBs<sup>Hp</sup></td>
</tr>
</tbody>
</table>

^(Sc) S. cerevisiae expression plasmids, ^(Pp) P. pastoris expression plasmids, ^(Kl) K. lactis expression plasmids, ^(Hp) H. polymorpha expression plasmids

Yeast transformation

Two types of shuttle vectors were used: replicative (for expression in S. cerevisiae) and integrative (for expression in P. pastoris, K. lactis and H. polymorpha). Replicative vectors contain yeast replication origin and can maintain in cells as episomes. Integrative vectors should be linearized before transformation in a way to achieve their integration into yeast genome through the homologous recombination.

Transformation of S. cerevisiae and K. lactis

Transformation was done according to standard lithium acetate/PEG transformation procedure (Gietz et al., 1992) with some modifications. Yeast cultures of S. cerevisiae and K. lactis were grown in non-selective YEPD medium (1% yeast extract, 2% peptone, 2% dextrose) overnight without shaking until optical density OD₅₉₀ 1-1.2. Cells were harvested by centrifugation at 2000 g for 4 min, washed once with 1 volume (initial culture) ice cold dH₂O, resuspended in 0.02 vol of 0.1 M lithium acetate and incubated for 15 min on ice. 60 µL aliquots of competent cells were prepared. For the transformation reaction, following components were added to one aliquot of cells (in the indicated order):

- 240 µL 50% PEG 4000,
- 36 µL 1 M lithium acetate,
- 15 µL DNA (2-5 µg) containing bacterial RNA,
dH₂O until 400 µL. Transformation mix was incubated for 1 hour at 30°C following heat shock for 30 min at 42°C. 1 mL of YEPD medium was added and mixture was incubated overnight at 30°C. Transformants were selected on selective YEPD agar plates containing 10 mM formaldehyde (S. cerevisiae) or 5 mM acetamide (K. lactis). Transformants became visible approximately after 2-3 days.

Transformation of H. polymorpha and P. pastoris

H. polymorpha and P. pastoris cultures were grown in non-selective YEPD medium without shaking overnight at 37°C (H. polymorpha) or 30°C (P. pastoris) until OD₉₀₀ 0.8-1.2. Cells were harvested by centrifugation at 2000 g for 4 min, resuspended in 0.2 volume (initial volume) of 50 mM potassium phosphate buffer (6.6 mM K₂HPO₄, 43.4 mM KH₂PO₄, pH 7.5) containing 25 mM dithiothreitol and incubated for 30 min at 37°C or 30°C (H. polymorpha or P. pastoris, respectively). Subsequently, the cells were washed twice with 1 vol of ice-cold electroporation buffer (270 mM sucrose, 10 mM Tris-HCl, 1 mM MgCl₂, pH 7.5). Finally, cells were resuspended in 0.005 vol of electroporation buffer. 20 µL of prelinearized DNA (5-10 µg) containing bacterial RNA was mixed with 80 µL of competent cell suspension into prechilled 1 mm electroporation cuvette and incubated for 15 min on ice. 1200 V electric pulse was gived to DNA/cell mixture, following addition of 1 mL YEPD (room temperature) and incubation 1 h at 37°C or 30°C (H. polymorpha or P. pastoris, respectively). In a case of P. pastoris, transformation mixture was washed with dH₂O and spread on selective RDB (1% ammonium sulphate, 0.34% yeast nitrogen base, 2% dextrose, 4x10⁻⁵ biotin, 0.005% amino acid solution without histidine) agar plates. In a case of H. polymorpha, transformation mixture was directly spread on YEPD agar plates containing 20 µg/mL zeocin. Plates were incubated at 37°C or 30°C, respectively, and transformants were selected approximately after 2-3 days.

Selection of clones containing multiple expression units

For K. lactis, cultivation of transformants on acetamide plates resulted in naturally selected multicopy clones with more than 50% probability. Presence of multiple expression units was verified by PCR according to the protocol of the manufacturer. For H. polymorpha and P. pastoris, multicopy clones were selected as follows: transformants were pooled by washing from agar plates with ~2 mL of YEPD medium and then spread on selective YEPD agar plates containing 50-100 µg/mL zeocin (H. polymorpha) or 1.0-4.0 mg/mL geneticin (P. pastoris). Higher resistance to appropriate antibiotics typically correlated with more integrated expression units.

Isolation of yeast genomic DNA

10 optical units of yeast cells (at A=590 nm) were mixed with 500 µL lysis buffer (100 mM Tris-HCl, 50 mM EDTA, 1% SDS, pH 8.0) containing 25 µg RNase A and 0.3 volumes of glass beads (425-600 µm). After vortexing 2 min, 275 µL 7 M ammonium acetate pH 7.0 was added and mixture was incubated 5 min at 65°C and subsequently 5 min on ice. 500 µL of chloroform was added, vortexed and spun down for 2 min at top speed. 500 µL of supernatant was precipitated with 1 mL isopropanol for 5 min at -20°C and spun down for 10 min at top speed. Pellet was washed with 70% ethanol, air-dried and dissolved in 50 µL dH₂O.
Southern blotting

To estimate the approximate expression cassette copy number in *P. pastoris*, chromosomal DNA from selected transformants was digested with *Bgl*II and separated by agarose gel electrophoresis. After transferring to a nitrocellulose membrane, DNA was hybridized with a biotin-labeled *HIS4*-specific probe (600-bp *Kpn*I restriction fragment from the pPIC3.5K) using the BiotinDecaLabel™ DNA Labeling Kit. The reaction was further processed and developed by the Biotin Chromogenic Detection Kit. Alternatively, for simplified dot-blot assay, 5 µL of genomic DNA was directly transferred to a nitrocellulose membrane. After DNA denaturation in buffer (1.5 M NaCl, 0.5 M NaOH), the reaction was processed as described above.

Yeast cultivation in flasks

To prepare a start culture (an inoculum), an individual colony was picked in 5 mL selective YEPD medium and incubated at 30°/37°C overnight without shaking. Further cultivation was done in 2 L Erlenmeyer flasks with 200 ml of medium on Infors shaker in strain-depending conditions.

S. cerevisiae

Start culture was diluted in YEPD medium containing 3% (w/v) galactose and 2.5 mM formaldehyde until OD₅₉₀ ~0.05. Flasks were incubated at 29-30°C on a shaker with 200 rpm. After every 24 h solid galactose was added to 2%. The cells were cultivated overall for 72 h, with final OD₅₉₀ 12–14.

For expression in strain YPH499, individual transformants were cultivated in liquid synthetic galactose (2% galactose, 0.67% yeast nitrogen base, 0.13% aa dropout powder without uracil) for up to 72 h, until OD₅₉₀ reached 6-7.

K. lactis

Expression in *K. lactis* was basically done according to the protocol of the manufacturer (www.neb.com) with the following minor modifications: start culture was diluted in YEPG medium (1% yeast extract, 2% peptone, 3% galactose) until OD₅₉₀ ~0.05 and incubated at 30°C on a shaker with 250 rpm. The cells were cultivated overall for 48-72 h.

P. pastoris and H. polymorpha

Expression in *P. pastoris* and *H. polymorpha* was basically done according to the *P. pastoris* protocol of the manufacturer (www.invitrogen.com) with the following minor modifications: start culture was diluted until OD₅₉₀ ~0.05 in BMGY medium (1% yeast extract, 2% peptone, 100 mM potassium phosphate, pH 6.0 combined from 13.2 mM K₂HPO₄ and 86.8 mM KH₂PO₄, 1.34% yeast nitrogen base, 4x10⁻⁵% biotin, 1% glycerol) and incubated at 30°C (*P. pastoris*) or 37°C (*H. polymorpha*) on a shaker with 250 rpm. After 24 h at OD₅₉₀ 6–8 expression was induced with addition of 1% methanol. Each subsequent day, methanol was added to a final concentration of 2%. The cells were harvested 72 h (*P. pastoris*) or 48 h (*H. polymorpha*) after induction.
Yeast *P. pastoris* cultivation in fermentor

A volume of 500 mL of seed material was used to inoculate 4.5 L of BMGY in a fermentor. Fermentation conditions: a 10-L fermentor (Bioflo 410, New Brunswick Scientific) was filled with 4.5 L BMGY (with glycerol concentration 40 g/L) and 0.5 L seed material in BMGY. Non-enriched air was used throughout the fermentation. The dissolved oxygen was set at 20%, the aeration rate on the first day was up to 1 vol/min, and the stirring speed was up to 1200 rpm, while the incubation temperature was 30 °C, and the pH was controlled with 25% (v/v) NH₄OH to keep the pH above 5.0. After the glycerol exhaustion at 18 h, 20 mL of 50% glycerol and 10 mL of 100% methanol was added. One hour later, the methanol supply was set at a rate of 3.0 mL/L/h, and the air supply was increased to 5 vol/min. Cultivation continued for 92 h with methanol feeding adjusted to a consumption rate of 6.8 g/L/h. Antifoam M30 (Serva) was used to prevent extensive foam formation. Cells were harvested at 3000 g for 10 min at 4°C. After washing once with dH₂O, the cell pellet was stored at −80°C until use.

Analytical methods

SDS-PAGE and Western blotting

Preparation of yeast protein extracts for SDS-PAGE was done essentially as described by Kushnirov (2000), with minor modifications. Briefly, 4 optical units of yeast cells were resuspended in 200 µL 0.1 M NaOH and incubated for 5 min at room temperature. The cells were pelleted and resuspended in 250 µL SDS sample buffer (60 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 5% β-ME, 0.01% bromphenol blue), boiled for 6-8 min and pelleted again. Protein separation by SDS–PAGE (with a 4% stacking and 15% separating PAAG) was carried out in a Tris-glycine buffer (400 mM Tris-HCl, 182 mM glycine, 0.1% SDS), according to standard protocols. To visualize protein bands, the gels were stained with CBB G-250 (0.005% G-250, 2% trichloroacetic acid, 20% ethanol). Alternatively, separated proteins were electrophoretically transferred onto nitrocellulose membranes and detected by immunoblotting with the specific monoclonal antibodies and the anti-mouse IgG peroxidase conjugate.

To detect phosphorylated proteins, PAAG was stained directly with the ProQ® Diamond phosphoprotein gel stain (*Invitrogen*) according to the manufacturer’s instructions. Full-length HBc molecules as well as their C-terminal domains resulting from proteinase K cleavage were analyzed. For the proteinase K reaction, VLPs were treated for 10 min at 95 °C in buffer containing 1% SDS and 2% β-mercaptoethanol followed by the addition of proteinase K and incubation for 5 min at 50 °C.

Preparation of yeast lysates

For analytic purposes (e.g., Ouchterlony’s immunodiffusion and protein solubility test), 20 optical units of yeast cells were resuspended in 200 µL lysis buffer (typically, 20 mM Tris-HCl, pH 8.0, containing 1 mM PMSF). 0.3 volumes of glass beads (425-600 µm) were added and the mixture was homogenized by vortexing 6 times per 30 s, with 1 min chilling on ice after each cycle. The soluble fraction was separated by centrifugation for 7 min at 13,400 g.

For preparative purposes (e.g., VLP purification), yeast cells were resuspended in lysis buffer (1 g of cells per 4 mL lysis buffer) and disrupted with a French press (3
cycles, 20,000 psi). The soluble fraction was separated by centrifugation for 30 min at 15,500 g.

Electron microscopy and massspectrometry

For electron microscopy, the protein samples were adsorbed on carbon-formvar-coated copper grids and negatively stained with 1% uranyl acetate aqueous solution. The grids were examined with a JEM-1230 electron microscope (JEOL Ltd., Tokyo, Japan) at 100 kV.

For whole protein analysis in mass spectrometry, 2 μl of purified VLPs at 1 mg/mL concentration in 20 mM Tris-HCl, pH 8.0, was mixed with 2 μl 10% trifluoracetic acid and 2 μl DHAP. For tryptic digestion of proteins, the CBB-stained band was excised from SDS-PAAG, incubated for 2x1 h in 0.2 M ammonium bicarbonate and 50% acetonitrile at 30 °C and incubated for 2x20 min in 100% acetonitrile at room temperature. A volume of 0.1 mg/mL trypsin (Sigma, proteomics grade) in 1 mM HCl was mixed 1:1 with 50 mM ammonium bicarbonate in 10% acetonitrile. Gel pieces were covered with the trypsin solution so that the gel absorbed approximately two thirds of the solution’s volume. The gel was further incubated for 3 hours at 30 °C. A volume of 2 μl of buffer covering the gel pieces was mixed with 2 μl 10% trifluoracetic acid and 2 μl DHAP solution (15 mg/mL DHAP in 75% ethanol, 2.5 mM diammonium hydrogen cytrate). All samples were analyzed on a Bruker Daltonics Autoflex MALDI-TOF mass spectrometer.

Characterization of VLPs

The endotoxin level in the protein samples was determined by a Limulus amoebocyte lysate (LAL) Pyrogent® Plus test kit according to the manufacturer’s protocol (BioWhittaker, Walkersville, MD).

Protein samples were subjected to native 1% agarose gel electrophoresis in TAE buffer (pH 8.4) for about 0.5 h at 5 V/cm. Nucleic acids in agarose gels were visualized by ethidium bromide staining. Protein concentration was determined by formula OD(A260)/8, which has been used to determine concentrations of native phages. The purity of protein samples was estimated by densitometric analysis of the CBB-stained PAAG.

RESULTS AND DISCUSSION

I Expression of bacteriophage CP genes in yeast

1. Assembly of bacteriophage Qβ virus-like particles in yeast Saccharomyces cerevisiae and Pichia pastoris (paper 1)

Phage Qβ CP gene was the first our object which has been used as a standard for yeast expression studies. Two shuttle vectors were generated: pFX-Qβ and pPIC-Qβ for expression in S. cerevisiae and P. pastoris, respectively. Three S. cerevisiae strains (AH22, DC5 and FH4C) were compared for their synthesis capacity. For expression in P. pastoris, five clones were selected among ~800 transformants with increased resistance against geneticin (G418). Synthesis of Qβ and VLP assembly were analyzed by SDS-PAGE, immunoblotting and by Ouchterlony’s double radial immunodiffusion with rabbit polyclonal anti-Qβ antibodies (Fig. 1).
Figure 1. Expression of Qβ CP in S. cerevisiae and P. pastoris, estimated by CBB-stained 15% SDS-PAA (A and C) and Western blotting with rabbit polyclonal anti-Qβ antibody (B and D). K1, K2, K3 in (A) represent non-transformed S. cerevisiae DC5, AH22, and FH4C cells, and 1–3—the same strains transformed with pFX-Qβ, respectively. (C) Qβ CP expression in P. pastoris clones with single (lane 4) and multiple (lanes 5–8) gene insertions. K4, non-transformed P. pastoris cells. The lower labels in (B) and (D) correspond to those in (A) and (C), respectively. The Ouchterlony immunodiffusion titres are indicated on the top of respective lines in Western blot. Arrows show the position of the Qβ CP.

Production of Qβ CP was slightly better in the S. cerevisiae AH22 and FH4C strains as shown by SDS-PAGE and immunoblotting. Ouchterlony double radial immunodiffusion visible immunoprecipitation formed lines at dilution up to 1:64, but lysates from the S. cerevisiae AH22 and S. cerevisiae FH4C strains - up to 1:128 (see Fig. 1A and B). Significant differences in the expression level of P. pastoris transformants were found. Most of clones reacted in immunodiffusion with anti-Qβ antibody at dilution 1:32, however, variations from 1:64 up to 1:256 were observed for clones with higher G418 resistance, most probably representing multicopy Qβ CP gene insertions (Fig. 1C and D).

For purification of Qβ VLPs, proteins in the supernatant were precipitated with ammonium sulfate and fractionated on a Sepharose CL-4B gel filtration column. Qβ CP purification resulted about a 90% purity level of the target protein produced in both yeasts (Fig. 2A). Electron microscopy demonstrated well-assembled Qβ VLPs in the purified material, both from S. cerevisiae and P. pastoris cells (Fig. 2B and C). The presence of nucleic acid in yeast-derived VLPs was confirmed by native agarose gel electrophoresis (Fig. 2D and E). Production reached 3.6±0.3 mg/1 g of wet cells for S. cerevisiae and 4.9±0.6 mg for P. pastoris; attaining 15–20% and 20–30% of the Qβ VLP production level in E. coli, respectively (see Kozlovska et al., 1993).
Figure 2. Characterization of yeast-derived Qβ VLPs. Particles after purification from S. cerevisiae (lane 1) and P. pastoris (lane 2) were analyzed in CBB-stained 15% SDS-PAGE (A) by electron microscopy (B and C) and in native 1% agarose gel (D and E) stained with ethidium bromide (D) and subsequently with CBB G-250 (E). (F) E. coli-derived Qβ VLPs. “Empty” (free of nucleic acid) and “full” (containing nucleic acid) particles are marked with white and black arrows, respectively. Bar, 50 nm.

To compare the properties of the Qβ VLPs from different hosts, mice were immunized with S. cerevisiae-, P. pastoris-, or E. coli-derived VLPs. Sera obtained were analyzed for their reactivity with the Qβ VLPs purified from all three hosts in direct ELISA and Ouchterlony immunodiffusion. Both assays suggested identical antigenicity and immunogenicity of the recombinant Qβ particles. Furthermore, the length of heterologously expressed Qβ CPs was compared also by MALDI technique, confirming the lack of the first methionine in all three cases.

In conclusion, both yeast hosts were found suitable for production of Qβ VLPs in similar amounts. Although expression in P. pastoris resulted in ~30% higher output of VLPs, S. cerevisiae-based expression is much more faster and convenient. Based on data obtained by us and Vilnius group (Sasnauskas et al., 1999, Samuel et al., 2002, Slibinskas et al., 2004), S. cerevisiae strain AH22 was selected as the most promising host for expression of viral structural genes. Along with the paper describing the expression of MS2-like particles (Legendre and Fastrez, 2005), this was one of the first reports on generation of phage VLPs in yeast.

2. High-level expression and purification of bacteriophage GA virus-like particles from yeast Saccharomyces cerevisiae and Pichia pastoris (paper 2)

An important drawback of repetitive vaccination with chimeric VLPs might be their limited effectiveness due to the presence of neutralizing antibodies against capsid protein induced after the first application (Da Silva et al., 2001). Additionally, different VLPs display different properties regarding their stability, tolerance to foreign amino acid insertions and chemical modifications, ease of in vitro
reconstruction and ability to pack foreign materials during assembly. Therefore, technologies to generate a broad spectrum of carrier VLPs need to be developed. To extend investigations of phage VLP generation in yeast, the phage GA CP gene was cloned and expressed in a similar way as described above for Qβ. Plasmids pFX-GA and pPIC-GA were generated for expression in S. cerevisiae AH22 and P. pastoris, respectively. Legendre and Fastrez (2005) reported two-gene yeast expression system for packaging functional RNAs within MS2 VLPs. To test this possibility also for phage GA VLPs, the GA CP gene was cloned in pESC-URA vector, resulting in a pESC-GA plasmid. This vector contains also the second promoter for co-expression with an additional gene of interest. For expression of the latter construct, the special S. cerevisiae strain YPH499 was used. The resulting expression units are schematically presented in Fig. 3.

