Fuzzy order relations and monotone mappings: categorical constructions and applications in aggregation process
Loading...
Date
Authors
Grigorenko, Olga
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
eng
Abstract
Nestrikta sakārtojuma koncepcija, kas ieņem centrālo vietu mūsu darbā, spēlē nozīmīgu lomu gan teorētiskās Nestriktās Matemātikas jomā gan tās lietojumos. Disertācijā mēs attīstām nestrikto sakārtojumu teoriju divos, iekšēji saistītos, virzienos. Sākumā mēs konstruējam L-vērtīgu kategoriju, kuras objekti ir L-E-sakārtotas kopas. Lai sasniegtu šo mērķi, mēs konstruējam klasisku kategoriju, kuras objekti ir L-E-sakārtotas kopas un morfismi ir sakārtojuma saglabājošas funkcijas. Darbā mēs pētām konstruētas kategorijas pamatīpašības. Tad mēs fazificējam konstruēto kategoriju un pētām iegūtas L-vērtīgas kategorijas fundamentālas īpašības. Tālāk mēs pētām nestrikta sakārtojuma lomu agregācijas procesos. Šeit tiek izpētīti trīs temati: nestrikta sakārtojuma ievešana monotonitātes pakāpes definīcijai; nestriktu attiecību agregācija un tās lietojumi daudzkriteriālajā lineārā programmēšanā; nestriktu attiecību A-T-agregācija. MSC: 03E72, 94D05, 18A05, 18B35.
Fuzzy ordered relations, which are in the center of research of this work, play a crucial role in many theoretical and applied areas of Fuzzy Mathematics. In our Dissertation we develop the theory of fuzzy ordered relations in two dierent, but internally closely related, directions. First, we construct an L-valued category whose objects are L-E-ordered sets. In the second part of the work we investigate the role of fuzzy orders in aggregation processes. Here we study the three main topics: involving fuzzy orders in the denition of the degree of monotonicity, the pointwise aggregation of fuzzy relations, and nally, applications of the developed methods in multi-objective linear programming problems and A-T-aggregation of fuzzy order relations. MSC: 03E72, 94D05, 18A05, 18B35 Key words and phrases: L-valued relations, L-E-order relation, L- valued categories, aggregation process
Fuzzy ordered relations, which are in the center of research of this work, play a crucial role in many theoretical and applied areas of Fuzzy Mathematics. In our Dissertation we develop the theory of fuzzy ordered relations in two dierent, but internally closely related, directions. First, we construct an L-valued category whose objects are L-E-ordered sets. In the second part of the work we investigate the role of fuzzy orders in aggregation processes. Here we study the three main topics: involving fuzzy orders in the denition of the degree of monotonicity, the pointwise aggregation of fuzzy relations, and nally, applications of the developed methods in multi-objective linear programming problems and A-T-aggregation of fuzzy order relations. MSC: 03E72, 94D05, 18A05, 18B35 Key words and phrases: L-valued relations, L-E-order relation, L- valued categories, aggregation process