Eu3+ ion distribution in oxyfluoride glass nanocomposites

Abstract

Assessment of activator distribution in lanthanide doped nanocomposites is an important and challenging task. Oxyfluoride glass ceramics have been chosen as a model system to characterize incorporation efficiency of Eu3+ ions in CaF2 nanocrystals using a combination of X-ray diffraction (XRD) and electron paramagnetic resonance (EPR) techniques. Lattice constant changes induced by size mismatch of Eu3+ and Ca2+ ions have been used to evaluate Eu3+ content in CaF2. The distortion of CaF2 lattice due to incorporation of europium ions can be detected from EPR investigations via Gd3+ paramagnetic probe spectra. It is shown that ratio of different symmetry CaF2:Gd3+ centres and linewidth of EPR transitions can be used to monitor europium content in the crystalline phase of glass ceramics. ---- / / / ---- This is the preprint version of the following article: A. Antuzevics, G. Krieke, E. Pavlovska, U. Rogulis, Eu3+ ion distribution in oxyfluoride glass nanocomposites, Journal of Non-Crystalline Solids, 522, 119548 (2019), DOI https://doi.org/10.1016/j.jnoncrysol.2019.119548, which has been published in final form at https://www.sciencedirect.com/science/article/abs/pii/S0022309319304193. This article may be used for non-commercial purposes in accordance with Elsevier Terms and Conditions for Sharing and Self-Archiving. This work is licensed under a CC BY-NC-ND 4.0 license.

Citation

Relation

info:eu-repo/grantAgreement/EC/H2020/739508/EU/Centre of Advanced Material Research and Technology Transfer/CAMART²

Endorsement

Review

Supplemented By

Referenced By