Figure 3. Expression of the GA CP gene in yeast. A, schematic presentation of the vectors used. The relative direction of genes and promoters is indicated by arrows. URA3, HIS4, and FDH1 encode for genes used as primary markers for selection of yeast transformants, while the Kan gene allows secondary screening of P. pastoris for high-copy integrants. B, CBB-stained PAAG demonstrating the total synthesis level of GA CP. M, protein molecular weight marker, (-), non-transformed P. pastoris cells as a negative control. Lanes 1, 2 and 3 represent cell lysates from strains YPH499, AH22, and GS115, respectively. Accumulation of GA CP is indicated by an arrow.

Total synthesis of GA CP was monitored by CBB-stained PAAG (Fig. 3B) showing well-detectable accumulation of ~13.6 kDa protein in strains AH22 and GS115, while in strain YPH499 the production was significantly lower. After cell disruption, the soluble proteins were salt-precipitated and fractionated by SEC similarly as described for phage Qβ. VLP-containing fractions were detected by CBB-stained PAAG and immunodiffusion. The overall purity of the VLP samples in PAAG can be estimated as 80 to 90% (Fig. 4A). Electron microscopy confirmed the formation of icosahedral phage GA-like particles in all three cases (Fig. 4B). As in case with Qβ, the selected P. pastoris clone ensured slightly higher production than S. cerevisiae strain AH22 (Table 3).
3. Specificity of packaging mRNAs in bacteriophage GA virus-like particles in yeast *Saccharomyces cerevisiae* (paper 3)

Despite the rather small production of GA CP observed under *GAL1* promoter in pESC-URA, this vector contains another *GAL10* promoter located in the opposite orientation, allowing co-expression of two genes for protein-protein or protein-nucleic acid interaction studies in *S. cerevisiae*. We attempted to produce GA VLPs *in vivo* with a specified RNA content in a similar way as Legendre and Fastrez (2005) demonstrated with MS2 coat protein in *S. cerevisiae*. To produce mRNAs for packaging, three different genes were cloned under *GAL10* promoter (see Fig. 3A). After co-expression of two genes, VLPs were purified in each case. RNA content analysis of the produced capsids in agarose gel electrophoresis revealed the existence of RNAs of predicted lengths, along with the mRNA of GA CP. Importantly, yeast provides a source of eukaryotic, 5'-capped and 3'-poly(A)-tailed mRNAs, which is attractive for further goals to test phage VLPs as RNA packaging and delivery tools to mammalian cells. Also, the absence of bacterial endotoxins in yeast preparations simplifies the capsid purification procedures for this purpose.

4. Yeast-expressed bacteriophage-like particles for packaging of nanomaterials (paper 4)

Here, were investigated CP genes from phages fr, SP, AP205, PP7 and φCb5 for generation of respective VLPs in yeast. Consequently, expression level was compared in *S. cerevisiae* and *P. pastoris*, using the episomal and integrative vectors, respectively. Synthesis of phage CPs in all cases was well detectable by SDS-PAGE, however, amount of target protein varied significantly (Fig. 5A and B). Generally, higher synthesis of phage CPs was observed in *P. pastoris* clones containing multiple integration units. Especially effective *P. pastoris* producer strains have been selected for phage PP7 and φCb5 CPs (Fig. 5B). However, for phage fr and SP CPs slightly better production appeared in *S. cerevisiae*. Our previous experience with expression of viral structural proteins in *P. pastoris* has led to conclusion that more multicopy clones should be analyzed to select the best producer strains. This is supported by novel data as superproducer clones were successfully obtained for phage φCb5 and PP7 VLPs (Fig. 1C and D).
Figure 5. CBB-stained SDS-PAAG demonstrating synthesis of phage CPs in yeast S. cerevisiae (A) and P. pastoris (B). Panels C and D show selection of P. pastoris superproducer clones for phage φCb5 and PP7 CPs, respectively. Target proteins and selected producer clones are marked by arrowheads.

Purification procedure of phage-like particles was evaluated to obtain material with more than 90% purity. This included three major steps: (i) lysate clarification and first SEC on Sepharose 4 Fast Flow column, (ii) AEC on DEAE column, and (iii) final polishing on SEC HiLoad 16/600 Superdex 200 column. Interestingly, phage φCb5 VLPs are salt sensitive and easily dissociate to dimers when applied to strong anion exchangers. The process is reversible with a high effectivity and can be used for in vitro packaging of functional RNAs and other nanomaterials (e.g., gold nanoparticles) within φCb5 VLPs. This is important finding as the other phage-derived VLPs dissociate to dimers only under denaturing conditions which makes them problematic for in vitro packaging experiments.

Table 3. Summary of phage VLP synthesis, solubility and outcome in yeast

<table>
<thead>
<tr>
<th>Strain</th>
<th>Expression</th>
<th>Solubility</th>
<th>VLP yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>QB<sup>Sc</sup></td>
<td>+++</td>
<td>+++</td>
<td>3-4*</td>
</tr>
<tr>
<td>QB<sup>Pp</sup></td>
<td>+++</td>
<td>+++</td>
<td>4.5-5.5*</td>
</tr>
<tr>
<td>GA<sup>Sc</sup></td>
<td>+++</td>
<td>+++</td>
<td>1.5-2</td>
</tr>
<tr>
<td>GA<sup>Pp</sup></td>
<td>+++</td>
<td>+++</td>
<td>2.5-3*</td>
</tr>
<tr>
<td>fr<sup>Sc</sup></td>
<td>++</td>
<td>+++</td>
<td>0.4-0.6</td>
</tr>
<tr>
<td>fr<sup>Pp</sup></td>
<td>+</td>
<td>+++</td>
<td>0.2-0.3</td>
</tr>
<tr>
<td>SP<sup>Sc</sup></td>
<td>+</td>
<td>-</td>
<td>ND</td>
</tr>
<tr>
<td>SP<sup>Pp</sup></td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>PP7<sup>Sc</sup></td>
<td>+</td>
<td>+++</td>
<td>0.6-0.8</td>
</tr>
<tr>
<td>PP7<sup>Pp</sup></td>
<td>+++</td>
<td>+++</td>
<td>6-8</td>
</tr>
<tr>
<td>AP205<sup>Sc</sup></td>
<td>+</td>
<td>+++</td>
<td>0.4-0.6</td>
</tr>
<tr>
<td>AP205<sup>Pp</sup></td>
<td>++</td>
<td>+++</td>
<td>1-1.5</td>
</tr>
<tr>
<td>φCb5<sup>Sc</sup></td>
<td>++</td>
<td>+++</td>
<td>2-4</td>
</tr>
<tr>
<td>φCb5<sup>Pp</sup></td>
<td>+++</td>
<td>+++</td>
<td>5-7</td>
</tr>
</tbody>
</table>

^(Sc) S. cerevisiae strains, ^(Pp) P. pastoris strains. ^(*) total synthesis level of target proteins estimated by CBB-stained PAAG as follows: +++ , high-level expression exceeding 10% of total cell proteins, ++ well-detectable synthesis reaching 5-10% of total cell proteins, + detectable synthesis below 5% of total cell proteins. ^(b) solubility of target proteins estimated by CBB-stained PAAG as follows: +++ , more than 50% of CP in soluble fraction, +, below 50% of CP in soluble fraction, -, no CP in soluble fraction. ^(c) VLP yield was calculated in mg per 1 g of wet cells. (*), VLP yield was calculated after single SEC column. ND, not detected.
In all cases majority of target protein appeared in soluble fraction and total synthesis amount correlated well with amount of target protein in soluble fraction with the sole exception for phage SP CP, which was found completely insoluble when expressed in *S. cerevisiae* and partially soluble in *P. pastoris*. The data about generation of phage VLPs in yeast are summarized in Table 3. One of the highest synthesis was observed for phage PP7 VLPs and it was the first phage object which was successfully adapted for large-scale fermentation. Although production in fermentor was slightly lower than in flask, it was still high enough for efficient purification (Fig. 6A). Electron microscopy confirmed purity of final phage fr, PP7, AP205, and φCb5 VLP preparations (Fig. 6B). Up to now, this is the first report of abovementioned phage VLP production in yeast.

![Figure 6](image_url)

Figure 6. A, comparison of phage PP7 CP synthesis in fermentor (lane 1) and in flask (lane 2). B, electron microscopy of purified phage VLPs. Scale bar: 50 nm.

II Expression of HBV protein genes in yeast

5. Highly efficient production of phosphorylated hepatitis B core particles in yeast *Pichia pastoris* (paper 5)

Although expression of the HBc gene in yeast cells including *P. pastoris* has been described by several authors (Miyanohara *et al*., 1986, Rolland *et al*., 2001, Li *et al*., 2007), the majority of published HBc VLP purification methods remain either too complicated and time-consuming or non-effective due to the high costs and/or low output of the target protein. HBc gene was cloned in pPIC3.5K vector and transformed in *P. pastoris*. Among ~2000 transformants, selected clones were analyzed for their HBc synthesis level by SDS–PAGE (Fig. 7A).
Figure 7. Correlation between HBc gene expression level and the amount of integration units in individual *P. pastoris* subclones estimated by CBB-stained PAAG (a) and Southern blotting (b). Lane 1, negative control, non-transformed *P. pastoris* cells. Lanes 2–7, *P. pastoris* clones harboring single (S; lane 2) and multiple (E–E4; lanes 3–7) HBc gene insertions. Only a part of the multicopy clones is shown to demonstrate deviation in expression level.

Clone E1 was chosen as the best producer for further investigations. Interestingly, in Southern blotting (Fig. 7B) appeared that higher number of integrated expression units doesn’t always correlate with higher production of target protein. This is consistent with data from other authors for expression of other viral structural genes in *P. pastoris* (Slibinskas et. al., 2004).

For HBc producer E1 fermentation conditions were established. Production level of HBc was practically the same as in flasks but the final biomass reached 163 g/L. A rapid and effective method of HBc VLPs was developed. To make purification cost-effective and fast, we aimed to avoid many commonly used protein purification steps such as centrifugation in a sucrose gradient, affinity and size-exclusion chromatography, filter-concentration, and dialysis. After cell disruption with the French press, majority of HBc was found in soluble fraction. As the HBc VLPs are sufficiently thermostable, the defined combination of heat/pH treatment allowed precipitating most of contaminating proteins (Fig. 8A-C). HBc precipitation with ammonium sulfate efficiently concentrated protein and also removed majority of non-specific nucleic acid from the HBc preparation. Finally, DEAE Sepharose column removed most of remaining impurities as well as aggregated VLP material (Fig. 8D). An output of HBc VLPs reached 3 mg from 1 g of wet cells.
Figure 8. Main purification steps for HBc VLPs. (a) CBB-stained PAAG illustrating HBc purity in protein samples. Lanes 1 and 2, soluble and unsoluble fractions, respectively. Lanes 3 and 4, soluble fraction after heat treatment at pH 6.2 and 8.0, respectively. Lane 5, heat-precipitated proteins from supernatant at pH 8.0. Lane 6, ammonium sulfate precipitate. Lanes 7 and 8, proteins from AEC peaks I and II, respectively. (b) and (c) Western blotting and native agarose gel electrophoresis, showing HBc degradation pattern and presence of nucleic acids, respectively. Lanes 1 and 2, non-treated and heat-treated cell supernatants, respectively. Lane 3, dissolved ammonium sulfate precipitate. Lanes 4 and 5, proteins from AEC peaks I and II, with column flow-through and bound material, respectively (d).

Electron microscopy confirmed quality of purified VLPs (Fig. 9A). The endotoxin level in the final product was less than 100 EU/mg of pure protein, which makes it attractive both for *in vitro* and *in vivo* applications. The length of *E. coli* - and yeast-derived HBc was compared by MALDI-TOF mass spectrometry which revealed MW 21,136 and 21,324 Da, respectively (Fig. 9B). It was assumed that the difference is due to some post-translational modification that does not occur in *E. coli*. To investigate whether our yeast-produced protein is phosphorylated, we subjected full-length HBc molecules to SDS–PAGE and performed phosphoprotein and CBB staining (Fig. 9C and D). The results clearly indicated that the yeast-produced HBc is indeed phosphorylated. Until now, this is the first report of HBc phosphorylation in yeast.
6. Expression of HBV genes in other yeasts
Since commercial vectors for *H. polymorpha* are not available, it was decided to create a flexible modular vector set by analogy with CoMed vector system (Steinborn et al., 2006). First of all, a 3.5 kb genomic fragment encoding rRNA locus has been isolated from *H. polymorpha* genome according to Klabunde et al., (2002) and cloned in pTEF/Zeo1 vector using BglII and NheI restriction sites, resulting in pTEF-rRNA vector. Then, *AOX* transcription terminator sequence from pPIC3.5K was isolated and cloned using SalI and Pael restriction sites. Finally, promoter encoding sequences were cloned using EcoRI and BamHI restriction sites, resulting in pHaTEF, pHaMOX and pHaFMD plasmids (Fig. 10A). Appropriate promoter sequences were PCR-amplified from pTEF/Zeo1, pHIPX2 and *H. polymorpha* genome, respectively.

Hepatitis B virus structural protein genes (*HBc* and *HBs*) have been cloned in particular vectors to test their efficiency. The same genes along with the *HBe* gene as secretion model were tested in other yeast systems, namely, *P. pastoris* and *K. lactis*. Results are summarized in Table 4. Among four HBs constructs tested, synthesis of target protein was detected only in *H. polymorpha* under MOX promoter. Part of HBs was solubilized in detergent-containing buffer and subjected to electron microscopy. Presence of typical 22 nm particles was detected (Fig. 10B). In the same system, expression of HBc was also detected although synthesis was considerably lower than in *P. pastoris* (Table 4). As to secretion of HBe, only traces of expression was
observed in *P. pastoris*. Evaluation of *S. cerevisiae* and *H. polymorpha* systems for secretion purposes is currently in progress.

![Figure 10](image)

Figure 10. A, pHa vector set for gene expression in *H. polymorpha*. Individual modules (promoter, gene, transcription terminator, integration marker) are flanked with unique restriction sites to facilitate cloning procedures. For integration in rRNA locus, plasmid is linearised with *Ecl*136II. B, electron microscopy of HBs particles isolated from *H. polymorpha*. Bar: 50 nm.

Table 4. Expression of hepatitis B virus genes in different yeasts

<table>
<thead>
<tr>
<th>Construction</th>
<th>Expression</th>
<th>Synthesis</th>
<th>Solubility</th>
</tr>
</thead>
<tbody>
<tr>
<td>pPIC-HBe<sup>Pp</sup></td>
<td>Intracellular</td>
<td>+++</td>
<td>+</td>
</tr>
<tr>
<td>pPIC-HBe<sup>Pp</sup></td>
<td>Secretion</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>pPIC-HBs<sup>Pp</sup></td>
<td>Intracellular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pKLAC-HBe<sup>Kl</sup></td>
<td>Intracellular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pKLAC-HBe<sup>Kl</sup></td>
<td>Secretion</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pHaMOX-HBe<sup>Hp</sup></td>
<td>Intracellular</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>pHaEFG-HBs<sup>Hp</sup></td>
<td>Intracellular</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pHaMOX-HBs<sup>Hp</sup></td>
<td>Intracellular</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>pHaFMD-HBs<sup>Hp</sup></td>
<td>Intracellular</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

^(Pp) *P. pastoris* expression plasmids, ^(Kl) *K. lactis* expression plasmids, ^(Hp) *H. polymorpha* expression plasmids. Synthesis level of target proteins was estimated by CBB-stained PAAG as follows: ++++, high-level expression reaching 5-10% of total cell proteins, ++, well-detectable synthesis below 5% of total cell proteins, +, target protein detectable only in concentrated lysate, -, no detectable protein. Solubility was estimated by CBB-stained PAAG as follows: +, at least 50% of protein in soluble fraction, -, no target protein in soluble fraction.
CONCLUSIONS

- Bacteriophage coat proteins can be produced and self-assembled in yeast cells. Synthesis level is highly variable and phage-dependent.
- Correctly folded HBc VLPs can be produced in yeast *P. pastoris* at high level and in *H. polymorpha* – at moderate level.
- Expression level in methylotrophic yeasts is not directly dependent on the number of integrated expression units.
- *P. pastoris*-expressed HBc appears as phosphoprotein.
- *P. pastoris* generally ensures higher VLP outcome than *S. cerevisiae*, with a single exception for bacteriophage fr.
- Purification procedures can be developed to obtain target VLPs at more than 90% purity.
- Fermentation conditions can be established for high-level production in yeast *P. pastoris* for both phage and HBc VLPs.
- Yeast-expressed VLPs can be applied for downstream applications, for example, packaging of nanomaterials.
- A convenient vector system has been generated for gene expression in *H. polymorpha*. Among yeast systems tested, *H. polymorpha* appeared as most promising host for HBs expression.
- Systematic screening of expression systems is needed to obtain synthesis of each particular protein.

THE LIST OF ORIGINAL PUBLICATIONS

CONFERENCE THESIS

PATENT

AUTHOR’S EDUCATION AND SCIENTIFIC EXPERIENCE

The author obtained the Bachelor’s degree of Biology in 2002 in the Faculty of Biology, University of Latvia, followed by the Master’s degree in 2004.

