Galaktikas metālnabadzīgo zvaigžņu spektroskopiski pētījumi
Loading...
Date
Authors
Advisor
Journal Title
Journal ISSN
Volume Title
Publisher
Latvijas Universitāte
Language
N/A
Abstract
Anotācija
Ķīmisko elementu koncentrāciju pētījumi Galaktikas zvaigžņu atmosfērās dod
iespēju izprast nukleosintēzes mehānismus un nukleosintēzes procesu norises vietu
dabā. Atomu relatīvās koncentrācijas zvaigznēs ar ekstremāli zemu vidējo metālu
koncentrāciju [M] tiek izmantotas lai atšifrētu nukleosintēzes gaitu Visuma
pirmsākumos pēc Lielā Sprādziena.
Darba pamatā ir četru metālnabadzīgo zvaigžņu augstas izšķirtspējas
(R ≡ λ/Δλ ≥ 45 000) spektroskopiskie novērojumi, galvenokārt optiskajā diapazonā,
turpmāka iegūto rezultātu vispusīga analīze, noskaidrojot katras zvaigznes evolūcijas
stadiju un identificējot iespējamos smago elementu nukleosintēzes mehānismus.
Ir noteikts, ka visas pētītās zvaigznes ir metālnabadzīgas ar [Fe/H] < –1,50.
HD 187216 ķīmisko sastāvu var izskaidrot ar dubultsistēmas evolūcijas modeli ar
masas pārneses scenāriju no asimptotiskā milžu zara zvaigznes. HD 232078 un
HD 218732 ir attiecīgi sarkanā milžu zara un asimptotiskā milžu zara zvaigznes,
kurām novērojamas radiālā ātruma svārstības, kas ir saistītas ar pulsācijām un masas
zaudēšanu. Ķīmiskā sastāva izcelsme ir saistāma ar pārnovu eksploziju nukleosintēzi
agrīnajās Galaktikas evolūcijas stadijās. Metālnabadzīgajai oglekļa zvaigznei
HD 209621 atrastas C, N un O elementu koncentrācijas, kas labi saskan ar vidējas
masas asimptotiskā milžu zara kodolsintēzes teorijas paredzējumiem. Atrastās
ķīmiskās īpatnības labi izskaidro dubultistēmas modelis ar vielas pārplūdi no
asimptotiskā milžu zara zvaigznes.
Abstract The investigations of the chemical composition of stellar atmospheres provide the opportunity to understand the proceses of nucleosynthesis in the Galaxy. The relative atomic abundances in the stars of extremely low metallicity [M] are used to derive the nucleosynthesis in the early Universe right after the Big Bang. The aim of this work is to obtain high resolution (R ≡ λ/Δλ ≥ 45,000) spectra of selected four metal-poor stars in order to perform a comprehensive analysis and establish the evolutionary state of each star, also identifying the proceses of heavy element nucleosynthesis. It is established that all the studied stars are metal-poor having [Fe/H] < –1,50. The chemical composition of HD 187216 can be explained with the evolutionary model of a double system with mass transfer from asymptotic giant branch star. HD 232078 and HD 218732 are respectively red giant branch and asymptotic giant branch stars showing radial velocity variations that are associated with pulsations and mass loss. The origin of chemical composition is attributed to the explosive nucleosynthesis by supernovae in the early stages of Galactic evolution. Abundances of C, N and O found for the metal-poor carbon star HD 209621 are in good agreement with the predictions of the nucleosynthesis in intermediate mass asymptotic giant branch stars. The observed chemical pecullarities can be explained by evolutionary model of a double system with mass transfer from asymptotic giant branch star.
Abstract The investigations of the chemical composition of stellar atmospheres provide the opportunity to understand the proceses of nucleosynthesis in the Galaxy. The relative atomic abundances in the stars of extremely low metallicity [M] are used to derive the nucleosynthesis in the early Universe right after the Big Bang. The aim of this work is to obtain high resolution (R ≡ λ/Δλ ≥ 45,000) spectra of selected four metal-poor stars in order to perform a comprehensive analysis and establish the evolutionary state of each star, also identifying the proceses of heavy element nucleosynthesis. It is established that all the studied stars are metal-poor having [Fe/H] < –1,50. The chemical composition of HD 187216 can be explained with the evolutionary model of a double system with mass transfer from asymptotic giant branch star. HD 232078 and HD 218732 are respectively red giant branch and asymptotic giant branch stars showing radial velocity variations that are associated with pulsations and mass loss. The origin of chemical composition is attributed to the explosive nucleosynthesis by supernovae in the early stages of Galactic evolution. Abundances of C, N and O found for the metal-poor carbon star HD 209621 are in good agreement with the predictions of the nucleosynthesis in intermediate mass asymptotic giant branch stars. The observed chemical pecullarities can be explained by evolutionary model of a double system with mass transfer from asymptotic giant branch star.