Author’s scientific experience:

Participation in scientific projects:
Grants from Latvian Council of Sciences
01.0238 „Comparative complex investigation and evaluation of bacteria and yeasts as expression systems for synthesis of recombinant proteins” (2001-2004)
05.1631 ”Combined use of E. coli, S. cerevisiae and P. pastoris expression systems to obtain recombinant proteins in functional form” (2005-2008)
09.1294 „Structural investigations of virus like particles” (2009-2012)

Latvian State Research Program 07-VP2.6 “Technology of virus-like particles for recombinant vaccine prototypes” (2005-2009)

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr.biol. Andris Kazaks for opportunity to do my PhD research under his leadership, for his patience while supervising my research activities, for his ability to discern the right direction of scientific goals, as well as support for the thesis writing. As well I would like to thank my second supervisor Prof. Pauls Pumpens for opportunity to work in his laboratory and indefatigable support. Also I am thankful to all my colleagues for support in my work especially Inara Akopjana for help any time any way. As well I am thankful Velta Ose for electron microscopy and Juris Ozols for Western blotting.
REFERENCES

Internet links

http://www.neb.com/

http://www.invitrogen.com/
Assembly of bacteriophage Qβ virus-like particles in yeast
Saccharomyces cerevisiae and Pichia pastoris

The original publication should be cited as follows:
Short communication

Assembly of bacteriophage Qβ virus-like particles in yeast

Saccharomyces cerevisiae and Pichia pastoris

Janis Freivalds, Andris Dislers, Velta Ose, Dace Skrastina, Indulis Cielens, Paul Pumpensa, Kestutis Sasnauskas, Andris Kazaks

1. Introduction

The recombinant virus-like particles (VLPs) formed by coat protein (CP) of RNA-bacteriophage fr (Borisova et al., 1987; Kozlovskaya et al., 1988; Pushko et al., 1993) or MS2 (Mastico et al., 1993) of the Levivirus genus in the Leviviridae family were among the first proposed icosahedron carriers for the presentation of foreign short-sized epitopes on their surface. More recently, MS2 and fr VLPs were found to tolerate longer, 24 and 52 amino acid (aa) insertions, respectively, with retained self-assembly (Heal et al., 1999; Voronkova et al., 2002).
High-level expression of the CP gene of bacteriophage Qβ from Allolevirus genus of the Leviviridae family, which causes the formation of Qβ VLPs, was obtained in *Escherichia coli* (Kozlovska et al., 1993). The native Qβ particle (with quasi *T* = 3 symmetry) contains 180 copies of 133 aa-long CP protein, a natural read-through product of the UGA termination codon of the CP gene (Weber and Konigsberg, 1975). The A1 extension was considered a promising target site for foreign insertions, since it contained elements typical for spike-like structures exposed on the surface of particles (Kozlovska et al., 1996). In the presence of the wild-type CP as a helper, the formation of mosaic Qβ capsids with hepatitis B virus (HBV) preS1 or human immunodeficiency virus 1 gp120 epitopes of different length inserted at the A1 extension was demonstrated (Kozlovska et al., 1996; Vasiljeva et al., 1998). Nonsense Qβ CP derived VLPs (without A1 extension) were used as a template for chemical coupling of desired peptides to surface-exposed lysine residues (Storm et al., 2004). Short CpG oligonucleotides, the most promising vaccine adjuvants known to date (for review, Krieg, 2004), were packaged successfully in vitro into chemically-engineered particles resulting in increased VLP immunogenicity and protection of CpG from nucleases (Storm et al., 2004; Schwarz et al., 2005).

For vaccine development, expression systems beside that of *E. coli* are desirable to avoid contamination of bacterial endotoxins. Yeast is an attractive eukaryotic microorganism presenting such an alternative. Up to now, a number of structural genes from mammalian viruses have been expressed in yeast resulting in the formation of VLPs (Valenzuela et al., 1982; Miyanoara et al., 1986; Kniskern et al., 1986; Cregg et al., 1987; Jacobs et al., 1989; Janowitz et al., 1991; Hofmann et al., 1995, 1996; Sasnauskas et al., 2002; Samuel et al., 2002; Slibinskas et al., 2004). The yeast expression system has been used successfully to produce the first licensed HBV vaccine (McAleer et al., 1984). In this work, we demonstrate the formation of recombinant RNA phage VLPs in two different yeasts to open, therefore, a way for further development of a yeast-derived phage VLP technology.

2. Cloning and expression of Qβ CP gene in yeast *S. cerevisiae* and *P. pastoris*

The Qβ CP-encoding gene was PCR-amplified from *E. coli* expression plasmid pQβ10 (Kozlovska et al., 1993) with the forward primer 5′-TT TCT AGA ACA ATG GCA AAA TTA GAG ACT G-3′ and the reverse primer 5′-T TAC TAG TTA AAT ACO CGC TGG GTT CAG C-3′ (start and termination codons are shown in bold). For expression in *S. cerevisiae*, the PCR fragment was digested with *Xhol/SpeI* (restriction sites are in italics) and cloned under the control of the galactose-inducible promoter in *Xhol*-treated vector pFXX carrying the formaldehyde resistance gene (Samuel et al., 2002). The resulting pFX-Qβ plasmid was used to transform *S. cerevisiae* strains AH22 MATa leu2 his4 and *S. cerevisiae* DC5 MATa leu2 his3, as well as the wild-type strain *S. cerevisiae* FH4C, as described earlier (Sasnauskas et al., 2002; Razonkienė et al., 2004). The transformed clones were selected on agarized YEPD medium supplemented with 3–10 mmol formaldehyde and cultivated as described by Sasnauskas et al. (1999). Transformants were incubated at 30 °C on a shaker in flasks containing YEPD medium supplemented with 3–5 mmol formaldehyde for 20–24 h until optical density OD590 reached 6–8. For induction, galactose was added to 3% in medium and cultivation was continued for another 20–24 h, with final OD590 12–14.

Production of Qβ CP was slightly better in the *S. cerevisiae* AH22 and *S. cerevisiae* FH4C strains as shown by SDS-PAGE and immunoblotting (Fig. 1A and B). This finding was confirmed by Ouchterlony double radial immunodiffusion with rabbit polyclonal antibody, where lysate from the DC5 strain formed visible immunoprecipitation lines at dilution up to 1:64, but lysates from the *S. cerevisiae* AH22 and *S. cerevisiae* FH4C strains—up to 1:128 (see Fig. 1B).

For expression of the Qβ CP gene in *P. pastoris*, the Qβ CP-encoding PCR fragment was cloned by blunt-end ligation into *Smal*-treated vector pPIC3.5K (Invitrogen, Groningen, The Netherlands), under the control of the *AOX1* promoter. The resulting pPIC-Qβ plasmid after linearization with *EcoRI* was used for transformation of the *P. pastoris* GS115 *his4* strain by electroporation (Bio-Rad, Gene Pulser), according to Cregg and Russell (1998). Mut*HIS* transformants were selected on the minimal agar medium (0.67%}

References

Fig. 1. Expression of Qα/H9252 CP in S. cerevisiae and P. pastoris, estimated by Coomassie-stained 15% SDS-PAGE (A and C) and Western blotting with rabbit polyclonal anti-Qα/H9252 antibody (B and D). K1, K2, K3 in (A) represent non-transformed S. cerevisiae DC5, S. cerevisiae AH22, and S. cerevisiae FH4C cells, and 1–3—the same strains transformed with pFX-Qα/H9252, respectively. (C) Qα/H9252 CP expression in P. pastoris clones with single (lane 4) and multiple (lanes 5–8) gene insertions. K4, non-transformed P. pastoris cells. The lower labels in (B) and (D) correspond to those in (A) and (C), respectively. The Ouchterlony immunodiffusion titres are indicated on the top of respective lanes in Western blot. Arrows show the position of the Qα/H9252 CP. M, molecular mass standards (MBI Fermentas, Vilnius, Lithuania) of 118, 85, 47, 36, 26, and 20 kDa proteins.

YNB, 2% glucose) and more than 800 clones were replica-plated on agarized YEPD medium containing G418 antibiotic (Gibco, UK). Most of the clones were resistant to a G418 concentration of 0.4 mg ml⁻¹ representing likely the clones where a single copy of the expression unit was integrated in the yeast chromosome. Clones with a G418 resistance level up to 0.8–1.2 mg ml⁻¹ were found at 2–3% frequency, suggesting insertions with increased copy number. Induction of the Qα CP gene expression in P. pastoris was achieved according to the recommendations of manufacturer as follows: selected clones were incubated at 30 °C on a shaker in flasks containing BMGY medium for 20–24 h until OD590 reached 4–6, collected by low-speed centrifugation and resuspended in BMMY induction medium with dilution to OD590 1.5. Samples taken each 24 h were analyzed by electron microscopy (EM), Western blotting, and Ouchterlony immunodiffusion. Maximal Qα CP production and VLP formation were observed at 72 h after induction. Significant differences in the expression level of P. pastoris transformants were found (Fig. 1C and D). Most of clones reacted in immunodiffusion with anti-Qα antibody at dilution 1:32 (Fig. 1C and D, lane 4), however, variations from 1:64 up to 1:256 were observed for clones with higher G418 resistance, most probably representing multicopy Qα CP gene insertions (Fig. 1C and D, lanes 5–8). The indicated titres were observed in at least three independent expression experiments and their interval is presented if varied between repetitions.

3. Purification and characterization of yeast-derived Qα VLPs

For analytical screening of clones, 20 optical units of yeast cells were disrupted by bead-beating with glass beads (450–500 μm; Serva) in 100 μl of A lysis buffer (10 mM Tris–HCl, pH 7.6, 50 mM NaCl, 0.01% Triton X-100, 2 mM PMSF), for 8 × 0.5 min. For the purification of VLPs from yeast, 1 g of frozen cells, of either S. cerevisiae or P. pastoris, were resuspended in 5 ml of the A buffer. After bead-beating (8 × 0.5 min) and following brief sonication, the soluble and insoluble fractions were separated by low-speed centrifugation. Proteins in the supernatant were precipitated at 50% (v/v) saturation of ammonium sulfate for 3 h at 4 °C and the precipitate was collected at 10,000 rpm for 30 min at 4 °C. The precipitate was resuspended in 1–2 ml of the A buffer without Triton X-100 and fractionated on a Sepharose CL-4B gel filtration column (H = 60 cm, V = 75 ml) with elution speed 3 ml h⁻¹ at 4 °C. The Qα CP-containing fractions were identified by SDS-PAGE and proteins were precipitated at 50%
Fig. 2. Characterization of yeast-derived Q/H9252 VLPs. Particles after purification from *S. cerevisiae* (lane 1) and *P. pastoris* (lane 2) were analyzed in Coomassie-stained 15% SDS-PAGE (A) by electron microscopy (B and C) and in native 1% agarose gel (D and E) stained with ethidium bromide (D) and subsequently with Coomassie G-250 (E). (F) *E. coli*-derived Q/H9252 VLPs. “Empty” (free of nucleic acid) and “full” (containing nucleic acid) particles are marked with white and black arrows, respectively. M, protein molecular mass standards. M1, 1 kB DNA ladder (MBI Fermentas, Vilnius, Lithuania): 10,000, 8000, 6000, 5000, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 750, 500, and 250 base pairs. For EM, samples were adsorbed on carbon-formvar coated grids and stained with 2% phosphotungstic acid (pH 6.8); the grids were examined with a JEM 100 C electron microscope (JEOL Ltd., Tokyo, Japan) at an accelerating voltage 80 kV; bar, 50 nm.

Saturation of ammonium sulfate overnight at 4°C. Precipitate was collected at 12,000 rpm for 30 min at 4°C, dissolved in 1–2 ml of column buffer and extensively dialyzed against the same buffer. This simplified purification protocol ensured about a 90% purity level of the target protein produced in both yeasts, as detected by densitometric analysis of an original SDS-PAGE picture (see Fig. 2A). EM demonstrated well-assembled Q/H9252 VLPs in the purified material, both from *S. cerevisiae* and *P. pastoris* cells (Fig. 2B and C). Production reached 3.5 ± 0.3 mg/l g of wet cells for *S. cerevisiae* and 4.9 ± 0.6 mg for *P. pastoris*, attaining 15–20% and 20–30% of the Q/H9252 VLP production level in *E. coli*, respectively (see Kozlovska et al., 1993). These data were calculated as an average from three independent purifications. Compared to the *E. coli*-derived Q/H9252 VLPs (Fig. 2F), those from yeasts were more heterogeneous in morphology. It was easy also to differentiate between particles containing nucleic acid (seen as particles with lighter tone centrally) from particles without nucleic acid (black centre; see Fig. 2B and C). The presence of nucleic acid in yeast-derived VLPs was confirmed by native agarose gel electrophoresis (Fig. 2D and E). The large part of VLP-associated nucleic acid was contributed by RNA, as it was lost after RNAse (but not DNase) treatment (data not shown).

To compare the antigenicity and immunogenicity of the Q/H9252 VLPs from different hosts, BALB/c female mice (five mice per group) were immunised on day 0 with 50 μg of *S. cerevisiae*-, *P. pastoris*-, or *E. coli*-derived VLPs intraperitoneally/subcutaneously (25 μg/25 μg) in complete Freund’s adjuvant (Sigma, St. Louis, USA). Sera obtained on day 12 after immunization were analyzed for their reactivity with the Q/H9252...
Antigenicity and immunogenicity of Q/H9252 VLPs. Reactivity of murine anti-Q/H9252 sera with the recombinant Q/H9252 VLPs from different hosts in direct ELISA (A) and in immunodiffusion according to Ouchterlony (B). ELISA plates were coated with particles derived from S. cerevisiae (open bars), P. pastoris (grey bars) and E. coli (black bars) and serially diluted murine sera were added. The titres are expressed as decimal logarithms from the reciprocal of the highest serum dilution required to yield an optical density value three times that of pre-immunised mice.

Numbers in (B) represent Q/H9252 VLPs from S. cerevisiae (1), E. coli (2), and P. pastoris (3).

VLPs purified from all three hosts in (i) direct ELISA according to Borisova et al. (1999) (Fig. 3A), and (ii) Ouchterlony immunodiffusion (Fig. 3B). ELISA titres were highly similar and exceeded 10^{-4} in all cases, suggesting identical antigenicity and immunogenicity of the recombinant Q/H9252 particles. Confluence of antigen/antibody precipitation lines in the immunodiffusion test (Fig. 3B) confirmed full antigenic identity of Q/H9252 VLPs from all three hosts.

The length of heterologously expressed Q/H9252 CPs was compared also by matrix assisted laser desorption/ionization (MALDI) technique. The molecular mass of full-length Q/H9252 CP theoretically is 14.3 kDa; since the proteins expressed in E. coli lack the first methionine, the mass of CP should be 14.18 kDa. In fact, MALDI technique confirmed the lack of methionine, as the molecular mass for E. coli-derived Q/H9252 CP was 14.14 kDa. The same result was obtained for Q/H9252 CPs produced both in S. cerevisiae and P. pastoris, indicating that yeast-derived Q/H9252 CPs also lack the first methionine. These MALDI data were obtained in three independent measurements.

A paper devoted to expression of MS2-like particles (Legendre and Fastrez, 2005) appeared during preparation of this manuscript. Thus, these results should encourage the further development of yeast-based expression systems for high-level synthesis of phage coats as putative carriers for the genetic fusion and/or chemical coupling of foreign peptides.

Acknowledgements

Authors wish to thank Inara Akopjana, Juris Ozols and Davids Fridmanis for technical assistance. This work was supported by grants 01.0238 and 05.1631 from the Latvian Council of Sciences, by the European Social Fund, and by the European Regional Development Fund.

References

Below is the image of one page of a document, as well as some raw textual content that was previously extracted for it. Just return the plain text representation of this document as if you were reading it naturally.

RAW_TEXT_START

RAW_TEXT_END

High-level expression and purification of bacteriophage GA virus-like particles from yeast *Saccharomyces cerevisiae* and *Pichia pastoris*

High-level expression and purification of bacteriophage GA virus-like particles from yeast *Saccharomyces cerevisiae* and *Pichia pastoris*

Jānis Freivalds, Jānis Rūmnieks, Velta Ose, Regina Renhofa, Andris Kazāks*

Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV-1067, Latvia

*Corresponding author, E-mail: andris@biomed.lu.lv

Abstract

The recombinant virus-like particles (VLPs) generated by heterologous expression of RNA bacteriophage coat protein genes have been proposed as promising carriers of foreign epitopes and nucleic acids for development of novel vaccines and gene therapy tools. Here, we investigated the possibility to produce bacteriophage GA coat protein-derived VLPs in yeast *Saccharomyces cerevisiae* and *Pichia pastoris*. To optimize growth conditions, three expression systems have been explored: GAL1 and GAL10 promoter-directed expression in *S. cerevisiae* as well as AOX1 promoter-directed expression in *P. pastoris*. Synthesis of GA coat protein and formation of VLPs was observed in all three cases. GA VLPs were purified by a single size-exclusion chromatography step till 80 to 90 % of homogeneity. The final amount of purified VLPs varied between 0.6 to 2.0 mg per 1 g of cells for *S. cerevisiae*, while expression in *P. pastoris* resulted in VLP yield of up to 3 mg from the same amount of cells. The recombinant VLPs obtained may be further used for exposition of foreign epitopes on their surface via chemical coupling and/or packaging of immunostimulatory DNA sequences internally.

Key words: bacteriophage GA, coat protein, expression, virus-like particles, yeast.

Introduction

The RNA bacteriophages (phages) are small viruses with a simple organization. Their $T=3$ icosahedral shell is composed of 180 copies of the coat protein (CP) and one copy of the maturation protein that encapsidates approximately 3,500-nucleotide-long genomic RNA. These phages were first isolated from *Escherichia coli* (Loeb, Zinder 1961), but later were also found in *Caulobacter* (Schmidt 1966), *Pseudomonas* (Bradley 1966) and *Acinetobacter* (Coffi 1995). To date, the coliphages have been classified into four groups based on their serological and physicochemical properties. Groups I and II with MS2 and GA phages as the type species are quite similar and are collectively called group A. Phages Qb and SP, members of groups III and IV, respectively, together form group B (Furuse 1987).

The molecular biology of the RNA phages has been extensively studied (van Duin 1999; Weber 1999). In addition, high-resolution X-ray structures of several RNA phages have been determined (Valegård et al. 1990; Liljas et al. 1994; Golmohammadi et al. 1996; Tars et al. 1997; Tars et al. 2000). These data together with the observation that phage CPs alone in
absence of the viral nucleic acid are able to form non-infectious virus-like particles (VLPs) in *E. coli* (Kozlovska et al. 1993; Pushko et al. 1993) have made icosahedral phage shells attractive as objects for gene and protein engineering manipulations. Thus, recombinant VLPs formed by CPs of group-I RNA phages fr and MS2 have been successfully used for presentation of foreign protein sequences on their surface via genetic fusion (Mastico et al. 1993; Heal et al. 1999; Voronkova et al. 2002). However, steric factors limit the length of peptides that can be added to the CP while still preserving its ability to self-assemble into VLPs. Alternatively, the desired peptides can be chemically coupled to surface-exposed lysine residues (Jegerlehner et al. 2002).

Recently, we and others have demonstrated the potential of yeast cells as a host for producing properly folded phage MS2 and Qb CP-derived VLPs (Legendre, Fastrez 2005; Freivalds et al. 2006). Here, we continue our investigations to show the formation of group-II RNA phage GA VLPs in two different yeasts to therefore extend a way for further development of a yeast-derived phage VLP technology.

Materials and methods

Strains and plasmid constructions

The GA CP-encoding gene was amplified with desired oligonucleotide primers by polymerase chain reaction (PCR) from *Escherichia coli* expression plasmid pGA-355-24 (I. Cielēns, personal communication). The CP sequence encoded by this plasmid differs from that deposited in GenBank (Acc. No. X03869; Inokuchi et al. 1986) at positions 59 and 79 and is identical to that published by Tars et al. (1997). Construction details are summarized in Table 1. For expression in *S. cerevisiae* strain YPH499, the appropriate PCR fragment was digested with *Bam*HI/*Hind*III and cloned in pESC-URA vector, resulting in a pESC-GA plasmid. For expression in the *S. cerevisiae* strain AH22, the PCR fragment was digested with *Xba*I/*Bgl*II and cloned in pFX-Qb, resulting in a pFX-GA plasmid. The *P. pastoris* expression plasmid pPIC-GA was generated by cloning of the respective PCR fragment into pPIC3.5K vector using *Bam*HI and *Sna*BI restriction sites. PCR and cloning procedures were carried out using standard molecular biology protocols (Sambrook et al. 1989).

Yeast transformation and expression conditions

S. cerevisiae strains AH22 and YPH499 were transformed with pFX-GA and pESC-GA, respectively, using standard lithium acetate/polyethylene glycol procedure as decribed by Gietz et al. (1992). The YPH499/pESC-GA transformants were selected on uracil-free agarized synthetic dextrose (SD) minimal medium according to manufacturer’s protocol. For expression, individual transformants were cultivated in liquid synthetic galactose (SG) medium for up to 72 h, until OD590 reached 6 - 7.

Transformed AH22/pFX-GA clones were selected on agarized rich YEP medium containing 2 % glucose (YEPD medium) supplemented with 10 mM formaldehyde. Individual transformants were then incubated in liquid YEPD medium supplemented with 5 mM formaldehyde for 20 to 24 h until optical density OD590 reached 6 - 8. For induction, the cells were collected by low-speed centrifugation and resuspended in YEP medium with 3 % galactose (YEKG medium), and cultivation was continued for another 20 - 24 h, with final OD590 10 - 14.
Electroporation of \(P. \) \(pastoris \) with the Ecl136II-linearized pPIC-GA plasmid and selection of clones containing multiple integrations of expression cassette into yeast chromosome were performed as described by Freivalds et al. (2006). GA CP gene expression in \(P. \) \(pastoris \) was achieved according to recommendations of the manufacturer. Briefly, selected clones were incubated in BMGY medium for 20 to 24 h until \(OD_{590} \) reached 4 - 6; then the cells were collected by low-speed centrifugation and resuspended in BMMY induction medium and cultivated for 72 h. All cultivations were performed in 500 mL flasks with 100 mL of expression media at 30 °C on a rotary shaker either at 200 rpm (\(S. \) \(cerevisiae \)) or at 250 rpm (\(P. \) \(pastoris \)). The cells were collected by low-speed centrifugation, washed with distilled water and stored at −20 °C until use.

Purification of GA VLPs

For purification of GA VLPs, 1 g of yeast cells was resuspended in 4 mL of lysis buffer (20 mM Tris-HCl, 5 mM EDTA, 0.65 M NaCl, 1 mM PMSF, pH = 7.8). To disrupt the cells, suspension was applied to the French press (three strokes, 20 000 psi). The unsoluble cell debris was separated by centrifugation (1 h, 15 500 g) and discarded. Soluble supernatant proteins were concentrated by addition of solid ammonium sulfate to 60 % of saturation and incubation overnight at 4 °C. After centrifugation 20 min at 8000 g, the proteins were solubilized into 1 mL of lysis buffer without PMSF and loaded onto a Sepharose CL4B gelfiltration column (\(V = 90 \) mL, \(h = 110 \) cm), with the buffer flow rate approximately 1.0 mL h \(^{-1} \), and 1.5 mL fractions were collected. All of the purification steps were performed at 4 °C.

Protein content in cell and protein samples was analyzed in denaturating polyacrylamide gels (PAAG), with 4 % stacking and 15 % separating gel, according to standard protocols. To visualize protein bands, the gels were stained with Coomassie Brilliant Blue (CBB). Ouchterlony’s double radial immunodiffusion with cell lysates was performed using rabbit polyclonal anti-GA antibodies. VLP electrophoresis in 1 % native agarose gels was performed in TAE buffer (pH 8.4) for about 1 h at a constant 90 mA current. VLPs were concentrated

<table>
<thead>
<tr>
<th>Strain/genotype</th>
<th>Vector</th>
<th>Primers (5’—3’)</th>
<th>Construct</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S.) (cerevisiae) YPH499</td>
<td>pESC-URA (Stratagene)</td>
<td>Fw: CAGGACGATGCACCGCTTAGCTTTGT</td>
<td>pESC-GA</td>
</tr>
<tr>
<td>(S.) (cerevisiae) MATa ura3-52 lys2-801_amber</td>
<td>pFX-Q, (Samuel et al. 2002; Freivalds et al., 2006)</td>
<td>Fw: TTGGATACAGACACGACGACCGCTGTTTGG</td>
<td>pFX-GA</td>
</tr>
<tr>
<td>(P.) (pastoris) GS115</td>
<td>pPIC3.5K (Invitrogen)</td>
<td>Fw: TTGGATACAGACACGACGACCGCTGTTTGG</td>
<td>pPIC-GA</td>
</tr>
</tbody>
</table>

Table 1. Description of vectors and strains used for expression of phage GA CP gene in yeast \(S. \) \(cerevisiae \) and \(P. \) \(pastoris \). Cloning sites in forward (Fw) and reverse (Rv) primers are underlined. Start and termination codons of the GA CP gene are shown in bold.
J. Freivalds, J. Rūmnieks, V. Ose, R. Renhofa, A. Kazāks

by dialysis against storage buffer (50 % glycerol, 10 mM Tris-HCl, 2.5 mM EDTA, 325 mM NaCl, pH 7.8) for at least 24 h. Protein concentration measurements were made according to Bradford (1976).

For electron microscopy, samples were adsorbed on carbon-formvar coated grids and stained with 2 % phosphotungstic acid (pH 6.8); the grids were examined with a JEM 100C electron microscope (JEOL Ltd., Tokyo, Japan) at an accelerating voltage 80 kV.

Results

Design of constructs and expression

In order to establish optimal conditions for generation of GA VLPs in yeast, we aimed to compare three well-described expression systems by cloning of phage GA CP gene in three different vectors. The resulting expression units are schematically presented in Fig. 1A. In the first approach, the pESC-URA vector was selected as a template for cloning and GAL1 promoter-directed expression. This vector was previously used for generation of phage MS2 VLPs (Legendre, Fastrez 2005). In a second approach, we focused on the pFX-derived plasmid, which represents an already established VLP producing system exploiting hybrid GAL10-PYK1 promoter. In addition, this vector encodes for the FDH1 gene of Candida maltosa, conferring resistance to formaldehyde (Sasnauskas et al. 1992), which is very convenient for quick selection of transformants on rich media. In a third approach, the strong AOX1 promoter-directed expression provided by the P. pastoris expression vector pPIC3.5K was undertaken.

All three constructs pESC-GA, pFX-GA, and pPIC-GA were transformed in their corresponding yeast host (YPH499, AH22 and GS115, respectively). While both S. cerevisiae vectors exist in the cells as episomes, pPIC3.5K does not contain a yeast replication origin and needs to be integrated into the host genome via homologous recombination. Due to

Fig. 1. Expression of the GA CP gene in yeast. A, schematic presentation of the vectors used. The relative direction of genes and promoters is indicated by arrows. URA3, HIS4, and FDH1 encode for genes used as primary markers for selection of yeast transformants, while the Kan gene allows secondary screening of P. pastoris for high-copy integrants. B, CBB-stained PAAG demonstrating the total synthesis level of GA CP. M, protein molecular weight marker, (-), non-transformed P. pastoris cells as a negative control. Lanes 1, 2 and 3 represent cell lysates from strains YPH499, AH22, and GS115, respectively. Accumulation of GA CP is indicated by an arrow.
the presence of Kan gene in the expression unit, we have selected clones with multiple expression units integrated in the yeast chromosome, which accordingly exhibited increased resistance to Geneticin in *P. pastoris*.

The selected clones were cultivated in appropriate conditions ensuring maximal expression level in each particular case. Optical densities of yeast cells notably varied between strains due to the content of cultivation media, resulting in different amounts of cells obtained at the end of cultivation (Table 2). Total synthesis of GA CP was monitored by CBB-stained PAAG (Fig. 1B) showing well-detectable accumulation of ~13.6 kDa protein in strains AH22 and GS115, while in strain YPH499 the production was significantly lower. Nevertheless, presence of the specific product in the latter case was verified by Western blot with GA-specific antibodies (data not shown). Therefore synthesis of GA CP was confirmed in all three cases and we proceeded to analyze solubility and self-assembly of the target protein.

Purification and characterization of GA VLPs

As the first step of purification, the cells were disrupted by French press and the soluble protein fraction was analyzed by Ouchterlony double radial immunodiffusion with anti-GA antibodies. The obtained titres (Table 2) correlated well with the absolute GA CP amounts (Fig. 1B), suggesting that the majority of the target protein was in the soluble protein fraction and also providing indirect evidence of the presence of VLPs in cell lysates, since unassembled CP usually accumulates as unsoluble aggregates in cells (our unpublished observations).

For further purification, a concentrated mixture of soluble proteins was subjected to size-exclusion chromatography on Sepharose CL4B beads. As expected, the majority of the target protein was eluted between 36 to 42 ml, which corresponds to the calculated volume where VLPs may appear. The respective part of the elution profile is presented in Fig. 2A. Importantly, the larger part of contaminants was removed during the chromatography, indicating the effectiveness of the particular method.

To verify the presence of VLPs, the same fractions were also subjected to native agarose gel electrophoresis (Fig. 2B). The gel was stained with ethidium bromide demonstrating a strong nucleic acid signal that was correlated with the amount of GA CP (Fig. 1B). Taken together, these data strongly suggest formation of VLP nucleoprotein complexes migrating towards anode in native agarose gel. In part, this might be explained by presence of a large amount of negatively charged nucleic acid non-specifically packed inside the VLPs.

Based on the information presented above, the peak VLP-containing fractions were pooled and concentrated. Overall amounts of the obtained VLPs are presented in Table 2. These data correlated well with both the total synthesis level of GA CP (Fig. 1B) and

Table 2. Summary of generation of phage GA VLPs in yeast. Replication in at least two independent experiments

<table>
<thead>
<tr>
<th>Strain/plasmid</th>
<th>Amount of cells after cultivation (g L⁻¹)</th>
<th>Immunologic anti-GA titers</th>
<th>GA VLPs (mg from 1 g of cells)</th>
</tr>
</thead>
<tbody>
<tr>
<td>YPH499/pESC-GA</td>
<td>15 - 20</td>
<td>1:4 - 1:8</td>
<td>0.6 - 0.8</td>
</tr>
<tr>
<td>AH22/pFX-GA</td>
<td>40 - 50</td>
<td>1:16</td>
<td>1.5 - 2</td>
</tr>
<tr>
<td>GS115/pPIC-GA</td>
<td>40 - 50</td>
<td>1:32</td>
<td>2.5 - 3</td>
</tr>
</tbody>
</table>
immunological anti-GA titers obtained in supernatant (Table 2). Visually, the overall purity of the VLP samples in PAAG can be estimated as 80 to 90%, which is rather high after only a single purification step (Figure 3A). Not surprisingly, the highest purity was associated with the highest expression level, obtained for *P. pastoris*. Finally, the samples were subjected to electron microscopy, which confirmed the formation of icosahedral phage GA-like particles in all three cases (Fig. 3B).

Taken together, an efficient GA VLP generation system was established in both yeast *S. cerevisiae* and *P. pastoris*. The highest yield of VLPs was found in the case of *P. pastoris*. Such recombinant wild-type GA VLPs may be further used for exposition of foreign peptides on their surface via chemical coupling and/or packaging of immunostimulatory DNA sequences internally.

Discussion

Highly immunogenic VLPs generated by heterologous expression of viral structural genes have become a powerful tool for vaccine development. In addition to being effective...
Yeast-expressed bacteriophage GA virus-like particles

VLPs can also be used to present foreign epitopes to the immune system. This approach might be combined with the packaging of selected genes and drugs inside VLPs (for recent review articles see Georgens et al. 2005; Xu et al. 2006; Jennings, Bachmann 2008).

Icosahedral capsids of the simple RNA phages have attracted attention of scientists as promising carriers of foreign epitopes and nucleic acids. A special interest has been devoted to group III phage Qb VLPs. Bacterially expressed Qb VLPs have been explored for chemical coupling of desired peptides to surface-exposed lysine residues. To increase their immunogenicity, such chimeric VLPs can be further engineered by loading them with short synthetic DNA sequences (Storni et al. 2004; Schwarz et al. 2005). Several Qb phage-derived therapeutic vaccine candidates have already entered phase I to III clinical trials (Kündig et al. 2006; Maurer, Bachmann 2007; Tissot et al. 2008).

However, for vaccine development, E. coli-derived VLPs need to be purified from contamination of bacterial endotoxins, which is costly and time-consuming. Alternatively, VLPs could be produced in “endotoxin-free” organisms, such as yeast, which has been regarded as generally safe for human use. Up to now, a large number of structural genes from mammalian viruses have been expressed in yeast resulting in formation of VLPs (Valenzuela et al. 1982; Kniskern et al. 1986; Sasnauskas et al. 1999; Samuel et al. 2002; Slibinskas et al. 2004; Juozapaitis et al. 2007). The yeast expression system has been used successfully to produce licensed prophylactic vaccines against human hepatitis B virus (McAleer et al. 1984) and human papillomavirus (Bryan 2007).

An important drawback of repetitive vaccination with chimeric VLPs might be their limited effectiveness due to the presence of neutralizing antibodies against capsid protein induced after the first application (Da Silva et al. 2001). Therefore, technologies to generate a broad spectrum of carrier VLPs need to be developed. It should be also noted that humans normally do not possess pre-existing antibodies to RNA phages and the immune response will therefore not be impaired. Taking into account these considerations, we extended our

Fig. 3. Characterization of purified GA VLPs. A, CBB-stained PAAG of the final product after size-exclusion chromatography. M, protein molecular weight marker. Lanes 1, 2 and 3 demonstrate the purity of VLPs obtained from strains YPH499, AH22, and GS115, respectively. B, direct evidence of VLP formation by electron microscopy. Only VLPs purified from yeast P. pastoris are presented. Scale bar: 50 nm.
investigations to optimize generation of phage GA-derived VLPs in yeast. The phage GA CP gene was therefore cloned and expressed in three different vectors.

Despite the rather small production of GA CP observed under GAL1 promoter in pESC-URA, this vector contains another GAL10 promoter located in the opposite orientation. This might be advantageous for co-expression of two genes for protein-protein or protein-nucleic acid interaction studies in *S. cerevisiae*. Significantly higher expression of target protein was observed in case of pFX-GA. This is in line with previous data about pFX-directed high-level expression and VLP formation of polyomavirus VP1 and mumps virus nucleoprotein in *S. cerevisiae* (Sasnauskas et al. 1999; Samuel et al. 2002). Finally, methylotrophic yeast, *P. pastoris*, was superior in production of GA CP and yield of recombinant VLPs, therefore confirming its selection as a host microorganism for high-level expression of recombinant genes for both basic laboratory research and industrial manufacture (for a review see Macauley-Patrick et al. 2005).

Recently, we demonstrated the assembly of phage Qb VLPs in *S. cerevisiae* and *P. pastoris* using pFX- and pPIC3.5K-derived expression vectors, respectively (Freivalds et al. 2006). The results obtained were quite similar to those described in this article in that selection of *P. pastoris* clones with multiple expression units integrated in the yeast chromosome resulted in increased expression and outcome of recombinant VLPs while those with single insertion demonstrated rather low synthesis of the target protein. However, not always more integration events leads to higher production, as shown for synthesis of the measles virus nucleoprotein (Slibinskas et al. 2004). Thus, wide screening and selection of individual *P. pastoris* clones is needed for obtaining maximum production in each particular case.

Acknowledgements

This work was supported by the National Research Program 07-VP2.6 from the Latvian Council of Sciences and by a European Social Fund. The *S. cerevisiae* strain AH22 and expression plasmid pFX7 was a kind gift from Dr. K. Sasnauskas (Institute of Biotechnology, Vilnius, Lithuania). We thank Dr. I. Cielēns and Dr. D. Skrastiņa for providing plasmid pGA-355-24 and anti-GA antibodies, respectively.

References

Yeast-expressed bacteriophage GA virus-like particles

Bakteriofāga GA vīrusam līdzīgo dalīnu ekspresija raugos Saccharomyces cerevisiae un Pichia pastoris un to attīrīšana

Jānis Freivalds, Jānis Rūmnieks, Velta Ose, Regina Renhofa, Andris Kazāks*

Latvijas Biomedicīnas pētījumu un studiju centrs, Rātsupītes 1, Rīga LV-1067, Latvija

*Korespondējošais autors, E-pasts: E-mail: andris@biomed.lu.lv

Kopsavilkums

Rekombinētās virušiem līdzīgās dalīnās (VLD), kas generētas RNS bakteriofāga apvalka proteīna gēnu heterologās ekspresijas celā, ir daudzsoši svešu epitopu un nukleīnskābju pārnesēji jaunu vakcīnu un gēnu terapijas līdzekļu attīstībai. Šajā darbā mēs pētījam iespēju ražot no bakteriofāga GA apvalka proteīna izveidotās VLD raugos Saccharomyces cerevisiae un Pichia pastoris. Augšanas apstākļu optimizēšanai pārbaudīja trīs dažādas ekspresijas sistēmas: GAL1 un GAl10 promotoru vadīto ekspresiju S. cerevisiae un AOX1 promotora vadīto ekspresiju P. pastoris. Visās sistēmās novēroja GA apvalka proteīna sintēzi un VLD veidošanos. GA VLD attīrīja ar vienas pakāpes izmēra izslēgšanas hromatogrāfiju līdz 80 - 90 % homogenitātei. Attīrīto VLD gala iznākums bija 0.6 līdz 2.0 mg uz 1 g šūnu S. cerevisiae gadījumā, bet ekspresija P. pastoris deva līdz pat 3 mg VLD uz identisku šūnu daudzumu. Iegūtās rekombinantās VLD var tālāk izmantot svešu epitopu eksponēšanai uz to virsmas ar ķīmiskas piesaistišanas starpniecību vai imunostimulējošu DNS sekvenču ievietošanai tajās.
Specificity of packaging mRNAs in bacteriophage GA virus-like particles in yeast *Saccharomyces cerevisiae*
Specificity of packaging mRNAs in bacteriophage GA virus-like particles in yeast *Saccharomyces cerevisiae*

Jānis Rūmnieks*, Jānis Freivalds, Indulis Cielēns, Regina Renhofa

Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV-1067, Latvia

*Corresponding author, E-mail: j.rumnieks@biomed.lu.lv

Abstract

Heterologous expression of RNA bacteriophage coat protein genes leads to formation of virus-like particles that encapsulate intracellular RNA. Here we packaged specific mRNA molecules into bacteriophage GA capsids *in vivo*. For specificity we employed a GA operator – a 21-nucleotide-long RNA sequence that folds into a stem-loop structure and can specifically bind to the coat protein of the phage. Several plasmids were constructed for expression in *Saccharomyces cerevisiae*, which directed synthesis of both the GA coat protein and the mRNA to be packaged. As models for packaging, three different mRNAs (GA coat protein, ENA-78 and GFP) were used, each constructed in two versions that differed by the presence of the GA operator within their sequence. RNA content analysis of the produced capsids in gel electrophoresis revealed the existence of RNAs of predicted lengths. The presence of the packaged mRNAs in the capsids was further verified by reverse transcription PCR. However, the operator had rather small effect on the specificity of capsid contents, since the mRNA of GA coat protein was also invariably detected inside the capsids.

Key words: bacteriophage GA, coat protein, mRNA, packaging, virus-like particles.

Introduction

RNA bacteriophages belonging to the Levirviridae family are small viruses that infect several Gram-negative bacteria genera. RNA phages infecting *Escherichia coli* have been divided into four groups denoted I to IV (Fiers 1979). Groups I and II are related to each other and belong to the Levivirus genus; phages from groups III and IV are also closely similar and assigned to the Allolevivirus genus. The best-known representatives are phages MS2 from group I, GA from group II, Qβ from group III and SP from group IV.

The genomic RNA of levirviruses is an approximately 3500-nucleotides-long single-stranded RNA molecule that codes for only four proteins: coat protein, lysis protein, maturation protein and a subunit of the viral replicase – an RNA-dependent RNA polymerase (for a review, see van Duin 1988). The viral genome is enclosed in a $T = 3$ quasi-equivalent icosahedral capsid with diameter about 28 nm, which consists of 180 coat protein molecules. Each virion also contains a single copy of the maturation protein, which is essential for the attachment of the phage to bacterial F-pili and successful infection.

Besides its structural role, the coat protein also functions as a specific RNA binding protein that recognizes a stem-loop structure at the very beginning of the replicase gene (Bernardi, Spahr 1973). The stem-loop is often designated a translational operator, as its binding to the coat protein effectively represses the synthesis of replicase. The operator is
also believed to be a packaging signal that initiates the assembly of the capsid and thus ensures recognition and selective encapsidation of the phage RNA (Hohn 1969a; Beckett, Uhlenbeck 1988). Although the coat protein can assemble into phage-like particles in vitro when mixed with the genomic RNA of the phage or unspecific RNAs of different lengths (Hohn 1969b), the presence of the operator lowers the concentration requirements for capsid assembly (Beckett et al. 1988).

The coat protein genes from numerous RNA phages have been reverse-transcribed, cloned and expressed in *Escherichia coli*, leading to assembly of virus-like particles (VLPs) without the need for any other viral components (Kastelein et al. 1983; Kozlovskaya et al. 1986; Peabody 1990; Kozlovsk et al. 1993; Lim et al. 1994). Such recombinant VLPs encapsulate intracellular RNA (Pickett, Peabody 1993), but are morphologically and immunologically indistinguishable from native phages.

There has also been some interest to produce VLPs in vivo with a specific nucleic acid content. For this, a coexpression system that directs simultaneous production of both the coat protein and the RNA to be packaged is generally utilized. For specificity, the target RNA contains the translational operator of the replicase gene. In this way, recombinant MS2 capsids containing *LacZ* RNA were produced in *E. coli* (Pickett, Peabody 1993). A similar system was recently employed also in yeast *Saccharomyces cerevisiae* where the mRNA of human growth hormone was packaged into MS2 VLPs (Legendre, Fastrez 2005), demonstrating the potential of RNA phage capsids as carriers and possible delivery vehicles for therapeutic mRNAs. Others have made use of the remarkable stability of RNA phage capsids and engineered VLPs as containers for ribonuclease-protected RNA molecules of choice. As potential controls and standards for RT-PCR detection of RNA viruses, MS2 capsids have been produced that contain RNAs with a consensus sequence from HIV-1 *gag* gene (Pasloske et al. 1998) or, similarly, a longer RNA with sequences combined from hepatitis C virus, SARS coronavirus and avian influenza virus genomes (Wei et al. 2008).

Up to now, all efforts to encapsulate heterologous RNAs into RNA phage capsids in vivo have been directed towards phage MS2, a type species of group I. Since the details of molecular interactions between the coat protein and RNA operator vary among different RNA phages, the results obtained with one phage cannot be extrapolated to others. We investigated whether specific RNAs can be encapsulated in vivo using the coat protein from phage GA, a characteristic representative of group II.

Materials and methods

Construction of plasmids

The construction of pESC-GA has been described elsewhere (Freivalds et al. 2008). pESC-GAop was constructed by amplifying a fragment from pGACPop with primers GA_fwd and GAop_rev3 (for nucleotide sequences of primers, see Table 1), which was cloned into *BamHI/HindIII*-digested pESC-URA vector (Stratagene). Note: pGACPop is an *E. coli* expression plasmid that contains the GA operator sequence downstream the GA coat protein gene, with nucleotide sequence corresponding to primers GAop_rev1, GAop_rev2 and GAop_rev3. Vectors for the two-gene coexpression plasmids were prepared by digesting pESC-GA with *NotI* and *BglII* (pESC-GAv1) or with *EcoRI* and *NorI* (pESC-GAv2). A short double-stranded DNA fragment containing GA operator sequence and
mRNA packaging in GA virus-like particles

NotI and BgII sticky ends was obtained by hybridizing GAop1 and GAop2 and ligated into pESC-GAv1. The resulting plasmid was digested with EcoRI and NotI, thus producing pESC-GAv3. A DNA fragment containing the coding sequence of ENA-78 flanked by EcoRI and NotI restriction sites was amplified from plasmid pTRC-ENA (I. Cielēns, unpublished data) using primers ENA_fwd and ENA_rev and cloned into pESC-GAv2 and pESC-GAv3, resulting in plasmids pESC-GA-ENA and pESC-GA-ENAop, respectively. In a similar manner, the sequence coding for GFP was amplified using primers GFP_fwd and GFP_rev from plasmid pA62 (kindly provided by A. Strods), which contains the gene for CXCR4-eGFP fusion protein (unpublished data). The resulting fragment was cloned into pESC-GAv2 and pESC-GAv3, thus producing plasmids pESC-GA-GFP and pESC-GA-GFPop, respectively.

Production and purification of GA VLPs

Yeast transformants were obtained, cultivated and the recombinant GA capsids purified essentially as described (Freivalds et al. 2008), with an additional last purification step of ion-exchange chromatography. After gel-filtration, the fractions containing GA VLPs in TEN buffer (20 mM Tris-HCl, pH 7.8, 5 mM EDTA, 150 mM NaCl) were loaded on a DEAE-Sephadex A50 column (V = 3.5 mL, h = 5 cm) and washed with four column volumes of TEN buffer. GA capsids were eluted in the void volume while nucleic acid contaminants remained bound to the column and subsequently eluted with TEN buffer supplemented with 1 M NaCl. Fractions containing GA VLPs were pooled and stored frozen at –20 ºC until use.

RNA extraction

An equal volume of Tris-HCl buffered phenol (pH 6.7) was added to a preparation of purified capsids, vortexed for 30 s and centrifuged at 10 000 g for 5 min. The aqueous phase was collected and repeatedly phenol-extracted until no protein band could be observed at the phase interface. The aqueous phase was then washed three times with diethyl ether and the RNA concentrated by ethanol precipitation. Finally, the RNA was dissolved in a small

<table>
<thead>
<tr>
<th>Oligonucleotide</th>
<th>Nucleotide sequence (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENA_fwd</td>
<td>TCAGAATTCA TGCTTGTTCTGCAGCGC</td>
</tr>
<tr>
<td>ENA_rev</td>
<td>ATGGCGGCCGCTTAGTTTCTTGTTCCCA</td>
</tr>
<tr>
<td>GA_fwd</td>
<td>CAGGATCCATGGCAACTTTACGAGTTCG</td>
</tr>
<tr>
<td>GA_rev</td>
<td>TGAAGCTTTACGCGTAGAGCCACTCTG</td>
</tr>
<tr>
<td>GAop_rev1</td>
<td>ACATAGGTTTTCTTTATGTGGTCTTACGCCGTAAGAAGCCACTCTG</td>
</tr>
<tr>
<td>GAop_rev2</td>
<td>CATGATCAATGGACCTCTTTATCGGAAACATAGGTTTTTTCCTTTATGTT</td>
</tr>
<tr>
<td>GAop_rev3</td>
<td>AGAGGCCTTTACGCGTAGAGCTTCTCC</td>
</tr>
<tr>
<td>GAop1</td>
<td>GGCCGCAAACATAAGGAAAACCTATGGTCCA</td>
</tr>
<tr>
<td>GAop2</td>
<td>GATCTGGAAATAGGTTTTTCTTTATGGTTCGA</td>
</tr>
<tr>
<td>GFP_fwd</td>
<td>TCGAATTCCATGGTGAGCAAGGCGAGGA</td>
</tr>
<tr>
<td>GFP_rev</td>
<td>GAGCGGCCGCAAGCTTTACTTGTACAGCTCGTCCAT</td>
</tr>
</tbody>
</table>

Table 1. Oligonucleotides used for the construction of plasmids. Restriction sites for cloning are underlined and the initiation and termination codons of genes are shown in bold.
volume of sterile water and aliquots stored frozen at –20 °C until use.

RNA electrophoresis

RNA samples were thawed on ice. After adding of 2X RNA loading dye (Fermentas) samples were heated at 70 °C for 10 min, cooled 2 min on ice and immediately loaded on a denaturing urea-polyacrylamide gel (8 M urea, 4 % polyacrylamide, 1X TBE). After electrophoresis, the gel was stained with ethidium bromide and RNA detected by fluorescence in UV light.

Reverse transcription PCR

Synthesis of the first strand cDNA was conducted by the RevertAid kit (Fermentas) according to manufacturer's protocol and using 1.2 µg of the extracted RNA as template and either 20 pmol of sequence-specific primer (GA_rev for all RNA samples and ENA_rev for RNA extracted from GA-ENA and GA-ENAop capsids) or 90 pmol of oligo(dT)$_{18}$ for RNA preparations from GA-GFP and GA-GFPop. The reason for using oligo(dT)$_{18}$ instead of GFP_rev was the apparent formation of a stable secondary structure of the latter, resulting in no detectable reaction products at 37 °C (data not shown). After reverse transcription, 2 µL of the mixture was used as a template for second strand cDNA synthesis, using primers GA_fwd / GA_rev, ENA_fwd / ENA_rev and GFP_fwd / GFP_rev for the amplification of GA coat protein, ENA-78 and green fluorescent protein cDNAs, respectively.

Results

Construction of the in vivo packaging system

To attempt to produce GA VLPs in vivo with a specified RNA content, we chose the expression system in yeast *Saccharomyces cerevisiae*. Although the levels of heterologous protein expression in yeast are generally lower compared to those attainable in *E. coli*, the *S. cerevisiae* system is beneficial in a number of aspects. Yeast provides a source of eukaryotic, 5'-capped and 3'-poly(A)-tailed mRNAs, which is attractive considering our further goals to test GA VLPs as RNA packaging and delivery tools to mammalian cells. Also, the absence of bacterial endotoxins in yeast preparations simplifies the capsid purification procedures for this purpose. As Legendre and Fastrez (2005) demonstrated with MS2 coat protein that such system is functional in *S. cerevisiae*, we used a similar approach for the coat protein of phage GA.

To construct the in vivo packaging system, we used the commercial pESC-URA plasmid, which contains divergent galactose-inducible promoters GAL1/GAL10. We have previously described the construction of pESC-GA, a pESC-URA-derived plasmid that contains the wild-type GA coat protein gene under the control of GAL1 and directs production of GA VLPs in *S. cerevisiae* cells (Freivalds et al. 2008). In order to determine the effect of GA operator on the RNA content of the VLPs, we constructed in an analogous way a plasmid pESC-GAop, which contains the GA operator sequence downstream the coat protein gene.

We proceeded to modify pESC-GA to allow the encapsidation of heterologous mRNAs of choice into GA VLPs. The system was designed in a way that any gene of interest can be inserted under the GAL10 promoter in two vectors using the same cloning sites, in which one vector (pESC-GAv3) contains the GA operator just downstream the inserted
gene, while the other (pESC-GAv2) does not and serves as a control to examine the encapsidation specificity that the operator provides. We used in the above-mentioned way two different genes to test the system: one coding for the epithelial neutrophil-activating peptide 78 (ENA), resulting in plasmids pESC-GA-ENA and pESC-GA-ENAop, and the other for enhanced green fluorescent protein (eGFP) with plasmids pESC-GA-GFP and pESC-GA-GFPop, respectively (Fig. 1).

Purification of GA VLPs

The purification of recombinant GA capsids from *S. cerevisiae* cells followed directly the procedures described by Freivalds et al. (2008). The fractions containing GA VLPs were remarkably pure from protein contaminants after the last step. However, electrophoretic analysis in an ethidium bromide-stained agarose gel revealed that the preparation also contains a substantial amount of free RNA that was not incorporated into capsids (data not shown). In order to adequately analyze the RNA content of the particles, removal of all other nucleic acids from the sample is of key importance. The RNA contaminants were effectively separated by introducing an additional purification step of ion-exchange chromatography on a DEAE-Sephadex A50 column. This ensured that the RNA subsequently extracted from the preparation originated only from the interior space of GA VLPs.

For convenience, the capsids produced from pESC-GA, pESC-GAop, pESC-GA-ENA, pESC-GA-ENAop, pESC-GA-GFP and pESC-GA-GFPop will further be denoted as GA, GAop, GA-ENA, GA-ENAop, GA-GFP and GA-GFPop, respectively.

Analysis of capsid RNA contents
The RNA was phenol-extracted from purified GA capsids and subjected to electrophoresis
in a denaturing polyacrylamide gel. The RNA preparations in all cases were not homogeneous (Fig. 2). A distinct band corresponding to RNA somewhat longer than 500 nucleotides could be observed in all cases except in the preparation from GAop (lane 2), where a slightly longer RNA species was detected. Since in pESC-GAop the additional sequence with GA operator adds approximately 50 nucleotides to the 3'-untranslated region of the RNA transcript (see Table 2), this strongly suggests that the respective bands in the gel correspond to the mRNA of GA coat protein. In the case of GA-GFP and GA-GFPop (lanes 5 and 6), an additional prominent band of about 1000 nucleotides was detected, which apparently was formed by the mRNA of GFP. In the RNA preparation from GA-ENAop, a faint band could be observed just below that of the coat protein mRNA (lane 4). Further analysis in a more concentrated gel confirmed the existence of an RNA species migrating slightly faster than the mRNA of GA coat protein in preparations from GA-ENAop and also from GA-ENA, but not in those from other VLPs (data not shown). Although the sequences coding for ENA-78 and GA coat protein differ by approximately 150 nucleotides, the difference fell to about 50 nucleotides in mRNA due to unequal lengths of the untranslated regions of transcripts from GAL1 and GAL10 (Table 2). This explains the close migration and poor separation of both mRNAs and suggests that the faster-migrating band corresponds to the mRNA of ENA-78.

In order to prove unambiguously that the produced GA VLPs have packaged the expected mRNAs, the extracted RNA was analyzed by reverse transcription PCR (RT-PCR). The results (Fig. 3) showed that the mRNA of ENA-78 is present in both GA-ENA and GA-ENAop capsids (lanes 4 and 6). The mRNA of the green fluorescent protein was correspondingly present in GA-GFP and GA-GFPop capsids (lanes 8 and 10). The RT-PCR confirmed that the mRNA of the GA coat protein is present not only in GAop capsids (lane 2), but also in all other GA VLPs, regardless of the presence or absence of the operator within other mRNAs in the cell (lanes 1, 2, 3, 5, 7 and 9).
Discussion

We demonstrated that it is possible to produce recombinant GA capsids \textit{in vivo} that contain heterologous RNAs of choice. We developed a system in \textit{S. cerevisiae} that provides a simple way to encapsulate any desired RNA sequence in GA VLPs and succeeded in packaging different model mRNAs into the particles. However, the GA operator failed to provide high encapsidation specificity of the target RNAs. This was clearly demonstrated by the incorporation of GA coat protein in mRNAs in the VLPs even in situations when other mRNAs containing the GA operator were present in the cell at the time of capsid assembly.

![Fig. 3. Analysis of capsid RNA contents by RT-PCR. RNA was extracted from each type of the produced capsids and assayed for the presence of particular mRNAs, as indicated below. CP, cDNA of the GA coat protein; ENA, cDNA of the epithelial neutrophil-activating peptide 78; GFP, cDNA of the green fluorescent protein; M, DNA ladder.](image-url)
The RNA binding properties of MS2 and GA coat proteins are slightly different. The crystal structure of the MS2 coat protein and RNA operator complex indicated that the specificity of the interaction is governed by three bases in the operator, which make direct contacts with the protein (Valegård et al. 1994). In GA this number is reduced to two, and the requirements for specific nucleotides at certain positions are also higher for MS2 than GA. MS2 coat protein only weakly binds to the GA operator, whereas GA coat protein has a similar affinity for both GA and MS2 operators (Gott et al. 1991). Consequently, GA coat protein can bind equally well to a larger pool of different RNA sequences, and the lower specificity facilitates the competition of non-operator sequences for association with the coat protein and subsequent encapsidation into the particles.

The ratio of coat protein and RNA in the cell is also important for the specificity of packaging. In a phage-infected cell, the coat protein concentration is initially low and increases gradually (Nathans et al. 1969). The high affinity of the RNA operator for the coat protein ensures specific packaging of the viral genome before the coat protein concentration reaches levels at which unspecific binding to intracellular RNA can occur (Beckett et al. 1988). The *in vivo* packaging experiments with LacZ mRNA showed that the specificity is indeed considerably higher at high LacZ and low coat protein concentrations (Pickett, Peabody 1993). The divergent GAL1/GAL10 promoters used in our system direct the production of similar levels of mRNA (Hadfield et al. 1993). In the case of MS2, this was apparently sufficient to provide a rather high specificity of packaging (Legendre, Fastrez 2005). However, to achieve high packaging specificity with GA, a higher proportion of RNA over coat protein is probably required.

For the ultimate goal to develop GA VLPs as nucleic acid delivery vehicles to eukaryotic cells, further modifications of the capsid are clearly required, which would allow to address the particles to particular types of cells. This problem might be potentially solved by chemically coupling a cell-specific peptide ligand to the surface of the capsid (Storni et al. 2004). Alternatively, chimeric RNA phage capsids can be produced by genetically fusing a foreign amino acid sequence to the coat protein (Mastico et al. 1993; Heal et al. 1999; Voronkova et al. 2002). The *in vivo* packaging system could then be used with modified coat proteins to produce chimeric capsids that contain therapeutic mRNAs or other kinds of RNA-based drugs, like ribozymes and antisense RNAs. Although the relatively low specificity of the GA coat protein-operator interaction renders the *in vivo* RNA packaging system in GA VLPs less advantageous compared to that of MS2, optimizations like adjustment of coat protein and RNA levels in the cell, the use of GA coat protein mutants that bind the operator stronger, similarly to those that are known for MS2 (Lim, Peabody 1994), and possibly other measures might significantly enhance the RNA encapsidation specificity into GA capsids in the future. Eventually, VLPs loaded with therapeutic RNAs and equipped with ligands on their surface may become powerful tools for cell-specific delivery of nucleic acid-based drugs.

Acknowledgements

We wish to thank Dr. Andris Kazāks for his support and interest in the project and Ināra Akopjana for technical assistance. This work was supported by Latvian National Research Program 07-VP-2.10.
References

mRNS iepakošanas specifiskums bakteriofāga GA virusveidīgajās dalīnās raugā *Saccharomyces cerevisiae*

Jānis Rūmnieks*, Jānis Freivalds, Indulis Cielēns, Regina Renhofa

Latvijas Biomedicīnas pētījumu un studiju centrs, Rātsupītes 1, Rīga LV-1067, Latvija

*Korespondējošais autors, E-pasts: j.rumnieks@biomed.lu.lv

Kopsavilkums

RNS bakteriofāgu apvalka proteīna gēnu heterologa ekspresija izraisa virusveidīgo dalīnu veidošanos, kas ietver ikššūnas RNS. Šajā darbā mēs iepakojām specifiskas mRNS molekulās bakteriofāga GA kapsīdās *in vivo*. Specifiskuma nodrošināšanai izmantojām GA operatoru – 21 nukleotīdu garu RNS sekvenci, kas salokās kāta-cilpas struktūrā un var specifiski piesaistīties fāga apvalka proteinam. Ekspresijai *Saccharomyces cerevisiae* konstruēja vairākas plazmīdas, kas nodrošināja gan GA apvalka proteīna, gan iepakojamās mRNS sintēzi. Par iepakošanas modeļiem izmantoja trīs dažādas mRNS (GA apvalka proteīna, ENA-78 un GFP), katru no tām konstruējoš divos variantos, kas atšķirās ar GA operatora klātbūtni to sekvencē. Iegūto kapsīdu RNS saturu analīze ar gēla elektroforēzi parādīja, ka ir radušās paredzētās RNS satura atšķirības. Iepakošanu darbības laikā izmantojām divas mRNS sintēzes metodes, parādījušās produktīvās un atspērīgās. Par iepakošanas situācijām atspīnāja apgrieztā transkripcijas PCR, tomēr operatoram bija samērā niecīga ietekme uz kapsīdu satura specifiskumu, jo kapsīdās vienmēr konstatēja arī GA apvalka proteīna mRNS.
Yeast-expressed bacteriophage-like particles for packaging of nanomaterials

The original publication should be cited as follows:
RESEARCH

Yeast-Expressed Bacteriophage-Like Particles for the Packaging of Nanomaterials

Janis Freivalds · Svetlana Kotelovica · Tatyana Voronkova · Velta Ose · Kaspars Tars · Andris Kazaks

© Springer Science+Business Media New York 2013

Abstract Virus-like particles (VLPs) generated by heterologous expression of viral structural genes have become powerful tools in vaccine development. Recently, we and others have reported on the assembly of VLPs of the RNA bacteriophages MS2, Qβ, and GA in yeast. Here, we investigate the formation of VLPs of five additional phages in the yeasts Saccharomyces cerevisiae and Pichia pastoris, namely, the coliphages SP and fr, Acinetobacter phage AP205, Pseudomonas phage PP7, and Caulobacter phage φCb5. In all cases except SP, particle formation was detected, although VLP outcome varied from 0.2 to 8 mg from 1 g of wet cells. We have found that phage φCb5 VLPs easily dissociate into coat protein dimers when applied to strong anion exchangers. Upon salt removal and the addition of nucleic acid or its mimics and calcium ions, the dimers re-assemble into VLPs with high efficiency. A variety of compounds, including RNA, DNA, and gold nanoparticles can be packaged inside φCb5 VLPs. The ease with which phage φCb5 coat protein dimers can be purified in high quantities and re-assembled into VLPs makes them attractive for downstream applications including the internal packaging of nanomaterials and the chemical coupling of peptides of interest on the surface.

Keywords RNA bacteriophages · Virus-like particles · Yeast · Packaging · Reassembly · Nanomaterials

Introduction

Currently, highly immunogenic VLPs generated by the heterologous expression of viral structural genes have become powerful tools for vaccine development. In addition to being effective vaccines against the corresponding virus from which they are derived, VLPs can also be used to present foreign epitopes to the immune system [1, 2]. This approach could be potentially combined with the packaging of selected genes, drugs, and proteins inside VLPs [3–5]. Furthermore, targeted VLPs can be generated by including specific peptide ligands as “molecular addresses” on the surface of the particles [6].

RNA bacteriophages (phages) are small viruses with simple structural organization. Their approximately 3,500 nucleotide long-genomic RNA is encapsulated in a \(T = 3 \) icosahedral shell composed of 180 copies of the coat protein (CP) and one copy of the maturation protein. These phages were first isolated from Escherichia coli [7], but later were also found in Caulobacter [8], Pseudomonas [9], and Acinetobacter [10]. Recombinantly expressed CP genes leads to formation of VLPs with a diameter of 25–30 nm which are morphologically and immunologically indistinguishable from native phages [11, 12]. The icosahedral capsids of RNA phages have attracted the attention of researchers as promising carriers of foreign epitopes and nucleic acids. E. coli-derived phage VLPs have been explored for both genetic and chemical coupling of desired peptides to their surface. To increase their immunogenicity, such chimeric VLPs can be further engineered by loading them with short synthetic DNA sequences [13]. Several Qβ phage-derived therapeutic vaccine candidates against nicotine addiction, hypertension, and allergy have entered clinical trials [14–16]. Another set of vaccine prototypes targeting West
Nile and influenza virus infections has been recently constructed using the phage AP205 VLP platform [17, 18].

During vaccine development, E. coli-derived VLPs need to be purified from bacterial endotoxin contamination, which is a costly and time consuming process. Alternatively, VLPs can be produced in “endotoxin-free” organisms such as yeast, which have been regarded as generally safe for human use. We and others have demonstrated the potential of yeast cells as hosts for producing properly assembled VLPs of the phages MS2, Qβ, and GA [19–21]. Here, we continue our investigations with five additional phages, namely, coliphages SP and fr, Acinetobacter phage AP205, Pseudomonas phage PP7, and Caulobacter phage CPb5. Notably, CP genes from all abovementioned phages have been successfully expressed in E. coli resulting in formation of VLPs ([12, 17, 22, 23] and our unpublished data). In addition to the generation of VLPs, we aimed to improve the purity of our final phage VLP preparations to near homogeneity. We have also shown that phage CPb5 VLPs can be easily re-assembled in vitro and thus are particularly suitable for the packaging of foreign materials.

Materials and Methods

Construction of the Expression Vectors and Selection of Clones

Construction of the expression vectors was performed as described previously [20]. The genes were PCR-amplified and ligated either into the BamHI/Eco105I-treated vector pPIC3.5 K (Invitrogen) under control of the hybrid GAL10/PYK1 promoter [24]. The amplification primers are listed in Table 1. After sequencing, the resulting plasmids were transformed into S. cerevisiae strain AH222 MATa leu2 his4 according to a standard lithium acetate/PEG transformation procedure [25]. The clones were selected on yeast expression dextrose (YEPD) agarized medium supplemented with 2.5 mM formaldehyde. Alternatively, after linearization with Ecl136II in the AOX1 promoter region, expression plasmids were used for transformation of the P. pastoris GS115 his4 strain by electroporation (Bio Rad, Gene Pulser). Mut+His+ transformants were isolated on agarized minimal medium (1.34 % yeast nitrogen base, 2 % glucose, 4 × 10−5 % biotin, 2 % agar). For the selection of clones with multiple integration units, transformants were pooled and plated onto YEPD agarized medium containing increased concentrations of the antibiotic G418 (1.8–2.5 mg/mL).

Expression Conditions

To prepare a start culture, an individual colony was picked and placed in 5 mL of liquid YEPD medium and incubated at 30 °C overnight without shaking. Further cultivation was performed in 2 L Erlenmeyer flasks with 200 mL of medium on an InforS shaker.

For expression in S. cerevisiae, the start culture was diluted in YEPD medium containing 3 % (w/v) galactose and 2.5 mM formaldehyde until OD590 ~0.05. Flasks were incubated at 30 °C on a shaker at 200 rpm. Every 24 h, solid galactose was added to a 2 % final concentration. The cells were cultivated for 72 h total.

The expression in P. pastoris was performed according to the manufacturer’s protocol (www.invitrogen.com) with the following minor modifications: the start culture was diluted until OD590 ~0.05 in buffered complex glycerol (BMGY) medium and incubated at 30 °C on a shaker at 250 rpm. After 24 h at OD590 6–8, expression was induced by the addition of 1 % methanol. On each subsequent day, methanol was added to a final concentration of 1 %. The cells were harvested 72 h after induction. The final OD590 of expression cultures typically reached 12–14.

Purification of VLPs

Six grams of frozen yeast cells was resuspended in 24 mL of lysis buffer (20 mM Tris HCl, pH 7.2, 0.1 mM PMSF) and disrupted with a French press (three cycles, 20,000 psi). The soluble proteins were separated by centrifugation for 15 min at 15,500×g following fractionation by size-exclusion chromatography (SEC) on a Sepharose 4 Fast Flow column (h = 80 cm, V = 500 mL) equilibrated in column buffer (20 mM Tris HCl, pH 8.0). The preparation of lysate for SEC was phage-dependent. For CPb5 VLPs, the soluble fraction was directly loaded onto the column without clarification. For phages fr and PP7, the supernatant was cleared by incubation for 0.5 h at +50 °C and subsequent centrifugation for 25 min at 15,500×g. Phage AP205 VLPs were precipitated with 40 % ammonium sulfate (w/v) for 1 h at +4 °C, centrifuged for 25 min at 15,500×g and dissolved in a minimal amount of column buffer. The flow rate during chromatography was 3 mL/h, and the size of the fractions collected was 10 mL. The peak fractions were pooled, and VLPs were concentrated using a 60 % ammonium sulfate (w/v) precipitation overnight at +4 °C (except phage CPb5 VLPs), centrifuged for 25 min at 15,500×g and dissolved in a minimal amount (1 mL) of column buffer. CPb5 VLPs were concentrated with Amicon filters (Millipore; MWCO 100 kDa). VLPs were then passed through an anion exchange HiPrep 16/10 DEAE FF column connected to an ÄKTA chromatography system at 5 mL/min. For final polishing, particles were subjected to
an ÄKTA-connected HiLoad 16/600 Superdex 200 column (Amersham Biosciences) in column buffer at 1 mL/min.

Analytical Methods

Preparation of the yeast cell extracts for sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed essentially as described by Kushnirov [26] with minor modifications. Briefly, two optical units of yeast cells (at A_{590} nm) was resuspended in 100 µL of water. Then, 100 µL of 0.2 M NaOH was added, and the mixture was incubated for 5 min at room temperature. The cells were pelleted and resuspended in 200 µL of Laemmli’s sample buffer, boiled for 6–8 min and pelleted again. Protein samples were analyzed by SDS-PAGE according to standard protocols with a 4 % stacking and 15 % separating polyacrylamide gel (PAAG). To visualize protein bands, the gels were stained with Coomassie Brilliant Blue G-250.

Protein samples were subjected to native 1 % agarose gel electrophoresis in TAE buffer (pH 8.4) for approximately 0.5 h at 5 V/cm. Nucleic acids in the agarose gels were visualized by ethidium bromide staining. Protein concentration was determined by the formula $\text{OD}(A_{260})/8$, which has been used previously to determine the concentrations of native phages. The purity of the protein samples was estimated by densitometric analysis of the Coomassie-stained PAAG.

Disassembly of φCb5 VLPs

Phage φCb5 VLPs were applied to an anion exchange HiPrep 16/10 Q XL column in column buffer and eluted by a linear salt gradient (0–1 M NaCl) at 5 mL/min. Dimer-containing fractions were pooled, diluted two times with column buffer, and applied to a MonoQ TM column for final purification. Dimers were eluted by a linear salt gradient (0–1 M NaCl in column buffer, peak fractions contained approximately 0.25 M NaCl) at 1 mL/min and were stored at +4 °C until further use for VLP reconstruction. Both chromatography steps were performed using the ÄKTA chromatography system.

Reconstruction and Packaging of φCb5 VLPs

For VLP reconstruction, 1 volume of φCb5 dimers (3.2 mg/mL) in 0.3 M NaCl was mixed with 1 volume of 5 mM CaCl$_2$, 7 volumes of 20 mM Tris–HCl (pH 8.0) and 1 volume of nucleic acid or its mimic solution, as explained below, and further dialyzed at 4 °C for 1 h against 20 mM Tris–HCl, pH 8.0.
8.0. *E. coli* total tRNA was dissolved to a volume of 1 mg/mL in 20 mM Tris–HCl pH 8.0. CpG DNA oligonucleotide G10 (5'-GGG GGG GGG GGA CGA TCG TCG GGG GGG GGG-3'; [27]) was dissolved to 2 mg/mL in water. Diphtheria toxin (DT) mRNA was prepared as described below and dissolved in DEPC-treated water to 10 mg/mL. 23-(9-Mer-captononyl)-3,6,9,12,15,18,21-heptaoxatricosanoic acid (MNHA) was dissolved in water to 10 mg/mL.

In Vitro Transcription of DT mRNA

The DT catalytic domain gene corresponding to amino acids 26-215 (UniProt: Q6NK15) was synthesized commercially in GenScript and cloned between the *Nde*I and *Pst*I sites of the Internal Ribosome Entry Site-containing vector pT7CFE1-CHis (Thermo Scientific). In vitro transcription was carried out using the TranscriptAid T7 High Yield Transcription Kit according to the manufacturer’s instructions.

For VLP reconstruction, 2 volumes of ϕCb5 dimers (3.2 mg/mL) in 0.3 M NaCl were mixed with 1 volume of DT mRNA and 7 volumes of 20 mM Tris–HCl (pH 8.0) and dialyzed at 4°C for 1 h against 20 mM Tris–HCl pH 8.0.

Packaging of Gold Nanoparticles in ϕCb5 VLPs

To coat the gold nanoparticles with MNHA, 100 volumes of 10 nm colloidal gold (Sigma-Aldrich) was mixed with 1.6 volumes of MNHA (10 mg/mL) and incubated at room temperature for 20 h.

To package the gold nanoparticles, 100 volumes of ϕCb5 dimers (0.5 mg/mL in 20 mM Tris–HCl, pH 8.0, 0.3 M NaCl) and 12 volumes of MNHA-coated gold particles were mixed and dialyzed overnight against 20 mM Tris–HCl, pH 8.0, at 4°C.

Results and Discussion

Expression of Phage CP Genes in Yeast

It has been shown that repetitive vaccination with chimeric VLPs might be ineffective due to the presence of neutralizing antibodies against the capsid protein induced after the first application [28]. Additionally, different VLPs display different properties regarding their stability, tolerance to foreign amino acid insertions and chemical modifications, ease of in vitro reconstruction, and ability to pack foreign materials during assembly. Therefore, technologies to generate a broad spectrum of carrier VLPs need to be developed. Here, we investigated CP genes from the phages fr, SP, AP205, PP7, and ϕCb5 for the generation of their respective VLPs in yeast. Consequently, expression levels were compared in *S. cerevisiae* and *P. pastoris* using episomal and integrative vectors, respectively. The synthesis of phage CPs in all cases was detectable by SDS-PAGE, however, the amount of target protein varied significantly (Fig. 1a, b). Generally, increased synthesis of phage CPs was observed in *P. pastoris* clones containing multiple integration units. Especially, efficient *P. pastoris* producer strains were selected for phage PP7 and ϕCb5 CPs. However, for phages fr and SP, slightly better CP production was observed in *S. cerevisiae*. Our previous experience with the expression of viral structural proteins in *P. pastoris* has led us to the conclusion that many multicopy clones need to be analyzed to select the best producer strains [20, 21, 29]. This finding is supported by novel data, as superproducer clones were successfully obtained for phage ϕCb5 and PP7 VLPs (Fig. 1c, d). Dot-blot hybridization with a *his4* specific probe revealed that these clones contained an increased amount of integrated expression units (data not shown). The majority of target protein appeared in the soluble fraction, and the total

![Fig. 1](image-url) Coomassie-stained SDS-PAGE demonstrating the synthesis of phage CPs in yeast *S. cerevisiae* (a) and *P. pastoris* (b). Calculated molecular masses (including the first methionine) of the CPs are as follows: fr, 13.9 kDa; AP205, 14.0 kDa; SP, 14.1 kDa; PP7, 14.0 kDa; and ϕCb5, 13.6 kDa. c, d show the selection of superproducer clones for phage ϕCb5 and PP7 CPs, respectively. Target proteins and selected producer clones are marked by arrowheads.
amount synthesized correlated well with the amount of target protein in the soluble fraction with the sole exception of phage SP CP, which was completely insoluble when expressed in *S. cerevisiae* and partially soluble in *P. pastoris* (see Table 2).

Purification and Characterization of VLPs

Several methods were compared for lysate clarification. Recently, we successfully applied heat treatment for the purification of hepatitis B core particles [29]. Here, the same strategy was explored, however, with partial success. By optimizing the thermal conditions, we observed that heating for 30 min at 50 °C was optimal for the clarification of phage fr and PP7 lysates (Fig. 2a). For phages qCb5 and AP205, a large amount of target protein was lost during heating, apparently due to denaturation and/or association with the insoluble cell fraction (data not shown). Thus, ammonium sulfate precipitation was applied as an alternative purification strategy. This approach worked well for AP205 VLPs but not for qCb5 VLPs, which confirms previous observations about the salt sensitivity of native qCb5 as well as that of the corresponding VLPs [12, 30]. Nevertheless, high-level synthesis allowed for the direct loading of qCb5 supernatant onto a SEC column and successful recovery of the VLPs. For phage SP, after the direct loading of *P. pastoris* supernatant onto a SEC column, aggregated structures were detected by electron microscopy but not VLPs (data not shown). This observation was rather unexpected because for phage QB also belonging to the same Allolevivirinae genus of the Leviviridae family and displaying 80% amino acid identity to SP, we previously obtained high-level synthesis of correctly assembled VLPs [20]. In addition, efficient formation of SP VLPs has been observed in *E. coli* (our unpublished data). This only indicates that viral structural genes with high similarity may demonstrate completely different expression pattern and assembly properties in heterologous hosts.

After the first SEC step, the VLP-containing fractions were identified by native agarose gel electrophoresis and SDS-PAGE; however, the purity was unsatisfactory (data not shown). For further purification, peak fractions were concentrated and applied to a weak DEAE anion exchanger as described previously [29]. The VLPs rapidly passed through the column, while most of the contaminating proteins were captured by the DEAE matrix (data not shown). Finally, the VLPs were applied to a second SEC column for polishing. VLP preparations were analyzed by native agarose gel electrophoresis, where they migrated as distinct bands between the 1 and 2 kb dsDNA markers (Fig. 2b). The quality of the purified VLPs was confirmed by electron microscopy (Fig. 2c).

Disassembly of qCb5 VLPs

To obtain qCb5 CP dimers, the appropriate VLPs were applied to strong anion exchangers. In our first approach, partially purified VLP fractions from the SEC column (Fig. 3a) were captured by the AEC Q XL column. After elution with a linear salt gradient, the product still contained minor contaminant protein bands (Fig. 3b) and was therefore applied to a second AEC MonoQ column (Fig. 3c). In our second approach, qCb5 VLPs were purified as described in the previous section and then applied directly to an AEC MonoQ column. Both methods worked equally well, although the first approach was faster and more convenient. By elution with increasing salt concentration both from AEC Q XL and AEC Mono Q columns, the VLPs were disrupted to dimers as confirmed by analytical SEC (Fig. 3d). Our assumption is that for VLPs to disassemble it was necessary to both adsorb them on Q anion exchanger and elute by high salt. Although, qCb5 VLPs have reduced thermostability in presence of high ionic strength, salt treatment does not disassemble the capsids at room temperature [12]. After the second AEC column, the dimers were eluted in ~250 mM NaCl. Such a salt concentration prevents dimers from re-assembly into VLPs and is optimal for the long-time storage of dimers at +4 °C until their use for reassembly/packaging experiments.

Table 2: Summary of phage VLP synthesis, solubility, and outcomes in yeast

<table>
<thead>
<tr>
<th>Strain</th>
<th>Exp<sup>a</sup></th>
<th>Solub<sup>b</sup></th>
<th>VLP yield<sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>fr<sup>s</sup>c</td>
<td>+++</td>
<td>+++</td>
<td>0.4–0.6</td>
</tr>
<tr>
<td>fr<sup>p</sup>p</td>
<td>+</td>
<td>+++</td>
<td>0.2–0.3</td>
</tr>
<tr>
<td>SP<sup>s</sup>c</td>
<td>++</td>
<td>–</td>
<td>ND</td>
</tr>
<tr>
<td>SP<sup>p</sup>p</td>
<td>+</td>
<td>+</td>
<td>ND</td>
</tr>
<tr>
<td>PP7<sup>s</sup>c</td>
<td>+</td>
<td>+++</td>
<td>0.6–0.8</td>
</tr>
<tr>
<td>PP7<sup>p</sup>p</td>
<td>+++</td>
<td>+++</td>
<td>6–8</td>
</tr>
<tr>
<td>AP205<sup>s</sup>c</td>
<td>+</td>
<td>+++</td>
<td>0.4–0.6</td>
</tr>
<tr>
<td>AP205<sup>p</sup>p</td>
<td>++</td>
<td>+++</td>
<td>1–1.5</td>
</tr>
<tr>
<td>qCb5<sup>s</sup>c</td>
<td>++</td>
<td>+++</td>
<td>0.8–1</td>
</tr>
<tr>
<td>qCb5<sup>p</sup>p</td>
<td>+++</td>
<td>+++</td>
<td>5–7</td>
</tr>
</tbody>
</table>

^a The total synthesis level of target proteins estimated by Coomassie-stained PAAG was as follows: (+++) indicates high-level expression exceeding 10% of total cell proteins, (+) indicates well-detectable synthesis reaching 5–10% of total cell proteins, and (+) indicates detectable synthesis below 5% of total cell proteins.

^b The solubility of target proteins estimated by Coomassie-stained PAAG was as follows: (+++) indicates more than 50% of CP in the soluble fraction, (+) indicates below 50% of CP in the soluble fraction, and (−) indicates no CP in the soluble fraction.

^c VLP yield was calculated in mg per 1 g of wet cells.

ND not detected

Author's personal copy
In Vitro Reconstruction of \(\phi\)Cb5 VLPs and Packaging of Various Compounds

Lately, VLPs have gained attention as suitable nanocontainers for the packaging of various compounds for immunization and other therapeutic or diagnostic purposes. One important condition for material packaging is the ability to routinely disassemble and assemble the corresponding VLPs. Disassembly/assembly protocols have been worked out for several RNA phages ([31] and references therein), but the procedures involve the use of denaturing conditions, and the yields are generally low. From our previous structural studies, it is known that, unlike the VLPs of other phages, \(\phi\)Cb5 VLPs are stabilized...
by metal ions and can be consequently destabilized by the addition of chelating agents or increasing the ionic strength. However, under physiologically relevant conditions, φCb5 VLPs are as stable as the VLPs of similar phages [12]. As described above, φCb5 VLPs disassembled during purification on an ion exchange column, but the resulting CP dimers were soluble, stable and apparently not denatured. Furthermore, we tested whether the dimers could be reassembled back into particles by simply lowering the ionic strength and adding metal ions along with nucleic acid or its mimic. As seen from Fig. 4, φCb5 coat protein does assemble into VLPs in the presence of various nucleic acids such as *E. coli* total tRNA, CpG oligonucleotide, and the mRNA of the catalytic domain of DT. Packaging of bacterial RNA or CpG oligonucleotide is beneficial for increasing the immune response if the corresponding VLPs with exposed foreign epitopes are to be used for vaccination purposes. DT is one of the most potent known venoms, and it is believed that a single molecule can kill a eukaryotic cell via the inactivation of ribosomes. The DT catalytic domain is responsible for ribosome inactivation, while the other domains are necessary for cellular binding and translocation. Functional DT mRNA could be targeted to specific eukaryotic cells, if it is packaged in VLPs with exposed polypeptides, able to recognize certain cellular receptors. In our experiments, some DT mRNA-packaged VLPs appeared to be double-layered, whereas others seemed to possess $T=1$ symmetry, as judged by their smaller particle size. In contrast, the packaging of *E. coli* tRNA led to the formation of VLPs very similar to those before disassembly. The packaging of CpG DNA oligonucleotide was somewhat less efficient but
also led to the formation of native-sized VLPs. Clearly, the size of assembled particles is dependent on the exact nature of packaged material. Presumably, the genome of φCb5 phage is tailored for efficient assembly of $T = 3$ particles, while other nucleic acids in some cases induce formation of smaller or double-layered VLPs.

Although, the VLPs of many viruses seem to require RNA or DNA for efficient assembly, the nucleic acid often does not have to be virus-specific and can even be replaced by other compounds with acidic functional groups that presumably mimic the negative charge on phosphate groups in nucleic acid. In a study by Chen et al. [32], VLPs were reassembled in vitro in the presence of gold nanoparticles coated with PEG-like compounds with attached carboxyl groups. Here, we attempted to use a similar compound, MNHA, for the re-assembly of φCb5 VLPs in vitro. As shown in Fig. 4, MNHA-coated gold nanoparticles can indeed be packaged in φCb5 VLPs, and on average one of three VLPs contains a gold nanoparticle. In our experiments, MNHA alone was also able to trigger particle formation (data not shown), so the “empty” VLPs in gold nanoparticle packaging experiment presumably also contain free MNHA. Interestingly, all gold nanoparticle-containing VLPs were smaller, corresponding to a $T = 1$ size, and none were double-layered. Possibly, the small size of MNHA-coated nanoparticles (smaller than $T = 1$ VLPs) constrains the size of packaged VLPs. In principle, MNHA could also be easily attached to a variety of other compounds, such as toxic or therapeutic proteins, thereby enabling these compounds to be packaged inside VLPs.

In conclusion, our yeast system is suitable for the production of various RNA phage VLPs. Especially, high synthesis levels can be obtained for phages PP7 and φCb5 VLPs. For the latter, an efficient disassembly and reassembly system allows for the packaging of nanomaterials within the VLPs which could be used for therapeutic purposes.

Acknowledgments This work was supported by ERDF grant 2010/0314/2DP/2.1.1.1.0/10/APIA/VIAA/052.

References

Highly efficient production of phosphorylated hepatitis B core particles in yeast *Pichia pastoris*
Highly efficient production of phosphorylated hepatitis B core particles in yeast

Pichia pastoris

Janis Freivalds, Andris Dislers, Velta Ose, Paul Pumpens, Kaspars Tars, Andris Kazaks *

Latvian Biomedical Research and Study Centre, Ratsupites 1, Riga LV-1067, Latvia

Abstract

Virus-like particles (VLPs) of the recombinant hepatitis B virus (HBV) core protein (HBc) are routinely used in HBV diagnostics worldwide and are of potential interest as carriers of foreign peptides (e.g., immunological epitopes and targeting addresses, and/or as vessels for packaged diagnostic and therapeutic nanomaterials). Despite numerous reports exploiting different expression systems, a rapid and comprehensive large-scale methodology for purification of HBc VLPs from yeast is still lacking. Here, we present a convenient protocol for highly efficient production and rapid purification of endotoxin-free HBc VLPs from the methylotrophic yeast Pichia pastoris. The HBc gene expression cassette along with the geneticin resistance gene was transferred to the P. pastoris genome via homologous recombination. A producer clone was selected among 2000 transformants for the optimal synthesis of the target protein. Fermentation conditions were established ensuring biomass accumulation of 163 g/L. A simple combination of pH/heat and salt treatment followed by a single anion-exchange chromatography step resulted in a more than 90% pure preparation of HBc VLPs, with a yield of about 3.0 mg per 1 g of wet cells. Purification is performed within a day and may be easily scaled up if necessary. The quality of HBc VLPs was verified by electron microscopy. Mass spectrometry analysis and direct polyacrylamide gel staining revealed phosphorylation of HBc at at least two sites. To our knowledge, this is the first report of HBc phosphorylation in yeast.

Introduction

Hepatitis B virus (HBV) from the Hepadnaviridae family is a major cause of human liver disease, resulting in approximately 620,000 deaths worldwide each year [1]. About 4.5 million new HBV infections occur each year, of which a quarter progress to liver disease [2]. The virus is composed of an outer envelope containing surface proteins integrated in a lipoprotein shell and an inner nucleocapsid assembled from the HBV core protein (HBc) that encloses the viral genomic DNA and the viral polymerase [3]. Virtually all HBV infected individuals can produce high titers of an anti-HBc antibody, which is one of the most specific serological markers of past (anti-HBc IgG) or current (anti-HBc IgM) HBV infections [4].

Heterologously expressed HBc spontaneously assembles into the virus-like particles (VLPs) that are routinely used for HBV diagnostics worldwide [5]. Because HBc is known to induce strong B-cell, T-cell, and cytotoxic T-cell responses in hepatitis B patients [6] in both a T-cell dependent and T-cell independent manner [7], it might be regarded as a component of a novel prophylactic and/or therapeutic HBV vaccine [8]. The ability of HBc carrier to provide inserted epitopes with T-cell help [9] and preferential priming of Th1 cells, without any requirement for adjuvants [10], stimulates the development of a broad range of vaccine prototypes on the basis of HBc VLPs [8]. Recently, HBc has attracted special interest in medicinal nanotechnology as a putative packager of organic and inorganic compounds, including stimulatory oligonucleotides, low molecular weight drugs, and magnetic particles.

Yeast systems have been used extensively for expression of a large number of structural genes from many mammalian viruses, which results in a formation of naturally folded VLPs [11–16]. This has led to a generation of licensed prophylactic vaccines against human HBV and papillomaviruses [8,17]. One of the most prominent yeast expression systems is based on the methylotrophic *Pichia pastoris* strain, which is used successfully to produce more than 500 proteins both for basic laboratory research and industrial manufacturing [18,19]. Although expression of the HBc gene in yeast cells including *P. pastoris* have been described by several authors [20–24], the majority of published HBc VLP purification methods remain either too complicated and time-consuming or
non-effective due to the high costs and/or low output of the target protein.

Naturally folded HBc, either isolated from human tissues or recombinantly expressed in mammalian cells, appears as a phosphoprotein [25,26], being phosphorylated on serine residues at the carboxy-terminal part of the molecule [27]. In contrast, phosphorylation has not been detected for Escherichia coli- and yeast-derived HBc [28]. It has been demonstrated that HBc phosphorylation plays an important role in HBV replication and capsid localization [29,30]. In the present work, we establish the efficient expression of the HBc gene in P. pastoris and develop a rapid purification method for HBC VLPs. In contrast to previous reports, HBc is found to be phosphorylated at at least two sites within the molecule. We suggest such yeast-derived HBC VLPs are of value for diagnostic purposes and vaccine development as well as for HBV replication studies.

Materials and methods

Construction of an expression vector and selection of clones

The HBc gene from plasmid pHB320 containing the full HBV genome, genotype D, subtype ayw (GenBank Accession No. X02496; [31]), was PCR-amplified and ligated into the BamHI/ Eco105I-treated vector pPIC3.5K (Invitrogen), under control of the AOX1 promoter. After sequencing, the resulting pPIC-HBc plasmid was linearized with EcoRI and used for transformation of the P. pastoris GS115 strain by electroporation. Mut‘His’ transformants were isolated on agarized minimal medium (1.34% yeast nitrogen base, 2% glucose, 4% dextrose (YEPD) agarized medium containing increased concentration of the G418 antibiotic (1.8–2.5 mg/mL). For selection of clones with multiple integrations, cells were harvested by low-speed centrifugation, and the supernatant was subjected to low-speed centrifugation and resuspended in the same volume of buffered complex methanol medium (BMGY). Non-effective due to the high costs and/or low output of the target protein.

Southern blotting

To estimate the approximate expression cassette copy number in P. pastoris, chromosomal DNA from-selected transformants was digested with BglII and separated by agarose gel electrophoresis. After transferring to a nitrocellulose membrane, DNA was hybridized with a biotin-labeled HIS4-specific probe (~600-bp KpnI restriction fragment from the pPIC3.5K) using the Biotin DecaLabel™ DNA Labeling Kit. The reaction was further processed and developed by the Biotin Chromogenic Detection Kit. All the enzymes, protein and DNA molecular weight (MW) markers as well as kits used in our study were purchased from Fermentas (Viilnus, Lithuania) unless otherwise indicated.

Cultivation in flasks

Induction of HBc gene expression in P. pastoris was achieved according to the protocol of the manufacturer with the following minor modifications: selected clones were incubated at 30 °C on a shaker in 0.5-L Erlenmeyer flasks containing 100 mL of buffered complex glycerol medium (BMGY) for 20–24 h until OD590 6–8; cells were then harvested by low-speed centrifugation and resuspended in the same volume of buffered complex methanol medium (BMMY) containing 0.5% methanol. Each subsequent day, 100% methanol was added to a final concentration of 0.5%, and cells were harvested 3 days after induction.

The level of HBc production was estimated by disrupting 20 optical units of yeast cells by 425–600-µi glass beads (Sigma) in 200 µL of 20 mM Tris–HCl, pH 8.0, eight times for 0.5 min. Debris was separated by low-speed centrifugation, and the supernatant was serially diluted for an immunodiffusion assay [32] using a polyclonal rabbit anti-HBc antibody (obtained after immunization with E. coli-derived HBc VLPs).

Large-scale cultivation

A volume of 500 mL of seed material was used to inoculate 4.5 L of BMGY in a fermentor. Seed material was prepared in two steps: stock culture from storage at –80 °C was plated on agarized minimal medium, and a single colony was inoculated in 5 mL of YEPD and cultured at 30 °C for 48 h. A volume of 0.1 mL of this primary seed material was transferred to each of five 0.5-L flasks containing 100 mL of BMGY and 10 mg/L chloramphenicol, and flasks were incubated at 250 rpm at 30 °C for 20–24 h to a final OD590 6.0–8.0.

Fermentation conditions: A 10-L fermentor (Bioflo 410, New Brunswick Scientific) was filled with 4.5 L BMGY (with glycerol concentration 40 g/L) and 0.5 L seed material in BMGY. Non-enriched air was used throughout the fermentation. The dissolved oxygen was set at 20%, the aeration rate on the first day was up to 1 vol/min, and the stirring speed was up to 1200 rpm, while the incubation temperature was 30 °C, and the pH was controlled with 25% (v/v) NH4OH to keep the pH above 5.0. After the glycerol exhaustion at 18 h, 20 mL of 50% glycerol and 10 mL of 100% methanol was added. One hour later, the methanol supply was set at a rate of 3.0 mL/h, and the air supply was increased to 5 vol/min. Cultivation continued for 92 h with methanol feeding adjusted to a consumption rate of 6.8 g/L/h. Antifoam M30 (Serva) was used to prevent extensive foam formation. Cells were harvested at 3000 rpm for 10 min at 4 °C. After washing once with dH2O, the cell pellet was stored at –80 °C until use.

Purification of HBC VLPs

A 4-g portion of the frozen yeast cells was resuspended in 16 mL of lysis buffer (20 mM Tris–HCl, pH 8.0, 150 mM NaCl, 5 mM EDTA, 0.1% Triton X-100, 0.1 mM PMSF) and disrupted with a French press (3 cycles, 20,000 psi). The soluble fraction was separated by centrifugation for 15 min at 15,500g and the pH was adjusted to 8.0 with 0.5 M NaOH. The supernatant was incubated for 1 h at +65 °C and subsequently centrifuged for 25 min at 15,500g. Solid ammonium sulfate was then added to the supernatant to 40% saturation, which was incubated for 0.5 h at 4 °C and centrifuged again for 25 min at 15,500g. The sediment was dissolved in a minimal amount (1 mL) of phosphate buffer containing 10 mM Na2HPO4, 2 mM KH2PO4, 0.1% Triton X-100, pH 7.4, and loaded onto a pre-packed anion-exchange HiPrep 16/10 DEAE Fast Flow column (20-mL bed volume) connected to an ÄKTA chromatography system (Amersham Biosciences). The column was equilibrated with phosphate-buffered saline, pH 7.4 (Sigma), and run at 5 mL/min. Column-bound proteins were eluted by a linear gradient with phosphate buffer containing 1 M NaCl.

E. coli-derived HBC VLPs used as a control were purified essentially as described previously [33].

Analytical methods

Protein samples were monitored by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), with a 4% stacking and 15% separating polyacrylamide gel (PAAG), according to standard protocols. To visualize protein bands, the gels were stained with Coomassie Brilliant Blue (CBB) G-250. Alternatively, separated proteins were transferred onto nitrocellulose membranes and detected by immunoblotting with the monoclonal anti-HBc antibody 13C9 [34] and the anti-mouse IgG peroxidase conjugate (Sigma). Protein samples were subjected to native 1% agarose gel electrophoresis in TAE buffer (pH 8.4) for about 0.5 h at 5 V/cm. Nucleic
acids in agarose gels were visualized by ethidium bromide staining. For determination of protein concentration, a Bradford assay [35] was used, and the purity of HBC samples was estimated by densitometric analysis of the CBB-stained PAAG.

The endotoxin level in the protein samples was determined by a Limulus amoebocyte lysate (LAL) Pyrogent™ Plus test kit according to the manufacturer’s protocol (BioWhittaker, Walkersville, MD).

To detect phosphorylated proteins, PAAG was stained directly with the ProQ® Diamond phosphoprotein gel stain (Invitrogen) according to the manufacturer’s instructions. Full-length HBC molecules as well as their C-terminal domains resulting from proteinase K cleavage were analyzed. For the proteinase K reaction, VLPs were treated for 10 min at 95°C in buffer containing 1% SDS and 2% β-mercaptoethanol followed by the addition of proteinase K and incubation for 5 min at 50°C.

For electron microscopy, the protein samples were adsorbed on carbon–formvar-coated copper grids and negatively stained with 1% uranyl acetate aqueous solution. The grids were examined with a JEM-1230 electron microscope (JEOL Ltd., Tokyo, Japan) at 100 kV.

For whole protein analysis in mass spectrometry, 2 μL of purified VLPs at 1 mg/mL concentration in 20 mM Tris–HCl, pH 8.0, was mixed with 2 μL 10% trifluoroacetic acid and 2 μL DHAP. For tryptic digestion of proteins, the CBB-stained band was excised from SDS–PAAG, incubated for 2 × 1 h in 0.2 M ammonium bicarbonate and 50% acetonitrile at 30°C and incubated for 2 × 20 min in 100% acetonitrile at room temperature. A volume of 0.1 mg/mL trypsin (Sigma, proteomics grade) in 1 mM HCl was mixed 1:1 with 50 mM ammonium bicarbonate in 10% acetonitrile. Gel pieces were covered with the trypsin solution so that the gel absorbed approximately two thirds of the solution’s volume. The gel was further incubated for 3 h at 30°C. A volume of 2 μL of buffer covering the gel pieces was mixed with 2 μL 10% trifluoroacetic acid and 2 μL DHAP solution (15 mg/mL DHAP in 75% ethanol, 2.5 mM diammonium hydrogen citrate). All samples were analyzed on a Bruker Daltonics Autoflex MALDI-TOF mass spectrometer.

Results and discussion

Selection and cultivation of the HBC producer strain

The yeast expression system was chosen due to its relatively simple fermentation design and high final cell densities. In addition, data from other groups indicate that P. pastoris-derived HBC preparations are superior to E. coli-derived HBC VLPs in anti-HBC antibody diagnostic assays [23,24]. Additionally, yeast products do not harbor pathogens, viruses, or pyrogens.

It has been shown previously that the expression level in P. pastoris VLP producers can be substantially increased by extensive screening for clones with multicopy insertions of expression cassettes [15,23,36,37]. For this, about 2000 Mut‘His’ transformants were screened for their resistance level to increased doses of the G418 antibiotic as a selection marker. The majority of the clones were resistant to G418 at concentrations below 2.5 mg/mL, while 1–2% of clones were able to grow at concentrations up to 2.5 mg/mL, indicating a possible multiple-insertion event. Clones with increased resistance generally exhibited higher though variable synthesis of the target protein (Fig. 1a) which correlated well with their anti-HBC titers in immunodiffusion: highly resistant clones reacted at dilutions up to 1:128, while control clones with single-copy inserts reacted at a dilution 1:8 (data not shown). In this way, clone E1, with the highest production level confirmed by SDS–PAGE (Fig. 1a, lane 4), was selected.

To verify multiple-target gene insertion events in clones with increased resistance to G418, samples of chromosomal DNA from individual clones were subjected to Southern blot analysis (Fig. 1b). This analysis revealed the presence of a 2.7-kb fragment corresponding to the chromosomal HIS4 gene and a larger, approximately 6.0-kb fragment corresponding to the expression cassette integrated at the AOX1 locus. As expected, a putative single-copy transformant exhibited two bands of similar intensity (Fig. 1b, lane 2), whereas in clones with an increased resistance, the 6.0-kb band dominated over the 2.7-kb band, suggesting a multiple-insertion pattern (Fig. 1b, lanes 3–7). Notably, clones with apparently even more copies than E1 (e.g., clone E) still produced remarkably less HBC (compare Fig. 1a and b, lanes 3 and 4). Although the exact insert copy number was not detected, this finding indicates a certain optimal level of target gene dosage. This is consistent with data for expression of other viral structural genes in P. pastoris (e.g., maximal synthesis of measles virus nucleoprotein was detected in a transformant with 10 copies of the target gene, whereas a further increase in the gene copy number led to reduced expression [15]). Our data clearly show that the expression potential of the P. pastoris expression system could sometimes be underevaluated by limited screening of clones.

Clone E1 was cultivated in a fermentor as described in the Materials and methods section, with an HBC expression level of 2–3% of the total cell proteins at the end of cultivation. Although this was about three times lower than the HBC level obtained with the E. coli expression system [38,39], it was high enough to establish an efficient and short purification protocol ensuring about 90% purity of the target protein (discussed below). For our fermentation, we did not use oxygen-enriched air, which has often been used in P. pastoris fermentation systems [23,40]. The final biomass yield under these conditions was 163 g/L (an average from two independent cultivations); with oxygen enrichment, it was possible to obtain twice the amount of biomass, but with a three times lower HBC synthesis level (data not shown). Although more fermentation experiments are needed to make definite conclusions about the effect of oxygen, we propose that slower biomass accumulation is beneficial for HBC synthesis.

Purification of HBC VLPs

To make purification cost-effective and fast, we aimed to avoid many commonly used protein purification steps such as centrifugation in a sucrose gradient, affinity and size-exclusion chromatography, filter-concentration, and dialysis. Disrupting yeast cells with the French press is highly reproducible and easy to scale-up. The majority of the HBC was found in the soluble fraction (Fig. 2a, lane 1), though a strong degradation pattern was detectable by a Western blot (Fig. 2b, lane 1). A heat treatment has been used by several groups as a purification step applicable for both bacterial and yeast-derived HBC preparations [22,41,42]. In addition, Naito et al. [41] demonstrated that contaminating proteins were removed from bacterial lysates more efficiently at pH 6.0 rather than at neutral pH. Under our conditions, heat treatment of yeast lysates at pH 6.2 (this was the pH of the non-adjusted crude cell lysate) precipitated the majority of HBC, while a rise in the pH significantly increased the solubility of HBC, with pH 8.0 being optimal for recovery of the target protein (Fig. 2a, and data not shown). Further experiments revealed that a heat treatment at pH 8.0 of either the supernatant or crude cell homogenate resulted in nearly identical HBC recovery (data not shown), enabling the exclusion of the initial centrifugation step from the protocol. Moreover, heat treatment led to precipitation of degraded forms of HBC (Fig. 2b, lanes 1 and 2). We suggest that most HBC degradation products are not incorporated in the capsid structure and therefore are thermally less stable than VLPs. Altogether, our data demonstrate the effect
Fig. 1. Correlation between HBc gene expression level and the amount of integration units in individual \textit{P. pastoris} subclones estimated by CBB-stained PAAG (a) and Southern blotting (b). Lane 1, negative control, non-transformed \textit{P. pastoris} cells. Lanes 2–7, \textit{P. pastoris} clones harboring single (S; lane 2) and multiple (E–E4; lanes 3–7) HBc gene insertions. Only a part of the multicopy clones is shown to demonstrate deviation in expression level. M, protein (a) and DNA (b) MW standards.

Fig. 2. Main purification steps for HBc VLPs. (a) CBB-stained PAAG illustrating HBc purity in protein samples. Lanes 1 and 2, soluble and unsoluble fractions, respectively. Lanes 3 and 4, soluble fraction after heat treatment at pH 6.2 and 8.0, respectively. Lane 5, heat-precipitated proteins from supernatant at pH 8.0. Lane 6, ammonium sulfate precipitate. Lanes 7 and 8, proteins from AEC peaks I and II, respectively. (b) and (c) Western blotting and native agarose gel electrophoresis, showing HBc degradation pattern and presence of nucleic acids, respectively. Lanes 1 and 2, non-treated and heat-treated cell supernatants, respectively. Lane 3, dissolved ammonium sulfate precipitate. Lanes 4 and 5, proteins from AEC peaks I and II, with column flow-through and bound material, respectively. (d) M, protein (a) and DNA (c) MW standards.
of the pH during the heat treatment procedure, although it is clear that the optimal pH value should be determined for each individual expression event.

Ammonium sulfate precipitation has been routinely used in HBc VLP concentration and purification protocols [22,33,43]. Under our conditions, a 0.5-h incubation was enough to precipitate more than 90% of the HBc from solution, with further successful and complete solubilization of the precipitate (data not shown). This procedure also removed most of the non-specific nucleic acids from the HBc preparation (Fig. 2c). Thus, a simple combination of pH/heat treatment followed by salt precipitation effectively enriched the concentration of the HBc in solution (Fig. 2a, lane 6).

Size-exclusion chromatography and/or sucrose gradient ultracentrifugation are often recommended as final steps in HBc purification [23,24,44]. These methods, however, strongly limit sample volume and increase costs. We looked to ion exchangers as a relatively cheap, robust material able to withstand harsh cleaning-in-place conditions, typically with sodium hydroxide. Other researchers have reported recovery of E. coli-derived HBc VLPs from weak anion exchange matrices such as DEAE Sephacel or Streamline DEAE [43,45]. We subjected the enriched HBc solution to DEAE Sepharose with similar characteristics and scalability possibilities. According to the anion-exchange chromatography (AEC) profile, proteins were separated into two dominant peaks representing column-bound and non-bound material (Fig. 2d).

SDS–PAGE revealed that both peaks contain target protein, though with strong predominance of HBc in peak 1 (Fig. 2a, lanes 7 and 8). Thus, under conditions described, the majority of the HBc material did not bind to the matrix and was eluted as a sharp peak within the column void volume (between 5 and 8 mL). However, about 10% of the HBc was retained on the column and was eluted only at increased salt concentrations.

Characterization of HBc VLPs

As detected by SDS–PAGE, purified HBc migrated in PAAG according to its calculated MW, namely, 21.1 kDa, and showed no visible degradation in Western blotting (Fig. 2a, lane 7 and b, lane 4). Despite the presence of some minor bands of contaminants visible in overloaded PAAGs, the final purity of the HBc might be roughly estimated as at least 90%. The output of HBc VLPs reached 3 mg from 1 g of wet cells or about 700 mg from 1 L of initial P. pastoris fermentation culture. For comparison, reported yields by others who used P. pastoris-driven HBc gene expression were 69 and 64 mg/L, respectively [23,24]. Our greater output might be a consequence of a more efficient producer strain and/or an optimized purification protocol. In addition, one can speculate that different HBV genotypes (adv or ayw used in these or our studies, respectively) can influence the yield due to different behaviors of the target protein during purification.

The presence of nucleic acids in HBc VLPs was detected by agarose gel electrophoresis, where particles migrated along with the 1.5-kb dsDNA band (Fig. 2c). These VLP-associated nucleic acids can be eliminated by RNase (but not DNase) treatment (data not shown), confirming that heterologously expressed HBc VLPs predominantly encapsidate host-derived RNA [23,46]. To obtain empty RNA-free HBc VLPs for in vivo applications, Broos et al. [43] used combined Mono Q and Heparin column chromatography, though the yield was rather low. Alternatively, we and others have demonstrated that under low ionic strength, VLP-associated RNA can be substituted by short, defined DNA fragments [33,47]. Moreover, potential for controlled dis- and re-assembly makes VLPs especially attractive for gene and drug delivery applications [48,49]. The latter approach is also of value for the removal of non-specific nucleic acids from VLP preparations.

For further characterization of the final product, we subjected protein from both AEC peaks to electron microscopy. The non-bound fraction appeared as a heterogeneous mixture of correctly folded icosahedral T = 3 and T = 4 particles, with a predominance of the larger T = 4 form (Fig. 3a). These VLPs exhibited similar morphology to the authentic HBc particles derived from an HBV-infected liver as well as to recombinant VLPs obtained from bacterial cells expressing the HBc gene [50,51]. Interestingly, column-bound material also contained assembled VLPs, but these particles tended to aggregate possibly due to their association with remaining impurities (Fig. 3b). Thus, the final chromatography step improved not only the purity, but also the homogeneity of the VLP preparation.

The endotoxin level in the final product was less than 100 EU/mg of pure protein, which makes it attractive both for in vitro and in vivo applications. It should be noted that the low endotoxin level was achieved with relatively low synthesis of HBc VLPs compared to E. coli expression systems (data not shown).

The length of yeast-expressed HBc was investigated by MALDI-TOF mass spectrometry. The MW of full-length HBc theoretically is 21,116 Da (or 20,985 Da without the first methionine). Our data indicated that the MW of yeast-derived HBc is 21,324 Da (Fig. 4a). In parallel, we determined the MW of the same protein produced in E. coli to be 21,136 Da. As discussed in Watelet et al. [23], E. coli-produced HBc has its first N-acyl-methionine preserved, thus the theoretical MW is 21,144 Da, which is close to our observed data and well within the instrument precision for the given MW. However, the MW of the yeast-produced HBc was significantly higher than the theoretical value, and the difference could not be explained solely by instrument error. Therefore, we assumed that the increase in MW is due to some post-translational modification that does not occur in E. coli. Additionally, the protein peak in the mass spectrometer was significantly wider in the case of the yeast-expressed protein, suggesting that the material might...
In contrast, three serine residues at the carboxy-terminal part of the molecule. The tryptic peptides obtained from in-gel digestion of both yeast- and E. coli-derived HBc molecules by mass spectrometry (a), and by denaturing SDS-PAGE stained directly with phosphoprotein stain (b), and subsequently with CBB (c). BSA and pepsin were loaded as negative and positive controls (lanes 1 and 2, respectively). Lanes 3 and 4 represent P. pastoris- and E. coli-derived HBc, respectively. Lower panel represents denaturing SDS–PAAG with proteinase K-cleaved C-terminal domains of P. pastoris- (lane 1) and E. coli- (lane 2)-derived HBc stained directly with phosphoprotein stain (d), and subsequently with CBB (e). M, protein MW standards. Phosphoprotein ovalbumin is marked by an asterisk.

Fig. 4. Phosphorylation of P. pastoris-derived HBc. Comparison of full-length yeast- and E. coli-derived HBc molecules by mass spectrometry (a), and by denaturing SDS–PAAG stained directly with phosphoprotein stain (b), and subsequently with CBB (c). BSA and pepsin were loaded as negative and positive controls (lanes 1 and 2, respectively). Lanes 3 and 4 represent P. pastoris- and E. coli-derived HBc, respectively. Lower panel represents denaturing SDS–PAAG with proteinase K-cleaved C-terminal domains of P. pastoris- (lane 1) and E. coli- (lane 2)-derived HBc stained directly with phosphoprotein stain (d), and subsequently with CBB (e). M, protein MW standards. Phosphoprotein ovalbumin is marked by an asterisk.

be somewhat heterogenous, which is a common outcome due to partial post-translational modifications (Fig. 4a).

According to Liao and Ou [27], native HBc is phosphorylated at three serine residues at the carboxy-terminal part of the molecule. In contrast, E. coli-derived HBc was found non-phosphorylated [28]. To investigate whether our yeast-produced protein is phosphorylated, we subjected full-length HBc molecules to SDS–PAGE and performed phosphoprotein and CBB staining (Fig. 4b and c). The results clearly indicated that the yeast-produced HBc is indeed phosphorylated. Furthermore, we attempted to localize the phosphorylation sites. First, we performed mass spectrometry of tryptic peptides obtained from in-gel digestion of both yeast- and bacteria-derived HBc. Comparing both spectra, one peptide with a MW of 1553 Da (corresponding to the sequence DLVVSYVTNMGLK) was present only in the bacteria-derived protein, but a peptide with a MW of 1630 Da was present only in the yeast-expressed material (data not shown). Because the difference in both MWs corresponds to the MW of a phosphate group, we conclude that phosphorylation has occurred in the DLVVSYVTNMGLK peptide, presumably on the Ser87 residue. Phosphorylation of which was recently demonstrated in vitro [52]. No other similar differences in mass spectra could be observed. However, potential phosphorylation sites in the C-terminal part of the molecule, similar to those observed in the native virus, are surrounded by frequent arginine residues, resulting in very short tryptic peptides that are difficult to observe with mass spectrometry. Therefore, to investigate whether there are any phosphate groups added to the C-terminal part of the polypeptide, we performed a cleavage with proteinase K, which should produce a long C-terminal peptide with a MW of 4360 Da. Cleavage products were loaded onto SDS–PAAG, and staining was performed with both phosphoprotein and Coomassie stains. The results indicated that the C-terminus of yeast-derived HBc is phosphorylated, too (Fig. 4d and e). This is consistent with data from whole protein mass spectra, indicating that there might be 2–3 phosphorylation sites per monomer. In conclusion, we have determined one phosphorylation site at Ser87 and another at the C-terminal part. Although we do not have exact experimental evidence, we speculate that the phosphorylation site(s) at the C-terminus might be the same as for the native virus, at one or several of the residues Ser155, Ser162, and Ser170. Structurally, Ser87 is located in an alpha helix, forming 4-helix bundle spikes on the surface of HBc VLPs. It should be noted that a study of Watelet et al. [23] regarding Pichia-derived HBc did not reveal any phosphorylation sites, although phosphoprotein detection was attempted. However, HBc from the HBV adw subtype contains Asn87 instead of Ser87 and therefore cannot be phosphorylated. Also, different expression conditions might influence the efficiency of phosphorylation at the C-terminal domain of the HBc molecule.

Reversible natural phosphorylation of the HBc is essential for distinct steps of HBV replication, such as pregenome packaging, plus strand DNA synthesis, capsid localization, and virus maturation and secretion [53]. Since exposure of the nuclear localization signals depends on phosphorylation of the HBc, the latter emerges as a prerequisite for transport of the viral genome to the nucleus [54]. Therefore, simple and efficient production of phosphorylated HBc particles paves a way for further functional investigations of intimate HBV replication mechanisms. Although 90% purity level is not ideal, this is close to the maximum because repeated cycles of gel-filtration or AEC did not produce any improvements (data not shown). We strongly suggest that remaining impurities have internal capsid localization and could not be removed by conventional purification methods. Controlled dis- and re-assembly of obtained VLPs in combination with packaging of therapeutic substances (e.g., antibiotics, CpG oligonucleotides, and thermotherapy agents) will be a subject for further investigation.

Acknowledgments

We thank Dr. K. Sasnauskas (Institute of Biotechnology, Vilnius, Lithuania) for helpful advice and discussions. The excellent technical assistance of I. Akopjana, D. Priede, O. Grigs, and J. Ozols is acknowledged. Polyclonal and monoclonal anti-HBc antibodies were kindly provided by Dr. D. Skrastina and L. Jackevica, respectively. This work was supported by the National Research Program 07–VP2.6 from the Latvian Council of Sciences and by the ESF grant 1DP/1.1.2.0/09/APIA/VI1A/150.